WO2015037596A1 - 酸化物半導体薄膜の評価装置 - Google Patents

酸化物半導体薄膜の評価装置 Download PDF

Info

Publication number
WO2015037596A1
WO2015037596A1 PCT/JP2014/073865 JP2014073865W WO2015037596A1 WO 2015037596 A1 WO2015037596 A1 WO 2015037596A1 JP 2014073865 W JP2014073865 W JP 2014073865W WO 2015037596 A1 WO2015037596 A1 WO 2015037596A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation light
oxide semiconductor
thin film
semiconductor thin
sample
Prior art date
Application number
PCT/JP2014/073865
Other languages
English (en)
French (fr)
Inventor
林 和志
智弥 岸
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US14/917,452 priority Critical patent/US20160223462A1/en
Priority to KR1020167006238A priority patent/KR101648696B1/ko
Priority to EP14844691.7A priority patent/EP3046141B1/en
Priority to CN201480050138.0A priority patent/CN105518843B/zh
Publication of WO2015037596A1 publication Critical patent/WO2015037596A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0696Pulsed
    • G01N2201/0697Pulsed lasers

Definitions

  • the present invention relates to an evaluation apparatus for an oxide for a semiconductor layer (hereinafter referred to as an “oxide semiconductor thin film”) of a thin film transistor (TFT: Thin Film Transistor) used in a display device such as a liquid crystal display or an organic EL display.
  • an oxide semiconductor thin film a semiconductor layer
  • TFT Thin Film Transistor
  • the present invention relates to a non-contact evaluation apparatus for mobility and stress resistance of an oxide semiconductor thin film.
  • An amorphous oxide semiconductor thin film has higher carrier mobility than a general-purpose amorphous silicon (hereinafter referred to as “a-Si”), a large optical band gap, and can be formed at a low temperature. Therefore, it is expected to be applied to next-generation displays that require large size, high resolution, and high-speed driving, and resin substrates with low heat resistance.
  • a-Si general-purpose amorphous silicon
  • oxide semiconductor thin films in particular, including at least one of indium (In), gallium (Ga), zinc (Zn), tin (Sn), etc.
  • oxide semiconductor thin films including at least one of indium (In), gallium (Ga), zinc (Zn), tin (Sn), etc.
  • An amorphous oxide semiconductor thin film such as Sn—O has a very high carrier mobility and is preferably used for a TFT.
  • the mobility of the oxide semiconductor varies due to lattice defects generated in the film formation process and impurities such as hydrogen in the film, which may adversely affect the TFT characteristics.
  • the oxide semiconductor thin film has a problem that its electrical characteristics are likely to fluctuate and its reliability is low as compared with the case of using a-Si.
  • a positive voltage continues to be applied to the gate electrode of the driving TFT while the organic EL element emits light, but the charge is trapped at the interface between the gate insulating film and the semiconductor layer due to the voltage application.
  • the threshold voltage hereinafter referred to as “Vth” changes and the switching characteristics change.
  • the mobility of the deposited oxide semiconductor thin film and the threshold voltage shift amount (hereinafter referred to as “ ⁇ Vth”) are accurately measured and estimated, and the oxide semiconductor thin film From the viewpoint of improving productivity, it is important to evaluate the characteristics of the film and feed back the results to adjust the manufacturing conditions and perform quality control of the film quality.
  • a gate insulating film or a passivation insulating film is usually formed on an oxide semiconductor thin film and electrodes are attached, and then characteristics such as mobility and threshold are measured. Yes.
  • the contact-type characteristic evaluation method that requires electrode attachment requires time and cost for electrode attachment.
  • a new defect may be generated in the oxide semiconductor thin film by attaching the electrode. From the viewpoint of improving the production yield, a non-contact type characteristic evaluation method that does not require electrode attachment is required.
  • the present applicant uses an evaluation method by a microwave photoconductive decay method and the evaluation method as shown in Patent Document 1.
  • An evaluation device is disclosed. This technique irradiates a sample on which an oxide semiconductor thin film is formed with a laser, calculates a lifetime value by measuring a change in the reflectance of the microwave that changes in accordance with excess carriers excited by the laser irradiation. The mobility of oxide semiconductor thin films is evaluated.
  • Patent Document 1 does not require electrode attachment to a semiconductor thin film, and can measure the mobility of a semiconductor thin film with high accuracy in a short time.
  • Patent Document 1 cannot evaluate stress tolerance. For this reason, stress tolerance has been evaluated by an NBTI (Negative Bias Temperature Instability) test that still requires electrode attachment.
  • NBTI Negative Bias Temperature Instability
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to measure mobility and stress resistance as electrical characteristics of an oxide semiconductor thin film in a non-contact type, accurately, and simply with the same apparatus.
  • An object of the present invention is to provide an evaluation apparatus that can perform evaluation including prediction and estimation of electrical characteristics.
  • the apparatus for evaluating an oxide semiconductor thin film according to the present invention provides a measurement site of a sample on which the oxide semiconductor thin film is formed by irradiating a first excitation light in the oxide semiconductor thin film From the first excitation light irradiating means for generating electron-hole pairs, the electromagnetic wave irradiating means for irradiating the measurement site of the sample with an electromagnetic wave, and the sample of the electromagnetic wave changing by the irradiation of the first excitation light.
  • Reflected electromagnetic wave intensity detecting means for detecting the reflected electromagnetic wave intensity
  • second excitation light irradiating means for generating photoluminescence light from the oxide semiconductor thin film by irradiating the sample with second excitation light
  • the photoluminescence light Emission intensity measurement means for measuring emission intensity, detection data of the reflected electromagnetic wave intensity detection means, and mobility of the sample based on measurement data of the emission intensity measurement means
  • stress And evaluating means for evaluating sex, provided with a, wherein a first excitation light illumination means second excitation light illumination means includes a summary to be identical or different excitation light emitting means.
  • the first excitation light irradiation means preferably includes a light source that outputs energy equal to or higher than a band gap of the oxide semiconductor thin film
  • the second excitation light irradiation means includes the oxide It is also a preferable embodiment to have a light source that outputs energy corresponding to a defect level existing in the band gap of the semiconductor thin film.
  • the second excitation light irradiation unit preferably includes a light source that outputs energy for exciting only photoluminescence light having a specific wavelength from the oxide semiconductor thin film.
  • an optical path switching unit that changes an optical path of the first excitation light and / or the second excitation light is provided on an optical path of the first excitation light and the second excitation light.
  • the optical path switching means is preferably installed so that the first excitation light and the second excitation light irradiate the same or different measurement locations of the sample.
  • a waveguide for guiding the first excitation light and the electromagnetic wave to the measurement site of the sample is provided, and the side surface of the waveguide near the sample-side opening is provided with the first excitation light and the electromagnetic wave. It is also a preferred embodiment that an inlet for double excitation light is provided.
  • the present invention it is possible to provide an apparatus for predicting, estimating and evaluating the mobility and stress resistance of an oxide semiconductor thin film accurately and simply in a non-contact manner.
  • mobility and stress resistance can be evaluated with the same device.
  • the evaluation apparatus installation cost is low and the installation space for the evaluation apparatus can be reduced.
  • the electrical characteristics of an oxide semiconductor thin film can be performed in-line in a short time and in a non-contact manner in a production line such as a liquid crystal display device, thereby improving productivity such as improvement in yield.
  • the quality of the oxide semiconductor can be appropriately controlled.
  • FIG. 1 is a schematic explanatory view showing an example of the evaluation apparatus of the present invention.
  • FIG. 2 is a schematic explanatory view showing another example of the evaluation apparatus of the present invention.
  • FIG. 3 is a schematic explanatory view showing another example of the evaluation apparatus of the present invention.
  • FIG. 4 is a schematic explanatory diagram regarding the collection of photoluminescence light using an ellipsoidal mirror.
  • FIG. 5 is a schematic explanatory diagram of a waveguide provided with a second excitation light entrance near the waveguide tip opening.
  • the present applicant has previously proposed an evaluation method using a microwave photoconductive decay method as a technique for evaluating the mobility of an oxide semiconductor thin film.
  • the evaluation method by the microwave photoconductive decay method is a non-contact type measurement that does not require electrode attachment and can be measured in a short time. Therefore, in the present invention, the mobility should be evaluated by a known microwave photoconductive decay method. It was.
  • FIG. 1 is a schematic explanatory view showing an example of an evaluation apparatus used for evaluating the mobility and stress resistance of an oxide semiconductor thin film.
  • the evaluation apparatus shown in FIG. 1 includes a first excitation light irradiation means 1 such as a pulsed laser that irradiates a measurement site of a sample 20 composed of an oxide semiconductor thin film and a substrate with a first excitation light, a microwave (hereinafter referred to as “electromagnetic wave”).
  • the electromagnetic wave irradiating means 3 such as a microwave oscillator for irradiating the electromagnetic wave
  • the reflected electromagnetic wave intensity detecting means such as a mixer for detecting the intensity of the reflected electromagnetic wave from the sample 20 of the microwave changing by the irradiation of the first excitation light.
  • the mobility can be measured by this configuration.
  • the second excitation light irradiation means 2 such as a pulse laser or a CW laser that irradiates the second excitation light to the measurement site that is the same as or different from the measurement site of the electromagnetic wave intensity of the sample 20, and the photo generated by the irradiation of the second excitation light.
  • Emission intensity measuring means 19 for measuring the emission intensity of the luminescence light is provided, and stress resistance can be measured by this configuration.
  • An evaluation means 9 is provided for evaluating the mobility and stress resistance of the sample based on the detection data of the reflected electromagnetic wave intensity and the measurement data of the emission intensity.
  • the apparatus configuration for evaluating the mobility includes the first excitation light irradiation means 1, the electromagnetic wave irradiation means 3, the reflected electromagnetic wave intensity detection means 7, and the evaluation means 9 in the configuration shown in FIG.
  • Preferred configurations include a directional coupler 4, a phase adjuster 4a, a magic T (5), a first waveguide-6a that is a signal waveguide, a second waveguide-6b that is a reference waveguide, A signal processing device 8, a stage controller 10, an XY stage 11, a sample stage (not shown), a substrate holder (not shown), an optical path changing means 12 such as a mirror, and a condensing means 16 such as a condenser lens.
  • a directional coupler 4 includes a directional coupler 4, a phase adjuster 4a, a magic T (5), a first waveguide-6a that is a signal waveguide, a second waveguide-6b that is a reference waveguide, A signal processing device 8, a stage controller 10, an XY stage 11,
  • the sample 20 is composed of a substrate made of glass or the like and an oxide semiconductor thin film formed on the excitation light irradiation side of the surface thereof.
  • the kind of the oxide semiconductor is not particularly limited, and for example, an amorphous oxide semiconductor made of a combination of at least one selected from the group consisting of In, Ga, Zn, and Sn is used.
  • the oxide semiconductor include In oxide, In—Sn oxide, In—Zn oxide, In—Sn—Zn oxide, In—Ga oxide, Zn—Ga oxide, and In—Ga—Zn oxide. Zn oxide and the like.
  • the oxide semiconductor thin film may have a thickness of about several tens to 100 nm.
  • a glass substrate for a liquid crystal display device having a thickness of about 0.7 mm and a size exceeding several tens of cm 2 to several m 2 called a first generation to a tenth generation. Can be used.
  • the sample 20 has a portion A where the oxide semiconductor thin film is formed directly on the substrate and a metal film such as molybdenum is formed on the substrate, and the oxide semiconductor thin film is formed thereon.
  • a portion B may be included, and a sample having such portions A and B is referred to as a sample 20a. Since the oxide semiconductor thin film is directly formed on the substrate in the portion A of the sample 20a, reflection of microwaves can be prevented and mobility can be measured with high sensitivity. In addition, since the portion B of the sample 20a can avoid generation of luminescence light from the substrate when the sample is irradiated with excitation light, the evaluation accuracy of stress resistance is further improved.
  • the second excitation light for evaluating stress resistance at the same location as the measurement site of the first excitation light for evaluating mobility. Can be irradiated. It is preferable to irradiate the same place with the first and second excitation lights because the mobility and stress resistance at the same place can be evaluated.
  • the first excitation light irradiation means 1 has a light source that outputs the first excitation light irradiated to the sample 20, and generates electron-hole pairs in the oxide semiconductor thin film by irradiation with the first excitation light. It is.
  • the light emitting device has a light source that outputs excitation light having energy higher than that of the band cap of the oxide semiconductor thin film. It is preferable because energy can be efficiently generated by outputting energy higher than the band cap of the oxide semiconductor thin film and can be measured with high sensitivity.
  • an ultraviolet laser may be used as the light source as the first excitation light irradiating means for outputting energy of the band gap or more.
  • a semiconductor laser such as a pulse laser that emits YLF laser third harmonic, which is a pulsed ultraviolet light having a wavelength of 349 nm, a power of 1 ⁇ J / pulse, a pulse width of about 15 ns, and a beam diameter of about 1.5 mm, as excitation light.
  • a semiconductor laser such as a pulse laser that emits YLF laser third harmonic, which is a pulsed ultraviolet light having a wavelength of 349 nm, a power of 1 ⁇ J / pulse, a pulse width of about 15 ns, and a beam diameter of about 1.5 mm, as excitation light.
  • the first excitation light irradiation means 1 outputs a pulsed light as the first excitation light triggered by the input of a timing signal transmitted from the evaluation means 9 as indicated by a broken line in the figure.
  • the timing signal is also transmitted to the signal processing device 8 at the same time.
  • the first excitation light output from the first excitation light irradiating means 1 is reflected by an optical path changing means (hereinafter, represented by a mirror) 12 such as a mirror, and is condensed by a condensing means (hereinafter, a condenser lens).
  • a condensing means hereinafter, a condenser lens
  • a condenser lens which is condensed by 16 represented by a condensing lens, passes through a minute opening 6 c provided in the first waveguide 6 a, and is an opening at the end of the first waveguide 6 a that is close to the sample 20.
  • the measurement site of the sample 20 for example, a spot having a diameter of about 5 to 10 ⁇ m is irradiated.
  • the mirror 12 and the condensing lens 16 condense the first excitation light output from the first excitation light irradiation means 1 and guide it to the measurement site of the sample 20.
  • excitation carriers are generated at the measurement site in the sample 20 which is a minute excitation light irradiation region.
  • the electromagnetic wave irradiation means 3 is an electromagnetic wave irradiation means for outputting a microwave that is an electromagnetic wave to be irradiated to a measurement site in a portion including the excitation portion by the first excitation light of the sample 20.
  • Examples of the electromagnetic wave irradiation means 3 include a microwave oscillator such as a Gunn diode having a frequency of 26 GHz.
  • the directional coupler 4 branches the microwave output from the electromagnetic wave irradiation means 3 into two.
  • One output wave after branching (hereinafter referred to as the first microwave Op1) is transmitted to the magic T (5) side, and the other output wave (hereinafter referred to as the second microwave Op2) is transmitted to the phase adjuster 4a and the reflected electromagnetic wave. It is transmitted to the LO input terminal of the intensity detecting means 7.
  • this directional coupler 4 for example, a 10 dB coupler or the like is employed.
  • the magic T (5) branches the first microwave Op1 into two branches, and also includes a difference signal Rt1 (hereinafter referred to as a reflected wave difference signal) and a sum signal of the reflected waves with respect to the sample 20 of each of the two branched first microwaves. Is output.
  • a difference signal Rt1 hereinafter referred to as a reflected wave difference signal
  • One of the first microwaves Op1 bifurcated by the magic T (5) (hereinafter referred to as the first main microwave Op11) is supplied to the sample 20 by the first waveguide 6a connected to the magic T (5). It is guided to the part including the excitation part, which is the measurement site, and is emitted from the opening 6d at the tip. Thereby, the measurement site
  • the first waveguide 6a transmits the reflected wave of the first main microwave Op11 irradiated to the measurement site at the tip opening 6d. It also functions to capture and guide back to Magic T (5).
  • the other one of the first microwaves Op1 bifurcated by the magic T (5) (hereinafter referred to as the first sub-microwave Op12) is sampled by the second waveguide 6b connected to the magic T (5).
  • the light is guided to the vicinity of the measurement site 20a, that is, the portion not including the excitation portion by the excitation light, and is emitted from the opening 6e at the tip.
  • the 1st submicrowave Op12 is irradiated to the vicinity of the measurement site
  • the second waveguide 6b transmits the reflected wave of the first sub-microwave Op12 irradiated in the vicinity of the measurement site at its tip opening. It also functions to capture at 6e and guide it back to magic T (5).
  • the path length through which the first waveguide 6a guides the microwave and the path length through which the second waveguide 6b guides the microwave are the same path length and are equal.
  • a reflected wave difference signal Rt 1 as a signal is output by the magic T (5) and transmitted to the RF input terminal of the reflected electromagnetic wave intensity detecting means 7.
  • the reflected electromagnetic wave intensity detecting means 7 outputs the detection signal Sg1 by mixing the second microwave Op2 and the reflected wave difference signal Rt1.
  • the detection signal Sg1 is a signal that represents an example of the intensity of the reflected wave difference signal Rt1, for example, the intensity of the reflected wave of the first microwave Op1 irradiated on the sample 20, and is taken into the signal processing device 8.
  • the intensity of the reflected wave difference signal Rt1 changes due to irradiation of excitation light to the sample 20 held at a predetermined position by a substrate holding unit (not shown).
  • the reflected electromagnetic wave intensity detecting means 7 detects the intensity of the reflected wave difference signal Rt1, and the reflected electromagnetic wave intensity detecting means 7 is a mixer, a current input in accordance with the intensity of the microwave, A microwave detector or (detector) that outputs an electrical signal such as a voltage may be provided.
  • the intensity of the reflected wave difference signal Rt1 detected by the reflected electromagnetic wave intensity detecting means 7 changes due to the irradiation of the first excitation light to the measurement site of the sample 20. Specifically, the intensity of the reflected wave difference signal Rt1 is attenuated after being temporarily increased by irradiation with (pulse light) corresponding to the first excitation light. Further, as the measurement site has more impurities, defects, and the like, the peak value of the intensity of the reflected wave difference signal Rt1 becomes smaller and the decay time (carrier life) becomes shorter.
  • the peak value and the time from when the peak occurs until it attenuates to a predetermined level (attenuation time: lifetime value). This is an index value for evaluating the mobility of the sample 20.
  • the signal processing device 8 is a device that detects the peak value Sp of the intensity change of the reflected wave difference signal Rt1 detected by the reflected electromagnetic wave intensity detection means 7 and transmits the detection result to the evaluation means 9. More specifically, the signal processing device 8 monitors the change of the reflected wave difference signal Rt1 for a predetermined time using the input of the timing signal from the evaluation unit 9 as a trigger, and the maximum value of the level of the reflected wave difference signal Rt1 obtained during that time Is detected as the peak value Sp of the intensity change of the reflected wave difference signal Rt1.
  • the signal processing device 8 includes a delay circuit that performs a delay process on the reflected wave difference signal Rt1, detects the signal intensity sequentially at a predetermined sampling frequency with respect to the signal after the delay process, and changes in the detected value The peak value Sp of the intensity change of the reflected wave difference signal Rt1 is detected.
  • a computer including a CPU, a storage unit, an input / output signal interface, and the like can be used, and the CPU executes various processes by executing predetermined programs.
  • the evaluation unit 9 outputs a timing signal indicating the output timing of the excitation light to the first excitation light irradiation unit 1 and the signal processing device 8, and the reflected wave difference signal Rt 1 detected by the signal processing device 8.
  • the peak value Sp is taken in and recorded in the storage unit provided in the evaluation means 9.
  • the recorded reflected wave difference signal Rt1 corresponding to the detection data is used for evaluating the carrier mobility of the sample 20.
  • stage controller 10 controls the positioning of the measurement site in the sample 20 by controlling the XY stage 11 in accordance with a command from the evaluation means 9.
  • a sample stage (not shown) is provided above the XY stage 11.
  • the sample stage is a plate-like member (hereinafter also referred to as “conductor member”) made of a metal such as aluminum, stainless steel or iron, or other conductors.
  • a substrate holder (not shown) is provided on the upper side, and the sample 20 is placed on the substrate holder. Thereby, the sample stage is arranged on the lower side of the sample 20 on the opposite side to the side irradiated with the first microwaves Op11 and Op12.
  • the substrate holding part is a solid dielectric fixed on the upper side of the sample stage.
  • the substrate holding part is a solid dielectric inserted between a substrate as a sample and a sample table as a conductor member, and the material thereof is a dielectric having a relatively large refractive index such as glass or ceramic.
  • photoexcited carriers are generated in the oxide semiconductor thin film by the first excitation light irradiated from the first excitation light irradiation means 1 and the electromagnetic wave irradiation means.
  • the photoexcited carriers move in the microwave electric field irradiated from 3, and the movement state is affected by the presence of impurities, defects, etc. in the semiconductor.
  • the reflected electromagnetic wave intensity detection means 7 detects the intensity of the reflected microwave from the sample, and the evaluation means 9 analyzes it to evaluate the mobility.
  • the mobility can be evaluated by a value at which the intensity of the reflected microwave reaches a peak.
  • the evaluation means 9 can also perform mapping measurement for determining crystallinity within a predetermined range by controlling the position of the stage including the XY table 11 and the like.
  • the apparatus configuration for evaluating the stress tolerance is composed of the second excitation light irradiation means 2, the emission intensity measurement means 19, and the stress tolerance evaluation means 9 in the configuration shown in FIG. 1.
  • the optical path changing means is movable, it is desirable because the optical path can be changed to a desired angle.
  • subjected the same number as the apparatus structure of the said mobility may abbreviate
  • the second excitation light irradiation means 2 has a light source that outputs the second excitation light irradiated to the sample 20, and generates photoluminescence light from the oxide semiconductor thin film by irradiation of the second excitation light.
  • the light source preferably outputs energy corresponding to a defect level existing in the band gap of the oxide semiconductor thin film. By outputting energy corresponding to the defect level existing in the band gap of the oxide semiconductor thin film, the defect level related to light emission in the band gap can be observed. It is also preferable to have a light source that outputs energy for exciting only photoluminescence light having a specific wavelength of 1.6 to 1.9 eV, for example, from the oxide semiconductor thin film. This is because the emission intensity observed in the range of 1.6 to 1.9 eV and ⁇ Vth generally have a good correlation and are suitable for the evaluation of stress tolerance.
  • an ultraviolet laser may be used as a light source.
  • a semiconductor laser or the like that emits, as excitation light, a YLF laser third harmonic wave that is pulsed ultraviolet light having a wave of 349 nm, a pulse laser power of 1 ⁇ J / pulse, a pulse width of about 15 ns, and a beam diameter of about 1.5 mm Is preferably used.
  • a He—Cd laser, an argon ion laser, or the like can be used as a laser light source capable of irradiating continuous light.
  • the pulse light that is the second excitation light is triggered by the input of the timing signal indicated by the broken line in the figure transmitted from the evaluation means 9. Output.
  • an ON signal such as TTL high is transmitted from the evaluation means 9 and the laser is output for a required time, for example, 100 mS for several seconds.
  • the second excitation light irradiated from the second excitation light irradiation means 2 is irradiated to the sample 20 through the same optical path as the first excitation light. It is preferable that a condensing lens 16 is provided in the optical path, whereby the emitted luminescence light can be collected efficiently.
  • the second excitation light output from the second excitation light irradiation means 2 is sequentially reflected by the mirrors 13, 14, and 12 and is condensed by the condenser lens 16, and is reflected on the first waveguide 6 a.
  • the measurement portion of the sample 20 that is the same as the first excitation light is irradiated through the opening 6d at the end of the first waveguide 6a that passes through the provided minute opening 6c and close to the sample 20.
  • photoluminescence light is excited at the measurement site which is a minute excitation light irradiation region in the sample 20.
  • the photoluminescence light emitted from the measurement site of the sample 20 by the irradiation of the second excitation light is captured by the tip opening of the light guide path 18 and guided to the emission intensity measuring means 19.
  • any light guide path can be used as long as it can guide the condensed photoluminescence light to the emission intensity measuring means 19 with low loss, and examples thereof include an optical fiber.
  • the photoluminescence light guided to the emission intensity measuring means 19 is wavelength-resolved, and the emission intensity of each spectrum is recorded.
  • the emission intensity measuring means 19 has a function of measuring the entire spectrum over the visible light region using a spectroscope, for example, and extracting the peak intensity observed in the range of 1.6 to 1.9 eV from the spectrum. It is preferable to have.
  • the emission intensity measuring means 19 includes a spectroscope, a light detection means such as a charge coupled device (CCD), a photomultiplier tube, a light receiving element, and light of only 1.6 to 1.9 eV. It is also possible to use in combination with a filter that selectively transmits.
  • the emission intensity measuring means 19 preferably includes a trigger for performing measurement in accordance with the irradiation time of the excitation light. It is possible to perform measurement with high sensitivity by measuring the intensity of the light emission intensity measuring means 19 only during the time when the laser is irradiated by the trigger signal transmitted from the evaluation means 9 to the laser.
  • the evaluation means 9 captures the spectrally separated spectrum as measurement data, analyzes the waveform, and calculates the emission intensity ratio at the set energy.
  • the evaluation means 9 outputs a timing signal indicating the output timing of the excitation light to the second excitation light irradiation means 2 and also stores the intensity value of the spectrum output by the emission intensity measurement means 19 in the evaluation means.
  • the peak intensity is calculated from a broad peak existing in the range of 1.6 to 1.9 eV. Stress tolerance can be evaluated using the obtained data.
  • the waveguide that guides the second excitation light to the measurement location of the sample 20 like the first excitation light.
  • an optical path change means suitably so that it may irradiate through the opening part 6d by the side of the sample 20 from the micro opening part 6c of the pipe
  • a second excitation light entrance 21 made of a transparent member such as glass may be provided on the side surface near the opening 6d on the sample 20 side of the first waveguide 6a.
  • the second excitation light can be irradiated to the measurement site of the first excitation light.
  • the second excitation light entrance 21 is provided with a filter 24 for preventing microwave leakage, which is a filter that transmits excitation light and does not transmit microwaves, and prevents leakage of microwaves. It is also desirable to coat the outside of the filter with a translucent member 23 having a property of transmitting excitation light such as glass.
  • the photoluminescence light is generated in the oxide semiconductor thin film by the second excitation light irradiated from the second excitation light irradiation means 2, and this photoluminescence
  • the stress tolerance can be evaluated.
  • FIG. 2 and FIG. 3 show examples using the excitation light irradiation means 1a such as a pulse laser having the functions of the first excitation light irradiation means and the second excitation light irradiation means.
  • the first excitation light for measurement and the second excitation light for evaluating stress resistance can be irradiated.
  • the excitation light irradiation unit 1a includes an output adjustment unit so as to perform energy irradiation according to each excitation light.
  • the optical paths of the first excitation light and the second excitation light may be the same, or the optical path switching means 15 is provided.
  • the optical path of the first excitation light and / or the second excitation light may be changed to irradiate different measurement sites on the sample 20a.
  • the first excitation light emitted from the excitation light irradiating means 1a changes its optical path by the mirror 12, passes through the minute opening 6c of the first waveguide 6a, and passes through the opening 6d at the measurement site of the sample 20a.
  • the part A is irradiated.
  • the second excitation light output from the excitation light irradiation means 1a changes the optical path by the optical path switching means 15, and is irradiated to the portion B which is a measurement site of the sample 20a different from the first excitation light.
  • the first excitation light emitted from the excitation light irradiation means 1a is irradiated to the measurement site of the sample 20 by changing the optical path by the mirror 14, and the second excitation light also passes through the same optical path as the first excitation light.
  • the same measurement site of the sample 20 is irradiated.
  • an optical path switching means and an optical path changing means such as a mirror can be installed as appropriate, and the first excitation light and the second excitation light can be irradiated to arbitrary places.
  • the optical path switching means 15 shown in FIG. 2 has a movable part and an optical path changing means such as a mirror, and is moved by an electric signal from the evaluation means 9 to change the optical path or block the optical path.
  • the optical path switching means 15 is fixed at a position that does not block the optical path when the first excitation light is irradiated, and the optical path switching means 15 is changed so as to change the optical path of the second excitation light to a desired angle when the second excitation light is irradiated. Can be moved.
  • the movable power of the optical path switching means 15 is not particularly limited, and known driving means such as a motor and pressurized air can be employed.
  • the mobility and stress resistance of oxide semiconductor thin films of various compositions and concentrations can be evaluated easily in a short time and at low cost in the material development stage of the oxide semiconductor thin film. It becomes possible to do. Further, when the apparatus of the present invention is used, evaluation can be performed in a non-contact manner, so that productivity such as improvement in yield can be improved, and quality control of the oxide semiconductor can be appropriately performed.
  • First excitation light irradiation means (pulse laser) 1a Excitation light irradiation means (pulse laser) 2 Second excitation light irradiation means (pulse laser or CW laser) 3 Electromagnetic wave irradiation means (microwave oscillator) 4 Directional coupler 4a Phase adjuster 5 Magic T 6a First waveguide (signal waveguide) 6b Second waveguide (reference waveguide) 6c Micro aperture (first waveguide) 6d opening (first waveguide) 6e Opening (second waveguide) 7 Reflected electromagnetic wave intensity detection means (mixer) 8 Signal processing device 9 Evaluation means 10 Stage controller 11 XY stage 12 Optical path changing means (mirror) 13 Optical path changing means (mirror) 14 Optical path changing means (mirror) 15 Optical path switching means 16 Condensing means (condensing lens) 17 Ellipsoidal mirror 18 Light guiding path 19 Emission intensity measuring means 20 Sample 20a Sample 21 Second excitation light entrance (glass) 22 Photoluminescence Light 23

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 酸化物半導体薄膜の移動度とストレス耐性を、非接触型で、正確且つ同一の装置で簡便に測定し、予測・推定できる評価装置を提供する。本発明の評価装置は、試料の測定部位に対して、第1励起光を照射して電子-正孔対を生成する第1励起光照射手段と、電磁波を照射する電磁波照射手段と、反射電磁波強度を検出する反射電磁波強度検出手段と、前記試料に第2励起光を照射してフォトルミネッセンス光を生成させる第2励起光照射手段と、前記フォトルミネッセンス光の発光強度を測定する発光強度測定手段と、移動度、およびストレス耐性を評価する評価手段と、を備えると共に、前記第1励起光照射手段と前記第2励起光照射手段は、同一または異なる励起光照射手段である。

Description

酸化物半導体薄膜の評価装置
 本発明は、液晶ディスプレイや有機ELディスプレイなどの表示装置に用いられる薄膜トランジスタ(TFT:Thin Film Transistor)の半導体層用酸化物(以下、「酸化物半導体薄膜」という)の評価装置に関する。詳細には、酸化物半導体薄膜の移動度、及びストレス耐性を、非接触型で評価する装置に関する。
 アモルファス酸化物半導体薄膜は、汎用のアモルファスシリコン(以下、「a-Si」という)に比べて高いキャリア移動度を有し、光学バンドギャップが大きく、低温で成膜できる。そのため、大型・高解像度・高速駆動が要求される次世代ディスプレイや、耐熱性の低い樹脂基板などへの適用が期待されている。
 酸化物半導体薄膜のなかでも特に、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、スズ(Sn)などの少なくとも一種を含む例えば、In-Ga-Zn-O、In-Ga-Zn-Sn-Oなどのアモルファス酸化物半導体薄膜は、非常に高いキャリア移動度を有するため、TFTに好ましく用いられている。
 しかしながら、酸化物半導体薄膜は、成膜工程で生じる格子欠陥や膜中の水素などの不純物に起因して酸化物半導体の移動度にばらつきが生じ、TFT特性に悪影響を及ぼすことがある。
 また酸化物半導体薄膜は、a-Siを用いた場合に比べ、電気的特性が変動し易く、信頼性が低いという問題がある。例えば有機ELディスプレイでは、有機EL素子を発光させる間、駆動TFTのゲート電極に正電圧が印加され続けることになるが、電圧の印加によりゲート絶縁膜と半導体層の界面に電荷がトラップされ、しきい値電圧(以下、「Vth」という)が変化し、スイッチング特性が変化することが問題となっている。
 そのため、表示装置などの製造工程においては、成膜した酸化物半導体薄膜の移動度や、しきい値電圧のシフト量(以下、「ΔVth」という)を正確に測定・推定し、酸化物半導体薄膜の特性を評価し、その結果をフィードバックして製造条件を調整して膜質の品質管理を行うことが、生産性向上の観点からは重要となる。
 酸化物半導体薄膜の特性評価方法としては、通常、酸化物半導体薄膜にゲート絶縁膜やパッシベーション絶縁膜を形成して電極付けを行ったうえで、移動度やしきい値などの特性を測定している。しかしながら、電極付けを必要とする接触型の特性評価方法では、電極付けのための時間やコストがかかる。また、電極付けをすることで、酸化物半導体薄膜に新たな欠陥が生じるおそれがある。製造歩留まり向上などの観点からも、電極付けを必要としない非接触型の特性評価手法が求められている。
 電極付けすることなく、非接触で、酸化物半導体薄膜の移動度を評価する方法として、特許文献1に示されるように本出願人はマイクロ波光導電減衰法による評価方法、及び該評価方法に用いる評価装置を開示している。この技術は酸化物半導体薄膜を形成した試料にレーザを照射し、該レーザ照射で励起された過剰キャリアに応じて変化するマイクロ波の反射率の変化を測定してライフタイム値を算出することによって、酸化物半導体薄膜の移動度を評価している。
特開2012-33857号公報
 上記特許文献1の技術は、半導体薄膜に電極付けをする必要がなく、また短時間、且つ高精度で半導体薄膜の移動度を測定することができる。しかしながら、特許文献1ではストレス耐性を評価できない。そのため、ストレス耐性については依然として電極付けが必要なNBTI(Negative Bias Temperature Instability)試験などによって評価していた。
 したがって酸化物半導体薄膜の移動度とストレス耐性を評価するには夫々別の装置が必要であった。このような現状は、生産性に大きな影響を及ぼすだけでなく、複数の装置を用意する必要があるため、製造コストが高くなるという問題があった。
 本発明は上記事情に鑑みてなされたものであり、その目的は、酸化物半導体薄膜の電気的特性として移動度とストレス耐性を、非接触型で、正確、且つ同一の装置で簡便に測定し、電気的特性の予測、推定を含んだ評価ができる評価装置を提供することにある。
 上記課題を達成し得た本発明の酸化物半導体薄膜の評価装置は、酸化物半導体薄膜が形成された試料の測定部位に対して、第1励起光を照射して前記酸化物半導体薄膜中に電子-正孔対を生成する第1励起光照射手段と、前記試料の測定部位に対して、電磁波を照射する電磁波照射手段と、前記第1励起光の照射により変化する前記電磁波の前記試料からの反射電磁波強度を検出する反射電磁波強度検出手段と、前記試料に第2励起光を照射して前記酸化物半導体薄膜からフォトルミネッセンス光を生成させる第2励起光照射手段と、前記フォトルミネッセンス光の発光強度を測定する発光強度測定手段と、前記反射電磁波強度検出手段の検出データおよび前記発光強度測定手段の測定データに基づいて前記試料の移動度、およびストレス耐性を評価する評価手段と、を備えると共に、前記第1励起光照射手段と前記第2励起光照射手段は、同一または異なる励起光照射手段であることに要旨を有する。
 本発明では、前記第1励起光照射手段は、前記酸化物半導体薄膜のバンドギャップ以上のエネルギーを出力する光源を有するものであることも好ましく、また前記第2励起光照射手段は、前記酸化物半導体薄膜のバンドギャップ中に存在する欠陥準位に相当するエネルギーを出力する光源を有するものであることも好ましい実施態様である。
 また前記第2励起光照射手段は、前記酸化物半導体薄膜から特定の波長のフォトルミネッセンス光のみを励起させるエネルギーを出力する光源を有することも好ましい。
 更に本発明では、前記第1励起光と前記第2励起光の光路上に、前記第1励起光、および/または前記第2励起光の光路を変更する光路切り替え手段を備えていることも好ましく、また前記光路切り替え手段は、前記第1励起光と前記第2励起光が、前記試料の同一、または異なる測定箇所に照射するように設置されていることも好ましい。
 本発明を実施するにあたっては、前記第1励起光と前記電磁波を前記試料の前記測定部位に誘導する導波管を備えると共に、前記導波管の前記試料側開口部近傍の側面に、前記第2励起光の導入口が設けられていることも好ましい実施態様である。
 本発明によれば、酸化物半導体薄膜の移動度とストレス耐性を、非接触型で、正確、且つ簡便に予測、推定して評価する装置を提供できる。特に本発明によれば、移動度とストレス耐性を同じ装置で評価することができる。
 したがって酸化物半導体の移動度とストレス耐性の評価に別々の評価装置が必要であった従来例と比べて、評価装置導入コストが低く、また評価装置設置スペースも削減できる。
 本発明の装置を用いれば、液晶表示装置などの製造ラインにおいて、酸化物半導体薄膜の電気的特性をインラインで短時間、且つ非接触型で行うことができるため、歩留まりの向上など、生産性を向上させることができ、酸化物半導体の品質管理を適切に行うことができる。
図1は本発明の評価装置の一例を示す概略説明図である。 図2は本発明の評価装置の他の例を示す概略説明図である。 図3は本発明の評価装置の他の一例を示す概略説明図である。 図4は楕円面ミラーを使用したフォトルミネッセンス光の集光に関する概略説明図である。 図5は導波管先端開口部近傍に第2励起光導入口を設けた導波管の概略説明図である。
 既に述べたように、本出願人は先に酸化物半導体薄膜の移動度を評価する技術として、マイクロ波光導電減衰法による評価方法を提案している。マイクロ波光導電減衰法による評価手法は、電極付けを必要としない非接触型の測定であり、しかも短時間で測定できることから、本発明でも移動度については既知のマイクロ波光導電減衰方法によって評価することとした。
 一方、ストレス耐性については、先に提案した技術では評価できないため、本発明者らはストレス耐性の評価手法について鋭意検討を重ねた。その結果、酸化物半導体薄膜のストレス耐性を非接触型で、簡便に評価(予測・推定)する指標として、酸化物半導体薄膜が形成された試料に励起光を照射して励起するフォトルミネッセンス光の発光強度を測定することが有効であることを見出した。本発明者らが検討したところ、フォトルミネッセンス光の発光強度、好ましくはピーク強度と、ΔVthとが、おおむね、良好な相関関係を有していることを突き止めた。すなわち、フォトルミネッセンス光の発光強度(以下、好ましい実施態様であるピーク強度も含む)が大きくなるとΔVthも大きくなり、ストレス耐性が低下する傾向にあることがわかった。したがってフォトルミネッセンス光の発光強度の測定結果に基づいて、酸化物半導体薄膜のストレス耐性の優劣、例えば合否の判定などをほぼ把握することができる。
 上記知見に基づいて、移動度とストレス耐性の評価可能な装置の構成について検討した結果、移動度の評価に必要な構成とストレス耐性の評価に必要な構成には、重複しているものがあることがわかった。さらに検討を重ねたところ、従来の移動度の評価装置を一部改良し、ストレス耐性の評価に必要な構成を上記移動度の評価装置に備えることにより、移動度だけでなく、ストレス耐性も同じ装置で評価することができた。
 以下、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明の評価装置は以下の構成に限定されず、適宜変更を加えることも可能である。
 図1は酸化物半導体薄膜の移動度、及びストレス耐性の評価に用いる評価装置の一例を示す概略説明図である。図1に示す評価装置は、酸化物半導体薄膜と基板からなる試料20の測定部位に対して第1励起光を照射するパルスレーザなどの第1励起光照射手段1、マイクロ波(以下、「電磁波」ということがある)を照射するマイクロ波発振器などの電磁波照射手段3、第1励起光の照射により変化するマイクロ波の試料20からの反射電磁波の強度を検出するミキサーなどの反射電磁波強度検出手段7を備えており、該構成により移動度を測定できる。また試料20の電磁波強度測定部位と同一または異なる測定部位に対して第2励起光を照射するパルスレーザやCWレーザなどの第2励起光照射手段2、その第2励起光の照射により生成したフォトルミネッセンス光の発光強度を測定する発光強度測定手段19を備えており、該構成によりストレス耐性を測定できる。そして反射電磁波強度の検出データと発光強度の測定データに基づいて、試料の移動度、及びストレス耐性を評価する評価手段9を備えている。
 以下、図1に基づいて移動度を評価する場合の装置構成について説明する。なお、移動度の測定方法の詳細については特開2012-33857号公報に開示されているため、それを参照すればよい。
 移動度を評価するための装置構成は、図1に示す構成のうち、第1励起光照射手段1、電磁波照射手段3、反射電磁波強度検出手段7、及び評価手段9を備えており、その他、好ましい構成として方向性結合器4、相位調整器4a、マジックT(5)、信号用導波管である第1導波管―6a、参照用導波管である第2導波管―6b、信号処理装置8、ステージコントローラ10、X-Yステージ11、試料台(図示せず)、基板保持部(図示せず)、ミラーなどの光路変更手段12及び集光レンズなどの集光手段16を備えている。
 試料20は、ガラス等からなる基板と、その表面の励起光照射側に形成された酸化物半導体薄膜で構成されている。酸化物半導体の種類は特に限定されず、例えばIn、Ga、Zn、及びSnよりなる群から選択される少なくとも一種以上の組み合わせからなる非晶質の酸化物半導体が用いられる。酸化物半導体としては、例えばIn酸化物、In-Sn酸化物、In-Zn酸化物、In-Sn-Zn酸化物、In-Ga酸化物、Zn-Ga酸化物、In-Ga-Zn酸化物、Zn酸化物などが挙げられる。酸化物半導体の薄膜は例えば、数10nm~100nm程度の厚みであればよい。
 また基板は、各種基板を用いることができるが、例えば、厚み0.7mm程度、大きさが第1世代~第10世代と呼ばれる数10cm2から数m2を超える液晶表示装置用のガラス基板等を用いることができる。
 また試料20は、基板の上に直接、上記酸化物半導体薄膜が形成されている部分Aと、基板上にモリブデンなどの金属膜を形成し、その上に、上記酸化物半導体薄膜が形成されている部分Bを有していてもよく、このような部分A、Bを有する試料を試料20aとする。試料20aの部分Aは基板に直接、酸化物半導体薄膜が形成されているため、マイクロ波の反射を防止でき、感度よく移動度を測定できる。また試料20aの部分Bは、上記試料に対して励起光を照射した際、基板からのルミネッセンス光の生成を避けることができるため、ストレス耐性の評価精度が一層高められる。このような試料を用いる場合は、例えば後記図2で説明するような光路切り替え手段15を用いることで、図中、部分Aで示される移動度と図中、部分Bで示されるストレス耐性の評価に応じた試料の測定部位に励起光を照射できる。
 なお、基板からのルミネッセンス光の発光が酸化物半導体薄膜のストレス耐性の評価に影響を与えない程度に少ない場合は、基板の上に直接、上記酸化物半導体薄膜のみを形成した試料を用いてもよい。このような試料20を用いる場合は、例えば図1や図3で説明するように移動度を評価するための第1励起光の測定部位と同じ箇所にストレス耐性を評価するための第2励起光を照射することが可能である。同一箇所に第1と第2の励起光を照射することで、同一箇所における移動度とストレス耐性の評価ができるため好ましい。
 第1励起光照射手段1は、試料20に照射する第1励起光を出力する光源を有するものであり、第1励起光の照射により酸化物半導体薄膜中に電子-正孔対を生成させるものである。好ましくは酸化物半導体薄膜のバンドキャップ以上のエネルギーである励起光を出力する光源を有するものである。酸化物半導体薄膜のバンドキャップ以上のエネルギーを出力することで効率的にキャリアを発生させ、高感度で測定できるため好ましい。バンドギャップ以上のエネルギーを出力する第1励起光照射手段としては、例えば光源に紫外線レーザを用いればよい。具体的には波長349nm、パワー1μJ/pulse、パルス幅15ns程度、ビーム径1.5mm程度のパルス状の紫外光であるYLFレーザ第三高調波等を励起光として出射するパルスレーザなどの半導体レーザ等である。
 また、第1励起光照射手段1は評価手段9から図中、破線で示すように伝送されてくるタイミング信号の入力をトリガーとして第1励起光であるパルス光を出力する。なお、タイミング信号は、同時に信号処理装置8に対しても伝送される。
 第1励起光照射手段1から出力された第1励起光は、例えばミラーなどの光路変更手段(以下、ミラーで代表する)12で反射されると共に、例えば集光レンズなどの集光手段(以下、集光レンズで代表する)16によって集光され、第1導波管6aに設けられた微小開口6cを通過し、その第1導波管6aの試料20に近接する端部にある開口部6dを通じて、試料20の測定部位、例えば、直径5~10μm程度のスポットに対して照射される。このように、ミラー12及び集光レンズ16が、第1励起光照射手段1から出力された第1励起光を集光して試料20の測定部位へ導く。これにより、試料20における微小な励起光照射領域である測定部位において、励起キャリアが発生する。
 電磁波照射手段3は、試料20の第1励起光による励起部を含む部分の測定部位に照射する電磁波であるマイクロ波を出力する電磁波照射手段である。この電磁波照射手段3は、例えば、周波数26GHzのガンダイオード等のマイクロ波発振器が挙げられる。
 方向性結合器4は、電磁波照射手段3から出力されたマイクロ波を2分岐するものである。分岐後の一方の出力波(以下、第1マイクロ波Op1という)はマジックT(5)側へ伝送され、他方の出力波(以下、第2マイクロ波Op2という)は相位調整器4a、反射電磁波強度検出手段7のLO入力端へ伝送される。この方向性結合器4は、例えば、10dBカプラ等が採用される。
 マジックT(5)は、第1マイクロ波Op1を2分岐すると共に、2分岐された第1マイクロ波各々の試料20に対する反射波各々の差信号Rt1(以下、反射波差信号という)及び和信号を出力するものである。
 マジックT(5)により2分岐された第1マイクロ波Op1の一方(以下、第1主マイクロ波Op11という)は、そのマジックT(5)に接続された第1導波管6aにより、試料20の測定部位である励起部を含む部分に導かれてその先端の開口部6dから放射される。これにより、第1主マイクロ波Op11が試料20の測定部位に照射される。さらに第1導波管6aは,前記第1主マイクロ波Op11を放射する導波管アンテナとしての機能に加え、測定部位に照射された第1主マイクロ波Op11の反射波をその先端開口部6dで捕捉し、マジックT(5)まで折り返し遡って導く機能も果たす。
 一方、マジックT(5)により2分岐された第1マイクロ波Op1の他方(以下、第1副マイクロ波Op12という)は、マジックT(5)に接続された第2導波管6bにより、試料20aの測定部位の近傍、すなわち、励起光による励起部を含まない部分に導かれてその先端の開口部6eから放射される。これにより、第1副マイクロ波Op12が、試料20aの測定部位の近傍に照射される。さらに第2導波管6bは、第1副マイクロ波Op12を放射する導波管アンテナとしての機能に加え、測定部位の近傍に照射された第1副マイクロ波Op12の反射波をその先端開口部6eで捕捉し、マジックT(5)まで折り返し導く機能も果たす。ここで、第1導波管6aがマイクロ波を導く経路長と、第2導波管6bがマイクロ波を導く経路長とは同一経路長であり、等しい。
 また第1導波管6a及び第2導波管6bによりマジックT(5)に導かれた2つの反射波、すなわち2分岐後の第1マイクロ波Op11、Op12各々が試料20に反射したものの差信号である反射波差信号Rt1が、そのマジックT(5)により出力され、反射電磁波強度検出手段7のRF入力端に伝送される。
 反射電磁波強度検出手段7は、第2マイクロ波Op2及び反射波差信号Rt1を混合することによって検波信号Sg1を出力する。この検波信号Sg1は、反射波差信号Rt1の強度、例えば試料20に照射された第1マイクロ波Op1の反射波の強度の一例を表す信号であり、信号処理装置8に取り込まれる。反射波差信号Rt1は、基板保持部(図示せず)によって所定位置に保持された試料20に対する励起光の照射によってその強度が変化する。このように反射電磁波強度検出手段7は、反射波差信号Rt1の強度を検出するものであり、この反射電磁波強度検出手段7としてはミキサーや、マイクロ波を入力してその強度に応じた電流或いは電圧などの電気信号を出力するマイクロ波検出器または(検波器)が設けられてもよい。
 反射電磁波強度検出手段7により検出される反射波差信号Rt1の強度は、試料20の測定部位に対する第1励起光の照射により変化する。具体的には、反射波差信号Rt1の強度は、第1励起光に相当する(パルス光)の照射によって一時的に強くなった後に減衰する。また測定部位に不純物や欠陥等が多いほど反射波差信号Rt1の強度のピーク値は小さくなり、その減衰時間(キャリア寿命)も短くなる。
 ここで第1励起光(パルス光)の照射により変化する反射波差信号Rt1の強度について、そのピーク値やピークが生じてから所定レベルに減衰するまでの時間(減衰時間:ライフタイム値)が試料20の移動度を評価する指標値となる。
 信号処理装置8は、反射電磁波強度検出手段7により検出される反射波差信号Rt1の強度の変化のピーク値Spを検出し、その検出結果を評価手段9に伝送する装置である。より具体的には信号処理装置8は、評価手段9からのタイミング信号の入力をトリガーとして反射波差信号Rt1の変化を所定時間監視し、その間に得られる反射波差信号Rt1のレベルの最高値を反射波差信号Rt1の強度の変化のピーク値Spとして検出する。ここで信号処理装置8は、反射波差信号Rt1に対して遅延処理を施す遅延回路を備え、遅延処理後の信号に対して所定のサンプリング周波数で信号強度を順次検出し、その検出値の変化から反射波差信号Rt1の強度の変化のピーク値Spを検出する。
 評価手段9としては、CPU、記憶部、入出力信号のインターフェース等を備えたコンピューターを用いることができ、CPUが所定のプログラムを実行することによって各種の処理を実行する。
 例えば、評価手段9は、第1励起光照射手段1及び信号処理装置8に対して励起光の出力タイミングを表すタイミング信号を出力すると共に、信号処理装置8によって検出される反射波差信号Rt1のピーク値Spを取り込んで当該評価手段9が備える記憶部に記録する。検出データに該当する記録された反射波差信号Rt1は、試料20のキャリア移動度の評価に用いられる。
 またステージコントローラ10は、評価手段9からの指令に従ってX-Yステージ11を制御することにより、試料20における測定部位の位置決め制御を行う。
 X-Yステージ11の上側には試料台(図示せず)が設けられている。試料台は、アルミニウム、ステンレス或いは鉄等の金属又はその他の導体からなる板状部材(以下、「導体部材」ということがある)である。その上側に基板保持部(図示せず)が設けられ、さらにその基板保持部の上に試料20が載置される。これにより試料台は、試料20に対して前記第1マイクロ波Op11、Op12が照射される側と反対側である試料20の下側に配置される。
 基板保持部は、試料台に対してその上側に固定された固形の誘電体である。基板保持部は試料である基板と導体部材である試料台との間に挿入される固形の誘電体であり、その材質は、例えばガラスやセラミック等の比較的屈折率の大きな誘電体である。これにより基板保持部を媒質とするマイクロ波の波長が短くなり、基板保持部としてより厚みの薄い軽量なものを採用できる。
 以上、本発明の移動度を評価するための構成によれば、第1励起光照射手段1から照射された第1励起光によって酸化物半導体薄膜中に光励起キャリアが生成されると共に、電磁波照射手段3から照射されたマイクロ波の電界で光励起キャリアが運動し、その運動状態は、半導体中の不純物、欠陥等の存在によって影響を受ける。このため、反射電磁波強度検出手段7で、試料からの反射マイクロ波の強度を検出し、評価手段9で解析することで、移動度を評価することができる。特に反射マイクロ波の強度がピークになる値によって移動度を評価できる。この際、評価手段9が、X-Yテーブル11などから成るステージの位置を制御することで、所定の範囲の結晶性を判定するマッピング測定も可能である。
 次に、図1に基づいてストレス耐性を評価する場合の装置構成について説明する。ストレス耐性を評価するための装置構成は、図1に示す構成のうち、第2励起光照射手段2、発光強度測定手段19、ストレス耐性の評価手段9で構成されている。その他、好ましい構成として、光誘導路18、ステージコントローラ10、X-Yステージ11、試料台(図示せず)、基板保持部(図示せず)、例えばミラーなどの光路変更手段12、13、14、および集光レンズ16を備えている。光路変更手段は可動可能であれば、所望の角度に光路を変更できるので望ましい。なお、上記移動度の装置構成と同じ番号を付したものは説明を省略する場合がある。
 第2励起光照射手段2は、試料20に照射する第2励起光を出力する光源を有するものであり、第2励起光の照射により酸化物半導体薄膜からフォトルミネッセンス光を生成させるものである。好ましくは酸化物半導体薄膜のバンドギャップ中に存在する欠陥準位に相当するエネルギーを出力する光源を有するものである。酸化物半導体薄膜のバンドギャップ中に存在する欠陥準位に相当するエネルギーを出力することで、バンドギャップ中の発光に関与する欠陥準位を観測できる。また酸化物半導体薄膜から例えば1.6~1.9eVの特定の波長のフォトルミネッセンス光のみを励起させるエネルギーを出力する光源を有することも好ましい。1.6~1.9eVの範囲に観察される発光強度とΔVthとが、おおむね、良好な相関関係を有しており、ストレス耐性の評価に好適だからである。
 第2励起光照射手段としては、例えば光源に紫外線レーザを用いればよい。具体的には波349nm、パルスレーザのパワー1μJ/pulse、パルス幅15ns程度、ビーム径1.5mm程度のパルス状の紫外光であるYLFレーザ第三高調波等を励起光として出射する半導体レーザ等を使用することが好ましい。このほか、He-Cdレーザ、アルゴンイオンレーザなどを、連続光を照射可能なレーザ光源として利用することもできる。
 また、第2励起光照射手段2が、パルスレーザである場合には、評価手段9から伝送されてくる図中、破線で示されるタイミング信号の入力をトリガーとして第2励起光であるパルス光を出力する。一方、連続光を発生するレーザでは評価手段9よりたとえばTTLのhighなどのON信号を伝送し、必要な時間、たとえば100mSから数秒間レーザを出力する。
 第2励起光照射手段2から照射された第2励起光は、第1励起光と同じ光路を通って試料20に照射される。光路には、集光レンズ16を備えているこが好ましく、これにより、発光したルミネッセンス光を効率よく収集することができる。図示例では、第2励起光照射手段2から出力された第2励起光は、順次ミラー13、14、12で反射されると共に、集光レンズ16によって集光され、第1導波管6aに設けられた微小開口6cを通過し、その第1導波管6aの試料20に近接する端部の開口部6dを通じて、第1励起光と同じ試料20の測定部位に対して照射される。これにより、試料20における微小な励起光照射領域である測定部位において、フォトルミネッセンス光が励起される。このように第1励起光と同じ測定部位に第2励起光を照射することで、同一測定部位における移動度と信頼性を評価することが可能となる。
 第2励起光の照射により試料20の測定部位から発光するフォトルミネッセンス光を光誘導路18の先端開口部で補足し、発光強度測定手段19まで導かれる。この際、試料20の測定部位近傍に楕円面を有するミラー17を設けると、散乱したフォトルミネッセンス光を楕円面ミラー17で反射させ、反射した焦点に集光できるため好ましい。また図4に示すように楕円面ミラー17の反射焦点に、光誘導路18の入射口を設置すれば効率的に集光できるため好ましい。光誘導路18としては、集光したフォトルミネッセンス光を低損失で発光強度測定手段19に誘導できるものであればよく、例えば光ファイバーが挙げられる。
 発光強度測定手段19に導かれたフォトルミネッセンス光は波長分解され、各スペクトルの発光強度が記録される。発光強度測定手段19としては、例えば分光器を用いて可視光領域に亘って全スペクトルを測定し、そのなかから、1.6~1.9eVの範囲に観察されるピーク強度を抽出する機能を具備していることが好ましい。また、上記発光強度測定手段19は、分光器と、電荷結合素子(CCD:Charge Coupled Device)、光電子増倍管、光受光素子などの光検知手段と、1.6~1.9eVのみの光を選択的に透過するフィルターとを組み合わせて用いることもできる。また、上記発光強度測定手段19は、前記励起光の照射時間にあわせて測定を行うトリガーを備えているとことが望ましい。評価手段9からレーザに伝送されるトリガー信号により発光強度測定手段19をレーザが照射されている時間に限って強度測定を行うことで、高感度で測定を行うことが可能となる。
 発光強度測定手段19で処理された各種測定データは、評価手段9に伝送される。評価手段9では分光されたスペクトルは測定データとして取り込んで波形解析を行い、設定されたエネルギーにおける発光強度比を算出する。評価手段9では、第2励起光照射手段2に対して励起光の出力タイミングを表すタイミング信号を出力すると共に、発光強度測定手段19によって出力されたスペクトルの強度値を当該評価手段が備える記憶部に記録し、また1.6~1.9eVの範囲に存在するブロードなピークからピーク強度を算出する。得られたデータを使ってストレス耐性の評価を行うことができる。
 図1に示すように第1励起光と第2励起光を試料20の同じ測定部位に照射する場合には、第1励起光と同じく第2励起光を試料20の測定箇所に誘導する導波管6aの微小開口部6cから試料20側の開口部6dを通して照射させるように、光路変更手段を適宜設置すればよい。また図5に示すように第1導波管6aの試料20側の開口部6d近傍の側面に、例えばガラスなどの透明部材で構成された第2励起光導入口21を設けてもよい。第2励起光の光路を変更して第2励起光導入口21から第2励起光を入射させて、導波管6aの開口部6dから第2励起光を出射させれば、光路が異なる場合でも第1励起光の測定部位に第2励起光を照射することができる。この際、第2励起光導入口21には、励起光を透過させ、マイクロ波を透過させないフィルターであるマイクロ波漏洩防止用のフィルター24を設けてマイクロ波の漏洩を防止することが好ましく、また該フィルターの外側にはガラスなど励起光を透過させる性質を有する透光部材23で被覆しておくことも望ましい。
 以上、本発明のストレス耐性を評価するための装置構成によれば、第2励起光照射手段2から照射された第2励起光によって酸化物半導体薄膜中にフォトルミネッセンス光が生成され、このフォトルミネッセンス光22の発光強度を発光強度測定手段19で分析し、評価手段9で解析することで、ストレス耐性を評価することができる。特に本発明の装置によれば第1励起光と第2励起光を試料の同一測定部位に照射することが可能であり、酸化物半導体薄膜の同一箇所における移動度とストレス耐性を評価できる。
 次に図2、図3に基づいて本発明の装置の他の実施形態について説明する。上記図1の装置と同じものは同じ番号を付して説明を省略する。図2、図3は第1励起光照射手段と第2励起光照射手段の機能を兼備するパルスレーザなどの励起光照射手段1aを用いた例であり、励起光照射手段1aからは移動度を測定するための第1励起光、及びストレス耐性を評価するための第2励起光を照射できる。各励起光照射に使用する光源である紫外線レーザを共通化することで、コスト削減、及び装置構成の簡略化を図ることができる。なお、励起光照射手段1aは各励起光に応じたエネルギー照射となるように出力調整手段を備えることが望ましい。
 第1励起光と第2励起光を同一の励起光照射手段1aから出射する場合には、第1励起光と第2励起光の光路を同一としてもよいし、あるいは光路切り替え手段15を設けて、第1励起光および/または第2励起光の光路を変更して試料20aの異なる測定部位に照射するようにしてもよい。例えば図2では励起光照射手段1aから出射された第1励起光は、ミラー12で光路を変更して第1導波管6aの微小開口6cを通って開口部6dから試料20aの測定部位である上記部分Aに照射される。また励起光照射手段1aから出力された第2励起光は、光路切り替え手段15によって光路を変更し、第1励起光とは異なる試料20aの測定部位である上記部分Bに照射される。図3では励起光照射手段1aから出射された第1励起光はミラー14で光路を変更して試料20の測定部位に照射され、同様に第2励起光も第1励起光と同じ光路を通って試料20の同一の測定部位に照射される。なお、図示しないが、適宜光路切り替え手段とミラーなどの光路変更手段を設置して、第1励起光と第2励起光は任意の箇所に照射させることもできる。
 図2に示す光路切り替え手段15は可動部と、ミラーなどの光路変更手段を有しており、評価手段9からの電気信号によって可動して光路の変更、または光路の遮断を行うものである。図2では、第1励起光照射時には光路切り替え手段15は光路を遮断しない位置で固定させ、第2励起光照射時に第2励起光の光路を所望の角度に変更するように光路切り替え手段15を可動させることができる。光路切り替え手段15の可動動力は特に限定されず、モーターや圧力空気などの公知の駆動手段を採用できる。
 以上、本発明の装置を用いれば、酸化物半導体薄膜の材料開発段階において、様々な組成や濃度の酸化物半導体薄膜の移動度、およびストレス耐性を、簡易に短時間で、且つ低コストで評価することが可能となる。また本発明の装置を用いれば、非接触型で評価することができるため、歩留まりの向上など、生産性を向上することが可能であり、酸化物半導体の品質管理を適切に行うことができる。
 本願は、2013年9月13日に出願された日本国特許出願第2013-190402号に基づく優先権の利益を主張するものである。日本国特許出願第2013-190402号の明細書の全内容が、本願に参考のため援用される。
 1 第1励起光照射手段(パルスレーザー)
 1a 励起光照射手段(パルスレーザー)
 2 第2励起光照射手段(パルスレーザーまたはCWレーザー)
 3 電磁波照射手段(マイクロ波発振器)
 4 方向性結合器
 4a 位相調整器
 5 マジックT
 6a 第1導波管(信号用導波管)
 6b 第2導波管(参照用導波管)
 6c 微小開口(第1導波管)
 6d 開口部(第1導波管)
 6e 開口部(第2導波管)
 7 反射電磁波強度検出手段(ミキサー)
 8 信号処理装置
 9 評価手段
 10 ステージコントローラ
 11 X-Yステージ
 12 光路変更手段(ミラー)
 13 光路変更手段(ミラー)
 14 光路変更手段(ミラー)
 15 光路切り替え手段
 16 集光手段(集光レンズ)
 17 楕円面ミラー
 18 光誘導路
 19 発光強度測定手段
 20 試料
 20a 試料
 21 第2励起光導入口(ガラス)
 22 フォトルミネッセンス光
 23 透光部材
 24 マイクロ波漏洩防止用フィルター
 25 第2励起光
 26 第1励起光
 27 マイクロ波
 28 測定部位

Claims (9)

  1.  酸化物半導体薄膜が形成された試料の測定部位に対して、第1励起光を照射して前記酸化物半導体薄膜中に電子-正孔対を生成する第1励起光照射手段と、
     前記試料の測定部位に対して、電磁波を照射する電磁波照射手段と、
     前記第1励起光の照射により変化する前記電磁波の前記試料からの反射電磁波強度を検出する反射電磁波強度検出手段と、
     前記試料に第2励起光を照射して前記酸化物半導体薄膜からフォトルミネッセンス光を生成させる第2励起光照射手段と、
     前記フォトルミネッセンス光の発光強度を測定する発光強度測定手段と、
     前記反射電磁波強度検出手段の検出データおよび前記発光強度測定手段の測定データに基づいて前記試料の移動度、およびストレス耐性を評価する評価手段と、
     を備えると共に、
     前記第1励起光照射手段と前記第2励起光照射手段は、同一または異なる励起光照射手段であることを特徴とする酸化物半導体薄膜の評価装置。
  2.  前記第1励起光照射手段は、前記酸化物半導体薄膜のバンドギャップ以上のエネルギーを出力する光源を有するものである請求項1に記載の酸化物半導体薄膜の評価装置。
  3.  前記第2励起光照射手段は、前記酸化物半導体薄膜のバンドギャップ中に存在する欠陥準位に相当するエネルギーを出力する光源を有するものである請求項1に記載の酸化物半導体薄膜の評価装置。
  4.  前記第2励起光照射手段は、前記酸化物半導体薄膜のバンドギャップ中に存在する欠陥準位に相当するエネルギーを出力する光源を有するものである請求項2に記載の酸化物半導体薄膜の評価装置。
  5.  前記第2励起光照射手段は、前記酸化物半導体薄膜から特定の波長のフォトルミネッセンス光のみを励起させるエネルギーを出力する光源を有するものである請求項3に記載の酸化物半導体薄膜の評価装置。
  6.  前記第2励起光照射手段は、前記酸化物半導体薄膜から特定の波長のフォトルミネッセンス光のみを励起させるエネルギーを出力する光源を有するものである請求項4に記載の酸化物半導体薄膜の評価装置。
  7.  前記第1励起光と前記第2励起光の光路上に、前記第1励起光、前記第2励起光のうち少なくとも一方の光路を変更する光路切り替え手段を備えている請求項1~6のいずれかに記載の酸化物半導体薄膜の評価装置。
  8.  前記光路切り替え手段は、前記第1励起光と前記第2励起光が、前記試料の同一、または異なる測定箇所に照射するように設置されている請求項7に記載の酸化物半導体薄膜の評価装置。
  9.  前記第1励起光と前記電磁波を前記試料の前記測定部位に誘導する導波管を備えると共に、前記導波管の前記試料側開口部近傍の側面に、前記第2励起光の導入口が設けられている請求項1~6のいずれかに記載の酸化物半導体薄膜の評価装置。
PCT/JP2014/073865 2013-09-13 2014-09-10 酸化物半導体薄膜の評価装置 WO2015037596A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/917,452 US20160223462A1 (en) 2013-09-13 2014-09-10 Evaluation device for oxide semiconductor thin film
KR1020167006238A KR101648696B1 (ko) 2013-09-13 2014-09-10 산화물 반도체 박막의 평가 장치
EP14844691.7A EP3046141B1 (en) 2013-09-13 2014-09-10 Evaluation device for oxide semiconductor thin film
CN201480050138.0A CN105518843B (zh) 2013-09-13 2014-09-10 氧化物半导体薄膜的评价装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-190402 2013-09-13
JP2013190402A JP5732120B2 (ja) 2013-09-13 2013-09-13 酸化物半導体薄膜の評価装置

Publications (1)

Publication Number Publication Date
WO2015037596A1 true WO2015037596A1 (ja) 2015-03-19

Family

ID=52665698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073865 WO2015037596A1 (ja) 2013-09-13 2014-09-10 酸化物半導体薄膜の評価装置

Country Status (8)

Country Link
US (1) US20160223462A1 (ja)
EP (1) EP3046141B1 (ja)
JP (1) JP5732120B2 (ja)
KR (1) KR101648696B1 (ja)
CN (1) CN105518843B (ja)
HU (1) HUE034629T2 (ja)
TW (1) TWI601953B (ja)
WO (1) WO2015037596A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9316589B2 (en) 2013-01-15 2016-04-19 Kobe Steel, Ltd. Method for evaluating oxide semiconductor thin film, and method for quality control of oxide semiconductor thin film
CN108303387A (zh) * 2017-01-11 2018-07-20 罗伯特·博世有限公司 用于分析测量区域的方法和微型光谱仪
US10090208B2 (en) 2013-01-11 2018-10-02 Kobe Steel, Ltd. Evaluation method for oxide semiconductor thin film, quality control method for oxide semiconductor thin film, and evaluation element and evaluation device used in the evaluation method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6283273B2 (ja) 2014-07-01 2018-02-21 株式会社神戸製鋼所 薄膜トランジスタ評価用の積層構造体の評価方法
JP5993496B2 (ja) 2014-07-16 2016-09-14 株式会社神戸製鋼所 酸化物半導体薄膜、及び前記酸化物半導体薄膜の表面に保護膜を有する積層体の品質評価方法、及び酸化物半導体薄膜の品質管理方法
JP6742124B2 (ja) 2016-03-30 2020-08-19 株式会社Screenホールディングス 基板処理装置
US10475711B2 (en) * 2016-04-27 2019-11-12 Kobe Steel, Ltd. Method for evaluating quality of oxide semiconductor thin film, method for managing quality of oxide semiconductor thin film, and device for manufacturing semiconductor using said method for managing quality
CN106910695A (zh) * 2017-03-08 2017-06-30 京东方科技集团股份有限公司 一种薄膜晶体管的电性特征测试方法及装置
JP7175115B2 (ja) 2018-07-19 2022-11-18 昭和電工株式会社 SiCデバイスの製造方法および評価方法
CN117665524B (zh) * 2024-01-25 2024-04-26 鲁欧智造(山东)高端装备科技有限公司 一种氮化镓功率器电子流动性检测系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123872A (ja) * 2008-11-21 2010-06-03 Sony Corp 酸化物半導体層の非破壊検査方法、及び酸化物半導体層の作製方法
JP2012033857A (ja) 2010-06-30 2012-02-16 Kobe Steel Ltd 酸化物半導体薄膜の評価方法、及び酸化物半導体薄膜の品質管理方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3979611B2 (ja) * 1998-04-09 2007-09-19 株式会社島津製作所 応力測定装置
JP4287692B2 (ja) * 2003-04-25 2009-07-01 凸版印刷株式会社 非晶質シリコンの化合物薄膜の応力評価方法
JP4899120B2 (ja) * 2006-01-13 2012-03-21 凸版印刷株式会社 窒化酸化シリコン膜の組成評価方法及び物性評価方法
CN101515558A (zh) * 2006-03-30 2009-08-26 西安电子科技大学 在线检测薄膜生长率和应力的方法
JP5305696B2 (ja) * 2008-03-06 2013-10-02 キヤノン株式会社 半導体素子の処理方法
CN100552910C (zh) * 2008-09-19 2009-10-21 清华大学 一种多层薄膜基体结构高温力学行为的在线测量装置
JP5290710B2 (ja) * 2008-11-20 2013-09-18 東芝三菱電機産業システム株式会社 筒状抵抗器取付具および筒状抵抗器取付方法
WO2011017772A1 (en) * 2009-08-14 2011-02-17 Bt Imaging Pty Ltd Detection of discontinuities in semiconductor materials
JP2012033854A (ja) * 2010-04-20 2012-02-16 Kobe Steel Ltd 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
CN102313849B (zh) * 2010-06-30 2014-08-06 株式会社神户制钢所 氧化物半导体薄膜的评价方法及氧化物半导体薄膜的质量管理方法
JP5350345B2 (ja) 2010-09-22 2013-11-27 株式会社神戸製鋼所 薄膜半導体の結晶性評価装置および方法
JP2013070010A (ja) * 2010-11-26 2013-04-18 Kobe Steel Ltd 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123872A (ja) * 2008-11-21 2010-06-03 Sony Corp 酸化物半導体層の非破壊検査方法、及び酸化物半導体層の作製方法
JP2012033857A (ja) 2010-06-30 2012-02-16 Kobe Steel Ltd 酸化物半導体薄膜の評価方法、及び酸化物半導体薄膜の品質管理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3046141A4
TOMOYA KISHI ET AL.: "Sankabutsu Handotai no Denkiteki, Kogakuteki Tokusei Hyoka (I) -Cathodoluminescence ni yoru Denshi Jotai no Process Izonsei", 2012 NEN SHUNKI DAI 59 KAI OYO BUTSURIGAKU KANKEI RENGO KOENKAI 'KOEN YOKOSHU' [ DVD -ROM], THE JAPAN SOCIETY OF APPLIED PHYSICS, 29 February 2012 (2012-02-29), pages 21 - 078, XP008179811 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10090208B2 (en) 2013-01-11 2018-10-02 Kobe Steel, Ltd. Evaluation method for oxide semiconductor thin film, quality control method for oxide semiconductor thin film, and evaluation element and evaluation device used in the evaluation method
US9316589B2 (en) 2013-01-15 2016-04-19 Kobe Steel, Ltd. Method for evaluating oxide semiconductor thin film, and method for quality control of oxide semiconductor thin film
CN108303387A (zh) * 2017-01-11 2018-07-20 罗伯特·博世有限公司 用于分析测量区域的方法和微型光谱仪
CN108303387B (zh) * 2017-01-11 2022-03-15 罗伯特·博世有限公司 用于分析测量区域的方法和微型光谱仪

Also Published As

Publication number Publication date
KR101648696B1 (ko) 2016-08-16
JP2015056583A (ja) 2015-03-23
HUE034629T2 (en) 2018-02-28
US20160223462A1 (en) 2016-08-04
EP3046141A1 (en) 2016-07-20
EP3046141A4 (en) 2016-09-28
CN105518843B (zh) 2018-09-04
TW201530126A (zh) 2015-08-01
CN105518843A (zh) 2016-04-20
TWI601953B (zh) 2017-10-11
KR20160031564A (ko) 2016-03-22
JP5732120B2 (ja) 2015-06-10
EP3046141B1 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP5732120B2 (ja) 酸化物半導体薄膜の評価装置
EP3079165B1 (en) Method for evaluating an oxide semiconductor thin film and for managing quality of the oxide semiconductor thin film
KR101251123B1 (ko) 산화물 반도체 박막의 평가 방법 및 산화물 반도체 박막의 품질 관리 방법
JP5814558B2 (ja) 酸化物半導体薄膜の評価方法、及び酸化物半導体薄膜の品質管理方法
JP2008191123A (ja) 薄膜半導体の結晶性測定装置及びその方法
US8952338B2 (en) Crystalline quality evaluation apparatus for thin-film semiconductors, using μ-PCD technique
JP6204036B2 (ja) 酸化物半導体薄膜の評価方法、及び酸化物半導体薄膜の品質管理方法
TWI552233B (zh) An oxide semiconductor thin film, and a thin film of the oxide semiconductor The quality evaluation method of the laminated body having the protective film on the surface of the film, and the quality management method of the oxide semiconductor thin film
CN106463433B (zh) 氧化物半导体薄膜层叠体的品质评价方法及品质管理方法
US10230003B2 (en) Method of evaluating thin-film transistor, method of manufacturing thin-film transistor, and thin-film transistor
EP2538204B1 (en) Photoinduced carrier lifetime measuring method, light incidence efficiency measuring method, photoinduced carrier lifetime measuring device, and light incidence efficiency measuring device
JP5242287B2 (ja) 半導体薄膜の結晶性評価装置及び結晶性評価方法
JP5301770B2 (ja) 薄膜半導体の結晶性測定装置及びその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844691

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014844691

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014844691

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14917452

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167006238

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE