WO2015037503A1 - 自動変速機の制御装置 - Google Patents

自動変速機の制御装置 Download PDF

Info

Publication number
WO2015037503A1
WO2015037503A1 PCT/JP2014/073277 JP2014073277W WO2015037503A1 WO 2015037503 A1 WO2015037503 A1 WO 2015037503A1 JP 2014073277 W JP2014073277 W JP 2014073277W WO 2015037503 A1 WO2015037503 A1 WO 2015037503A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
supercharger
engine
automatic transmission
manual mode
Prior art date
Application number
PCT/JP2014/073277
Other languages
English (en)
French (fr)
Inventor
広宣 宮石
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to CN201480050127.2A priority Critical patent/CN105579747B/zh
Priority to EP14843635.5A priority patent/EP3045780B1/en
Priority to JP2015536547A priority patent/JP6019242B2/ja
Priority to KR1020177031150A priority patent/KR20170124615A/ko
Priority to KR1020167003914A priority patent/KR102013486B1/ko
Priority to US14/914,859 priority patent/US9568094B2/en
Publication of WO2015037503A1 publication Critical patent/WO2015037503A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • F16H59/78Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/0232Selecting ratios for bringing engine into a particular state, e.g. for fast warming up or for reducing exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings

Definitions

  • the present invention relates to a control device for an automatic transmission having a manual mode for selecting a fixed gear ratio at the driver's will.
  • a shift pattern (forced upshift line) for preventing overrev is set, and the vehicle operating state obtained from the vehicle speed and the throttle opening is determined. If it is determined that a load exceeding an allowable level has occurred beyond the forcible upshift line, control for forcibly upshifting is executed. Even if the load is just before the permissible level and the above determination is not made, if continuous constant running is performed in that state, the drive system will be overloaded and the sliding parts of the bearings etc. In order to prevent the durability of the engine and automatic transmission from deteriorating due to frictional heat, the high load operation state and the continuous time of the high load operation are detected, and the continuous time of the high load operation state is a predetermined value or more. The automatic transmission is forced to upshift.
  • the conventional automatic transmission control device has the following problems. That is, in the overlev prevention control, the detection of the high load operation state is performed based on the throttle opening and the engine speed. However, when using an engine equipped with a supercharger, the supercharger may become hot even if the engine is not in a high-load operation state. In this case, since the conventional automatic transmission control device is not determined to be in the high load operation state, the overlev prevention control is not executed, and as a result, the durability of the supercharger deteriorates due to high temperatures. .
  • the present invention has been made paying attention to the above-mentioned problems, and the object of the present invention is an automatic transmission that can prevent the durability of the supercharger from deteriorating due to the high temperature when traveling in the manual mode. It is to provide a control device for a machine.
  • control device for an automatic transmission comprises: In a control device for an automatic transmission, which is connected to an engine equipped with a supercharger and has a manual mode in which a desired speed ratio can be manually selected from a plurality of fixed speed ratios.
  • Manual mode detecting means for detecting that the automatic transmission is in a manual mode setting state; Temperature detecting means for detecting the temperature of the supercharger; Temperature determination means for determining that the temperature of the supercharger detected by the temperature detection means is equal to or higher than a predetermined value;
  • the gear ratio is changed to a high-side fixed gear ratio to change the engine Gear ratio changing means for reducing the rotational speed; It is provided with.
  • the predetermined value is the limited target input rotation of the automatic transmission corresponding to the oil temperature of the supercharger in consideration of the oil temperature of the engine and the oil temperature of the automatic transmission in addition to this temperature.
  • the number is calculated and set based on a lower value among these limited target input rotation speeds.
  • the temperature detecting means detects the intake air temperature at the outlet of the supercharger and sets it as the temperature of the supercharger.
  • the setting is made at that time even if the engine is not in a high load operation state. It is possible to prevent the durability from deteriorating by lowering the engine speed by changing the changed gear ratio to the higher gear ratio and thereby lowering the temperature of the supercharger.
  • Detecting the temperature of the intake air at the outlet of the supercharger to obtain the temperature of the supercharger makes it possible to use the intake air temperature sensor at a low cost.
  • FIG. 1 It is a figure which shows the structure of the engine and supercharger to which the automatic transmission which has a control apparatus of Example 1 which concerns on this invention is connected. It is a figure which shows the structure of the control apparatus of Example 1.
  • FIG. It is a block diagram which shows the structure for obtaining the manual mode upper limit control function in the CVT controller which comprises the control apparatus of Example 1.
  • FIG. It is a block diagram which shows the structure for obtaining the downshift restriction
  • the control device is used in a hybrid vehicle (HEV) capable of driving a vehicle with an engine and an electric motor.
  • the engine is a gasoline engine, and has a supercharger for supercharging.
  • the output from the engine can drive the drive wheels via a continuously variable transmission (CVT) as an automatic transmission.
  • a continuously variable transmission is a well-known one that enables a continuously variable transmission by, for example, bridging a metal belt between a primary pulley on the input side and a secondary pulley on the output side and changing the groove width of both pulleys.
  • the motor drives the drive wheels by supplying electric power from the inverter, functions as a generator during braking of the vehicle, converts a portion of the braking energy into alternating current and recovers it, converts it into direct current with the inverter, and turns it into a battery. Regenerative functions that can be accumulated can be demonstrated.
  • FIG. 1 shows an overall configuration of an engine to which a continuously variable transmission is connected, a supercharger provided in the engine, and peripheral components thereof.
  • the engine 1 is supplied to the intake manifold 11 after the intake air compressed by the supercharger 2 is cooled by the intercooler 3.
  • the supercharger 2 is composed of a roots type compressor in which two rotors having four teeth rotate while meshing with each other.
  • a bypass valve 4 is provided in a bypass passage that bypasses the supercharger 2 and connects the upstream side and the downstream side thereof, so that the supercharging pressure can be controlled.
  • a relief valve 23 is provided downstream of the bypass valve 4 so as to prevent the supercharging pressure from becoming abnormally high.
  • the upstream side of the supercharger 2 is opened to the atmosphere via the air filter 6 so that air can be sucked from here.
  • an air flow meter (air temperature sensor is also attached) 7 is provided to measure the intake air amount and the intake air temperature at the intake port to measure the engine controller 30 ( The detection signal is sent to ECM (see Fig. 2).
  • the intake passage on the downstream side of the supercharger 2 is connected to the intercooler 3 via an electronic control throttle 8 of the engine 1 that is controlled by the engine controller 30 and controls the amount of air supplied to the engine 1.
  • the intercooler 3 is connected to the sub-radiator 5, and the cooling water cooled here is sent by the water pump 9, and the intake air compressed by the supercharger 2 and heated to high temperature is cooled by this cooling water. Cooling. This cooling water also cools the inverter 10 of the motor. Downstream of the intercooler 3, in addition to the intake manifold 11 of the engine 1, a booster 12b connected to a master cylinder 12a as a brake device via a check valve 24, a check valve 24 and a purge control valve 13 Are connected to canisters (not shown). The booster is provided with a pressure sensor 25 and used for controlling a VDC (vehicle dynamic control) device. A fuel injector 14 is provided near the intake port of the engine 1 of the intake manifold 11 so that a controlled amount of fuel can be blown into the intake air according to the accelerator opening or the like.
  • VDC vehicle dynamic control
  • an exhaust manifold 15 is connected to the exhaust port of the engine 1, and a three-way catalyst 16 is provided downstream of this collecting portion.
  • a main catalyst 18 is also provided at a position below the vehicle body floor in the middle of the downstream exhaust pipe 17, and the exhaust gas further purified here flows from the downstream exhaust pipe 17 through the muffler (not shown) into the atmosphere from the tail pipe. Is released.
  • An upstream oxygen sensor 19 is provided at the gathering portion of the exhaust manifold 15, and a downstream oxygen sensor 20 is provided immediately upstream of the main catalyst 18. The oxygen concentration is detected and the information is sent to the engine controller. Send to 30.
  • a supercharger 2 outlet position that is, a position downstream of the supercharger 2 and upstream of the electronic control throttle 8, is provided with a first pressure / temperature sensor 21 for measuring the pressure and temperature of the supercharged air at this position. And a second pressure / temperature sensor 22 for measuring the pressure and temperature of the intake air cooled by the intercooler 3 at this position.
  • the respective signals of the pressure information and the temperature information measured by these are input to the engine controller 30.
  • the continuously variable transmission uses a well-known configuration (for example, the one described in Japanese Patent Application Laid-Open No. 2002-243031 filed by the applicant of the present application), and the illustration and detailed description thereof are omitted here. Only the portions related to the present invention will be described.
  • the continuously variable transmission can be operated in the auto mode and the manual mode as described above.
  • the shift control in these modes is performed by the transmission controller 35 shown in FIG.
  • the manual mode is executed by the CVT controller 36.
  • these shift controls may be performed by a single controller in which the transmission controller 35 and the CVT controller 36 are integrated.
  • FIG. 2 shows the relationship among the engine controller 30, the transmission controller 35, and the CVT controller 36.
  • the engine controller 30 receives signals from the various sensors and the accelerator opening sensor shown in FIG. 1 and controls the fuel injector 14 and the electronic control throttle 8 to start the engine, optimally operate and stop the engine. . Since these controls are well known, they are omitted here.
  • the engine controller 30 performs the supercharger protection function of the present invention, the supercharger outlet temperature control unit 31 (corresponding to the temperature determination means of the present invention), the engine high oil temperature protection control unit 32, and the merge unit 33 And.
  • the supercharger outlet temperature control unit 31 receives an engine speed signal, an engine torque signal, an intake air temperature signal at the outlet of the supercharger input from the first pressure / temperature sensor 21, and an accelerator opening signal.
  • a first engine upper limit rotational speed at which the intake air temperature is not equal to or higher than a predetermined intake air temperature value is calculated, and this rotational speed signal is input to the merge unit 33.
  • the predetermined intake air temperature is a temperature at which the durability of the supercharger 2 starts to deteriorate, or the vicinity thereof.
  • the engine high oil temperature protection control unit 32 receives the engine oil temperature signal, calculates the second engine upper limit rotation speed at which the oil temperature does not exceed the predetermined oil temperature value, and merges the rotation speed signal with the merge section 33.
  • the predetermined oil temperature value is a temperature at which the engine oil starts to deteriorate, or the vicinity thereof.
  • the merge unit 33 merges the requirements for the supercharger outlet temperature rise correspondence and the engine oil temperature rise correspondence, and outputs the limit rotational speed merged here as the permitted upper limit engine rotational speed.
  • the merging method is performed by comparing the first engine upper limit rotational speed input from the supercharger outlet temperature control unit 31 with the second engine upper limit rotational speed input from the engine high oil temperature protection control unit 32. Select the one with the lower value.
  • This permitted upper limit engine speed signal is sent to the transmission controller 35 and the CVT controller 36 through the CAN 34, respectively.
  • the select switch (not shown) (corresponding to the manual mode detecting means of the present invention) determines that the select position is in the auto mode (D position or L position)
  • the transmission controller 35 performs the target rotation of the primary pulley.
  • the gear ratio control is performed in a direction in which the gear ratio becomes high so that the number decreases to a rotational speed equal to or lower than the permitted upper limit engine speed.
  • the CVT controller 36 will not exceed the upper limit regulation so that the target rotational speed is equal to or lower than the permitted upper engine speed. Auto up.
  • the supercharger high temperature countermeasure when the manual mode is selected executed by the CVT controller 36 is different depending on whether the accelerator opening is in the partial area or the kick down area, which will be described below.
  • the CVT controller 36 receives a CVT oil temperature signal from an oil temperature sensor (not shown), and the rotation limiter 40 causes the CVT oil temperature to enter. Using the table of the relationship between the speed (taken on the horizontal axis) and the speed limit (taken on the vertical axis), the speed limit by the CVT oil temperature is determined. To the select row unit 42.
  • the select low unit 42 receives the limited rotation speed signal based on the CVT oil temperature and the permitted upper limit engine speed signal from the engine controller 30, and selects the smaller one of these as the upper limit restriction speed signal. This is input to the mode upper limit restricting section 43 (corresponding to the gear ratio changing means of the present invention).
  • the manual mode upper limit restricting unit 43 determines that the upper limit engine speed (corresponding to the predetermined value of the present invention) is exceeded when the target mode speed signal in the manual mode and the upper limit engine speed signal from the select low unit 42 are input. If it does, it will auto-up. That is, as indicated by a balloon in the manual mode upper limit restricting unit 43 in FIG. 3, the manual mode is, for example, five shift stages in relation to the vehicle speed (indicated by the horizontal axis) and the target rotational speed (indicated by the vertical axis). If there is a shift line (indicated by straight lines M1 to M5), the target rotation speed on the selected manual mode shift line is the upper limit restriction line (the line connecting the upper limit restriction rotation speeds for each gear stage).
  • an automatic upshift is performed from the intersection of the current shift line and the upper limit control line to another shift line just below (for example, from M1 to M2 or M2 To M3, or from M3 to M4, or from M4 to M5), the target rotational speed is reduced, and shift control is performed on this new shift line.
  • another shift line just below for example, from M1 to M2 or M2 To M3, or from M3 to M4, or from M4 to M5
  • the CVT controller 36 is supplied with the limit speed signal based on the CVT oil temperature and the above-described permitted upper limit engine speed signal from the engine controller 30 to the select low section 42. Then, the downshift limiting rotation number signal is input from the downshift limiting unit 44.
  • the downshift limiter 44 determines that the accelerator position signal from the accelerator position sensor is in the kickdown region, the vehicle speed (taken on the horizontal axis) and the downshift limit speed (taken on the vertical axis). And the downshift limit rotational speed at that time is determined using the table of the relationship between.
  • the limit rotational speed at the time of kickdown which becomes the smallest value among the limited rotational speed signal by the CVT oil temperature, the permitted upper limit engine rotational speed signal from the engine controller 30, and the downshift limited rotational speed is set. Then, the kickdown limited rotation speed signal is input to the kickdown downshift limiter 45 (corresponding to the gear ratio changing means of the present invention).
  • two or more target shift lines to be automatically downshifted from the position E of the current shift line are down shift lines (for example, M2), and the target rotational speed Em in that case is If it is determined that the upper limit regulation line is exceeded, an automatic upshift is performed from that shift line (in this case, M2) to one shift line (in this case, M3).
  • the transmission automatically shifts up the shift line M2 to be the target downshift from the shift line M5 to the shift line M3 to the target rotational speed Em, resulting in a downshift due to kickdown. I do.
  • the control device for the automatic transmission according to the first embodiment can obtain the following effects. Even if a vehicle equipped with a continuously variable transmission having a manual mode connected to the engine 1 with the supercharger 2 and the engine high load condition is not detected during the manual mode operation, the outlet intake temperature of the supercharger 2 can be increased. When the measured value exceeds a predetermined value, the high-side fixed gear ratio is changed, so that the supercharger 2 can be protected from durability deterioration.
  • the temperature sensor that can originally be used for controlling the engine 1 can be used at a low cost.
  • the downshift destination shift line is automatically raised to the high side. Since the shift is made to the shift line, it is possible to prevent deterioration of the supercharger 2 and the like.
  • the present invention has been described based on the above embodiments. However, the present invention is not limited to these embodiments, and is included in the present invention even when there is a design change or the like without departing from the gist of the present invention. .
  • the temperature of the supercharger 2 is measured by measuring the intake air temperature at the outlet of the supercharger 2, but this temperature is used.
  • a temperature sensor that directly measures the temperature of the supercharger 2 is used. May be.
  • the belt-type continuously variable transmission is used as the automatic transmission, but a multi-stage automatic transmission may be used as well as other continuously variable transmissions.

Abstract

 マニュアルモードでの走行時にスーパーチャージャが高温となって耐久性が劣化するのを防止する自動変速機の制御装置を提供する。スーパーチャージャ(2)を備えたエンジン(1)に接続された自動変速機は、複数の固定変速比のうちから手動操作で所望の変速比を選択可能なマニュアルモードを有する。自動変速機の制御装置は、マニュアルモード検出手段でマニュアルモード設定状態を検出し、かつ温度判定手段(31)でスーパーチャージャの温度が所定値以上になることを判定した場合に、変速比をハイ側の固定変速比に変更してエンジン(1)の回転数を低下させる変速比変更手段(43)と、を備える。

Description

自動変速機の制御装置
 本発明は、運転者の意思により固定変速比を選択するマニュアルモードを有する自動変速機の制御装置に関する。
 マニュアルモードを有する自動変速機の場合、オートモードの場合と異なって自動変速することがないので、エンジンの過回転(オーバーレブ)を防止する仕組みが必要である。このようなこのような仕組みを備えた自動変速機の制御装置としては、特許文献1に記載のものが知られている。
 この特許文献1に記載の自動変速機の制御装置にあっては、オーバーレブ防止用のシフトパターン(強制アップシフト線)を設定しておき、車速とスロットル開度とから求めた車両の運転状態が上記強制アップシフト線を越えて許容レベル以上の負荷が発生したと判定された場合には、強制的にアップシフトする制御を実行する。
 また、許容レベルの僅か手前の負荷であって上記判定がなされない場合であっても、その状態で連続一定走行が行われると、駆動系への過負荷となって軸受等の摺動部の摩擦熱によりエンジンや自動変速機の耐久性が悪化するので、これを防ぐため、高負荷運転状態およびこの高負荷運転の連続時間を検出し、高負荷運転状態の連続時間が所定値以上のときに自動変速機を強制的にアップシフトするようにしている。
特開平8-312774号公報
 しかしながら、上記従来の自動変速機の制御装置にあっては、以下のような問題がある。
 すなわち、上記オーバーレブ防止制御にあっては、高負荷運転状態の検出は、スロットル開度およびエンジンの回転数に基づいて行われる。ところが、スーパーチャージャを備えたエンジンを使用する場合、エンジンは高負荷運転状態になっていなくても、スーパーチャージャが高温状態となってしまうことがある。
 この場合、上記従来の自動変速機の制御装置では、高負荷運転状態と判定されないので上記オーバーレブ防止制御は実行されず、この結果、高温によりスーパーチャージャの耐久性が劣化してしまうといった問題が生じる。
 本発明は、上記問題に着目してなされたもので、その目的とするところは、マニュアルモードでの走行時にスーパーチャージャが高温となってその耐久性が劣化するのを防止することができる自動変速機の制御装置を提供することにある。
 この目的のため本発明による自動変速機の制御装置は、
 スーパーチャージャを備えたエンジンに接続され、複数の固定変速比のうちから手動操作で所望の変速比を選択可能なマニュアルモードを有する自動変速機の制御装置において、
 自動変速機がマニュアルモード設定状態であることを検出するマニュアルモード検出手段と、
 スーパーチャージャの温度を検出する温度検出手段と、
 この温度検出手段で検出したスーパーチャージャの温度が所定値以上になることを判定する温度判定手段と、
 マニュアルモード検出手段でマニュアルモード設定状態を検出し、かつ温度判定手段でスーパーチャージャの温度が所定値以上になることを判定した場合に、変速比をハイ側の固定変速比に変更してエンジンの回転数を低下させる変速比変更手段と、
 を備えたことを特徴とする。
 好ましくは、所定値は、スーパーチャージャの回転数が、この温度に加え、エンジンの油温および自動変速機の油温を考慮してこれらの油温にそれぞれ対応する自動変速機の制限目標入力回転数を算出し、これら制限目標入力回転数のうち低い値に基づいて設定するようにする。
 好ましくは、温度検出手段が、スーパーチャージャの出口での吸気温度を検出してスーパーチャージャの温度とするようにする。
 本発明の自動変速機の制御装置にあっては、マニュアルモード設定状態でスーパーチャージャが高温になったことを検知した場合には、たとえ、エンジンが高負荷運転状態になくとも、その時設定していた変速比をハイ側の変速比に変更することでエンジンの回転数を下げ、これによりスーパーチャージャの温度を低下させることでその耐久性が劣化するのを防止することができる。
 スーパーチャージャの出口での吸気温度を検出してスーパーチャージャの温度とすることにより、吸気温度センサを兼用することができ、安価になる。
本発明に係る実施例1の制御装置を有する自動変速機が接続されるエンジンと過給機との構成を示す図である。 実施例1の制御装置の構成を示す図である。 実施例1の制御装置を構成するCVTコントローラにおけるマニュアルモード上限規制機能を得るための構成を示すブロック図である。 実施例1の制御装置を構成するCVTコントローラにおけるキックダウン時のダウンシフト制限機能を得るための構成を示すブロック図である。
 以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
 実施例1では、制御装置は、エンジンと電気モータとで車両を駆動可能なハイブリッド車(HEV)に用いられる。
 エンジンは本実施例ではガソリンエンジンであり、過給を行うためのスーパーチャージャを備えている。エンジンからの出力は、自動変速機としての無段変速機(CVT)を介して駆動輪を駆動可能である。
 無段変速機は、たとえば入力側のプライマリプーリと出力側のセカンダリプーリとの間に金属製のベルトを架け渡し、両プーリの溝幅を変更することで無段変速可能とする周知のものであって、自動で無段変速するオートモードに加えて、運転者の意思で複数の固定変速段のうちから一つの変速段を手動で選択するマニュアルモードでも運転することが可能である。
 また、モータは、インバータからの電力の供給で駆動輪を駆動し、車両の制動時にはジェネレータとして機能し、制動エネルギの一部を交流電流に変えて回収し、インバータで直流電流に変えてバッテリに蓄積可能する回生機能を発揮可能である。
 まず、無段変速機が接続されるエンジン、エンジンに備え付けられたスーパーチャージャ、およびこれら周辺部品の全体構成を、図1に示す。
 同図において、エンジン1は、このインテークマニホールド11に、スーパーチャージャ2で圧縮された吸入空気が、インタークーラ3で冷却されてから供給される。スーパーチャージャ2は、ここでは四つ歯を有する2つのロータが互いに噛み合いながら回転するルーツ型の圧縮機で構成されている。
 また、スーパーチャージャ2をバイパスしてその上流および下流を連結するバイパス通路中にバイパスバルブ4が設けられて過給圧を制御可能としてある。なお、バイパスバルブ4の下流にはリリーフバルブ23が設けられて過給圧が異常に高くなるのを防止するようにしている。
 スーパーチャージャ2の上流側は、エアフィルタ6を介して大気に開放され、ここから空気を吸い込み可能とされている。スーパーチャージャ2とエアフィルタ6との間の通路には、エアフローメータ(空気温度センサも取り付けられている)7が設けられ、吸入空気量および吸い込み口での吸気温度を計測してエンジンコントローラ30(ECM:図2を参照)へその検出信号を送っている。
 スーパーチャージャ2の下流側の吸気通路は、エンジンコントローラ30により制御されてエンジン1に供給する空気量を制御するエンジン1の電子式制御スロットル8を介して、インタークーラ3に接続されている。
 インタークーラ3は、サブラジエータ5に接続されており、ここで冷却された冷却水が水ポンプ9で送られて来て、この冷却水によりスーパーチャージャ2で圧縮されて高温になった吸入空気を冷却する。なお、この冷却水は、モータのインバータ10をも冷却するようにしている。
 インタークーラ3の下流は、エンジン1のインテークマニホールド11の他、チェックバルブ24を介してブレーキ装置であるマスターシリンダ12aに連結された倍力装置12bに、またチェックバルブ24およびパージコントロールバルブ13を介して図示しないキャニスタにそれぞれ接続されている。なお、倍力装置には、圧力センサ25が設けられてVDC(ビークルダイナミックコントロール)装置の制御に利用される。
 インテークマニホールド11のエンジン1の吸入ポート近くには、フュエルインジェクタ14が設けられ、アクセル開度等に応じて制御された量の燃料を吸入空気中に吹き込み可能にしてある。
 一方、エンジン1のエキゾーストポートには、エキゾーストマニホールド15が接続され、この集合部の下流に三元触媒16が設けられる。また、この下流のエキゾーストパイプ17の途中で車体床下位置にもメイン触媒18が設けられて、ここでさらに浄化された排気は下流側のエキゾーストパイプ17から図示しないマフラーを介してテールパイプから大気中へと放出される。
 なお、エキゾーストマニホールド15の集合部には、上流側酸素センサ19が、またメイン触媒18のすぐ上流には下流側酸素センサ20がそれぞれ設けられて、酸素濃度を検出し、それらの情報をエンジンコントローラ30へ送る。
 また、スーパーチャージャ2の出口位置、すなわちスーパーチャージャ2の下流で電子式制御スロットル8の上流側の位置に、この位置における過給空気の圧力および温度を計測する第1圧力・温度センサ21(本発明の温度検出手段に相当)が設けられるとともに、インタークーラ3の出口位置に、この位置におけるインタークーラ3により冷却された吸入空気の圧力および温度を計測する第2圧力・温度センサ22が設けられて、これらで計測された圧力情報および温度情報のそれぞれの信号がエンジンコントローラ30に入力される。
 一方、無段変速機は、周知の構成のもの(たとえば、本出願人の出願に係る特開2002-243031号公報に記載のものなど)を用いるので、ここではその図示および詳細な説明は省略し、本発明に関係する部分のみ説明する。
 無段変速機は、上述のようにオートモードとマニュアルモードで運転可能であるが、これらのモードによる変速制御は、本実施例では、オートモードの変速制御は図2に示す変速機コントローラ35にて、またマニュアルモードはCVTコントローラ36により実行される。もちろん、これらの変速制御は、変速機コントローラ35とCVTコントローラ36とを統合した1個のコントローラで行うようにしてもよい。
 図2に、エンジンコントローラ30と、変速機コントローラ35と、CVTコントローラ36の関係を示す。
 エンジンコントローラ30は、図1の各種センサやアクセル開度センサ等からの信号を受けて、フュエルインジェクタ14や電子式制御スロットル8などを制御して、エンジンの始動、最適な稼働、停止などを行う。これらの制御はよく知られているので、ここでは省略する。
 その他、エンジンコントローラ30は、本発明のスーパーチャージャ保護機能を行うため、スーパーチャージャ出口温度制御部31(本発明の温度判定手段に相当)と、エンジン高油温保護制御部32と、マージ部33とを備えている。
 スーパーチャージャ出口温度制御部31は、エンジン回転数信号、エンジントルク信号、第1圧力・温度センサ21から入力されたスーパーチャージャ出口における吸気温度信号、アクセル開度信号が入力されて、スーパーチャージャ出口における吸気温度が所定吸気温度値以上とならない第1エンジン上限回転数を算出し、この回転数信号をマージ部33に入力する。ここで、所定吸気温度は、スーパーチャージャ2の耐久性が劣化し始める温度、あるいはこの下方近傍とする。
 一方、エンジン高油温保護制御部32は、エンジン油温信号が入力されて、この油温が所定油温値以上とならない第2エンジン上限回転数を算出し、この回転数信号をマージ部33に入力する。ここで、所定油温値は、エンジン油が劣化し始める温度、あるいはこの下方近傍とする。
 マージ部33は、スーパーチャージャ出口温度上昇対応とエンジン油温上昇対応の要件をマージするもので、ここでマージした制限回転数を許可上限エンジン回転数として出力する。マージのやり方は、ここではスーパーチャージャ出口温度制御部31から入力された第1エンジン上限回転数と、エンジン高油温保護制御部32から入力された第2エンジン上限回転数とを比較して、値が低い方を選択する。
 この許可上限エンジン回転数信号は、CAN34を通じて、変速機コントローラ35とCVTコントローラ36とにそれぞれ送られる。
 図外のセレクトスイッチ(本発明のマニュアルモード検出手段に相当)によりセレクトポジションがオートモード(DポジションやLポジション)であると判定された場合には、変速機コントローラ35にてプライマリプーリの目標回転数が許可上限エンジン回転数以下の回転数に低下するように、変速比がハイ側となる方向へ変速比制御を行う。
 一方、セレクトスイッチによりマニュアルモードにセレクトされていることが検出された場合には、CVTコントローラ36にて目標回転数が許可上限エンジン回転数以下の回転数となるような上限規制を越えないようにオートアップを行う。
 以下、CVTコントローラ36で実行されるマニュアルモード選択時におけるスーパーチャージャ高熱化対策は、アクセル開度がパーシャル領域にある場合と、キックダウン領域にある場合とで異なるので、それらについて以下に説明する。
 まず、アクセル開度がパーシャル領域にある場合には、図3に示すように、CVTコントローラ36では、図示しない油温センサからのCVT油温信号が入力されて回転制限部40にてCVT油温(横軸にとる)と制限回転数(縦軸にとる)との関係のテーブルを用いてCVT油温による制限回転数を決定し、この信号をレートリミッタ41で所定の範囲(上限および下限)に制限してセレクトロー部42に入力する。
 セレクトロー部42は、CVT油温による制限回転数信号と、エンジンコントローラ30からの上記許可上限エンジン回転数信号とが入力されて、これらのうち小さい方を選択して上限規制回転数信号としてマニュアルモード上限規制部43(本発明の変速比変更手段に相当)に入力する。
 マニュアルモード上限規制部43は、マニュアルモード時目標回転数信号とセレクトロー部42からの上限エンジン回転数信号とが入力されて、上限規制回転数(本発明の所定値に相当)を越えると判定した場合にはオートアップする。すなわち、図3のニュアルモード上限規制部43に吹き出しで示されるように、車速(横軸で示す)と目標回転数(縦軸にとる)との関係で、マニュアルモードがたとえば5つの変速段である(変速線を直線M1~M5で示す)とすると、選択中のマニュアルモードの変速線上での目標回転数が上限規制線(各変速段の上限規制回転数結んだ線で同図中、破線で示す)より上に算定された場合には、そのときの変速線と上限規制線との交点から一つ真下側の別の変速線へとオートアップシフトさせる(たとえば、M1からM2、あるいはM2からM3、あるいはM3からM4、あるいはM4からM5)ことで目標回転数を低下させ、この新しい変速線上で変速制御を行う。
 これにより、エンジン油温はもとより、CVT油温の過度の温度上昇およびスーパーチャージャ2の高温化による耐久性劣化を防ぐことができる。
 また、マニュアルモード選択時にアクセルペダルをキックダウン領域まで踏み込んだ場合の制御を、図4に基づいて説明する。
 CVTコントローラ36には、図3と同様に、セレクトロー部42に、CVT油温による制限回転数信号と、エンジンコントローラ30からの上記許可上限エンジン回転数信号と、が入力されるのに加えて、ダウンシフト制限部44からダウンシフト制限回転数信号が入力される。
 ここで、ダウンシフト制限部44では、アクセル開度センサからのアクセル開度信号がキックダウン領域にあることを判定したら、車速(横軸にとる)とダウンシフト制限回転数(縦軸にとる)との関係のテーブルを用いてそのときのダウンシフト制限回転数を決定する。
 セレクトロー部42では、CVT油温による制限回転数信号と、エンジンコントローラ30からの許可上限エンジン回転数信号と、ダウンシフト制限回転数とのうちから最も小さい値となるキックダウン時制限回転数を決定して、このキックダウン時制限回転数信号をキックダウン時ダウンシフト制限部45(本発明の変速比変更手段に相当)に入力する。
 キックダウン時ダウンシフト制限部45では、吹き出しに示されるように、図3の場合と同様にM1~M5で示す変速線の5つの変速段の変速線間で、キックダウンが検出されたら図4中で少なくとも1つ上の変速線へオートダウンシフトする(図4中上の変速線へシフトする)ようにする。
 ただし、このダウンシフト先の目標の変速線における目標回転数が上限規制線を越えると判定された場合には、その目標の変速線よりハイ側の固定変速比となる変速段の変速線へ変更する。
 すなわち、その現在の変速線(たとえばM5)のEの位置からオートダウンシフトしようとする目標の変速線が2つ以上ダウン側の変速線(たとえばM2)で、かつその場合の目標回転数Emが上限規制線を越えると判定された場合には、その変速線(この場合、M2)から1つハイ側の変速線(この場合にはM3)にオートアップシフトさせる。この場合、実際には、変速機は変速線M5からの目標ダウンシフトとなる変速線M2を変速線M3へとオートアップシフトして目標回転数Emとすることで、結果としてキックダウンによるダウンシフトを行う。
 1つ先のアップシフトでも上限規制線を越える場合にはさらにもう一つハイ側の変速線へアップシフトする。このアップシフト先がキックダウン前の変速段と同じ変速線である場合には、変速線のシフトは禁止する。
 したがって、実施例1の自動変速機の制御装置は、以下の効果を得ることができる。
 スーパーチャージャ2付きエンジン1に接続されたマニュアルモードを有する無段変速機を備えた車両にあって、マニュアルモード運転中にエンジン高負荷状態が検出されなくても、スーパーチャージャ2の出口吸気温を測定してこれが所定値以上となる場合に、ハイ側の固定変速比に変更するようにしたので、スーパーチャージャ2を耐久性劣化から守ることができる。
 スーパーチャージャ2の温度は、この出口における吸気温を測定するようにしたので、もともとエンジン1の制御に利用可能な温度センサを兼用することができ、安価になる。
 マージ部33にて、スーパーチャージャ2の出口温抑制制御とエンジン高油温保護制御をマージするようにしたので、エンジン油温およびスーパーチャージャ2の過熱の両方を防ぐことが可能となる。
 マニュアルモード運転時におけるキックダウン時にあっても、キックダウンによるダウンシフト先の変速線での目標回転数が上限規制の回転数を超えるときは、ダウンシフト先の変速線をオートアップさせてハイ側の変速線にシフトするようにしたので、スーパーチャージャ2等の劣化を防ぐことができる。
 以上、本発明を上記各実施例に基づき説明してきたが、本発明はこれらの実施例に限られず、本発明の要旨を逸脱しない範囲で設計変更等があった場合でも、本発明に含まれる。
 たとえば、スーパーチャージャ2の温度は、上記実施例では、スーパーチャージャ2の出口における吸気温を測定してこの温度を用いるようにしたが、スーパーチャージャ2の温度を直接計測する温度センサを用いるようにしてもよい。
 また、上記実施例では、自動変速機にベルト式無段変速機を用いたが、これ以外の無段変速機はもちろん多段式自動変速機を用いるようにしてもよい。

Claims (2)

  1.  スーパーチャージャを備えたエンジンに接続され、複数の固定変速比のうちから手動操作で所望の変速比を選択可能なマニュアルモードを有する自動変速機の制御装置において、
     前記自動変速機がマニュアルモード設定状態であることを検出するマニュアルモード検出手段と、
     前記スーパーチャージャの温度を検出する温度検出手段と、
     該温度検出手段で検出した前記スーパーチャージャの温度が所定値以上になることを判定する温度判定手段と、
     前記マニュアルモード検出手段でマニュアルモード設定状態を検出し、かつ前記温度判定手段で前記スーパーチャージャの温度が所定値以上になることを判定した場合に、変速比をハイ側の固定変速比に変更してエンジンの回転数を低下させる変速比変更手段と、
     を備えた自動変速機の制御装置。
  2.  請求項1に記載の自動変速機の制御装置において、
     前記温度検出手段は、前記スーパーチャージャの出口での吸気温度を検出して前記スーパーチャージャの温度とする、
     自動変速機の制御装置。
PCT/JP2014/073277 2013-09-13 2014-09-04 自動変速機の制御装置 WO2015037503A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480050127.2A CN105579747B (zh) 2013-09-13 2014-09-04 自动变速器的控制装置
EP14843635.5A EP3045780B1 (en) 2013-09-13 2014-09-04 A system, a control method and a computer program of an automatic transmission
JP2015536547A JP6019242B2 (ja) 2013-09-13 2014-09-04 自動変速機の制御装置
KR1020177031150A KR20170124615A (ko) 2013-09-13 2014-09-04 자동 변속기의 제어 장치
KR1020167003914A KR102013486B1 (ko) 2013-09-13 2014-09-04 자동 변속기의 제어 장치
US14/914,859 US9568094B2 (en) 2013-09-13 2014-09-04 Control device of automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-191098 2013-09-13
JP2013191098 2013-09-13

Publications (1)

Publication Number Publication Date
WO2015037503A1 true WO2015037503A1 (ja) 2015-03-19

Family

ID=52665609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073277 WO2015037503A1 (ja) 2013-09-13 2014-09-04 自動変速機の制御装置

Country Status (6)

Country Link
US (1) US9568094B2 (ja)
EP (1) EP3045780B1 (ja)
JP (1) JP6019242B2 (ja)
KR (2) KR20170124615A (ja)
CN (1) CN105579747B (ja)
WO (1) WO2015037503A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110612A1 (ja) * 2015-12-25 2017-06-29 株式会社Kcm 作業車両
JP2018096399A (ja) * 2016-12-09 2018-06-21 本田技研工業株式会社 エンジンルーム温度上昇抑制装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102474349B1 (ko) * 2017-12-05 2022-12-05 현대자동차 주식회사 자동차의 브레이크 부스터

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133248A (ja) * 1988-11-14 1990-05-22 Mazda Motor Corp 機械式過給機付きエンジンの変速制御手段
JPH08312774A (ja) 1995-05-23 1996-11-26 Nissan Motor Co Ltd 車両用自動変速機の制御装置
JPH09264414A (ja) * 1996-03-26 1997-10-07 Unisia Jecs Corp 車両用自動変速機の制御装置
JPH1089126A (ja) * 1996-09-13 1998-04-07 Daihatsu Motor Co Ltd ディーゼル機関の運転制御方法
JP2001099310A (ja) * 1999-09-30 2001-04-10 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2002243031A (ja) 2001-02-15 2002-08-28 Jatco Ltd 自動変速機の変速制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225032A (ja) * 1990-01-31 1991-10-04 Fuji Heavy Ind Ltd 内燃機関の負荷制御方法
JP3322054B2 (ja) * 1995-02-20 2002-09-09 トヨタ自動車株式会社 車両用自動変速機の変速制御装置
JP3501950B2 (ja) * 1998-06-04 2004-03-02 本田技研工業株式会社 車両用自動変速機の制御装置
US6059689A (en) * 1998-06-04 2000-05-09 Honda Giken Kogyo Kabushiki Kaisha Control system for automatic vehicle transmission
CN100443708C (zh) * 2003-10-21 2008-12-17 通用电气公司 自动检测和避免发动机上的涡轮增压器喘振的装置和方法
JP4858390B2 (ja) * 2007-09-28 2012-01-18 トヨタ自動車株式会社 車両の制御装置
US8602001B2 (en) * 2010-09-17 2013-12-10 GM Global Technology Operations LLC Torque limiting engine lubrication protection system
JP2014005894A (ja) * 2012-06-26 2014-01-16 Suzuki Motor Corp 自動変速機の変速制御装置
US9126578B2 (en) * 2013-01-25 2015-09-08 Caterpillar Inc. Cooling-based power limiting system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133248A (ja) * 1988-11-14 1990-05-22 Mazda Motor Corp 機械式過給機付きエンジンの変速制御手段
JPH08312774A (ja) 1995-05-23 1996-11-26 Nissan Motor Co Ltd 車両用自動変速機の制御装置
JPH09264414A (ja) * 1996-03-26 1997-10-07 Unisia Jecs Corp 車両用自動変速機の制御装置
JPH1089126A (ja) * 1996-09-13 1998-04-07 Daihatsu Motor Co Ltd ディーゼル機関の運転制御方法
JP2001099310A (ja) * 1999-09-30 2001-04-10 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2002243031A (ja) 2001-02-15 2002-08-28 Jatco Ltd 自動変速機の変速制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3045780A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110612A1 (ja) * 2015-12-25 2017-06-29 株式会社Kcm 作業車両
JP2017115832A (ja) * 2015-12-25 2017-06-29 株式会社Kcm 作業車両
CN107923326A (zh) * 2015-12-25 2018-04-17 株式会社Kcm 作业车辆
EP3396138A4 (en) * 2015-12-25 2019-07-31 KCM Corporation CONSTRUCTION MACHINE
US11274745B2 (en) 2015-12-25 2022-03-15 Hitachi Construction Machinery Co., Ltd. Wheel loader
JP2018096399A (ja) * 2016-12-09 2018-06-21 本田技研工業株式会社 エンジンルーム温度上昇抑制装置
CN108223152A (zh) * 2016-12-09 2018-06-29 本田技研工业株式会社 发动机舱温度升高抑制装置
US10344854B2 (en) 2016-12-09 2019-07-09 Honda Motor Co., Ltd. Engine room temperature rise restricting apparatus

Also Published As

Publication number Publication date
KR20160032206A (ko) 2016-03-23
CN105579747B (zh) 2017-06-16
US9568094B2 (en) 2017-02-14
JP6019242B2 (ja) 2016-11-02
EP3045780A1 (en) 2016-07-20
KR20170124615A (ko) 2017-11-10
JPWO2015037503A1 (ja) 2017-03-02
KR102013486B1 (ko) 2019-08-22
CN105579747A (zh) 2016-05-11
US20160215876A1 (en) 2016-07-28
EP3045780B1 (en) 2018-05-30
EP3045780A4 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
US7340335B2 (en) Controller of driver for vehicle
CA2909878C (en) System and method for optimizing downshifting of a transmission during vehicle deceleration
US9470310B2 (en) Abnormality detection device for continuously variable transmission and method of detecting abnormality of the continuously variable transmission
MX2012009031A (es) Transmision automatica y metodo de control para la misma.
WO2015056382A1 (ja) 変速制御装置および変速制御方法
JP2008215535A (ja) ディーゼル車の制御装置
JP6019242B2 (ja) 自動変速機の制御装置
JPS62146737A (ja) 無段変速機の制御装置
CN104776211A (zh) 无级变速器的变速控制装置
EP1255031A2 (en) Control system and method for vehicle having an internal combustion engine with turbocharger and a transmission
CN104641155A (zh) 无级变速器及其控制方法
US7472010B2 (en) Brake-actuating transmission control system
JP6048426B2 (ja) 車両の減速制御装置
JP2013199854A (ja) 車両用駆動制御装置
JP2013199164A (ja) 車両用駆動制御装置
WO2012121657A1 (en) Method and device for control of pumping work of a combustion engine
JP2018071662A (ja) 車両の制御装置
JP2006157986A (ja) ハイブリッド車両の制御装置
US20170240165A1 (en) Vehicle drive system
JP6019051B2 (ja) ベルト無段変速機及びその制御方法
JP7115447B2 (ja) 変速比制御装置
JP2852518B2 (ja) シフトレバー位置信号の判定方法
JP2008232032A (ja) 内燃機関の制御装置
JP2016151327A (ja) 車両の制御装置
JP5476786B2 (ja) パワートレインシステムの制御方法及びパワートレインシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050127.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536547

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167003914

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14914859

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014843635

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014843635

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE