WO2015041236A1 - 粉末状金属材料の表面処理方法 - Google Patents

粉末状金属材料の表面処理方法 Download PDF

Info

Publication number
WO2015041236A1
WO2015041236A1 PCT/JP2014/074518 JP2014074518W WO2015041236A1 WO 2015041236 A1 WO2015041236 A1 WO 2015041236A1 JP 2014074518 W JP2014074518 W JP 2014074518W WO 2015041236 A1 WO2015041236 A1 WO 2015041236A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
powder
surface treatment
powdered metal
powder metal
Prior art date
Application number
PCT/JP2014/074518
Other languages
English (en)
French (fr)
Inventor
宮坂 四志男
Original Assignee
株式会社不二機販
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/895,321 priority Critical patent/US20160193658A1/en
Application filed by 株式会社不二機販 filed Critical 株式会社不二機販
Priority to EP14845712.0A priority patent/EP3047925B1/en
Priority to CN201480035621.1A priority patent/CN105339112B/zh
Publication of WO2015041236A1 publication Critical patent/WO2015041236A1/ja
Priority to HK16107071.9A priority patent/HK1219075A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/045Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/11Gradients other than composition gradients, e.g. size gradients
    • B22F2207/13Size gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Definitions

  • the present invention relates to a surface treatment method for a powdered metal material, and more specifically, as a material for manufacturing metal products using metal powder or forming a film, such as powder metallurgy such as sintering or thermal spraying.
  • the present invention relates to a surface treatment method for powdered metal materials.
  • sintering in which an aggregate of powdered metal materials is heated at a temperature lower than the melting point and hardened to obtain a sintered metal, is widely used in the manufacture of various mechanical parts such as gears.
  • a powder metal material as a modeling material in a 3D printer.
  • CAD CAD
  • a desired three-dimensional solid model can be directly formed from a metal material from shape data such as (Non-Patent Document 1), and thus produced by sintering a powdered metal material.
  • shape data such as (Non-Patent Document 1)
  • sintered metal obtained by sintering powdered metal materials tends to have low density and low strength compared to melt molding due to residual pores, etc. In many cases, it cannot be put into practical use as a component.
  • sintering forging in which the obtained sintered metal is forged is also performed. If parts manufactured by simple three-dimensional modeling using a printer need further sintering forging, the advantage of simplicity is lost.
  • the powder metal material having a predetermined crystal structure is subjected to mechanical milling by a ball mill, and the powder metal material is concentrated and subjected to super-strong processing.
  • FIG. 6 (B) in the vicinity of the surface of the powder metal material, there is a region called a shell (hereinafter referred to as “fine grain region”) formed by refining crystal grains.
  • a central region called the core that maintains the original crystal grain size hereinafter referred to as a “coarse grain region” and the fine grain region that covers the coarse grain region A powdered metal material having the following is obtained.
  • the sintered metal obtained by sintering the powdered metal material in which the coarse grain region and the fine grain region are formed in this manner is obtained as shown in FIG. 6C.
  • a metal having a structure called “harmonic structure” in which fine-grained regions are connected to each other and a coarse-grained region is harmoniously arranged in the fine-grained regions in the present invention, .
  • Such a metal is referred to as “harmonic structure metal”), and with such a harmonic structure metal, a uniform equiaxed grain obtained using a normal powder metal material not subjected to mechanical milling treatment is obtained. It has been reported that significant improvement in strength can be obtained while maintaining ductility equivalent to that of sintered metal in the structure (Non-patent Document 2).
  • the manufacturing method of the “harmonic structure metal” described above has been described by taking the case of “sintering” as an example.
  • the above-described powdered metal material having a fine-grain region is Even when a metal film is formed on the surface of the substrate by “thermal spraying”, the formed metal film can be formed as “harmonic structure metal”.
  • Non-Patent Documents 2 and 3 when sintering is performed using a powdered metal material that has been previously agitated by a ball mill, the sintered metal obtained by sintering becomes a “harmonic structure”. As a result, a metal having excellent properties of achieving both high ductility and high strength can be obtained.
  • Non-Patent Documents 2 and 3 when processing a powdered metal material with a ball mill, the processing efficiency is extremely poor.
  • the processing time in Non-Patent Document 2 is 100 hours.
  • the processing time in 3 is 32 hours.
  • the powdered metal material used for sintering and the like is generally a fine particle having a particle size of around 100 ⁇ m, and this is put into a ball mill and stirred in the presence of air to generate frictional force and impact force. In addition, if an electrostatic discharge occurs due to friction during agitation, a dust explosion occurs.
  • the lower explosive concentration of powdered metal (200 mesh (all openings: 74 ⁇ m)) is: aluminum in 35g / m 3, 45g / m 3 in the titanium, 120g / m 3 in the iron [ “of arc welding work safety and hygiene (3rd)" the Japan welding Society WE-COM magazine No. 6 ( (Extracted from October 2012)), it is possible to process only a small amount if stirring is performed below the lower explosion limit concentration, and it can be processed for small-scale production at the laboratory level in the laboratory. However, it is impossible to process a large amount of powdered metal material on a commercial basis with a ball mill.
  • the powder metal materials treated by this method include surfaces such as oxide scales separated from the surface of the powder metal materials. Oxides are mixed, and this oxide hinders the bonding between powder metal materials during sintering, and impairs the increase in strength.
  • powder metal materials used for sintering and thermal spraying are generally manufactured by the atomizing method.
  • the molten metal is atomized by spraying / scattering, and this is rapidly quenched and solidified. Therefore, oxide scale adheres to the surface of the powder metal material.
  • a powdered metal material manufactured by a method other than the atomizing method also forms an oxide film that is a surface oxide by contact with oxygen in the air to a certain extent.
  • the exfoliated oxide is stirred together with the powder metal material in the ball mill, a part of the exfoliated oxide is pressed against the surface of the powder metal material by friction and impact caused by agitation. It is reattached by being embedded.
  • the strength improvement is suppressed by the presence of oxides mixed in the powdered metal material.
  • the powder metal material after the treatment by the ball mill is subjected to, for example, wind sorting, but in this method, in addition to the treatment by the ball mill, Furthermore, it is necessary to provide a separate step for removing the oxide, and the productivity is further reduced.
  • the surface treatment of the powder metal material can be performed by a method that can also remove such a surface oxide film, it is possible to expect higher strength of the resulting harmonic structure metal.
  • the present invention has been made to solve the above-mentioned drawbacks of the prior art, and is used as a material for obtaining a metal product or a metal film having a harmonized structure by a method such as powder metallurgy such as sintering or thermal spraying.
  • a method such as powder metallurgy such as sintering or thermal spraying.
  • the above-mentioned process for forming fine-grained areas on the surface of a powdered metal material is easy and reliable to remove oxides from the surface and to remove oxides after peeling without worrying about dust explosions.
  • An object of the present invention is to provide a surface treatment method for a powder metal material that can be performed efficiently in a relatively short time.
  • a surface treatment method for a powdered metal material of the present invention comprises: In the method of surface treatment of powdered metal materials used for the production of a harmonic structure metal in which the fine grain region and coarse grain region are arranged harmoniously, Using a blasting apparatus equipped with dust collecting means for injecting the sprayed powder together with the compressed gas in the working space to collide with the impacted object, and sucking the inside of the working space to remove and collect the dust, A powder metal material having an average particle diameter of 10 to 200 ⁇ m and a medium substance having a hardness equal to or higher than that of the powder metal material are subjected to a blasting process in which the powder material is repeatedly collided at an injection speed of 100 to 300 m / sec. The surface oxide is exfoliated from the metal material, and a fine grain region having a crystal grain size smaller than the crystal grain size at the center is formed near the surface of the powder metal material. ).
  • the dust collecting means is provided with a cyclone for classifying the dust and the sprayed powder (claim 2).
  • the collected dust is stored together with non-combustible powder such as calcium carbonate in the dust collecting means (claim 3).
  • the powder metal material may be formed with the spray powder, and the medium substance may be used as the collision object (claim 4),
  • the medium substance may be used as powder to form the spray powder, and the powder metal material may be used as the collision object (Claim 5).
  • the medium substance is a powder metal material having the same material and the same average particle size as the powder metal material, and both the spray powder and the colliding object are used as the powder metal material. It is good also as a thing (Claim 6).
  • the material of the medium substance may be a metal having a hardness equal to or higher than that of the powder metal material, or a ceramic having a hardness equal to or higher than the hardness of the powder metal material after the surface treatment. 7).
  • This blasting may be performed by using a powdered metal material as an injection powder and injecting and colliding with a medium material, or by using a medium material as an injection powder and injecting and colliding with a powdered metal material.
  • powder powder and colliding object are made of powder metal material with the same average particle diameter and the same material, powder metal material is jetted and collided with powder metal material.
  • both the powder metal powder used as the spray powder and the powder metal powder used as the collision object are subjected to surface treatment at the same time, so that the amount of treatment can be doubled. It was.
  • FIG. 1 It is a schematic explanatory drawing of the blast processing apparatus used for the surface treatment method of this invention, (A) is a gravity type, (B) is a direct pressure type.
  • the present invention uses a known blasting apparatus to perform a blasting process in which a powder metal material to be processed and a medium substance colliding with the powder metal material are repeatedly collided at a predetermined injection speed.
  • a blasting apparatus to perform a blasting process in which a powder metal material to be processed and a medium substance colliding with the powder metal material are repeatedly collided at a predetermined injection speed.
  • surface oxides such as oxide scales that hinder the strength improvement during sintering and thermal spraying are removed from the surface of the powder metal material, and the crystal grain size at the center is near the surface of the powder metal material. It is intended to form a fine grain region having a small crystal grain size.
  • sintering is performed using a powdered metal material in which a coarse grain region having a relatively large crystal grain size is formed in the center and a fine grain region having a small crystal grain size is formed near the surface.
  • coarse grain regions are harmoniously arranged in a network of fine grain structures formed by joining fine grain regions together. It becomes the harmonic structure metal which has the crystal structure (refer FIG.6 (C)) made, and has the outstanding characteristic that high ductility and high intensity
  • the powder metal material to be treated in the present invention is a powder metal having an average particle size of 10 to 200 ⁇ m, which is used as a material for powder metallurgy and thermal spraying such as sintering, and is applicable to powder metallurgy and thermal spraying. Any material can be used as long as it is possible, and it may be composed of pure metal or alloy.
  • metals commonly used in powder metallurgy include iron-based, copper-based, stainless-based, titanium-based, and tungsten-based metals. Also, as metals used for thermal spraying, Zinc, aluminum, copper, etc. are common, but in the present invention, any of these can be included in the material of the powder metal material.
  • the powder metal materials used can be those produced by various methods, and spray methods represented by the atomization method, which is a method for producing powder metal materials commonly used in powder metallurgy and thermal spraying. In addition, those manufactured by various known methods such as mechanical crushing and electrolytic deposition can be used.
  • the shape of the powder may be spherical, but not limited to this, various shapes can be used.
  • the crystal grain size of the powdered metal material before the treatment is directly the crystal grain size of the coarse grain region as described above. Therefore, when the crystal grain size of the coarse grain region is within a predetermined range, it is appropriate.
  • a powder metal material having a crystal grain size is selected.
  • the average grain size of the coarse grain region is, for example, several ⁇ m to several tens of ⁇ m.
  • Medium material As the medium substance that collides with the powder metal material, various materials can be used as long as they have a hardness equal to or higher than that of the powder metal material. Things can also be used.
  • a ceramic medium material that is not work hardened it is preferable to use a ceramic material having a hardness equal to or greater than the hardness of the powder metal material after the surface treatment of the present invention. Even after the material is work-hardened, the same or higher hardness is maintained.
  • the medium substance itself may be composed of the above-mentioned powdery metal material, and the above-described ultrafine grain structure may be formed in both powdery metal materials by collision between the powdery metal materials.
  • the shape of the medium substance needs to be configured as a powder when the medium substance side is used as a spray powder.
  • powder metal material described above as a spray powder It is not necessary to use powder, and for example, it may be configured as a plate or the like.
  • a powdered metal material may be used as an injection powder, which may be injected toward a medium substance and collided. It is also possible to prepare a substance and inject and collide it as a powder to a powdered metal material. Furthermore, both the powder and the colliding object are made of the same average particle diameter and the same material. It is good also as what consists of a powdery metal material and collides powdery metal materials.
  • the blasting apparatus 1 to be used a known various configuration is used as long as it is a blasting apparatus with a dust collecting function that sucks the inside of the cabinet 21 and collects the inside of the cabinet 21.
  • Either a direct pressure type or a gravity type blasting apparatus may be used.
  • FIG. 1A shows a configuration example of a gravity blasting apparatus 1 used for the surface treatment of the present invention
  • FIG. 1B shows a configuration example of a direct pressure type.
  • the surface treatment of the present invention is performed by using the blasting apparatus 1 and using the powdery metal material having the same material and the same average particle diameter for both the spray powder and the colliding object.
  • the blasting apparatus 1 used in the surface treatment method of the present invention is not limited to the one shown in the figure.
  • a blasting apparatus 1 shown in FIGS. 1A and 1B includes a cabinet 21 serving as a processing chamber that accommodates an injection nozzle 22 and a workpiece and performs blasting, and a dust collector 38 that sucks the inside of the cabinet 21.
  • the cyclone-type recovery tank 23 is provided between the dust collector 38 and the cabinet 21 so that the powder metal material in a state of being mixed with dust collected by sucking the cabinet 21 is recovered.
  • the dust collected in the cyclone-type collection tank 23 can be collected in the dust collector 38.
  • the powder metal material collected in the collection tank 23 in this way can be sprayed again from the spray nozzle 22 in the cabinet 21.
  • a barrel basket 24 which is an upwardly opened container that rotates during injection of the injection powder, is provided inside the above-described cabinet 21, where the tip of the injection nozzle 22 is directed.
  • a powdered metal material to be collided can be introduced.
  • the barrel cage 24 is shown as a wire mesh having a large number of small holes.
  • the present invention is not limited to the illustrated example, and the structure does not include such small holes. It's also good.
  • the powder metal material Prior to performing the processing using the blast processing apparatus 1 configured as described above, the powder metal material is put into the recovery tank 23 and the powder metal material is also put into the barrel cage 24 provided in the processing chamber.
  • the injection of the powder metal material is started from the injection nozzle 22 at an injection speed of 100 to 300 m / sec while rotating the barrel cage 24 in this state, the powder metal material injected from the injection nozzle 22 is rotated by the rotating barrel cage. It collides with the powdered metal material in 24.
  • the injection pressure may be 100 m / sec or more in the treatment of non-ferrous powder metal materials, but is preferably 150 m / sec or more in the treatment of iron powder metal materials.
  • each of the powder metal material in the barrel cage 24 and the powder metal material injected from the injection nozzle 22 receives the energy at the time of collision with each other and is powdered.
  • the surface oxide, such as oxide scale, formed on the surface of the metal-like metal material is peeled off, and the surface of the collision part rapidly rises in temperature and is cooled, so that the crystal grains on the collision part surface are refined.
  • a fine grain region is formed in which a crystal grain having a small diameter is formed with respect to the crystal grain in the central part.
  • the refinement of the powder metal material is that when the powder metal material to be processed is less than 100 ⁇ m, it is formed on the surface of the powder metal material at a depth of about 20% at maximum with respect to the particle size. It has been empirically confirmed that when the powder metal material to be used is 100 ⁇ m or more, it is formed at a depth of about 10% at the maximum with respect to the particle size.
  • the aforementioned fine grain region is formed in a range of 2 to 20 ⁇ m from the surface at the maximum according to the particle size of the powder metal material to be treated.
  • the powdered metal material injected from the injection nozzle 22 collides with the powdered metal material in the barrel cage 24 and then accumulates in the barrel cage 24 except for the one ejected out of the barrel cage 24. Agitation is performed with the powdered metal material present in the barrel cage 24.
  • the powder metal material in the barrel cage 24 increases, overflows from the barrel cage 24, and falls to the bottom of the cabinet 21.
  • the bottom of the cabinet 21 is formed as an inverted trapezoidal hopper, and the lower end of the hopper communicates with the dust collector 38 through the exhaust passage 33 and the recovery tank 23, so that the exhaust air provided in the dust collector 38 is provided.
  • the inside of the cabinet 21 is sucked by the vessel 39, the powdered metal material or dust that has fallen is sucked together with the air in the cabinet 21 and fed into the cyclone type recovery tank 23, where the dust and the powder metal The material is classified, and the powdered metal material is recovered downward in the recovery tank 23.
  • the processing chamber formed in the cabinet 21 is constantly suctioned to remove dust and powdered metal material floating in the air, and is kept below the lower explosion limit concentration. In terms of form, there is no risk of dust explosion in the cabinet due to the generation of heat or static electricity due to the injection, collision, friction of the powdered metal material.
  • the dust classified in the cyclone-type collection tank 23 and collected in the dust collector 38 is incombustible powder such as carbon dioxide so that the concentration of flammable dust in the air in the dust collector 38 is lower than the lower explosion limit concentration.
  • the concentration of flammable dust in the air in the dust collector 38 is lower than the lower explosion limit concentration.
  • the powder metal material recovered in the recovery tank 23 is again injected from the injection nozzle 22 toward the powder metal material in the barrel cage 24, and any of the powder metal materials is obtained by repeating the above-described steps.
  • Surface oxides such as oxide scale are also removed from the surface of the material, and a fine grain region is formed so as to cover the entire surface.
  • a powdered metal material in which a fine grain region is formed in the vicinity of the surface can be obtained by using it as a material for powder metallurgy such as sintering or for forming a metal film such as spraying.
  • a harmonic structure metal in which coarse grain regions are harmoniously arranged in a network of fine grain structures formed by interconnecting portions of fine grain regions is obtained. With such a harmonic structure metal, excellent properties such as high ductility and high strength can be obtained.
  • both the spray powder and the colliding object are made of a powdered metal material, and the spray powder and the colliding object are collided in the barrel cage 24 provided in the cabinet 21.
  • a plate body formed of a material having a hardness equal to or higher than that of the spray powder is accommodated as a medium substance in the cabinet 21 in place of the barrel cage 24 described above, and a powder metal material is accommodated in the plate body.
  • the surface treatment of the present invention may be performed by spraying and colliding as a spray powder.
  • the powdered medium material is used as the spray powder, and the medium material that is the spray powder is used for the powder metal material charged in the barrel cage 24.
  • the powdered metal material and the medium substance are classified and recovered after the treatment.
  • Example 1 The surface treatment method of the present invention was performed on stainless steel powder (SUS304 equivalent: # 80) as the powder metal material.
  • the processing conditions are shown in Table 1 below.
  • the treated stainless steel powder had a clean surface with the oxide scale removed, and the hardness of the stainless steel powder from 250 to 350 HV before the treatment increased to 450 to 550 HV after the treatment. This suggests that the crystal grains near the surface are becoming finer.
  • the refinement of the crystal grain size can be evaluated from the increase in the line width of the X-ray analysis peak from the Scherrer formula (1918).
  • the results of X-ray analysis of untreated stainless steel powder see Fig. 2)
  • the X-ray diffraction results after the processing according to the present application show that the peak line width has greatly increased, and the hardness of the powder metal material described above has increased. From the results, it was confirmed that the crystal grain size was reduced on the surface.
  • Example 2 The surface treatment method of the present invention was performed on powder high-speed tool steel (SKH equivalent: # 150) as a powder metal material.
  • the processing conditions are shown in Table 2 below.
  • the hardness of the powder high-speed tool steel which was 650 to 750 HV before the treatment, increased to 900 to 1000 HV after the treatment.
  • the powder high-speed tool steel after the treatment has a clean surface with the oxide scale removed, and the X-ray diffraction results show that the X-ray analysis peak is higher than that of the untreated one (see Fig. 4).
  • the line width increased (see FIG. 5), and it was confirmed that the surface texture was refined by the treatment according to the method of the present invention (see FIGS. 4 and 5).
  • Example 3 The surface treatment method of the present invention was performed on powder of alloy steel for machine structure (SCM equivalent: # 150) as a powder metal material.
  • SCM equivalent: # 150 The processing conditions are shown in Table 3 below.
  • the hardness of the alloy structural steel powder which was 150 to 200 HV before the treatment, increased to 300 to 350 HV after the treatment.
  • the processed alloy steel powder for machine structural use is considered to have a finer structure on the surface due to the above-mentioned increase in hardness as well as the surface being cleaned by removing the oxide scale. .
  • Example 4 The surface treatment method of the present invention was applied to a copper alloy powder (# 150) as a powder metal material.
  • the processing conditions are shown in Table 4 below.
  • the hardness of the copper alloy powder which was 160 to 200 HV before the treatment, increased to 220 to 260 HV after the treatment.
  • the oxide scale is removed and the surface is clean, and a refined structure is formed on the surface due to the increase in hardness described above.
  • Example 5 The surface treatment method of the present invention was performed on an aluminum alloy powder (AC8A: # 80) as a powder metal material.
  • the processing conditions are shown in Table 5 below.
  • a barrel basket with a number of holes of 1 mm diameter is installed in the processing chamber, and 10 kg of aluminum alloy (AC8A) powder is put into the barrel basket, and the high-speed steel shot put into the collection tank is directed into the barrel basket. The spraying process was continued for 7 hours.
  • AC8A aluminum alloy
  • the hardness of the aluminum alloy powder which was 120 to 140 HV before the treatment, increased to 200 to 250 HV after the treatment.
  • the treated aluminum alloy powder has a clean surface with oxide scale removed, and due to the above-mentioned increase in hardness, the medium material, high-speed steel, diffuses and penetrates into the aluminum alloy powder surface. In addition, it is considered that a fine structure is formed on the surface.
  • the coarse grain structure is harmonized in the network formed by interconnecting the fine grain regions.
  • the surface treatment method of the present invention is capable of treating powder metal materials used for the production of a harmonic structure metal simply, in large quantities, and safely. The method was confirmed.

Abstract

 粉末冶金や溶射等の材料として使用する粉末状金属材料を安全,簡易,且つ,短時間で改質する表面処理方法を提供する。作業空間内で噴射粉体を圧縮気体と共に噴射して被衝突物に衝突させると共に,前記作業空間内を吸引して粉塵を除去,回収する集塵手段を備えたブラスト加工装置を使用し,平均粒径10~200μmの粉末状金属材料と,前記粉末状金属材料と同等以上の硬度を有する媒体物質を,噴射速度100~300m/secで繰り返し衝突させるブラスト処理を行い,前記粉末状金属材料より表面酸化物を剥離すると共に,該粉末状金属材料の表面付近に,中心部の結晶粒径に対し小さな結晶粒径を有する微細粒領域を形成する。上記表面処理が施された粉末状金属材料を焼結して得られた焼結金属は,微細粒領域と粗大粒領域が調和的に配置された調和組織を有し,高延性と高強度の両立が実現される。

Description

粉末状金属材料の表面処理方法
 本発明は粉末状金属材料の表面処理方法に関し,より詳細には,焼結等の粉末冶金や溶射のように金属粉末を使用した金属製品の製造や被膜の形成を行う際の材料として使用する,粉末状金属材料の表面処理方法に関する。
 粉末冶金の一種として,粉末状金属材料の集合体を融点よりも低い温度で加熱して固めて焼結金属を得る「焼結」は,歯車等の各種機械部品の製造に広く利用されており,特に,近年においては,3Dプリンタにおける造形材料として粉末状金属材料を使用することも提案され,レーザビームや電子ビームを所定のパターンで粉末状金属材料に照射して焼結させることで,CAD等の形状データから所望の3次元立体モデルを直接,金属材料によって成形できるようにすることも提案されており(非特許文献1),このようにして粉末状金属材料の焼結によって製造された3次元立体モデルにあっては,従来の3Dプリンタで製造されていた樹脂製のモデルとは異なり,模型や見本としての用途のみならず,これを直接,機械等に組み込む部品として使用することも期待されている。
 しかし,粉末状金属材料を焼結して得られる焼結金属は,残留気孔が発生すること等に起因して溶融成形を行った場合に比較して低密度,低強度となり易く,そのままでは機械部品等として実用に耐え得ない場合も多い。
 そのため,このような低密度,低強度をもたらす残留気孔を除去する目的で,得られた焼結金属を鍛造する「焼結鍛造」と呼ばれる処理も行われているが,前述したように,3Dプリンタを使用した簡便な立体造形によって製造された部品に対し,更に焼結鍛造の処理が必要であれば,簡便性の利点が失われる。
 前述した焼結鍛造のような事後的な処理とは異なり,焼結に使用する原料である粉末状金属材料の組成や構造を工夫することで,焼結金属の高強度化を図る研究も進められており,その中の1つとして,焼結を行う前の粉末状金属材料に対し,ボールミルによる攪拌によるメカニカルミリング処理を施すことにより,材料の内部構造を変化させることで高強度の焼結金属が得られることの報告もされている(非特許文献2,3)。
 この方法では,図6(A)に示すように所定の結晶構造を有する粉末状金属材料に対しボールミルによるメカニカルミリング処理を行って粉末状金属材料に集中的に超強加工を施すことにより,図6(B)に示すように粉末状金属材料の表面付近には,結晶粒が微細化されて形成されたシェル(Shell)と呼ばれる領域(以下,この領域を「微細粒領域」という。)が生じることで,元々の結晶粒サイズを維持するコア(Core)と呼ばれる中心部の領域(以下,この領域を「粗大粒領域」という。)と,この粗大粒領域を覆う前述の微細粒領域とを備えた粉末状金属材料が得られる。
 そして,このようにして粗大粒領域と微細粒領域とが形成された粉末状金属材料を焼結することで,得られた焼結金属は,図6(C)に示すように粉末状金属材料の微細粒領域同士が連結して形成されたネットワーク状の組織と,この微細粒領域中に粗大粒領域とが調和的に配置された,「調和組織」と呼ばれる構造を有する金属(本発明において,このような金属を「調和組織金属」という。)が得られ,このような調和組織金属では,メカニカルミリング処理を行っていない通常の粉末状金属材料を使用して得られた均一等軸粒組織の焼結金属と同等の延性を維持しつつ,強度の大幅な向上が得られることが報告されている(非特許文献2)。
 なお,以上の説明では,前掲の「調和組織金属」の製造方法を,「焼結」により行う場合を例に挙げて説明したが,前述した微細粒領域を備えた粉末状金属材料は,これを「溶射」によって基材の表面に金属被膜を形成する場合においても,形成された金属被膜を「調和組織金属」と成し得る。
『特集2-3Dプリンタ|魅せた!編|「設計・製造ソリューション展」レポート 樹脂,紙,金属など,造形材料が多様化』〔日経BP社発行「日経ものづくり8月号」(発行日:2013年8月1日)第64~68頁〕 飴山 惠・関口 達也「調和組織制御による高強度・高延性を両立した革新的構造用材料の創製」〔一般社団法人日本熱処理技術協会発行「熱処理 材料と表面の改質 Vol.53 NO.1 2013」(発行日:平成25年2月28日)第1~2頁〕 「再生黄銅硬さ3倍 切削くず成形・焼結 日大が新技術 導電率改良し実用へ」〔日刊工業新聞(2013年4月30日)〕
 非特許文献2,3として紹介したように,事前にボールミルによる攪拌を行った粉末状金属材料を使用して焼結を行う場合,焼結によって得られた焼結金属が「調和組織」となることで,高延性と高強度との両立という,優れた特性を備えた金属が得られる。
 しかし,非特許文献2,3に記載されているように,ボールミルで粉末状金属材料の処理を行う場合,処理効率が極めて悪く,一例として非特許文献2における処理時間は100時間,非特許文献3における処理時間は32時間となっている。
 また,ボールミルによる粉末状金属材料の処理は,粉塵爆発のおそれがあり,極めて危険な作業である。
 すなわち,焼結等に使用する粉末状金属材料は,一般に粒径が100μm前後と微細なものであるため,これをボールミル内に投入して空気の存在下で攪拌して摩擦力や衝撃力を加え,また,攪拌の際の摩擦によって発生した静電気の放電が生じれば,粉塵爆発が起こる。
 ここで,粉塵爆発は,酸素の存在,爆発下限濃度以上の粉塵の発生,及び,着火源の存在という3要素が揃ったときに発生することから,粉塵爆発の発生を防止しようとした場合,これらの条件の1つ以上を取り除くことが必要となるが,粉末状金属材料に超強加工を施すために,内部で摩擦力,衝撃力を発生させるボールミルから,着火源となり得る摩擦や衝撃の発生を取り除くことは不可能である。
 そのため,粉塵爆発を防止しようとした場合,ボールミルの内部を不活性ガスで満たす等して酸素を排除した状態で作業を行うか,粉末状金属材料の投入量を爆発下限濃度未満となるように調整するか,あるいはその双方の実施が必要となる。
 しかし,ボールミル内部を不活性ガスで満たした状態で処理を行えば,製造コストが大幅に上昇することとなり,また,粉末状金属〔200メッシュ(目開74μm)全通〕の爆発下限濃度は,アルミニウムで35g/m3,チタンで45g/m3,鉄で120g/m3〔「アーク溶接作業の安全性と衛生(第3回)」一般社団法人日本溶接協会 WE-COMマガジン第6号(2012年10月発行)より抜粋〕であることを考えれば,爆発下限濃度以下で攪拌を行おうとすれば,極めて少量ずつしか処理できず,研究室による実験レベルでの少量生産であれば処理可能であるとしても,商業ベースに乗るような大量の粉末状金属材料をボールミルで処理することは不可能である。
また,前述したボールミルによる処理を,粉末状金属材料の処理に適用できたとしても,この方法で処理された粉末状金属材料中には,粉末状金属材料の表面より剥離した酸化スケール等の表面酸化物が混在し,この酸化物が,焼結時に粉末状金属材料同士の結合の妨げとなり,高強度化を阻害する。
 すなわち,焼結や溶射に使用する粉末状金属材料は,一般的にアトマイズ法によって製造されるが,このアトマイズ法では,溶融金属を噴霧・飛散して微粒化し,これを瞬時に急冷・凝固して粉末状金属材料を製造するものであるため,粉末状金属材料の表面には酸化スケールが付着する。
 また,アトマイズ法以外の方法で製造された粉末状金属材料についても,程度の差はあるが空気中の酸素との接触によって表面酸化物である酸化膜が形成される。
 このような酸化スケール等の表面酸化物は,ボールミルにおける攪拌時に受ける摩擦や衝撃によって粉末状金属材料の表面より剥離されたとしても,ボールミルの構造上,このようにして剥離した酸化物は,剥離後も取り除かれることなく粉末状金属材料中に混在する。
 しかも,剥離された酸化物は,粉末状金属材料と共にその後もボールミル内で攪拌されるため,剥離した酸化物の一部は,攪拌による摩擦や衝撃によって粉末状金属材料の表面に押し付けられて,埋め込まれる等して再付着する。
そのため,ボールミルで処理した粉末状金属材料をそのまま取り出して焼結に使用する場合,粉末状金属材料中に混在する酸化物の存在により強度の向上が抑制される。
 一方,粉末状金属材料中に混在する酸化物を除去するために,ボールミルによる処理後の粉末状金属材料を例えば風力選別等にかけることも考えられるが,この方法では,ボールミルによる処理に加え,更に酸化物を除去するための一工程を別途設けることが必要となり,生産性はより一層低下する。
 しかも,この方法では,粉末状金属材料中に混在している酸化物についてはある程度除去できたとしても,粉末状金属材料の表面に再付着した酸化物を分離,除去することはできない。
 そのため,このような表面酸化膜についても除去できる方法で粉末状金属材料の表面処理を行うことができれば,得られる調和組織金属のより一層の高強度化が期待できる。
 そこで本発明は,上記従来技術における欠点を解消するためになされたもので,焼結等の粉末冶金や溶射等の方法によって調和組織を備えた金属製品や金属被膜を得る際の材料として使用する粉末状金属材料の表面に,前述した微細粒領域を形成する処理を,粉塵爆発の心配がなく,表面からの酸化物の剥離や,剥離した後の酸化物の除去を容易かつ,確実に行うことができると共に,比較的短時間で効率的に行うことができる粉末状金属材料の表面処理方法を提供することを目的とする。
 上記課題を達成するために,本発明の粉末状金属材料の表面処理方法は,
 微細粒領域と粗大粒領域が調和的に配置された調和組織金属の製造に使用する粉末状金属材料の表面処理方法において,
 作業空間内で噴射粉体を圧縮気体と共に噴射して被衝突物に衝突させると共に,前記作業空間内を吸引して粉塵を除去,回収する集塵手段を備えたブラスト加工装置を使用し,
 平均粒径10~200μmの粉末状金属材料と,前記粉末状金属材料と同等以上の硬度を有する媒体物質を,噴射速度100~300m/secで繰り返し衝突させるブラスト処理を行うことにより,前記粉末状金属材料より表面酸化物を剥離すると共に,該粉末状金属材料の表面付近に,中心部の結晶粒径に対し小さな結晶粒径を有する微細粒領域を形成することを特徴とする(請求項1)。
 前述のブラスト処理に使用する前記ブラスト加工装置としては,前記集塵手段が,前記粉塵と前記噴射粉体とを分級するサイクロンを備えたものを使用する(請求項2)。
 更に,前述のブラスト加工装置において,前記集塵手段において,回収した粉塵を例えば炭酸カルシウム等の不燃性粉末と共に貯留する(請求項3)。
 上記構成の粉末状金属材料の表面処理方法において,前述のブラスト処理は,
 前記粉末状金属材料を前記噴射粉体と成すと共に,前記媒体物質を前記被衝突物として行っても良く(請求項4),
 前記媒体物質を粉体として前記噴射粉体と成すと共に,前記粉末状金属材料を前記被衝突物として行うものとしても良く(請求項5),
 更には,前記媒体物質を前記粉末状金属材料と同一材質,及び同一の平均粒径を有する粉末状金属材料とし,前記噴射粉体と前記被衝突物のいずれ共に,前記粉末状金属材料として行うものとしても良い(請求項6)。
 なお,前記媒体物質の材質は,前記粉末状金属材料と同等以上の硬度を有する金属,又は,前記表面処理後の粉末状金属材料の硬度と同等以上の硬度を有するセラミックスとしても良い(請求項7)。
 以上で説明した本発明の構成により,本発明の粉体状金属材料の表面処理方法によれば,以下の顕著な効果を得ることができた。
 平均粒径10~200μmの粉末状金属材料と,前記粉末状金属材料と同等以上の硬度を有する媒体物質を,噴射速度100~300m/secで繰り返し衝突させるブラスト処理を行うことで,粉末状金属材料の表面酸化物が除去されると共に,衝突時時に表面付近で生じる急速な温度上昇と冷却が繰り返されることで,粉末状金属材料の表面付近の結晶粒が微細化されることで,中心部の結晶粒径に対し小さな結晶粒径を有する微細粒領域が表面付近に形成された粉体状金属材料を,ブラスト加工という比較的簡単な方法で容易に,且つ,短時間で大量に処理することができた。
 しかも,前述したブラスト加工を,集塵機能付きのブラスト加工装置によって行うことで,粉塵爆発の危険を回避しつつ,量産が可能になると共に,粉末状金属材料の表面より剥離した酸化スケール等の表面酸化物を,作業空間内の吸引によって粉塵として除去,回収されることで,後工程において別途,表面酸化物を除去する工程を設けることなく,表面酸化物の混入が無い粉末状金属材料を得ることかできた。
特に,ブラスト処理に集塵手段として前記粉塵と前記噴射粉体とを分級するサイクロンを備えたものを使用する場合には,粉末状金属粉体と剥離した表面酸化物とが混在した状態で回収された場合にあっても,この中から表面酸化物を粉塵と共に噴射粉体から分級して回収することができ,より高精度に表面酸化物が除去された粉末状金属材料を得ることができた。
 更に,前述のブラスト加工装置の集塵手段において,除去した粉塵を炭酸カルシウム等の不燃性粉末と共に貯留する場合には,加工室のみならず,集塵機内における粉塵爆発の危険についても低減することができた。
 このブラスト加工は,粉末状金属材料を噴射粉体とし媒体物質に対し噴射,衝突させるものとしても良く,又は,媒体物質を噴射粉体として粉体状金属材料に対し噴射,衝突させるものとしても良いが,噴射粉体と被衝突物の双方を同一の平均粒径,同一の材質から成る粉末状金属材料として,粉末状金属材料に対し,粉末状金属材料を噴射,衝突させる構成とした場合には,噴射粉体とした粉末状金属粉体,及び,被衝突物とした粉末状金属粉体の双方に対し表面処理が同時に行われることとなるために,処理量を倍増させることができた。
本発明の表面処理方法に使用するブラスト加工装置の概略説明図であり,(A)は重力式,(B)は直圧式。 未処理のステンレス粉末(SUS304相当品)のX線回析結果を示すグラフ。 実施例1の方法で処理したステンレス粉末(SUS304相当品)のX線回析結果を示すグラフ。 未処理の粉末高速度工具鋼(SKH相当品)のX線回析結果を示すグラフ。 実施例2の方法で処理した粉末高速度工具鋼(SKH相当品)のX線回析結果を示すグラフ。 調和組織の生成を説明した説明図であり(A)は未処理の粉末状金属材料,(B)はボールミルによる処理後の粉末状金属材料,(C)は(B)の粉末状金属材料を焼結して得られる調和組織金属の模式図。
 次に,本発明の実施形態につき添付図面を参照しながら以下説明する
〔全体構成〕
 本発明は,既知のブラスト加工装置を使用して,処理対象とする粉末状金属材料と,前記粉末状金属材料と衝突される媒体物質とを,所定の噴射速度で繰り返し衝突させるブラスト処理を行うことで,粉末状金属材料の表面より焼結や溶射に際し強度向上を阻害する酸化スケール等の表面酸化物を除去すると共に,該粉末状金属材料の表面付近に,中心部の結晶粒径に対し小さな結晶粒径を有する微細粒領域を形成しようというものである。
 このようにして,中心部に結晶粒径の比較的大きな粗大粒領域が,表面付近に粗大粒領域に対し結晶粒径の小さな微細粒領域が形成された粉末状金属材料を使用して焼結等の粉末冶金等の方法で得られた金属製品,あるいは溶射によって製造された金属被膜は,微細粒領域同士が結合してできた微細粒組織のネットワーク中に,粗大粒領域が調和的に配置された結晶構造〔図6(C)参照〕を有し,高延性と高強度の両立という優れた特性を有する調和組織金属となる。
〔粉末状金属材料〕
 本発明で処理対象とする粉末状金属材料は,焼結等の粉末冶金や溶射の際の材料として使用される平均粒径は10~200μmの粉体状金属であり,粉末冶金や溶射に適用可能な材質のものであれば各種材質のものを使用することができ,純金属,合金のいずれにより構成されるものであっても良い。
 一例として,粉末冶金に一般的に使用される金属としては,鉄系,銅系,ステンレス系,チタン系,タングステン系の金属を挙げることができ,また,溶射に使用されている金属としては,亜鉛,アルミ,銅等が一般的であるが,本発明では,これらのいずれも粉末状金属材料の材質に含めることができる。
 使用する粉末状金属材料は,各種方法で製造されたものを使用することができ,粉末冶金や溶射において一般的に使用される粉末状金属材料の製造方法であるアトマイズ法に代表される噴霧法の他,機械的な破砕,電解析出等の既知の各種の方法により製造されたものを使用することができる。
 粉体の形状は球状であって良いが,これに限定されず各種形状のものが使用できる。
 なお,処理前における粉末状金属材料の結晶粒径は,そのまま,前述した粗大粒領域の結晶粒径となるので,粗大粒領域の結晶粒径を所定の範囲内のものとする場合,対応する結晶粒径の粉末状金属材料を選択する。特に限定されるものではないが,粗大粒領域の平均結晶粒径は,一例として数μm~数十μmである。
〔媒体物質〕
 前述した粉末状金属材料と衝突する媒体物質としては,粉末状金属材料と同等以上の硬度を有するものであれば各種のものを使用することができ,金属製のもののみならず,セラミック製のものを使用することもできる。
 なお,加工硬化しないセラミックス製の媒体物質を使用する場合,好ましくは,本発明の表面処理を行った後の粉末状金属材料の硬度と同等以上の硬度を有するセラミックスを使用して,粉末状金属材料が加工硬化した後においても同等以上の硬度が維持されるようにする。
 また媒体物質自体を前述の粉末状金属材料によって構成することで,粉末状金属材料同士の衝突によって,双方の粉末状金属材料に前述した超微細粒組織を形成するものとしても良い。
 媒体物質の形状は,媒体物質側を噴射粉体として使用する場合にはこれを粉体として構成する必要があるが,前述した粉末状金属材料を噴射粉体として処理を行う場合,媒体物質は粉体とする必要はなく,例えば板体等の形態として構成するものとしても良い。
〔ブラスト加工方法及びブラスト加工装置〕
 以上で説明した粉末状金属材料と媒体物質の衝突は,ブラスト加工装置を使用したブラスト加工によって行う。
 このブラスト加工としては,前述したように,粉末状金属材料を噴射粉体とし,これを,媒体物質に向けて噴射し,衝突させるものとしても良く,これとは逆に,粉体状の媒体物質を準備してこれを噴射粉体として粉末状金属材料に噴射,衝突させるものとしても良く,更には,噴射粉体,被衝突物の双方共に,同一の平均粒子径,同一の材質から成る粉末状金属材料によって構成し,粉末状金属材料同士を衝突させるものとしても良い。
 使用するブラスト加工装置1としては,加工室となるキャビネット21と,このキャビネット21内を吸引して集塵する集塵機能付きのブラスト加工装置であれば,既知の各種の構成のものを使用することができ,直圧式,重力式のいずれのブラスト加工装置を使用しても良い。
 本発明の表面処理に使用する重力式のブラスト加工装置1の構成例を図1(A)に,直圧式の構成例を図1(B)にそれぞれ示す。
 以下に,これらのブラスト加工装置1を使用して,噴射粉体,及び被衝突物の双方共に,同一材質,同一平均粒子径の粉末状金属材料を使用して本発明の表面処理を行う例について説明するが,本発明の表面処理方法に使用するブラスト加工装置1は,図示の構成のものに限定されない。
 図1(A),(B)に示すブラスト加工装置1は,噴射ノズル22及び被加工物を収容してブラスト加工が行われる加工室となるキャビネット21,このキャビネット21内を吸引する集塵機38を備えており,この集塵機38とキャビネット21間に,サイクロン型の回収タンク23を設けることで,キャビネット21内を吸引して回収された,粉塵と混在した状態にある粉末状金属材料を回収タンク23内に回収すると共に,サイクロン型の回収タンク23において粉末状金属材料から分離された粉塵を,集塵機38において回収することができるようになっている。
 そして,このようにして回収タンク23内に回収された粉末状金属材料は,再度,キャビネット21内の噴射ノズル22より噴射することができるように構成されている。
 前述のキャビネット21の内部であって,噴射ノズル22の先端が向けられた先には,噴射粉体の噴射中回転する,上向きに開口した収容容器であるバレルカゴ24が設けられており,この中に,被衝突物となる粉末状金属材料を投入することができるようになっている。
 図1(A)に示した例では,このバレルカゴ24を多数の小孔が形成された金網状のものとして示しているが,図示の例に限定されず,このような小孔を備えない構成のものとしても良い。
 以上のように構成されたブラスト加工装置1を使用した処理を行うに先立ち,回収タンク23内に粉末状金属材料を投入すると共に,加工室内に設けられたバレルカゴ24内にも粉末状金属材料を投入し,この状態でバレルカゴ24を回転させながら,噴射ノズル22より噴射速度100~300m/secで粉末状金属材料の噴射を開始すると,噴射ノズル22から噴射された粉末状金属材料は回転するバレルカゴ24内の粉末状金属材料に衝突する。
 噴射圧力は,非鉄系の粉末状金属材料の処理にあっては100m/sec以上で良いが,鉄系の粉末状金属材料の処理にあっては150m/sec以上とすることが好ましい。
 このようにして,粉末状金属材料の噴射を行うことで,バレルカゴ24内の粉末状金属材料と噴射ノズル22から噴射された粉末状金属材料のそれぞれは,相互に衝突時のエネルギを受けて粉末状金属材料の表面に形成されていた酸化スケール等の表面酸化物が剥離され,また,衝突部分における表面が急激に温度上昇すると共に冷却されることで,衝突部分表面の結晶粒が微細化され,粉末状金属材料の表面付近に,中央部分の結晶粒に対し小径の結晶粒が形成された微細粒領域が形成される。
 粉末状金属材料の微細化は,処理対象とする粉末状金属材料が100μm未満である場合,粉末状金属材料の表面に粒径に対し最大で20%程度の深さで形成され,処理対象とする粉末状金属材料が100μm以上である場合には粒径に対し最大で10%程度の深さで形成されることが経験的に確認されていることから,平均粒径10~200μmの粉末状金属材料を処理対象とする本発明の表面処理方法では,処理対象とする粉末状金属材料の粒径に応じて最大で表面から2~20μmの範囲に前述した微細粒領域が形成される。
 噴射ノズル22から噴射された粉末状金属材料は,バレルカゴ24内の粉末状金属材料と衝突した後,バレルカゴ24外に弾き出されたものを除きバレルカゴ24内に溜まり,バレルカゴ24の回転に伴って元々バレルカゴ24内に存在していた粉末状金属材料と共に撹拌される。
 そのため,噴射ノズル22から粉末状金属材料の噴射を継続すると,バレルカゴ24内の粉末状金属材料が増えてバレルカゴ24から溢れて,キャビネット21の底部へ落下する。
 キャビネット21の底部は,逆台形状のホッパとして形成されていると共に,ホッパの下端は排風路33,回収タンク23を介して集塵機38に連通されているため,集塵機38に設けられた排風器39によってキャビネット21内を吸引すると,落下した粉末状金属材料や粉塵がキャビネット21内の空気と共に吸引されてサイクロン型の回収タンク23内へ送給され,この回収タンク23で粉塵と粉末状金属材料が分級され,粉末状金属材料は回収タンク23内の下方へ回収される。
 粉末状金属材料の表面に生じている酸化スケール等の表面酸化物は,粉末状金属材料に比較して高硬度で脆いため,粉末状金属材料同士の衝突による衝撃によって剥離される際に細かく破砕されるために,回収タンク23内には回収されず,粉塵として回収タンク23の上部に連結する管32を介して集塵機38へ送られ,集塵機38内の下方へ集積され,清浄な空気が排風器39より外気中へ排出される。
 このようにして,キャビネット21内に形成された加工室内は,常に吸引が行われ空気中を浮遊する粉塵や粉末状金属材料が除去されて爆発下限濃度以下に抑えられていることから,本実施形態では粉末状金属材料である噴射粉体の噴射,衝突,摩擦による発熱や静電気の発生によってもキャビネット内で粉塵爆発が発生する恐れはない。
 一方,サイクロン型の回収タンク23で分級されて集塵機38へ回収された粉塵は,集塵機38内における空気中の可燃性粉塵の濃度が爆発下限濃度以下となるように,不燃性の粉末,例えば炭酸カルシウムの粉末と共に集塵機38内に収容されることで,集塵機38内における粉塵爆発の危険性も回避されている。
 そして,前記回収タンク23内に回収された粉末状金属材料は,再び噴射ノズル22よりバレルカゴ24内の粉末状金属材料に向けて噴射され,前述の工程が繰り返されることにより,いずれの粉末状金属材料の表面からも酸化スケール等の表面酸化物が除去されると共に,表面付近の全体を覆うように微細粒領域が形成される。
 以上のようにして,表面付近に微細粒領域が形成された粉末状金属材料は,これを焼結等の粉末冶金の材料として使用し,あるいは,溶射等の金属膜の形成に使用すると,得られた焼結金属や金属被膜では,微細粒領域の部分が相互に連結して形成された微細粒組織のネットワーク中に,粗大粒領域が調和的に配置された調和組織金属が得られる。このような調和組織金属にあっては,高い延性と高強度の両立という,優れた特性が得られる。
 特に,本発明の方法で処理された粉末状金属材料にあっては,焼結や溶着時における強度低下の原因となる酸化スケール等の表面酸化物についても好適に除去することができることから,得られた焼結金属や金属被膜のより一層の高強度化を図ることができる。
 なお,以上の説明では,噴射粉体及び被衝突物のいずれ共に粉末状金属材料と成すと共に,キャビネット21内に設けられたバレルカゴ24内で噴射粉体と被衝突物の衝突を行わせる構成について説明したが,例えば,前述のバレルカゴ24に代えてキャビネット21内に噴射粉体と同等以上の硬度を有する材質で形成された板体を媒体物質として収容し,この板体に対し粉末状金属材料を噴射粉体として噴射,衝突させることにより本発明の表面処理を行うものとしても良い。
 また,前述したバレルカゴ24を備えたブラスト加工装置1を使用し,粉体状の媒体物質を噴射粉体とし,バレルカゴ24内に投入された粉末状金属材料に対し噴射粉体である媒体物質を噴射するものとしても良く,この場合には処理後に粉末状金属材料と媒体物質とを分級してそれぞれを回収する。
 以下に,本発明の表面処理方法を,各種材質の粉末状金属材料に対し適用した実施例について説明する。
〔実施例1〕
 粉末状金属材料として,ステンレスの粉末(SUS304相当品:♯80)に対し,本発明の表面処理方法を実施した。処理条件を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 ブラスト加工装置の加工室内に設けたバレルカゴに10kg,回収タンクに20kgのステンレス粉末を投入し,上記表1に示す条件で,回収タンク内のステンレス粉末を,噴射ノズルよりバレルカゴ内に向かって噴射する処理を3時間継続して行った。
 上記処理の結果,処理後のステンレス粉末は,酸化スケールが除去されて表面がきれいになっていたと共に,処理前において250~350HVであったステンレス粉末の硬度が,処理後では450~550HV迄上昇しており,このことから表面付近の結晶粒が微細化していることが予測される。
 また,シェラー(Scherrer, 1918)の式よりX線解析ピークの線幅の増大から,結晶粒径の微細化を評価することができるところ,未処理のステンレス粉末のX線解析結果(図2参照)に対し,本願による処理後のX線解析結果(図3)ではピークの線幅が大幅に増大しており,前述した粉末状金属材料の硬度が上昇していることと共に,X線回析結果からも表面における結晶粒径の微細化が確認された。
〔実施例2〕
 粉末状金属材料として,粉末高速度工具鋼(SKH相当品:♯150)に対し,本発明の表面処理方法を実施した。処理条件を下記の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 ブラスト加工装置の加工室内に設けたバレルカゴに10kg,回収タンクに10kgの粉末高速度工具鋼を投入し,上記表2に示す条件で,回収タンク内の粉末高速度工具鋼を,噴射ノズルよりバレルカゴ内に向かって噴射する処理を5時間継続して行った。
 その結果,処理前において650~750HVであった粉末高速度工具鋼の硬度が,処理後では900~1000HV迄上昇した。
 また,処理後の粉末高速度工具鋼は,酸化スケールが除去されて表面がきれいになっていると共に,X線回析結果より,未処理のもの(図4参照)に対し,X線解析ピークの線幅が増大しており(図5参照),本発明の方法による処理により表面組織が微細化されていることが確認できた(図4,5参照)。
〔実施例3〕
 粉末状金属材料として,機械構造用合金鋼の粉末(SCM相当品:♯150)に対し,本発明の表面処理方法を実施した。処理条件を下記の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 ブラスト加工装置の加工室内に設けたバレルカゴに10kg,回収タンクに10kgの機械構造用合金鋼の粉末を投入し,上記表3に示す条件で,回収タンク内の機械構造用合金鋼の粉末を,噴射ノズルよりバレルカゴ内に向かって噴射する処理を5時間継続して行った。
 その結果,処理前において150~200HVであった機械構造用合金鋼の粉末の硬度が,処理後では300~350HV迄上昇した。
 また,処理後の機械構造用合金鋼の粉末は,酸化スケールが除去されて表面がきれいになっていると共に,前述した硬度の上昇より,表面に微細化した組織が形成されているものと考えられる。
〔実施例4〕
 粉末状金属材料として,銅合金の粉末(♯150)に対し,本発明の表面処理方法を実施した。処理条件を下記の表4に示す。
Figure JPOXMLDOC01-appb-T000004
 回収タンクに20kgの銅合金粉末を投入し,加工室内に配置されたSKD11製の板(φ400mm,厚さ20mm)の中心から100mm芯をずらした位置に向けて,回収タンク内の銅合金粉末を,噴射ノズルより噴射する処理を7時間継続して行った。
 その結果,処理前において160~200HVであった銅合金粉末の硬度が,処理後では220~260HV迄上昇した。
 また,処理後の銅合金粉末では,酸化スケールが除去されて表面がきれいになっていると共に,前述した硬度の上昇より,表面に微細化した組織が形成されているものと考えられる。
〔実施例5〕
 粉末状金属材料として,アルミニウム合金の粉末(AC8A:♯80)に対し,本発明の表面処理方法を実施した。処理条件を下記の表5に示す。
Figure JPOXMLDOC01-appb-T000005
 直径1mmの孔が多数形成されたバレルカゴを加工室内に設け,このバレルカゴ内にアルミニウム合金(AC8A)の粉末を10kg投入すると共に,回収タンク内に投入したハイス鋼製のショットをバレルカゴ内に向けて噴射する処理を7時間継続して行った。
 上記処理の結果,処理前において120~140HVであったアルミニウム合金の粉末の硬度が,処理後では200~250HV迄上昇した。
 また,処理後のアルミニウム合金の粉末は,酸化スケールが除去されて表面がきれいになっていると共に,前述した硬度の上昇より,媒体物質であるハイス鋼の成分がアルミニウム合金の粉末の表面に拡散浸透すると共に表面に微細化した組織が形成されているものと考えられる。
〔焼結試験結果〕
 以上,実施例1~5として説明した本発明の表面処理方法で処理を行った粉末状金属材料を使用して放電プラズマ焼結を行った。
 その結果,実施例1~5のいずれの粉末状金属材料を焼結して得た焼結金属においても,微細粒領域が相互に連結して形成されたネットワーク中に,粗大粒組織が調和的に配置された「調和組織」を有しており,本発明の表面処理方法が,調和組織金属の製造に使用する粉末状金属材料を簡易且つ大量に,しかも安全に処理することができる表面処理方法であることが確認された。
1 ブラスト加工装置
21 キャビネット
22 噴射ノズル
23 回収タンク(サイクロン型)
24 バレルカゴ
32 管
33 排風路
38 集塵機
39 排風器

Claims (7)

  1.  微細粒領域と粗大粒領域が調和的に配置された調和組織金属の製造に使用する粉末状金属材料の表面処理方法において,
     作業空間内で噴射粉体を圧縮気体と共に噴射して被衝突物に衝突させると共に,前記作業空間内を吸引して粉塵を除去,回収する集塵手段を備えたブラスト加工装置を使用し,
     平均粒径10~200μmの粉末状金属材料と,前記粉末状金属材料と同等以上の硬度を有する媒体物質を,噴射速度100~300m/secで繰り返し衝突させるブラスト処理を行うことにより,前記粉末状金属材料より表面酸化物を剥離すると共に,該粉末状金属材料の表面付近に,中心部の結晶粒径に対し小さな結晶粒径を有する微細粒領域を形成することを特徴とする,粉末状金属材料の表面処理方法。
  2.  前記ブラスト加工装置の前記集塵手段が,前記粉塵と前記噴射粉体とを分級するサイクロンを備えることを特徴とする請求項1記載の粉末状金属材料の表面処理方法。
  3.  前記ブラスト加工装置の前記集塵手段において,回収した粉塵を不燃性粉末と共に貯留することを特徴とする請求項1又は2記載の粉末状金属材料の表面処理方法。
  4.  前記粉末状金属材料を前記噴射粉体と成すと共に,前記媒体物質を前記被衝突物として前記ブラスト処理を行うことを特徴とする請求項1~3いずれか1項記載の粉末状金属材料の表面処理方法。
  5.  前記媒体物質を粉体として前記噴射粉体と成すと共に,前記粉末状金属材料を前記被衝突物として前記ブラスト処理を行うことを特徴とする請求項1~3いずれか1項記載の粉末状金属材料の表面処理方法。
  6.  前記媒体物質を前記粉末状金属材料と同一材質,及び同一の平均粒径を有する粉末状金属材料とし,前記噴射粉体と前記被衝突物のいずれ共に,前記粉末状金属材料としたことを特徴とする請求項1~3いずれか1項記載の粉末状金属材料の表面処理方法。
  7.  前記媒体物質の材質が,前記粉末状金属材料と同等以上の硬度を有する金属,又は,前記表面処理後の粉末状金属材料の硬度と同等以上の硬度を有するセラミックスであることを特徴とする請求項1~5いずれか1項記載の粉末状金属材料の表面処理方法。

     
PCT/JP2014/074518 2013-09-18 2014-09-17 粉末状金属材料の表面処理方法 WO2015041236A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/895,321 US20160193658A1 (en) 2013-09-18 2014-09-14 Surface treatment method for powdered metal material
EP14845712.0A EP3047925B1 (en) 2013-09-18 2014-09-17 Surface treatment method for powdered metal material
CN201480035621.1A CN105339112B (zh) 2013-09-18 2014-09-17 粉末状金属材料的表面处理方法
HK16107071.9A HK1219075A1 (zh) 2013-09-18 2016-06-20 粉末狀金屬材料的表面處理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-193254 2013-09-18
JP2013193254A JP5723942B2 (ja) 2013-09-18 2013-09-18 粉末状金属材料の表面処理方法

Publications (1)

Publication Number Publication Date
WO2015041236A1 true WO2015041236A1 (ja) 2015-03-26

Family

ID=52688884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074518 WO2015041236A1 (ja) 2013-09-18 2014-09-17 粉末状金属材料の表面処理方法

Country Status (6)

