WO2015037198A1 - Composition for forming functional film, and functional film laminate - Google Patents

Composition for forming functional film, and functional film laminate Download PDF

Info

Publication number
WO2015037198A1
WO2015037198A1 PCT/JP2014/004350 JP2014004350W WO2015037198A1 WO 2015037198 A1 WO2015037198 A1 WO 2015037198A1 JP 2014004350 W JP2014004350 W JP 2014004350W WO 2015037198 A1 WO2015037198 A1 WO 2015037198A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
mass
parts
composition according
Prior art date
Application number
PCT/JP2014/004350
Other languages
French (fr)
Japanese (ja)
Inventor
大作 守屋
Original Assignee
ナガセケムテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナガセケムテックス株式会社 filed Critical ナガセケムテックス株式会社
Publication of WO2015037198A1 publication Critical patent/WO2015037198A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the present invention relates to a composition for forming a functional film having far-infrared reflection performance and near-infrared absorption performance, and a laminate in which a functional film obtained using the composition is laminated on a substrate.
  • Infrared refers to electromagnetic waves having a longer wavelength than red light and shorter than millimeter-wave radio waves.
  • Near infrared about 300-2,500 nm
  • mid-infrared about 2,500-4,000 nm
  • far infrared About 4,000-300,000 nm
  • Far-infrared rays with long wavelengths are generated from heating equipment and are used to maintain the room temperature in winter comfortably. However, some of them are transmitted through the window glass and released outside, causing a reduction in heating efficiency. It was.
  • Solar radiation includes near-infrared rays with a short wavelength, but the near-infrared rays that have passed through the window glass and are taken into the room raises the room temperature and lowers the cooling efficiency in summer.
  • a transparent thin film made of a metal oxide such as tin-doped indicium oxide (ITO) is used.
  • ITO tin-doped indicium oxide
  • Patent Document 1 describes a thin film containing a conductive polymer such as poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid) (PEDOT / PSS) that reflects far infrared rays.
  • a conductive polymer such as poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid) (PEDOT / PSS) that reflects far infrared rays.
  • PEDOT / PSS poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)
  • Patent Document 2 describes an infrared absorption film comprising a cured product layer containing an inorganic pigment that efficiently absorbs near infrared rays of about 800 to 1200 nm and an antireflection layer. However, the cured product layer alone does not have infrared reflection performance.
  • the present invention is a composition for forming a functional film having a far-infrared reflecting performance and a near-infrared absorbing performance in a single layer, and a laminate in which the functional film is laminated on a substrate.
  • the challenge is to provide a body.
  • the first of the present invention is used to form a functional film having far-infrared reflecting performance and near-infrared absorbing performance, and includes a conductive polymer exhibiting a conductivity of 0.05 S / cm or more, an inorganic material, And a composition comprising a binder.
  • the second of the present invention is obtained by using the above composition, has a shielding coefficient of less than 0.95, a heat transmissivity of less than 5.9 W / m 2 ⁇ K, and has a far-infrared reflecting performance and a near-infrared absorbing performance. It is related with the laminated body which laminated
  • the present invention it is possible to provide a functional film having a single-layered far-infrared reflecting performance and near-infrared absorbing performance with the above configuration. Moreover, since it has the outstanding performance with a single layer, manufacture of a laminated body can be simplified.
  • the conductive polymer in the composition according to the present invention is compared with the conductive polymer used in normal conductive film applications in order that the formed thin film exhibits excellent far-infrared reflection performance and near-infrared absorption performance. It is necessary to show high conductivity. Specifically, it is necessary to use a conductive polymer having a conductivity of 0.01 S / cm or more. If the electrical conductivity is less than 0.01 S / cm, a thin film exhibiting excellent far-infrared reflection performance and near-infrared absorption performance cannot be formed.
  • the conductivity of the conductive polymer is preferably 0.05 S / cm or more, more preferably 0.15 S / cm or more, and further preferably 0.25 S / cm or more.
  • a conductive polymer exhibiting a conductivity of 0.01 S / cm or more can be easily produced by appropriately selecting the polymerization conditions and molecular weight of the ⁇ -conjugated conductive polymer, for example. For example, by increasing the molecular weight, a conductive polymer exhibiting high conductivity as described above can be obtained.
  • the conductive polymer include polythiophene, polyethylenedioxythiophene, polyisothianaphthene, polypyrrole, polyaniline, polyparaphenylene, polyparaphenylene vinylene, and derivatives thereof.
  • a polythiophene conductive polymer composed of a complex of polythiophene and a dopant is preferably used.
  • the conductive polymer is composed of a complex of poly (3,4-disubstituted thiophene) and a polyanion
  • a conductive material exhibiting high conductivity can be obtained by optimizing the pH exhibited by the polymerization system during production. Can be obtained.
  • Conductive polymers exhibiting high conductivity are commercially available, and commercially available products may be used in the present invention.
  • the poly (3,4-disubstituted thiophene) has the following formula (1):
  • the cationic polythiophene refers to a polythiophene that is partly in a cationic form by extracting electrons from a part of the polythiophene in order to form a complex with a polyanion that is a dopant. .
  • R 1 and R 2 independently of each other represent a hydrogen atom or a C 1-4 alkyl group, or R 1 and R 2 combine to form a cyclic structure. It represents a substituted or unsubstituted C 1-4 alkylene group.
  • Examples of the C 1-4 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a t-butyl group.
  • Examples of the substituted or unsubstituted C 1-4 alkylene group in which R 1 and R 2 combine to form a cyclic structure include a methylene group, a 1,2-ethylene group, a 1,3-propylene group, , 4-butylene group, 1-methyl-1,2-ethylene group, 1-ethyl-1,2-ethylene group, 1-methyl-1,3-propylene group, 2-methyl-1,3-propylene group, etc. Is mentioned.
  • Examples of the substituent that the C 1-4 alkylene group may have include a halogen group and a phenyl group.
  • Suitable C 1-4 alkylene groups include methylene, 1,2-ethylene, and 1,3-propylene, with 1,2-ethylene being particularly preferred.
  • polythiophene having an alkylene group poly (3,4-ethylenedioxythiophene) is particularly preferable.
  • the dopant constituting the polythiophene-based conductive polymer is an anionic polymer that forms a complex by forming an ion pair with the polythiophene described above, and can stably disperse the polythiophene in water, that is, a polyanion. It is preferable.
  • Examples of such dopants include carboxylic acid polymers (eg, polyacrylic acid, polymaleic acid, polymethacrylic acid, etc.), sulfonic acid polymers (eg, polystyrene sulfonic acid, polyvinyl sulfonic acid, etc.), and the like.
  • carboxylic acid polymers and sulfonic acid polymers may be copolymers of vinyl carboxylic acids and vinyl sulfonic acids with other polymerizable monomers (eg, acrylates, styrene, etc.). Of these, polystyrene sulfonic acid is particularly preferable.
  • the weight average molecular weight of poly (3,4-disubstituted thiophene) is preferably in the range of 500 to 100,000, more preferably in the range of 1000 to 50000, and most preferably in the range of 1500 to 20000. When it is less than 500, a thin film exhibiting excellent far-infrared reflection performance and near-infrared absorption performance cannot be formed, and when it exceeds 100,000, the dispersion stability of the conductive polymer may be lowered.
  • the weight average molecular weight of the polyanion is preferably in the range of 1,000 to 2,000,000, more preferably in the range of 2,000 to 1,000,000, and most preferably in the range of 2,000 to 500,000. If it is less than 1000 or exceeds 2000000, the dispersion stability of the conductive polymer may be lowered.
  • the weight average molecular weight of the polymer is a value measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • an ultrahydrogel 500 column manufactured by Waters is used.
  • the amount of the poly anion is preferably in the range of 10 to 2000 parts by mass, more preferably in the range of 30 to 1000 parts by mass, with respect to 100 parts by mass of the poly (3,4-disubstituted thiophene).
  • the range of 50 to 500 parts by mass is most preferable.
  • the amount is less than 10 parts by mass, the dispersion stability decreases, and when it exceeds 2000 parts by mass, a thin film exhibiting excellent far-infrared reflection performance and near-infrared absorption performance may not be formed.
  • the polythiophene conductive polymer can be obtained by oxidative polymerization in water using an oxidizing agent.
  • an oxidizing agent two kinds of oxidizing agents (first oxidizing agent and second oxidizing agent) are used.
  • Suitable first oxidizing agents include, for example, peroxodisulfuric acid, sodium peroxodisulfate, potassium peroxodisulfate, ammonium peroxodisulfate, hydrogen peroxide, potassium permanganate, potassium dichromate, alkali perborate, copper Examples include salts.
  • the amount of the first oxidizing agent used is preferably 1.5 to 3.0 molar equivalents, more preferably 2.0 to 2.6 molar equivalents relative to the thiophene monomer used.
  • a metal ion for example, iron, cobalt, nickel, molybdenum, vanadium ion
  • iron ions are the most effective.
  • the amount of metal ion added is preferably 0.005 to 0.1 molar equivalent, more preferably 0.01 to 0.05 molar equivalent, relative to the thiophene monomer used.
  • aqueous dispersion of a conductive polymer is obtained by the above oxidative polymerization.
  • the composition of the present invention preferably further contains a solvent and / or a dispersion medium in addition to the conductive polymer.
  • a solvent and / or a dispersion medium in addition to the conductive polymer.
  • solvent when each component of the composition is completely dissolved, it is referred to as a “solvent”, and when any component is not dissolved but dispersed, it is referred to as a “dispersion medium”.
  • the solvent may be only water, but in addition to water, a solvent miscible with water may be used in combination.
  • the solvent miscible with water is not particularly limited.
  • alcohols such as methanol, ethanol, 2-propanol, 1-propanol, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, etc.
  • Glycol ether acetates propylene glycols such as propylene glycol, dipropylene glycol, tripropylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, propylene glycol dimethyl ether, di Propylene glycol dimethyl ether, propylene glycol Propylene glycol ethers such as coal diethyl ether and dipropylene glycol diethyl ether, propylene glycol ether acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate and dipropylene glycol monoethyl ether acetate , Dimethylacetamide, acetone, acetonitrile, and mixtures thereof.
  • propylene glycols such as propylene glycol,
  • composition is an organic solvent
  • solvents miscible with water toluene, xylene, benzene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, diethyl ether, diisopropyl ether, methyl-t -Butyl ether, hexane, heptane, etc.
  • solvents or dispersion media methanol, ethanol and 2-propanol are particularly preferred.
  • the solid content concentration of the composition is not particularly limited as long as it is a uniform solution or dispersion, but is preferably about 0.01 to 50% by mass during coating. More preferably, it is 1 to 20% by mass. In this range, the coating can be carried out easily, and good far infrared reflection performance and near infrared absorption performance are exhibited. On the other hand, the concentration may be higher when the composition is sold or transported. In that case, a solvent and / or a dispersion medium may be added and diluted as appropriate at the time of use.
  • the inorganic material in the composition according to the present invention is preferably fine particles having an average particle size of about 0.01 ⁇ m to 10 ⁇ m, since the formed thin film exhibits excellent far-infrared reflection performance and near-infrared absorption performance.
  • the average particle diameter of the fine particles is preferably 0.01 ⁇ m to 5 ⁇ m, more preferably 0.01 ⁇ m to 3 ⁇ m, and still more preferably 0.01 ⁇ m to 1 ⁇ m. If it is smaller than 0.01 ⁇ m, the inorganic materials tend to aggregate together, and if it is larger than 10 ⁇ m, the dispersion stability may be lowered.
  • the shape of the fine particles is not particularly limited, but a spherical or fibrous one can be suitably used because a larger surface area absorbs near infrared rays more efficiently.
  • the inorganic material is in the form of a fiber
  • the average aspect ratio is preferably 10 to 10,000.
  • the average length is preferably 1 ⁇ m to 100 ⁇ m, more preferably 3 ⁇ m to 50 ⁇ m, and even more preferably 5 ⁇ m to 30 ⁇ m.
  • the relative standard deviation of the length is preferably 50% or less.
  • the average particle size of the inorganic material was a value measured with a dynamic light scattering particle size / particle size distribution measuring device (Nikkiso Co., Ltd .: Nanotrack® Wave).
  • the average value of length, diameter, or aspect ratio is obtained from an arithmetic average of measured values of individual fiber images by taking electron micrographs of a sufficient number of fibrous inorganic materials. be able to.
  • the relative standard deviation of length and diameter is expressed by a value obtained by multiplying 100 by the value obtained by dividing the standard deviation of the measured value by the average value.
  • the number of fibers to be measured is preferably at least 100, more preferably 300 or more.
  • Relative standard deviation [%] standard deviation of measured value / average value ⁇ 100
  • the blending amount of the inorganic material in the composition according to the present invention is preferably 0.1 to 10000 parts by mass, more preferably 1 to 5000 parts by mass with respect to 100 parts by mass of the conductive polymer. More preferably, it is 10 to 1000 parts by mass. If the blending amount is outside this range, a thin film exhibiting excellent far-infrared reflection performance and near-infrared absorption performance cannot be formed.
  • the inorganic material in the composition according to the present invention includes metal oxides such as indium tin oxide (ITO) and antimony tin oxide (ATO), composite tungsten oxide, and metal nanowires, metal nanoparticles, Silica (SiO 2 ) can be preferably used.
  • metal oxides such as indium tin oxide (ITO) and antimony tin oxide (ATO), composite tungsten oxide, and metal nanowires, metal nanoparticles, Silica (SiO 2 ) can be preferably used.
  • the formed thin film exhibits excellent far-infrared reflection performance and near-infrared absorption performance, from indium tin oxide (ITO), antimony tin oxide (ATO), composite tungsten oxide, and metal nanowires It is preferably at least one selected from the group consisting of
  • the composite tungsten oxide is represented by the general formula W y O z (where W is tungsten, O is oxygen, 2.2 ⁇ z / y ⁇ 2.999).
  • Composite tungsten oxide In the general formula M x W y O z (wherein, M represents, H, the He, alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn , Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, At least one element selected from the group consisting of V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, 0.001 ⁇ x / y ⁇ 1,.
  • a metal composition of the metal nanowire in this invention can comprise from the 1 type or several metal of a noble metal element or a base metal element, it is a noble metal (For example, gold, platinum, silver, palladium, rhodium, iridium) , Ruthenium, osmium, etc.) and at least one metal belonging to the group consisting of iron, cobalt, copper, and tin. It is preferable to include at least silver because it is excellent in infrared reflection performance. More preferably it is.
  • the metal nanowire generally refers to a fibrous structure having a metal element as a main component.
  • the metal nanowire in the present invention means a fibrous structure having a diameter from the atomic scale to the nm size.
  • binder in the composition according to the present invention is used for enhancing the adhesion between the thin film and the substrate and forming a homogeneous thin film, particularly when a resin film is used as the substrate.
  • the binder usable in the present invention is not particularly limited. Conventionally, a binder that has been used when a conductive polymer is coated on a substrate can be appropriately used.
  • silicate resin polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and other polyester resins, polyacrylate, polymethacrylate, polyurethane, polyvinyl acetate, polyvinylidene chloride, Polyamide, polyimide and the like; and copolymers obtained by copolymerizing monomers such as styrene, vinylidene chloride, vinyl chloride, alkyl acrylate and alkyl methacrylate.
  • These binders may be used independently and may use 2 or more types together.
  • the silicate resin is not particularly limited as long as it is a compound having at least one silicon alkoxide group (—Si—OR).
  • silicate resin examples include silicon alkoxide acrylic resin, silicon alkoxide epoxy resin, silicon alkoxide vinyl resin, silicon alkoxide methacrylic resin, silicon alkoxide thiol resin, silicon alkoxide amino resin, silicon alkoxide isocyanate resin, silicon Examples thereof include silicon alkoxide resins such as alkoxide alkyl resins and silicon alkoxide resins having no functional group other than silicon alkoxide groups.
  • the binder in the composition according to the present invention is a compound having a silicon alkoxide group (A), a silicon alkoxide group, an acrylic group, an epoxy group, an alkyl group, from the viewpoint of obtaining a coating film having particularly high scratch resistance. It is preferably at least one selected from compounds (B) having at least one functional group selected from the group consisting of a vinyl group, a methacryl group, a thiol group, an amino group and an isocyanate group.
  • the binder in the composition according to the present invention is a compound having a silicon alkoxide group (A) and a silicon alkoxide because it exhibits excellent hardness when it is used as a cured film, and cracks due to curing shrinkage are less likely to occur.
  • the value obtained by dividing the number of alkoxide groups in the compound (B) by the weight average molecular weight of the compound (B) is the compound (A).
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • the compound (A) is preferably a compound represented by the following formula (2) from the viewpoint of hardness when it is used as a cured film.
  • n is an integer of 0 to 1000, preferably 0 to 500, and more preferably 0 to 100.
  • R 1 , R 2 , R 3 , and R 5 is an alkoxide group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms
  • R 1-6 is an alkoxide group having 1-20 carbon atoms, preferably 1-10 carbon atoms, more preferably 1-5 carbon atoms
  • R 4 there are a plurality Each may be the same or different, and a plurality of R 6 may be the same or different.
  • each of R 1 to 6 other than the alkoxide group is independently hydrogen, alkyl group, cycloalkyl group, cycloalkenyl group, aryl group, aralkyl group, Hydrocarbon group such as methylene group, vinyl group, allyl group, heterocyclic group, hydroxyl group, hydroxy (poly) alkyleneoxy group, acyl group, oxy group, thioxy group, phosphino group, halogeno group, amino group, imino group, It is selected from the group consisting of an N-oxide group, a nitro group, and a cyano group, and the hydrogen on the carbon chain and the hydrogen on the ring may each independently be substituted.
  • R 1 ⁇ 6, and hydrogen on the carbon chain as the substituent which can replace a hydrogen on the ring, for example, an alkyl group (a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, s- butyl group C 1-20 alkyl group such as t-butyl group), cycloalkyl group (C 3-10 cycloalkyl group such as cyclopentyl group, cyclohexyl group etc.), cycloalkenyl group (cyclopenter group, cyclohexel group etc.) C 3-10 cycloalkenyl group etc.), heterocyclic group (C 2-10 heterocyclic group containing a hetero atom such as oxygen atom, nitrogen atom, sulfur atom etc.), aryl group [phenyl group, alkylphenyl group (methylphenyl group) C 6-10 aryl groups such as (tolyl group), dimethylphenyl group (x
  • the compound (A) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, methyl silicate oligomer, and ethyl silicate oligomer.
  • R 1 to 6 represented by the formula (2) are alkoxide groups.
  • the compound (B) is preferably a compound represented by the following formula (3) from the viewpoint that it can be cured and shrinkage moderately while exhibiting a certain hardness when formed into a cured film.
  • X is a single bond, a divalent chain hydrocarbon group having 1 to 20, preferably 2 to 15, more preferably 3 to 10 carbon atoms (wherein the carbon chain may be linear or branched, Some of the carbon atoms may be substituted with heteroatoms, and some or all of the hydrogens on the carbon chain may be substituted), or 3 to 20, preferably 4 to 15, More preferably, it is a divalent cyclic hydrocarbon group of 5 to 10 (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, or may have both a condensed ring and a spiro ring, Of the ring may be substituted with a heteroatom, and some or all of the hydrogen on the ring may be substituted).
  • Y is selected from the group consisting of acrylic, epoxy, alkyl, vinyl, methacryl, thiol, amino and isocyanate groups; At least one of 1 to 20 carbon atoms of R 7 ⁇ 9, preferably 1 to 10, more preferably an alkoxide group of 1 to 5, The rest are independently hydrogen, alkyl group, cycloalkyl group, cycloalkenyl group, aryl group, aralkyl group, methylene group, vinyl group, allyl group and other hydrocarbon groups, heterocyclic groups, hydroxyl groups, hydroxy groups.
  • substituents that can be substituted with hydrogen on the carbon chain or hydrogen on the ring include, for example, alkyl groups (methyl group, ethyl group, propyl group, isopropyl group, butyl group, s-butyl group, t-butyl group, etc.
  • C 1-20 alkyl group and a cycloalkyl group (cyclopentyl group, and a C 3-10 cycloalkyl groups such as cyclohexyl group), a cycloalkenyl group (cyclo Pentel group, C 3-10 cycloalkenyl, such as cyclohexanol cell group Groups), heterocyclic groups (C 2-10 heterocyclic groups containing heteroatoms such as oxygen, nitrogen and sulfur atoms), aryl groups [phenyl groups, alkylphenyl groups (methylphenyl groups (tolyl groups), dimethyl groups) C 6-10 aryl group such as phenyl group (xylyl group), etc.], C 6-10 aryl-C 1 such as aralkyl group (benzyl group, phenethyl group, etc.) -4 alkyl groups), unsaturated hydrocarbon groups such as methylene groups, vinyl groups, allyl groups, alkoxide groups (C 1-4 alkoxide groups such
  • compound (B) examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidyl.
  • the cured film can have a higher hardness. Therefore, the compounding ratio of the compound (A) and the compound (B) is 30. ⁇ 95: 70-5 is preferred.
  • the compound (A) may not have a functional group (excluding a silicon alkoxide group) that the compound (B) has. preferable.
  • the amount of the binder in the composition of the present invention is preferably 0.1 to 10000 parts by mass, more preferably 1 to 5000 parts by mass, with respect to 100 parts by mass of the conductive polymer. More preferably, it is 10 to 2000 parts by mass. When the amount is less than 0.1 parts by mass, film formation may be difficult. When the amount exceeds 10000 parts by mass, a thin film exhibiting excellent far-infrared reflection performance and near-infrared absorption performance cannot be formed.
  • composition of the present invention may further include a leveling agent, an antioxidant, a catalyst, a surfactant (surface conditioner), an antifoaming agent, a rheology control agent, an adhesion-imparting agent, a thickener, if necessary. It is possible to add a compatibilizer or the like as appropriate.
  • the addition of the leveling agent can form a coating film with no aesthetics and good aesthetics. There is no particular limitation as long as the film formability can be improved and a uniform coating film can be obtained.
  • leveling agents include polyether-modified polydimethylsiloxane, polyether-modified siloxane, polyetherester-modified hydroxyl group-containing polydimethylsiloxane, polyether-modified acrylic group-containing polydimethylsiloxane, and polyester-modified acrylic group-containing polydimethylsiloxane.
  • Siloxane compounds such as perfluoropolydimethylsiloxane, perfluoropolyether-modified polydimethylsiloxane, and perfluoropolyester-modified polydimethylsiloxane; fluorine-containing organic compounds such as perfluoroalkylcarboxylic acid and perfluoroalkylpolyoxyethyleneethanol; polyoxy Polyether compounds such as ethylene alkylphenyl ether, propylene oxide polymer, ethylene oxide polymer; Carboxylic acids such as oil fatty acid amine salts and gum rosins; Castor oil sulfates, phosphate esters, alkyl ether sulfates, ester compounds such as sorbitan fatty acid esters, sulfonate esters, phosphate esters, succinate esters; alkylaryl sulfones Examples thereof include sulfonate compounds such as acid amine salts and sodium dioctyl sulfosucc
  • siloxane-based, fluorine-based and acrylic compounds are preferable from the viewpoint of film formability and repellency prevention, and polyether-modified polydimethylsiloxane is particularly preferable.
  • the blending amount of the leveling agent in the composition of the present invention is preferably 0.001 to 500 parts by mass, more preferably 0.01 to 300 parts by mass with respect to 100 parts by mass of the conductive polymer. preferable. When the amount is out of this range, repelling occurs and the coating film becomes uneven.
  • the antioxidant is not particularly limited, and examples thereof include reducing or non-reducing water-soluble antioxidants.
  • water-soluble antioxidants having reducing properties include substitution with two hydroxyl groups such as L-ascorbic acid, sodium L-ascorbate, potassium L-ascorbate, erythorbic acid, sodium erythorbate, and potassium erythorbate.
  • Compounds having a lactone ring include compounds having a lactone ring; monosaccharides and disaccharides such as maltose, lactose, cellobiose, xylose, arabinose, glucose, fructose, galactose, mannose; flavonoids such as catechin, rutin, myricetin, quercetin, kaempferol; curcumin, rosmarinic acid
  • Compounds having two or more phenolic hydroxyl groups such as chlorogenic acid, tannic acid, hydroquinone, 3,4,5-trihydroxybenzoic acid; cysteine, glutathione, pentaerythritol tetrakis (3-mercapto butyrate) include compounds having a thiol group such as.
  • Non-reducing water-soluble antioxidants include, for example, oxidative degradation such as phenylimidazolesulfonic acid, phenyltriazolesulfonic acid, 2-hydroxypyrimidine, phenyl salicylate, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid sodium, etc.
  • oxidative degradation such as phenylimidazolesulfonic acid, phenyltriazolesulfonic acid, 2-hydroxypyrimidine, phenyl salicylate, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid sodium, etc.
  • the compound which absorbs the ultraviolet-ray which causes this is mentioned.
  • the blending amount of the antioxidant in the composition of the present invention is preferably 0.001 to 500 parts by mass, and 0.01 to 300 parts by mass with respect to 100 parts by mass of the conductive polymer. Is more preferable. When it is less than 0.001 part by mass, the weather resistance cannot be maintained. When the amount is more than 500 parts by mass, the ratio of the antioxidant becomes too high, so that excellent far-infrared reflection performance and near-infrared absorption performance cannot be achieved.
  • the catalyst in the composition according to the present invention may be used to accelerate the polymerization reaction of the binder during the formation of the functional film and to shorten the curing time.
  • a catalyst include a radical photopolymerization initiator and a radical thermal polymerization initiator, and a radical photopolymerization initiator is preferable from the viewpoint of shortening the curing time.
  • radical polymerization initiators include 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-methyl-propan-1-one (BASF: Irgacure 127) 1-hydroxy-cyclohexyl-phenyl-ketone (BASF: Irgacure 184), 1-hydroxy-cyclohexyl-phenyl-ketone (BASF: Irgacure 184) and benzophenone (BASF) Irgacure 500), 2,2-dimethoxy-1,2-diphenylethane-1-one (BASF: Irgacure 651), 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane -1-one (manufactured by BASF: Irgacure 907), 1- [4- (2-hydroxyethoxy) -phenyl] -2-hy Droxy-2-methyl-1-propan-1-one (BASF: Ir
  • the compounding amount of the catalyst in the composition of the present invention is preferably 0.001 to 500 parts by mass, more preferably 0.01 to 300 parts by mass with respect to 100 parts by mass of the conductive polymer. preferable.
  • the antifoaming agent examples include compounds having a siloxane skeleton: polyester-modified methylalkylpolysiloxane, polyether-modified polymethylalkylsiloxane, aralkyl-modified polymethylalkylsiloxane, and the like.
  • the blending amount of the antifoaming agent in the composition of the present invention is preferably 0.001 to 500 parts by mass, more preferably 0.01 to 100 parts by mass with respect to 100 parts by mass of the conductive polymer.
  • rheology control agent examples include cellulose derivatives and protein derivatives such as albumin and casein, alginic acid, agar, starch, polysaccharides, vinyl compounds, vinylidene compounds, polyester compounds, polyether compounds, and polyglycols. Compounds, polyvinyl alcohol compounds, polyalkylene oxide compounds, polyacrylic acid compounds, and the like.
  • the blending amount of the rheology control agent in the composition of the present invention is preferably 0.001 to 500 parts by mass, more preferably 0.01 to 100 parts by mass with respect to 100 parts by mass of the conductive polymer.
  • the adhesion imparting agent can also be used.
  • the blending amount of the adhesion-imparting agent in the composition of the present invention is preferably 0.001 to 500 parts by mass, more preferably 0.01 to 100 parts by mass with respect to 100 parts by mass of the conductive polymer.
  • a thickener may be added for the purpose of improving the viscosity.
  • thickeners include alginic acid derivatives, xanthan gum derivatives, water-soluble polymers such as saccharide compounds such as carrageenan and cellulose.
  • the blending amount of the thickener in the composition of the present invention is preferably 0.001 to 500 parts by mass, more preferably 0.01 to 100 parts by mass with respect to 100 parts by mass of the conductive polymer.
  • the method for producing the composition of the present invention is not particularly limited, and the above components may be mixed while stirring with a stirrer such as a mechanical stirrer or a magnetic stirrer, and then stirred and mixed for about 1 to 60 minutes.
  • a stirrer such as a mechanical stirrer or a magnetic stirrer
  • a laminate including a functional film can be formed by applying the composition of the present invention to a substrate to be coated and then drying the composition.
  • the substrate to be coated on which the composition is applied may be a transparent substrate or an opaque substrate.
  • a material which comprises a base material for example, polyolefin resin, such as polyethylene, a polypropylene, an ethylene-vinyl acetate copolymer, an ethylene-acrylic acid ester copolymer, an ionomer copolymer, a cycloolefin resin, Polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyoxyethylene, modified polyphenylene, polyphenylene sulfide, nylon 6, nylon 6,6, nylon 9, semi-aromatic polyamide 6T6, semi-aromatic polyamide 6T66, semi-aromatic polyamide Organic materials such as polyamide resin such as 9T, acrylic resin, polystyrene, acrylonit
  • the method for applying the composition is not particularly limited and can be appropriately selected from known methods. Examples thereof include spin coating, gravure coating, bar coating, dip coating, curtain coating, die coating, and spray coating. In addition, printing methods such as screen printing, spray printing, ink jet printing, relief printing, intaglio printing, and lithographic printing can also be applied.
  • a normal ventilation dryer, a hot air dryer, an infrared dryer or the like is used for drying the coating film made of the composition.
  • drying and heating can be performed simultaneously by using a dryer having a heating means (hot air dryer, infrared dryer, etc.).
  • a heating / pressurizing roll having a heating function, a press machine, or the like can be used as the heating means.
  • the drying conditions of the coating film are not particularly limited, but are, for example, about 25 seconds to 200 ° C. for about 10 seconds to 2 hours, preferably about 80 ° C. to 150 ° C. for about 1 to 30 minutes.
  • the dry film thickness of the coating film formed from the composition of the present invention can be appropriately selected according to the purpose, but is generally 1 nm to 5 ⁇ m. However, from the viewpoint of high transparency and cost reduction, a thinner film thickness is preferable. In this respect, 0.50 ⁇ m or less is preferable, 0.40 ⁇ m or less is more preferable, and 0.30 ⁇ m or less is even more preferable. In the present invention, since a conductive polymer exhibiting high conductivity is used, even with such an extremely thin film, high far-infrared reflection performance and near-infrared absorption performance can be achieved.
  • the dry film thickness of the coating film formed on the substrate surface was measured using a stylus type surface shape measuring device Dektak 6M (manufactured by ULVAC, Inc.).
  • the laminate of the present invention including the functional film formed on the transparent substrate surface can be produced by applying and drying the composition of the present invention on the surface of the transparent substrate. Since the thin film to be formed is thin and extremely transparent, the laminate of the present invention can exhibit a visible light transmittance of 50% or more. Preferably, visible light transmittance of 60% or more can be exhibited.
  • the laminate has excellent far-infrared reflective performance, and a thermal conductivity of less than 5.9 W / m 2 ⁇ K, preferably a thermal conductivity of less than 5.7 W / m 2 ⁇ K, more preferably 5.
  • a heat transmissivity of less than 5 W / m 2 ⁇ K can be exhibited.
  • the heat transmissivity is the amount of heat that passes through 1 m 2 of glass per hour when the temperature difference between the inside and outside of the glass is 1 ° C.
  • the conductive polymer exhibiting far-infrared reflection performance.
  • the laminate has excellent near-infrared absorption performance and can exhibit a shielding coefficient of less than 0.95, preferably a shielding coefficient of less than 0.90, and more preferably a shielding coefficient of less than 0.85.
  • Shielding coefficient is a value representing the rate at which incident solar radiation (wavelength: about 300 nm-2500 nm) passes, and is an index indicating near infrared absorption performance.
  • the laminate of the present invention can be used for various applications.
  • the laminate of the present invention may be applied to a resin film such as a PET film.
  • the functional film obtained in this way is affixed to the window glass (single-layer glass or double-layer glass), the walls of buildings or vehicles, vinyl houses, food packaging materials, or refrigerator or freezer walls.
  • the laminate of the present invention is extremely highly transparent, when applied to a window glass, it can exhibit excellent far-infrared reflection performance and near-infrared absorption performance without hindering the transparency of the window glass. it can. As a result, while enjoying high transparency, it is possible to expect an effect of not letting indoor heat escape to the outside (heat insulation) and an effect of not transferring external heat to the room (heat insulation).
  • composition of the present invention can be used by directly coating the surface of window glass, building or vehicle walls, vinyl houses, food packaging materials, or refrigerator or freezer walls.
  • part or % means “part by mass” or “% by mass”, respectively, unless otherwise specified.
  • Each conductive polymer-containing aqueous dispersion was placed on a substrate with a wire bar No. 8 (wet film thickness 18 ⁇ m) was applied by a bar coating method and dried at 130 ° C. for 15 minutes to form a thin film on the substrate.
  • the film thickness was measured with the stylus type film thickness measuring device.
  • the surface resistivity of the thin film was measured with Loresta-GP (MCP-T600) manufactured by Mitsubishi Chemical Corporation. The measured film thickness and surface resistivity were substituted into the following equation to determine the conductivity of the conductive polymer.
  • Example 1 As a conductive polymer, 100 mass parts of a composite of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid in terms of a composite of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid aqueous dispersion (Heraeus Co.: CleviosPH1000, conductivity 0.46S / cm, solid content 1.0%), as an inorganic material, the Cs 0.33 WO 3 particles 200 parts by CsMoWO 3 particles converted water Dispersion (prepared according to the method described in JP-A-2011-195442, solid content 10%), 1000 parts by mass of silicon urethane acrylate (MIWON: MIRAMER SIU1000, solid content 100%) as a binder, as a leveling agent 100 parts by mass of siloxane leveling agent polyether-modified polydimethyl Siloxane (manufactured by Big Chem: BYK-307, solid content 100%), 100
  • the obtained composition was placed on a 50 ⁇ m thick PET film (manufactured by Toray Industries, Inc .: Lumirror T-60) with a wire bar no. 34 (wet film thickness 39 ⁇ m) was applied by a bar coating method, dried at 130 ° C. for 2 minutes, and then exposed to an exposure amount of 1000 mJ / cm 2 to obtain a laminate.
  • the dry film thickness was 2 ⁇ m.
  • the obtained laminate was subjected to various evaluations based on the following methods, and the results are shown in Table 2.
  • Thermal conductivity The thermal conductivity exhibited by various substrates was measured using FT-IR Frontier (Perkin Elmer) according to JIS A5759.
  • the weather resistance exhibited by the various laminates is 0% after heat irradiation for 1 hour at a metering weather meter (manufactured by Suga Test Instruments Co., Ltd .: temperature 63 ° C., humidity 50%, illuminance 1.55 kWh). It was judged as x when it changed by 5 W / m 2 ⁇ K or more, ⁇ when it was 0.2 to 0.5, and ⁇ when it was less than 0.2.
  • Example 2 A laminate was obtained in the same manner as in Example 1 except that an aqueous dispersion of Cs 0.33 Mo 0.5 W 0.5 O 3 was used as the inorganic material. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 3 A laminate was obtained in the same manner as in Example 1 except that an aqueous dispersion of silver nanowires was used as the inorganic material.
  • the dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 4 A laminate was obtained in the same manner as in Example 1 except that ATO was used as the inorganic material. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 5 A laminate was obtained in the same manner as in Example 1 except that a fluorine-based leveling agent perfluoroalkyl group-containing surfactant (AGC Seimi Chemical Co., Ltd .: Surflon S-231) was used as the leveling agent.
  • the dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 6 A laminate was obtained in the same manner as in Example 1, except that an acrylic leveling agent acrylic copolymer (Big Chem Co., Ltd .: BYK-381) was used as the leveling agent. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 7 A laminate was obtained in the same manner as in Example 1 except that 100 parts by mass of tannic acid (manufactured by Ajinomoto Omnichem) was further added as an antioxidant. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 8 A laminate was obtained in the same manner as in Example 1 except that 100 parts by mass of L-ascorbic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was further added as an antioxidant. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 9 As a binder, 1000 parts by weight of a polyester resin aqueous dispersion (manufactured by Nagase ChemteX Corporation: Gabsen ES-210, solid content 25%) was used without adding a catalyst, and after drying at 130 ° C. for 2 minutes. A laminate was obtained in the same manner as in Example 1 except that the exposure treatment was not performed. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 10 A laminate was obtained in the same manner as in Example 1 except that the leveling agent was not added.
  • the dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 11 As the binder, except that 500 parts by mass of silicon urethane acrylate (manufactured by MIWON: MIRAMER SIU1000, solid content 100%) and 500 parts by mass of silicate oligomer (manufactured by Colcoat Co., Ltd .: ethylsilicate 40, solid content 100%) were used. In the same manner as in Example 1, a laminate was obtained. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 12 Except for using 500 parts by mass of silicon urethane acrylate (manufactured by MIWON: MIRAMER SIU 1000, solid content 100%) and 500 parts by mass of silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 48, solid content 100%) as the binder.
  • a laminate was obtained.
  • the dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 13 300 parts by mass of silicon alkoxide epoxy (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-303, solid content 100%) and 700 parts by mass of silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used as binders.
  • a laminate was obtained in the same manner as in Example 1 except that no catalyst was added and the exposure treatment was not performed after drying at 130 ° C. for 2 minutes. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 14 300 parts by mass of silicon alkoxide epoxy (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-402, solid content 100%) and 700 parts by mass of silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used as binders.
  • a laminate was obtained in the same manner as in Example 1 except that no catalyst was added and the exposure treatment was not performed after drying at 130 ° C. for 2 minutes. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 15 300 parts by mass of silicon alkoxide epoxy (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-403, solid content 100%) and 700 parts by mass of silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used as binders.
  • a laminate was obtained in the same manner as in Example 1 except that no catalyst was added and the exposure treatment was not performed after drying at 130 ° C. for 2 minutes. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 16 300 parts by mass of silicon alkoxide epoxy (manufactured by Shin-Etsu Chemical Co., Ltd .: KBE-403, solid content 100%) and 700 parts by mass of silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used as binders.
  • a laminate was obtained in the same manner as in Example 1 except that no catalyst was added and the exposure treatment was not performed after drying at 130 ° C. for 2 minutes. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 17 As a binder, 300 parts by mass of silicon alkoxide methacryl (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, solid content 100%) and 700 parts by mass of a silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used. A laminate was obtained in the same manner as in Example 1 except that no catalyst was added and the exposure treatment was not performed after drying at 130 ° C. for 2 minutes. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 18 As a binder, 300 parts by mass of silicon alkoxide thiol (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-803, solid content 100%) and 700 parts by mass of a silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used. A laminate was obtained in the same manner as in Example 1 except that no catalyst was added and the exposure treatment was not performed after drying at 130 ° C. for 2 minutes. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 19 300 parts by mass of silicon alkoxide vinyl (manufactured by Shin-Etsu Chemical Co., Ltd .: KBE-1003, solid content 100%) and 700 parts by mass of silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used as binders.
  • a laminate was obtained in the same manner as in Example 1 except that. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 20 300 parts by mass of silicon alkoxide acrylic (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-5103, solid content 100%) and 700 parts by mass of silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used as binders.
  • a laminate was obtained in the same manner as in Example 1 except that. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 21 As a binder, 300 parts by mass of silicon alkoxide isocyanate (manufactured by Shin-Etsu Chemical Co., Ltd .: KBE-9007, solid content 100%) and 700 parts by mass of a silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used. A laminate was obtained in the same manner as in Example 1 except that no catalyst was added and the exposure treatment was not performed after drying at 130 ° C. for 2 minutes. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 22 Example except that silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content: 100%) was used as a binder, no catalyst was added, and the mixture was further dried at 130 ° C. for 2 minutes and then was not exposed. 1 to obtain a laminate. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 2 No inorganic material, no wire bar no. A laminate was obtained in the same manner as in Example 1 except that 2. The dry film thickness was 100 nm. Similar to Example 1, the evaluation results are shown in Table 2.
  • Example 3 A laminate was obtained in the same manner as in Example 1 except that the conductive polymer was not used and the composition AB of Table 1 was used. The dry film thickness was 2 ⁇ m. Similar to Example 1, the evaluation results are shown in Table 2.
  • composition of the composition is shown in Table 1.
  • Conductive polymer a composite of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid (manufactured by Heraeus Co., Ltd .: Clevios PH1000, conductivity 0.46 S / cm, solid content 1.0%)
  • Inorganic materials Cs 0.33 WO 3 (average particle size 200 nm, solid content 10%), Cs 0.33 Mo 0.5 W 0.5 O 3 (average particle size 100 nm, solid content 10%), silver nanowire ( Average length 10 ⁇ m, average aspect ratio 300, solid content 2%), ATO (average particle size 100 nm, solid content 10%)
  • Catalyst Irgacure 127 (manufactured by BASF)
  • Leveling agent siloxane-based leveling agent polyether-modified polydimethylsiloxane (manufactured by Big Chem: BYK-307), fluorine-based leveling agent, perfluoroalkyl group-containing surfact

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 Provided are a composition for forming a functional film provided with both far infrared reflection properties and near infrared absorption properties in a single layer, and a laminate formed by laminating said functional film on a substrate. The composition for forming a functional film having both far infrared reflection properties and near infrared absorption properties includes a conductive polymer exhibiting electrical conductivity of at least 0.05S/cm, an inorganic material and a binder. Said composition is used to obtain a laminate formed by laminating, on a substrate, a functional film that has a shielding coefficient of less than 0.95 and a heat transfer coefficient of less than 5.9W/m2·K, and that exhibits far infrared reflection properties and near infrared absorption properties.

Description

機能性膜形成用組成物および機能性膜積層体Functional film forming composition and functional film laminate
 本発明は、遠赤外線反射性能および近赤外線吸収性能を備えた機能性膜を形成するための組成物、当該組成物を用いて得られる機能性膜を基材上に積層した積層体に関する。 The present invention relates to a composition for forming a functional film having far-infrared reflection performance and near-infrared absorption performance, and a laminate in which a functional film obtained using the composition is laminated on a substrate.
 赤外線は、赤色光よりも波長が長く、ミリ波長の電波よりも波長の短い電磁波を指し、近赤外線(約300-2,500nm)、中赤外線(約2,500-4,000nm)、遠赤外線(約4,000-300,000nm)に区分される。波長が長い遠赤外線は暖房機器より発生し、冬場の室温を快適に維持するために利用されるが、一部が窓ガラスを透過し室外に放出されるため、暖房効率を下げる要因となっていた。また、日射には波長が短い近赤外線が含まれるが、窓ガラスを透過して室内に取り込まれた近赤外線は室温を上昇させ、夏場の冷房効率を下げる要因となっていた。 Infrared refers to electromagnetic waves having a longer wavelength than red light and shorter than millimeter-wave radio waves. Near infrared (about 300-2,500 nm), mid-infrared (about 2,500-4,000 nm), far infrared (About 4,000-300,000 nm). Far-infrared rays with long wavelengths are generated from heating equipment and are used to maintain the room temperature in winter comfortably. However, some of them are transmitted through the window glass and released outside, causing a reduction in heating efficiency. It was. Solar radiation includes near-infrared rays with a short wavelength, but the near-infrared rays that have passed through the window glass and are taken into the room raises the room temperature and lowers the cooling efficiency in summer.
 従来より、これらの赤外線を反射・吸収する性質を有する薄膜を窓ガラス表面に設けることで冬場の暖房効率および夏場の冷房効率を改善する試みがなされてきた。 Conventionally, attempts have been made to improve the heating efficiency in winter and the cooling efficiency in summer by providing a thin film having the property of reflecting and absorbing these infrared rays on the surface of the window glass.
 このような赤外線反射薄膜としては、金、銀等の金属からなる薄膜が知られているが、これら金属薄膜は透明でないため、例えば窓ガラス等の透明な基材の表面に適用できないという欠点があった。 As such an infrared reflective thin film, a thin film made of a metal such as gold or silver is known, but since these metal thin films are not transparent, there is a drawback that they cannot be applied to the surface of a transparent substrate such as a window glass. there were.
 そして、透明な赤外線反射薄膜としては、錫ドープ酸化インジシム(ITO)等の金属酸化物からなる透明な薄膜が用いられているが、薄膜形成にスパッタリングや真空蒸着法を使用するため、高価な設備と高温の設定が必要になるという欠点があった。 As the transparent infrared reflective thin film, a transparent thin film made of a metal oxide such as tin-doped indicium oxide (ITO) is used. However, since sputtering or vacuum deposition is used for forming the thin film, expensive equipment is used. And there was a disadvantage that a high temperature setting was required.
 そこで、金属酸化物に代わる透明な赤外線反射薄膜として、導電性の有機高分子材料を使用することが提案されている。 Therefore, it has been proposed to use a conductive organic polymer material as a transparent infrared reflective thin film instead of a metal oxide.
 特許文献1には、遠赤外線を反射するポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)(PEDOT/PSS)などの導電性ポリマーを含む薄膜が記載されている。しかし、800~1200nm程度の近赤外線の反射性能は低いものとなっている。 Patent Document 1 describes a thin film containing a conductive polymer such as poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid) (PEDOT / PSS) that reflects far infrared rays. However, the reflection performance of near infrared rays of about 800 to 1200 nm is low.
 特許文献2には、この800~1200nm程度の近赤外線を効率よく吸収する無機系色素を含む硬化物層と反射防止層からなる赤外線吸収フィルムが記載されている。しかし、硬化物層のみでは赤外線反射性能は有さない。 Patent Document 2 describes an infrared absorption film comprising a cured product layer containing an inorganic pigment that efficiently absorbs near infrared rays of about 800 to 1200 nm and an antireflection layer. However, the cured product layer alone does not have infrared reflection performance.
国際公開第2012/105213号International Publication No. 2012/105213 特開2007-21998号公報Japanese Patent Laid-Open No. 2007-21998
 特許文献1および2に記載の発明では、単層で遠赤外線反射性能および近赤外線吸収性能を有する透明な薄膜は実現されていなかった。 In the inventions described in Patent Documents 1 and 2, a transparent thin film having a far-infrared reflecting performance and a near-infrared absorbing performance with a single layer has not been realized.
 本発明は、このような事情のもと、単層で遠赤外線反射性能および近赤外線吸収性能を兼ね備えた機能性膜を形成するための組成物、当該機能性膜を基材上に積層した積層体を提供することを課題とする。 Under such circumstances, the present invention is a composition for forming a functional film having a far-infrared reflecting performance and a near-infrared absorbing performance in a single layer, and a laminate in which the functional film is laminated on a substrate. The challenge is to provide a body.
 本発明の第一は、遠赤外線反射性能および近赤外線吸収性能を備えた機能性膜を形成するために用いられ、0.05S/cm以上の導電率を示す導電性高分子と、無機材料と、バインダーとを含む組成物に関する。 The first of the present invention is used to form a functional film having far-infrared reflecting performance and near-infrared absorbing performance, and includes a conductive polymer exhibiting a conductivity of 0.05 S / cm or more, an inorganic material, And a composition comprising a binder.
 本発明の第二は、前記組成物を用いて得られ、遮蔽係数が0.95未満、熱貫流率が5.9W/m・K未満であり、遠赤外線反射性能および近赤外線吸収性能を備えた機能性膜を基材上に積層した、積層体に関する。 The second of the present invention is obtained by using the above composition, has a shielding coefficient of less than 0.95, a heat transmissivity of less than 5.9 W / m 2 · K, and has a far-infrared reflecting performance and a near-infrared absorbing performance. It is related with the laminated body which laminated | stacked the provided functional film on the base material.
 本発明によれば、以上の構成により、単層で遠赤外線反射性能および近赤外線吸収性能を兼ね備えた機能性膜を提供することができる。また、単層で優れた性能を有することから、積層体の製造を簡易にすることができる。 According to the present invention, it is possible to provide a functional film having a single-layered far-infrared reflecting performance and near-infrared absorbing performance with the above configuration. Moreover, since it has the outstanding performance with a single layer, manufacture of a laminated body can be simplified.
 以下、本発明の好ましい実施の形態の一例を具体的に説明する。 Hereinafter, an example of a preferred embodiment of the present invention will be specifically described.
 [導電性高分子]
 本発明に係る組成物における導電性高分子は、形成される薄膜が優れた遠赤外線反射性能および近赤外線吸収性能を発揮するために、通常の導電膜用途で使用する導電性高分子と比較して高い導電性を示す必要がある。具体的には、導電率が0.01S/cm以上を示す導電性高分子を用いることが必要である。導電率が0.01S/cm未満であると、優れた遠赤外線反射性能および近赤外線吸収性能を示す薄膜を形成することができない。
[Conductive polymer]
The conductive polymer in the composition according to the present invention is compared with the conductive polymer used in normal conductive film applications in order that the formed thin film exhibits excellent far-infrared reflection performance and near-infrared absorption performance. It is necessary to show high conductivity. Specifically, it is necessary to use a conductive polymer having a conductivity of 0.01 S / cm or more. If the electrical conductivity is less than 0.01 S / cm, a thin film exhibiting excellent far-infrared reflection performance and near-infrared absorption performance cannot be formed.
 導電性高分子の導電率は、0.05S/cm以上であることが好ましく、0.15S/cm以上であることがより好ましく、0.25S/cm以上であることがさらに好ましい。 The conductivity of the conductive polymer is preferably 0.05 S / cm or more, more preferably 0.15 S / cm or more, and further preferably 0.25 S / cm or more.
 0.01S/cm以上の導電率を示す導電性高分子は、π共役系導電性ポリマーについて、例えば、重合条件や分子量を適宜選択することで容易に作製することができる。例えば、分子量を増大させることで上記のように高い導電性を示す導電性高分子を得ることができる。導電性高分子としては、例えば、ポリチオフェン、ポリエチレンジオキシチオフェン、ポリイソチアナフテン、ポリピロール、ポリアニリン、ポリパラフェニレン、ポリパラフェニレンビニレン、これらの誘導体等が挙げられる。 A conductive polymer exhibiting a conductivity of 0.01 S / cm or more can be easily produced by appropriately selecting the polymerization conditions and molecular weight of the π-conjugated conductive polymer, for example. For example, by increasing the molecular weight, a conductive polymer exhibiting high conductivity as described above can be obtained. Examples of the conductive polymer include polythiophene, polyethylenedioxythiophene, polyisothianaphthene, polypyrrole, polyaniline, polyparaphenylene, polyparaphenylene vinylene, and derivatives thereof.
 なかでも、ポリチオフェンとドーパントとの複合体からなるポリチオフェン系導電性ポリマーが好適に用いられる。特に、導電性高分子がポリ(3,4-二置換チオフェン)とポリ陰イオンとの複合体からなる場合、製造時の重合系が示すpHを最適化することで、高い導電性を示す導電性高分子を得ることができる。高い導電性を示す導電性高分子は市販されており、本発明では市販品を使用してもよい。 Among these, a polythiophene conductive polymer composed of a complex of polythiophene and a dopant is preferably used. In particular, when the conductive polymer is composed of a complex of poly (3,4-disubstituted thiophene) and a polyanion, a conductive material exhibiting high conductivity can be obtained by optimizing the pH exhibited by the polymerization system during production. Can be obtained. Conductive polymers exhibiting high conductivity are commercially available, and commercially available products may be used in the present invention.
 なお、本発明の導電性高分子の導電率は、基材上に当該導電性高分子からなる導電層を形成した後、その導電層が示す膜厚と表面抵抗率を測定して、下記式に基づき算出される。
導電率(S/cm)=1/{表面抵抗率(Ω/□)×膜厚(cm)}
 前記ポリ(3,4-二置換チオフェン)は、以下の式(1):
The conductivity of the conductive polymer of the present invention is determined by the following formula by measuring the film thickness and surface resistivity indicated by the conductive layer after forming a conductive layer made of the conductive polymer on the substrate. Calculated based on
Conductivity (S / cm) = 1 / {Surface resistivity (Ω / □) × film thickness (cm)}
The poly (3,4-disubstituted thiophene) has the following formula (1):
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
で示される反復構造単位からなる陽イオン形態のポリチオフェンであることが好ましい。当該陽イオン形態のポリチオフェンとは、ドーパントであるポリ陰イオンとの複合体になるために、ポリチオフェンの一部から電子が引き抜かれることによって一部が陽イオン形態になっているポリチオフェンのことをいう。 It is preferable that it is a polythiophene of the cationic form which consists of a repeating structural unit shown by these. The cationic polythiophene refers to a polythiophene that is partly in a cationic form by extracting electrons from a part of the polythiophene in order to form a complex with a polyanion that is a dopant. .
 式(1)中、R及びRは、相互に独立して、水素原子又はC1-4のアルキル基を表すか、あるいは、RとRが結合して環状構造を形成する、置換又は無置換のC1-4のアルキレン基を表す。上記C1-4のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基などが挙げられる。RとRが結合して環状構造を形成する、置換又は無置換のC1-4のアルキレン基としては、例えば、メチレン基、1,2-エチレン基、1,3-プロピレン基、1,4-ブチレン基、1-メチル-1,2-エチレン基、1-エチル-1,2-エチレン基、1-メチル-1,3-プロピレン基、2-メチル-1,3-プロピレン基などが挙げられる。C1-4のアルキレン基が有することができる置換基としては、ハロゲン基や、フェニル基などが挙げられる。好適なC1-4のアルキレン基としては、メチレン基、1,2-エチレン基、1,3-プロピレン基が挙げられ、1,2-エチレン基が特に好適である。上記のアルキレン基を持つポリチオフェンとして、ポリ(3,4-エチレンジオキシチオフェン)が特に好ましい。 In formula (1), R 1 and R 2 independently of each other represent a hydrogen atom or a C 1-4 alkyl group, or R 1 and R 2 combine to form a cyclic structure. It represents a substituted or unsubstituted C 1-4 alkylene group. Examples of the C 1-4 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a t-butyl group. Examples of the substituted or unsubstituted C 1-4 alkylene group in which R 1 and R 2 combine to form a cyclic structure include a methylene group, a 1,2-ethylene group, a 1,3-propylene group, , 4-butylene group, 1-methyl-1,2-ethylene group, 1-ethyl-1,2-ethylene group, 1-methyl-1,3-propylene group, 2-methyl-1,3-propylene group, etc. Is mentioned. Examples of the substituent that the C 1-4 alkylene group may have include a halogen group and a phenyl group. Suitable C 1-4 alkylene groups include methylene, 1,2-ethylene, and 1,3-propylene, with 1,2-ethylene being particularly preferred. As the polythiophene having an alkylene group, poly (3,4-ethylenedioxythiophene) is particularly preferable.
 ポリチオフェン系導電性ポリマーを構成するドーパントは、上述のポリチオフェンとイオン対をなすことにより複合体を形成し、ポリチオフェンを水中に安定に分散させることができる陰イオン形態のポリマー、すなわちポリ陰イオンであることが好ましい。このようなドーパントとしては、例えば、カルボン酸ポリマー類(例えば、ポリアクリル酸、ポリマレイン酸、ポリメタクリル酸など)、スルホン酸ポリマー類(例えば、ポリスチレンスルホン酸、ポリビニルスルホン酸など)などが挙げられる。これらのカルボン酸ポリマー類およびスルホン酸ポリマー類は、ビニルカルボン酸類およびビニルスルホン酸類と他の重合可能なモノマー類(例えば、アクリレート類、スチレンなど)との共重合体であってもよい。なかでも、ポリスチレンスルホン酸が特に好ましい。 The dopant constituting the polythiophene-based conductive polymer is an anionic polymer that forms a complex by forming an ion pair with the polythiophene described above, and can stably disperse the polythiophene in water, that is, a polyanion. It is preferable. Examples of such dopants include carboxylic acid polymers (eg, polyacrylic acid, polymaleic acid, polymethacrylic acid, etc.), sulfonic acid polymers (eg, polystyrene sulfonic acid, polyvinyl sulfonic acid, etc.), and the like. These carboxylic acid polymers and sulfonic acid polymers may be copolymers of vinyl carboxylic acids and vinyl sulfonic acids with other polymerizable monomers (eg, acrylates, styrene, etc.). Of these, polystyrene sulfonic acid is particularly preferable.
 ポリ(3,4-二置換チオフェン)の重量平均分子量は、500~100000の範囲が好ましく、1000~50000の範囲であることがより好ましく、1500~20000の範囲であることが最も好ましい。500未満である場合は、優れた遠赤外線反射性能および近赤外線吸収性能を示す薄膜を形成することができなく、100000を超える場合は、導電性高分子の分散安定性が低下する場合がある。 The weight average molecular weight of poly (3,4-disubstituted thiophene) is preferably in the range of 500 to 100,000, more preferably in the range of 1000 to 50000, and most preferably in the range of 1500 to 20000. When it is less than 500, a thin film exhibiting excellent far-infrared reflection performance and near-infrared absorption performance cannot be formed, and when it exceeds 100,000, the dispersion stability of the conductive polymer may be lowered.
 前記ポリ陰イオンの重量平均分子量は、1000~2000000の範囲が好ましく、2000~1000000の範囲であることがより好ましく、2000~500000の範囲であることが最も好ましい。1000未満である場合、または2000000を超える場合は、導電性高分子の分散安定性が低下する場合がある。 The weight average molecular weight of the polyanion is preferably in the range of 1,000 to 2,000,000, more preferably in the range of 2,000 to 1,000,000, and most preferably in the range of 2,000 to 500,000. If it is less than 1000 or exceeds 2000000, the dispersion stability of the conductive polymer may be lowered.
 なお、上記ポリマーの重量平均分子量はゲル透過クロマトグラフィー(GPC)にて測定した値である。測定にはウォーターズ社製ultrahydrogel500カラムを使用する。 The weight average molecular weight of the polymer is a value measured by gel permeation chromatography (GPC). For the measurement, an ultrahydrogel 500 column manufactured by Waters is used.
 前記ポリ陰イオンの量は、前記ポリ(3,4-二置換チオフェン)100質量部に対して、10~2000質量部の範囲が好ましく、30~1000質量部の範囲であることがより好ましく、50~500質量部の範囲であることが最も好ましい。10質量部未満である場合は、分散安定性が低下し、2000質量部を超える場合は、優れた遠赤外線反射性能および近赤外線吸収性能を示す薄膜を形成することができない場合がある。 The amount of the poly anion is preferably in the range of 10 to 2000 parts by mass, more preferably in the range of 30 to 1000 parts by mass, with respect to 100 parts by mass of the poly (3,4-disubstituted thiophene). The range of 50 to 500 parts by mass is most preferable. When the amount is less than 10 parts by mass, the dispersion stability decreases, and when it exceeds 2000 parts by mass, a thin film exhibiting excellent far-infrared reflection performance and near-infrared absorption performance may not be formed.
 ポリチオフェン系導電性ポリマーは酸化剤を用いた水中での酸化重合によって得ることができる。当該酸化重合では2種類の酸化剤(第一酸化剤及び第二酸化剤)が使用される。好適な第一酸化剤としては、例えば、ペルオキソ二硫酸、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸アンモニウム、過酸化水素、過マンガン酸カリウム、二クロム酸カリウム、過ホウ酸アルカリ塩、銅塩等が挙げられる。これらの第一酸化剤の中で、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸アンモニウム、及び、ペルオキソ二硫酸が最も好適である。上記第一酸化剤の使用量は、使用するチオフェン類モノマーに対して、1.5~3.0モル当量が好ましく、2.0~2.6モル当量がさらに好ましい。 The polythiophene conductive polymer can be obtained by oxidative polymerization in water using an oxidizing agent. In the oxidative polymerization, two kinds of oxidizing agents (first oxidizing agent and second oxidizing agent) are used. Suitable first oxidizing agents include, for example, peroxodisulfuric acid, sodium peroxodisulfate, potassium peroxodisulfate, ammonium peroxodisulfate, hydrogen peroxide, potassium permanganate, potassium dichromate, alkali perborate, copper Examples include salts. Of these primary oxidants, sodium peroxodisulfate, potassium peroxodisulfate, ammonium peroxodisulfate, and peroxodisulfate are most preferred. The amount of the first oxidizing agent used is preferably 1.5 to 3.0 molar equivalents, more preferably 2.0 to 2.6 molar equivalents relative to the thiophene monomer used.
 好適な第二酸化剤としては、金属イオン(例えば、鉄、コバルト、ニッケル、モリブデン、バナジウムのイオン)を触媒量で添加することが好ましい。なかでも、鉄イオンが最も有効である。金属イオンの添加量は、使用するチオフェン類モノマーに対して、0.005~0.1モル当量が好ましく、0.01~0.05モル当量がさらに好ましい。 As a suitable second dioxide agent, it is preferable to add a metal ion (for example, iron, cobalt, nickel, molybdenum, vanadium ion) in a catalytic amount. Of these, iron ions are the most effective. The amount of metal ion added is preferably 0.005 to 0.1 molar equivalent, more preferably 0.01 to 0.05 molar equivalent, relative to the thiophene monomer used.
 本酸化重合では水を反応溶媒として用いる。水に加えて、メタノール、エタノール、2-プロパノール、1-プロパノールなどのアルコールや、アセトン、アセトニトリルなどの水溶性溶媒を添加することもできる。以上の酸化重合によって導電性ポリマーの水分散体が得られる。 In this oxidative polymerization, water is used as a reaction solvent. In addition to water, alcohols such as methanol, ethanol, 2-propanol and 1-propanol, and water-soluble solvents such as acetone and acetonitrile can also be added. An aqueous dispersion of a conductive polymer is obtained by the above oxidative polymerization.
 本発明の組成物は、導電性高分子に加えて、溶媒及び/又は分散媒をさらに含有することが好ましい。これにより組成物の粘度を低下させて、基材への塗布を容易にすることができる。溶媒又は分散媒としては、導電性高分子および他の任意成分を溶解又は分散できるものであれば特に限定はない。 The composition of the present invention preferably further contains a solvent and / or a dispersion medium in addition to the conductive polymer. Thereby, the viscosity of a composition can be reduced and application | coating to a base material can be made easy. The solvent or dispersion medium is not particularly limited as long as it can dissolve or disperse the conductive polymer and other optional components.
 なお、組成物の各成分が完全に溶解している場合は「溶媒」、何れかの成分が溶解せずに分散している場合は「分散媒」と言うこととする。 In addition, when each component of the composition is completely dissolved, it is referred to as a “solvent”, and when any component is not dissolved but dispersed, it is referred to as a “dispersion medium”.
 組成物が水系の場合、溶媒は水のみであってもよいが、水に加えて、水に混和する溶媒を併用することもできる。水に混和する溶剤としては特に制限はないが、例えば、メタノール、エタノール、2-プロパノール、1-プロパノールなどのアルコール類、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートなどのグリコールエーテルアセテート類、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコールなどのプロピレングリコール類、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテルなどのプロピレングリコールエーテル類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテートなどのプロピレングリコールエーテルアセテート類、ジメチルアセトアミド、アセトン、アセトニトリルおよびそれらの混和物などが挙げられる。 When the composition is aqueous, the solvent may be only water, but in addition to water, a solvent miscible with water may be used in combination. The solvent miscible with water is not particularly limited. For example, alcohols such as methanol, ethanol, 2-propanol, 1-propanol, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, etc. Glycol ether acetates, propylene glycols such as propylene glycol, dipropylene glycol, tripropylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, propylene glycol dimethyl ether, di Propylene glycol dimethyl ether, propylene glycol Propylene glycol ethers such as coal diethyl ether and dipropylene glycol diethyl ether, propylene glycol ether acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate and dipropylene glycol monoethyl ether acetate , Dimethylacetamide, acetone, acetonitrile, and mixtures thereof.
 組成物が有機溶剤系の場合は、上記水と混和する溶剤として挙げた溶剤の他、トルエン、キシレン、ベンゼン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、ジエチルエーテル、ジイソプロピルエーテル、メチル-t-ブチルエーテル、ヘキサン、ヘプタン等が使用できる。上記の溶媒又は分散媒の中でもメタノール、エタノール、2-プロパノールが特に好ましい。 When the composition is an organic solvent, in addition to the above-mentioned solvents miscible with water, toluene, xylene, benzene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, diethyl ether, diisopropyl ether, methyl-t -Butyl ether, hexane, heptane, etc. can be used. Of the above solvents or dispersion media, methanol, ethanol and 2-propanol are particularly preferred.
 組成物の固形分濃度は均一な溶液または分散液であれば特に限定されないが、塗布時に約0.01~50質量%程度が好ましい。より好ましくは1~20質量%である。この範囲では塗布を容易に実施することができ、良好な遠赤外線反射性能および近赤外線吸収性能を発揮する。一方、組成物の販売や運搬時にはより高濃度であってもよく、その場合、使用時に溶剤及び/又は分散媒を添加して適宜希釈すればよい。 The solid content concentration of the composition is not particularly limited as long as it is a uniform solution or dispersion, but is preferably about 0.01 to 50% by mass during coating. More preferably, it is 1 to 20% by mass. In this range, the coating can be carried out easily, and good far infrared reflection performance and near infrared absorption performance are exhibited. On the other hand, the concentration may be higher when the composition is sold or transported. In that case, a solvent and / or a dispersion medium may be added and diluted as appropriate at the time of use.
 [無機材料]
 本発明に係る組成物における無機材料は、形成される薄膜が優れた遠赤外線反射性能および近赤外線吸収性能を発揮するため、平均粒径が0.01μm~10μm程度の微粒子であることが好ましい。
[Inorganic materials]
The inorganic material in the composition according to the present invention is preferably fine particles having an average particle size of about 0.01 μm to 10 μm, since the formed thin film exhibits excellent far-infrared reflection performance and near-infrared absorption performance.
 前記微粒子の平均粒径は、0.01μm~5μmであることが好ましく、0.01μm~3μmであることがより好ましく、0.01μm~1μmであることがさらに好ましい。0.01μmより小さい場合、無機材料同士が凝集しやすくなり、10μmより大きい場合、分散安定性が低下する場合がある。 The average particle diameter of the fine particles is preferably 0.01 μm to 5 μm, more preferably 0.01 μm to 3 μm, and still more preferably 0.01 μm to 1 μm. If it is smaller than 0.01 μm, the inorganic materials tend to aggregate together, and if it is larger than 10 μm, the dispersion stability may be lowered.
 前記微粒子の形状は、特に限定されないが、表面積が大きい方が効率よく近赤外線を吸収するため、球状、または繊維状のものが好適に使用できる。 The shape of the fine particles is not particularly limited, but a spherical or fibrous one can be suitably used because a larger surface area absorbs near infrared rays more efficiently.
 前記無機材料が、繊維状の場合、使用する導電性繊維に応じて最適な平均アスペクト比のものを使用することが好ましい。大凡の目安として、平均アスペクト比は、10~10,000であることが好ましい。ここで、アスペクト比とは、長さおよび直径より算出したものをいう(アスペクト比=長さ/直径)。 When the inorganic material is in the form of a fiber, it is preferable to use one having an average average aspect ratio according to the conductive fiber to be used. As a rough guide, the average aspect ratio is preferably 10 to 10,000. Here, the aspect ratio is calculated from the length and diameter (aspect ratio = length / diameter).
 平均長さは、1μm~100μmであることが好ましく、3μm~50μmであることがより好ましく、5μm~30μmあることがさらに好ましい。併せて、長さの相対標準偏差は50%以下であることが好ましい。 The average length is preferably 1 μm to 100 μm, more preferably 3 μm to 50 μm, and even more preferably 5 μm to 30 μm. In addition, the relative standard deviation of the length is preferably 50% or less.
 前記無機材料の平均粒径は、動的光散乱式粒子径・粒度分布測定装置(日機装社製:Nanotrack Wave)にて測定した値を平均粒径とした。 The average particle size of the inorganic material was a value measured with a dynamic light scattering particle size / particle size distribution measuring device (Nikkiso Co., Ltd .: Nanotrack® Wave).
 前記無機材料が繊維状の場合の長さ、直径、またはアスペクト比の平均値は、十分な数の繊維状無機材料について電子顕微鏡写真を撮影し、個々の繊維像の計測値の算術平均から求めることができる。繊維の長さは、本来直線状に伸ばした状態で測定すべきであるが、現実には屈曲している場合が多いため、電子顕微鏡写真から画像解析装置を用いてその投影径及び投影面積を算出し、円柱体を仮定して算出する(長さ=投影面積/投影径)こともできる。 When the inorganic material is fibrous, the average value of length, diameter, or aspect ratio is obtained from an arithmetic average of measured values of individual fiber images by taking electron micrographs of a sufficient number of fibrous inorganic materials. be able to. The length of the fiber should be measured in a linearly stretched state, but in reality it is often bent, so the projected diameter and projected area can be determined using an image analyzer from an electron micrograph. It is also possible to calculate and assume a cylindrical body (length = projected area / projected diameter).
 また、長さや直径の相対標準偏差は、測定値の標準偏差を平均値で除した値に100を乗じた値で表す。計測対象の繊維のサンプル数は、少なくとも100個以上が好ましく、300個以上がより好ましい。
相対標準偏差[%]=測定値の標準偏差/平均値×100 
The relative standard deviation of length and diameter is expressed by a value obtained by multiplying 100 by the value obtained by dividing the standard deviation of the measured value by the average value. The number of fibers to be measured is preferably at least 100, more preferably 300 or more.
Relative standard deviation [%] = standard deviation of measured value / average value × 100
 本発明に係る組成物における無機材料の配合量としては、導電性高分子100質量部に対して、0.1~10000質量部であることが好ましく、1~5000質量部であることがより好ましく、10~1000質量部であることがさらに好ましい。配合量がこの範囲外にある場合、優れた遠赤外線反射性能および近赤外線吸収性能示す薄膜を形成することができない。 The blending amount of the inorganic material in the composition according to the present invention is preferably 0.1 to 10000 parts by mass, more preferably 1 to 5000 parts by mass with respect to 100 parts by mass of the conductive polymer. More preferably, it is 10 to 1000 parts by mass. If the blending amount is outside this range, a thin film exhibiting excellent far-infrared reflection performance and near-infrared absorption performance cannot be formed.
 本発明に係る組成物における無機材料は、具体的には、インジウム錫酸化物(ITO)、アンチモン錫酸化物(ATO)等の金属酸化物、複合タングステン酸化物、および金属ナノワイヤ、金属ナノ粒子、シリカ(SiO)が好適に使用できる。 Specifically, the inorganic material in the composition according to the present invention includes metal oxides such as indium tin oxide (ITO) and antimony tin oxide (ATO), composite tungsten oxide, and metal nanowires, metal nanoparticles, Silica (SiO 2 ) can be preferably used.
 これらの中でも、形成される薄膜が優れた遠赤外線反射性能および近赤外線吸収性能を発揮するため、インジウム錫酸化物(ITO)、アンチモン錫酸化物(ATO)、複合タングステン酸化物、および金属ナノワイヤからなる群より選択される少なくとも1つであることが好ましい。 Among these, since the formed thin film exhibits excellent far-infrared reflection performance and near-infrared absorption performance, from indium tin oxide (ITO), antimony tin oxide (ATO), composite tungsten oxide, and metal nanowires It is preferably at least one selected from the group consisting of
 さらに、近赤外線吸収性能に優れるため、前記複合タングステン酸化物は、一般式W(式中、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表わされる複合タングステン酸化物、
一般式M(式中、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、およびIからなる群より選択される少なくとも1つの元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表わされる複合タングステン酸化物、および、
一般式M(1-G)(式中、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、およびIのうちから選択される1つの元素、Aは、Mo、Nb、Ta、Mn、V、Re、Pt、Pd、およびTiからなる群より選択される少なくとも1つの元素、Wはタングステン、Oは酸素、0<E≦1.2、0<G≦1、2≦J≦3で表記される複合タングステン酸化物からなる群より選択される少なくとも1つであることが好ましい。
Furthermore, since the near-infrared absorption performance is excellent, the composite tungsten oxide is represented by the general formula W y O z (where W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999). Composite tungsten oxide,
In the general formula M x W y O z (wherein, M represents, H, the He, alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn , Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, At least one element selected from the group consisting of V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1,. Composite tungsten oxide represented by 2 ≦ z / y ≦ 3.0), and
General formula M E A G W (1-G) O J (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, One element selected from Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, A is Mo, Nb, Ta, Mn, V, Re, Pt At least one element selected from the group consisting of Ti, Pd, and Ti, W is tungsten, O is oxygen, and composite tungsten represented by 0 <E ≦ 1.2, 0 <G ≦ 1, 2 ≦ J ≦ 3 It is preferably at least one selected from the group consisting of oxides.
 本発明における金属ナノワイヤの金属組成としては特に制限はなく、貴金属元素や卑金属元素の1種または複数の金属から構成することができるが、貴金属(例えば、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム等)及び鉄、コバルト、銅、錫からなる群に属する少なくとも1種の金属を含むことが好ましく、赤外線の反射性能に優れるため、少なくとも銀を含むことがより好ましく、銀ナノワイヤであることがさらに好ましい。 There is no restriction | limiting in particular as a metal composition of the metal nanowire in this invention, Although it can comprise from the 1 type or several metal of a noble metal element or a base metal element, it is a noble metal (For example, gold, platinum, silver, palladium, rhodium, iridium) , Ruthenium, osmium, etc.) and at least one metal belonging to the group consisting of iron, cobalt, copper, and tin. It is preferable to include at least silver because it is excellent in infrared reflection performance. More preferably it is.
 ここで、一般に、金属ナノワイヤとは、金属元素を主要な構成要素とする繊維状構造体のことをいう。特に、本発明における金属ナノワイヤとは、原子スケールからnmサイズの直径を有する繊維状構造体を意味する。 Here, the metal nanowire generally refers to a fibrous structure having a metal element as a main component. In particular, the metal nanowire in the present invention means a fibrous structure having a diameter from the atomic scale to the nm size.
 [バインダー]
 本発明に係る組成物におけるバインダーは、特に基材として樹脂フィルムを使用する場合に、薄膜と基材の密着性を高め、かつ均質な薄膜を形成するために使用する。
[binder]
The binder in the composition according to the present invention is used for enhancing the adhesion between the thin film and the substrate and forming a homogeneous thin film, particularly when a resin film is used as the substrate.
 本発明で使用可能なバインダーとしては特に限定されない。従来、導電性高分子を基材上に塗工する際に使用していたバインダーを適宜使用することができる。 The binder usable in the present invention is not particularly limited. Conventionally, a binder that has been used when a conductive polymer is coated on a substrate can be appropriately used.
 具体的には、シリケート系樹脂、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリエステル樹脂、ポリアクリレート、ポリメタクリレート、ポリウレタン、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアミド、ポリイミド等;スチレン、塩化ビニリデン、塩化ビニル、アルキルアクリレート、アルキルメタクリレート等のモノマーを共重合して得られるコポリマー等が挙げられる。これらのバインダーは、単独で用いてもよく、2種以上を併用してもよい。 Specifically, silicate resin, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and other polyester resins, polyacrylate, polymethacrylate, polyurethane, polyvinyl acetate, polyvinylidene chloride, Polyamide, polyimide and the like; and copolymers obtained by copolymerizing monomers such as styrene, vinylidene chloride, vinyl chloride, alkyl acrylate and alkyl methacrylate. These binders may be used independently and may use 2 or more types together.
 なお、本発明において、シリケート系樹脂とは、少なくとも1つのシリコンアルコキシド基(‐Si‐OR)を有する化合物であれば特に限定されるものではない。 In the present invention, the silicate resin is not particularly limited as long as it is a compound having at least one silicon alkoxide group (—Si—OR).
 前記シリケート系樹脂としては、シリコンアルコキシドアクリル系樹脂、シリコンアルコキシドエポキシ系樹脂、シリコンアルコキシドビニル系樹脂、シリコンアルコキシドメタクリル系樹脂、シリコンアルコキシドチオール系樹脂、シリコンアルコキシドアミノ系樹脂、シリコンアルコキシドイソシアネート系樹脂、シリコンアルコキシドアルキル系樹脂、およびシリコンアルコキシド基以外の官能基を有しないシリコンアルコキシド系樹脂などのシリコンアルコキシド系樹脂を挙げることができる。 Examples of the silicate resin include silicon alkoxide acrylic resin, silicon alkoxide epoxy resin, silicon alkoxide vinyl resin, silicon alkoxide methacrylic resin, silicon alkoxide thiol resin, silicon alkoxide amino resin, silicon alkoxide isocyanate resin, silicon Examples thereof include silicon alkoxide resins such as alkoxide alkyl resins and silicon alkoxide resins having no functional group other than silicon alkoxide groups.
 より具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、メチルシリケートオリゴマー、エチルシリケートオリゴマー、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、メチルフェノキシシラン、n-プロピルトリメトキシシラン、ジイソプロピルジメトキシシラン、イソブチルトリメトキシシラン、ジイソブチルジメトキシシラン、イソブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン等を挙げることができる。 More specifically, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, methylsilicate oligomer, ethylsilicate oligomer, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane , Vinyltrimethoxysilane, vinyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyl Trimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxy Silane, 3-isocyanatopropyltriethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, methylphenoxysilane, n-propyltrimethoxysilane, diisopropyldimethoxy Run, isobutyltrimethoxysilane, diisobutyldimethoxysilane, isobutyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, cyclohexylmethyldimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, etc. Can be mentioned.
 本発明に係る組成物におけるバインダーは、特に高い耐擦傷性を有する塗膜が得られる観点から、シリコンアルコキシド基を有する化合物(A)、およびシリコンアルコキシド基と、アクリル基、エポキシ基、アルキル基、ビニル基、メタクリル基、チオール基、アミノ基およびイソシアネート基からなる群より選択される少なくとも1つの官能基とを有する化合物(B)のうちから選択される少なくとも1つであることが好ましい。 The binder in the composition according to the present invention is a compound having a silicon alkoxide group (A), a silicon alkoxide group, an acrylic group, an epoxy group, an alkyl group, from the viewpoint of obtaining a coating film having particularly high scratch resistance. It is preferably at least one selected from compounds (B) having at least one functional group selected from the group consisting of a vinyl group, a methacryl group, a thiol group, an amino group and an isocyanate group.
 さらに、本発明に係る組成物におけるバインダーは、硬化膜とした場合に優れた硬度を発揮しつつも硬化収縮によるクラックが生じにくくなる理由から、シリコンアルコキシド基を有する化合物(A)と、シリコンアルコキシド基と、アクリル基、エポキシ基、アルキル基、ビニル基、メタクリル基、チオール基、アミノ基およびイソシアネート基からなる群より選択される少なくとも1つの官能基とを有する化合物(B)との組合せであることが好ましい。さらに、前記化合物(A)と前記化合物(B)とを組み合わせて用いる場合、前記化合物(B)におけるアルコキシド基の数を前記化合物(B)の重量平均分子量で除した値が、前記化合物(A)におけるアルコキシド基の数を前記化合物(A)の重量平均分子量で除した値の90%以下であることが好ましい。 Furthermore, the binder in the composition according to the present invention is a compound having a silicon alkoxide group (A) and a silicon alkoxide because it exhibits excellent hardness when it is used as a cured film, and cracks due to curing shrinkage are less likely to occur. And a compound (B) having a group and at least one functional group selected from the group consisting of an acrylic group, an epoxy group, an alkyl group, a vinyl group, a methacryl group, a thiol group, an amino group, and an isocyanate group It is preferable. Further, when the compound (A) and the compound (B) are used in combination, the value obtained by dividing the number of alkoxide groups in the compound (B) by the weight average molecular weight of the compound (B) is the compound (A). ) Is preferably 90% or less of the value obtained by dividing the number of alkoxide groups by the weight average molecular weight of the compound (A).
 また、前記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって測定することができる。 The weight average molecular weight can be measured by gel permeation chromatography (GPC).
 本発明において、化合物(A)は、硬化膜とした場合の硬度の点から、下記式(2)で示されるものが好ましい。 In the present invention, the compound (A) is preferably a compound represented by the following formula (2) from the viewpoint of hardness when it is used as a cured film.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)中、
 nは、0~1000、好ましくは、0~500、さらに好ましくは、0~100の整数である。
In formula (2),
n is an integer of 0 to 1000, preferably 0 to 500, and more preferably 0 to 100.
 nが0の場合は、R、R、R、およびRのうち少なくとも1つは炭素数1~20、好ましくは1~10、さらに好ましくは、1~5のアルコキシド基であり、
nが1の場合は、R1~6のうち少なくとも1つは炭素数1~20、好ましくは1~10、さらに好ましくは、1~5のアルコキシド基であり、
nが2以上の場合は、R1~6のうち少なくとも1つは炭素数1~20、好ましくは1~10、さらに好ましくは、1~5のアルコキシド基であり、複数存在するRは、それぞれ同一であっても異なっていてもよく、複数存在するRも、それぞれ同一であっても異なっていてもよい。
When n is 0, at least one of R 1 , R 2 , R 3 , and R 5 is an alkoxide group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms,
When n is 1, at least one of R 1-6 is an alkoxide group having 1-20 carbon atoms, preferably 1-10 carbon atoms, more preferably 1-5 carbon atoms,
when n is 2 or more, at least one 1 to 20 carbon atoms of R 1 ~ 6, preferably 1 to 10, more preferably an alkoxide group of 1 ~ 5, R 4 there are a plurality, Each may be the same or different, and a plurality of R 6 may be the same or different.
 nが0、1、または2以上のいずれの場合も、R1~6のうちアルコキシド基以外は、それぞれ独立して、水素、アルキル基、シクロアルキル基、シクロアルケニル基、アリール基、アラルキル基、メチレン基、ビニル基、アリル基等の炭化水素基、複素環基、ヒドロキシル基、ヒドロキシ(ポリ)アルキレンオキシ基、アシル基、オキシ基、チオキシ基、ホスフィノ基、ハロゲノ基、アミノ基、イミノ基、N-オキシド基、ニトロ基、及びシアノ基からなる群より選択されるものであり、炭素鎖上の水素及び環上の水素は、それぞれ独立して、置換されていてもよい。 When n is 0, 1, or 2 or more, each of R 1 to 6 other than the alkoxide group is independently hydrogen, alkyl group, cycloalkyl group, cycloalkenyl group, aryl group, aralkyl group, Hydrocarbon group such as methylene group, vinyl group, allyl group, heterocyclic group, hydroxyl group, hydroxy (poly) alkyleneoxy group, acyl group, oxy group, thioxy group, phosphino group, halogeno group, amino group, imino group, It is selected from the group consisting of an N-oxide group, a nitro group, and a cyano group, and the hydrogen on the carbon chain and the hydrogen on the ring may each independently be substituted.
 R1~6について、炭素鎖上の水素や、環上の水素と置換し得る置換基としては、例えば、アルキル基(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s-ブチル基、t-ブチル基等のC1-20アルキル基等)、シクロアルキル基(シクロペンチル基、シクロヘキシル基等のC3-10シクロアルキル基等)、シクロアルケニル基(シクロペンテル基、シクロヘキセル基等のC3-10シクロアルケニル基等)、複素環基(酸素原子、窒素原子、硫黄原子といったヘテロ原子を含むC2-10複素環基等)、アリール基[フェニル基、アルキルフェニル基(メチルフェニル基(トリル基)、ジメチルフェニル基(キシリル基)等)等のC6-10アリール基等]、アラルキル基(ベンジル基、フェネチル基等のC6-10アリール-C1-4アルキル基等)、メチレン基、ビニル基、アリル基等の不飽和炭化水素基、アルコキシド基(メトキシ基等のC1-4アルコキシド基等)、ヒドロキシル基、ヒドロキシ(ポリ)アルキレンオキシ基(ヒドロキシ(ポリ)C2-4アルキレンオキシ基等)、アシル基(アセチル基等のC1-6アシル基等)、オキシ基、チオキシ基、ホスフィノ基、ハロゲノ基(フルオロ基、クロロ基等)、アミノ基、イミノ基、N-オキシド基、ニトロ基、シアノ基等が挙げられる。なお、炭素鎖上の水素や環上の水素は、その一部が置換されていてもよいし、全てが置換されていてもよい。 For R 1 ~ 6, and hydrogen on the carbon chain, as the substituent which can replace a hydrogen on the ring, for example, an alkyl group (a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, s- butyl group C 1-20 alkyl group such as t-butyl group), cycloalkyl group (C 3-10 cycloalkyl group such as cyclopentyl group, cyclohexyl group etc.), cycloalkenyl group (cyclopenter group, cyclohexel group etc.) C 3-10 cycloalkenyl group etc.), heterocyclic group (C 2-10 heterocyclic group containing a hetero atom such as oxygen atom, nitrogen atom, sulfur atom etc.), aryl group [phenyl group, alkylphenyl group (methylphenyl group) C 6-10 aryl groups such as (tolyl group), dimethylphenyl group (xylyl group), etc.], C 6- such as aralkyl groups (benzyl group, phenethyl group, etc.) 10 aryl-C 1-4 alkyl group), unsaturated hydrocarbon group such as methylene group, vinyl group, allyl group, alkoxide group (C 1-4 alkoxide group such as methoxy group), hydroxyl group, hydroxy (poly ) Alkyleneoxy group (hydroxy (poly) C 2-4 alkyleneoxy group etc.), acyl group (C 1-6 acyl group such as acetyl group etc.), oxy group, thioxy group, phosphino group, halogeno group (fluoro group, Chloro group, etc.), amino group, imino group, N-oxide group, nitro group, cyano group and the like. In addition, the hydrogen on the carbon chain or the hydrogen on the ring may be partially substituted, or all may be substituted.
 前記化合物(A)として、具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、メチルシリケートオリゴマー、エチルシリケートオリゴマー等が挙げられる。 Specific examples of the compound (A) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, methyl silicate oligomer, and ethyl silicate oligomer.
 前記化合物(A)は、前記式(2)で示されるR1~6のすべてが、アルコキシド基であることが好ましい。 In the compound (A), it is preferable that all of R 1 to 6 represented by the formula (2) are alkoxide groups.
 また、本発明において、化合物(B)は、硬化膜とした場合に一定の硬度を示しつつも適度な硬化収縮とできる点から、下記式(3)で示されるものが好ましい。 In the present invention, the compound (B) is preferably a compound represented by the following formula (3) from the viewpoint that it can be cured and shrinkage moderately while exhibiting a certain hardness when formed into a cured film.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(3)中、
 Xは、単結合、炭素数1~20、好ましくは、2~15、さらに好ましくは、3~10の2価の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20、好ましくは、4~15、さらに好ましくは、5~10の2価の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、若しくは、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)であり、
 Yは、アクリル基、エポキシ基、アルキル基、ビニル基、メタクリル基、チオール基、アミノ基及びイソシアネート基からなる群より選択され、
 R7~9のうち少なくとも1つは炭素数1~20、好ましくは1~10、さらに好ましくは、1~5のアルコキシド基であり、
 その残りは、それぞれ独立して、水素、アルキル基、シクロアルキル基、シクロアルケニル基、アリール基、アラルキル基、メチレン基、ビニル基、アリル基等の炭化水素基、複素環基、ヒドロキシル基、ヒドロキシ(ポリ)アルキレンオキシ基、アシル基、オキシ基、チオキシ基、ホスフィノ基、ハロゲノ基、アミノ基、イミノ基、N-オキシド基、ニトロ基、及びシアノ基からなる群より選択されるものであり、炭素鎖上の水素及び環上の水素は、それぞれ独立して、置換されていてもよい。
In formula (3),
X is a single bond, a divalent chain hydrocarbon group having 1 to 20, preferably 2 to 15, more preferably 3 to 10 carbon atoms (wherein the carbon chain may be linear or branched, Some of the carbon atoms may be substituted with heteroatoms, and some or all of the hydrogens on the carbon chain may be substituted), or 3 to 20, preferably 4 to 15, More preferably, it is a divalent cyclic hydrocarbon group of 5 to 10 (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, or may have both a condensed ring and a spiro ring, Of the ring may be substituted with a heteroatom, and some or all of the hydrogen on the ring may be substituted).
Y is selected from the group consisting of acrylic, epoxy, alkyl, vinyl, methacryl, thiol, amino and isocyanate groups;
At least one of 1 to 20 carbon atoms of R 7 ~ 9, preferably 1 to 10, more preferably an alkoxide group of 1 to 5,
The rest are independently hydrogen, alkyl group, cycloalkyl group, cycloalkenyl group, aryl group, aralkyl group, methylene group, vinyl group, allyl group and other hydrocarbon groups, heterocyclic groups, hydroxyl groups, hydroxy groups. (Poly) alkyleneoxy group, acyl group, oxy group, thiooxy group, phosphino group, halogeno group, amino group, imino group, N-oxide group, nitro group, and cyano group, The hydrogen on the carbon chain and the hydrogen on the ring may each independently be substituted.
 炭素鎖上の水素や、環上の水素と置換し得る置換基としては、例えば、アルキル基(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s-ブチル基、t-ブチル基等のC1-20アルキル基等)、シクロアルキル基(シクロペンチル基、シクロヘキシル基等のC3-10シクロアルキル基等)、シクロアルケニル基(シクロペンテル基、シクロヘキセル基等のC3-10シクロアルケニル基等)、複素環基(酸素原子、窒素原子、硫黄原子といったヘテロ原子を含むC2-10複素環基等)、アリール基[フェニル基、アルキルフェニル基(メチルフェニル基(トリル基)、ジメチルフェニル基(キシリル基)等)等のC6-10アリール基等]、アラルキル基(ベンジル基、フェネチル基等のC6-10アリール-C1-4アルキル基等)、メチレン基、ビニル基、アリル基等の不飽和炭化水素基、アルコキシド基(メトキシ基等のC1-4アルコキシド基等)、ヒドロキシル基、ヒドロキシ(ポリ)アルキレンオキシ基(ヒドロキシ(ポリ)C2-4アルキレンオキシ基等)、アシル基(アセチル基等のC1-6アシル基等)、オキシ基、チオキシ基、ホスフィノ基、ハロゲノ基(フルオロ基、クロロ基等)、アミノ基、イミノ基、N-オキシド基、ニトロ基、シアノ基等が挙げられる。なお、炭素鎖上の水素や環上の水素は、その一部が置換されていてもよいし、全てが置換されていてもよい。 Examples of the substituent that can be substituted with hydrogen on the carbon chain or hydrogen on the ring include, for example, alkyl groups (methyl group, ethyl group, propyl group, isopropyl group, butyl group, s-butyl group, t-butyl group, etc. C 1-20 alkyl group), and a cycloalkyl group (cyclopentyl group, and a C 3-10 cycloalkyl groups such as cyclohexyl group), a cycloalkenyl group (cyclo Pentel group, C 3-10 cycloalkenyl, such as cyclohexanol cell group Groups), heterocyclic groups (C 2-10 heterocyclic groups containing heteroatoms such as oxygen, nitrogen and sulfur atoms), aryl groups [phenyl groups, alkylphenyl groups (methylphenyl groups (tolyl groups), dimethyl groups) C 6-10 aryl group such as phenyl group (xylyl group), etc.], C 6-10 aryl-C 1 such as aralkyl group (benzyl group, phenethyl group, etc.) -4 alkyl groups), unsaturated hydrocarbon groups such as methylene groups, vinyl groups, allyl groups, alkoxide groups (C 1-4 alkoxide groups such as methoxy groups), hydroxyl groups, hydroxy (poly) alkyleneoxy groups ( Hydroxy (poly) C 2-4 alkyleneoxy group, etc.), acyl group (C 1-6 acyl group such as acetyl group), oxy group, thioxy group, phosphino group, halogeno group (fluoro group, chloro group etc.), Examples thereof include an amino group, an imino group, an N-oxide group, a nitro group, and a cyano group. In addition, the hydrogen on the carbon chain or the hydrogen on the ring may be partially substituted, or all may be substituted.
 前記化合物(B)として、具体的には、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、メチルフェノキシシラン、n-プロピルトリメトキシシラン、ジイソプロピルジメトキシシラン、イソブチルトリメトキシシラン、ジイソブチルジメトキシシラン、イソブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン等が挙げられる。 Specific examples of the compound (B) include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidyl. Sidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxy Propyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N- -(Aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-tri Ethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, Methyltriethoxysilane, methylphenoxysilane, n-propyltrimethoxysilane, diisopropyldimethoxysilane, isobutyltrimethoxysilane, diisobutyldimethoxysilane, isobutyltriethoxysilane, n-he Sill trimethoxysilane, n- hexyl triethoxysilane, cyclohexyl methyl dimethoxy silane, n- octyltriethoxysilane, n- decyl trimethoxysilane and the like.
 前記化合物(A)と前記化合物(B)とを組み合わせて用いる場合、硬化膜とした場合により高い硬度とすることができるため、前記化合物(A)と前記化合物(B)の配合比は、30~95:70~5であることが好ましい。 When the compound (A) and the compound (B) are used in combination, the cured film can have a higher hardness. Therefore, the compounding ratio of the compound (A) and the compound (B) is 30. ~ 95: 70-5 is preferred.
 また、前記化合物(A)と前記化合物(B)とを組み合わせて用いる場合、前記化合物(A)は、前記化合物(B)が有する官能基(シリコンアルコキシド基を除く。)を有さないことが好ましい。 When the compound (A) and the compound (B) are used in combination, the compound (A) may not have a functional group (excluding a silicon alkoxide group) that the compound (B) has. preferable.
 本発明の組成物剤におけるバインダーの配合量としては、導電性高分子100質量部に対して、0.1~10000質量部であることが好ましく、1~5000質量部であることがより好ましく、10~2000質量部であることがさらに好ましい。0.1質量部未満である場合は、成膜が困難となる場合があり、10000質量部を超える場合は、優れた遠赤外線反射性能および近赤外線吸収性能を示す薄膜を形成することができない。 The amount of the binder in the composition of the present invention is preferably 0.1 to 10000 parts by mass, more preferably 1 to 5000 parts by mass, with respect to 100 parts by mass of the conductive polymer. More preferably, it is 10 to 2000 parts by mass. When the amount is less than 0.1 parts by mass, film formation may be difficult. When the amount exceeds 10000 parts by mass, a thin film exhibiting excellent far-infrared reflection performance and near-infrared absorption performance cannot be formed.
 [添加剤]
 本発明の組成物には、さらに、必要に応じ、レベリング剤、酸化防止剤、触媒、界面活性剤(表面調整剤)、消泡剤、レオロジーコントロール剤、密着性付与剤、増粘剤、中和剤等を適宜添加することが可能である。
[Additive]
The composition of the present invention may further include a leveling agent, an antioxidant, a catalyst, a surfactant (surface conditioner), an antifoaming agent, a rheology control agent, an adhesion-imparting agent, a thickener, if necessary. It is possible to add a compatibilizer or the like as appropriate.
 レベリング剤の添加により、ムラがなく、良好な美観を有する塗膜を形成することができる。成膜性を向上し、均一な塗布膜を得ることができるものなら特に限定されない。このようなレベリング剤としては、例えば、ポリエーテル変性ポリジメチルシロキサン、ポリエーテル変性シロキサン、ポリエーテルエステル変性水酸基含有ポリジメチルシロキサン、ポリエーテル変性アクリル基含有ポリジメチルシロキサン、ポリエステル変性アクリル基含有ポリジメチルシロキサン、パーフルオロポリジメチルシロキサン、パーフルオロポリエーテル変性ポリジメチルシロキサン、パーフルオロポリエステル変性ポリジメチルシロキサンなどのシロキサン化合物;パーフルオロアルキルカルボン酸、パーフルオロアルキルポリオキシエチレンエタノールなどのフッ素含有有機化合物;ポリオキシエチレンアルキルフェニルエーテル、プロピレンオキシド重合体、エチレンオキシド重合体などのポリエーテル系化合物;ヤシ油脂肪酸アミン塩、ガムロジンなどのカルボン酸;ヒマシ油硫酸エステル類、リン酸エステル、アルキルエーテル硫酸塩、ソルビタン脂肪酸エステル、スルホン酸エステル、リン酸エステル、コハク酸エステルなどのエステル系化合物;アルキルアリールスルホン酸アミン塩、スルホコハク酸ジオクチルナトリウムなどのスルホン酸塩化合物;ラウリルリン酸ナトリウムなどのリン酸塩化合物;ヤシ油脂肪酸エタノールアマイドなどのアミド化合物;さらにはアクリル系の共重合物等が挙げられる。 The addition of the leveling agent can form a coating film with no aesthetics and good aesthetics. There is no particular limitation as long as the film formability can be improved and a uniform coating film can be obtained. Examples of such leveling agents include polyether-modified polydimethylsiloxane, polyether-modified siloxane, polyetherester-modified hydroxyl group-containing polydimethylsiloxane, polyether-modified acrylic group-containing polydimethylsiloxane, and polyester-modified acrylic group-containing polydimethylsiloxane. Siloxane compounds such as perfluoropolydimethylsiloxane, perfluoropolyether-modified polydimethylsiloxane, and perfluoropolyester-modified polydimethylsiloxane; fluorine-containing organic compounds such as perfluoroalkylcarboxylic acid and perfluoroalkylpolyoxyethyleneethanol; polyoxy Polyether compounds such as ethylene alkylphenyl ether, propylene oxide polymer, ethylene oxide polymer; Carboxylic acids such as oil fatty acid amine salts and gum rosins; Castor oil sulfates, phosphate esters, alkyl ether sulfates, ester compounds such as sorbitan fatty acid esters, sulfonate esters, phosphate esters, succinate esters; alkylaryl sulfones Examples thereof include sulfonate compounds such as acid amine salts and sodium dioctyl sulfosuccinate; phosphate compounds such as sodium lauryl phosphate; amide compounds such as coconut oil fatty acid ethanolamide; and acrylic copolymers.
 これらの中でも、成膜性、ハジキ防止の点から、シロキサン系、フッ素系およびアクリル系化合物が好ましく、ポリエーテル変性ポリジメチルシロキサンが特に好ましい。 Among these, siloxane-based, fluorine-based and acrylic compounds are preferable from the viewpoint of film formability and repellency prevention, and polyether-modified polydimethylsiloxane is particularly preferable.
 本発明の組成物におけるレベリング剤の配合量としては、導電性高分子100質量部に対して、0.001~500質量部であることが好ましく、0.01~300質量部であることがより好ましい。配合量がこの範囲外の場合は、ハジキが生じ、塗布膜がムラとなる。 The blending amount of the leveling agent in the composition of the present invention is preferably 0.001 to 500 parts by mass, more preferably 0.01 to 300 parts by mass with respect to 100 parts by mass of the conductive polymer. preferable. When the amount is out of this range, repelling occurs and the coating film becomes uneven.
 酸化防止剤としては特に限定されず、還元性または非還元性の水溶性酸化防止剤が挙げられる。還元性を有する水溶性酸化防止剤としては、例えば、L-アスコルビン酸、L-アスコルビン酸ナトリウム、L-アスコルビン酸カリウム、エリソルビン酸、エリソルビン酸ナトリウム、エリソルビン酸カリウムなどの2個の水酸基で置換されたラクトン環を有する化合物;マルトース、ラクトース、セロビオース、キシロース、アラビノース、グルコース、フルクトース、ガラクトース、マンノースなどの単糖類および二糖類;カテキン、ルチン、ミリセチン、クエルセチン、ケンフェロールなどのフラボノイド;クルクミン、ロズマリン酸、クロロゲン酸、タンニン酸、ヒドロキノン、3,4,5-トリヒドロキシ安息香酸などのフェノール性水酸基を2個以上有する化合物;システイン、グルタチオン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)などのチオール基を有する化合物などが挙げられる。非還元性の水溶性酸化防止剤としては、例えば、フェニルイミダゾールスルホン酸、フェニルトリアゾールスルホン酸、2-ヒドロキシピリミジン、サリチル酸フェニル、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸ナトリウムなどの酸化劣化の原因となる紫外線を吸収する化合物が挙げられる。本発明の組成物において、2個の水酸基で置換されたラクトン環を有する化合物、単糖類および二糖類、フラボノイド系の化合物、又はフェノール性水酸基を2個以上有する化合物を使用することが特に好ましい。これらは、単独で使用してもよく、2種以上を併用してもよい。 The antioxidant is not particularly limited, and examples thereof include reducing or non-reducing water-soluble antioxidants. Examples of water-soluble antioxidants having reducing properties include substitution with two hydroxyl groups such as L-ascorbic acid, sodium L-ascorbate, potassium L-ascorbate, erythorbic acid, sodium erythorbate, and potassium erythorbate. Compounds having a lactone ring; monosaccharides and disaccharides such as maltose, lactose, cellobiose, xylose, arabinose, glucose, fructose, galactose, mannose; flavonoids such as catechin, rutin, myricetin, quercetin, kaempferol; curcumin, rosmarinic acid Compounds having two or more phenolic hydroxyl groups such as chlorogenic acid, tannic acid, hydroquinone, 3,4,5-trihydroxybenzoic acid; cysteine, glutathione, pentaerythritol tetrakis (3-mercapto butyrate) include compounds having a thiol group such as. Non-reducing water-soluble antioxidants include, for example, oxidative degradation such as phenylimidazolesulfonic acid, phenyltriazolesulfonic acid, 2-hydroxypyrimidine, phenyl salicylate, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid sodium, etc. The compound which absorbs the ultraviolet-ray which causes this is mentioned. In the composition of the present invention, it is particularly preferable to use a compound having a lactone ring substituted with two hydroxyl groups, a monosaccharide and a disaccharide, a flavonoid compound, or a compound having two or more phenolic hydroxyl groups. These may be used alone or in combination of two or more.
 本発明の組成物剤における酸化防止剤の配合量としては、導電性高分子100質量部に対して、0.001~500質量部であることが好ましく、0.01~300質量部であることがより好ましい。0.001質量部未満である場合は、耐候性を維持できない。500質量部より多い場合は酸化防止剤の割合が高くなりすぎるため、優れた遠赤外線反射性能および近赤外線吸収性能を達成することができない。 The blending amount of the antioxidant in the composition of the present invention is preferably 0.001 to 500 parts by mass, and 0.01 to 300 parts by mass with respect to 100 parts by mass of the conductive polymer. Is more preferable. When it is less than 0.001 part by mass, the weather resistance cannot be maintained. When the amount is more than 500 parts by mass, the ratio of the antioxidant becomes too high, so that excellent far-infrared reflection performance and near-infrared absorption performance cannot be achieved.
 本発明に係る組成物における触媒は、機能性膜の形成時にバインダーの重合反応を促進し、硬化時間を短縮するために用いてもよい。このような触媒としては、例えば、ラジカル系光重合開始剤、ラジカル系熱重合開始剤等が挙げられるが、硬化時間短縮の観点からは、ラジカル系光重合開始剤が好ましい。 The catalyst in the composition according to the present invention may be used to accelerate the polymerization reaction of the binder during the formation of the functional film and to shorten the curing time. Examples of such a catalyst include a radical photopolymerization initiator and a radical thermal polymerization initiator, and a radical photopolymerization initiator is preferable from the viewpoint of shortening the curing time.
 このようなラジカル系重合開始剤としては、2‐ヒドロキシ‐1‐{4‐[4‐(2‐ヒドロキシ‐2‐メチル‐プロピオニル)‐ベンジル]‐フェニル}‐2‐メチル‐プロパン‐1‐オン(BASF社製:イルガキュア127)、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製:イルガキュア184)、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製:イルガキュア184)とベンゾフェノンの混合物(BASF社製:イルガキュア500)、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(BASF社製:イルガキュア651)、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(BASF社製:イルガキュア907)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(BASF社製:イルガキュア2959)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(BASF社製:ダロキュア1173)等が挙げられる。 Such radical polymerization initiators include 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl} -2-methyl-propan-1-one (BASF: Irgacure 127) 1-hydroxy-cyclohexyl-phenyl-ketone (BASF: Irgacure 184), 1-hydroxy-cyclohexyl-phenyl-ketone (BASF: Irgacure 184) and benzophenone (BASF) Irgacure 500), 2,2-dimethoxy-1,2-diphenylethane-1-one (BASF: Irgacure 651), 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane -1-one (manufactured by BASF: Irgacure 907), 1- [4- (2-hydroxyethoxy) -phenyl] -2-hy Droxy-2-methyl-1-propan-1-one (BASF: Irgacure 2959), 2-hydroxy-2-methyl-1-phenyl-propan-1-one (BASF: Darocur 1173), etc. It is done.
 本発明の組成物剤における触媒の配合量としては、導電性高分子100質量部に対して、0.001~500質量部であることが好ましく、0.01~300質量部であることがより好ましい。 The compounding amount of the catalyst in the composition of the present invention is preferably 0.001 to 500 parts by mass, more preferably 0.01 to 300 parts by mass with respect to 100 parts by mass of the conductive polymer. preferable.
 前記消泡剤としては、例えば、シロキサン骨格を有する化合物:ポリエステル変性メチルアルキルポリシロキサン、ポリエーテル変性ポリメチルアルキルシロキサン、アラルキル変性ポリメチルアルキルシロキサン等が挙げられる。本発明の組成物における消泡剤の配合量としては、導電性高分子100質量部に対して、0.001~500質量部が好ましく、0.01~100質量部がより好ましい。 Examples of the antifoaming agent include compounds having a siloxane skeleton: polyester-modified methylalkylpolysiloxane, polyether-modified polymethylalkylsiloxane, aralkyl-modified polymethylalkylsiloxane, and the like. The blending amount of the antifoaming agent in the composition of the present invention is preferably 0.001 to 500 parts by mass, more preferably 0.01 to 100 parts by mass with respect to 100 parts by mass of the conductive polymer.
 前記レオロジーコントロール剤としては、例えば、セルロース系およびその誘導体、アルブミン、カゼインなどのたんぱく質系の誘導体、アルギン酸、寒天、でんぷん、多糖類、ビニル系化合物、ビニリデン化合物、ポリエステル化合物、ポリエーテル化合物、ポリグリコール系化合物、ポリビニルアルコール系化合物、ポリアルキレンオキサイド化合物、ポリアクリル酸系化合物等が挙げられる。本発明の組成物におけるレオロジーコントロール剤の配合量としては、導電性高分子100質量部に対して、0.001~500質量部が好ましく、0.01~100質量部がより好ましい。 Examples of the rheology control agent include cellulose derivatives and protein derivatives such as albumin and casein, alginic acid, agar, starch, polysaccharides, vinyl compounds, vinylidene compounds, polyester compounds, polyether compounds, and polyglycols. Compounds, polyvinyl alcohol compounds, polyalkylene oxide compounds, polyacrylic acid compounds, and the like. The blending amount of the rheology control agent in the composition of the present invention is preferably 0.001 to 500 parts by mass, more preferably 0.01 to 100 parts by mass with respect to 100 parts by mass of the conductive polymer.
 前記密着性付与剤等も使用できる。本発明の組成物における密着性付与剤の配合量としては、導電性高分子100質量部に対して、0.001~500質量部が好ましく、0.01~100質量部がより好ましい。 The adhesion imparting agent can also be used. The blending amount of the adhesion-imparting agent in the composition of the present invention is preferably 0.001 to 500 parts by mass, more preferably 0.01 to 100 parts by mass with respect to 100 parts by mass of the conductive polymer.
 粘度を向上させる目的で増粘剤を添加してもよい。このような増粘剤としては、アルギナン酸誘導体、キサンタンガム誘導体、カラギーナンやセルロースなどの糖類化合物などの水溶性高分子などが挙げられる。本発明の組成物における増粘剤の配合量としては、導電性高分子100質量部に対して、0.001~500質量部が好ましく、0.01~100質量部がより好ましい。 A thickener may be added for the purpose of improving the viscosity. Examples of such thickeners include alginic acid derivatives, xanthan gum derivatives, water-soluble polymers such as saccharide compounds such as carrageenan and cellulose. The blending amount of the thickener in the composition of the present invention is preferably 0.001 to 500 parts by mass, more preferably 0.01 to 100 parts by mass with respect to 100 parts by mass of the conductive polymer.
 [組成物の製造方法]
 本発明の組成物を製造する方法は特に制限されないが、上記各成分をメカニカルスターラーやマグネティックスターラーなどの撹拌機で撹拌しながら混合して、約1~60分間程度撹拌混合すればよい。
[Method for producing composition]
The method for producing the composition of the present invention is not particularly limited, and the above components may be mixed while stirring with a stirrer such as a mechanical stirrer or a magnetic stirrer, and then stirred and mixed for about 1 to 60 minutes.
 [積層体]
 本発明の組成物を、被塗布基材に塗布した後、乾燥させることで、機能性膜を含む積層体を形成することができる。組成物を塗布する被塗布基材は透明な基材であってもよく、不透明な基材であってもよい。基材を構成する材料としては特に限定されないが、例えば、ポリエチレン、ポリプロピレン、エチレン・酢酸ビニル共重合体、エチレン・アクリル酸エステル共重合体、アイオノマー共重合体、シクロオレフィン系樹脂等のポリオレフィン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリオキシエチレン、変性ポリフェニレン、ポリフェニレンスルフィド等のポリエステル樹脂、ナイロン6、ナイロン6,6、ナイロン9、半芳香族ポリアミド6T6、半芳香族ポリアミド6T66、半芳香族ポリアミド9T等のポリアミド樹脂、アクリル樹脂、ポリスチレン、アクリルニトリルスチレン、アクリルニトリルブタジエンスチレン、塩化ビニル樹脂等の有機材料;ガラス等の無機材料を挙げることができる。
[Laminate]
A laminate including a functional film can be formed by applying the composition of the present invention to a substrate to be coated and then drying the composition. The substrate to be coated on which the composition is applied may be a transparent substrate or an opaque substrate. Although it does not specifically limit as a material which comprises a base material, For example, polyolefin resin, such as polyethylene, a polypropylene, an ethylene-vinyl acetate copolymer, an ethylene-acrylic acid ester copolymer, an ionomer copolymer, a cycloolefin resin, Polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyoxyethylene, modified polyphenylene, polyphenylene sulfide, nylon 6, nylon 6,6, nylon 9, semi-aromatic polyamide 6T6, semi-aromatic polyamide 6T66, semi-aromatic polyamide Organic materials such as polyamide resin such as 9T, acrylic resin, polystyrene, acrylonitrile styrene, acrylonitrile butadiene styrene, vinyl chloride resin; and inorganic materials such as glass Kill.
 前記組成物の塗布法としては、特に制限はなく、公知の方法の中から適宜選択することができる。例えば、スピンコーティング、グラビアコーティング、バーコーティング、ディップコート法、カーテンコーティング、ダイコーティング、スプレーコーティング等が挙げられる。また、スクリーン印刷、スプレー印刷、インクジェットプリンチング、凸版印刷、凹版印刷、平版印刷等の印刷法も適用できる。 The method for applying the composition is not particularly limited and can be appropriately selected from known methods. Examples thereof include spin coating, gravure coating, bar coating, dip coating, curtain coating, die coating, and spray coating. In addition, printing methods such as screen printing, spray printing, ink jet printing, relief printing, intaglio printing, and lithographic printing can also be applied.
 前記組成物からなる塗膜の乾燥には、通常の通風乾燥機、熱風乾燥機、赤外線乾燥機などの乾燥機などが用いられる。これらのうち加熱手段を有する乾燥機(熱風乾燥機、赤外線乾燥機など)を用いると、乾燥および加熱を同時に行うことが可能である。加熱手段としては、上記乾燥機の他、加熱機能を具備する加熱・加圧ロール、プレス機などが用いられ得る。 For drying the coating film made of the composition, a normal ventilation dryer, a hot air dryer, an infrared dryer or the like is used. Of these, drying and heating can be performed simultaneously by using a dryer having a heating means (hot air dryer, infrared dryer, etc.). As the heating means, in addition to the dryer, a heating / pressurizing roll having a heating function, a press machine, or the like can be used.
 塗膜の乾燥条件は特に限定されないが、例えば、25℃~200℃で10秒~2時間程度であり、好ましくは、80℃~150℃で1~30分程度である。 The drying conditions of the coating film are not particularly limited, but are, for example, about 25 seconds to 200 ° C. for about 10 seconds to 2 hours, preferably about 80 ° C. to 150 ° C. for about 1 to 30 minutes.
 本発明の組成物から形成される塗膜の乾燥膜厚は、目的に応じて適宜選択することができるが、一般には、1nm~5μmである。しかし、高い透明性とコスト低減の観点から、膜厚は薄いほうが好ましい。この観点から、0.50μm以下が好ましく、0.40μm以下がより好ましく、0.30μm以下がさらに好ましい。本発明では高い導電率を示す導電性ポリマーを使用するため、このように極めて薄い薄膜であっても、高度な遠赤外線反射性能および近赤外線吸収性能を達成することができる。 The dry film thickness of the coating film formed from the composition of the present invention can be appropriately selected according to the purpose, but is generally 1 nm to 5 μm. However, from the viewpoint of high transparency and cost reduction, a thinner film thickness is preferable. In this respect, 0.50 μm or less is preferable, 0.40 μm or less is more preferable, and 0.30 μm or less is even more preferable. In the present invention, since a conductive polymer exhibiting high conductivity is used, even with such an extremely thin film, high far-infrared reflection performance and near-infrared absorption performance can be achieved.
 なお、基材表面に形成された塗膜の乾燥膜厚は、触針式表面形状測定装置Dektak6M(株式会社アルバック製)を用いて測定した。 In addition, the dry film thickness of the coating film formed on the substrate surface was measured using a stylus type surface shape measuring device Dektak 6M (manufactured by ULVAC, Inc.).
 本発明の組成物を透明基材表面に塗布、乾燥させることで、透明基材表面に形成された機能性膜を含む本発明の積層体を製造することができる。形成される薄膜が薄く、極めて透明性が高いために、本発明の積層体は、50%以上の可視光透過率を示すことができる。好ましくは60%以上の可視光透過率を示すことができる。 The laminate of the present invention including the functional film formed on the transparent substrate surface can be produced by applying and drying the composition of the present invention on the surface of the transparent substrate. Since the thin film to be formed is thin and extremely transparent, the laminate of the present invention can exhibit a visible light transmittance of 50% or more. Preferably, visible light transmittance of 60% or more can be exhibited.
 前記積層体は、優れた遠赤外線反射性能を有し、5.9W/m・K未満の熱貫流率、好ましくは5.7W/m・K未満の熱貫流率、より好ましくは5.5W/m・K未満の熱貫流率を示すことができる。 The laminate has excellent far-infrared reflective performance, and a thermal conductivity of less than 5.9 W / m 2 · K, preferably a thermal conductivity of less than 5.7 W / m 2 · K, more preferably 5. A heat transmissivity of less than 5 W / m 2 · K can be exhibited.
 熱貫流率は、ガラス内外の温度差が1℃の時に、1時間あたりガラス1mを通過する熱量をワットで表したものであるが、本発明では、遠赤外線反射性能を示す導電性高分子を含む組成物を用いてガラス等の基材上に機能性層を設けることにより、暖房機器等により発生する遠赤外線を室内に閉じ込める(室内の熱を外部に逃さない)結果、熱貫流率を低減させることを可能にするものである。 The heat transmissivity is the amount of heat that passes through 1 m 2 of glass per hour when the temperature difference between the inside and outside of the glass is 1 ° C. In the present invention, the conductive polymer exhibiting far-infrared reflection performance. By providing a functional layer on a substrate such as glass using a composition containing, far infrared rays generated by a heating device or the like are confined in the room (the indoor heat is not released to the outside). It is possible to reduce.
 前記積層体は、優れた近赤外線吸収性能を有し、0.95未満の遮蔽係数、好ましくは0.90未満の遮蔽係数、より好ましくは0.85未満の遮蔽係数を示すことができる。 The laminate has excellent near-infrared absorption performance and can exhibit a shielding coefficient of less than 0.95, preferably a shielding coefficient of less than 0.90, and more preferably a shielding coefficient of less than 0.85.
 遮蔽係数は、入射した日射(波長:約300nm-2500nm)が通過する率を表わす値であることから、近赤外線吸収性能を示す指標となる。 Shielding coefficient is a value representing the rate at which incident solar radiation (wavelength: about 300 nm-2500 nm) passes, and is an index indicating near infrared absorption performance.
 このように、高い透明度を維持しながら、単層で遠赤外線反射性能および近赤外線吸収性能を奏することができる。 Thus, while maintaining high transparency, it is possible to achieve far infrared reflection performance and near infrared absorption performance with a single layer.
 本発明の積層体は種々の用途に使用され得るものであるが、例えば、PETフィルム等の樹脂フィルムに本発明の組成物を塗布してなるものであってもよい。これにより得られる機能性フィルムは、窓ガラス(単層ガラスまたは複層ガラス)の他、建築物または乗り物の壁、ビニルハウス、食品包装材、あるいは冷蔵庫または冷凍庫の壁の表面などに貼付して使用することができる。本発明の積層体は極めて透明性が高いものであるため、窓ガラスに適用した場合、窓ガラスの透明性を阻害することなく、優れた遠赤外線反射性能および近赤外線吸収性能を発揮することができる。その結果、高い透明性を享受しながら、室内の熱を外部に逃さない効果(断熱性)、および、外部の熱を室内に伝えない効果(遮熱性)を期待することができる。 The laminate of the present invention can be used for various applications. For example, the laminate of the present invention may be applied to a resin film such as a PET film. The functional film obtained in this way is affixed to the window glass (single-layer glass or double-layer glass), the walls of buildings or vehicles, vinyl houses, food packaging materials, or refrigerator or freezer walls. Can be used. Since the laminate of the present invention is extremely highly transparent, when applied to a window glass, it can exhibit excellent far-infrared reflection performance and near-infrared absorption performance without hindering the transparency of the window glass. it can. As a result, while enjoying high transparency, it is possible to expect an effect of not letting indoor heat escape to the outside (heat insulation) and an effect of not transferring external heat to the room (heat insulation).
 また、本発明の組成物は、窓ガラス、建築物または乗り物の壁、ビニルハウス、食品包装材、あるいは冷蔵庫または冷凍庫の壁の表面に直接コーティングすることで使用することもできる。 Also, the composition of the present invention can be used by directly coating the surface of window glass, building or vehicle walls, vinyl houses, food packaging materials, or refrigerator or freezer walls.
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。以下、「部」又は「%」は特記ない限り、それぞれ「質量部」又は「質量%」を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Hereinafter, “part” or “%” means “part by mass” or “% by mass”, respectively, unless otherwise specified.
 <導電性ポリマーの導電率の測定>
 本発明における導電性ポリマーの導電率は以下の手順で測定した。
<Measurement of conductivity of conductive polymer>
The conductivity of the conductive polymer in the present invention was measured by the following procedure.
 各導電性ポリマー含有水分散体を、基材上に、ワイヤーバーNo.8(ウエット膜厚18μm)を用いてバーコート法により塗布し、130℃で15分乾燥させることにより、基材上に薄膜を形成した。形成した薄膜について、触針式膜厚測定器で膜厚を測定した。その後、薄膜の表面抵抗率を株式会社三菱化学製ロレスタ-GP(MCP-T600)で測定した。測定した膜厚と表面抵抗率の値を下記式に代入して導電性ポリマーの導電率を求めた。 Each conductive polymer-containing aqueous dispersion was placed on a substrate with a wire bar No. 8 (wet film thickness 18 μm) was applied by a bar coating method and dried at 130 ° C. for 15 minutes to form a thin film on the substrate. About the formed thin film, the film thickness was measured with the stylus type film thickness measuring device. Thereafter, the surface resistivity of the thin film was measured with Loresta-GP (MCP-T600) manufactured by Mitsubishi Chemical Corporation. The measured film thickness and surface resistivity were substituted into the following equation to determine the conductivity of the conductive polymer.
 導電率(S/cm)=1/{表面抵抗率(Ω/□)×膜厚(cm)}  Conductivity (S / cm) = 1 / {Surface resistivity (Ω / □) × film thickness (cm)}
 (実施例1)
 導電性高分子として、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸との複合体換算で100質量部のポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸との複合体の水分散体(ヘレウス株式会社製:CleviosPH1000、導電率0.46S/cm、固形分1.0%)、無機材料として、CsMoWO粒子換算で200質量部のCs0.33WO粒子の水分散体(特開2011-195442号公報記載の方法に準じて調製、固形分10%)、バインダーとして1000質量部のシリコンウレタンアクリレート(MIWON社製:MIRAMER SIU1000、固形分100%)、レベリング剤として100質量部のシロキサン系レベリング剤ポリエーテル変性ポリジメチルシロキサン(ビッグケミ―社製:BYK-307、固形分100%)、触媒として100質量部のイルガキュア127(BASF社製:固形分100%)、および溶剤としてエタノールを混合して固形分濃度が0.1~20質量%となるように調整した。30分間撹拌した。得られた混合物を400メッシュのSUS製の篩でろ過することで、組成物を調製した。
Example 1
As a conductive polymer, 100 mass parts of a composite of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid in terms of a composite of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid aqueous dispersion (Heraeus Co.: CleviosPH1000, conductivity 0.46S / cm, solid content 1.0%), as an inorganic material, the Cs 0.33 WO 3 particles 200 parts by CsMoWO 3 particles converted water Dispersion (prepared according to the method described in JP-A-2011-195442, solid content 10%), 1000 parts by mass of silicon urethane acrylate (MIWON: MIRAMER SIU1000, solid content 100%) as a binder, as a leveling agent 100 parts by mass of siloxane leveling agent polyether-modified polydimethyl Siloxane (manufactured by Big Chem: BYK-307, solid content 100%), 100 parts by mass of Irgacure 127 (manufactured by BASF: solid content 100%) as a catalyst, and ethanol as a solvent were mixed to give a solid content concentration of 0.00. The content was adjusted to 1 to 20% by mass. Stir for 30 minutes. The obtained mixture was filtered through a 400 mesh SUS sieve to prepare a composition.
 得られた組成物を、厚み50μmのPETフィルム(東レ株式会社製:ルミラー T-60)上に、ワイヤーバーNo.34(ウエット膜厚39μm)を用いてバーコート法により塗布し、130℃で2分間乾燥させ、その後に1000mJ/cmの露光量を露光することにより、積層体を得た。乾燥膜厚は、2μmであった。 The obtained composition was placed on a 50 μm thick PET film (manufactured by Toray Industries, Inc .: Lumirror T-60) with a wire bar no. 34 (wet film thickness 39 μm) was applied by a bar coating method, dried at 130 ° C. for 2 minutes, and then exposed to an exposure amount of 1000 mJ / cm 2 to obtain a laminate. The dry film thickness was 2 μm.
 得られた積層体は、以下の方法に基づき各種評価を行い、その結果は表2に示した。 The obtained laminate was subjected to various evaluations based on the following methods, and the results are shown in Table 2.
 (1)可視光透過率および遮蔽係数
 各種積層体が示す可視光透過率、遮蔽係数は、JIS A5759に従い、分光光度計V-670(日本分光株式会社製)を用いて測定した。
(1) Visible light transmittance and shielding coefficient The visible light transmittance and shielding coefficient exhibited by various laminates were measured using a spectrophotometer V-670 (manufactured by JASCO Corporation) in accordance with JIS A5759.
 (2)熱貫流率
 各種基材が示す熱貫流率は、JIS A5759に従い、FT-IR Frontier(パーキンエルマー社製)を用いて測定した。
(2) Thermal conductivity The thermal conductivity exhibited by various substrates was measured using FT-IR Frontier (Perkin Elmer) according to JIS A5759.
 (3)耐擦傷性
 各種積層体が示す耐擦傷性は、学振形染色摩擦堅ろう度試験機(株式会社安田精機製作所製)にて、スチールウール#0000を用いて200g荷重で1往復した時に目視で確認し、数100本以上の傷があれば×、数10本の傷があれば△、数本の傷があれば○、傷がなければ◎と判断した。
(3) Scratch resistance The scratch resistance exhibited by the various laminates is determined by one round trip with a 200 g load using steel wool # 0000 on a Gakuden dyeing friction fastness tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd.). It was visually confirmed that it was judged as x if there were several hundred or more scratches, Δ if there were several tens of scratches, ◯ if there were several scratches, and ◎ if there were no scratches.
 (4)成膜性
 各種積層体が示す成膜性は、塗布成膜後に塗布膜が均一であるかどうかを目視にて確認し、明らかに不均一であれば×、多少不均一であれば△、均一であれば○と判断した。
(4) Film-formability The film-formability exhibited by the various laminates is confirmed visually by checking whether the coating film is uniform after coating film formation. △, if judged uniform, judged as ◯.
 (5)耐候性
 各種積層体が示す耐候性は、メタリングウェザーメーター(株式会社スガ試験機製:温度63℃、湿度50%、照度1.55KWh)にて1時間照射後、熱貫流率が0.5W/m・K以上変化すれば×、0.2~0.5であれば△、0.2未満であれば○と判断した。
(5) Weather resistance The weather resistance exhibited by the various laminates is 0% after heat irradiation for 1 hour at a metering weather meter (manufactured by Suga Test Instruments Co., Ltd .: temperature 63 ° C., humidity 50%, illuminance 1.55 kWh). It was judged as x when it changed by 5 W / m 2 · K or more, Δ when it was 0.2 to 0.5, and ○ when it was less than 0.2.
 (実施例2)
 無機材料として、Cs0.33Mo0.50.5の水分散体を用いた以外は、実施例1と同様にして、積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 2)
A laminate was obtained in the same manner as in Example 1 except that an aqueous dispersion of Cs 0.33 Mo 0.5 W 0.5 O 3 was used as the inorganic material. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例3)
 無機材料として、銀ナノワイヤの水分散体を用いた以外は、実施例1と同様にして、積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
Example 3
A laminate was obtained in the same manner as in Example 1 except that an aqueous dispersion of silver nanowires was used as the inorganic material. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例4)
 無機材料として、ATOを用いた以外は、実施例1と同様にして積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
Example 4
A laminate was obtained in the same manner as in Example 1 except that ATO was used as the inorganic material. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例5)
 レベリング剤として、フッ素系レベリング剤パーフルオロアルキル基含有界面活性剤(AGCセイミケミカル株式会社社製:サーフロンS-231)を用いた以外は、実施例1と同様にして積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 5)
A laminate was obtained in the same manner as in Example 1 except that a fluorine-based leveling agent perfluoroalkyl group-containing surfactant (AGC Seimi Chemical Co., Ltd .: Surflon S-231) was used as the leveling agent. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例6)
 レベリング剤として、アクリル系レベリング剤アクリル系共重合物(ビッグケミ―社製:BYK-381)を用いた以外は、実施例1と同様にして積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 6)
A laminate was obtained in the same manner as in Example 1, except that an acrylic leveling agent acrylic copolymer (Big Chem Co., Ltd .: BYK-381) was used as the leveling agent. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例7)
 酸化防止剤として、100質量部のタンニン酸(味の素オムニケム社製)をさらに添加した以外は、実施例1と同様にして、積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 7)
A laminate was obtained in the same manner as in Example 1 except that 100 parts by mass of tannic acid (manufactured by Ajinomoto Omnichem) was further added as an antioxidant. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例8)
 酸化防止剤として、100質量部のL-アスコルビン酸(和光純薬株式会社製)をさらに添加した以外は、実施例1と同様にして、積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 8)
A laminate was obtained in the same manner as in Example 1 except that 100 parts by mass of L-ascorbic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was further added as an antioxidant. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例9)
 バインダーとして、1000質量部のポリエステル樹脂水分散体(ナガセケムテックス株式会社製:ガブセンES-210、固形分25%)を用い、触媒を添加せず、さらに、130℃で2分間乾燥させた後に露光処理しなかった以外は、実施例1と同様にして、積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
Example 9
As a binder, 1000 parts by weight of a polyester resin aqueous dispersion (manufactured by Nagase ChemteX Corporation: Gabsen ES-210, solid content 25%) was used without adding a catalyst, and after drying at 130 ° C. for 2 minutes. A laminate was obtained in the same manner as in Example 1 except that the exposure treatment was not performed. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例10)
 レベリング剤を添加しなかった以外は、実施例1と同様にして、積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 10)
A laminate was obtained in the same manner as in Example 1 except that the leveling agent was not added. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例11)
 バインダーとして、500質量部のシリコンウレタンアクリレート(MIWON社製:MIRAMER SIU1000、固形分100%)および500質量部のシリケートオリゴマー(コルコート株式会社製:エチルシリケート40、固形分100%)を用いた以外は、実施例1と同様にして積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 11)
As the binder, except that 500 parts by mass of silicon urethane acrylate (manufactured by MIWON: MIRAMER SIU1000, solid content 100%) and 500 parts by mass of silicate oligomer (manufactured by Colcoat Co., Ltd .: ethylsilicate 40, solid content 100%) were used. In the same manner as in Example 1, a laminate was obtained. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例12)
 バインダーとして、500質量部のシリコンウレタンアクリレート(MIWON社製:MIRAMER SIU1000、固形分100%)および500質量部のシリケートオリゴマー(コルコート株式会社製:エチルシリケート48、固形分100%)を用いた以外は、実施例1と同様にして積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
Example 12
Except for using 500 parts by mass of silicon urethane acrylate (manufactured by MIWON: MIRAMER SIU 1000, solid content 100%) and 500 parts by mass of silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 48, solid content 100%) as the binder. In the same manner as in Example 1, a laminate was obtained. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例13)
 バインダーとして、300質量部のシリコンアルコキシドエポキシ(信越化学工業社製:KBM‐303、固形分100%)および700質量部のシリケートオリゴマー(コルコート株式会社製:エチルシリケート40、固形分100%)を用い、触媒を添加せず、さらに、130℃で2分間乾燥させた後に露光処理しなかった以外は、実施例1と同様にして積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 13)
300 parts by mass of silicon alkoxide epoxy (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-303, solid content 100%) and 700 parts by mass of silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used as binders. A laminate was obtained in the same manner as in Example 1 except that no catalyst was added and the exposure treatment was not performed after drying at 130 ° C. for 2 minutes. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例14)
 バインダーとして、300質量部のシリコンアルコキシドエポキシ(信越化学工業社製:KBM‐402、固形分100%)および700質量部のシリケートオリゴマー(コルコート株式会社製:エチルシリケート40、固形分100%)を用い、触媒を添加せず、さらに、130℃で2分間乾燥させた後に露光処理しなかった以外は、実施例1と同様にして積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 14)
300 parts by mass of silicon alkoxide epoxy (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-402, solid content 100%) and 700 parts by mass of silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used as binders. A laminate was obtained in the same manner as in Example 1 except that no catalyst was added and the exposure treatment was not performed after drying at 130 ° C. for 2 minutes. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例15)
 バインダーとして、300質量部のシリコンアルコキシドエポキシ(信越化学工業社製:KBM‐403、固形分100%)および700質量部のシリケートオリゴマー(コルコート株式会社製:エチルシリケート40、固形分100%)を用い、触媒を添加せず、さらに、130℃で2分間乾燥させた後に露光処理しなかった以外は、実施例1と同様にして積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 15)
300 parts by mass of silicon alkoxide epoxy (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-403, solid content 100%) and 700 parts by mass of silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used as binders. A laminate was obtained in the same manner as in Example 1 except that no catalyst was added and the exposure treatment was not performed after drying at 130 ° C. for 2 minutes. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例16)
 バインダーとして、300質量部のシリコンアルコキシドエポキシ(信越化学工業社製:KBE‐403、固形分100%)および700質量部のシリケートオリゴマー(コルコート株式会社製:エチルシリケート40、固形分100%)を用い、触媒を添加せず、さらに、130℃で2分間乾燥させた後に露光処理しなかった以外は、実施例1と同様にして積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 16)
300 parts by mass of silicon alkoxide epoxy (manufactured by Shin-Etsu Chemical Co., Ltd .: KBE-403, solid content 100%) and 700 parts by mass of silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used as binders. A laminate was obtained in the same manner as in Example 1 except that no catalyst was added and the exposure treatment was not performed after drying at 130 ° C. for 2 minutes. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例17)
 バインダーとして、300質量部のシリコンアルコキシドメタクリル(信越化学工業社製:KBM‐503、固形分100%)および700質量部のシリケートオリゴマー(コルコート株式会社製:エチルシリケート40、固形分100%)を用い、触媒を添加せず、さらに、130℃で2分間乾燥させた後に露光処理しなかった以外は、実施例1と同様にして積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 17)
As a binder, 300 parts by mass of silicon alkoxide methacryl (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, solid content 100%) and 700 parts by mass of a silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used. A laminate was obtained in the same manner as in Example 1 except that no catalyst was added and the exposure treatment was not performed after drying at 130 ° C. for 2 minutes. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例18)
 バインダーとして、300質量部のシリコンアルコキシドチオール(信越化学工業社製:KBM‐803、固形分100%)および700質量部のシリケートオリゴマー(コルコート株式会社製:エチルシリケート40、固形分100%)を用い、触媒を添加せず、さらに、130℃で2分間乾燥させた後に露光処理しなかった以外は、実施例1と同様にして積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 18)
As a binder, 300 parts by mass of silicon alkoxide thiol (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-803, solid content 100%) and 700 parts by mass of a silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used. A laminate was obtained in the same manner as in Example 1 except that no catalyst was added and the exposure treatment was not performed after drying at 130 ° C. for 2 minutes. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例19)
 バインダーとして、300質量部のシリコンアルコキシドビニル(信越化学工業社製:KBE‐1003、固形分100%)および700質量部のシリケートオリゴマー(コルコート株式会社製:エチルシリケート40、固形分100%)を用いた以外は、実施例1と同様にして積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 19)
300 parts by mass of silicon alkoxide vinyl (manufactured by Shin-Etsu Chemical Co., Ltd .: KBE-1003, solid content 100%) and 700 parts by mass of silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used as binders. A laminate was obtained in the same manner as in Example 1 except that. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例20)
 バインダーとして、300質量部のシリコンアルコキシドアクリル(信越化学工業社製:KBM‐5103、固形分100%)および700質量部のシリケートオリゴマー(コルコート株式会社製:エチルシリケート40、固形分100%)を用いた以外は、実施例1と同様にして積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 20)
300 parts by mass of silicon alkoxide acrylic (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-5103, solid content 100%) and 700 parts by mass of silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used as binders. A laminate was obtained in the same manner as in Example 1 except that. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例21)
 バインダーとして、300質量部のシリコンアルコキシドイソシアネート(信越化学工業社製:KBE‐9007、固形分100%)および700質量部のシリケートオリゴマー(コルコート株式会社製:エチルシリケート40、固形分100%)を用い、触媒を添加せず、さらに、130℃で2分間乾燥させた後に露光処理しなかった以外は、実施例1と同様にして積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 21)
As a binder, 300 parts by mass of silicon alkoxide isocyanate (manufactured by Shin-Etsu Chemical Co., Ltd .: KBE-9007, solid content 100%) and 700 parts by mass of a silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content 100%) are used. A laminate was obtained in the same manner as in Example 1 except that no catalyst was added and the exposure treatment was not performed after drying at 130 ° C. for 2 minutes. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (実施例22)
 バインダーとして、シリケートオリゴマー(コルコート株式会社製:エチルシリケート40、固形分100%)を用い、触媒を添加せず、さらに、130℃で2分間乾燥させた後に露光処理しなかった以外は、実施例1と同様にして積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Example 22)
Example except that silicate oligomer (manufactured by Colcoat Co., Ltd .: ethyl silicate 40, solid content: 100%) was used as a binder, no catalyst was added, and the mixture was further dried at 130 ° C. for 2 minutes and then was not exposed. 1 to obtain a laminate. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 (比較例1)
 厚み50μmのPETフィルム(東レ株式会社製:ルミラー T-60)について、実施例1と同様に、可視光透過率、遮蔽係数、および熱貫流率を測定し、その結果は表2に示した。
(Comparative Example 1)
With respect to a PET film having a thickness of 50 μm (Toray Industries, Inc .: Lumirror T-60), the visible light transmittance, the shielding coefficient, and the heat transmissivity were measured in the same manner as in Example 1. The results are shown in Table 2.
 (比較例2)
 無機材料を用いなかったこと、ワイヤーバーNo.2を用いたこと以外は、実施例1と同様にして、積層体を得た。乾燥膜厚は、100nmであった。実施例1と同様に、評価結果は表2に示した。
(Comparative Example 2)
No inorganic material, no wire bar no. A laminate was obtained in the same manner as in Example 1 except that 2. The dry film thickness was 100 nm. Similar to Example 1, the evaluation results are shown in Table 2.
 (比較例3)
 導電性高分子を用いず、表1の組成物ABの配合とした以外は、実施例1と同様にして、積層体を得た。乾燥膜厚は、2μmであった。実施例1と同様に、評価結果は表2に示した。
(Comparative Example 3)
A laminate was obtained in the same manner as in Example 1 except that the conductive polymer was not used and the composition AB of Table 1 was used. The dry film thickness was 2 μm. Similar to Example 1, the evaluation results are shown in Table 2.
 前記組成物の配合は、表1に示す。 The composition of the composition is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中の各成分について、以下のとおり示す。 About each component in Table 1, it shows as follows.
 導電性高分子:ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸との複合体(ヘレウス株式会社製:CleviosPH1000、導電率0.46S/cm、固形分1.0%)
 無機材料:Cs0.33WO(平均粒径200nm、固形分10%)、Cs0.33Mo0.50.5(平均粒径100nm、固形分10%)、銀ナノワイヤ(平均長さ10μm、平均アスペクト比300、固形分2%)、ATO(平均粒径100nm、固形分10%)
 触媒:イルガキュア127(BASF社製)
 レベリング剤:シロキサン系レベリング剤 ポリエーテル変性ポリジメチルシロキサン(ビッグケミ―社製:BYK-307)、フッ素系レベリング剤 パーフルオロアルキル基含有界面活性剤(AGCセイミケミカル株式会社製:サーフロンS-231)、アクリル系レベリング剤(ビッグケミ―社製:BYK-381)
 酸化防止剤:タンニン酸(味の素オムニケム社製)、L-アスコルビン酸(和光純薬株式会社製)
Conductive polymer: a composite of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid (manufactured by Heraeus Co., Ltd .: Clevios PH1000, conductivity 0.46 S / cm, solid content 1.0%)
Inorganic materials: Cs 0.33 WO 3 (average particle size 200 nm, solid content 10%), Cs 0.33 Mo 0.5 W 0.5 O 3 (average particle size 100 nm, solid content 10%), silver nanowire ( Average length 10 μm, average aspect ratio 300, solid content 2%), ATO (average particle size 100 nm, solid content 10%)
Catalyst: Irgacure 127 (manufactured by BASF)
Leveling agent: siloxane-based leveling agent polyether-modified polydimethylsiloxane (manufactured by Big Chem: BYK-307), fluorine-based leveling agent, perfluoroalkyl group-containing surfactant (manufactured by AGC Seimi Chemical Co., Ltd .: Surflon S-231), Acrylic leveling agent (Big Chem: BYK-381)
Antioxidants: Tannic acid (Ajinomoto Omnichem), L-ascorbic acid (Wako Pure Chemical Industries, Ltd.)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および2から明らかなように、実施例1~12では、導電性高分子または無機材料を含有していない比較例に比べ、遮蔽係数および熱貫流率を低下させていることがわかる。 As is apparent from Tables 1 and 2, in Examples 1 to 12, it is understood that the shielding coefficient and the heat transmissivity are reduced as compared with the comparative example containing no conductive polymer or inorganic material.

Claims (10)

  1.  遠赤外線反射性能および近赤外線吸収性能を備えた機能性膜を形成するために用いられ、
    0.05S/cm以上の導電率を示す導電性高分子と、無機材料と、バインダーとを含む組成物。
    Used to form a functional film with far-infrared reflection performance and near-infrared absorption performance,
    A composition comprising a conductive polymer exhibiting a conductivity of 0.05 S / cm or more, an inorganic material, and a binder.
  2.  前記バインダーが、シリコンアルコキシド基を有する化合物、およびシリコンアルコキシド基と、アクリル基、エポキシ基、アルキル基、ビニル基、メタクリル基、チオール基、アミノ基およびイソシアネート基からなる群より選択される少なくとも1つの官能基とを有する化合物のうちから選択される少なくとも1つである、請求項1に記載の組成物。 The binder is a compound having a silicon alkoxide group, and at least one selected from the group consisting of a silicon alkoxide group and an acrylic group, an epoxy group, an alkyl group, a vinyl group, a methacryl group, a thiol group, an amino group, and an isocyanate group. The composition according to claim 1, which is at least one selected from compounds having a functional group.
  3.  前記無機材料が、インジウム錫酸化物(ITO)、アンチモン錫酸化物(ATO)、複合タングステン酸化物、および金属ナノワイヤからなる群より選択される少なくとも1つである、請求項1または2に記載の組成物。 The inorganic material is at least one selected from the group consisting of indium tin oxide (ITO), antimony tin oxide (ATO), composite tungsten oxide, and metal nanowires. Composition.
  4.  前記複合タングステン酸化物が、
    一般式W(式中、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表わされる複合タングステン酸化物、
    一般式M(式中、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、およびIからなる群より選択される少なくとも1つの元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表わされる複合タングステン酸化物、および、
    一般式M(1-G)(式中、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1つの元素、A元素は、Mo、Nb、Ta、Mn、V、Re、Pt、Pd、およびTiからなる群より選択される少なくとも1つの元素、Wはタングステン、Oは酸素、0<E≦1.2、0<G≦1、2≦J≦3)で表記される複合タングステン酸化物
    からなる群より選択される少なくとも1つである、請求項3に記載の組成物。
    The composite tungsten oxide is
    A composite tungsten oxide represented by the general formula W y O z (W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999),
    In the general formula M x W y O z (wherein, M represents, H, the He, alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn , Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, At least one element selected from the group consisting of V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1,. Composite tungsten oxide represented by 2 ≦ z / y ≦ 3.0), and
    General formula M E A G W (1-G) O J (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, One element selected from Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, and the A element are Mo, Nb, Ta, Mn, V, Re, and Pt. , Pd, and Ti, at least one element selected from the group consisting of W, tungsten, O is oxygen, and 0 <E ≦ 1.2, 0 <G ≦ 1, 2 ≦ J ≦ 3) The composition according to claim 3, wherein the composition is at least one selected from the group consisting of tungsten oxides. .
  5.  前記金属ナノワイヤが銀ナノワイヤである、請求項3に記載の組成物。 The composition according to claim 3, wherein the metal nanowire is a silver nanowire.
  6.  0.05S/cm以上の導電率を示す導電性高分子が、ポリ(3、4-エチレンジオキシチオフェン)とポリスチレンスルホン酸との複合体である、請求項1から5のいずれかに記載の組成物。 The conductive polymer exhibiting a conductivity of 0.05 S / cm or more is a composite of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid according to any one of claims 1 to 5. Composition.
  7.  レベリング剤をさらに含む、請求項1から6のいずれかに記載の組成物。 The composition according to any one of claims 1 to 6, further comprising a leveling agent.
  8.  前記レベリング剤が、シロキサン系、フッ素系およびアクリル系化合物からなる群より選択される少なくとも1つである、請求項7に記載の組成物。 The composition according to claim 7, wherein the leveling agent is at least one selected from the group consisting of siloxane-based, fluorine-based and acrylic compounds.
  9.  酸化防止剤をさらに含む、請求項1から8のいずれかに記載の組成物。 The composition according to any one of claims 1 to 8, further comprising an antioxidant.
  10.  請求項1から9のいずれかに記載の組成物を用いて得られ、
    遮蔽係数が0.95未満、熱貫流率が5.9W/m・K未満であり、遠赤外線反射性能および近赤外線吸収性能を備えた機能性膜を基材上に積層した、積層体。
    Obtained using the composition according to claim 1,
    A laminate in which a functional film having a shielding coefficient of less than 0.95, a thermal transmissivity of less than 5.9 W / m 2 · K, and having far-infrared reflection performance and near-infrared absorption performance is laminated on a substrate.
PCT/JP2014/004350 2013-09-11 2014-08-25 Composition for forming functional film, and functional film laminate WO2015037198A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013188451 2013-09-11
JP2013-188451 2013-09-11
JP2013252300A JP2015078338A (en) 2013-09-11 2013-12-05 Composition for formation of functional film and functional film laminate
JP2013-252300 2013-12-05

Publications (1)

Publication Number Publication Date
WO2015037198A1 true WO2015037198A1 (en) 2015-03-19

Family

ID=52665330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004350 WO2015037198A1 (en) 2013-09-11 2014-08-25 Composition for forming functional film, and functional film laminate

Country Status (3)

Country Link
JP (1) JP2015078338A (en)
TW (1) TW201527447A (en)
WO (1) WO2015037198A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104893640A (en) * 2015-06-16 2015-09-09 华中科技大学 Conductive adhesive as well as preparation method and application method thereof
WO2015182745A1 (en) * 2014-05-30 2015-12-03 富士フイルム株式会社 Heat-insulating film for window, heat-insulating material for window, and window
JP2017032790A (en) * 2015-07-31 2017-02-09 富士フイルム株式会社 Heat ray reflective material, window, and manufacturing method for heat ray reflective material
CN108659583A (en) * 2018-05-03 2018-10-16 孔毅 A kind of nano metal antiradar coatings and application thereof
CN110229552A (en) * 2019-07-22 2019-09-13 中国科学院工程热物理研究所 A kind of infrared stealth coating and preparation method thereof and film build method
WO2024013221A1 (en) * 2022-07-13 2024-01-18 HeiQ RAS AG Formulation for producing an ir radiation-reflecting coating

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170695A1 (en) * 2014-05-08 2015-11-12 富士フイルム株式会社 Thermal insulation film for window, thermal insulation glass for window, construction material, window, building, and vehicle
JP6617949B2 (en) * 2015-06-01 2019-12-11 ナガセケムテックス株式会社 Conductive laminate
JP2017031322A (en) * 2015-07-31 2017-02-09 富士フイルム株式会社 Heat insulation coating
JP6717584B2 (en) * 2015-11-06 2020-07-01 東洋化学株式会社 Conductive coating liquid and conductive coating
CN106896433B (en) * 2017-01-10 2019-06-21 电子科技大学 A kind of broadband infrared absorbent structure material and preparation method thereof
EP3354689B1 (en) * 2017-01-30 2024-01-24 Heraeus Epurio GmbH Compositions useful for the formation of an antistatic layer or an electromagnetic radiation shield
JP6902876B2 (en) * 2017-01-31 2021-07-14 東ソー株式会社 Polythiophene and its compositions, and their uses
JP6932623B2 (en) * 2017-11-29 2021-09-08 信越ポリマー株式会社 Conductive polymer dispersion liquid and its manufacturing method, and conductive substrate and its manufacturing method
JP2019218510A (en) * 2018-06-21 2019-12-26 信越ポリマー株式会社 Conductive polymer dispersion, and method for producing conductive laminate
JP7231430B2 (en) * 2019-02-14 2023-03-01 株式会社日本触媒 resin composition, ink and optical filter
CN110305353A (en) * 2019-06-06 2019-10-08 华南理工大学 Starch base bottom AgNW/PEDOT flexible conductive film and preparation method thereof
CN110330818B (en) * 2019-07-30 2021-04-20 南京工业大学 Infrared selective radiation cooling nano functional composition and preparation method thereof
CN111560218A (en) * 2020-05-28 2020-08-21 电子科技大学 Thermal expansion matching infrared low-emissivity coating and preparation method and coating thereof
KR102331455B1 (en) * 2021-07-16 2021-12-01 박상진 Composition for preventing sunburn of plants using absorption dye of the near infrared and method of using the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508091A (en) * 1996-12-04 2001-06-19 フーゴ,ゲルド Coating material
JP2003192994A (en) * 2001-12-27 2003-07-09 Catalysts & Chem Ind Co Ltd Coating liquid for forming transparent electroconductive coating film, substrate with transparent electroconductive coating film and display device
WO2009044894A1 (en) * 2007-10-05 2009-04-09 Shin-Etsu Polymer Co., Ltd. Conductive polymer solution, conductive coating film, and input device
JP2009155570A (en) * 2007-12-27 2009-07-16 Mitsubishi Rayon Co Ltd Composition containing carbon nanotube, complex with coating film comprising the same, and its manufacturing method
JP2009205924A (en) * 2008-02-27 2009-09-10 Kuraray Co Ltd Transparent conductive film, transparent conductive member, and silver nano wire dispersion solution and manufacturing method of transparent conductive film
JP2010116517A (en) * 2008-11-14 2010-05-27 Mitsubishi Rayon Co Ltd Heat-ray screening composition, resin laminated product, and method for manufacturing the resin laminated product
JP2011116860A (en) * 2009-12-03 2011-06-16 Shin Etsu Polymer Co Ltd Conductive coating, method for producing the same and conductive molded product
WO2011074371A1 (en) * 2009-12-18 2011-06-23 株式会社カネカ Near infrared ray absorbent material and process for production thereof
JP2012102304A (en) * 2010-11-15 2012-05-31 Nagase Chemtex Corp Electroconductive coating composition and laminate
WO2012115271A1 (en) * 2011-02-25 2012-08-30 Hoya株式会社 Coating composition, plastic lens
JP2013035966A (en) * 2011-08-09 2013-02-21 Mitsubishi Gas Chemical Co Inc Electroconductive coating

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508091A (en) * 1996-12-04 2001-06-19 フーゴ,ゲルド Coating material
JP2003192994A (en) * 2001-12-27 2003-07-09 Catalysts & Chem Ind Co Ltd Coating liquid for forming transparent electroconductive coating film, substrate with transparent electroconductive coating film and display device
WO2009044894A1 (en) * 2007-10-05 2009-04-09 Shin-Etsu Polymer Co., Ltd. Conductive polymer solution, conductive coating film, and input device
JP2009155570A (en) * 2007-12-27 2009-07-16 Mitsubishi Rayon Co Ltd Composition containing carbon nanotube, complex with coating film comprising the same, and its manufacturing method
JP2009205924A (en) * 2008-02-27 2009-09-10 Kuraray Co Ltd Transparent conductive film, transparent conductive member, and silver nano wire dispersion solution and manufacturing method of transparent conductive film
JP2010116517A (en) * 2008-11-14 2010-05-27 Mitsubishi Rayon Co Ltd Heat-ray screening composition, resin laminated product, and method for manufacturing the resin laminated product
JP2011116860A (en) * 2009-12-03 2011-06-16 Shin Etsu Polymer Co Ltd Conductive coating, method for producing the same and conductive molded product
WO2011074371A1 (en) * 2009-12-18 2011-06-23 株式会社カネカ Near infrared ray absorbent material and process for production thereof
JP2012102304A (en) * 2010-11-15 2012-05-31 Nagase Chemtex Corp Electroconductive coating composition and laminate
WO2012115271A1 (en) * 2011-02-25 2012-08-30 Hoya株式会社 Coating composition, plastic lens
JP2013035966A (en) * 2011-08-09 2013-02-21 Mitsubishi Gas Chemical Co Inc Electroconductive coating

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182745A1 (en) * 2014-05-30 2015-12-03 富士フイルム株式会社 Heat-insulating film for window, heat-insulating material for window, and window
CN104893640A (en) * 2015-06-16 2015-09-09 华中科技大学 Conductive adhesive as well as preparation method and application method thereof
JP2017032790A (en) * 2015-07-31 2017-02-09 富士フイルム株式会社 Heat ray reflective material, window, and manufacturing method for heat ray reflective material
WO2017022348A1 (en) * 2015-07-31 2017-02-09 富士フイルム株式会社 Heat-ray reflecting material, window, and method for manufacturing heat-ray reflecting material
CN107835952A (en) * 2015-07-31 2018-03-23 富士胶片株式会社 The manufacture method of heat ray reflecting material and window and heat ray reflecting material
US20180112459A1 (en) * 2015-07-31 2018-04-26 Fujifilm Corporation Heat ray reflective material, window, and method for manufacturing heat ray reflective material
CN108659583A (en) * 2018-05-03 2018-10-16 孔毅 A kind of nano metal antiradar coatings and application thereof
CN110229552A (en) * 2019-07-22 2019-09-13 中国科学院工程热物理研究所 A kind of infrared stealth coating and preparation method thereof and film build method
WO2024013221A1 (en) * 2022-07-13 2024-01-18 HeiQ RAS AG Formulation for producing an ir radiation-reflecting coating

Also Published As

Publication number Publication date
JP2015078338A (en) 2015-04-23
TW201527447A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
WO2015037198A1 (en) Composition for forming functional film, and functional film laminate
JP5740925B2 (en) Conductive coating composition and laminate
KR101974019B1 (en) Electrically conductive nanostructures, method for making such nanostructures, electrically conductive polymer films containing such nanostructures, and electronic devices containing such films
JP2019035991A (en) Anti-reflective film and manufacturing method thereof
JP4686638B2 (en) Metal oxide fine particle dispersed slurry
JP5630549B2 (en) Metal particle dispersion, article using the metal particle dispersion, sintered film, and method for producing sintered film
WO2012073474A1 (en) Electroconductive coating agent for forming transparent surface heating element, and transparent surface heating element
CN102544384B (en) Efficient light-emitting electroluminescence device
Kim et al. Effects of alcoholic solvents on the conductivity of tosylate‐doped poly (3, 4‐ethylenedioxythiophene)(PEDOT‐OTs)
WO2015056609A1 (en) Composition for forming transparent conductive film, transparent conductor, and production method for transparent conductor
WO2014034920A1 (en) Transparent electrode, method for producing same and organic electronic device
CN108531076B (en) Coating liquid for forming solar radiation shielding film, and adhesive, solar radiation shielding film and substrate using the same
KR101846959B1 (en) Water-based anti-soiling agent, anti-soiling layer, layered body, and solar battery module
JP2015147373A (en) Laminate, and production method thereof
TW202030152A (en) Surface-treated infrared absorbing fine particles, surface-treated infrared absorbing fine particle powder, infrared absorbing fine particle dispersion liquid using the surface-treated infrared absorbing fine particles, infrared absorbing fine particle dispersion body, and infrared absorbing substrate
CN103214947B (en) Low-radiation paint composition as well as preparation method and low-radiation material thereof
KR20190103745A (en) Flexible transparent conductive electrode structure
JP7256036B2 (en) Electromagnetic wave absorbing sheet and manufacturing method thereof
Shivanna et al. Patina-green coloured light emitting polycarbonate films: A synergistic extraction of improved UV endurance and considerate spectral down-conversion
WO2016121934A1 (en) Heat shielding film, heat shielding glass, and window
KR102090832B1 (en) Organic conductive film
WO2012105213A1 (en) Infrared-reflecting substrate
JP2013058470A (en) Organic conductive film
WO2015072109A1 (en) Heat-insulating laminate and composition for forming said heat-insulating laminate
JP7243636B2 (en) Composition for hole collection layer of organic photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844843

Country of ref document: EP

Kind code of ref document: A1