WO2015037653A1 - 排熱回収装置 - Google Patents
排熱回収装置 Download PDFInfo
- Publication number
- WO2015037653A1 WO2015037653A1 PCT/JP2014/074044 JP2014074044W WO2015037653A1 WO 2015037653 A1 WO2015037653 A1 WO 2015037653A1 JP 2014074044 W JP2014074044 W JP 2014074044W WO 2015037653 A1 WO2015037653 A1 WO 2015037653A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rankine cycle
- clutch
- expander
- pump
- output
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
- F01K23/101—Regulating means specially adapted therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/02—Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F01C1/0207—Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F01C1/0215—Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K15/00—Adaptations of plants for special use
- F01K15/02—Adaptations of plants for special use for driving vehicles, e.g. locomotives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/065—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
- F02G5/02—Profiting from waste heat of exhaust gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an exhaust heat recovery apparatus equipped with a Rankine cycle that is mounted on a vehicle and recovers exhaust heat (including waste heat) of an engine to generate power.
- Patent Document 1 describes a vehicle including an engine and a Rankine cycle in which waste heat of the engine is recovered as a refrigerant and regenerated as power by an expander.
- a clutch is provided on a power transmission path between the engine and the expander, and when the predicted value of the regenerative power (torque) of the expander is positive When the clutch is engaged and the predicted value of regenerative power (torque) of the expander is zero or negative, the clutch is not engaged. That is, in the vehicle described in Patent Document 1, when the predicted value of the torque of the expander becomes zero or negative, the clutch is disengaged and the Rankine cycle operation is stopped.
- the Rankine cycle has to be an engine load for a certain period of time when it is started.
- the electric pump is driven by electric power from a battery.
- the Rankine cycle becomes a load on the engine.
- a mechanical pump is used for the circulation of the refrigerant, the mechanical pump is driven by the engine, so that the Rankine cycle becomes a load on the engine.
- the Rankine cycle can be an engine load.
- the engine load caused by the Rankine cycle is relatively small. It can be said that it is over. Therefore, as in the vehicle described in Patent Document 1, if the Rankine cycle operation is stopped immediately when the predicted value of the expander torque becomes zero or negative, the operation is continued without stopping the Rankine cycle. On the contrary, the load on the engine due to the Rankine cycle increases, and as a result, the fuel consumption of the engine may be deteriorated.
- the present invention provides an exhaust heat recovery apparatus having a Rankine cycle that recovers exhaust heat of an engine and converts it into power by an expander, and includes a clutch provided on a power transmission path between the engine and the Rankine cycle.
- An object of the present invention is to effectively suppress the Rankine cycle from becoming an engine load by appropriately performing fastening / non-fastening.
- An exhaust heat recovery apparatus includes a heater that heats and vaporizes a refrigerant by exhaust heat of an engine in a refrigerant circulation path, and an expander that expands the refrigerant via the heater to generate power.
- a Rankine cycle in which a condenser that condenses the refrigerant that has passed through the expander and a pump that delivers the refrigerant that has passed through the condenser to the heater are disposed;
- a power transmission mechanism capable of transmitting power between the engine and the Rankine cycle at times; a first correlation value correlating with power consumption at the start of the Rankine cycle;
- a clutch control unit that controls engagement / non-engagement of the clutch based on a second correlation value that correlates with power consumed by the Rankine cycle when the output is negative ; Including.
- a first correlation value that correlates with power consumption at the start of the Rankine cycle and a second correlation value that correlates with power consumption of the Rankine cycle when the output is negative during the operation of the Rankine cycle is controlled based on the correlation value.
- FIG. 1 shows a schematic configuration of an exhaust heat recovery apparatus 1A according to the first embodiment of the present invention.
- the exhaust heat recovery apparatus 1 is mounted on a vehicle and recovers and uses the exhaust heat of the engine 10.
- the exhaust heat recovery apparatus 1 ⁇ / b> A recovers exhaust heat of the engine 10 and converts it into power (generates power), and transmits power between the Rankine cycle 2 ⁇ / b> A and the engine 10.
- a control unit 4A for controlling the operation of the exhaust heat recovery apparatus 1A as a whole.
- the engine 10 is a water-cooled internal combustion engine, and is cooled by engine cooling water that circulates in the cooling water passage 11.
- a heater 22 of a Rankine cycle 2A which will be described later, is disposed in the cooling water flow path 11, and engine cooling water that has absorbed heat from the engine 10 flows through the heater 22.
- a heater 22, an expander 23, a condenser 24, and a pump 25 are arranged in this order in the refrigerant circuit 21 of the Rankine cycle 2A.
- the heater 22 is a heat exchanger that heats the refrigerant into superheated steam by causing heat exchange between the engine coolant that has absorbed heat from the engine 10 and the refrigerant.
- the heater 22 may be configured to exchange heat between the exhaust of the engine 10 and the refrigerant.
- the expander 23 is a scroll type expander, and generates power (here, torque) by expanding the refrigerant heated by the heater 22 into superheated steam and converting it into rotational energy.
- the condenser 24 is a heat exchanger that cools and condenses (liquefies) the refrigerant by causing heat exchange between the refrigerant that passes through the expander 23 and the outside air.
- the pump 25 is a mechanical pump that sends out the refrigerant (liquid refrigerant) liquefied by the condenser 24 to the heater 22. Then, the refrigerant liquefied by the condenser 24 is sent to the heater 22 by the pump 25, whereby the refrigerant circulates through each element of the Rankine cycle 2.
- an expander (scroll type expander) 23 and a pump (mechanical pump) 25 are configured as a “pump-integrated expander 27” in which a common rotating shaft 26 is integrally connected. ing. That is, the rotary shaft 26 of the pump-integrated expander 27 has a function as an output shaft of the expander 23 and a drive shaft of the pump 25.
- the power transmission mechanism 3A includes an electromagnetic clutch 31, a pulley 32 attached to the rotating shaft 26 of the pump-integrated expander 27 via the electromagnetic clutch 31, and a crank pulley 33 attached to the crankshaft 10a of the engine 10. And a belt 34 wound around the pulley 32 and the crank pulley 33.
- the power transmission mechanism 3A is configured so that the power is transmitted between the engine 10 and the Rankine cycle 2 (specifically, the pump-integrated expander 27) by turning the electromagnetic clutch 31 ON (engaged) / OFF (non-engaged). Can be transmitted / blocked.
- the electromagnetic clutch 31 only needs to be able to transmit / cut power between the engine 10 and the Rankine cycle 2, and the installation position thereof does not matter.
- the control unit 4A is configured to be able to transmit and receive information to and from an engine control device (not shown) that controls the engine 10.
- the control unit 4 can obtain various information such as the rotational speed Ne of the engine 10 and the engine cooling water temperature Tw from the engine control device.
- the high-pressure side pressure PH of the Rankine cycle 2A refers to the pressure in the refrigerant circuit 21 in the section from the pump 25 (exit) through the heater 22 to the expander 23 (inlet).
- the low pressure PL in the cycle 2A refers to the pressure in the refrigerant circuit 21 in the section from the expander 23 (exit) to the pump 25 (inlet) via the condenser 24.
- the first pressure sensor 101 detects the pressure on the inlet side of the expander 23 (the outlet side of the heater 22) as the high pressure side pressure PH of the Rankine cycle 2A
- the second pressure sensor 102 detects the pressure on the inlet side of the pump 25 ( The pressure on the outlet side of the condenser 23) is detected as the low pressure side pressure PL of the Rankine cycle 2A.
- the rotation sensor 103 can be omitted.
- the control unit 4A can calculate the rotational speed Neexp of the pump-integrated expander 27 based on the rotational speed Ne of the engine 10 (and the pulley ratio of the pulley 31 and the crank pulley 32).
- the control unit 4A executes various controls including control (engagement / non-engagement) of the electromagnetic clutch 31 based on detection signals from various sensors input and information from the engine control device. For example, the control unit 4A turns on (engages) the electromagnetic clutch 31 when the start condition of the Rankine cycle 2A is satisfied. Thereby, the pump 25 (the pump part of the pump-integrated expander 27) is driven by the engine 10, and the Rankine cycle 2A is started. Therefore, at the time of starting the Rankine cycle 2A, the pump 25 of the Rankine cycle 2A and the expander 23 (that is, the pump-integrated expander 27) having the rotation shaft 26 in common with the Rankine cycle 2A serve as a load on the engine 10.
- the said starting conditions of Rankine cycle 2A can be set suitably.
- the start condition may be that the engine cooling water temperature Tw is equal to or higher than a predetermined temperature or that a predetermined time has elapsed since the Rankine cycle 2 was stopped.
- Rankine cycle 2A When Rankine cycle 2A is activated, the refrigerant circulates through refrigerant circulation path 21 by pump 25 (pump portion of pump-integrated expander 27), and expander 23 (expander portion of pump-integrated expander 27) generates power. Begin to. Thereafter, when the expander 23 generates sufficient power (torque) (that is, when the start-up of the Rankine cycle 2 is completed), a part of the power generated by the expander 23 drives the pump 25, and the remainder Is transmitted to the engine 10 via the power transmission mechanism 3 ⁇ / b> A to assist the output of the engine 10. Thereby, the fuel consumption of the engine 10 can be improved.
- the electromagnetic clutch 31 is turned off (not fastened) to stop the Rankine cycle 2A.
- the Rankine cycle 2A becomes a load of the engine 10. End up.
- the degree of refrigerant superheating on the upstream side of the expander 23 is not sufficient or when the heat load of the condenser 24 is large, the pressure difference between the front and rear of the expander 23 is not sufficient, and the power generated by the expander 23 (torque) ) ⁇ Drive torque of the pump 25 may be satisfied.
- the exhaust heat recovery apparatus 1 ⁇ / b> A for improving the fuel consumption of the engine 10 becomes a load on the engine 10 (cause of worsening the fuel consumption of the engine 10), which is not preferable.
- the control unit 4A calculates the torque Texp (output of the Rankine cycle 2A) of the pump-integrated expander 27 at predetermined intervals, and the torque of the pump-integrated expander 27 is calculated during normal operation after the Rankine cycle 2A is started.
- the electromagnetic clutch 31 that is turned on (engaged) is turned off (non-engaged) to cut off the transmission of power between the engine 10 and the Rankine cycle 2A, and the Rankine cycle 2A is stopped. .
- the Rankine cycle 2 ⁇ / b> A is prevented from becoming a load on the engine 10.
- control unit 4A does not immediately turn off the electromagnetic clutch 31 when the output of the Rankine cycle 2A (torque Texp of the pump-integrated expander 27) becomes zero or negative, but outputs the output (torque of the Rankine cycle 2A).
- the electromagnetic clutch 31 is turned OFF.
- Rankine cycle 2A since Rankine cycle 2A becomes a load on engine 10 at the time of starting, Rankine cycle 2A stops operation when the output (torque Texp) of Rankine cycle 2A becomes zero or negative. This is because the load on the engine 10 may increase as compared with the case where the Rankine cycle 2A is operated without being stopped.
- the control unit 4A determines that the consumed power (or the correlation value) of the Rankine cycle 2A when the output is negative during operation after the start of the Rankine cycle 2A is When the power consumption at the time of activation (or its correlation value) is exceeded or predicted to be such, the electromagnetic clutch 31 that is turned on is turned off to stop the Rankine cycle 2A.
- the consumed power at the start of the Rankine cycle 2A is that the Rankine cycle 2A is “positive” after the Rankine cycle 2A in the stopped state is started (from the start of driving of the pump 25). It means the power consumed by the Rankine cycle 2A (mainly the pump-integrated expander 27) until it becomes.
- control unit 4A can turn on the electromagnetic clutch 31 again to start (restart) the Rankine cycle 2A, for example, when the start condition is satisfied. That is, in the present embodiment, the control unit 4A functions as a “clutch control unit” and an “output calculation unit” of the present invention.
- a bypass flow path 28 that bypasses the expander 23 and a bypass valve 29 that opens and closes the bypass flow path 28 are provided, and the control unit 4A sets the bypass valve 29 as needed. You may comprise so that it may open and close.
- the control unit 4A turns on the electromagnetic clutch 31 with the bypass valve 29 opened, bypasses the expander 23, and after circulating the refrigerant, closes the bypass valve 29.
- the bypass valve 29 and the electromagnetic clutch 31 can be controlled.
- the control unit 4A first opens the bypass valve 29, bypasses the expander 23, distributes the refrigerant, and then turns off the electromagnetic clutch 31.
- the clutch 31 can be controlled.
- the pump-integrated expander 27 includes an expansion unit 50 that functions as an expander (scroll expander) 23, a pump unit 60 that functions as a pump (mechanical pump) 25, and an expansion unit 50. And a driven crank mechanism 70 disposed between the pump unit 60 and the pump unit 60.
- the expansion unit 50 includes a fixed scroll 51 and a movable scroll 52.
- the fixed scroll 51 and the movable scroll 52 are arranged so that the scroll portions 51 a and 52 a mesh with each other, and an expansion chamber 53 is formed between the scroll portion 51 a of the fixed scroll 51 and the scroll portion 52 a of the movable scroll 52.
- the refrigerant that has passed through the heater 22 is introduced into the expansion chamber 53 via a refrigerant passage 51 c formed in the base 51 b of the fixed scroll 51. Then, when the refrigerant introduced into the expansion chamber 53 expands, the movable scroll 52 performs a turning motion with respect to the fixed scroll 51.
- a ball on the back side (the side opposite to the scroll portion 52a) of the base portion 52b of the movable scroll 52 is provided.
- a ball coupling type rotation prevention mechanism 54 that uses as a rolling member.
- the Rankine cycle 2 is stopped when there is a possibility that liquid refrigerant is mixed in the expansion unit 50, the Rankine cycle 2A is frequently stopped particularly when the temperature Tw of the engine coolant is low, such as in winter. Therefore, there is a possibility that the driving opportunity of Rankine cycle 2A is greatly reduced. In addition, as a result, the opportunity to start Rankine cycle 2A increases, so that the load on engine 10 may also increase.
- the ball coupling type rotation prevention mechanism 54 using a ball as a rolling member does not cause defects such as seizure even in a state of insufficient lubrication and has high durability. Therefore, in the present embodiment, even when the liquid refrigerant may be mixed into the expansion unit 50 during the operation of the Rankine cycle 2A, the consumed power of the Rankine cycle 2A is negative when the output is negative.
- the electromagnetic clutch 31 is maintained in the ON state and the expansion unit 50 is operated (the Rankine cycle 2 is operated) until the consumption power at the time of startup of the Rankine cycle 2A is exceeded or predicted to be so. To. Thereby, it is preventing that the driving opportunity of Rankine cycle 2 reduces, suppressing the load to the engine 10 increasing.
- sensors for detecting the degree of superheat SH of the refrigerant on the inlet side of the expansion unit 50 need not be required.
- the pump unit 60 is configured as a gear pump, and includes a drive gear 61 fixed to the rotating shaft 26, a driven shaft 62 disposed in parallel to the rotating shaft 26, and fixed to the driven shaft 62. And a driven gear 63 that meshes with the drive gear 61.
- the rotating shaft 26 and the driven shaft 62 are rotatably supported by bearings.
- the pulley 32 is attached to one end side (left side in the figure) of the rotating shaft 26 via the electromagnetic clutch 31, and the other end side (right side in the figure) of the rotating shaft 26 is a driven crank mechanism. It is connected to the movable scroll 52 via 70.
- the driven crank mechanism 70 is, for example, a known swing link type driven crank mechanism, which can convert the turning motion of the movable scroll 52 into the rotational motion of the rotary shaft 26, and the rotary motion of the rotary shaft 26 is movable scroll. It can be converted into 52 swivel motions.
- FIG. 3 is a flowchart showing the contents of such clutch control. This flowchart is executed every predetermined time (for example, 10 ms) after the start of Rankine cycle 2A is completed.
- step S1 the high pressure side pressure PH and the low pressure side pressure PL of the Rankine cycle 2A are acquired from the first pressure sensor 101 and the second pressure sensor 102.
- step S ⁇ b> 2 the rotation speed Nexp of the pump-integrated expander 27 is acquired from the rotation sensor 103.
- the rotational speed Neexp of the pump-integrated expander 27 is calculated based on the rotational speed Ne of the engine 10 and the pulley ratio of the pulley 31 and the crank pulley 32.
- step S3 the torque Texp of the pump-integrated expander 27 (that is, the output of the Rankine cycle 2A) is calculated based on the high-pressure side pressure PH, the low-pressure side pressure PL, and the rotation speed Nexp of the pump-integrated expander 27.
- the control unit 4A calculates the torque Texp of the pump-integrated expander 27 based on the following estimation formula.
- Texp M 1 ⁇ (PH-PL) ⁇ M 2 ⁇ Nexp-K 1
- M 1 and ( ⁇ M 2 ) are coefficients
- K 1 is a constant.
- step S4 it is determined whether or not the torque Texp of the pump-integrated expander 27 is positive (Texp> 0). If the torque Texp of the pump-integrated expander 27 is zero or negative, the process proceeds to step S5. On the other hand, if the torque Texp of the pump-integrated expander 27 is positive, the process proceeds to step S9.
- step S5 the torque Texp ( ⁇ 0) of the pump-integrated expander 27 is stored.
- step S6 the absolute value
- the zero or negative torque Texp is added. That is, as the torque Texp of the pump-integrated expander 27 continues to be zero or negative, the absolute value
- of the integrated value of torque Texp” corresponds to the “second correlation value” of the present invention.
- step S7 it is determined whether or not the absolute value
- the threshold value TH1 is set according to the Rankine cycle 2A, and can be set to a value greater than 0 and a value corresponding to or less than the power consumed when the Rankine cycle 2A is activated.
- This threshold value TH1 corresponds to the “first correlation value” of the present invention.
- the threshold value TH1 may be set in advance as a fixed value, but every time the Rankine cycle 2A is activated, the integrated value (absolute value) of each torque Texp until the torque Texp becomes positive is obtained. It may be calculated and updated.
- step S8 a control signal is output to the electromagnetic clutch 31, and the electromagnetic clutch 31 is turned off (not engaged).
- step S9 the stored torque Texp and the absolute value
- FIG. 4 is a time chart showing an example of the state of the electromagnetic clutch 31 during normal operation after completion of the startup of the Rankine cycle 2A.
- the pump-integrated expander 27 generates positive torque (that is, the output of the Rankine cycle 2A is positive), and the engine 10 is assisted by the exhaust heat recovery device 1A.
- the rotational speed Ne of the engine 10 increases, the rotational speed Neexp of the pump-integrated expander 27 also increases accordingly.
- the torque Texp of the pump-integrated expander 27 decreases, and in some cases, the torque Texp of the pump-integrated expander 27 becomes zero or less at time t2.
- the Rankine cycle 2A starts to become a load on the engine 10, but in this embodiment, the electromagnetic clutch 31 remains ON.
- Rankine cycle 2A As described above, when the electromagnetic clutch 31 is turned off, the Rankine cycle 2A is stopped. On the other hand, in order to start (restart) Rankine cycle 2A, Rankine cycle 2A must be a load on engine 10 for a certain period of time. For this reason, if the electromagnetic clutch 31 is turned off when the torque Texp of the pump-integrated expander 27 becomes zero or negative, the load on the engine 10 increases as compared with the case where the electromagnetic clutch 31 is kept on. There is a risk that. Moreover, there is a possibility that the driving opportunity of Rankine cycle 2A will be greatly reduced.
- the electromagnetic clutch 31 is not immediately turned off when the torque Texp of the pump-integrated expander 27 becomes zero or negative during the operation of the Rankine cycle 2A.
- of the integrated value of the torque Texp of 27 becomes equal to or greater than the threshold value TH1
- the electromagnetic clutch 31 is turned off. That is, when the output correlated with the power consumed by the Rankine cycle 2A when the output is negative during the operation of the Rankine cycle 2A is greater than or equal to the value correlated with the power required when starting the Rankine cycle 2A. Then, the electromagnetic clutch 31 is turned off to stop the Rankine cycle 2A.
- the Rankine cycle 2A does not have to be stopped when the torque Texp is temporarily negative, a decrease in the operation opportunity of the Rankine cycle 2A is also suppressed. Furthermore, even if there is a possibility that liquid refrigerant may be mixed into the expansion unit 50, the Rankine cycle 2A is not stopped for that reason, and this also suppresses a decrease in the operation opportunity of the Rankine cycle 2A.
- the electromagnetic clutch 31 when the absolute value
- of the integrated value of the torque Texp of the pump-integrated expander 27 is equal to or greater than the threshold value TH1 (coefficient K ⁇ 1.0), and the torque Texp tends to decrease (
- the electromagnetic clutch 31 may be turned OFF when the current calculated value of the torque Texp is smaller than the previous calculated value.
- the electromagnetic clutch 31 is turned on. It may be turned off. Also in this case, it is highly likely that the state where the torque Texp is negative will continue, and it is predicted that the power consumption during operation of the Rankine cycle 2A will be greater than or equal to the power consumption during startup of the Rankine cycle 2A. This is because the fuel consumption is considered to deteriorate further.
- the case where the torque Texp is expected to further decrease means that the rotational speed Ne of the engine 10, that is, the rotational speed Neexp of the pump-integrated expander 27 (particularly the pump unit 60) increases (particularly suddenly increases).
- the case where the accelerator pedal is depressed more than a predetermined amount by the driver of the vehicle or the case where the vehicle is downshifted are applicable. Even if it does in this way, it will be suppressed by turning off the electromagnetic clutch 31 that the load of the engine 10 will increase on the contrary and the driving opportunity of Rankine cycle 2A will decrease.
- the electromagnetic clutch 31 can be configured to be turned off when the rotational speed of the engine 10 increases by a predetermined amount or more.
- FIG. 5 shows a schematic configuration of the exhaust heat recovery apparatus 1B according to the second embodiment of the present invention.
- the exhaust heat recovery apparatus 1A according to the first embodiment is configured as a “pump-integrated expander 27” in which an expander 23 and a pump 25, which are components of a Rankine cycle, are integrally connected by a common rotating shaft 26. Yes.
- an expander (scroll type expander) 23 and a pump (mechanical pump) 25 are provided separately.
- symbol is attached
- the exhaust heat recovery apparatus 1B includes a Rankine cycle 2B in which the expander 23 and the pump 25 are configured separately, a power transmission mechanism 3B, and a control unit 4B. Including. Since the basic configuration of the Rankine cycle 2B is the same as that of the Rankine cycle 2A in the first embodiment, the description thereof is omitted.
- the power transmission mechanism 3B includes a crank pulley 33 attached to the crankshaft 10a of the engine 10, an expander clutch 35, and an expander pulley 36 attached to the output shaft 23a of the expander 23 via the expander clutch 35.
- the control unit 4B detects the first pressure sensor 101 that detects the high-pressure side pressure PH of the Rankine cycle 2B, the second pressure sensor 102 that detects the low-pressure side pressure PL of the Rankine cycle 2B, and the rotational speed Nex of the expander 23. Detection signals of various sensors such as the second rotation sensor 105 that detects the rotation speed Np of the first rotation sensor 104 and the pump 25 are input.
- the control unit 4B executes various controls including control (engaged / non-engaged) of the expander clutch 35 and the pump clutch 36 based on the detection signals of the various sensors inputted and information from the engine control device. .
- control unit 4B turns on (engages) the expander clutch 35 and the pump clutch 37 when the start condition of the Rankine cycle 2B is satisfied.
- the pump clutch 37 is first turned on, and then the expander clutch 35 is turned on when the expander 23 is in a state of generating a sufficient torque (for example, a torque greater than the drive torque of the pump 25).
- the activation conditions are the same as those in the first embodiment. Therefore, when Rankine cycle 2B is started, pump 25 is mainly a load of engine 10 in Rankine cycle 2B.
- bypass flow path 28 that bypasses the expander 23 and a bypass valve 29 that opens and closes the bypass flow path 28
- the control unit 4B 29, the expander clutch 35 and the pump clutch 37 are turned on, and then the bypass valve 29 is closed, or the pump clutch 37 is turned on with the bypass valve 29 opened.
- the bypass valve 29, the expander clutch 35, and the pump clutch 37 can be controlled so as to close the bypass valve 29 at substantially the same timing as ON.
- the expansion unit when the control unit 4B determines that the Rankine cycle 2B needs to be stopped during the operation of the Rankine cycle 2B, or receives a stop request for the Rankine cycle 2B from the engine control device, the expansion unit The clutch 35 and the pump clutch 37 are turned off (not engaged) to stop the Rankine cycle 2B.
- the pump clutch 37 is turned off first, and then the expander clutch 35 is turned off.
- the control unit 4B opens the bypass valve 29 after turning off the pump clutch 37 and then turns off the expander clutch 35, for example.
- the bypass valve 29, the expander clutch 36 and the pump clutch 37 can be controlled.
- the pressure difference between the expander 23 and the expander 23 is not sufficient, and the torque Tex of the expander 23 is pumped.
- the driving torque Tp may be 25 or less.
- the torque Tex of the expander 23 may become negative due to overexpansion. In such a case, the output Tr of the Rankine cycle 2B can be zero or negative.
- the control unit 4B determines that the consumed power (or the correlation value) of the Rankine cycle 2A when the output is negative during the operation after the start of the Rankine cycle 2B is the Rankine cycle.
- the Rankine cycle 2B is stopped by turning off the expander clutch 35 and the pump clutch 37 that are turned on.
- the consumed power at the time of starting the Rankine cycle 2B means that the Rankine cycle 2B output is “positive” after starting the Rankine cycle 2B in a stopped state (from the start of driving of the pump 25). It means the power consumed by the Rankine cycle 2B (mainly the pump 25).
- the control unit 4B can turn on the expander clutch 35 and the pump clutch 37 again to start the Rankine cycle 2B when the start condition is satisfied after turning off the expander clutch 35 and the pump clutch 37.
- FIG. 6 is a flowchart showing the contents of clutch control (control of the expander clutch 35 and the pump clutch 37) performed by the control unit 4B. This flowchart is executed every predetermined time (for example, 10 ms) after the start of Rankine cycle 2B is completed.
- step S11 the high pressure side pressure PH and the low pressure side pressure PL of the Rankine cycle 2B are acquired from the first pressure sensor 101 and the second pressure sensor 102.
- step S12 the rotation speed Nex of the expander 23 and the rotation speed Np of the pump 25 are acquired from the first rotation sensor 104 and the second rotation sensor 105.
- the rotational speed Nex of the expander 23 and the rotational speed Np of the pump 25 may be calculated based on the rotational speed Ne of the engine 10 and the pulley ratio, respectively.
- step S13 the torque Tex of the expander 23 is calculated based on the high pressure side pressure PH, the low pressure side pressure PL, and the rotational speed Nex of the expander 23.
- the torque Tex of the expander 23 is calculated based on the following estimation formula.
- Tex M 3 ⁇ (PH-PL) ⁇ M 4 ⁇ Nex-K 2
- M 3 and ( ⁇ M 4 ) are coefficients
- K 2 is a constant.
- step S14 the driving torque (load torque) Tp of the pump 25 is calculated based on the high pressure side pressure PH, the low pressure side pressure PL, and the rotational speed Np of the pump 25.
- the control unit 4B has a pump load map in which the refrigerant pressure difference (PH-PL), the rotational speed Np of the pump 25, and the drive (load) torque Tp of the pump 25 are associated, and the refrigerant pressure difference Based on (PH-PL) and the rotational speed Np of the pump 25, the driving torque Tp of the pump 25 is calculated by referring to the pump load map. More simply, the driving torque Tp of the pump 25 may be calculated based only on the rotational speed Np of the pump 25.
- step S16 it is determined whether or not the output of the Rankine cycle 2B is positive. If the output Tr of the Rankine cycle 2B is positive, the process proceeds to step S21. If the output Tr of the Rankine cycle 2B is zero or negative, the process proceeds to step S17.
- step S17 the output Tr ( ⁇ 0) of Rankine cycle 2B is stored.
- step S18 the absolute value
- of the stored integrated value of the output Tr of Rankine cycle 2B is calculated.
- of the integrated value of the output Tr gradually increases (the integrated value ⁇ (Tr) gradually decreases).
- of the integrated value of the output Tr of the Rankine cycle 2B corresponds to the “second correlation value” of the present invention.
- step S19 it is determined whether or not the absolute value
- the threshold value TH2 is set in advance according to the Rankine cycle 2B, and can be set to a value larger than 0 and a value corresponding to or less than the consumed power at the start of the Rankine cycle 2B.
- K 0.5 to 1.0
- This threshold value TH2 corresponds to the “first correlation value” of the present invention. Similar to the first embodiment, the threshold value TH2 may be a fixed value or may be updated each time the Rankine cycle 2B is activated.
- step S20 a release signal is output to the expander clutch 35 and the pump clutch 37 to turn off both clutches 35, 37 (not engaged).
- the expander clutch 35 and the pump clutch 37 may be disengaged at the same time.
- the pump clutch 37 is turned off first, and then the expansion is performed, similarly to the control for stopping the Rankine cycle 2B described above.
- the machine clutch 35 is turned off.
- step S21 the absolute value
- the value correlated with the power consumed by the Rankine cycle 2B when the output is negative during the operation of the Rankine cycle 2B is the value of the Rankine cycle 2B.
- the expander clutch 35 and the pump clutch 37 are turned off to stop the Rankine cycle 2B.
- turning off the expander clutch 35 and the pump clutch 37 that is, separating the Rankine cycle 2 ⁇ / b> B from the engine 10 is prevented from increasing the load on the engine 10, thereby reducing the fuel consumption of the engine 10.
- it can also suppress that the driving opportunity of Rankine cycle 2B reduces significantly.
- the expander clutch 35 and the pump clutch 37 may be turned off.
- the output Tr of the Rankine cycle 2B is negative and the output Tr is predicted to further decrease (for example, when the rotation speed of the engine 10 increases by a predetermined amount or more), the expander clutch 35 and the pump clutch 37 May be turned off. Furthermore, you may apply combining these suitably.
- the Rankine cycle 2B may be stopped by turning off 35 and the pump clutch 37 (non-engaged).
- FIG. 7 shows a schematic configuration of an exhaust heat recovery apparatus 1C according to the third embodiment of the present invention.
- the pump 25 which is a component of the Rankine cycle, is configured as a mechanical pump driven by the engine 10.
- the pump constituting the Rankine cycle is configured as an electric pump 29 that is driven by electric power from a battery (not shown).
- symbol is attached
- the exhaust heat recovery apparatus 1C includes a Rankine cycle 2C having an electric pump 29 as a pump for circulating the refrigerant, a power transmission mechanism 3C, and a control unit 4C. Since the structure of Rankine cycle 2C is the same as Rankine cycle 2B in 2nd Embodiment except a pump, the description is abbreviate
- the power transmission mechanism 3C includes a crank pulley 33 attached to the crankshaft 10a of the engine 10, an expander clutch 35, and an expander pulley attached to the output shaft 23a of the expander 23 via the expander clutch 35. 36, and a belt 40 wound around the crank pulley 33 and the expander pulley 36.
- the control unit 4C When the start condition of Rankine cycle 2C is established, the control unit 4C first supplies power from the battery to the electric pump 29 to operate the electric pump 29, and then the expander 23 enters a state of generating a predetermined torque.
- the expander clutch 35 is turned on.
- the activation condition is the same as in the first and second embodiments.
- the electric pump 29 is driven by the electric power from the battery, it is necessary to (re) charge the electric power consumed at that time by the engine 10. For this reason, the Rankine cycle 2C (mainly the electric pump 29) eventually becomes a load on the engine 10 when the Rankine cycle 2C is started.
- the “state in which the expander 23 generates sufficient torque” means, for example, torque corresponding to the load of the engine 10 for charging the battery power consumed by the electric pump 29 (hereinafter simply referred to as “load equivalent torque”). ”) Is a state where the expander 23 is generated, and this state is a state where the output of the Rankine cycle 2C is" positive ".
- the Rankine cycle 2C including the electric pump 29 becomes a load. That is, the output of the Rankine cycle 2C becomes “negative”.
- the expander clutch 35 that is ON is turned OFF when the output (torque) of the Rankine cycle 2C continues to be zero or negative, or when the negative state is predicted to continue. .
- the control unit 4C determines that the consumed power (or the correlation value) of the Rankine cycle 2C when the output is negative during the operation of the Rankine cycle 2C is the Rankine cycle.
- the expander clutch 35 that is turned on is turned off to stop the Rankine cycle 2C.
- the power consumption at the time of starting the Rankine cycle 2C is that the Rankine cycle 2C in the stopped state is started (from the start of driving of the electric pump 29), and the output Tr of the Rankine cycle 2C is “normal”.
- the power consumed by the Rankine cycle 2C (mainly the electric pump 29).
- the control unit 4C replaces the rotation speed Np of the pump 25 with the rotation speed of the electric pump 29 in the second embodiment, replaces the driving torque Tp of the pump with the load equivalent torque, and sets the threshold value TH2.
- the clutch control (see FIG. 6) can be performed by replacing the threshold TH3 with “turn off the pump clutch 37” as “stop the electric pump 29”.
- the load equivalent torque can be calculated as follows, for example. That is, a load equivalent torque map in which the rotation speed of the electric pump 29 and the load equivalent torque are associated with each other is set in advance, and the load equivalent torque map is referred to based on the rotation speed of the electric pump 29. Calculate the load equivalent torque.
- Integrated value, 1/2 of the absolute value, or a predetermined value therebetween in other words, a value obtained by multiplying the absolute value of the integrated value of each output Tr by a predetermined coefficient K (0.5 to 1.0).
- K 0.5 to 1.0
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Turbines (AREA)
Abstract
Description
また、ランキンサイクルの運転時においても膨張機のトルクがゼロ又は負となると、ランキンサイクルはエンジンの負荷となり得る。しかし、ランキンサイクルの運転時に膨張機のトルクが負となった場合であってもその後すぐに膨張機のトルクが正に転ずるような場合には、ランキンサイクルによるエンジンへの負荷は比較的小さくて済むと言える。
したがって、特許文献1に記載の車両のように、膨張機のトルクの予測値がゼロ又は負となった時点で直ちにランキンサイクルの運転を停止してしまうと、ランキンサイクルを停止させずにそのまま運転させた場合よりも却ってランキンサイクルによるエンジンへの負荷が増加して、その結果、エンジンの燃費等を悪化させるおそれがある。
〔第1実施形態〕
図1は、本発明の第1実施形態による排熱回収装置1Aの概略構成を示している。この排熱回収装置1は、車両に搭載されてエンジン10の排熱を回収して利用する。図1に示すように、排熱回収装置1Aは、エンジン10の排熱を回収して動力に変換(動力を発生)するランキンサイクル2Aと、ランキンサイクル2Aとエンジン10との間で動力の伝達を行う動力伝達機構3Aと、排熱回収装置1A全体の作動を制御する制御ユニット4Aと、を含む。
加熱器22は、エンジン10から熱を吸収したエンジン冷却水と冷媒との間で熱交換を行わせることによって冷媒を加熱して過熱蒸気とする熱交換器である。なお、エンジン冷却水に代えて、エンジン10の排気と冷媒との間で熱交換を行わせるように加熱器22を構成してもよい。
凝縮器24は、膨張機23を経由した冷媒と外気との間で熱交換を行わせることによって冷媒を冷却して凝縮(液化)させる熱交換器である。
例えば、制御ユニット4Aは、ランキンサイクル2Aの起動条件が成立した場合には、電磁クラッチ31をON(締結)する。これにより、エンジン10によってポンプ25(ポンプ一体型膨張機27のポンプ部分)が駆動されてランキンサイクル2Aが起動する。したがって、ランキンサイクル2Aの起動時においては、ランキンサイクル2Aのポンプ25及びこれと回転軸26を共通とする膨張機23(すなわち、ポンプ一体型膨張機27)がエンジン10の負荷となる。なお、ランキンサイクル2Aの前記起動条件は、適宜設定することができる。例えば、エンジン冷却水の温度Twが所定温度以上であることやランキンサイクル2を停止してから所定時間が経過していることを前記起動条件とすることができる。
なお、本実施形態において、ランキンサイクル2Aの起動時における消費動力とは、停止状態にあるランキンサイクル2Aを起動させてから(ポンプ25の駆動開始から)、ランキンサイクル2Aの出力が「正」となるまでの間にランキンサイクル2A(主にポンプ一体型膨張機27)によって消費される動力のことをいう。
すなわち、本実施形態において、制御ユニット4Aは、本発明の「クラッチ制御部」及び「出力演算部」としての機能を有している。
図2に示すように、ポンプ一体型膨張機27は、膨張機(スクロール型膨張機)23として機能する膨張ユニット50と、ポンプ(機械式ポンプ)25として機能するポンプユニット60と、膨張ユニット50とポンプユニット60との間に配設された従動クランク機構70と、を備えている。
図3は、かかるクラッチ制御の内容を示すフローチャートである。
このフローチャートは、ランキンサイクル2Aの起動完了後、所定時間(例えば、10ms)毎に実行される。
ステップS2では、回転センサ103からポンプ一体型膨張機27の回転数Nexpを取得する。あるいは、エンジン10の回転数Neと、プーリ31とクランクプーリ32のプーリ比とに基づいてポンプ一体型膨張機27の回転数Nexpを算出する。
Texp=M1・(PH-PL)-M2・Nexp-K1
ここで、M1、(-M2)は係数、K1は定数である。
ステップS6では、記憶されたトルクTexpの積算値の絶対値│Σ(Texp)│を算出する。これにより、ステップS4においてポンプ一体型膨張機27のトルクTexpがゼロ又は負と判定されるたびに当該ゼロ又は負のトルクTexpが加算される。すなわち、ポンプ一体型膨張機27のトルクTexpがゼロ又は負である状態が継続するほど、トルクTexpの積算値の絶対値│Σ(Texp)│が大きくなる(積算値Σ(Texp)は小さくなる)。この「トルクTexpの積算値の絶対値│Σ(Texp)│」が、本発明の「第2相関値」に相当する。
ステップS9では、記憶された前記トルクTexp及び算出された前記トルクTexpの積算値の絶対値│Σ(Texp)│をクリアする。
時刻t1において、ポンプ一体型膨張機27は正のトルクを発生しており(すなわち、ランキンサイクル2Aの出力は正であり)、排熱回収装置1Aによるエンジン10のアシストが行われている。その後、エンジン10の回転数Neが上昇すると、これに伴ってポンプ一体型膨張機27の回転数Nexpも上昇する。すると、ポンプ一体型膨張機27のトルクTexpが低下し、場合によっては、時刻t2においてポンプ一体型膨張機27のトルクTexpがゼロ以下となる。この時刻t2の時点でランキンサイクル2Aはエンジン10の負荷になり始めるが、本実施形態では、電磁クラッチ31はONのままである。
例えば、ポンプ一体型膨張機27のトルクTexpの積算値の絶対値│Σ(Texp)│が閾値TH1(係数K<1.0)以上であり、かつ、前記トルクTexpが減少傾向にある場合(例えば、前記トルクTexpの今回算出値が前回算出値よりも小さい場合)に、電磁クラッチ31をOFFするようにしてもよい。この場合には、前記トルクTexpが負である状態が継続する可能性が高く、ランキンサイクル2Aの運転時における消費動力が、ランキンサイクル2Aの起動時における消費動力以上となることが予測されるからである。好ましくは、この場合の閾値TH1は、ランキンサイクル2Aが起動してから前記トルクTexpが正となるまでの間に演算された各トルクTexpの積算値の絶対値の1/2とする(すなわち、係数K=0.5とする)。このようにしても上記実施形態と同様に、電磁クラッチ31をOFFすることによって却ってエンジン10の負荷が増加してしまうことやランキンサイクル2Aの運転機会が減少してしまうことが抑制される。
次に、本発明の第2実施形態について説明する。
図5は、本発明の第2実施形態による排熱回収装置1Bの概略構成を示している。
第1実施形態による排熱回収装置1Aでは、ランキンサイクルの構成要素である膨張機23とポンプ25とが共通の回転軸26によって一体に連結された「ポンプ一体型膨張機27」として構成されている。これに対し、第2実施形態による排熱回収装置1Bでは、膨張機(スクロール型膨張機)23とポンプ(機械式ポンプ)25とが別々に設けられている。なお、第1実施形態(図1)と同一の要素については同一の符号を付しており、その機能も同様であるものとする。
なお、本実施形態において、ランキンサイクル2Bの起動時における消費動力とは、停止状態にあるランキンサイクル2Bを起動させてから(ポンプ25の駆動開始から)、ランキンサイクル2Bの出力が「正」となるまでの間にランキサイクル2B(主にポンプ25)によって消費される動力のことをいう。
ステップS12では、第1回転センサ104及び第2回転センサ105から膨張機23の回転数Nex及びポンプ25の回転数Npを取得する。もちろん、エンジン10の回転数Ne及びプーリ比に基づいて、膨張機23の回転数Nex及びポンプ25の回転数Npをそれぞれ算出してもよい。
Tex=M3・(PH-PL)-M4・Nex-K2
ここで、M3、(-M4)は係数、K2は定数である。
ステップS16では、ランキンサイクル2Bの出力が正であるか否かを判定する。そして、ランキンサイクル2Bの出力Trが正であればステップS21に進み、ランキンサイクル2Bの出力Trがゼロ又は負であればステップS17に進む。
ステップS18では、記憶されたランキンサイクル2Bの出力Trの積算値の絶対値│Σ(Tr)│を算出する。これにより、ステップS16においてランキンサイクル2Bの出力Trがゼロ又は負と判定されるたびに当該ゼロ又は負の出力Trが加算され、この結果、ランキンサイクル2Bの出力Trがゼロ又は負である状態が継続するほど、出力Trの積算値の絶対値│Σ(Tr)│は徐々に大きくなる(積算値Σ(Tr)は徐々に小さくなる)。このランキンサイクル2Bの出力Trの積算値の絶対値│Σ(Tr)│が、本発明の「第2相関値」に相当する。
次に、本発明の第3実施形態について説明する。
図7は、本発明の第3実施形態による排熱回収装置1Cの概略構成を示している。
前記第2実施形態による排熱回収装置1Bでは、ランキンサイクルの構成要素であるポンプ25がエンジン10によって駆動される機械式ポンプとして構成されている。これに対し、第3実施形態による排熱利用装置1Cでは、ランキンサイクルを構成するポンプが図示省略したバッテリからの電力によって駆動される電動ポンプ29として構成されている。なお、第1実施形態(図1)及び/又は第2実施形態(図5)と同一の要素については同一の符号を付しており、その機能も同様であるものとする。
電動ポンプ29は、前記バッテリからの電力によって駆動されるものの、その際に消費した電力分をエンジン10によって(再)充電する必要がある。このため、ランキンサイクル2Cの起動時において、ランキンサイクル2C(主に電動ポンプ29)は結果的にエンジン10の負荷となる。なお、「膨張機23が十分なトルクを発生する状態」とは、例えば、電動ポンプ29によって消費されるバッテリ電力分を充電するためのエンジン10の負荷に相当するトルク(以下単に「負荷相当トルク」という)を膨張機23が発生する状態であり、この状態が、ランキンサイクル2Cの出力が「正」となる状態である。
なお、本実施形態において、ランキンサイクル2Cの起動時における消費動力とは、停止状態にあるランキンサイクル2Cを起動させてから(電動ポンプ29の駆動開始から)、ランキンサイクル2Cの出力Trが「正」となるまでの間にランキンサイクル2C(主に電動ポンプ29)によって消費される動力のことをいう。
この場合において、前記負荷相当トルクは、例えば次のようにして算出することができる。すなわち、電動ポンプ29の回転数と前記負荷相当トルクとが対応付けられた負荷相当トルクマップを予め設定しておき、電動ポンプ29の回転数に基づいて前記負荷相当トルクマップを参照することよって前記負荷相当トルクを算出する。また、閾値TH3については、ランキンサイクル2Cが起動してから(電動ポンプ29の駆動開始から)、ランキンサイクル2Cの出力Trが正となるまでの間における各出力Tr(=0-負荷相当トルク)の積算値、当該絶対値の1/2、又はこれらの間の所定値、換言すれば、各出力Trの積算値の絶対値に所定の係数K(0.5~1.0)乗算した値を閾値TH3とすることができる。その他については、基本的に第2実施形態と同様である。
Claims (13)
- 冷媒の循環路に、エンジンの排熱によって冷媒を加熱して気化させる加熱器、この加熱器を経由した冷媒を膨張させて動力を発生する膨張機、この膨張機を経由した冷媒を凝縮させる凝縮器、及び、この凝縮器を経由した冷媒を前記加熱器へと送出するポンプが配設されたランキンサイクルと、
クラッチを有し、当該クラッチの締結時に前記エンジンと前記ランキンサイクルとの間で動力の伝達が可能な動力伝達機構と、
前記ランキンサイクルの起動時における消費動力に相関する第1相関値と、前記ランキンサイクルの起動後の運転時にその出力が負である場合における前記ランキンサイクルの消費動力に相関する第2相関値とに基づいて、前記クラッチの締結/非締結を制御するクラッチ制御部と、
を有する、排熱回収装置。 - 前記クラッチ制御部は、前記クラッチの締結時に、前記第2相関値の絶対値が前記第1相関値の絶対値以上である場合に前記クラッチを非締結とする、請求項1に記載の排熱回収装置。
- 前記クラッチ制御部は、前記クラッチの締結時に、前記第2相関値の絶対値が前記第1相関値の絶対値以上であり、かつ、前記ランキンサイクルの出力が減少傾向にある場合に、前記クラッチを非締結とする、請求項1又は2に記載の排熱回収装置。
- 前記ランキンサイクルの出力を演算する出力演算部を有し、
前記第1相関値及び前記第2相関値は、前記出力演算部からの出力に基づいて算出される、請求項1~3のいずれか一つに記載の排熱回収装置。 - 前記ランキンサイクルの起動時における消費動力は、前記ランキンサイクルが起動してから前記ランキンサイクルの出力が正となるまでの間の前記ランキンサイクルの出力の積算値であり、
前記ランキンサイクルの起動後の運転時にその出力が負である場合における前記ランキンサイクルの消費動力は、前記ランキンサイクルの運転時における当該ランキンサイクルの負の出力の積算値である、
請求項4に記載の排熱回収装置。 - 冷媒の循環路に、エンジンの排熱によって冷媒を加熱して気化させる加熱器、この加熱器を経由した冷媒を膨張させて動力を発生する膨張機、この膨張機を経由した冷媒を凝縮させる凝縮器、及び、この凝縮器を経由した冷媒を前記加熱器へと送出するポンプが配設されたランキンサイクルと、
クラッチを有し、当該クラッチの締結時に前記エンジンと前記ランキンサイクルとの間で動力の伝達が可能な動力伝達機構と、
前記ランキンサイクルの出力を演算する出力演算部と、
前記クラッチの締結時に、前記ランキンサイクルの出力がゼロ又は負である状態が継続した場合に前記クラッチを非締結とするクラッチ制御部と、
を有する、排熱回収装置。 - 前記クラッチ制御部は、前記クラッチの締結時に、前記ランキンサイクルの負の出力の積算値の絶対値が所定の閾値以上となった場合に前記クラッチを非締結とする、請求項6に記載の排熱回収装置。
- 前記クラッチ制御部は、前記クラッチの締結時に、前記ランキンサイクルの負の出力の積算値の絶対値が所定の閾値以上であり、かつ、前記ランキンサイクルの出力が減少傾向にある場合に前記クラッチを非締結とする、請求項6又は7に記載の排熱回収装置。
- 前記出力演算部は、前記ランキンサイクルの高圧側と低圧側の圧力差、前記膨張機の回転数、及び前記機械式ポンプの回転数に基づいて、前記ランキンサイクルの出力を演算する、請求項4~8のいずれか一つに記載の排熱回収装置。
- 前記ポンプは、前記エンジンによって駆動される機械式ポンプである、請求項1~9のいずれか一つに記載の排熱回収装置。
- 前記膨張機と前記機械式ポンプとが一体に連結されている、請求項10に記載の排熱回収装置。
- 前記膨張機は、固定スクロールと可動スクロールを有し、前記固定スクロールと前記可動スクロールとの間に形成される膨張室で前記冷媒が膨張することによって動力を発生するスクロール型膨張機であり、前記可動スクロールの自転を阻止するために、ボールを転動部材として用いたボールカップリング式の自転阻止機構が設けられている、請求項1~11のいずれか一つに記載の排熱回収装置。
- 前記クラッチ制御部は、前記クラッチの締結時において、前記膨張機に液冷媒が混入するおそれがある場合であっても、前記第2相関値の絶対値が前記第1相関値の絶対値以上となるまで又は前記ランキンサイクルの負の出力の積算値の絶対値が所定の閾値以上となるまでは前記クラッチの締結状態を維持する、請求項12に記載の排熱回収装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/021,666 US9970329B2 (en) | 2013-09-12 | 2014-09-11 | Exhaust heat recovery device |
CN201480050191.0A CN105531448A (zh) | 2013-09-12 | 2014-09-11 | 排热回收装置 |
DE112014004215.3T DE112014004215B4 (de) | 2013-09-12 | 2014-09-11 | Abwärme-Rückgewinnungseinrichtung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-189101 | 2013-09-12 | ||
JP2013189101A JP6207941B2 (ja) | 2013-09-12 | 2013-09-12 | 排熱回収装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015037653A1 true WO2015037653A1 (ja) | 2015-03-19 |
Family
ID=52665753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/074044 WO2015037653A1 (ja) | 2013-09-12 | 2014-09-11 | 排熱回収装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9970329B2 (ja) |
JP (1) | JP6207941B2 (ja) |
CN (1) | CN105531448A (ja) |
DE (1) | DE112014004215B4 (ja) |
WO (1) | WO2015037653A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6495608B2 (ja) * | 2014-10-09 | 2019-04-03 | サンデンホールディングス株式会社 | 廃熱回収装置 |
DE112016005346T5 (de) * | 2015-12-21 | 2018-08-02 | Cummins Inc. | Abwärmerückgewinnungsantrieb |
DE102017101288A1 (de) | 2017-01-24 | 2018-07-26 | Karlsruher Institut für Technologie | Verbrennungskraftmaschine mit fluidisch gekühltem Abgasturbolader und Abgaswärmetauscher |
DE102018201110A1 (de) | 2017-04-06 | 2018-10-11 | Mahle International Gmbh | Kraftmaschinenanordnung |
JP6604355B2 (ja) * | 2017-04-28 | 2019-11-13 | トヨタ自動車株式会社 | 廃熱回収装置 |
DE102017209567A1 (de) * | 2017-06-07 | 2018-12-13 | Mahle International Gmbh | Kraftmaschinenanordnung |
CN108457729A (zh) * | 2018-01-31 | 2018-08-28 | 中国第汽车股份有限公司 | 一种发动机废气能量回收利用装置及废气能量回收方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008274834A (ja) * | 2007-04-27 | 2008-11-13 | Sanden Corp | 流体機械、該流体機械を用いたランキン回路及び車両の廃熱利用システム |
JP2010190185A (ja) * | 2009-02-20 | 2010-09-02 | Nissan Motor Co Ltd | ランキンサイクルシステム搭載車両 |
JP2012026452A (ja) * | 2011-09-26 | 2012-02-09 | Sanden Corp | 流体機械、該流体機械を用いたランキン回路及び車両の廃熱利用システム |
JP2012041933A (ja) * | 2011-10-25 | 2012-03-01 | Sanden Corp | ランキン回路及び車両の廃熱利用システム |
JP2012193690A (ja) * | 2011-03-17 | 2012-10-11 | Sanden Corp | 自動車用廃熱利用システム |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6962056B2 (en) * | 2002-11-13 | 2005-11-08 | Carrier Corporation | Combined rankine and vapor compression cycles |
US20080087017A1 (en) * | 2006-10-16 | 2008-04-17 | Van Nimwegen Robert R | Van Nimwegen efficient pollution free internal combustion engine |
JP2010101283A (ja) * | 2008-10-27 | 2010-05-06 | Toyota Motor Corp | 廃熱回収装置 |
JP2011214480A (ja) * | 2010-03-31 | 2011-10-27 | Sanden Corp | 内燃機関の廃熱利用装置 |
KR101325429B1 (ko) * | 2011-03-24 | 2013-11-04 | 가부시키가이샤 고베 세이코쇼 | 동력 발생 장치 및 그 제어 방법 |
US9316141B2 (en) * | 2013-02-15 | 2016-04-19 | Enis Pilavdzic | Engine energy management system |
US9657603B2 (en) * | 2013-07-15 | 2017-05-23 | Volvo Truck Corporation | Internal combustion engine arrangement comprising a waste heat recovery system and process for controlling said system |
JP2015086778A (ja) * | 2013-10-30 | 2015-05-07 | いすゞ自動車株式会社 | エンジン冷却システム |
-
2013
- 2013-09-12 JP JP2013189101A patent/JP6207941B2/ja active Active
-
2014
- 2014-09-11 US US15/021,666 patent/US9970329B2/en active Active
- 2014-09-11 DE DE112014004215.3T patent/DE112014004215B4/de active Active
- 2014-09-11 WO PCT/JP2014/074044 patent/WO2015037653A1/ja active Application Filing
- 2014-09-11 CN CN201480050191.0A patent/CN105531448A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008274834A (ja) * | 2007-04-27 | 2008-11-13 | Sanden Corp | 流体機械、該流体機械を用いたランキン回路及び車両の廃熱利用システム |
JP2010190185A (ja) * | 2009-02-20 | 2010-09-02 | Nissan Motor Co Ltd | ランキンサイクルシステム搭載車両 |
JP2012193690A (ja) * | 2011-03-17 | 2012-10-11 | Sanden Corp | 自動車用廃熱利用システム |
JP2012026452A (ja) * | 2011-09-26 | 2012-02-09 | Sanden Corp | 流体機械、該流体機械を用いたランキン回路及び車両の廃熱利用システム |
JP2012041933A (ja) * | 2011-10-25 | 2012-03-01 | Sanden Corp | ランキン回路及び車両の廃熱利用システム |
Also Published As
Publication number | Publication date |
---|---|
JP2015055195A (ja) | 2015-03-23 |
JP6207941B2 (ja) | 2017-10-04 |
DE112014004215B4 (de) | 2022-05-25 |
DE112014004215T5 (de) | 2016-05-25 |
US9970329B2 (en) | 2018-05-15 |
CN105531448A (zh) | 2016-04-27 |
US20160230607A1 (en) | 2016-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6207941B2 (ja) | 排熱回収装置 | |
JP5804879B2 (ja) | 廃熱利用装置 | |
JP5999652B2 (ja) | 排熱回収装置 | |
EP2762690B1 (en) | Engine-waste-heat utilization device | |
WO2010029905A1 (ja) | 排熱利用装置 | |
US9599015B2 (en) | Device for utilizing waste heat from engine | |
JP5333659B2 (ja) | 廃熱回生システム | |
JP6097115B2 (ja) | 排熱回収装置 | |
US9518480B2 (en) | Exhaust heat recovery device | |
JPWO2013046885A1 (ja) | ランキンサイクル | |
US20140174087A1 (en) | Rankine cycle system | |
WO2013046888A1 (ja) | ランキンサイクル | |
JP2010190185A (ja) | ランキンサイクルシステム搭載車両 | |
JP2011214480A (ja) | 内燃機関の廃熱利用装置 | |
WO2015174497A1 (ja) | エンジンの廃熱利用装置 | |
US20170107861A1 (en) | Apparatus for Utilizing Heat Wasted from Engine | |
CN107896502B (zh) | 用于控制内燃机的废热利用系统的方法 | |
KR101766028B1 (ko) | 폐열회수시스템의 회수에너지 전달장치 | |
JP2013119831A (ja) | 動力回収装置 | |
WO2014157298A1 (ja) | 排熱回収装置 | |
JP6408249B2 (ja) | エンジンの廃熱利用装置 | |
WO2014103825A1 (ja) | ランキンサイクルシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480050191.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14843808 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15021666 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120140042153 Country of ref document: DE Ref document number: 112014004215 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14843808 Country of ref document: EP Kind code of ref document: A1 |