Country Link
US (1) US20160193658A1 (ja)
EP (1) EP3047925B1 (ja)
JP (1) JP5723942B2 (ja)
CN (1) CN105339112B (ja)
HK (1) HK1219075A1 (ja)
WO (1) WO2015041236A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230806A1 (ja) 2018-05-30 2019-12-05 株式会社 東芝 3dプリンタ用金属粉、造形物、および造形物の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160236422A1 (en) * 2015-02-13 2016-08-18 Ricoh Company, Ltd. Device and method for removing powder and apparatus for fabricating three-dimensional object
US10913206B2 (en) * 2015-08-03 2021-02-09 Delavan, Inc Systems and methods for post additive manufacturing processing
JP6848521B2 (ja) 2017-02-24 2021-03-24 セイコーエプソン株式会社 金属粉末射出成形用コンパウンド、焼結体の製造方法および焼結体
JP6969113B2 (ja) 2017-03-06 2021-11-24 セイコーエプソン株式会社 金属粉末射出成形用コンパウンド、金属粉末成形体、焼結体の製造方法および焼結体
JP6961972B2 (ja) * 2017-03-24 2021-11-05 富士フイルムビジネスイノベーション株式会社 立体形状成形装置、情報処理装置及びプログラム
TWI638480B (zh) * 2017-10-25 2018-10-11 國立虎尾科技大學 Electrode electrode chip process
CN112055627B (zh) * 2018-06-08 2023-08-11 惠普发展公司,有限责任合伙企业 粉末床材料
JP7164163B2 (ja) * 2018-08-24 2022-11-01 学校法人立命館 炭素含有鉄合金材の製造方法及び炭素含有鉄合金材
WO2020059059A1 (ja) * 2018-09-19 2020-03-26 技術研究組合次世代3D積層造形技術総合開発機構 金属積層造形用粉末およびその製造方法と、積層造形装置およびその制御プログラム
CN110284105B (zh) * 2019-06-25 2024-02-09 郑州航空工业管理学院 一种粉体表面金属化方法及其装置
JP7470963B2 (ja) * 2020-01-27 2024-04-19 株式会社不二機販 焼結体のバインダ金属相強化方法
CN114535568A (zh) * 2022-02-25 2022-05-27 安徽工业大学 一种对还原铁粉进行高效循环表面纳米化的设备及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312071A (ja) * 1987-06-10 1988-12-20 Nippon Mining Co Ltd 亜鉛ブラストショットの製造方法
JP2001225270A (ja) * 2000-02-10 2001-08-21 Fuji Seisakusho:Kk サンドブラスト装置及びサンドブラスト装置における研掃材の分級方法及び該方法におけるダスト捕集方法
JP2007297651A (ja) * 2006-04-27 2007-11-15 Fuji Wpc:Kk 硬質金属表面における結晶粒微細化方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293105A (ja) * 1987-05-27 1988-11-30 Nkk Corp 金属粉末の製造方法
JPH0822504B2 (ja) * 1987-06-10 1996-03-06 日鉱金属株式会社 アルミダイカスト製品のシヨツトブラスト方法
JPH0761612B2 (ja) * 1988-11-22 1995-07-05 株式会社不二機販 沸騰水型原子力発電設備の発電用タービンの洗浄方法
JP2754680B2 (ja) * 1989-03-17 1998-05-20 大同特殊鋼株式会社 金属粉末の処理方法
JP3049165B2 (ja) * 1993-02-15 2000-06-05 株式会社不二製作所 粉末合金の表面層の処理法
JP3379824B2 (ja) * 1994-06-14 2003-02-24 株式会社不二機販 表面硬化金属ショットの製造方法
JP2978137B2 (ja) * 1997-09-01 1999-11-15 プラストロン株式会社 金属表面処理方法およびその処理を施した金属材
JP3730015B2 (ja) * 1998-06-02 2005-12-21 株式会社不二機販 金属成品の表面処理方法
US20080176487A1 (en) * 2007-01-19 2008-07-24 Armstrong Jay T Portable cleaning and blasting system for multiple media types, including dry ice and grit
JP4719249B2 (ja) * 2008-06-11 2011-07-06 株式会社不二機販 表面酸化耐摩耗潤滑被膜及びその形成方法
JP5381045B2 (ja) * 2008-11-26 2014-01-08 新東工業株式会社 ショットピーニング用投射材の製造方法
US8893538B2 (en) * 2010-12-08 2014-11-25 Fuji Kihan Co., Ltd. Instantaneous heat treatment method for metal product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312071A (ja) * 1987-06-10 1988-12-20 Nippon Mining Co Ltd 亜鉛ブラストショットの製造方法
JP2001225270A (ja) * 2000-02-10 2001-08-21 Fuji Seisakusho:Kk サンドブラスト装置及びサンドブラスト装置における研掃材の分級方法及び該方法におけるダスト捕集方法
JP2007297651A (ja) * 2006-04-27 2007-11-15 Fuji Wpc:Kk 硬質金属表面における結晶粒微細化方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Safety and Hygiene of Arc Welding (third", WE-COM MAGAZINE NO. 6, October 2012 (2012-10-01)
"Tripled Renewed Brass Hardness, Chip Molding/Sintering, New Technology by Nihon Univ. Improved Conductivity to Practice", NIKKAN KOGYO SHIMBUN, 30 April 2013 (2013-04-30)
KEI AMEYAMA; TATSUYA SEKIGUCHI: "Journals of The Japan Society for Heat Treatment", vol. 53, 28 February 2013, THE JAPAN SOCIETY FOR HEAT TREATMENT, article "Creation of Innovative Structural Material Realizing both High Strength and High Ductility by Harmonic Structure Control", pages: 1 - 2
MASATO ISHIWATA: "Improvement of Metal Surface Strength by Fine Particle Bombarding Treatment", MARINE ENGINEERING, vol. 46, no. 5, 1 September 2011 (2011-09-01), pages 684 - 687, XP055327553 *
NIKKEI BP: "Special Feature 2-3D Printer 'Attracting!' 'Design/Manufacture Solution Exhibition' Report, Diversification of Molding Materials", NIKKEI MONODUKURI, 1 August 2013 (2013-08-01), pages 64 - 58
See also references of EP3047925A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230806A1 (ja) 2018-05-30 2019-12-05 株式会社 東芝 3dプリンタ用金属粉、造形物、および造形物の製造方法

Also Published As

Publication number Publication date
EP3047925B1 (en) 2022-04-13
JP2015059236A (ja) 2015-03-30
JP5723942B2 (ja) 2015-05-27
CN105339112A (zh) 2016-02-17
HK1219075A1 (zh) 2017-03-24
EP3047925A4 (en) 2017-06-07
CN105339112B (zh) 2017-04-19
US20160193658A1 (en) 2016-07-07
EP3047925A1 (en) 2016-07-27

Similar Documents

Publication Publication Date Title
JP5723942B2 (ja) 粉末状金属材料の表面処理方法
Fang et al. Powder metallurgy of titanium–past, present, and future
Antony et al. Processes for production of high-purity metal powders
Upadhyaya Powder metallurgy technology
JP2014515792A5 (ja)
Mahamood et al. Characterization of laser deposited Ti6Al4V/TiC composite powders on a Ti6Al4V substrate
Dhiman et al. A framework for effective and clean conversion of machining waste into metal powder feedstock for additive manufacturing
WO2012148984A2 (en) Spherical molybdenum disulfide powders, molybdenum disulfide coatings, and methods for producing same
Saravanakumar et al. Assessment of microstructure and wear behavior of aluminum nitrate reinforced surface composite layers synthesized using friction stir processing on copper substrate
Dobrzański et al. Manufacturing powders of metals, their alloys and ceramics and the importance of conventional and additive technologies for products manufacturing in Industry 4.0 stage
Selvakumar et al. Effect of particle size of B4C reinforcement on Ti-6Al-4V sintered composite prepared by mechanical milling method
Solonenko et al. Effect of the microstructure of SHS powders of titanium carbide–nichrome on the properties of detonation coatings
WO2004106587A1 (ja) 放電表面処理用電極、放電表面処理用電極の製造方法、放電表面処理装置および放電表面処理方法
Zhou et al. Metal Powder-Based Additive Manufacturing
Chesnokov et al. Preparation of the composite powder Al–B4C by ball milling for cold spray
Ndaliman et al. Formation of nitrides and carbides on titanium alloy surface through EDM
TWI586460B (zh) Surface treatment of powdered metallic materials
JP2754680B2 (ja) 金属粉末の処理方法
RU2493938C2 (ru) Композиционный нанопорошок и способ его получения
JP2015140461A (ja) 放電表面処理用の電極及びその製造方法
Ageev et al. Composition, Structure and Properties of Hard Alloy Products from Electroerosive Powders Obtained from T5K10 Hard Alloy Waste in Kerosene
JP7296232B2 (ja) 中実球状粉末の製造方法及び造形製品の製造方法
Tapphorn et al. The solid-state spray forming of low-oxide titanium components
Fullenwider From Recycled Machining Waste to Useful Powders: Sustainable Fabrication and Utilization of Feedstock Powder for Metal Additive Manufacturing
Colella et al. Powder production techniques for high-pressure cold spray

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480035621.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845712

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14895321

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014845712

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014845712

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201600717

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE