WO2022188100A1 - 基于压电薄膜换能的石英谐振器以及电子设备 - Google Patents

基于压电薄膜换能的石英谐振器以及电子设备 Download PDF

Info

Publication number
WO2022188100A1
WO2022188100A1 PCT/CN2021/080243 CN2021080243W WO2022188100A1 WO 2022188100 A1 WO2022188100 A1 WO 2022188100A1 CN 2021080243 W CN2021080243 W CN 2021080243W WO 2022188100 A1 WO2022188100 A1 WO 2022188100A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
quartz
electrode
quartz resonator
piezoelectric
Prior art date
Application number
PCT/CN2021/080243
Other languages
English (en)
French (fr)
Inventor
张孟伦
庞慰
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to PCT/CN2021/080243 priority Critical patent/WO2022188100A1/zh
Publication of WO2022188100A1 publication Critical patent/WO2022188100A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator

Definitions

  • the invention relates to the field of microelectronic devices, in particular to a quartz resonator based on piezoelectric thin film energy conversion and an electronic device.
  • the traditional piezoelectric film-based MEMS (Micro-Electro-Mechanical System, Micro-Electro-Mechanical System) resonator is usually composed of a piezoelectric film layer and upper and lower electrodes.
  • the piezoelectric film layer has poor frequency temperature coefficient and high acoustic loss, and this kind of resonator has low Q value and low frequency stability.
  • traditional quartz resonators have high Q value and high frequency stability, but their electromechanical coupling coefficients are low, and quartz resonators with high resonant frequencies are difficult to fabricate.
  • the present invention proposes a quartz resonator and electronic device based on piezoelectric film transduction with high Q value, high electromechanical coupling coefficient, high frequency stability, and simple manufacture.
  • a first aspect of the present invention provides a piezoelectric thin-film transduction-based quartz resonator, comprising: a substrate, an acoustic mirror, a piezoelectric thin-film transduction layer, a quartz resonant body layer, a first electrode, and a second electrode, wherein the The electromechanical coupling coefficient of the piezoelectric thin film transducer layer is greater than that of the quartz resonant body layer.
  • the first electrode and the second electrode are respectively in contact with the piezoelectric thin film transducing layer.
  • the piezoelectric thin film energy conversion layer is made of aluminum nitride, doped aluminum nitride, zinc oxide, lithium niobate, lithium tantalate or lead zirconate titanate.
  • the thickness of the piezoelectric thin-film transducer layer ranges from 0.01 microns to 10 microns.
  • the thickness of the quartz resonant body layer is 0.1 ⁇ m to 100 ⁇ m.
  • the base supports a quartz resonant body layer, a first electrode, a piezoelectric film transducer layer and a second electrode stacked in sequence from bottom to top, the acoustic mirror is an air cavity, and the air cavity is located in the quartz resonator. below the resonant body layer.
  • the top surface of the base has a groove
  • the base is provided with a quartz resonant body layer, a first electrode, a piezoelectric thin film transducer layer and a second electrode stacked in sequence from bottom to top
  • the groove is There is an acoustic mirror in the device, and the acoustic mirror is an air cavity or a Bragg reflection layer.
  • a partial area of the quartz resonant body layer is semi-separated or integrally separated from the substrate.
  • the first electrode and the second electrode are in the shape of a flat plate.
  • the top surface of the base has a groove, the groove is provided with an acoustic mirror, the acoustic mirror is an air cavity or a Bragg reflection layer, a quartz resonant body layer is formed on the base, and the quartz A piezoelectric thin film transducer layer is arranged on the resonance body layer, and a first electrode and a second electrode in the shape of an interdigitated finger are arranged on the piezoelectric thin film transducer layer.
  • a second aspect of the present invention provides an electronic device, which includes the piezoelectric thin-film transduction-based quartz resonator proposed in the first aspect of the present invention.
  • the conversion between electrical energy/electrical signal and mechanical energy/mechanical vibration is realized through the piezoelectric thin film transducer layer and electrodes, and at the same time, the acoustic coupling between the piezoelectric thin film transducer layer/electrode structure and the quartz resonant body layer is achieved.
  • the mechanical energy/vibration is coupled to the quartz resonant bulk layer to form the resonator as a whole.
  • the resonator Due to the extremely low acoustic loss of the quartz material, the resonator has a high Q value; the quartz material has a very low frequency temperature coefficient, which ensures the high frequency stability of the resonator; the electromechanical coupling is realized through the piezoelectric film transducer layer to ensure the resonance
  • the device has a high electromechanical coupling coefficient; it is not necessary to prepare electrodes on the upper and lower sides of the quartz resonant body layer at the same time, and the device manufacturing process is relatively easy.
  • Fig. 1a is a top view of a quartz resonator based on piezoelectric film transduction according to the first embodiment of the present invention, and Fig. 1b is a cross-sectional view along the line A-A';
  • Fig. 2a is a top view of a quartz resonator based on piezoelectric film transduction according to a second embodiment of the present invention, and Fig. 2b is a cross-sectional view along the line B-B';
  • Fig. 3a is the top view of the quartz resonator based on piezoelectric film transduction of the third embodiment of the present invention, and Fig. 3b is the sectional view along C-C' line;
  • Fig. 4a is the top view of the quartz resonator based on piezoelectric film transduction according to the fourth embodiment of the present invention, and Fig. 4b is the sectional view along D-D' line;
  • Fig. 5a is a top view of a quartz resonator based on piezoelectric film transduction according to a fifth embodiment of the present invention
  • Fig. 5b is a cross-sectional view along the line E-E'.
  • Substrate the material can be selected from single crystal silicon, gallium arsenide, sapphire, quartz or lithium niobate, etc.
  • Acoustic mirror specifically an air cavity, a Bragg reflection layer or other equivalent acoustic reflection structures.
  • the first electrode/second electrode, the material can be selected from molybdenum, platinum, gold, aluminum, copper, silver and other common thin-film electrode materials or the composite of the above metals or their alloys.
  • Piezoelectric thin film transducer layer the material can be selected from non-quartz piezoelectric thin film materials such as aluminum nitride, doped aluminum nitride, zinc oxide, lithium niobate, lithium tantalate or lead zirconate titanate, and its materials are required to be electromechanically coupled The coefficient is greater than the electromechanical coupling coefficient of quartz.
  • the quartz resonator according to the embodiment of the present invention includes: a substrate, an acoustic mirror, a piezoelectric thin film transducer layer, a quartz resonant body layer, a first electrode and a second electrode, wherein the electromechanical coupling coefficient of the piezoelectric thin film transducer layer is greater than that of the quartz resonator The electromechanical coupling coefficient of the bulk layer.
  • the first electrode and the second electrode of the quartz resonator can be respectively contacted with the piezoelectric thin-film transducer layer, so that electrodes can be avoided simultaneously on the upper and lower sides of the quartz resonator body layer, and the manufacturing process is relatively easy.
  • the electrodes When the first electrode and the second electrode are respectively located on two sides of the piezoelectric thin film transducing layer, the electrodes may be in the shape of a flat plate (for example, polygons such as rectangles and pentagons, and circles, ellipses, etc.). When the first electrode and the second electrode are respectively located on the same side of the piezoelectric thin film transducing layer, the electrodes may be in the shape of interdigitated fingers.
  • the thickness of the piezoelectric thin film transducer layer may be in the range of 0.01 micrometers to 10 micrometers, and the thickness of the quartz resonant body layer may be in the range of 0.1 micrometers to 100 micrometers.
  • the substrate 10 supports the quartz resonator body layer 60, the first electrode 30, the piezoelectric crystal body layer 60, the first electrode 30, and the piezoelectric layer stacked sequentially from bottom to top.
  • the thin-film transducer layer 40 and the second electrode 50 and the acoustic mirror 20 are air cavities, and the air cavities are located under the quartz resonant body layer 60 .
  • the top surface of the substrate 10 has grooves, and the substrate 10 has quartz resonators stacked sequentially from bottom to top.
  • the main body layer 60 , the first electrode 30 , the piezoelectric thin film transducer layer 40 and the second electrode 50 are provided with an acoustic mirror 20 in the groove, and the acoustic mirror 20 may be an air cavity or a Bragg reflection layer.
  • a part of the region of the quartz resonant body layer is semi-separated from the substrate.
  • the semi-split form can take the form of a cantilever beam, such as a single cantilever beam (shown in Figure 3a) or a multiple cantilever beam (traditional tuning fork) configuration.
  • a part of the quartz resonator body layer is completely separated from the substrate to the greatest extent possible.
  • This can achieve resonators for various purposes, such as further reducing the acoustic leakage of the resonator and thereby improving the Q value of the resonator, or adjusting the resonant mode (eg, bending mode) of the resonator by rationally designing the separation portion.
  • at least a part of the resonator needs to be in contact with the substrate to provide mechanical support, and the support structure can be realized by electrodes or an additional support structure. In the embodiment shown in FIG. 4a, the contact area between the support structure and the resonator is minimized, so as to suspend the entire resonator to the maximum extent.
  • the top surface of the substrate 10 has a groove, and the groove is provided with an acoustic mirror 20, and the acoustic mirror 20 can be It is an air cavity or a Bragg reflection layer, a quartz resonator body layer 60 is arranged on the substrate 20, a piezoelectric film transducer layer 40 is arranged on the quartz resonator main body layer 60, and an interdigitated first finger shape is arranged on the piezoelectric film transducer layer 40.
  • An electrode 30 and a second electrode 50 is arranged.
  • the piezoelectric thin-film-transduced quartz resonator proposed in the embodiments of the present invention can be applied to various electronic devices required.
  • the conversion between electrical energy/electrical signal and mechanical energy/mechanical vibration is realized through the piezoelectric thin film transducing layer and electrodes, while the mechanical energy/mechanical vibration is coupled to the The quartz resonator body layer forms the entire resonator.
  • the resonator Due to the extremely low acoustic loss of the quartz material, the resonator has a high Q value; the quartz material has a very low frequency temperature coefficient, which ensures the high frequency stability of the resonator; the electromechanical coupling is realized through the piezoelectric film transducer layer to ensure the resonance
  • the device has a high electromechanical coupling coefficient; it is not necessary to prepare electrodes on the upper and lower sides of the quartz resonant body layer at the same time, and the device manufacturing process is relatively easy.
  • An electronic device includes the piezoelectric thin-film transduction-based quartz resonator disclosed herein.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明公开了一种基于压电薄膜换能的石英谐振器,包括:基底、声学镜、压电薄膜换能层、石英谐振主体层、第一电极和第二电极,其中,压电薄膜换能层的机电耦合系数大于石英谐振主体层的机电耦合系数。该石英谐振器同时具备高Q值、高机电耦合系数、高频率稳定性、制造较简单等特点。

Description

基于压电薄膜换能的石英谐振器以及电子设备 技术领域
本发明涉及微电子设备领域,具体涉及一种基于压电薄膜换能的石英谐振器以及电子设备。
背景技术
传统基于压电薄膜的MEMS(Micro-Electro-Mechanical System,微机电系统)谐振器通常由压电薄膜层和上下电极组成,其谐振频率较高且制备较简单、机电耦合系数较高,但是由于压电薄膜层频率温度系数差且声损耗较高,这种谐振器的Q值较低且频率稳定性不高。另一方面,传统的石英谐振器具有高Q值和高频率稳定性,但其机电耦合系数较低,且高谐振频率的石英谐振器制备困难。
发明内容
有鉴于此,本发明提出一种高Q值、高机电耦合系数、高频率稳定性、制造较简单的基于压电薄膜换能的石英谐振器以及电子设备。
本发明第一方面提出一种基于压电薄膜换能的石英谐振器,包括:基底、声学镜、压电薄膜换能层、石英谐振主体层、第一电极和第二电极,其中,所述压电薄膜换能层的机电耦合系数大于石英谐振主体层的机电耦合系数。
可选地,所述第一电极和所述第二电极分别与所述压电薄膜换能层接触。
可选地,所述压电薄膜换能层的材料为氮化铝、掺杂氮化铝、氧化锌、铌酸锂、钽酸锂或锆钛酸铅。
可选地,所述压电薄膜换能层的厚度范围为0.01微米至10微米。
可选地,所述石英谐振主体层的厚度为0.1微米至100微米。
可选地,所述基底支撑从下至上依次堆叠的石英谐振主体层、第一电极、压电薄膜换能层和第二电极,所述声学镜为空气腔,所述空气腔位于所述石英谐振主体层下方。
可选地,所述基底的顶部表面具有凹槽,所述基底之上具有从下至上依次堆叠的石英谐振主体层、第一电极、压电薄膜换能层和第二电极,所述凹槽中设有声学镜,所述声学镜为空气腔或者布拉格反射层。
可选地,所述石英谐振主体层的部分区域与所述基底半分离或者整体分离。
可选地,所述第一电极和所述第二电极为平板形状。
可选地,所述基底的顶部表面具有凹槽,所述凹槽中设有声学镜,所述声学镜为空气腔或者布拉格反射层,所述基底之上具有石英谐振主体层,所述石英谐振主体层之上具有压电薄膜换能层,所述压电薄膜换能层之上具有插指形状的第一电极和第二电极。
本发明第二方面提出一种电子设备,该电子设备包括本发明第一方面提出的基于压电薄膜换能的石英谐振器。
根据本发明的技术方案,通过压电薄膜换能层和电极实现电能/电学信号与机械能/机械振动之间的转换,同时通过压电薄膜换能层/电极结构与石英谐振主体层的声学耦合将机械能/机械振动耦合至石英谐振主体层,形成谐振器整体。由于石英材料具有极低的声学损耗,保证谐振器具有高Q值;石英材料具有很低的频率温度系数,保证谐振器具有高频率稳定性; 机电耦合通过压电薄膜换能层实现,保证谐振器具有高机电耦合系数;不需要在石英谐振主体层的上下两侧同时制备电极,器件制造工艺较容易。
附图说明
为了说明而非限制的目的,现在将根据本发明的优选实施例、特别是参考附图来描述本发明,其中:
图1a为本发明第一实施例的基于压电薄膜换能的石英谐振器的俯视图,图1b为沿A-A’线的剖面图;
图2a为本发明第二实施例的基于压电薄膜换能的石英谐振器的俯视图,图2b为沿B-B’线的剖面图;
图3a为本发明第三实施例的基于压电薄膜换能的石英谐振器的俯视图,图3b为沿C-C’线的剖面图;
图4a为本发明第四实施例的基于压电薄膜换能的石英谐振器的俯视图,图4b为沿D-D’线的剖面图;
图5a为本发明第五实施例的基于压电薄膜换能的石英谐振器的俯视图,图5b为沿E-E’线的剖面图。
具体实施方式
本文中图中标注的各部分细节说明如下:
10:基底,材料可选单晶硅、砷化镓、蓝宝石、石英或铌酸锂等。
20:声学镜,具体可以为空气腔、采用布拉格反射层或其它等效声学反射结构。
30/50:第一电极/第二电极,材料可选钼、铂、金、铝、铜、银等常用薄膜电极材料或以上金属的复合或其合金。
40:压电薄膜换能层,材料可选氮化铝、掺杂氮化铝、氧化锌、铌酸锂、钽酸锂或锆钛酸铅等非石英压电薄膜材料,要求其材料机电耦合系数大于石英的机电耦合系数。
60:石英谐振主体层,材料为石英。
本发明实施方式的石英谐振器包括:基底、声学镜、压电薄膜换能层、 石英谐振主体层、第一电极和第二电极,其中,压电薄膜换能层的机电耦合系数大于石英谐振主体层的机电耦合系数。
该石英谐振器第一电极和第二电极可以分别与压电薄膜换能层接触,这样可以避免在石英谐振主体层上下两侧同时制备电极,制造工艺较容易。
当第一电极和第二电极分别位于压电薄膜换能层的两侧时,电极可以为平板形状(例如:矩形、五边形等多边形以及圆形、椭圆形等)。当第一电极和第二电极分别位于压电薄膜换能层的同侧时,电极可以为插指形状。
压电薄膜换能层的厚度范围可以为0.01微米至10微米,石英谐振主体层的厚度可以为0.1微米至100微米。
如图1a和图1b所示,本发明第一实施例的基于压电薄膜换能的石英谐振器中,基底10支撑从下至上依次堆叠的石英谐振主体层60、第一电极30、压电薄膜换能层40和第二电极50,声学镜20为空气腔,空气腔位于石英谐振主体层60下方。
如图2a和图2b所示,本发明第二实施例的基于压电薄膜换能的石英谐振器中,基底10的顶部表面具有凹槽,基底10之上具有从下至上依次堆叠的石英谐振主体层60、第一电极30、压电薄膜换能层40和第二电极50,凹槽中设有声学镜20,声学镜20可以为空气腔或者布拉格反射层。
如图3a和图3b所示,本发明第三实施例的基于压电薄膜换能的石英谐振器中,石英谐振主体层的部分区域与基底半分离。这样可以实现多种目的的谐振器,例如减小谐振器的声波泄露进而提高谐振器Q值,或者通过合理地设计分离部分以调整谐振器谐振模式(如弯曲模式)。半分离形式可以采用悬臂梁结构,如单个悬臂梁(图3a所示)或多个悬臂梁(传统音叉)结构。
如图4a和图4b所示,本发明第四实施例的基于压电薄膜换能的石英谐振器中,石英谐振主体层的部分区域与基底最大限度的整体分离。这样可以实现多种目的的谐振器,例如进一步减小谐振器的声波泄露进而提高谐振器Q值,或者通过合理地设计分离部分以调整谐振器谐振模式(如弯曲模式)。当然,谐振器至少需要有一部分与基底接触以提供机械支撑,支撑结构可以通过电极或者外加的支撑结构实现。图4a所示的实施例为用尽量减小支撑结构与谐振器的接触面积,以最大化地悬空整个谐振器。
如图5a和图5b所示,本发明第五实施例的基于压电薄膜换能的石英谐振器中,基底10的顶部表面具有凹槽,凹槽中设有声学镜20,声学镜20可以为空气腔或者布拉格反射层,基底20之上具有石英谐振主体层60,石英谐振主体层60之上具有压电薄膜换能层40,压电薄膜换能层40之上具有插指形状的第一电极30和第二电极50。
本发明实施方式中提出的压电薄膜换能的石英谐振器可以应用于各种需要的电子设备上。通过压电薄膜换能层和电极实现电能/电学信号与机械能/机械振动之间的转换,同时通过压电薄膜换能层/电极结构与石英谐振主体层的声学耦合将机械能/机械振动耦合至石英谐振主体层,形成谐振器整体。由于石英材料具有极低的声学损耗,保证谐振器具有高Q值;石英材料具有很低的频率温度系数,保证谐振器具有高频率稳定性;机电耦合通过压电薄膜换能层实现,保证谐振器具有高机电耦合系数;不需要在石英谐振主体层的上下两侧同时制备电极,器件制造工艺较容易。
本发明实施方式的电子设备,该电子设备包括本文公开的基于压电薄膜换能的石英谐振器。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,取决于设计要求和其他因素,可以发生各种各样的修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。

Claims (11)

  1. 一种基于压电薄膜换能的石英谐振器,其特征在于,包括:
    基底、声学镜、压电薄膜换能层、石英谐振主体层、第一电极和第二电极,其中,所述压电薄膜换能层的机电耦合系数大于石英谐振主体层的机电耦合系数。
  2. 根据权利要求1所述的基于压电薄膜换能的石英谐振器,其特征在于,所述第一电极和所述第二电极分别与所述压电薄膜换能层接触。
  3. 根据权利要求1所述的基于压电薄膜换能的石英谐振器,其特征在于,所述压电薄膜换能层的材料为氮化铝、掺杂氮化铝、氧化锌、铌酸锂、钽酸锂或锆钛酸铅。
  4. 根据权利要求1所述的基于压电薄膜换能的石英谐振器,其特征在于,所述压电薄膜换能层的厚度范围为0.01微米至10微米。
  5. 根据权利要求1所述的基于压电薄膜换能的石英谐振器,其特征在于,所述石英谐振主体层的厚度为0.1微米至100微米。
  6. 根据权利要求1所述的基于压电薄膜换能的石英谐振器,其特征在于,所述基底支撑从下至上依次堆叠的石英谐振主体层、第一电极、压电薄膜换能层和第二电极,所述声学镜为空气腔,所述空气腔位于所述石英谐振主体层下方。
  7. 根据权利要求1所述的基于压电薄膜换能的石英谐振器,其特征在于,所述基底的顶部表面具有凹槽,所述基底之上具有从下至上依次堆叠的石英谐振主体层、第一电极、压电薄膜换能层和第二电极,所述凹槽中设有声学镜,所述声学镜为空气腔或者布拉格反射层。
  8. 根据权利要求7所述的基于压电薄膜换能的石英谐振器,其特征在于,所述石英谐振主体层的部分区域与所述基底半分离或者整体分离。
  9. 根据权利要求1至8任一项所述的基于压电薄膜换能的石英谐振器,其特征在于,所述第一电极和所述第二电极为平板形状。
  10. 根据权利要求1所述的基于压电薄膜换能的石英谐振器,其特征在于,所述基底的顶部表面具有凹槽,所述凹槽中设有声学镜,所述声学镜为空气腔或者布拉格反射层,所述基底之上具有石英谐振主体层,所述石英谐振主体层之上具有压电薄膜换能层,所述压电薄膜换能层之上具有插指形状的第一电极和第二电极。
  11. 一种电子设备,其特征在于,包括权利要求1至10中任一项所述的基于压电薄膜换能的石英谐振器。
PCT/CN2021/080243 2021-03-11 2021-03-11 基于压电薄膜换能的石英谐振器以及电子设备 WO2022188100A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/080243 WO2022188100A1 (zh) 2021-03-11 2021-03-11 基于压电薄膜换能的石英谐振器以及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/080243 WO2022188100A1 (zh) 2021-03-11 2021-03-11 基于压电薄膜换能的石英谐振器以及电子设备

Publications (1)

Publication Number Publication Date
WO2022188100A1 true WO2022188100A1 (zh) 2022-09-15

Family

ID=83226177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080243 WO2022188100A1 (zh) 2021-03-11 2021-03-11 基于压电薄膜换能的石英谐振器以及电子设备

Country Status (1)

Country Link
WO (1) WO2022188100A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040246075A1 (en) * 2003-06-09 2004-12-09 Bradley Paul D. Method for controlling piezoelectric coupling coefficient in film bulk acoustic resonators and apparatus embodying the method
JP2008211392A (ja) * 2007-02-23 2008-09-11 Matsushita Electric Works Ltd 共振器及びその製造方法
CN101908865A (zh) * 2010-08-20 2010-12-08 庞慰 体波谐振器及其加工方法
CN111245397A (zh) * 2019-12-06 2020-06-05 天津大学 体声波谐振器及制造方法、体声波谐振器单元、滤波器及电子设备
CN112087216A (zh) * 2020-08-03 2020-12-15 诺思(天津)微系统有限责任公司 具有声学孔的体声波谐振器及组件、滤波器及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040246075A1 (en) * 2003-06-09 2004-12-09 Bradley Paul D. Method for controlling piezoelectric coupling coefficient in film bulk acoustic resonators and apparatus embodying the method
JP2008211392A (ja) * 2007-02-23 2008-09-11 Matsushita Electric Works Ltd 共振器及びその製造方法
CN101908865A (zh) * 2010-08-20 2010-12-08 庞慰 体波谐振器及其加工方法
CN111245397A (zh) * 2019-12-06 2020-06-05 天津大学 体声波谐振器及制造方法、体声波谐振器单元、滤波器及电子设备
CN112087216A (zh) * 2020-08-03 2020-12-15 诺思(天津)微系统有限责任公司 具有声学孔的体声波谐振器及组件、滤波器及电子设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WU TING: "Research and Fabrication of New Film Bulk Acoustic Resonator (FBAR)", CHINA MASTER’S THESES FULL-TEXT DATABASE, 28 February 2021 (2021-02-28), XP055965321 *
XUAN WEIPENG: "Acoustic Wave Resonators and Their Applications as Sensors", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 30 November 2017 (2017-11-30), XP055965319 *

Similar Documents

Publication Publication Date Title
JP5848131B2 (ja) 機械共振構造体を備える機器
JP4930381B2 (ja) 圧電振動装置
WO2015041152A1 (ja) 振動装置及びその製造方法
US9059393B2 (en) Vibrator element, vibrator, oscillator, and electronic device
CN108140723B (zh) 压电元件、压电传声器、压电谐振子以及压电元件的制造方法
JP2006203304A (ja) 圧電薄膜共振器及びそれを用いた発振器並びにそれを内蔵した半導体集積回路
JP4395892B2 (ja) 圧電薄膜デバイス及びその製造方法
JP3514224B2 (ja) 圧電共振子、フィルタ及び電子機器
WO2021114555A1 (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
JP5445114B2 (ja) 振動片および発振器
CN113037245B (zh) 基于压电薄膜换能的石英谐振器以及电子设备
CN113395053A (zh) 石英薄膜谐振器及其制造方法
JP5862368B2 (ja) 圧電デバイスの製造方法
WO2022188100A1 (zh) 基于压电薄膜换能的石英谐振器以及电子设备
JP2005033775A (ja) 電子部品及びその製造方法
WO2022158249A1 (ja) 弾性波装置、フィルタ装置及び弾性波装置の製造方法
JP2005236338A (ja) 圧電薄膜共振子
US20160218694A1 (en) Piezoelectric vibrating reed and piezoelectric vibrator
WO2022183379A1 (zh) 石英薄膜谐振器及其制造方法
WO2022024440A1 (ja) 共振子及び共振装置
JP2002368573A (ja) 超薄板圧電振動子及びその製造方法
WO2024055388A1 (en) Acoustic resonator
TW202310460A (zh) 體聲波共振器
TW202301713A (zh) 體聲波共振器
KR20220148456A (ko) 박막 벌크 음향 공진기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929578

Country of ref document: EP

Kind code of ref document: A1