WO2015041152A1 - 振動装置及びその製造方法 - Google Patents

振動装置及びその製造方法 Download PDF

Info

Publication number
WO2015041152A1
WO2015041152A1 PCT/JP2014/074131 JP2014074131W WO2015041152A1 WO 2015041152 A1 WO2015041152 A1 WO 2015041152A1 JP 2014074131 W JP2014074131 W JP 2014074131W WO 2015041152 A1 WO2015041152 A1 WO 2015041152A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
layer
vibration device
piezoelectric thin
thin film
Prior art date
Application number
PCT/JP2014/074131
Other languages
English (en)
French (fr)
Inventor
山田 宏
圭一 梅田
武彦 岸
西村 俊雄
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201480051082.0A priority Critical patent/CN105556840B/zh
Priority to JP2015537893A priority patent/JP6245265B2/ja
Publication of WO2015041152A1 publication Critical patent/WO2015041152A1/ja
Priority to US15/072,610 priority patent/US10291202B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/0072Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02433Means for compensation or elimination of undesired effects
    • H03H9/02448Means for compensation or elimination of undesired effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2468Tuning fork resonators
    • H03H9/2478Single-Ended Tuning Fork resonators
    • H03H9/2484Single-Ended Tuning Fork resonators with two fork tines, e.g. Y-beam cantilever
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2468Tuning fork resonators
    • H03H9/2478Single-Ended Tuning Fork resonators
    • H03H9/2489Single-Ended Tuning Fork resonators with more than two fork tines
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/027Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the microelectro-mechanical [MEMS] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02488Vibration modes
    • H03H2009/02496Horizontal, i.e. parallel to the substrate plane
    • H03H2009/02503Breath-like, e.g. Lam? mode, wine-glass mode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02488Vibration modes
    • H03H2009/02511Vertical, i.e. perpendicular to the substrate plane
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H2009/241Bulk-mode MEMS resonators

Definitions

  • the present invention relates to a vibration device in which a vibrating arm is connected to a support portion and a method for manufacturing the vibration device.
  • Patent Document 1 discloses a vibrating device in which each end of a plurality of vibrating arms is connected to a support portion.
  • the vibrating arm has a Si semiconductor layer.
  • An SiO 2 film is provided on the Si semiconductor layer.
  • a first electrode, a piezoelectric thin film, and a second electrode are sequentially stacked on the SiO 2 film. That is, an excitation unit including a piezoelectric thin film is formed on the Si semiconductor layer.
  • the vibration device described in Patent Document 1 is a vibration device using a bulk wave.
  • a relatively thick SiO 2 film having a thickness of 2 ⁇ m or more is provided in order to improve temperature characteristics.
  • Patent Document 2 discloses a surface acoustic wave semiconductor device using an n-type Si substrate doped with P.
  • the temperature characteristics can be improved by changing the elastic constant and the velocity of the surface acoustic wave.
  • Patent Document 1 discloses that SiO 2 film is formed by thermal oxidation, a thermal oxidation method, an attempt to deposit a SiO 2 film or to a certain thickness, the growth of the SiO 2 film The speed is significantly slowed down. Therefore, it is difficult to form a SiO 2 film having a thickness of 2 ⁇ m or more.
  • a thick SiO 2 film can be easily formed by sputtering or CVD.
  • the mechanical loss Qm of the film was bad. Therefore, there is a problem that the Q value of the vibrator is lowered.
  • An object of the present invention is to provide a vibration device capable of suppressing variations in resonance frequency due to temperature changes and a method for manufacturing the same.
  • the vibration device includes a support portion, a vibration body connected to the support portion and having an n-type Si layer that is a degenerate semiconductor, and an electrode provided to excite the vibration body. And a silicon oxide film containing impurities is provided so as to be in contact with the lower surface of the n-type Si layer.
  • the vibration device is provided so as to be in contact with the upper surface of the n-type Si layer, and further includes a silicon oxide film containing impurities.
  • the piezoelectric device further includes a piezoelectric thin film, the electrode includes first and second electrodes, and the piezoelectric thin film is sandwiched between the first and second electrodes. And an excitation unit comprising the piezoelectric thin film and the first and second electrodes is provided on the n-type Si layer.
  • a piezoelectric thin film is further provided, and the piezoelectric thin film is disposed between the electrode and the n-type Si layer.
  • the silicon oxide film is a film formed by a thermal oxidation method.
  • the impurity is a dopant doped in the n-type Si layer.
  • the n-type Si layer that is the degenerate semiconductor is an n-type Si layer having a doping concentration of 1 ⁇ 10 19 / cm 3 or more.
  • the dopant of the n-type Si layer that is the degenerate semiconductor is P.
  • the excitation unit is configured to flexurally vibrate the vibrating body.
  • an odd number of the vibration bodies are provided, and the excitation unit is configured to cause the vibration bodies to bend out of plane.
  • an even number of the vibration bodies are provided, and the excitation unit is configured to cause the vibration bodies to be flexibly vibrated in a plane.
  • a method of manufacturing a vibration device configured in accordance with the present invention includes a step of preparing a vibrator having an n-type Si layer connected to a support portion and provided with a silicon oxide film containing impurities on an upper surface and a lower surface, and the vibrator Forming an electrode provided to be excited.
  • the method further includes a step of forming a piezoelectric thin film, and the piezoelectric thin film is provided between the first and second electrodes.
  • the method further includes a step of forming a piezoelectric thin film, and the piezoelectric thin film is provided so as to be sandwiched between the electrode and the n-type Si layer.
  • the vibration having an n-type Si layer connected to the support portion and provided with a silicon oxide film containing impurities on the upper surface and the lower surface.
  • the step of preparing the body includes a step of preparing a support substrate made of Si having a recess on one surface, and an n-type Si layer provided with silicon oxide films containing impurities on the upper and lower surfaces. And a step of laminating an n-type Si layer provided with the silicon oxide film so as to cover the concave portion of the support substrate.
  • the step of preparing an n-type Si layer in which the silicon oxide film containing impurities is provided on the upper surface and the lower surface is performed by a thermal oxidation method. This is a step of forming a silicon oxide film containing impurities.
  • a silicon oxide film containing impurities is provided so as to be in contact with the upper surface and the lower surface of the n-type Si layer which is a degenerate semiconductor. Therefore, since it becomes difficult for the dopant in the n-type Si layer to be scattered to the outside, variations in the resonance frequency due to temperature changes can be suppressed.
  • a vibration device capable of suppressing variation in resonance frequency due to a temperature change is provided.
  • FIG. 1 is a perspective view showing an appearance of the vibration device according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a portion along the line AA in FIG.
  • FIG. 3A and FIG. 3B are schematic perspective views for explaining the vibration state of the vibration device according to the first embodiment of the present invention.
  • FIG. 4 is a SIMS profile showing the concentration distribution of P in the n-type Si layer.
  • 5 (a) to 5 (d) are cross-sectional views for explaining the method for manufacturing the vibration device according to the first embodiment of the invention.
  • 6A to 6D are cross-sectional views for explaining the method for manufacturing the vibration device according to the first embodiment of the invention.
  • FIG. 7 is a perspective view showing an appearance of a vibration device according to the second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a portion taken along line BB in FIG.
  • FIG. 9 is a perspective view showing an appearance of a vibration device according to the third embodiment of the present invention.
  • 10 is a cross-sectional view of a portion along the line CC in FIG.
  • FIG. 11 is a plan view of a vibration device according to the fourth embodiment of the present invention.
  • 12 is a cross-sectional view of a portion along the line DD in FIG.
  • FIG. 13 is a front sectional view of a vibration device according to a fifth embodiment of the present invention.
  • FIG. 14 is a front cross-sectional view of a modification of the vibration device according to the fifth embodiment.
  • FIG. 1 is a perspective view showing an appearance of the vibration device 1 according to the first embodiment of the present invention.
  • the vibration device 1 is a resonance-type vibrator including a support portion 2, vibrating arms 3 a to 3 c that are an odd number of vibrating bodies, and a mass adding portion 4.
  • One end of each of the vibrating arms 3a to 3c is connected to the support portion 2.
  • a mass adding portion 4 is provided at each of the other ends of the vibrating arms 3a to 3c.
  • the vibrating arms 3a to 3c have a rectangular shape in plan and have a length direction and a width direction. One end of each of the vibrating arms 3a to 3c is connected to the support portion 2 as a fixed end, and the other end can be displaced as a free end. In other words, the vibrating arms 3a to 3c are supported by the support portion 2 in a cantilever manner. The odd number of vibrating arms 3a to 3c are extended in parallel to each other and have the same length.
  • the vibrating arms 3a to 3c are vibrating bodies that bend and vibrate in an out-of-plane bending vibration mode when an alternating electric field is applied.
  • the support portion 2 is connected to the short sides of the vibrating arms 3a to 3c.
  • the support portion 2 extends in the width direction of the vibrating arms 3a to 3c.
  • side frames 5 and 6 are connected to both ends of the support portion 2 so as to extend in parallel with the vibrating arms 3a to 3c.
  • the support part 2 and the side frames 5 and 6 are integrally formed.
  • the mass adding portion 4 is provided at each tip of the vibrating arms 3a to 3c.
  • the mass adding portion 4 is in the form of a rectangular plate having a larger dimension in the width direction than the vibrating arms 3a to 3c.
  • FIG. 2 is a cross-sectional view of a portion along the line AA in FIG.
  • the vibrating arms 3a to 3c are composed of an SiO 2 film (silicon oxide film) 12, an n-type Si layer 11, an SiO 2 film 13, and an excitation unit.
  • the n-type Si layer 11 is made of an n-type Si semiconductor that is a degenerate semiconductor.
  • the n-type Si layer 11 is provided to suppress frequency variations due to temperature changes.
  • the doping concentration of the n-type dopant in the n-type Si layer 11 is preferably 1 ⁇ 10 19 / cm 3 or more.
  • 15th group elements such as P, As, or Sb, can be mentioned.
  • the Si in the n-type Si layer 11 is doped with the n-type dopant, so that variations in the resonance frequency due to temperature changes can be suppressed. This is because the elastic properties of Si are greatly affected by the carrier concentration of Si.
  • the n-type Si layer 11 can improve the temperature characteristics without deteriorating the Q value.
  • the SiO 2 film 12 is provided on the lower surface of the n-type Si layer 11, and the SiO 2 film 13 is also provided on the upper surface. As will be described later, the SiO 2 films 12 and 13 are provided to suppress variations in resonance frequency due to temperature changes. In the present embodiment, the SiO 2 films 12 and 13 are provided on the upper and lower surfaces of the n-type Si layer 11, but the SiO 2 films 12 and 13 are formed so as to cover the periphery of the n-type Si layer 11. It may be provided.
  • the SiO 2 films 12 and 13 contain impurities.
  • the impurity is preferably a dopant doped in the n-type Si layer.
  • the doping concentration of the n-type dopant is preferably 1 ⁇ 10 17 / cm 3 or more. In this case, since the elastic properties of the SiO 2 is affected by the concentration of impurities in the SiO 2, the variation in resonant frequency due to temperature change, can be more reliably suppressed.
  • the excitation unit 14 is provided on the upper surface of the SiO 2 film 13.
  • the excitation unit 14 includes a piezoelectric thin film 15, a first electrode 16, and a second electrode 17.
  • the first electrode 16 and the second electrode 17 are provided so as to sandwich the piezoelectric thin film 15.
  • a piezoelectric thin film 15 a is provided on the upper surface of the SiO 2 film 13, and a piezoelectric thin film 15 b is provided on the upper surfaces of the piezoelectric thin film 15 and the second electrode 17.
  • the piezoelectric thin film 15 a is a seed layer, and the piezoelectric thin film 15 b is a protective layer, and neither constitutes the excitation unit 14.
  • the piezoelectric thin films 15a and 15b may not be provided.
  • the piezoelectric material constituting the piezoelectric thin film 15 is not particularly limited, and ZnO, AlN, PZT, KNN, or the like can be used.
  • ScAlN is suitably used because it is preferable that the Q value is high. It is more preferable to use Sc-substituted AlN (ScAlN). This is because when ScAlN is used, the ratio band of the resonance type vibrator is widened, so that the adjustment range of the oscillation frequency is further widened.
  • the Sc-substituted AlN film (ScAlN) desirably has a Sc concentration of about 0.5 at% to 50 at% when the atomic concentration of Sc and Al is 100 at%.
  • the first and second electrodes 16 and 17 can be formed of an appropriate metal such as Mo, Ru, Pt, Ti, Cr, Al, Cu, Ag, or an alloy thereof.
  • the piezoelectric thin film 15 is polarized in the thickness direction. Therefore, by applying an alternating electric field between the first and second electrodes 16 and 17, the excitation unit 14 is excited by the piezoelectric effect. As a result, the vibrating arms 3a to 3c bend and vibrate so as to take the vibrating state shown in FIGS. 3 (a) and 3 (b).
  • the central vibrating arm 3b and the vibrating arms 3a and 3c on both sides are displaced in opposite phases. This can be achieved by setting the phase of the alternating electric field applied to the central vibrating arm 3b and the phase of the alternating electric field applied to the vibrating arms 3a and 3c on both sides to be opposite phases. Alternatively, the polarization direction in the piezoelectric thin film 15 may be reversed between the central vibrating arm 3b and the vibrating arms 3a and 3c on both sides.
  • the side frames 5 and 6 are composed of the SiO 2 film 20, the Si substrate 19, the SiO 2 film 12, the n-type Si layer 11, the SiO 2 film 13, and the piezoelectric thin film 15.
  • the support portion 2 is also configured similarly to the side frames 5 and 6.
  • a recess 19 a is formed on the upper surface of the Si substrate 19, and a part of the side wall of the recess 19 a constitutes the support 2 and the side frames 5 and 6.
  • the vibrating arms 3a to 3c are disposed on the recess 19a.
  • the Si substrate 19 is a support substrate constituting the support portion 2 and the side frames 5 and 6.
  • the SiO 2 film 20 is a protective film and is provided on the lower surface of the Si substrate 19.
  • the mass adding portion 4 has a laminated structure including the SiO 2 film 12, the n-type Si layer 11, the SiO 2 film 13, and the piezoelectric thin film 15, as in the side frames 5 and 6. Therefore, it is desirable that the mass addition film 18 is provided only on the upper surface side as in the present embodiment. Further, since the mass adding portion 4 has a function of adding mass to the tips of the vibrating arms 3a to 3c, as described above, if the dimension in the width direction is larger than that of the vibrating arms 3a to 3c, It will have that function. Therefore, the mass addition film 18 is not necessarily provided.
  • FIG. 4 is a SIMS profile showing the concentration distribution of P in the n-type Si layer 11. That is, it is a profile obtained by measuring the concentration change of P in the depth direction from the surface of the n-type Si layer 11.
  • 1E + n means 1 ⁇ 10 n .
  • a broken line shows a profile when the n-type Si layer 11 is not provided with the SiO 2 films 12 and 13. In this case, it turns out that the density
  • the solid line in the figure shows the profile when the SiO 2 films 12 and 13 are provided so as to be in contact with the n-type Si layer 11. From this figure, it can be seen that in this case, the concentration of P is uniform from the surface to the inside.
  • the n-type Si layer 11 is bonded by thermally bonding to the Si substrate 19 as shown in a manufacturing method described later. P is scattered from the surface of the n-type Si layer 11 into the air by the heat generated during the thermal bonding. Alternatively, P moves to the Si substrate 19. Therefore, in the n-type Si layer 11 in which the SiO 2 films 12 and 13 are not provided, the P concentration near the surface is reduced.
  • the SiO 2 films 12 and 13 when the SiO 2 films 12 and 13 are provided so as to be in contact with the n-type Si layer 11, the SiO 2 films 12 and 13 can suppress the scattering of P to the outside. In this case, since P does not become nonuniform in the n-type Si layer 11, frequency variations due to temperature changes are suppressed.
  • an Si substrate 19 is prepared as shown in FIG.
  • a recess 19a is formed on the upper surface of the Si substrate 19 by etching.
  • the depth of the recess 19a may be about 10 ⁇ m to 30 ⁇ m.
  • an n-type Si layer 11 having a doping concentration of 1 ⁇ 10 19 / cm 3 or more and doped with P is prepared, and the periphery of the n-type Si layer 11 is covered.
  • An SiO 2 film 12X containing a dopant doped in the n-type Si layer is formed.
  • the upper surface of the SiO 2 film 12X will be described as the SiO 2 film 13A, and the lower surface will be described as the SiO 2 film 12.
  • the SiO 2 films 12 and 13A are formed by a thermal oxidation method.
  • a SiO 2 film formed by a thermal oxidation method is preferable because the Q value hardly deteriorates.
  • the thickness of the SiO 2 films 12 and 13A is 0.5 ⁇ m.
  • the n-type Si layer 11 on which the SiO 2 films 12 and 13A are formed is laminated on the Si substrate 19.
  • the SiO 2 film 12 is brought into contact with the surface of the Si substrate 19 on which the concave portion 19a is provided. This joining is performed by thermal joining at a high temperature of 1100 ° C. or higher.
  • the SiO 2 film 13A is removed by polishing, and the thickness of the n-type Si layer 11 is further reduced. Thereby, the thickness of the n-type Si layer 11 is set to about 10 ⁇ m.
  • the SiO 2 film 13 is formed on the upper surface of the n-type Si layer 11 and the SiO 2 film 20 is formed on the lower surface of the Si substrate 19 by thermal oxidation.
  • the thickness of the SiO 2 film 13 is 0.5 ⁇ m.
  • the first electrode 16 is formed on the upper surface of the piezoelectric thin film 15a.
  • the first electrode 16 is a laminated electrode in which a first layer made of Mo and a second layer made of Al are laminated.
  • the piezoelectric thin film 15a is a seed layer, and by providing the piezoelectric thin film 15a, the first layer made of Mo in the first electrode 16 is formed with high orientation. Then, as shown in FIG. 6C, after the piezoelectric thin film 15 made of AlN is formed on the upper surfaces of the piezoelectric thin film 15 a and the first electrode 16, the second electrode 17 is formed on the upper surface of the piezoelectric thin film 15. .
  • the second electrode 17 is a laminated electrode in which a first layer made of Mo and a second layer made of Al are laminated.
  • the first electrode 16 and the second electrode 17 are formed by, for example, a lift-off process using a sputtering method.
  • a piezoelectric thin film 15b made of AlN with a thickness of about 30 nm to 100 nm is formed on the upper surfaces of the piezoelectric thin film 15 and the second electrode 17.
  • a mass addition film 18 made of Au is formed on the upper surface of the piezoelectric thin film 15 where the mass addition portion 4 is formed.
  • processing is performed by dry etching or wet etching so that the plurality of vibrating arms 3a to 3c and the mass addition portion 4 shown in FIG. 1 remain. In this way, the vibration device 1 can be obtained.
  • the vibration device 1 according to the first embodiment of the present invention is a resonance vibrator using out-of-plane bending vibration, but like the vibration device 21 according to the second embodiment shown in a perspective view in FIG. Alternatively, a resonant vibrator using in-plane bending vibration may be used.
  • the vibration device 21 includes a support portion 22 and a vibrating arm 23 that is an even number of vibrating bodies. In the present embodiment, two vibrating arms 23a and 23b are provided as vibrating bodies.
  • the resonating arms 23a and 23b have a long and narrow rectangular shape, and have a length direction and a width direction. One end of each of the vibrating arms 23a and 23b is connected to the support portion 22 to be a fixed end, and the other end can be displaced as a free end.
  • the two vibrating arms 23a and 23b extend in parallel to each other and have the same length.
  • the vibrating arms 23a and 23b are vibrating bodies that bend and vibrate in an in-plane bending vibration mode when an alternating electric field is applied.
  • the support portion 22 is connected to the short sides of the vibrating arms 23a and 23b.
  • the support portion 22 extends in the width direction of the vibrating arms 23a and 23b.
  • the support part 22 supports the vibrating arms 23a and 23b by cantilever beams.
  • FIG. 8 is a cross-sectional view of a portion taken along line BB in FIG.
  • the vibrating arms 23 a and 23 b are similar to the vibrating device 1 according to the first embodiment, such as the SiO 2 film (silicon oxide film) 12, the n-type Si layer 11, the SiO 2 film 13, and the excitation. It is comprised by the part 14.
  • the excitation unit 14 includes a piezoelectric thin film 15, a first electrode 16, and a second electrode 17. The first electrode 16 and the second electrode 17 are provided so as to sandwich the piezoelectric thin film 15.
  • the SiO 2 films 12 and 13 are provided so as to be in contact with the upper surface and the lower surface of the n-type Si layer 11. Therefore, variation in resonance frequency due to temperature change can be suppressed.
  • the tuning-fork type vibration device is shown in the first and second embodiments. However, like the vibration device 31 of the third embodiment shown in a perspective view in FIG. It may be.
  • the vibration device 31 is a resonator using spread vibration including support portions 32a and 32b, a vibration plate 33 as a vibrating body, and connection portions 34a and 34b.
  • the diaphragm 33 has a rectangular plate shape and has a length direction and a width direction.
  • the diaphragm 33 is connected to the support portions 32a and 32b via the connecting portions 34a and 34b. That is, the diaphragm 33 is supported by the support portions 32a and 32b.
  • the vibration plate 33 is a vibrating body that vibrates in the width direction in the widening vibration mode when an alternating electric field is applied.
  • each of the connecting portions 34 a and 34 b is connected to the center of the side surface on the short side of the diaphragm 33.
  • the center of the side surface on the short side of the diaphragm 33 is a node of the spread vibration.
  • the support portions 32a and 32b are connected to the other ends of the coupling portions 34a and 34b.
  • the support portions 32a and 32b extend on both sides of the coupling portions 34a and 34b.
  • the lengths of the support portions 32a and 32b are not particularly limited, but are the same length as the short side of the diaphragm 33 in the present embodiment.
  • the diaphragm 33 includes a silicon oxide film (SiO 2 film) 12, an n-type Si layer 11, a SiO 2 film 13, first and second electrodes 16 and 17, and a piezoelectric thin film 15. ing.
  • a piezoelectric thin film 15 is provided on the n-type Si layer 11.
  • the first and second electrodes 16 and 17 are provided so as to sandwich the piezoelectric thin film 15 therebetween.
  • the SiO 2 films 12 and 13 are provided so as to be in contact with the upper surface and the lower surface of the n-type Si layer 11. Therefore, variation in resonance frequency due to temperature change can be suppressed.
  • the vibration device of the present invention may have an electrostatic MEMS structure.
  • FIG. 11 is a plan view of a vibration device according to the fourth embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of a portion along the line DD in FIG.
  • the vibration device 41 uses spread vibration including support portions 42a and 42b, a vibration plate 43 as a vibrating body, connection portions 44a and 44b, and first and second electrodes 45a and 45b. It is a resonant oscillator.
  • the diaphragm 43 has a rectangular plate shape and has a length direction and a width direction.
  • the diaphragm 43 is connected to the support portions 42a and 42b via the connecting portions 44a and 44b. That is, the diaphragm 43 is supported by the support portions 42a and 42b.
  • the vibration plate 43 is a vibrating body that vibrates in the width direction in the widening vibration mode when an AC voltage is applied. As shown in FIG. 12, the vibration plate 43 is composed of a SiO 2 film (silicon oxide film) 12, an n-type Si layer 11, and a SiO 2 film 13.
  • each of the connecting portions 44 a and 44 b is connected to the center of the side surface on the short side of the diaphragm 43.
  • the center of the side surface on the short side of the diaphragm 43 serves as a node for spreading vibration.
  • the support portions 42a and 42b are connected to the other ends of the coupling portions 44a and 44b.
  • the support portions 42a and 42b extend on both sides of the connecting portions 44a and 44b.
  • the dimension of the support portions 42a and 42b along the length direction of the diaphragm 43 is not particularly limited, but is longer than the short side of the diaphragm 43 in the present embodiment.
  • the first and second electrodes 45a and 45b have a rectangular plate shape.
  • the first and second electrodes 45 a and 45 b are made of the same material as that of the n-type Si layer 11.
  • the first and second electrodes 45 a and 45 b face the diaphragm 43 with a gap in the width direction of the diaphragm 43. That is, the long side of the first and second electrodes 45 a and 45 b on the diaphragm 43 side is opposed to the long side of the diaphragm 43.
  • the SiO 2 film 12 and the SiO 2 film 13 are formed on the upper and lower surfaces of the first and second electrodes 45a and 45b, respectively.
  • the n-type Si layer 11 it is necessary to SiO 2 films 12 and 13 are provided, the first and second electrodes 45a, the 45b, the SiO 2 film 12, 13 need not be provided Good.
  • the SiO 2 films 12 and 13 are provided so as to be in contact with the upper surface and the lower surface of the n-type Si layer 11. Therefore, also in the vibration device according to the fourth embodiment, the variation of the resonance frequency due to the temperature change is suppressed.
  • FIG. 13 is a front sectional view of a vibration device according to a fifth embodiment of the present invention.
  • the vibration device 51 is different from the vibration device 1 of the first embodiment in that the SiO 2 film 13 is not provided on the upper surface of the n-type Si layer 11. Also in the fifth embodiment, variations in resonance frequency due to temperature changes are suppressed. The reason for this will be described below.
  • the manufacturing method of the vibration device 51 is the same as the manufacturing method of the vibration device 1 of the first embodiment except that the formation of the SiO 2 film 13 shown in FIG. That is, the n-type Si layer 11 is thermally bonded to the Si substrate 19 with the SiO 2 films 12 and 13 A provided on the upper and lower surfaces of the n-type Si layer 11. Therefore, it is possible to suppress the P doped in the n-type Si layer 11 from scattering to the outside. Therefore, P does not become non-uniform in the n-type Si layer 11, so that variations in resonance frequency due to temperature changes can be suppressed. In addition, since the SiO 2 film 13 having low thermal conductivity is not formed between the piezoelectric thin film 15 and the n-type Si layer 11, thermoelastic loss can be reduced. Therefore, a resonator having a high Q value can be formed.
  • the vibration device 61 may not include the first electrode 16.
  • the SiO 2 film 13 is not provided on the upper surface of the n-type Si layer 11, the n-type Si layer 11 can be used as an electrode facing the second electrode 17 with the piezoelectric thin film 15 interposed therebetween. Therefore, the step of forming the first electrode 16 can be omitted, so that productivity can be improved.
  • thermoelastic loss can be reduced. Therefore, a resonator having a high Q value can be formed.
  • a resonator having a higher Q value can be formed by omitting Mo, which has a larger mechanical elastic loss than AlN and Si.
  • the n-type Si layer 11 does not need to be prepared in a state where the SiO 2 film is formed on the surface as shown in FIG.
  • the step of thermally bonding the n-type Si layer 11 to the Si substrate 19 for example, temporary bonding is performed in the atmosphere. Thereafter, thermal bonding is performed in a high-temperature furnace.
  • the SiO 2 films 12 and 13A may be formed on the upper and lower surfaces of the n-type Si layer 11 by thermal oxidation. Thereby, it is possible to suppress the P doped in the n-type Si layer 11 from scattering to the outside.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 温度変化による共振周波数のばらつきを抑制することができる、振動装置を提供する。 支持部2と、上記支持部2に接続されており、かつ縮退半導体であるn型Si層11を有する振動腕3a,3b,3cと、上記振動腕3a,3b,3cを励振させるように設けられている電極16,17とを備え、上記n型Si層11の下面に接するように、不純物を含有するシリコン酸化膜12,13が設けられている、振動装置1。

Description

振動装置及びその製造方法
 本発明は、支持部に振動腕が接続されている振動装置及びその製造方法に関する。
 従来、Si半導体層上に圧電薄膜を含む励振部が構成されているMEMS(Micro Electro Mechanical Systems)構造が知られている。例えば下記の特許文献1には、複数の振動腕の各一端が支持部に接続されている振動装置が開示されている。この振動装置では、振動腕はSi半導体層を有する。Si半導体層上に、SiO膜が設けられている。そして、SiO膜上に、順に、第1の電極、圧電薄膜及び第2の電極が積層されている。すなわち、Si半導体層上に圧電薄膜を含む励振部が構成されている。
 特許文献1に記載の振動装置は、バルク波を利用した振動装置である。そして、特許文献1に記載の振動装置では、温度特性を改善するために、2μm以上の比較的厚いSiO膜が設けられている。
 他方、下記の特許文献2には、Pがドープされているn型Si基板を用いた表面音響波半導体装置が開示されている。Pがドープされているn型Si基板を用いることにより、弾性定数や表面音響波の速度を変化させ、温度特性を改善することができるとされている。
USP8,098,002 特開昭57-162513号公報
 特許文献1に記載のバルク波を利用した振動装置では、温度特性を改善するために、上記のように2μm以上の比較的厚いSiO膜を設けなければならなかった。特許文献1にはSiO膜が熱酸化法により形成されることが記載されているが、熱酸化法では、ある一定の厚み以上にSiO膜を成膜しようとすると、SiO膜の成長速度が著しく遅くなる。従って、厚みが2μm以上のSiO膜の形成は困難であった。
 他方、スパッタリング法やCVD法によれば、厚いSiO膜を容易に形成することは可能である。しかしながら、これらの方法で形成されたSiO膜では、膜の機械的損失Qmが悪かった。よって、振動子のQ値が低下するという問題があった。
 また、上記MEMS構造を形成する際の接合は、一般的に熱接合によってなされる。従って、特許文献2のようにPがドープされているn型Si基板では、この熱接合の際発生する熱で、n型Si基板の表面から空気中にPが飛散したり、他の部材にPが移行することがあった。すなわち、n型Si基板内において、P濃度が不均一となっていた。そのため、Pがドープされているn型Si基板を、MEMS構造を有する振動装置に用いても、温度変化によって、振動装置の共振周波数にばらつきが生じることがあった。
 本発明の目的は、温度変化による共振周波数のばらつきを抑制することができる振動装置及びその製造方法を提供することにある。
 本発明に係る振動装置は、支持部と、上記支持部に接続されており、かつ縮退半導体であるn型Si層を有する振動体と、上記振動体を励振させるように設けられている電極とを備え、上記n型Si層の下面に接するように、不純物を含有するシリコン酸化膜が設けられている。
 本発明の振動装置のある特定の局面では、上記n型Si層の上面に接するように設けられており、不純物を含有するシリコン酸化膜がさらに備えられている。
 本発明の振動装置の他の特定の局面では、圧電薄膜をさらに備え、上記電極が第1,第2の電極を有し、該圧電薄膜が、上記第1,第2の電極に挟まれるように配置されており、上記圧電薄膜及び上記第1,第2の電極からなる励振部が、上記n型Si層上に設けられている。
 本発明の振動装置の他の特定の局面では、圧電薄膜をさらに備え、該圧電薄膜が、上記電極と上記n型Si層上に挟まれるように配置されている。
 本発明の振動装置のさらに他の特定の局面では、上記シリコン酸化膜が熱酸化法により形成された膜である。
 本発明に係る振動装置のさらに別の特定の局面では、上記不純物が、上記n型Si層にドープされているドーパントである。
 本発明に係る振動装置のさらに他の特定の局面では、上記縮退半導体であるn型Si層が、1×1019/cm以上のドーピング濃度を有するn型Si層である。
 本発明に係る振動装置のさらに他の特定の局面では、上記縮退半導体であるn型Si層のドーパントがPである。
 本発明に係る振動装置のさらに他の特定の局面では、上記励振部が上記振動体を屈曲振動させるように構成されている。
 本発明に係る振動装置のさらに他の特定の局面では、奇数本の上記振動体を備え、上記励振部が上記振動体を面外屈曲振動させるように構成されている。
 本発明に係る振動装置のさらに他の特定の局面では、偶数本の上記振動体を備え、上記励振部が上記振動体を面内屈曲振動させるように構成されている。
 本発明のさらに他の広い局面では、本発明に従って構成されている振動装置の製造方法が提供される。本発明の製造方法は、支持部に接続されており、かつ上面及び下面に不純物を含有するシリコン酸化膜が設けられているn型Si層を有する振動体を用意する工程と、上記振動体を励振させるように設けられている電極を形成する工程とを備える。
 本発明に係る振動装置の製造方法のある特定の局面では、圧電薄膜を形成する工程をさらに備え、上記圧電薄膜が第1,第2の前記電極に挟まれるように設けられている。
 本発明に係る振動装置の製造方法の他の特定の局面では、圧電薄膜を形成する工程をさらに備え、前記圧電薄膜が前記電極と前記n型Si層に挟まれるように設けられている。
 本発明に係る振動装置の製造方法の他の特定の局面では、上記支持部に接続されており、上面及び下面に不純物を含有するシリコン酸化膜が設けられている、n型Si層を有する振動体を用意する工程が、1つの面に凹部を有し、Siからなる支持基板を用意する工程と、上面及び下面に不純物を含有するシリコン酸化膜が設けられている、n型Si層を用意する工程と、上記支持基板の上記凹部を覆うように上記シリコン酸化膜が設けられているn型Si層を積層する工程とを備える。
 本発明に係る振動装置の製造方法のさらに別の特定の局面では、上記上面及び下面に不純物を含有するシリコン酸化膜が設けられている、n型Si層を用意する工程が、熱酸化法により、不純物を含有するシリコン酸化膜を形成する工程である。
 本発明に係る振動装置では、縮退半導体であるn型Si層の上面及び下面に接するように不純物を含有するシリコン酸化膜が設けられている。よって、n型Si層中のドーパントが外部に飛散し難くなるため、温度変化による共振周波数のばらつきを抑制することができる。
 また、本発明に係る振動装置の製造方法によると、温度変化による共振周波数のばらつきを抑制することができる振動装置が提供される。
図1は、本発明の第1の実施形態に係る振動装置の外観を示す斜視図である。 図2は、図1中のA-A線に沿う部分の断面図である。 図3(a)及び図3(b)は、本発明の第1の実施形態に係る振動装置の振動姿態を説明するための各模式的斜視図である。 図4は、n型Si層におけるPの濃度分布を示す、SIMSプロファイルである。 図5(a)~図5(d)は、本発明の第1の実施形態に係る振動装置の製造方法を説明するための各断面図である。 図6(a)~図6(d)は、本発明の第1の実施形態に係る振動装置の製造方法を説明するための各断面図である。 図7は、本発明の第2の実施形態に係る振動装置の外観を示す斜視図である。 図8は、図7中のB-B線に沿う部分の断面図である。 図9は、本発明の第3の実施形態に係る振動装置の外観を示す斜視図である。 図10は、図9中のC-C線に沿う部分の断面図である。 図11は、本発明の第4の実施形態に係る振動装置の平面図である。 図12は、図11中のD-D線に沿う部分の断面図である。 図13は、本発明の第5の実施形態に係る振動装置の正面断面図である。 図14は、第5の実施形態に係る振動装置の変形例の正面断面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る振動装置1の外観を示す斜視図である。振動装置1は、支持部2と、奇数本の振動体である振動腕3a~3cと、質量付加部4とを備える共振型振動子である。振動腕3a~3cの各一端は、支持部2に接続されている。振動腕3a~3cの各他端には質量付加部4が設けられている。
 振動腕3a~3cは、平面形状が細長い矩形であり、長さ方向と幅方向とを有している。振動腕3a~3cは、一端が固定端として支持部2に接続されており、他端が自由端として変位可能とされている。すなわち、振動腕3a~3cは、支持部2によって片持ち梁で支持されている。奇数本の振動腕3a~3cは互いに平行に延ばされており、同じ長さを有する。振動腕3a~3cは、交番電界が印加されると、面外屈曲振動モードで屈曲振動する振動体である。
 支持部2は、振動腕3a~3cの短辺に接続されている。支持部2は、振動腕3a~3cの幅方向に延びている。なお、支持部2の両端には、振動腕3a~3cと平行に延びるように側枠5,6が接続されている。支持部2及び側枠5,6は一体に形成されている。
 質量付加部4は、振動腕3a~3cの各先端に設けられている。本実施形態では、質量付加部4は振動腕3a~3cよりも幅方向の寸法が大きい矩形板状とされている。
 図2は、図1中のA-A線に沿う部分の断面図である。図2に示すように、振動腕3a~3cは、SiO膜(シリコン酸化膜)12、n型Si層11、SiO膜13及び励振部14により構成されている。
 n型Si層11は、縮退半導体であるn型Si半導体からなる。n型Si層11は、温度変化による周波数ばらつきを抑制するために設けられている。n型Si層11におけるn型ドーパントのドーピング濃度は1×1019/cm以上であることが好ましい。上記n型ドーパントとしては、P、AsまたはSbなどの第15属元素を挙げることができる。上記のように、n型Si層11中のSiがn型ドーパントによってドープされることにより、温度変化による共振周波数のばらつきを抑制することができる。これは、Siの弾性特性がSiのキャリア濃度に大きく影響を受けるためである。なお、n型Si層11では、Q値を劣化させることなく、温度特性の改善が可能となる。
 本発明においては、n型Si層11の下面にはSiO膜12が設けられており、上面にもSiO膜13が設けられている。SiO膜12,13は、後述するように、温度変化による共振周波数のばらつきを抑制するために設けられている。なお、本実施形態においては、SiO膜12,13は、n型Si層11の上面及び下面に設けられているが、n型Si層11の周囲を覆うようにSiO膜12,13を設けてもよい。
 なお、上記SiO膜12,13は、不純物を含有している。上記不純物は、上記n型Si層にドープされているドーパントであることが望ましい。上記n型ドーパントのドーピング濃度は、1×1017/cm以上であることが好ましい。この場合、SiOの弾性特性がSiO中の不純物濃度の影響を受けているため、温度変化による共振周波数のばらつきを、より一層確実に抑制することができる。
 SiO膜13上面には励振部14が設けられている。励振部14は、圧電薄膜15と、第1の電極16と、第2の電極17とを有する。第1の電極16と第2の電極17とは、圧電薄膜15を挟むように設けられている。なお、SiO膜13の上面には圧電薄膜15aが設けられており、圧電薄膜15と第2の電極17との上面には圧電薄膜15bが設けられている。圧電薄膜15aはシード層、圧電薄膜15bは保護層であり、いずれも励振部14を構成するものではない。圧電薄膜15a,15bは設けられなくてもよい。
 上記圧電薄膜15を構成する圧電材料は特に限定されず、ZnO、AlN、PZT、KNNなどを用いることができる。バルク波を利用した振動装置では、Q値が高いことが好ましい為、ScAlNが好適に用いられる。なお、Sc置換AlN(ScAlN)を用いることがより好ましい。ScAlNを用いると、共振型振動子の比帯域が広がるため、発振周波数の調整範囲がより一層広くなるためである。なお、Sc置換AlN膜(ScAlN)は、ScとAlの原子濃度を100at%とした場合、Sc濃度が0.5at%から50at%程度であることが望ましい。
 第1,第2の電極16,17は、Mo、Ru、Pt、Ti、Cr、Al、Cu、Ag、またはこれらの合金などの適宜の金属により形成することができる。
 圧電薄膜15は、厚み方向に分極している。従って、第1,第2の電極16,17間に交番電界を印加することにより、励振部14が圧電効果により励振される。その結果、振動腕3a~3cは、図3(a)及び図3(b)に示す振動姿態をとるように屈曲振動する。
 なお、図3(a)及び図3(b)から明らかなように、中央の振動腕3bと、両側の振動腕3a,3cとは逆相で変位している。これは、中央の振動腕3bに印加される交番電界の位相と両側の振動腕3a,3cに印加される交番電界の位相を逆位相とすることにより達成し得る。あるいは、圧電薄膜15における分極方向を、中央の振動腕3bと、両側の振動腕3a,3cとで逆方向としてもよい。
 側枠5,6は、SiO膜20、Si基板19、SiO膜12、n型Si層11、SiO膜13及び圧電薄膜15により構成されている。支持部2も、側枠5,6と同様に構成されている。Si基板19の上面には凹部19aが形成されており、凹部19aの側壁の一部が支持部2及び側枠5,6を構成している。振動腕3a~3cは凹部19a上に配置されている。Si基板19は支持部2及び側枠5,6を構成している支持基板である。SiO膜20は、保護膜であり、Si基板19の下面に設けられている。
 質量付加部4は、後述の製造工程から明らかなように、側枠5,6と同様に、SiO膜12、n型Si層11、SiO膜13及び圧電薄膜15からなる積層構造を有するため、本実施形態のように、上面側にのみ質量付加膜18が設けられていることが望ましい。さらに、質量付加部4は振動腕3a~3cの先端に質量を付加する機能を有するものであるため、上記のように、振動腕3a~3cよりも幅方向の寸法が大きいものであれば、その機能を有することになる。従って、質量付加膜18は必ずしも設けられずともよい。
 図4は、n型Si層11内におけるPの濃度分布を示す、SIMSプロファイルである。すなわち、n型Si層11の表面から深さ方向にPの濃度変化を測定したプロファイルである。図中、1E+nは、1×10を意味する。図中、破線は、n型Si層11にSiO膜12,13が設けられていない場合のプロファイルを示す。この場合、Pの濃度が表面近傍ほど、低くなっていることがわかる。他方、図中、実線は、n型Si層11に接するようにSiO膜12,13が設けられている場合のプロファイルを示す。図より、この場合、Pの濃度が表面から内部に至って均一であることがわかる。
 このように、SiO膜12,13の有無により、n型Si層11の表面近傍における、P濃度が変化する理由を以下に示す。
 n型Si層11は、後述する製造方法で示すように、Si基板19に熱接合することにより接合する。この熱接合の際発生する熱で、n型Si層11の表面から空気中にPが飛散する。あるいはSi基板19にPが移行する。そのため、SiO膜12,13が設けられていないn型Si層11では、表面近傍のP濃度が減少することになる。
 これに対して、SiO膜12,13がn型Si層11に接するように設けられている場合、SiO膜12,13により、Pが外部に飛散することを抑制することができる。この場合、n型Si層11内でPが不均一とならないため、温度変化による、周波数ばらつきが抑制される。
 (製造方法)
 上記振動装置1の製造方法は特に限定されないが、一例を図5(a)~図5(d)及び図6(a)~図6(d)を参照して説明する。
 まず、図5(a)に示すように、Si基板19を用意する。Si基板19の上面にエッチングにより凹部19aを形成する。凹部19aの深さは10μm~30μm程度とすればよい。
 次に、図5(b)に示すように、ドーピング濃度が1×1019/cm以上でPがドープされたn型Si層11を用意し、n型Si層11の周囲を覆うように上記n型Si層にドープされているドーパントを含有するSiO膜12Xを形成する。以下、SiO膜12Xの上面をSiO膜13A、下面をSiO膜12として説明する。SiO膜12,13Aは熱酸化法により形成する。熱酸化法により形成されたSiO膜はQ値の劣化が生じ難いため好ましい。SiO膜12,13Aの厚みは、0.5μmとする。
 次に、図5(c)に示すように、Si基板19上に、SiO膜12,13Aが形成されているn型Si層11を積層する。積層に際しては、Si基板19の凹部19aが設けられている側の面に、SiO膜12を接触させる。この接合は、1100℃以上の高温で熱接合することにより行われる。
 次に、図5(d)に示すように、研磨により、SiO膜13Aを除去し、さらにn型Si層11の厚みを薄くする。それによって、n型Si層11の厚みを、10μm程度とする。
 次に、図6(a)に示すように、熱酸化法により、n型Si層11の上面にSiO膜13を形成するとともに、Si基板19の下面にSiO膜20を形成する。SiO膜13の厚みは、0.5μmとする。
 次に、図6(b)に示すように、SiO膜13の上面に、30nm~100nm程度の厚みでAlNからなる圧電薄膜15aを形成した後に、圧電薄膜15aの上面に第1の電極16を形成する。第1の電極16は、Moからなる第1の層とAlからなる第2の層とが積層された積層電極である。
 圧電薄膜15aはシード層であり、圧電薄膜15aが設けられていることにより、第1の電極16におけるMoからなる第1の層が高い配向性で形成される。そして、図6(c)に示すように、圧電薄膜15aと第1の電極16との上面にAlNからなる圧電薄膜15を形成した後に、圧電薄膜15の上面に第2の電極17を形成する。第2の電極17は、Moからなる第1の層とAlからなる第2の層とが積層された積層電極である。第1の電極16と第2の電極17とは、例えば、スパッタリング法を用いたリフトオフ・プロセスにより形成する。
 しかる後、図6(d)に示すように、圧電薄膜15と第2の電極17との上面に、30nm~100nm程度の厚みでAlNからなる圧電薄膜15bを形成する。そして、圧電薄膜15の上面であって質量付加部4が形成される領域に、Auからなる質量付加膜18を形成する。
 最後に、ドライエッチングまたはウェットエッチングにより、図1に示した複数の振動腕3a~3c及び質量付加部分4が残存するように加工する。このようにして、振動装置1を得ることができる。
 (第2の実施形態)
 本発明の第1の実施形態に係る振動装置1は、面外屈曲振動を利用している共振振動子であったが、図7に斜視図で示す第2の実施形態の振動装置21のように、面内屈曲振動を利用している共振振動子であってもよい。上記振動装置21は、支持部22と偶数本の振動体である振動腕23とを備える。なお、本実施形態においては、振動体として2本の振動腕23a,23bが備えられている。
 振動腕23a,23bは、平面形状が細長い矩形であり、長さ方向と幅方向とを有している。振動腕23a,23bは、それぞれ、一端が支持部22に接続されて固定端とされており、他端が自由端として変位可能とされている。2本の振動腕23a,23bは互いに平行に延びており、同じ長さである。振動腕23a,23bは、交番電界が印加されると、面内屈曲振動モードで屈曲振動する振動体である。
 支持部22は、振動腕23a,23bの短辺に接続されている。支持部22は、振動腕23a,23bの幅方向に延びている。支持部22は、振動腕23a,23bを、片持ち梁で支持している。
 図8は、図7中のB-B線に沿う部分の断面図である。図8に示すように、振動腕23a,23bは、第1の実施形態に係る振動装置1と同様に、SiO膜(シリコン酸化膜)12、n型Si層11、SiO膜13、励振部14によりにより構成されている。上記励振部14は、圧電薄膜15と、第1の電極16と、第2の電極17とを有する。第1の電極16と第2の電極17とは、圧電薄膜15を挟むように設けられている。
 第2の実施形態においても、n型Si層11の上面及び下面に接するように、SiO膜12,13が設けられている。従って、温度変化による共振周波数のばらつきを抑制することができる。
 (第3の実施形態)
 第1,第2の実施形態においては、音叉型の振動装置を示したが、図9に斜視図で示す第3の実施形態の振動装置31のように、幅拡がり振動を利用する共振振動子であってもよい。振動装置31は、支持部32a,32bと、振動体としての振動板33と、連結部34a,34bとを備える、幅拡がり振動を利用している共振子である。
 振動板33は矩形板状であり、長さ方向と幅方向とを有している。振動板33は、連結部34a,34bを介して、支持部32a,32bに接続されている。すなわち、振動板33は、支持部32a,32bにより支持されている。振動板33は、交番電界が印加されると、幅拡がり振動モードで幅方向に振動する振動体である。
 連結部34a,34bの一端は、振動板33の短辺側の側面中央に接続されている。上記振動板33の短辺側の側面中央は、幅拡がり振動のノードとなっている。
 支持部32a,32bは、連結部34a,34bの他端に接続されている。支持部32a,32bは、連結部34a,34bの両側に延びている。支持部32a,32bの長さは、特に限定されないが、本実施形態においては、振動板33の短辺と同じ長さである。
 図10は、図9中のC-C線に沿う部分の断面図である。図10に示すように、振動板33は、シリコン酸化膜(SiO膜)12、n型Si層11、SiO膜13、第1,第2の電極16,17及び圧電薄膜15により構成されている。
 より具体的には、n型Si層11上に、圧電薄膜15が設けられている。第1,第2の電極16,17は、圧電薄膜15を挟むように設けられている。
 なお、第3の実施形態においても、n型Si層11の上面及び下面に接するように、SiO膜12,13が設けられている。従って、温度変化による共振周波数のばらつきを抑制することができる。
 (第4の実施形態)
 本発明の振動装置は、静電MEMS構造を有していてもよい。図11は、本発明の第4の実施形態に係る振動装置の平面図である。また、図12は、図11中のD-D線に沿う部分の断面図である。
 振動装置41は、支持部42a,42bと、振動体としての振動板43と、連結部44a,44bと、第1,第2の電極45a,45bとを備える、幅拡がり振動を利用している共振振動子である。
 振動板43は矩形板状であり、長さ方向と幅方向とを有している。振動板43は、連結部44a,44bを介して、支持部42a,42bに接続されている。すなわち、振動板43は、支持部42a,42bにより支持されている。振動板43は、交流電圧が印加されることにより、幅拡がり振動モードで幅方向に振動する振動体である。なお、図12に示すように、振動板43は、SiO膜(シリコン酸化膜)12、n型Si層11及びSiO膜13により構成されている。
 連結部44a,44bの一端は、振動板43の短辺側の側面中央に接続されている。上記振動板43の短辺側の側面中央は、幅拡がり振動のノードとなっている。
 支持部42a,42bは、連結部44a,44bの他端に接続されている。支持部42a,42bは、連結部44a,44bの両側に延びている。支持部42a,42bの振動板43の長さ方向に沿う寸法は、特に限定されないが、本実施形態においては、振動板43の短辺より長い。
 第1,第2の電極45a,45bは、矩形板状である。第1,第2の電極45a,45bは、n型Si層11と同じ材料で構成されている。第1,第2の電極45a,45bは、振動板43の幅方向において、振動板43とギャップを隔てて対向している。すなわち、第1,第2の電極45a,45bの振動板43側の長辺が、振動板43の長辺と対向している。
 また、図12に示すように、第1,第2の電極45a,45bの上面及び下面には、SiO膜12及びSiO膜13がそれぞれ形成されている。もっとも、n型Si層11には、SiO膜12,13が設けられる必要があるが、第1,第2の電極45a,45bには、SiO膜12,13は、設けられていなくともよい。
 上記のように、第4の実施形態においても、n型Si層11の上面及び下面に接するように、SiO膜12,13が設けられている。従って、第4の実施形態に係る振動装置においても、温度変化による共振周波数のばらつきが抑制されている。
 図13は、本発明の第5の実施形態に係る振動装置の正面断面図である。
 振動装置51は、n型Si層11の上面にSiO膜13が設けられていない点で、第1の実施形態の振動装置1と異なる。第5の実施形態においても、温度変化による共振周波数のばらつきが抑制されている。この理由を、以下に説明する。
 振動装置51の製造方法は、図6(a)に示したSiO膜13の形成を行わない点以外は、第1の実施形態の振動装置1の製造方法と同様である。すなわち、n型Si層11の上面及び下面にSiO膜12,13Aが設けられた状態で、n型Si層11をSi基板19に熱接合する。よって、n型Si層11にドープされたPが外部に飛散することを抑制し得る。従って、n型Si層11内でPが不均一とならないため、温度変化による共振周波数のばらつきを抑制することができる。また、圧電薄膜15とn型Si層11との間に熱伝導率が低いSiO膜13が形成されていないため、熱弾性損失を低減できる。従って、Q値が高い共振子を形成することができる。
 図14に示す第5の実施形態の変形例のように、振動装置61は第1の電極16を有していなくともよい。n型Si層11の上面にSiO膜13が設けられていない場合、第2の電極17と圧電薄膜15を挟んで対向する電極として、n型Si層11を用いることができる。よって、第1の電極16を形成する工程を省くことができるため、生産性を高めることができる。また、圧電薄膜15とn型Si層11との間に熱伝導率が低いSiO膜13が形成されていないため、熱弾性損失を低減できる。よって、Q値が高い共振子が形成することができる。加えて、AlNやSiよりも機械的弾性損失が大きなMoを省くことによって、さらにQ値が高い共振子を形成することができる。
 n型Si層11は、図5(b)に示したような、SiO膜が表面に形成された状態で用意される必要はない。n型Si層11をSi基板19に熱接合する工程においては、例えば、大気中で仮接合を行う。しかる後、高温の炉の中で熱接合を行う。高温の炉において熱接合を行うに際して、n型Si層11の上面及び下面にSiO膜12,13Aを熱酸化により形成してもよい。それによって、n型Si層11にドープされたPが外部に飛散することを抑制し得る。
1,21,31,41,51,61…振動装置
2,22,32a,32b,42a,42b…支持部
3a,3b,3c,23,23a,23b…振動腕
4…質量付加部
5,6…側枠
11…n型Si層
12,12X,13,13A…SiO膜(シリコン酸化膜)
14…励振部
15…圧電薄膜
15a,15b…圧電薄膜
16…第1の電極
17…第2の電極
18…質量付加膜
19…Si基板
19a…凹部
20…SiO
33,43…振動板
34a,34b,44a,44b…連結部
45a,45b…第1,第2の電極

Claims (16)

  1.  支持部と、
     前記支持部に接続されており、かつ縮退半導体であるn型Si層を有する振動体と、
     前記振動体を励振させるように設けられている電極とを備え、
     前記n型Si層の下面に接するように、不純物を含有するシリコン酸化膜が設けられている、振動装置。
  2.  前記n型Si層の上面に接するように設けられており、不純物を含有するシリコン酸化膜をさらに備える、請求項1に記載の振動装置。
  3.  圧電薄膜をさらに備え、前記電極が第1,第2の電極を有し、該圧電薄膜が、前記第1,第2の電極に挟まれるように配置されており、前記圧電薄膜及び前記第1,第2の電極からなる励振部が、前記n型Si層上に設けられている、請求項1または2に記載の振動装置。
  4.  圧電薄膜をさらに備え、該圧電薄膜が、前記電極と前記n型Si層上に挟まれるように配置されている、請求項1に記載の振動装置。
  5.  前記シリコン酸化膜が熱酸化法により形成された膜である、請求項1~4のいずれか1項に記載の振動装置。
  6.  前記不純物が、前記n型Si層にドープされているドーパントである、請求項1~5のいずれか1項に記載の振動装置。
  7.  前記縮退半導体であるn型Si層が、1×1019/cm以上のドーピング濃度を有するn型Si層である、請求項1~6のいずれか1項に記載の振動装置。
  8.  前記縮退半導体であるn型Si層のドーパントがPである、請求項1~7のいずれか1項に記載の振動装置。
  9.  前記励振部が前記振動体を屈曲振動させるように構成されている、請求項1~8のいずれか1項に記載の振動装置。
  10.  奇数本の前記振動体を備え、前記励振部が前記振動体を面外屈曲振動させるように構成されている、請求項1~9のいずれか1項に記載の振動装置。
  11.  偶数本の前記振動体を備え、前記励振部が前記振動体を面内屈曲振動させるように構成されている、請求項1~9のいずれか1項に記載の振動装置。
  12.  請求項1~11のいずれか1項に記載の振動装置の製造方法であって、
     支持部に接続されており、かつ上面及び下面に不純物を含有するシリコン酸化膜が設けられているn型Si層を有する振動体を用意する工程と、
     前記振動体を励振させるように設けられている電極を形成する工程とを備える、振動装置の製造方法。
  13.  圧電薄膜を形成する工程をさらに備え、
     前記圧電薄膜が第1,第2の前記電極に挟まれるように設けられている、請求項12に記載の振動装置の製造方法。
  14.  圧電薄膜を形成する工程をさらに備え、
     前記圧電薄膜が前記電極と前記n型Si層に挟まれるように設けられている、請求項12に記載の振動装置の製造方法。
  15.  前記支持部に接続されており、かつ上面及び下面に不純物を含有するシリコン酸化膜が設けられている、n型Si層を有する振動体を用意する工程が、
     1つの面に凹部を有し、Siからなる支持基板を用意する工程と、
     上面及び下面に不純物を含有するシリコン酸化膜が設けられている、n型Si層を用意する工程と、
     前記支持基板の前記凹部を覆うように、前記シリコン酸化膜が設けられているn型Si層を積層する工程とを備える、請求項12~14のいずれか1項に記載の振動装置の製造方法。
  16.  前記上面及び下面に不純物を含有するシリコン酸化膜が設けられている、n型Si層を用意する工程が、熱酸化法により、不純物を含有するシリコン酸化膜を形成する工程である、請求項12~15のいずれか1項に記載の振動装置の製造方法。
PCT/JP2014/074131 2013-09-20 2014-09-11 振動装置及びその製造方法 WO2015041152A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480051082.0A CN105556840B (zh) 2013-09-20 2014-09-11 振动装置及其制造方法
JP2015537893A JP6245265B2 (ja) 2013-09-20 2014-09-11 振動装置及びその製造方法
US15/072,610 US10291202B2 (en) 2013-09-20 2016-03-17 Vibration device and manufacturing method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013195502 2013-09-20
JP2013-195502 2013-09-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/072,610 Continuation US10291202B2 (en) 2013-09-20 2016-03-17 Vibration device and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2015041152A1 true WO2015041152A1 (ja) 2015-03-26

Family

ID=52688803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074131 WO2015041152A1 (ja) 2013-09-20 2014-09-11 振動装置及びその製造方法

Country Status (4)

Country Link
US (1) US10291202B2 (ja)
JP (1) JP6245265B2 (ja)
CN (1) CN105556840B (ja)
WO (1) WO2015041152A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175218A1 (ja) * 2015-04-28 2016-11-03 株式会社村田製作所 共振子及び共振装置
WO2016174789A1 (ja) * 2015-04-27 2016-11-03 株式会社村田製作所 共振子及び共振装置
WO2016175161A1 (ja) * 2015-04-27 2016-11-03 株式会社村田製作所 共振子及び共振装置
JP2016189372A (ja) * 2015-03-30 2016-11-04 セイコーエプソン株式会社 圧電駆動装置、ロボット及びポンプ
WO2017064916A1 (ja) * 2015-10-13 2017-04-20 株式会社村田製作所 共振子及び共振装置
WO2017090380A1 (ja) * 2015-11-24 2017-06-01 株式会社村田製作所 共振装置及びその製造方法
WO2017110126A1 (ja) * 2015-12-21 2017-06-29 株式会社村田製作所 共振子及び共振装置
WO2017203757A1 (ja) * 2016-05-25 2017-11-30 株式会社村田製作所 共振子及び共振装置
JP2018137297A (ja) * 2017-02-21 2018-08-30 新日本無線株式会社 圧電素子
WO2020085188A1 (ja) * 2018-10-24 2020-04-30 株式会社村田製作所 共振装置
US10812046B2 (en) 2018-02-07 2020-10-20 Murata Manufacturing Co., Ltd. Micromechanical resonator having reduced size

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6003994B2 (ja) * 2012-09-13 2016-10-05 株式会社村田製作所 振動装置及びその製造方法
US9705470B1 (en) * 2014-02-09 2017-07-11 Sitime Corporation Temperature-engineered MEMS resonator
WO2018008198A1 (ja) * 2016-07-05 2018-01-11 株式会社村田製作所 共振子及び共振装置
US10676349B1 (en) 2016-08-12 2020-06-09 Sitime Corporation MEMS resonator
WO2018063299A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Rf filters and resonators of crystalline iii-n films
KR102715031B1 (ko) * 2016-10-05 2024-10-10 삼성전자주식회사 공진기를 포함하는 필터 시스템
KR102452948B1 (ko) * 2017-07-18 2022-10-11 삼성전자주식회사 미소 기계식 공진기 및 이를 포함하는 공진기 시스템
WO2019225047A1 (ja) * 2018-05-24 2019-11-28 株式会社村田製作所 Memsデバイス及びmemsデバイス製造方法
CN110266285B (zh) * 2019-05-31 2021-04-02 武汉大学 一种微机械谐振器、其制备及频率微调校正方法
US20240039500A1 (en) * 2022-07-29 2024-02-01 Texas Instruments Incorporated Micro-Mechanical Resonator Having Out-of-Phase and Out-of-Plane Flexural Mode Resonator Portions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005024A (ja) * 2007-06-20 2009-01-08 Seiko Epson Corp 音叉型振動子、発振器
JP2009302661A (ja) * 2008-06-10 2009-12-24 Toshiba Corp 圧電デバイス
JP2010166201A (ja) * 2009-01-14 2010-07-29 Seiko Epson Corp Memsデバイス及びその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358745A (en) 1981-03-16 1982-11-09 International Business Machines Corporation Semiconductor surface acoustic wave device
US4764244A (en) * 1985-06-11 1988-08-16 The Foxboro Company Resonant sensor and method of making same
US7561009B2 (en) * 2005-11-30 2009-07-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic resonator (FBAR) devices with temperature compensation
CH700716B1 (fr) * 2006-10-09 2010-10-15 Suisse Electronique Microtech Résonateur en silicium de type diapason.
US8067880B2 (en) * 2008-12-27 2011-11-29 Seiko Epson Corporation Flexural vibration element and electronic component
EP2302792B1 (en) * 2009-09-22 2012-11-14 Nxp B.V. Resonator
SG186222A1 (en) * 2010-08-31 2013-01-30 Taiyo Yuden Kk Acoustic wave device
US9444426B2 (en) * 2012-10-25 2016-09-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Accoustic resonator having integrated lateral feature and temperature compensation feature
US9484882B2 (en) * 2013-02-14 2016-11-01 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator having temperature compensation
JP6003994B2 (ja) * 2012-09-13 2016-10-05 株式会社村田製作所 振動装置及びその製造方法
JP6168486B2 (ja) * 2014-01-24 2017-07-26 株式会社村田製作所 圧電振動子及び圧電振動装置
CN107112967B (zh) * 2014-12-26 2020-07-07 株式会社村田制作所 谐振器的制造方法
CN107925395B (zh) * 2015-09-21 2021-09-17 株式会社村田制作所 谐振子以及谐振装置
JP6536685B2 (ja) * 2015-10-13 2019-07-03 株式会社村田製作所 共振子及び共振装置
JP6628212B2 (ja) * 2015-11-24 2020-01-08 株式会社村田製作所 共振装置及びその製造方法
JP6617891B2 (ja) * 2015-12-21 2019-12-11 株式会社村田製作所 共振子及び共振装置
JP6822118B2 (ja) * 2016-12-19 2021-01-27 セイコーエプソン株式会社 振動子、発振器、電子機器、および移動体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005024A (ja) * 2007-06-20 2009-01-08 Seiko Epson Corp 音叉型振動子、発振器
JP2009302661A (ja) * 2008-06-10 2009-12-24 Toshiba Corp 圧電デバイス
JP2010166201A (ja) * 2009-01-14 2010-07-29 Seiko Epson Corp Memsデバイス及びその製造方法

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189372A (ja) * 2015-03-30 2016-11-04 セイコーエプソン株式会社 圧電駆動装置、ロボット及びポンプ
JPWO2016174789A1 (ja) * 2015-04-27 2018-02-01 株式会社村田製作所 共振子及び共振装置
WO2016174789A1 (ja) * 2015-04-27 2016-11-03 株式会社村田製作所 共振子及び共振装置
WO2016175161A1 (ja) * 2015-04-27 2016-11-03 株式会社村田製作所 共振子及び共振装置
US10790800B2 (en) 2015-04-27 2020-09-29 Murata Manufacturing Co., Ltd. Resonator and resonance device
CN107431476B (zh) * 2015-04-27 2020-06-12 株式会社村田制作所 谐振子以及谐振装置
US10659004B2 (en) 2015-04-27 2020-05-19 Murata Manufacturing Co., Ltd. Resonator and resonance device
CN107431472B (zh) * 2015-04-27 2020-05-12 株式会社村田制作所 谐振子以及谐振装置
CN107431476A (zh) * 2015-04-27 2017-12-01 株式会社村田制作所 谐振子以及谐振装置
CN107431472A (zh) * 2015-04-27 2017-12-01 株式会社村田制作所 谐振子以及谐振装置
JPWO2016175161A1 (ja) * 2015-04-27 2018-02-08 株式会社村田製作所 共振子及び共振装置
US10673403B2 (en) 2015-04-28 2020-06-02 Murata Manufacturing Co., Ltd. Resonator and resonance device
WO2016175218A1 (ja) * 2015-04-28 2016-11-03 株式会社村田製作所 共振子及び共振装置
JPWO2016175218A1 (ja) * 2015-04-28 2018-02-08 株式会社村田製作所 共振子及び共振装置
CN107534432A (zh) * 2015-04-28 2018-01-02 株式会社村田制作所 谐振子以及谐振装置
CN107534432B (zh) * 2015-04-28 2020-06-05 株式会社村田制作所 谐振子以及谐振装置
US10879448B2 (en) 2015-10-13 2020-12-29 Murata Manufacturing Co., Ltd. Resonator and resonator device
JPWO2017064916A1 (ja) * 2015-10-13 2018-07-19 株式会社村田製作所 共振子及び共振装置
WO2017064916A1 (ja) * 2015-10-13 2017-04-20 株式会社村田製作所 共振子及び共振装置
CN108141196A (zh) * 2015-11-24 2018-06-08 株式会社村田制作所 谐振装置及其制造方法
US10374569B2 (en) 2015-11-24 2019-08-06 Murata Manufacturing Co., Ltd. Resonance device and manufacturing method therefor
WO2017090380A1 (ja) * 2015-11-24 2017-06-01 株式会社村田製作所 共振装置及びその製造方法
US10715103B2 (en) 2015-12-21 2020-07-14 Murata Manufacturing Co., Ltd. Resonator and resonance device
WO2017110126A1 (ja) * 2015-12-21 2017-06-29 株式会社村田製作所 共振子及び共振装置
CN108141197A (zh) * 2015-12-21 2018-06-08 株式会社村田制作所 谐振子和谐振装置
CN108141197B (zh) * 2015-12-21 2021-07-16 株式会社村田制作所 谐振子和谐振装置
US10673402B2 (en) 2016-05-25 2020-06-02 Murata Manufacturing Co., Ltd. Resonator and resonance device
WO2017203757A1 (ja) * 2016-05-25 2017-11-30 株式会社村田製作所 共振子及び共振装置
CN109075766A (zh) * 2016-05-25 2018-12-21 株式会社村田制作所 谐振器和谐振装置
CN109075766B (zh) * 2016-05-25 2022-04-19 株式会社村田制作所 谐振器和谐振装置
JP2018137297A (ja) * 2017-02-21 2018-08-30 新日本無線株式会社 圧電素子
US10812046B2 (en) 2018-02-07 2020-10-20 Murata Manufacturing Co., Ltd. Micromechanical resonator having reduced size
WO2020085188A1 (ja) * 2018-10-24 2020-04-30 株式会社村田製作所 共振装置
US11909375B2 (en) 2018-10-24 2024-02-20 Murata Manufacturing Co., Ltd. Resonance device

Also Published As

Publication number Publication date
JPWO2015041152A1 (ja) 2017-03-02
US10291202B2 (en) 2019-05-14
CN105556840B (zh) 2019-01-04
JP6245265B2 (ja) 2017-12-13
US20160197597A1 (en) 2016-07-07
CN105556840A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
JP6245265B2 (ja) 振動装置及びその製造方法
JP6003994B2 (ja) 振動装置及びその製造方法
JP6132022B2 (ja) 圧電共振子及びその製造方法
JP6094672B2 (ja) 振動装置
JP5848131B2 (ja) 機械共振構造体を備える機器
US9071226B2 (en) Micromechanical resonator and method for manufacturing thereof
JP6094671B2 (ja) 振動装置
JP6489234B2 (ja) 圧電素子、圧電マイクロフォン、圧電共振子及び圧電素子の製造方法
JP6292229B2 (ja) 振動装置
US20110001394A1 (en) Piezoelectric thin-film tuning fork resonator
JP6756991B2 (ja) 高q値を有する圧電mems共振子
JPWO2007088696A1 (ja) 圧電振動装置
CN101847978A (zh) 弯曲振动片及利用该弯曲振动片的振荡器
US10367469B2 (en) Corner coupling resonator array
JP2022529131A (ja) 微小電気機械共振器
JP2007500478A (ja) 積層共振器及び前記共振器を内蔵するタイムベース
WO2022188100A1 (zh) 基于压电薄膜换能的石英谐振器以及电子设备
JP2020501454A (ja) 抑制されたスプリアスモードを伴うmems共振子
JP2012002562A (ja) 振動型力検出センサー素子、振動型力検出センサー、および、振動型力検出センサー装置
JP2015080128A (ja) 圧電デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051082.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015537893

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845758

Country of ref document: EP

Kind code of ref document: A1