WO2015037653A1 - 排熱回収装置 - Google Patents

排熱回収装置 Download PDF

Info

Publication number
WO2015037653A1
WO2015037653A1 PCT/JP2014/074044 JP2014074044W WO2015037653A1 WO 2015037653 A1 WO2015037653 A1 WO 2015037653A1 JP 2014074044 W JP2014074044 W JP 2014074044W WO 2015037653 A1 WO2015037653 A1 WO 2015037653A1
Authority
WO
WIPO (PCT)
Prior art keywords
rankine cycle
clutch
expander
pump
output
Prior art date
Application number
PCT/JP2014/074044
Other languages
English (en)
French (fr)
Inventor
雄太 田中
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to US15/021,666 priority Critical patent/US9970329B2/en
Priority to CN201480050191.0A priority patent/CN105531448A/zh
Priority to DE112014004215.3T priority patent/DE112014004215B4/de
Publication of WO2015037653A1 publication Critical patent/WO2015037653A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • F01K15/02Adaptations of plants for special use for driving vehicles, e.g. locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust heat recovery apparatus equipped with a Rankine cycle that is mounted on a vehicle and recovers exhaust heat (including waste heat) of an engine to generate power.
  • Patent Document 1 describes a vehicle including an engine and a Rankine cycle in which waste heat of the engine is recovered as a refrigerant and regenerated as power by an expander.
  • a clutch is provided on a power transmission path between the engine and the expander, and when the predicted value of the regenerative power (torque) of the expander is positive When the clutch is engaged and the predicted value of regenerative power (torque) of the expander is zero or negative, the clutch is not engaged. That is, in the vehicle described in Patent Document 1, when the predicted value of the torque of the expander becomes zero or negative, the clutch is disengaged and the Rankine cycle operation is stopped.
  • the Rankine cycle has to be an engine load for a certain period of time when it is started.
  • the electric pump is driven by electric power from a battery.
  • the Rankine cycle becomes a load on the engine.
  • a mechanical pump is used for the circulation of the refrigerant, the mechanical pump is driven by the engine, so that the Rankine cycle becomes a load on the engine.
  • the Rankine cycle can be an engine load.
  • the engine load caused by the Rankine cycle is relatively small. It can be said that it is over. Therefore, as in the vehicle described in Patent Document 1, if the Rankine cycle operation is stopped immediately when the predicted value of the expander torque becomes zero or negative, the operation is continued without stopping the Rankine cycle. On the contrary, the load on the engine due to the Rankine cycle increases, and as a result, the fuel consumption of the engine may be deteriorated.
  • the present invention provides an exhaust heat recovery apparatus having a Rankine cycle that recovers exhaust heat of an engine and converts it into power by an expander, and includes a clutch provided on a power transmission path between the engine and the Rankine cycle.
  • An object of the present invention is to effectively suppress the Rankine cycle from becoming an engine load by appropriately performing fastening / non-fastening.
  • An exhaust heat recovery apparatus includes a heater that heats and vaporizes a refrigerant by exhaust heat of an engine in a refrigerant circulation path, and an expander that expands the refrigerant via the heater to generate power.
  • a Rankine cycle in which a condenser that condenses the refrigerant that has passed through the expander and a pump that delivers the refrigerant that has passed through the condenser to the heater are disposed;
  • a power transmission mechanism capable of transmitting power between the engine and the Rankine cycle at times; a first correlation value correlating with power consumption at the start of the Rankine cycle;
  • a clutch control unit that controls engagement / non-engagement of the clutch based on a second correlation value that correlates with power consumed by the Rankine cycle when the output is negative ; Including.
  • a first correlation value that correlates with power consumption at the start of the Rankine cycle and a second correlation value that correlates with power consumption of the Rankine cycle when the output is negative during the operation of the Rankine cycle is controlled based on the correlation value.
  • FIG. 1 shows a schematic configuration of an exhaust heat recovery apparatus 1A according to the first embodiment of the present invention.
  • the exhaust heat recovery apparatus 1 is mounted on a vehicle and recovers and uses the exhaust heat of the engine 10.
  • the exhaust heat recovery apparatus 1 ⁇ / b> A recovers exhaust heat of the engine 10 and converts it into power (generates power), and transmits power between the Rankine cycle 2 ⁇ / b> A and the engine 10.
  • a control unit 4A for controlling the operation of the exhaust heat recovery apparatus 1A as a whole.
  • the engine 10 is a water-cooled internal combustion engine, and is cooled by engine cooling water that circulates in the cooling water passage 11.
  • a heater 22 of a Rankine cycle 2A which will be described later, is disposed in the cooling water flow path 11, and engine cooling water that has absorbed heat from the engine 10 flows through the heater 22.
  • a heater 22, an expander 23, a condenser 24, and a pump 25 are arranged in this order in the refrigerant circuit 21 of the Rankine cycle 2A.
  • the heater 22 is a heat exchanger that heats the refrigerant into superheated steam by causing heat exchange between the engine coolant that has absorbed heat from the engine 10 and the refrigerant.
  • the heater 22 may be configured to exchange heat between the exhaust of the engine 10 and the refrigerant.
  • the expander 23 is a scroll type expander, and generates power (here, torque) by expanding the refrigerant heated by the heater 22 into superheated steam and converting it into rotational energy.
  • the condenser 24 is a heat exchanger that cools and condenses (liquefies) the refrigerant by causing heat exchange between the refrigerant that passes through the expander 23 and the outside air.
  • the pump 25 is a mechanical pump that sends out the refrigerant (liquid refrigerant) liquefied by the condenser 24 to the heater 22. Then, the refrigerant liquefied by the condenser 24 is sent to the heater 22 by the pump 25, whereby the refrigerant circulates through each element of the Rankine cycle 2.
  • an expander (scroll type expander) 23 and a pump (mechanical pump) 25 are configured as a “pump-integrated expander 27” in which a common rotating shaft 26 is integrally connected. ing. That is, the rotary shaft 26 of the pump-integrated expander 27 has a function as an output shaft of the expander 23 and a drive shaft of the pump 25.
  • the power transmission mechanism 3A includes an electromagnetic clutch 31, a pulley 32 attached to the rotating shaft 26 of the pump-integrated expander 27 via the electromagnetic clutch 31, and a crank pulley 33 attached to the crankshaft 10a of the engine 10. And a belt 34 wound around the pulley 32 and the crank pulley 33.
  • the power transmission mechanism 3A is configured so that the power is transmitted between the engine 10 and the Rankine cycle 2 (specifically, the pump-integrated expander 27) by turning the electromagnetic clutch 31 ON (engaged) / OFF (non-engaged). Can be transmitted / blocked.
  • the electromagnetic clutch 31 only needs to be able to transmit / cut power between the engine 10 and the Rankine cycle 2, and the installation position thereof does not matter.
  • the control unit 4A is configured to be able to transmit and receive information to and from an engine control device (not shown) that controls the engine 10.
  • the control unit 4 can obtain various information such as the rotational speed Ne of the engine 10 and the engine cooling water temperature Tw from the engine control device.
  • the high-pressure side pressure PH of the Rankine cycle 2A refers to the pressure in the refrigerant circuit 21 in the section from the pump 25 (exit) through the heater 22 to the expander 23 (inlet).
  • the low pressure PL in the cycle 2A refers to the pressure in the refrigerant circuit 21 in the section from the expander 23 (exit) to the pump 25 (inlet) via the condenser 24.
  • the first pressure sensor 101 detects the pressure on the inlet side of the expander 23 (the outlet side of the heater 22) as the high pressure side pressure PH of the Rankine cycle 2A
  • the second pressure sensor 102 detects the pressure on the inlet side of the pump 25 ( The pressure on the outlet side of the condenser 23) is detected as the low pressure side pressure PL of the Rankine cycle 2A.
  • the rotation sensor 103 can be omitted.
  • the control unit 4A can calculate the rotational speed Neexp of the pump-integrated expander 27 based on the rotational speed Ne of the engine 10 (and the pulley ratio of the pulley 31 and the crank pulley 32).
  • the control unit 4A executes various controls including control (engagement / non-engagement) of the electromagnetic clutch 31 based on detection signals from various sensors input and information from the engine control device. For example, the control unit 4A turns on (engages) the electromagnetic clutch 31 when the start condition of the Rankine cycle 2A is satisfied. Thereby, the pump 25 (the pump part of the pump-integrated expander 27) is driven by the engine 10, and the Rankine cycle 2A is started. Therefore, at the time of starting the Rankine cycle 2A, the pump 25 of the Rankine cycle 2A and the expander 23 (that is, the pump-integrated expander 27) having the rotation shaft 26 in common with the Rankine cycle 2A serve as a load on the engine 10.
  • the said starting conditions of Rankine cycle 2A can be set suitably.
  • the start condition may be that the engine cooling water temperature Tw is equal to or higher than a predetermined temperature or that a predetermined time has elapsed since the Rankine cycle 2 was stopped.
  • Rankine cycle 2A When Rankine cycle 2A is activated, the refrigerant circulates through refrigerant circulation path 21 by pump 25 (pump portion of pump-integrated expander 27), and expander 23 (expander portion of pump-integrated expander 27) generates power. Begin to. Thereafter, when the expander 23 generates sufficient power (torque) (that is, when the start-up of the Rankine cycle 2 is completed), a part of the power generated by the expander 23 drives the pump 25, and the remainder Is transmitted to the engine 10 via the power transmission mechanism 3 ⁇ / b> A to assist the output of the engine 10. Thereby, the fuel consumption of the engine 10 can be improved.
  • the electromagnetic clutch 31 is turned off (not fastened) to stop the Rankine cycle 2A.
  • the Rankine cycle 2A becomes a load of the engine 10. End up.
  • the degree of refrigerant superheating on the upstream side of the expander 23 is not sufficient or when the heat load of the condenser 24 is large, the pressure difference between the front and rear of the expander 23 is not sufficient, and the power generated by the expander 23 (torque) ) ⁇ Drive torque of the pump 25 may be satisfied.
  • the exhaust heat recovery apparatus 1 ⁇ / b> A for improving the fuel consumption of the engine 10 becomes a load on the engine 10 (cause of worsening the fuel consumption of the engine 10), which is not preferable.
  • the control unit 4A calculates the torque Texp (output of the Rankine cycle 2A) of the pump-integrated expander 27 at predetermined intervals, and the torque of the pump-integrated expander 27 is calculated during normal operation after the Rankine cycle 2A is started.
  • the electromagnetic clutch 31 that is turned on (engaged) is turned off (non-engaged) to cut off the transmission of power between the engine 10 and the Rankine cycle 2A, and the Rankine cycle 2A is stopped. .
  • the Rankine cycle 2 ⁇ / b> A is prevented from becoming a load on the engine 10.
  • control unit 4A does not immediately turn off the electromagnetic clutch 31 when the output of the Rankine cycle 2A (torque Texp of the pump-integrated expander 27) becomes zero or negative, but outputs the output (torque of the Rankine cycle 2A).
  • the electromagnetic clutch 31 is turned OFF.
  • Rankine cycle 2A since Rankine cycle 2A becomes a load on engine 10 at the time of starting, Rankine cycle 2A stops operation when the output (torque Texp) of Rankine cycle 2A becomes zero or negative. This is because the load on the engine 10 may increase as compared with the case where the Rankine cycle 2A is operated without being stopped.
  • the control unit 4A determines that the consumed power (or the correlation value) of the Rankine cycle 2A when the output is negative during operation after the start of the Rankine cycle 2A is When the power consumption at the time of activation (or its correlation value) is exceeded or predicted to be such, the electromagnetic clutch 31 that is turned on is turned off to stop the Rankine cycle 2A.
  • the consumed power at the start of the Rankine cycle 2A is that the Rankine cycle 2A is “positive” after the Rankine cycle 2A in the stopped state is started (from the start of driving of the pump 25). It means the power consumed by the Rankine cycle 2A (mainly the pump-integrated expander 27) until it becomes.
  • control unit 4A can turn on the electromagnetic clutch 31 again to start (restart) the Rankine cycle 2A, for example, when the start condition is satisfied. That is, in the present embodiment, the control unit 4A functions as a “clutch control unit” and an “output calculation unit” of the present invention.
  • a bypass flow path 28 that bypasses the expander 23 and a bypass valve 29 that opens and closes the bypass flow path 28 are provided, and the control unit 4A sets the bypass valve 29 as needed. You may comprise so that it may open and close.
  • the control unit 4A turns on the electromagnetic clutch 31 with the bypass valve 29 opened, bypasses the expander 23, and after circulating the refrigerant, closes the bypass valve 29.
  • the bypass valve 29 and the electromagnetic clutch 31 can be controlled.
  • the control unit 4A first opens the bypass valve 29, bypasses the expander 23, distributes the refrigerant, and then turns off the electromagnetic clutch 31.
  • the clutch 31 can be controlled.
  • the pump-integrated expander 27 includes an expansion unit 50 that functions as an expander (scroll expander) 23, a pump unit 60 that functions as a pump (mechanical pump) 25, and an expansion unit 50. And a driven crank mechanism 70 disposed between the pump unit 60 and the pump unit 60.
  • the expansion unit 50 includes a fixed scroll 51 and a movable scroll 52.
  • the fixed scroll 51 and the movable scroll 52 are arranged so that the scroll portions 51 a and 52 a mesh with each other, and an expansion chamber 53 is formed between the scroll portion 51 a of the fixed scroll 51 and the scroll portion 52 a of the movable scroll 52.
  • the refrigerant that has passed through the heater 22 is introduced into the expansion chamber 53 via a refrigerant passage 51 c formed in the base 51 b of the fixed scroll 51. Then, when the refrigerant introduced into the expansion chamber 53 expands, the movable scroll 52 performs a turning motion with respect to the fixed scroll 51.
  • a ball on the back side (the side opposite to the scroll portion 52a) of the base portion 52b of the movable scroll 52 is provided.
  • a ball coupling type rotation prevention mechanism 54 that uses as a rolling member.
  • the Rankine cycle 2 is stopped when there is a possibility that liquid refrigerant is mixed in the expansion unit 50, the Rankine cycle 2A is frequently stopped particularly when the temperature Tw of the engine coolant is low, such as in winter. Therefore, there is a possibility that the driving opportunity of Rankine cycle 2A is greatly reduced. In addition, as a result, the opportunity to start Rankine cycle 2A increases, so that the load on engine 10 may also increase.
  • the ball coupling type rotation prevention mechanism 54 using a ball as a rolling member does not cause defects such as seizure even in a state of insufficient lubrication and has high durability. Therefore, in the present embodiment, even when the liquid refrigerant may be mixed into the expansion unit 50 during the operation of the Rankine cycle 2A, the consumed power of the Rankine cycle 2A is negative when the output is negative.
  • the electromagnetic clutch 31 is maintained in the ON state and the expansion unit 50 is operated (the Rankine cycle 2 is operated) until the consumption power at the time of startup of the Rankine cycle 2A is exceeded or predicted to be so. To. Thereby, it is preventing that the driving opportunity of Rankine cycle 2 reduces, suppressing the load to the engine 10 increasing.
  • sensors for detecting the degree of superheat SH of the refrigerant on the inlet side of the expansion unit 50 need not be required.
  • the pump unit 60 is configured as a gear pump, and includes a drive gear 61 fixed to the rotating shaft 26, a driven shaft 62 disposed in parallel to the rotating shaft 26, and fixed to the driven shaft 62. And a driven gear 63 that meshes with the drive gear 61.
  • the rotating shaft 26 and the driven shaft 62 are rotatably supported by bearings.
  • the pulley 32 is attached to one end side (left side in the figure) of the rotating shaft 26 via the electromagnetic clutch 31, and the other end side (right side in the figure) of the rotating shaft 26 is a driven crank mechanism. It is connected to the movable scroll 52 via 70.
  • the driven crank mechanism 70 is, for example, a known swing link type driven crank mechanism, which can convert the turning motion of the movable scroll 52 into the rotational motion of the rotary shaft 26, and the rotary motion of the rotary shaft 26 is movable scroll. It can be converted into 52 swivel motions.
  • FIG. 3 is a flowchart showing the contents of such clutch control. This flowchart is executed every predetermined time (for example, 10 ms) after the start of Rankine cycle 2A is completed.
  • step S1 the high pressure side pressure PH and the low pressure side pressure PL of the Rankine cycle 2A are acquired from the first pressure sensor 101 and the second pressure sensor 102.
  • step S ⁇ b> 2 the rotation speed Nexp of the pump-integrated expander 27 is acquired from the rotation sensor 103.
  • the rotational speed Neexp of the pump-integrated expander 27 is calculated based on the rotational speed Ne of the engine 10 and the pulley ratio of the pulley 31 and the crank pulley 32.
  • step S3 the torque Texp of the pump-integrated expander 27 (that is, the output of the Rankine cycle 2A) is calculated based on the high-pressure side pressure PH, the low-pressure side pressure PL, and the rotation speed Nexp of the pump-integrated expander 27.
  • the control unit 4A calculates the torque Texp of the pump-integrated expander 27 based on the following estimation formula.
  • Texp M 1 ⁇ (PH-PL) ⁇ M 2 ⁇ Nexp-K 1
  • M 1 and ( ⁇ M 2 ) are coefficients
  • K 1 is a constant.
  • step S4 it is determined whether or not the torque Texp of the pump-integrated expander 27 is positive (Texp> 0). If the torque Texp of the pump-integrated expander 27 is zero or negative, the process proceeds to step S5. On the other hand, if the torque Texp of the pump-integrated expander 27 is positive, the process proceeds to step S9.
  • step S5 the torque Texp ( ⁇ 0) of the pump-integrated expander 27 is stored.
  • step S6 the absolute value
  • the zero or negative torque Texp is added. That is, as the torque Texp of the pump-integrated expander 27 continues to be zero or negative, the absolute value
  • of the integrated value of torque Texp” corresponds to the “second correlation value” of the present invention.
  • step S7 it is determined whether or not the absolute value
  • the threshold value TH1 is set according to the Rankine cycle 2A, and can be set to a value greater than 0 and a value corresponding to or less than the power consumed when the Rankine cycle 2A is activated.
  • This threshold value TH1 corresponds to the “first correlation value” of the present invention.
  • the threshold value TH1 may be set in advance as a fixed value, but every time the Rankine cycle 2A is activated, the integrated value (absolute value) of each torque Texp until the torque Texp becomes positive is obtained. It may be calculated and updated.
  • step S8 a control signal is output to the electromagnetic clutch 31, and the electromagnetic clutch 31 is turned off (not engaged).
  • step S9 the stored torque Texp and the absolute value
  • FIG. 4 is a time chart showing an example of the state of the electromagnetic clutch 31 during normal operation after completion of the startup of the Rankine cycle 2A.
  • the pump-integrated expander 27 generates positive torque (that is, the output of the Rankine cycle 2A is positive), and the engine 10 is assisted by the exhaust heat recovery device 1A.
  • the rotational speed Ne of the engine 10 increases, the rotational speed Neexp of the pump-integrated expander 27 also increases accordingly.
  • the torque Texp of the pump-integrated expander 27 decreases, and in some cases, the torque Texp of the pump-integrated expander 27 becomes zero or less at time t2.
  • the Rankine cycle 2A starts to become a load on the engine 10, but in this embodiment, the electromagnetic clutch 31 remains ON.
  • Rankine cycle 2A As described above, when the electromagnetic clutch 31 is turned off, the Rankine cycle 2A is stopped. On the other hand, in order to start (restart) Rankine cycle 2A, Rankine cycle 2A must be a load on engine 10 for a certain period of time. For this reason, if the electromagnetic clutch 31 is turned off when the torque Texp of the pump-integrated expander 27 becomes zero or negative, the load on the engine 10 increases as compared with the case where the electromagnetic clutch 31 is kept on. There is a risk that. Moreover, there is a possibility that the driving opportunity of Rankine cycle 2A will be greatly reduced.
  • the electromagnetic clutch 31 is not immediately turned off when the torque Texp of the pump-integrated expander 27 becomes zero or negative during the operation of the Rankine cycle 2A.
  • of the integrated value of the torque Texp of 27 becomes equal to or greater than the threshold value TH1
  • the electromagnetic clutch 31 is turned off. That is, when the output correlated with the power consumed by the Rankine cycle 2A when the output is negative during the operation of the Rankine cycle 2A is greater than or equal to the value correlated with the power required when starting the Rankine cycle 2A. Then, the electromagnetic clutch 31 is turned off to stop the Rankine cycle 2A.
  • the Rankine cycle 2A does not have to be stopped when the torque Texp is temporarily negative, a decrease in the operation opportunity of the Rankine cycle 2A is also suppressed. Furthermore, even if there is a possibility that liquid refrigerant may be mixed into the expansion unit 50, the Rankine cycle 2A is not stopped for that reason, and this also suppresses a decrease in the operation opportunity of the Rankine cycle 2A.
  • the electromagnetic clutch 31 when the absolute value
  • of the integrated value of the torque Texp of the pump-integrated expander 27 is equal to or greater than the threshold value TH1 (coefficient K ⁇ 1.0), and the torque Texp tends to decrease (
  • the electromagnetic clutch 31 may be turned OFF when the current calculated value of the torque Texp is smaller than the previous calculated value.
  • the electromagnetic clutch 31 is turned on. It may be turned off. Also in this case, it is highly likely that the state where the torque Texp is negative will continue, and it is predicted that the power consumption during operation of the Rankine cycle 2A will be greater than or equal to the power consumption during startup of the Rankine cycle 2A. This is because the fuel consumption is considered to deteriorate further.
  • the case where the torque Texp is expected to further decrease means that the rotational speed Ne of the engine 10, that is, the rotational speed Neexp of the pump-integrated expander 27 (particularly the pump unit 60) increases (particularly suddenly increases).
  • the case where the accelerator pedal is depressed more than a predetermined amount by the driver of the vehicle or the case where the vehicle is downshifted are applicable. Even if it does in this way, it will be suppressed by turning off the electromagnetic clutch 31 that the load of the engine 10 will increase on the contrary and the driving opportunity of Rankine cycle 2A will decrease.
  • the electromagnetic clutch 31 can be configured to be turned off when the rotational speed of the engine 10 increases by a predetermined amount or more.
  • FIG. 5 shows a schematic configuration of the exhaust heat recovery apparatus 1B according to the second embodiment of the present invention.
  • the exhaust heat recovery apparatus 1A according to the first embodiment is configured as a “pump-integrated expander 27” in which an expander 23 and a pump 25, which are components of a Rankine cycle, are integrally connected by a common rotating shaft 26. Yes.
  • an expander (scroll type expander) 23 and a pump (mechanical pump) 25 are provided separately.
  • symbol is attached
  • the exhaust heat recovery apparatus 1B includes a Rankine cycle 2B in which the expander 23 and the pump 25 are configured separately, a power transmission mechanism 3B, and a control unit 4B. Including. Since the basic configuration of the Rankine cycle 2B is the same as that of the Rankine cycle 2A in the first embodiment, the description thereof is omitted.
  • the power transmission mechanism 3B includes a crank pulley 33 attached to the crankshaft 10a of the engine 10, an expander clutch 35, and an expander pulley 36 attached to the output shaft 23a of the expander 23 via the expander clutch 35.
  • the control unit 4B detects the first pressure sensor 101 that detects the high-pressure side pressure PH of the Rankine cycle 2B, the second pressure sensor 102 that detects the low-pressure side pressure PL of the Rankine cycle 2B, and the rotational speed Nex of the expander 23. Detection signals of various sensors such as the second rotation sensor 105 that detects the rotation speed Np of the first rotation sensor 104 and the pump 25 are input.
  • the control unit 4B executes various controls including control (engaged / non-engaged) of the expander clutch 35 and the pump clutch 36 based on the detection signals of the various sensors inputted and information from the engine control device. .
  • control unit 4B turns on (engages) the expander clutch 35 and the pump clutch 37 when the start condition of the Rankine cycle 2B is satisfied.
  • the pump clutch 37 is first turned on, and then the expander clutch 35 is turned on when the expander 23 is in a state of generating a sufficient torque (for example, a torque greater than the drive torque of the pump 25).
  • the activation conditions are the same as those in the first embodiment. Therefore, when Rankine cycle 2B is started, pump 25 is mainly a load of engine 10 in Rankine cycle 2B.
  • bypass flow path 28 that bypasses the expander 23 and a bypass valve 29 that opens and closes the bypass flow path 28
  • the control unit 4B 29, the expander clutch 35 and the pump clutch 37 are turned on, and then the bypass valve 29 is closed, or the pump clutch 37 is turned on with the bypass valve 29 opened.
  • the bypass valve 29, the expander clutch 35, and the pump clutch 37 can be controlled so as to close the bypass valve 29 at substantially the same timing as ON.
  • the expansion unit when the control unit 4B determines that the Rankine cycle 2B needs to be stopped during the operation of the Rankine cycle 2B, or receives a stop request for the Rankine cycle 2B from the engine control device, the expansion unit The clutch 35 and the pump clutch 37 are turned off (not engaged) to stop the Rankine cycle 2B.
  • the pump clutch 37 is turned off first, and then the expander clutch 35 is turned off.
  • the control unit 4B opens the bypass valve 29 after turning off the pump clutch 37 and then turns off the expander clutch 35, for example.
  • the bypass valve 29, the expander clutch 36 and the pump clutch 37 can be controlled.
  • the pressure difference between the expander 23 and the expander 23 is not sufficient, and the torque Tex of the expander 23 is pumped.
  • the driving torque Tp may be 25 or less.
  • the torque Tex of the expander 23 may become negative due to overexpansion. In such a case, the output Tr of the Rankine cycle 2B can be zero or negative.
  • the control unit 4B determines that the consumed power (or the correlation value) of the Rankine cycle 2A when the output is negative during the operation after the start of the Rankine cycle 2B is the Rankine cycle.
  • the Rankine cycle 2B is stopped by turning off the expander clutch 35 and the pump clutch 37 that are turned on.
  • the consumed power at the time of starting the Rankine cycle 2B means that the Rankine cycle 2B output is “positive” after starting the Rankine cycle 2B in a stopped state (from the start of driving of the pump 25). It means the power consumed by the Rankine cycle 2B (mainly the pump 25).
  • the control unit 4B can turn on the expander clutch 35 and the pump clutch 37 again to start the Rankine cycle 2B when the start condition is satisfied after turning off the expander clutch 35 and the pump clutch 37.
  • FIG. 6 is a flowchart showing the contents of clutch control (control of the expander clutch 35 and the pump clutch 37) performed by the control unit 4B. This flowchart is executed every predetermined time (for example, 10 ms) after the start of Rankine cycle 2B is completed.
  • step S11 the high pressure side pressure PH and the low pressure side pressure PL of the Rankine cycle 2B are acquired from the first pressure sensor 101 and the second pressure sensor 102.
  • step S12 the rotation speed Nex of the expander 23 and the rotation speed Np of the pump 25 are acquired from the first rotation sensor 104 and the second rotation sensor 105.
  • the rotational speed Nex of the expander 23 and the rotational speed Np of the pump 25 may be calculated based on the rotational speed Ne of the engine 10 and the pulley ratio, respectively.
  • step S13 the torque Tex of the expander 23 is calculated based on the high pressure side pressure PH, the low pressure side pressure PL, and the rotational speed Nex of the expander 23.
  • the torque Tex of the expander 23 is calculated based on the following estimation formula.
  • Tex M 3 ⁇ (PH-PL) ⁇ M 4 ⁇ Nex-K 2
  • M 3 and ( ⁇ M 4 ) are coefficients
  • K 2 is a constant.
  • step S14 the driving torque (load torque) Tp of the pump 25 is calculated based on the high pressure side pressure PH, the low pressure side pressure PL, and the rotational speed Np of the pump 25.
  • the control unit 4B has a pump load map in which the refrigerant pressure difference (PH-PL), the rotational speed Np of the pump 25, and the drive (load) torque Tp of the pump 25 are associated, and the refrigerant pressure difference Based on (PH-PL) and the rotational speed Np of the pump 25, the driving torque Tp of the pump 25 is calculated by referring to the pump load map. More simply, the driving torque Tp of the pump 25 may be calculated based only on the rotational speed Np of the pump 25.
  • step S16 it is determined whether or not the output of the Rankine cycle 2B is positive. If the output Tr of the Rankine cycle 2B is positive, the process proceeds to step S21. If the output Tr of the Rankine cycle 2B is zero or negative, the process proceeds to step S17.
  • step S17 the output Tr ( ⁇ 0) of Rankine cycle 2B is stored.
  • step S18 the absolute value
  • of the stored integrated value of the output Tr of Rankine cycle 2B is calculated.
  • of the integrated value of the output Tr gradually increases (the integrated value ⁇ (Tr) gradually decreases).
  • of the integrated value of the output Tr of the Rankine cycle 2B corresponds to the “second correlation value” of the present invention.
  • step S19 it is determined whether or not the absolute value
  • the threshold value TH2 is set in advance according to the Rankine cycle 2B, and can be set to a value larger than 0 and a value corresponding to or less than the consumed power at the start of the Rankine cycle 2B.
  • K 0.5 to 1.0
  • This threshold value TH2 corresponds to the “first correlation value” of the present invention. Similar to the first embodiment, the threshold value TH2 may be a fixed value or may be updated each time the Rankine cycle 2B is activated.
  • step S20 a release signal is output to the expander clutch 35 and the pump clutch 37 to turn off both clutches 35, 37 (not engaged).
  • the expander clutch 35 and the pump clutch 37 may be disengaged at the same time.
  • the pump clutch 37 is turned off first, and then the expansion is performed, similarly to the control for stopping the Rankine cycle 2B described above.
  • the machine clutch 35 is turned off.
  • step S21 the absolute value
  • the value correlated with the power consumed by the Rankine cycle 2B when the output is negative during the operation of the Rankine cycle 2B is the value of the Rankine cycle 2B.
  • the expander clutch 35 and the pump clutch 37 are turned off to stop the Rankine cycle 2B.
  • turning off the expander clutch 35 and the pump clutch 37 that is, separating the Rankine cycle 2 ⁇ / b> B from the engine 10 is prevented from increasing the load on the engine 10, thereby reducing the fuel consumption of the engine 10.
  • it can also suppress that the driving opportunity of Rankine cycle 2B reduces significantly.
  • the expander clutch 35 and the pump clutch 37 may be turned off.
  • the output Tr of the Rankine cycle 2B is negative and the output Tr is predicted to further decrease (for example, when the rotation speed of the engine 10 increases by a predetermined amount or more), the expander clutch 35 and the pump clutch 37 May be turned off. Furthermore, you may apply combining these suitably.
  • the Rankine cycle 2B may be stopped by turning off 35 and the pump clutch 37 (non-engaged).
  • FIG. 7 shows a schematic configuration of an exhaust heat recovery apparatus 1C according to the third embodiment of the present invention.
  • the pump 25 which is a component of the Rankine cycle, is configured as a mechanical pump driven by the engine 10.
  • the pump constituting the Rankine cycle is configured as an electric pump 29 that is driven by electric power from a battery (not shown).
  • symbol is attached
  • the exhaust heat recovery apparatus 1C includes a Rankine cycle 2C having an electric pump 29 as a pump for circulating the refrigerant, a power transmission mechanism 3C, and a control unit 4C. Since the structure of Rankine cycle 2C is the same as Rankine cycle 2B in 2nd Embodiment except a pump, the description is abbreviate
  • the power transmission mechanism 3C includes a crank pulley 33 attached to the crankshaft 10a of the engine 10, an expander clutch 35, and an expander pulley attached to the output shaft 23a of the expander 23 via the expander clutch 35. 36, and a belt 40 wound around the crank pulley 33 and the expander pulley 36.
  • the control unit 4C When the start condition of Rankine cycle 2C is established, the control unit 4C first supplies power from the battery to the electric pump 29 to operate the electric pump 29, and then the expander 23 enters a state of generating a predetermined torque.
  • the expander clutch 35 is turned on.
  • the activation condition is the same as in the first and second embodiments.
  • the electric pump 29 is driven by the electric power from the battery, it is necessary to (re) charge the electric power consumed at that time by the engine 10. For this reason, the Rankine cycle 2C (mainly the electric pump 29) eventually becomes a load on the engine 10 when the Rankine cycle 2C is started.
  • the “state in which the expander 23 generates sufficient torque” means, for example, torque corresponding to the load of the engine 10 for charging the battery power consumed by the electric pump 29 (hereinafter simply referred to as “load equivalent torque”). ”) Is a state where the expander 23 is generated, and this state is a state where the output of the Rankine cycle 2C is" positive ".
  • the Rankine cycle 2C including the electric pump 29 becomes a load. That is, the output of the Rankine cycle 2C becomes “negative”.
  • the expander clutch 35 that is ON is turned OFF when the output (torque) of the Rankine cycle 2C continues to be zero or negative, or when the negative state is predicted to continue. .
  • the control unit 4C determines that the consumed power (or the correlation value) of the Rankine cycle 2C when the output is negative during the operation of the Rankine cycle 2C is the Rankine cycle.
  • the expander clutch 35 that is turned on is turned off to stop the Rankine cycle 2C.
  • the power consumption at the time of starting the Rankine cycle 2C is that the Rankine cycle 2C in the stopped state is started (from the start of driving of the electric pump 29), and the output Tr of the Rankine cycle 2C is “normal”.
  • the power consumed by the Rankine cycle 2C (mainly the electric pump 29).
  • the control unit 4C replaces the rotation speed Np of the pump 25 with the rotation speed of the electric pump 29 in the second embodiment, replaces the driving torque Tp of the pump with the load equivalent torque, and sets the threshold value TH2.
  • the clutch control (see FIG. 6) can be performed by replacing the threshold TH3 with “turn off the pump clutch 37” as “stop the electric pump 29”.
  • the load equivalent torque can be calculated as follows, for example. That is, a load equivalent torque map in which the rotation speed of the electric pump 29 and the load equivalent torque are associated with each other is set in advance, and the load equivalent torque map is referred to based on the rotation speed of the electric pump 29. Calculate the load equivalent torque.
  • Integrated value, 1/2 of the absolute value, or a predetermined value therebetween in other words, a value obtained by multiplying the absolute value of the integrated value of each output Tr by a predetermined coefficient K (0.5 to 1.0).
  • K 0.5 to 1.0

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

【課題】ランキンサイクルを備えた排熱回収装置において、エンジンとランキンサイクルとの間の動力を伝達/遮断するクラッチの解放を適切に行うことによって、ランキンサイクルがエンジンの負荷となることを抑制する。【解決手段】排熱回収装置(1A)は、ランキンサイクル(2A)と、動力伝達機構(3A)と、制御ユニット(4)と、を備えている。動力伝達機構(3A)は、クラッチ(31)を有し、当該クラッチ(31)の締結時にエンジン(10)とランキンサイクル(2A)との間で動力の伝達を可能とする。制御ユニット(4)は、ランキンサイクル(2A)の起動時における消費動力に相関する第1相関値と、ランキンサイクル(2A)の起動後の運転時にその出力が負である場合におけるランキンサイクル(2A)の消費電力に相関する第2相関値とに基づいて、クラッチ(31)の締結/非締結を制御する。

Description

排熱回収装置
 本発明は、車両に搭載されてエンジンの排熱(廃熱を含む)を回収して動力を発生するランキンサイクルを備えた排熱回収装置に関する。
 特許文献1には、エンジンと、このエンジンの廃熱を冷媒に回収して膨張機で動力として回生するランキンサイクルと、を備えた車両が記載されている。この特許文献1に記載の車両においては、前記エンジンと前記膨張機との間の動力伝達経路上にクラッチが設けられており、前記膨張機の回生動力(トルク)の予測値が正のときに前記クラッチが締結され、前記膨張機の回生動力(トルク)の予測値がゼロ又は負のときに前記クラッチに非締結とされるようになっている。すなわち、特許文献1に記載の車両では、前記膨張機のトルクの予測値がゼロ又は負となった時点で前記クラッチが非締結とされて前記ランキンサイクルの運転が停止される。
特開2010-190185号公報
 ところで、ランキンサイクルを起動するには、まず冷媒を循環させるポンプを駆動する必要があり、その後、膨張機がトルクを発生するようになるまでに所定の時間がかかる。そのため、ランキンサイクルは、その起動時においてはある程度の時間、エンジンの負荷とならざるを得ない。例えば、特許文献1に記載の車両と同様に、冷媒の循環に電動ポンプが用いられている場合、当該電動ポンプはバッテリからの電力によって駆動されるが、その際に消費した電力をエンジンによってバッテリに再充電する必要があるため、結果的にランキンサイクルがエンジンの負荷となる。また、冷媒の循環に機械式ポンプが用いられている場合、当該機械式ポンプはエンジンによって駆動されるため、ランキンサイクルがエンジンの負荷となる。
 また、ランキンサイクルの運転時においても膨張機のトルクがゼロ又は負となると、ランキンサイクルはエンジンの負荷となり得る。しかし、ランキンサイクルの運転時に膨張機のトルクが負となった場合であってもその後すぐに膨張機のトルクが正に転ずるような場合には、ランキンサイクルによるエンジンへの負荷は比較的小さくて済むと言える。
 したがって、特許文献1に記載の車両のように、膨張機のトルクの予測値がゼロ又は負となった時点で直ちにランキンサイクルの運転を停止してしまうと、ランキンサイクルを停止させずにそのまま運転させた場合よりも却ってランキンサイクルによるエンジンへの負荷が増加して、その結果、エンジンの燃費等を悪化させるおそれがある。
 そこで、本発明は、エンジンの排熱を回収して膨張機で動力に変換するランキンサイクルを備えた排熱回収装置において、エンジンとランキンサイクルとの間の動力伝達経路上に設けられたクラッチの締結/非締結を適切に行うことによって、ランキンサイクルがエンジンの負荷となることを効果的に抑制することを目的とする。
 本発明の一側面による排熱回収装置は、冷媒の循環路に、エンジンの排熱によって冷媒を加熱して気化させる加熱器、この加熱器を経由した冷媒を膨張させて動力を発生する膨張機、この膨張機を経由した冷媒を凝縮させる凝縮器、及び、この凝縮器を経由した冷媒を前記加熱器へと送出するポンプが配設されたランキンサイクルと;クラッチを有し、当該クラッチの締結時に前記エンジンと前記ランキンサイクルとの間で動力の伝達が可能な動力伝達機構と;前記ランキンサイクルの起動時における消費動力に相関する第1相関値と、前記ランキンサイクルの起動後の運転時にその出力が負である場合における前記ランキンサイクルの消費動力に相関する第2相関値とに基づいて、前記クラッチの締結/非締結を制御するクラッチ制御部と;を含む。
 前記排熱回収装置では、前記ランキンサイクルの起動時における消費動力に相関する第1相関値と、前記ランキンサイクルの運転時にその出力が負である場合における前記ランキンサイクルの消費動力に相関する第2相関値とに基づいて、前記クラッチの締結/非締結を制御する。これにより、前記ランキンサイクルの運転時に前記クラッチを非締結として前記ランキンサイクルを停止させる(その後、前記ランキンサイクルを再起動させる)ことによって却って前記エンジンの負荷が増加してしまうことが抑制され、エンジンの燃費の悪化を低減できる。
本発明の第1実施形態による排熱回収装置の概略構成を示す図である。 ポンプ一体型膨張機の構成を示す図である。 第1実施形態におけるクラッチ制御の内容を示したフローチャートである。 第1実施形態におけるクラッチの状態の一例を示すタイムチャートである。 本発明の第2実施形態による排熱回収装置の概略構成を示す図である。 第2実施形態におけるクラッチ制御の内容を示したフローチャートである。 本発明の第3実施形態による排熱回収装置の概略構成を示す図である。
 以下、添付図面を参照しつつ本発明の実施形態について説明する。
〔第1実施形態〕
 図1は、本発明の第1実施形態による排熱回収装置1Aの概略構成を示している。この排熱回収装置1は、車両に搭載されてエンジン10の排熱を回収して利用する。図1に示すように、排熱回収装置1Aは、エンジン10の排熱を回収して動力に変換(動力を発生)するランキンサイクル2Aと、ランキンサイクル2Aとエンジン10との間で動力の伝達を行う動力伝達機構3Aと、排熱回収装置1A全体の作動を制御する制御ユニット4Aと、を含む。
 エンジン10は、水冷式の内燃機関であり、冷却水流路11を循環するエンジン冷却水によって冷却される。冷却水流路11には、後述するランキンサイクル2Aの加熱器22が配置されており、エンジン10から熱を吸収したエンジン冷却水が加熱器22内を流通するようになっている。
 ランキンサイクル2Aの冷媒循環路21には、加熱器22、膨張機23、凝縮器24及びポンプ25がこの順に配設されている。
 加熱器22は、エンジン10から熱を吸収したエンジン冷却水と冷媒との間で熱交換を行わせることによって冷媒を加熱して過熱蒸気とする熱交換器である。なお、エンジン冷却水に代えて、エンジン10の排気と冷媒との間で熱交換を行わせるように加熱器22を構成してもよい。
 膨張機23は、スクロール型膨張機であり、加熱器22で加熱されて過熱蒸気となった冷媒を膨張させて回転エネルギーに変換することによって動力(ここでは、トルク)を発生する。
 凝縮器24は、膨張機23を経由した冷媒と外気との間で熱交換を行わせることによって冷媒を冷却して凝縮(液化)させる熱交換器である。
 ポンプ25は、凝縮器24で液化された冷媒(液冷媒)を加熱器22へと送出する機械式ポンプである。そして、凝縮器24で液化された冷媒がポンプ25によって加熱器22へと送出されることによって冷媒がランキンサイクル2の前記各要素を循環する。
 ここで、本実施形態においては、膨張機(スクロール型膨張機)23とポンプ(機械式ポンプ)25とが共通の回転軸26によって一体に連結された「ポンプ一体型膨張機27」として構成されている。すなわち、ポンプ一体型膨張機27の回転軸26は、膨張機23の出力軸としての機能及びポンプ25の駆動軸として機能を有している。
 動力伝達機構3Aは、電磁クラッチ31と、この電磁クラッチ31を介してポンプ一体型膨張機27の回転軸26に取り付けられたプーリ32と、エンジン10のクランクシャフト10aに取り付けられたクランクプーリ33と、プーリ32及びクランクプーリ33に巻回されたベルト34と、を有している。そして、動力伝達機構3Aは、電磁クラッチ31がON(締結)/OFF(非締結)されることによって、エンジン10とランキンサイクル2(具体的にはポンプ一体型膨張機27)との間で動力を伝達/遮断できるようになっている。なお、電磁クラッチ31は、エンジン10とランキンサイクル2との間で動力を伝達/遮断できればよく、その設置位置は問わない。
 制御ユニット4Aは、エンジン10を制御するエンジン制御装置(図示省略)との間で互いに情報の送受信が可能に構成されている。例えば、制御ユニット4は、前記エンジン制御装置からエンジン10の回転数Neやエンジン冷却水の温度Twなどの各種情報を入手することができる。また、制御ユニット4Aには、ランキンサイクル2Aの高圧側圧力PHを検出する第1圧力センサ101、ランキンサイクル2Aの低圧側圧力PLを検出する第2圧力センサ102及びポンプ一体型膨張機27の回転数Nexp(=膨張機23の回転数=ポンプ25の回転数)を検出する回転センサ103などの各種センサの検出信号が入力される。
 ここで、ランキンサイクル2Aの高圧側圧力PHとは、ポンプ25(の出口)から加熱器22を経て膨張機23(の入口)に至るまでの区間における冷媒循環路21内の圧力をいい、ランキンサイクル2Aの低圧側圧力PLとは、膨張機23(の出口)から凝縮器24を介してポンプ25(の入口)に至るまでの区間における冷媒循環路21内の圧力をいう。本実施形態において、第1圧力センサ101は膨張機23入口側(加熱器22の出口側)の圧力をランキンサイクル2Aの高圧側圧力PHとして検出し、第2圧力センサ102はポンプ25入口側(凝縮器23の出口側)の圧力をランキンサイクル2Aの低圧側圧力PLとして検出している。
 また、回転センサ103を省略することもできる。この場合、制御ユニット4Aは、エンジン10の回転数Ne(及びプーリ31とクランクプーリ32のプーリ比)に基づいてポンプ一体型膨張機27の回転数Nexpを算出することができる。
 制御ユニット4Aは、入力された各種センサの検出信号や前記エンジン制御装置からの情報に基づいて電磁クラッチ31の制御(締結/非締結)を含む各種制御を実行する。
 例えば、制御ユニット4Aは、ランキンサイクル2Aの起動条件が成立した場合には、電磁クラッチ31をON(締結)する。これにより、エンジン10によってポンプ25(ポンプ一体型膨張機27のポンプ部分)が駆動されてランキンサイクル2Aが起動する。したがって、ランキンサイクル2Aの起動時においては、ランキンサイクル2Aのポンプ25及びこれと回転軸26を共通とする膨張機23(すなわち、ポンプ一体型膨張機27)がエンジン10の負荷となる。なお、ランキンサイクル2Aの前記起動条件は、適宜設定することができる。例えば、エンジン冷却水の温度Twが所定温度以上であることやランキンサイクル2を停止してから所定時間が経過していることを前記起動条件とすることができる。
 ランキンサイクル2Aが起動すると、ポンプ25(ポンプ一体型膨張機27のポンプ部分)によって冷媒が冷媒循環路21を循環し、膨張機23(ポンプ一体型膨張機27の膨張機部分)が動力を発生し始める。その後、膨張機23が十分な動力(トルク)を発生するようになると(すなわち、ランキンサイクル2の起動が完了すると)、膨張機23で発生した動力の一部がポンプ25を駆動し、その余の動力が動力伝達機構3Aを介してエンジン10に伝達されてエンジン10の出力をアシストする。これにより、エンジン10の燃費を向上させることができる。
 また、制御ユニット4Aは、ランキンサイクル2Aの運転中に、例えばランキンサイクル2Aを停止させる必要があると判断した場合や前記エンジン制御装置からランキンサイクル2Aの停止要求を受けた場合には、電磁クラッチ31をOFF(非締結)としてランキンサイクル2Aを停止させる。
 ところで、起動(完了)後のランキンサイクル2Aの通常運転時にランキンサイクル2Aの出力(ここでは、ポンプ一体型膨張機27のトルク)がゼロ又は負となると、ランキンサイクル2Aがエンジン10の負荷となってしまう。例えば、膨張機23の上流側の冷媒過熱度が十分でない場合や凝縮器24の熱負荷が大きい場合などにおいては、膨張機23前後の圧力差が十分取れず、膨張機23の発生動力(トルク)≦ポンプ25の駆動トルクとなる場合がある。すなわち、ランキンサイクル2Aの出力(すなわち、ポンプ一体型膨張機27のトルク=膨張機23の発生トルク-ポンプ25の駆動トルク)がゼロ又は負となることがある。このような場合には、エンジン10の燃費を向上させるための排熱回収装置1Aがエンジン10の負荷(エンジン10の燃費を悪化させる原因)となってしまい、好ましくない。
 そこで、制御ユニット4Aは、所定周期毎にポンプ一体型膨張機27のトルクTexp(ランキンサイクル2Aの出力)を演算し、ランキンサイクル2Aの起動後の通常運転時にポンプ一体型膨張機27のトルクがゼロ又は負となった場合には、ON(締結)されている電磁クラッチ31をOFF(非締結)としてエンジン10とランキンサイクル2Aとの間の動力の伝達を遮断し、ランキンサイクル2Aを停止させる。これにより、ランキンサイクル2Aがエンジン10の負荷となってしまうことを抑制する。
 但し、制御ユニット4Aは、ランキンサイクル2Aの出力(ポンプ一体型膨張機27のトルクTexp)がゼロ又は負となったときに直ちに電磁クラッチ31をOFFするのではなく、ランキンサイクル2Aの出力(トルクTexp)がゼロ又は負である状態が継続した場合又は負である状態が継続することが予測される場合に電磁クラッチ31をOFFとする。これは、上述したように、ランキンサイクル2Aはその起動時においてエンジン10の負荷となることから、ランキンサイクル2Aの出力(トルクTexp)がゼロ又は負となった時点でランキンサイクル2Aの運転を停止してしまうと、ランキンサイクル2Aを停止させずにそのまま運転させた場合よりも却ってエンジン10への負荷が増加してしまうおそれがあるからである。
 具体的には、本実施形態において、制御ユニット4Aは、ランキンサイクル2Aの起動後の運転時にその出力が負である場合におけるランキンサイクル2Aの消費動力(又はその相関値)が、ランキンサイクル2Aの起動時における消費動力(又はその相関値)以上となった場合又はそうなることが予測される場合に、ONされている電磁クラッチ31をOFFとしてランキンサイクル2Aを停止させる。
 なお、本実施形態において、ランキンサイクル2Aの起動時における消費動力とは、停止状態にあるランキンサイクル2Aを起動させてから(ポンプ25の駆動開始から)、ランキンサイクル2Aの出力が「正」となるまでの間にランキンサイクル2A(主にポンプ一体型膨張機27)によって消費される動力のことをいう。
 また、制御ユニット4Aは、電磁クラッチ31をOFFとした後、例えば前記起動条件が成立すると、電磁クラッチ31を再びONしてランキンサイクル2Aを起動(再起動)させることができる。
 すなわち、本実施形態において、制御ユニット4Aは、本発明の「クラッチ制御部」及び「出力演算部」としての機能を有している。
 ここで、図1に破線で示すように、膨張機23を迂回するバイパス流路28及びこのバイパス流路28を開閉するバイパス弁29が設けられ、制御ユニット4Aが必要に応じてバイパス弁29を開閉するように構成してもよい。この場合、制御ユニット4Aは、ランキンサイクル2Aを起動させる際に、バイパス弁29を開いた状態で電磁クラッチ31をONし、膨張機23を迂回して冷媒を流通させた後にバイパス弁29を閉じるように、バイパス弁29及び電磁クラッチ31を制御することができる。また、制御ユニット4Aは、ランキンサイクル2Aを停止させる際に、まずバイパス弁29を開き、膨張機23を迂回して冷媒を流通させた後に電磁クラッチ31をOFFするように、バイパス弁29及び電磁クラッチ31を制御することができる。
 次に、図2を参照してポンプ一体型膨張機27の構成を説明する。
 図2に示すように、ポンプ一体型膨張機27は、膨張機(スクロール型膨張機)23として機能する膨張ユニット50と、ポンプ(機械式ポンプ)25として機能するポンプユニット60と、膨張ユニット50とポンプユニット60との間に配設された従動クランク機構70と、を備えている。
 膨張ユニット50は、固定スクロール51と、可動スクロール52と、を含む。固定スクロール51と可動スクロール52は、互いのスクロール部51a、52aが噛み合うように配置され、固定スクロール51のスクロール部51aと可動スクロール52のスクロール部52aとの間に膨張室53が形成される。この膨張室53には、固定スクロール51の基部51bに形成された冷媒通路51cを介して、加熱器22を通過した冷媒が導入される。そして、膨張室53に導入された冷媒が膨張することにより、可動スクロール52が固定スクロール51に対して旋回運動を行う。
 ここで、旋回運動中の可動スクロール52の自転を阻止すると共に可動スクロール52に作用するスラスト力を受けるため、可動スクロール52の基部52bの背面側(スクロール部52aとは反対側)には、ボールを転動部材として用いたボールカップリング式の自転阻止機構54が設けられている。
 膨張ユニット50(膨張機23)内に液冷媒が混入すると、液冷媒によって内部の潤滑油が流されてしまったり、内部の潤滑油の粘度が低下したりして、内部の摺動部分や回転部分(特に、自転阻止機構54及びその周辺部分)が潤滑不足に陥るおそれがある。このため、膨張ユニット50の入口側における冷媒の過熱度(SH)が低いときなど膨張ユニット50内に液冷媒が混入するおそれがある場合には、膨張ユニット50を停止させる、すなわち、ランキンサイクル2を停止させるようにするのが好ましい。
 しかし、膨張ユニット50内に液冷媒が混入するおそれがある場合にランキンサイクル2を停止させるようにすると、特に冬季などエンジン冷却水の温度Twが低い場合にランキンサイクル2Aを頻繁に停止させることとなってランキンサイクル2Aの運転機会が大幅に減少してしまうおそれがある。また、結果として、ランキンサイクル2Aを起動させる機会が増加することになるため、エンジン10への負荷も増加するおそれがある。
 この点、ボールを転動部材として用いたボールカップリング式の自転阻止機構54は、潤滑不足の状態においても焼付き等の不具合が発生せず、高い耐久性を有することが確認されている。そこで、本実施形態においては、ランキンサイクル2Aの運転中に膨張ユニット50内に液冷媒が混入するおそれが生じた場合であっても、その出力が負である場合におけるランキンサイクル2Aの消費動力が、ランキンサイクル2Aの起動時の消費動力以上となるまで又はそうなることが予測されるまでは、電磁クラッチ31をON状態を維持し、膨張ユニット50を作動させる(ランキンサイクル2を運転させる)ようにする。これにより、エンジン10への負荷が増加することを抑制しつつ、ランキンサイクル2の運転機会が減少することを防止している。もちろん、このようにすることで、膨張ユニット50の入口側における冷媒の過熱度SH等を検知するためのセンサ類を必要としなくても済むという利点もある。
 図2に戻って、ポンプユニット60は、ギヤポンプとして構成されており、回転軸26に固定された駆動ギヤ61と、回転軸26と平行に配設された従動軸62と、従動軸62に固定されて駆動ギヤ61と噛み合う従動ギヤ63と、を含む。回転軸26及び従動軸62は軸受によって回転自在に支持されている。回転軸26の一端側(図では左側)には、上述したように、電磁クラッチ31を介してプーリ32が取り付けられており、回転軸26の他端側(図では右側)は、従動クランク機構70を介して可動スクロール52に連結されている。
 従動クランク機構70は、例えば公知のスイングリンク式の従動クランク機構であり、可動スクロール52の旋回運動を回転軸26の回転運動に変換することができ、また、回転軸26の回転運動を可動スクロール52の旋回運動に変換することができる。
 次に、ランキンサイクル2Aの起動完了後の通常運転時において、制御ユニット4Aが実施するクラッチ制御(電磁クラッチ31の制御)について説明する。
 図3は、かかるクラッチ制御の内容を示すフローチャートである。
 このフローチャートは、ランキンサイクル2Aの起動完了後、所定時間(例えば、10ms)毎に実行される。
 図3において、ステップS1では、第1圧力センサ101及び第2圧力センサ102からランキンサイクル2Aの高圧側圧力PH及び低圧側圧力PLを取得する。
 ステップS2では、回転センサ103からポンプ一体型膨張機27の回転数Nexpを取得する。あるいは、エンジン10の回転数Neと、プーリ31とクランクプーリ32のプーリ比とに基づいてポンプ一体型膨張機27の回転数Nexpを算出する。
 ステップS3では、前記高圧側圧力PH、前記低圧側圧力PL及びポンプ一体型膨張機27の回転数Nexpに基づいてポンプ一体型膨張機27のトルクTexp(すなわち、ランキンサイクル2Aの出力)を演算する。例えば、制御ユニット4Aは、下記推定式に基づいてポンプ一体型膨張機27のトルクTexpを算出する。
 Texp=M・(PH-PL)-M・Nexp-K
 ここで、M、(-M)は係数、Kは定数である。
 ステップS4では、ポンプ一体型膨張機27のトルクTexpが正(Texp>0)であるか否かを判定する。ポンプ一体型膨張機27のトルクTexpがゼロ又は負であればステップS5に進む。一方、ポンプ一体型膨張機27のトルクTexpが正であればステップS9に進む。
 ステップS5では、ポンプ一体型膨張機27のトルクTexp(≦0)を記憶する。
 ステップS6では、記憶されたトルクTexpの積算値の絶対値│Σ(Texp)│を算出する。これにより、ステップS4においてポンプ一体型膨張機27のトルクTexpがゼロ又は負と判定されるたびに当該ゼロ又は負のトルクTexpが加算される。すなわち、ポンプ一体型膨張機27のトルクTexpがゼロ又は負である状態が継続するほど、トルクTexpの積算値の絶対値│Σ(Texp)│が大きくなる(積算値Σ(Texp)は小さくなる)。この「トルクTexpの積算値の絶対値│Σ(Texp)│」が、本発明の「第2相関値」に相当する。
 ステップS7では、トルクTexpの積算値の絶対値│Σ(Texp)│が閾値TH1以上であるか否かを判定する。前記トルクTexpの積算値の絶対値│Σ(Texp)│が閾値TH1以上であればステップS8に進み、閾値TH1未満であれば本フローを終了する。閾値TH1は、ランキンサイクル2Aに応じて設定されるものであって、0よりも大きく、かつ、ランキンサイクル2Aの起動時における消費動力に相当する値又はそれ以下の所定値とすることができる。例えば、ランキンサイクル2Aが起動してから(ポンプ25の駆動開始から)、前記トルクTexpが「正」となるまでの間に演算された各トルクTexpの積算値の絶対値、当該絶対値の1/2、又はこれらの間の所定値、換言すれば、各トルクTexpの積算値の絶対値に所定の係数K(0.5~1.0)を乗算した値を閾値TH1とすることができる。この閾値TH1が、本発明の「第1相関値」に相当する。なお、閾値TH1は、固定値として事前に設定されてもよいが、ランキンサイクル2Aを起動するたびに、前記トルクTexpが正となるまでの間の各トルクTexpの積算値(の絶対値)を算出して更新されてもよい。
 ステップS8では、電磁クラッチ31に制御信号を出力して電磁クラッチ31をOFFする(非締結とする)。これにより、エンジン10とランキンサイクル2Aとの間の動力の伝達が遮断され、ランキンサイクル2Aはエンジン10の負荷とならなくなる。
 ステップS9では、記憶された前記トルクTexp及び算出された前記トルクTexpの積算値の絶対値│Σ(Texp)│をクリアする。
 図4は、ランキンサイクル2Aの起動完了後の通常運転時における電磁クラッチ31の状態の一例を示すタイムチャートである。
 時刻t1において、ポンプ一体型膨張機27は正のトルクを発生しており(すなわち、ランキンサイクル2Aの出力は正であり)、排熱回収装置1Aによるエンジン10のアシストが行われている。その後、エンジン10の回転数Neが上昇すると、これに伴ってポンプ一体型膨張機27の回転数Nexpも上昇する。すると、ポンプ一体型膨張機27のトルクTexpが低下し、場合によっては、時刻t2においてポンプ一体型膨張機27のトルクTexpがゼロ以下となる。この時刻t2の時点でランキンサイクル2Aはエンジン10の負荷になり始めるが、本実施形態では、電磁クラッチ31はONのままである。
 そして、ポンプ一体型膨張機27のトルクTexp(≦0)の積算値の絶対値│Σ(Texp)│(図4中のハッチング領域Aを参照)が閾値TH1以上となると(時刻t3)、電磁クラッチ31がOFFされる(非締結とされる)。これにより、ランキンサイクル2Aがエンジン10から切り離される(ランキンサイクル2Aが停止する)。その後、ランキンサイクル2Aの起動条件が成立すると(時刻t4)、電磁クラッチ31が再びON(締結)されてランキンサイクル2が起動する。ここで、図4中のハッチング領域Bが、ランキンサイクル2Aが起動してから前記トルクTexpが正となるまでの間に演算された各トルクTexpの積算値の絶対値に相当し、本実施形態では、この各トルクTexpの積算値の絶対値(ハッチング領域B)を閾値TH1(係数K=1)としている。
 上述のように、電磁クラッチ31をOFFするとランキンサイクル2Aを停止させることとなる。一方、ランキンサイクル2Aを起動(再起動)させるには、ある程度の時間、ランキンサイクル2Aがエンジン10の負荷とならざるを得ない。このため、ポンプ一体型膨張機27のトルクTexpがゼロ又は負となった時点で電磁クラッチ31をOFFしてしまうと、電磁クラッチ31をONに維持した場合よりも却ってエンジン10の負荷が増加してしまうおそれがある。また、ランキンサイクル2Aの運転機会が大幅に減少してしまうおそれもある。
 これに対し、本実施形態では、ランキンサイクル2Aの運転中にポンプ一体型膨張機27のトルクTexpがゼロ又は負となった時点で直ちに電磁クラッチ31をOFFするのではなく、ポンプ一体型膨張機27のトルクTexpの積算値の絶対値│Σ(Texp)│が閾値TH1以上となったときに電磁クラッチ31をOFFする。すなわち、ランキンサイクル2Aの運転時にその出力が負であるときにランキンサイクル2Aによって消費される動力に相関する値が、ランキンサイクル2Aの起動時に必要とされる動力に相関する値以上となったときに、電磁クラッチ31をOFFしてランキンサイクル2Aを停止させる。これにより、電磁クラッチ31をOFFすることによって却ってエンジン10の負荷が増加してしまうことが抑制され、エンジン10の燃費の悪化を抑制することができる。また、前記トルクTexpが一時的に負となるような場合にランキンサイクル2Aを停止させなくて済むので、ランキンサイクル2Aの運転機会の減少も抑制される。さらに、膨張ユニット50内に液冷媒が混入するおそれがある場合であっても、それを理由にランキンサイクル2Aを停止させないので、このことによってもランキンサイクル2Aの運転機会の減少が抑制される。
 なお、以上では、ランキンサイクル2Aの通常運転時におけるポンプ一体型膨張機27のトルクTexpの積算値の絶対値│Σ(Texp)│が、閾値TH1以上となったときに電磁クラッチ31をOFFしているが、これに限るものではない。
 例えば、ポンプ一体型膨張機27のトルクTexpの積算値の絶対値│Σ(Texp)│が閾値TH1(係数K<1.0)以上であり、かつ、前記トルクTexpが減少傾向にある場合(例えば、前記トルクTexpの今回算出値が前回算出値よりも小さい場合)に、電磁クラッチ31をOFFするようにしてもよい。この場合には、前記トルクTexpが負である状態が継続する可能性が高く、ランキンサイクル2Aの運転時における消費動力が、ランキンサイクル2Aの起動時における消費動力以上となることが予測されるからである。好ましくは、この場合の閾値TH1は、ランキンサイクル2Aが起動してから前記トルクTexpが正となるまでの間に演算された各トルクTexpの積算値の絶対値の1/2とする(すなわち、係数K=0.5とする)。このようにしても上記実施形態と同様に、電磁クラッチ31をOFFすることによって却ってエンジン10の負荷が増加してしまうことやランキンサイクル2Aの運転機会が減少してしまうことが抑制される。
 また、ポンプ一体型膨張機27のトルクTexpの積算値が負であり、かつ、前記トルクTexpのさらなる減少が予測される場合に(すなわち、閾値TH1との比較を行うことなく)電磁クラッチ31をOFFするようにしてもよい。この場合も前記トルクTexpが負である状態が継続する可能性が高く、ランキンサイクル2Aの運転時における消費動力が、ランキンサイクル2Aの起動時における消費動力以上となることが予測され、エンジン10の燃費がより悪化すると考えられるからである。ここで、前記トルクTexpのさらなる減少が予測される場合とは、エンジン10の回転数Ne、すなわち、ポンプ一体型膨張機27(特にポンプユニット60)の回転数Nexpが上昇(特に急上昇)する場合であり、例えば前記車両の運転者によってアクセルペダルが所定量以上踏み込まれた場合や車両のシフトダウン操作がなされた場合が該当する。このようにしても、電磁クラッチ31をOFFすることによって却ってエンジン10の負荷が増加してしまうことやランキンサイクル2Aの運転機会が減少してしまうことが抑制される。
 さらに、これらを適宜組み合わせて適用することもできる。例えば、(1)前記トルクTexpの積算値の絶対値│Σ(Texp)│が閾値TH1(係数K=1.0)以上となった場合、(2)前記トルクTexpの積算値の絶対値│Σ(Texp)│が前記閾値TH1(0.5<係数K<1.0)以上であり、かつ、前記トルクTexpが減少傾向にある場合、又は、(3)前記トルクTexpの積算値が負であり、かつ、エンジン10の回転数が所定量以上増加した場合に電磁クラッチ31をOFFするように構成することができる。
〔第2実施形態〕
 次に、本発明の第2実施形態について説明する。
 図5は、本発明の第2実施形態による排熱回収装置1Bの概略構成を示している。
 第1実施形態による排熱回収装置1Aでは、ランキンサイクルの構成要素である膨張機23とポンプ25とが共通の回転軸26によって一体に連結された「ポンプ一体型膨張機27」として構成されている。これに対し、第2実施形態による排熱回収装置1Bでは、膨張機(スクロール型膨張機)23とポンプ(機械式ポンプ)25とが別々に設けられている。なお、第1実施形態(図1)と同一の要素については同一の符号を付しており、その機能も同様であるものとする。
 図5に示すように、第2実施形態による排熱回収装置1Bは、膨張機23とポンプ25とが別体で構成されたランキンサイクル2Bと、動力伝達機構3Bと、制御ユニット4Bと、を含む。ランキンサイクル2Bの基本的な構成は、前記第1実施形態におけるランキンサイクル2Aと同様であるので、その説明を省略する。
 動力伝達機構3Bは、エンジン10のクランクシャフト10aに取り付けられたクランクプーリ33と、膨張機クラッチ35と、膨張機クラッチ35を介して膨張機23の出力軸23aに取り付けられた膨張機プーリ36と、ポンプクラッチ37と、ポンプクラッチ37を介してポンプ25の駆動軸25aに取り付けられたポンププーリ38と、クランクプーリ33、膨張機プーリ36及びポンププーリ38に巻回されたベルト39と、を有する。
 制御ユニット4Bには、ランキンサイクル2Bの高圧側圧力PHを検出する第1圧力センサ101、ランキンサイクル2Bの低圧側圧力PLを検出する第2圧力センサ102、膨張機23の回転数Nexを検出する第1回転センサ104及びポンプ25の回転数Npを検出する第2回転センサ105などの各種センサの検出信号が入力される。そして、制御ユニット4Bは、入力された各種センサの検出信号や前記エンジン制御装置からの情報に基づいて、膨張機クラッチ35及びポンプクラッチ36の制御(締結/非締結)を含む各種制御を実行する。
 例えば、制御ユニット4Bは、ランキンサイクル2Bの起動条件が成立すると、膨張機クラッチ35及びポンプクラッチ37をON(締結)する。具体的には、まずポンプクラッチ37をONし、その後、膨張機23が十分なトルク(例えば、ポンプ25の駆動トルク以上のトルク)を発生する状態となると膨張機クラッチ35をONする。前記起動条件は前記第1実施形態と同様である。したがって、ランキンサイクル2Bの起動時においては、ランキンサイクル2Bの主にポンプ25がエンジン10の負荷となる。
 ここで、図5に破線で示すように、膨張機23を迂回するバイパス流路28及びこのバイパス流路28を開閉するバイパス弁29が設けられている場合には、制御ユニット4Bは、バイパス弁29を開いた状態で膨張機クラッチ35及びポンプクラッチ37をONし、その後、バイパス弁29を閉じるように、又は、バイパス弁29を開いた状態でポンプクラッチ37をONし、膨張機クラッチ35のONとほぼ同じタイミングでバイパス弁29を閉じるように、バイパス弁29、膨張機クラッチ35及びポンプクラッチ37を制御することができる。
 また、制御ユニット4Bは、ランキンサイクル2Bの運転中に、例えばランキンサイクル2Bを停止させる必要があると判断した場合や前記エンジン制御装置からランキンサイクル2Bの停止要求を受けた場合には、膨張機クラッチ35及びポンプクラッチ37をOFFして(非締結として)ランキンサイクル2Bを停止させる。好ましくは、先にポンプクラッチ37をOFFし、その後、膨張機クラッチ35をOFFする。
 ここで、バイパス流路28及びバイパス弁29が設けられている場合には、制御ユニット4Bは、例えば、ポンプクラッチ37をOFFした後にバイパス弁29を開き、その後に膨張機クラッチ35をOFFするように、バイパス弁29、膨張機クラッチ36及びポンプクラッチ37を制御することができる。
 さらに、制御ユニット4Bは、所定周期毎にランキンサイクル2Bの出力Tr(=膨張機23のトルクTex-ポンプ25の駆動(負荷)トルクTp)を演算し、起動完了後のランキンサイクル2Bの通常運転時に、ランキンサイクル2Bの出力(トルク)Trがゼロ又は負である状態が継続した場合に又は負である状態が継続することが予測される場合に、ONされている膨張機クラッチ35及びポンプクラッチ37をOFFとする。これにより、エンジン10とランキンサイクル2Bとの間の動力の伝達を遮断し、ランキンサイクル2Bを停止させる。例えば、膨張機23の上流側の冷媒過熱度が十分でない場合や凝縮器24の熱負荷が大きい場合などにおいては、膨張機23前後の圧力差が十分取れず、膨張機23のトルクTexがポンプ25の駆動トルクTp以下となる場合がある。また、急加速時などエンジン回転数が急激に増加したときに、過膨張によって膨張機23のトルクTexが負となる場合がある。このような場合にランキンサイクル2Bの出力Trがゼロ又は負となり得る。
 具体的には、第1実施形態と同様、制御ユニット4Bは、ランキンサイクル2Bの起動後の運転時にその出力が負である場合におけるランキンサイクル2Aの消費動力(又はその相関値)が、ランキンサイクル2Bの起動時における消費動力(又はその相関値)以上となった場合又はそうなることが予測される場合に、ONされている膨張機クラッチ35及びポンプクラッチ37をOFFとしてランキンサイクル2Bを停止させる。
 なお、本実施形態において、ランキンサイクル2Bの起動時における消費動力とは、停止状態にあるランキンサイクル2Bを起動させてから(ポンプ25の駆動開始から)、ランキンサイクル2Bの出力が「正」となるまでの間にランキサイクル2B(主にポンプ25)によって消費される動力のことをいう。
 また、制御ユニット4Bは、膨張機クラッチ35及びポンプクラッチ37をOFFした後、前記起動条件が成立すると膨張機クラッチ35及びポンプクラッチ37を再びONしてランキンサイクル2Bを起動させることができる。
 図6は、制御ユニット4Bが実施するクラッチ制御(膨張機クラッチ35及びポンプクラッチ37の制御)の内容を示すフローチャートである。このフローチャートは、ランキンサイクル2Bの起動完了後、所定時間(例えば、10ms)毎に実行される。
 図6において、ステップS11では、第1圧力センサ101及び第2圧力センサ102からランキンサイクル2Bの高圧側圧力PH及び低圧側圧力PLを取得する。
 ステップS12では、第1回転センサ104及び第2回転センサ105から膨張機23の回転数Nex及びポンプ25の回転数Npを取得する。もちろん、エンジン10の回転数Ne及びプーリ比に基づいて、膨張機23の回転数Nex及びポンプ25の回転数Npをそれぞれ算出してもよい。
 ステップS13では、前記高圧側圧力PH、前記低圧側圧力PL及び膨張機23の回転数Nexに基づいて膨張機23のトルクTexを算出する。例えば、下記推定式に基づいて、膨張機23のトルクTexを算出する。
 Tex=M・(PH-PL)-M・Nex-K
 ここで、M、(-M)は係数、Kは定数である。
 ステップS14では、前記高圧側圧力PH、前記低圧側圧力PL及びポンプ25の回転数Npに基づいてポンプ25の駆動トルク(負荷トルク)Tpを算出する。例えば、制御ユニット4Bは、冷媒圧力差(PH-PL)、ポンプ25の回転速度Np及びポンプ25の駆動(負荷)トルクTpが対応付けられたポンプ負荷マップを有しており、前記冷媒圧力差(PH-PL)及びポンプ25の回転速度Npに基づいて、前記ポンプ負荷マップを参照することによってポンプ25の駆動トルクTpを算出する。より簡易に、ポンプ25の回転数Npのみに基づいてポンプ25の駆動トルクTpを算出してもよい。
 ステップS15では、膨張機23のトルクTexからポンプ25の駆動トルクTpを減算してランキンサイクル2Bの出力Tr(=Tex-Tp)を算出する。
 ステップS16では、ランキンサイクル2Bの出力が正であるか否かを判定する。そして、ランキンサイクル2Bの出力Trが正であればステップS21に進み、ランキンサイクル2Bの出力Trがゼロ又は負であればステップS17に進む。
 ステップS17では、ランキンサイクル2Bの出力Tr(≦0)を記憶する。
 ステップS18では、記憶されたランキンサイクル2Bの出力Trの積算値の絶対値│Σ(Tr)│を算出する。これにより、ステップS16においてランキンサイクル2Bの出力Trがゼロ又は負と判定されるたびに当該ゼロ又は負の出力Trが加算され、この結果、ランキンサイクル2Bの出力Trがゼロ又は負である状態が継続するほど、出力Trの積算値の絶対値│Σ(Tr)│は徐々に大きくなる(積算値Σ(Tr)は徐々に小さくなる)。このランキンサイクル2Bの出力Trの積算値の絶対値│Σ(Tr)│が、本発明の「第2相関値」に相当する。
 ステップS19では、前記出力Trの積算値の絶対値│Σ(Tr)│が閾値TH2以上であるか否かを判定する。前記出力Trの積算値の絶対値│Σ(Tr)│が閾値TH2以上であればステップS20に進み、閾値TH2未満であれば本フローを終了する。閾値TH2は、ランキンサイクル2Bに応じて予め設定されるものであり、0よりも大きく、かつ、ランキンサイクル2Bの起動時における消費動力に相当する値又はそれ以下の所定値とすることができる。例えば、ランキンサイクル2Bが起動してから(ポンプ25の駆動開始から)前記出力Trが正となるまでの間に演算される各出力Tr(=Tex-Tp=0-Tp)の積算値の絶対値、当該絶対値の1/2、又はこれらの間の所定値、換言すれば、各出力Trの積算値の絶対値に所定の係数K(0.5~1.0)乗算した値を閾値TH2とすることができる。この閾値TH2が、本発明の「第1相関値」に相当する。第1実施形態と同様、この閾値TH2は、固定値としてもよいし、ランキンサイクル2Bを起動するたびに更新してもよい。
 ステップS20では、膨張機クラッチ35及びポンプクラッチ37に解放信号を出力して両クラッチ35,37をOFFする(非締結とする)。これにより、エンジン10とランキンサイクル2Bとの間の動力の伝達が遮断される。ここで、膨張機クラッチ35及びポンプクラッチ37を同時に非締結としてもよいが、好ましくは、上述したランキンサイクル2Bを停止させる場合の制御と同様に、先にポンプクラッチ37をOFFし、その後、膨張機クラッチ35をOFFする。
 ステップS21では、記憶された前記出力Tr及び算出された前記出力Trの積算値の絶対値│Σ(Tr)│をクリアする。
 これにより、本実施形態においても、前記第1実施形態と同様に、ランキンサイクル2Bの運転時にその出力が負であるときにランキンサイクル2Bによって消費される動力に相関する値が、ランキンサイクル2Bの起動時に必要とされる動力に相関する値以上となったときに、膨張機クラッチ35及びポンプクラッチ37をOFFしてランキンサイクル2Bを停止させる。これにより、膨張機クラッチ35及びポンプクラッチ37をOFFする、すなわち、ランキンサイクル2Bをエンジン10から切り離すことによって却ってエンジン10の負荷が増加してしまうことが抑制されて、エンジン10の燃費の悪化を抑制することができる。また、ランキンサイクル2Bの運転機会が大幅に減少してしまうことも抑制できる。
 ここで、前記第1実施形態と同様、ランキンサイクル2Bの出力Trの積算値の絶対値│Σ(Tr)│が、閾値TH2(係数K<1.0、好ましくはK=0.5)以上であり、かつ、前記出力Trが減少傾向にある場合に膨張機クラッチ35及びポンプクラッチ37をOFFするようにしてもよい。また、ランキンサイクル2Bの出力Trが負であり、かつ、前記出力Trのさらなる減少が予測される場合(エンジン10の回転数が所定量以上増加した場合等)に膨張機クラッチ35及びポンプクラッチ37をOFFするようにしてもよい。さらに、これらを適宜組み合わせて適用してもよい。すなわち、ランキンサイクル2Bの運転時のその出力が負であるときにランキンサイクル2Bによって消費される動力が、ランキンサイクル2Bの起動時に必要な動力以上となることが予測されたときに、膨張機クラッチ35及びポンプクラッチ37をOFF(非締結)としてランキンサイクル2Bを停止させるようにしてもよい。
〔第3実施形態〕
 次に、本発明の第3実施形態について説明する。
 図7は、本発明の第3実施形態による排熱回収装置1Cの概略構成を示している。
 前記第2実施形態による排熱回収装置1Bでは、ランキンサイクルの構成要素であるポンプ25がエンジン10によって駆動される機械式ポンプとして構成されている。これに対し、第3実施形態による排熱利用装置1Cでは、ランキンサイクルを構成するポンプが図示省略したバッテリからの電力によって駆動される電動ポンプ29として構成されている。なお、第1実施形態(図1)及び/又は第2実施形態(図5)と同一の要素については同一の符号を付しており、その機能も同様であるものとする。
 図7に示すように、第3実施形態による排熱回収装置1Cは、冷媒を循環させるポンプとして電動ポンプ29を有するランキンサイクル2Cと、動力伝達機構3Cと、制御ユニット4Cと、を含む。ランキンサイクル2Cの構成は、ポンプを除き、第2実施形態におけるランキンサイクル2Bと同じであるので、その説明を省略する。なお、電動ポンプ29の作動は、制御ユニット4Cによって制御される。
 また、動力伝達機構3Cは、エンジン10のクランクシャフト10aに取り付けられたクランクプーリ33と、膨張機クラッチ35と、膨張機クラッチ35を介して膨張機23の出力軸23aに取り付けられた膨張機プーリ36と、クランクプーリ33及び膨張機プーリ36に巻回されたベルト40と、を有する。
 制御ユニット4Cは、ランキンサイクル2Cの起動条件が成立すると、まず前記バッテリから電動ポンプ29に電力を供給して電動ポンプ29を作動させ、その後、膨張機23が所定のトルクを発生する状態となると膨張機クラッチ35をONする。前記起動条件については、前記第1、第2実施形態と同様である。
 電動ポンプ29は、前記バッテリからの電力によって駆動されるものの、その際に消費した電力分をエンジン10によって(再)充電する必要がある。このため、ランキンサイクル2Cの起動時において、ランキンサイクル2C(主に電動ポンプ29)は結果的にエンジン10の負荷となる。なお、「膨張機23が十分なトルクを発生する状態」とは、例えば、電動ポンプ29によって消費されるバッテリ電力分を充電するためのエンジン10の負荷に相当するトルク(以下単に「負荷相当トルク」という)を膨張機23が発生する状態であり、この状態が、ランキンサイクル2Cの出力が「正」となる状態である。
 また、起動完了後のランキンサイクル2Cの通常運転時に、例えば、膨張機23の上流側の冷媒過熱度が十分でない場合や凝縮器24の熱負荷が大きい場合などにおいては、膨張機23前後の圧力差が十分取れない。このような場合、膨張機23は、前記負荷相当トルクを発生することができず、すなわち、電動ポンプ29に電力消費分を前記バッテリ等に充電するためのエンジン10の負荷をアシストできず、エンジン10にとっては電動ポンプ29を含めたランキンサイクル2Cが負荷となる。すなわち、ランキンサイクル2Cの出力が「負」となる。
 したがって、本実施形態において、制御ユニット4Cは、所定周期毎にランキンサイクル2Cの出力Tr(=膨張機23のトルクTex-前記負荷相当トルク)を演算し、起動完了後のランキンサイクル2Cの通常運転時に、ランキンサイクル2Cの出力(トルク)がゼロ又は負である状態が継続した場合に又は負である状態が継続することが予測される場合に、ONされている膨張機クラッチ35をOFFとする。
 具体的には、制御ユニット4Cは、第1、第2実施形態と同様、ランキンサイクル2Cの運転時にその出力が負である場合におけるランキンサイクル2Cの消費動力(又はその相関値)が、ランキンサイクル2Cの起動時の消費動力(又はその相関値)以上となった場合又はそうなることが予測される場合に、ONされている膨張機クラッチ35をOFFとしてランキンサイクル2Cを停止させる。
 なお、本実施形態において、ランキンサイクル2Cの起動時における消費動力とは、停止状態にあるランキンサイクル2Cを起動させてから(電動ポンプ29の駆動開始から)、ランキンサイクル2Cの出力Trが「正」となるまでの間にランキンサイクル2C(主に電動ポンプ29)によって消費される動力のことをいう。
 また、本実施形態において、制御ユニット4Cは、第2実施形態における、ポンプ25の回転数Npを電動ポンプ29の回転数と読み替え、ポンプの駆動トルクTpを前記負荷相当トルクと読み替え、閾値TH2を閾値TH3と読み替え、「ポンプクラッチ37をOFFする」を「電動ポンプ29を停止する」と読み替えて、クラッチ制御(図6参照)を実施することができる。
 この場合において、前記負荷相当トルクは、例えば次のようにして算出することができる。すなわち、電動ポンプ29の回転数と前記負荷相当トルクとが対応付けられた負荷相当トルクマップを予め設定しておき、電動ポンプ29の回転数に基づいて前記負荷相当トルクマップを参照することよって前記負荷相当トルクを算出する。また、閾値TH3については、ランキンサイクル2Cが起動してから(電動ポンプ29の駆動開始から)、ランキンサイクル2Cの出力Trが正となるまでの間における各出力Tr(=0-負荷相当トルク)の積算値、当該絶対値の1/2、又はこれらの間の所定値、換言すれば、各出力Trの積算値の絶対値に所定の係数K(0.5~1.0)乗算した値を閾値TH3とすることができる。その他については、基本的に第2実施形態と同様である。
 以上、本発明の実施形態及び変形例について説明したが、本発明は上述の実施形態やその変形例に限定されるものではなく、本発明の技術的思想に基づいてさらなる変形や変更が可能であることはもちろんである。
 1A,1B,1C…排熱回収装置、2A,2B,2C…ランキンサイクル、3A,3B,3C…動力伝達機構、4A,4B,4C…制御ユニット、10…エンジン、21…冷媒循環路、22…過熱器、23…膨張機、24…凝縮器、25…ポンプ(機械式ポンプ)、27…ポンプ一体型膨張機、29…電動ポンプ、31…電磁クラッチ、35…膨張機クラッチ、37…ポンプクラッチ、50…膨張ユニット(膨張機)、51…固定スクロール、52…可動スクロール、54…自転阻止機構、60…ポンプユニット(機械式ポンプ)、101,102…圧力センサ、103,104,105…回転センサ

Claims (13)

  1.  冷媒の循環路に、エンジンの排熱によって冷媒を加熱して気化させる加熱器、この加熱器を経由した冷媒を膨張させて動力を発生する膨張機、この膨張機を経由した冷媒を凝縮させる凝縮器、及び、この凝縮器を経由した冷媒を前記加熱器へと送出するポンプが配設されたランキンサイクルと、
     クラッチを有し、当該クラッチの締結時に前記エンジンと前記ランキンサイクルとの間で動力の伝達が可能な動力伝達機構と、
     前記ランキンサイクルの起動時における消費動力に相関する第1相関値と、前記ランキンサイクルの起動後の運転時にその出力が負である場合における前記ランキンサイクルの消費動力に相関する第2相関値とに基づいて、前記クラッチの締結/非締結を制御するクラッチ制御部と、
     を有する、排熱回収装置。
  2.  前記クラッチ制御部は、前記クラッチの締結時に、前記第2相関値の絶対値が前記第1相関値の絶対値以上である場合に前記クラッチを非締結とする、請求項1に記載の排熱回収装置。
  3.  前記クラッチ制御部は、前記クラッチの締結時に、前記第2相関値の絶対値が前記第1相関値の絶対値以上であり、かつ、前記ランキンサイクルの出力が減少傾向にある場合に、前記クラッチを非締結とする、請求項1又は2に記載の排熱回収装置。
  4.  前記ランキンサイクルの出力を演算する出力演算部を有し、
     前記第1相関値及び前記第2相関値は、前記出力演算部からの出力に基づいて算出される、請求項1~3のいずれか一つに記載の排熱回収装置。
  5.  前記ランキンサイクルの起動時における消費動力は、前記ランキンサイクルが起動してから前記ランキンサイクルの出力が正となるまでの間の前記ランキンサイクルの出力の積算値であり、
     前記ランキンサイクルの起動後の運転時にその出力が負である場合における前記ランキンサイクルの消費動力は、前記ランキンサイクルの運転時における当該ランキンサイクルの負の出力の積算値である、
     請求項4に記載の排熱回収装置。
  6.  冷媒の循環路に、エンジンの排熱によって冷媒を加熱して気化させる加熱器、この加熱器を経由した冷媒を膨張させて動力を発生する膨張機、この膨張機を経由した冷媒を凝縮させる凝縮器、及び、この凝縮器を経由した冷媒を前記加熱器へと送出するポンプが配設されたランキンサイクルと、
     クラッチを有し、当該クラッチの締結時に前記エンジンと前記ランキンサイクルとの間で動力の伝達が可能な動力伝達機構と、
     前記ランキンサイクルの出力を演算する出力演算部と、
     前記クラッチの締結時に、前記ランキンサイクルの出力がゼロ又は負である状態が継続した場合に前記クラッチを非締結とするクラッチ制御部と、
     を有する、排熱回収装置。
  7.  前記クラッチ制御部は、前記クラッチの締結時に、前記ランキンサイクルの負の出力の積算値の絶対値が所定の閾値以上となった場合に前記クラッチを非締結とする、請求項6に記載の排熱回収装置。
  8.  前記クラッチ制御部は、前記クラッチの締結時に、前記ランキンサイクルの負の出力の積算値の絶対値が所定の閾値以上であり、かつ、前記ランキンサイクルの出力が減少傾向にある場合に前記クラッチを非締結とする、請求項6又は7に記載の排熱回収装置。
  9.  前記出力演算部は、前記ランキンサイクルの高圧側と低圧側の圧力差、前記膨張機の回転数、及び前記機械式ポンプの回転数に基づいて、前記ランキンサイクルの出力を演算する、請求項4~8のいずれか一つに記載の排熱回収装置。
  10.  前記ポンプは、前記エンジンによって駆動される機械式ポンプである、請求項1~9のいずれか一つに記載の排熱回収装置。
  11.  前記膨張機と前記機械式ポンプとが一体に連結されている、請求項10に記載の排熱回収装置。
  12.  前記膨張機は、固定スクロールと可動スクロールを有し、前記固定スクロールと前記可動スクロールとの間に形成される膨張室で前記冷媒が膨張することによって動力を発生するスクロール型膨張機であり、前記可動スクロールの自転を阻止するために、ボールを転動部材として用いたボールカップリング式の自転阻止機構が設けられている、請求項1~11のいずれか一つに記載の排熱回収装置。
  13.  前記クラッチ制御部は、前記クラッチの締結時において、前記膨張機に液冷媒が混入するおそれがある場合であっても、前記第2相関値の絶対値が前記第1相関値の絶対値以上となるまで又は前記ランキンサイクルの負の出力の積算値の絶対値が所定の閾値以上となるまでは前記クラッチの締結状態を維持する、請求項12に記載の排熱回収装置。
PCT/JP2014/074044 2013-09-12 2014-09-11 排熱回収装置 WO2015037653A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/021,666 US9970329B2 (en) 2013-09-12 2014-09-11 Exhaust heat recovery device
CN201480050191.0A CN105531448A (zh) 2013-09-12 2014-09-11 排热回收装置
DE112014004215.3T DE112014004215B4 (de) 2013-09-12 2014-09-11 Abwärme-Rückgewinnungseinrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-189101 2013-09-12
JP2013189101A JP6207941B2 (ja) 2013-09-12 2013-09-12 排熱回収装置

Publications (1)

Publication Number Publication Date
WO2015037653A1 true WO2015037653A1 (ja) 2015-03-19

Family

ID=52665753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074044 WO2015037653A1 (ja) 2013-09-12 2014-09-11 排熱回収装置

Country Status (5)

Country Link
US (1) US9970329B2 (ja)
JP (1) JP6207941B2 (ja)
CN (1) CN105531448A (ja)
DE (1) DE112014004215B4 (ja)
WO (1) WO2015037653A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6495608B2 (ja) * 2014-10-09 2019-04-03 サンデンホールディングス株式会社 廃熱回収装置
DE112016005346T5 (de) * 2015-12-21 2018-08-02 Cummins Inc. Abwärmerückgewinnungsantrieb
DE102017101288A1 (de) 2017-01-24 2018-07-26 Karlsruher Institut für Technologie Verbrennungskraftmaschine mit fluidisch gekühltem Abgasturbolader und Abgaswärmetauscher
DE102018201110A1 (de) 2017-04-06 2018-10-11 Mahle International Gmbh Kraftmaschinenanordnung
JP6604355B2 (ja) * 2017-04-28 2019-11-13 トヨタ自動車株式会社 廃熱回収装置
DE102017209567A1 (de) * 2017-06-07 2018-12-13 Mahle International Gmbh Kraftmaschinenanordnung
CN108457729A (zh) * 2018-01-31 2018-08-28 中国第汽车股份有限公司 一种发动机废气能量回收利用装置及废气能量回收方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274834A (ja) * 2007-04-27 2008-11-13 Sanden Corp 流体機械、該流体機械を用いたランキン回路及び車両の廃熱利用システム
JP2010190185A (ja) * 2009-02-20 2010-09-02 Nissan Motor Co Ltd ランキンサイクルシステム搭載車両
JP2012026452A (ja) * 2011-09-26 2012-02-09 Sanden Corp 流体機械、該流体機械を用いたランキン回路及び車両の廃熱利用システム
JP2012041933A (ja) * 2011-10-25 2012-03-01 Sanden Corp ランキン回路及び車両の廃熱利用システム
JP2012193690A (ja) * 2011-03-17 2012-10-11 Sanden Corp 自動車用廃熱利用システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962056B2 (en) * 2002-11-13 2005-11-08 Carrier Corporation Combined rankine and vapor compression cycles
US20080087017A1 (en) * 2006-10-16 2008-04-17 Van Nimwegen Robert R Van Nimwegen efficient pollution free internal combustion engine
JP2010101283A (ja) * 2008-10-27 2010-05-06 Toyota Motor Corp 廃熱回収装置
JP2011214480A (ja) * 2010-03-31 2011-10-27 Sanden Corp 内燃機関の廃熱利用装置
KR101325429B1 (ko) * 2011-03-24 2013-11-04 가부시키가이샤 고베 세이코쇼 동력 발생 장치 및 그 제어 방법
US9316141B2 (en) * 2013-02-15 2016-04-19 Enis Pilavdzic Engine energy management system
US9657603B2 (en) * 2013-07-15 2017-05-23 Volvo Truck Corporation Internal combustion engine arrangement comprising a waste heat recovery system and process for controlling said system
JP2015086778A (ja) * 2013-10-30 2015-05-07 いすゞ自動車株式会社 エンジン冷却システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274834A (ja) * 2007-04-27 2008-11-13 Sanden Corp 流体機械、該流体機械を用いたランキン回路及び車両の廃熱利用システム
JP2010190185A (ja) * 2009-02-20 2010-09-02 Nissan Motor Co Ltd ランキンサイクルシステム搭載車両
JP2012193690A (ja) * 2011-03-17 2012-10-11 Sanden Corp 自動車用廃熱利用システム
JP2012026452A (ja) * 2011-09-26 2012-02-09 Sanden Corp 流体機械、該流体機械を用いたランキン回路及び車両の廃熱利用システム
JP2012041933A (ja) * 2011-10-25 2012-03-01 Sanden Corp ランキン回路及び車両の廃熱利用システム

Also Published As

Publication number Publication date
JP2015055195A (ja) 2015-03-23
JP6207941B2 (ja) 2017-10-04
DE112014004215B4 (de) 2022-05-25
DE112014004215T5 (de) 2016-05-25
US9970329B2 (en) 2018-05-15
CN105531448A (zh) 2016-04-27
US20160230607A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
JP6207941B2 (ja) 排熱回収装置
JP5804879B2 (ja) 廃熱利用装置
JP5999652B2 (ja) 排熱回収装置
EP2762690B1 (en) Engine-waste-heat utilization device
WO2010029905A1 (ja) 排熱利用装置
US9599015B2 (en) Device for utilizing waste heat from engine
JP5333659B2 (ja) 廃熱回生システム
JP6097115B2 (ja) 排熱回収装置
US9518480B2 (en) Exhaust heat recovery device
JPWO2013046885A1 (ja) ランキンサイクル
US20140174087A1 (en) Rankine cycle system
WO2013046888A1 (ja) ランキンサイクル
JP2010190185A (ja) ランキンサイクルシステム搭載車両
JP2011214480A (ja) 内燃機関の廃熱利用装置
WO2015174497A1 (ja) エンジンの廃熱利用装置
US20170107861A1 (en) Apparatus for Utilizing Heat Wasted from Engine
CN107896502B (zh) 用于控制内燃机的废热利用系统的方法
KR101766028B1 (ko) 폐열회수시스템의 회수에너지 전달장치
JP2013119831A (ja) 動力回収装置
WO2014157298A1 (ja) 排熱回収装置
JP6408249B2 (ja) エンジンの廃熱利用装置
WO2014103825A1 (ja) ランキンサイクルシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050191.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843808

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15021666

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140042153

Country of ref document: DE

Ref document number: 112014004215

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843808

Country of ref document: EP

Kind code of ref document: A1