JP2013035966A - Electroconductive coating - Google Patents

Electroconductive coating Download PDF

Info

Publication number
JP2013035966A
JP2013035966A JP2011174205A JP2011174205A JP2013035966A JP 2013035966 A JP2013035966 A JP 2013035966A JP 2011174205 A JP2011174205 A JP 2011174205A JP 2011174205 A JP2011174205 A JP 2011174205A JP 2013035966 A JP2013035966 A JP 2013035966A
Authority
JP
Japan
Prior art keywords
graphene oxide
pss
pedot
conductive
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011174205A
Other languages
Japanese (ja)
Other versions
JP5748606B2 (en
Inventor
Juji Konagaya
重次 小長谷
Takuya Goto
拓也 後藤
Kazuyoshi Joto
和良 上等
Seiko Tsuji
妹井子 辻
Yuki Takase
雄希 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Mitsubishi Gas Chemical Co Inc
Original Assignee
Nagoya University NUC
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Mitsubishi Gas Chemical Co Inc filed Critical Nagoya University NUC
Priority to JP2011174205A priority Critical patent/JP5748606B2/en
Publication of JP2013035966A publication Critical patent/JP2013035966A/en
Application granted granted Critical
Publication of JP5748606B2 publication Critical patent/JP5748606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electroconductive coating having high electroconductivity and brought to have a low percolation threshold value of PEDOT/PSS to a composition.SOLUTION: The electroconductive coating includes a composition comprising (A) a poly(3,4-ethylenedioxy)thiophen (PEDOT), (B) a polystyrene sulfonic acid (PSS) and (C) graphene oxide, and is obtained by bringing the mass proportion of the component (C) to the total mass of components (A), (B) and (C) to satisfy the relation: 0.02≤(C)/[(A)+(B)+(C)]≤0.45.

Description

本発明は、導電性塗料に関する。 The present invention relates to a conductive paint.

導電性高分子としてはポリチオフェン、ポリアニリン、ポリピロールなどの材料が知られている。導電性高分子はその透明性と導電性の高さから、フィルムの帯電防止用コーティング液や透明電極用のコーティング液の導電材料として使用されている。コーティング液として使用するには導電性高分子が適当な溶媒に分散している必要があるが、導電性高分子は溶媒に不溶であるため、分散させるためには各種工夫が必要である。例えば、溶媒への溶解性が高まるような官能基を導入することで、導電性高分子を適当な溶媒に分散させることが可能である。しかし、官能基を導入することで導電性高分子間の距離が遠くなり、導電性高分子間の電子の移動が悪くなる結果、導電性が低下してしまうという問題を有している。   As the conductive polymer, materials such as polythiophene, polyaniline, and polypyrrole are known. Conductive polymers are used as conductive materials for antistatic coating liquids for films and coating liquids for transparent electrodes because of their transparency and high conductivity. In order to use it as a coating liquid, the conductive polymer needs to be dispersed in an appropriate solvent. However, since the conductive polymer is insoluble in the solvent, various devices are required for dispersion. For example, it is possible to disperse the conductive polymer in an appropriate solvent by introducing a functional group that increases the solubility in the solvent. However, the introduction of the functional group increases the distance between the conductive polymers, resulting in a problem that the transfer of electrons between the conductive polymers deteriorates, resulting in a decrease in conductivity.

導電性高分子の中でポリチオフェン系の導電性高分子はもっとも導電性が高く、非常に優れた材料である。ポリチオフェン系の導電性高分子で溶媒に分散したものとしてはポリ(3,4−エチレンジオキシ)チオフェン(以下、PEDOTと記すことがある)とポリスチレンスルホン酸(以下、PSSと記すことがある)との混合物の水分散液が知られており、PEDOTとPSSとの混合物(PEDOT/PSSと表記する)の分散液は例えばBaytron PやBaytron P HC V4(エイチ・シー・スタルク社製)などの商品名で販売されている。PEDOT/PSSはPEDOTに水への溶解性が高いPSSを組み合わせることで水へ分散させることに成功している。PEDOT/PSSは導電性の高さからITO代替として透明電極への応用が盛んに検討されているが、ITOと比べて導電性が劣っており、導電性を向上させることが検討されている。例えばBayton Pは標準品として位置づけられていて、その導電率はカタログ値として1(S/cm)と言われている。一方で、Bayton P HC V4は製造法の最適化等で標準品よりも10倍もの高導電率10(S/cm)を達成している。しかし、10倍の高導電率を達成した反面、製造法を複雑にしたためBayton Pとくらべて非常に高価になっている。 Among conductive polymers, polythiophene-based conductive polymers have the highest conductivity and are very excellent materials. A polythiophene-based conductive polymer dispersed in a solvent includes poly (3,4-ethylenedioxy) thiophene (hereinafter sometimes referred to as PEDOT) and polystyrene sulfonic acid (hereinafter sometimes referred to as PSS). A dispersion of a mixture of PEDOT and PSS (denoted as PEDOT / PSS) is, for example, Baytron P or Baytron P HC V4 (manufactured by HC Starck) Sold under the trade name. PEDOT / PSS has been successfully dispersed in water by combining PEDOT with PSS that is highly soluble in water. PEDOT / PSS has been actively studied for application to transparent electrodes as a substitute for ITO because of its high conductivity, but its conductivity is inferior to that of ITO, and it has been studied to improve conductivity. For example, Bayton P is positioned as a standard product, and its conductivity is said to be 1 (S / cm) as a catalog value. On the other hand, Bayton P HC V4 has achieved a conductivity 10 (S / cm) which is 10 times higher than that of a standard product due to optimization of the manufacturing method. However, while achieving a conductivity 10 times higher, the manufacturing method is complicated, so it is very expensive compared to Bayton P.

このように導電性高分子の導電性を高める要求がある。一方で、導電性を高めることは導電性高分子同士を近づけ、結晶性を高めることにつながり、結晶性が高まると溶媒へのなじみが悪くなり、溶媒への分散性は悪化する。このように導電性と分散性はトレードオフの関係にあり、溶媒への分散性を悪化させることなく導電性を向上させることは容易ではない。   Thus, there exists a request | requirement which raises the electroconductivity of a conductive polymer. On the other hand, increasing the conductivity leads to bringing the conductive polymers closer to each other and increasing the crystallinity. When the crystallinity is increased, the familiarity with the solvent is deteriorated and the dispersibility in the solvent is deteriorated. Thus, conductivity and dispersibility are in a trade-off relationship, and it is not easy to improve conductivity without deteriorating dispersibility in a solvent.

これを克服する方法として、特許文献1、非特許文献1にはポリアニリンに酸化チタンなどの微粒子を添加してコート後に85℃で2時間加熱することで導電性を向上させる方法が公開されている。しかし、PEDOT/PSSに対して同様な効果はこれまで報告されていない。 As a method for overcoming this, Patent Document 1 and Non-Patent Document 1 disclose a method for improving conductivity by adding fine particles such as titanium oxide to polyaniline and heating at 85 ° C. for 2 hours after coating. . However, a similar effect on PEDOT / PSS has not been reported so far.

一方、近年酸化グラフェンが新たなる導電材料として注目されている。酸化グラフェンは酸化黒鉛を層状に剥離することで得られる炭素材料である。酸化黒鉛は黒鉛を特定の方法により酸化することで得られる黒鉛層間化合物の一種である。この酸化黒鉛は2次元的な基本層が積み重なった多層構造体であり、単層レベルまで薄層化することが可能である(例えば、非特許文献2参照)。本発明者らも先に、そのような酸化黒鉛の薄膜状粒子を高収率で製造する方法を見出している(特許文献2参照)。 On the other hand, graphene oxide has recently attracted attention as a new conductive material. Graphene oxide is a carbon material obtained by exfoliating graphite oxide in layers. Graphite oxide is a kind of graphite intercalation compound obtained by oxidizing graphite by a specific method. This graphite oxide is a multilayer structure in which two-dimensional basic layers are stacked, and can be thinned to a single layer level (see, for example, Non-Patent Document 2). The present inventors have also found a method for producing such graphite oxide thin film particles in high yield (see Patent Document 2).

厳密には単層構造の酸化黒鉛を酸化グラフェンと定義すべきであるが、一般には単層レベルまで薄層化された酸化黒鉛を酸化グラフェンと呼ぶことが多い。層数として10層以下(一般に知られている酸化黒鉛の層間距離0.83nmから換算すると平均厚み8.3nm程度)の酸化黒鉛も広義に酸化グラフェンとして扱われている。このようなことから、本発明における酸化グラフェンは厚みが10nm以下の酸化黒鉛を意味するものとする。 Strictly speaking, graphite oxide having a single layer structure should be defined as graphene oxide, but generally graphite oxide thinned to a single layer level is often referred to as graphene oxide. Graphite oxide having a number of layers of 10 or less (average thickness of about 8.3 nm when converted from the generally known interlayer distance of 0.83 nm of graphite oxide) is also broadly treated as graphene oxide. For these reasons, the graphene oxide in the present invention means graphite oxide having a thickness of 10 nm or less.

酸化グラフェンは、加熱還元などの還元処理により導電性を付与できるアスペクト比の高いナノ材料であり、高導電化した酸化グラフェンは透明導電膜など各種コーティング用途や導電インキなどの機能性材料に適用可能な材料として注目されている(例えば、特許文献2参照)。
ここで本発明において、酸化グラフェンとは導電率として10−3(S/cm)以下のものを意味するものとし、導電性を向上させて10−3(S/cm)よりも大きな導電率を有する酸化グラフェンは高導電化酸化グラフェンとして区別する。
Graphene oxide is a nanomaterial with a high aspect ratio that can be given conductivity by reduction treatment such as heat reduction. Graphene oxide with high conductivity can be applied to various coating applications such as transparent conductive films and functional materials such as conductive ink. Has attracted attention as a new material (for example, see Patent Document 2).
Here, in the present invention, the graphene oxide means a conductivity of 10 −3 (S / cm) or less, and the conductivity is improved so that the conductivity is larger than 10 −3 (S / cm). The graphene oxide is distinguished from highly conductive graphene oxide.

この高導電化酸化グラフェンをPEDOT/PSSと組み合わせることで高い導電性を得る方法が公開されている。例えば非特許文献3では、酸化グラフェンとSDBS(sodium dodecylbenzene sulfonate)を混合した水溶液に還元剤としてヒドラジンを添加して100℃,24時間加熱することで高導電化酸化グラフェンを作製し、その高導電化酸化グラフェンをPEDOT/PSSに添加することでシート抵抗を1/3程度下げることが報告されている。
また、非特許文献4では、酸化グラフェンの水分散液にブチルアミンを添加することで酸化グラフェンの導電性を3桁向上させ、ブチルアミンを添加した酸化グラフェンの水分散液をPEDOT/PSSに添加することで、PEDOT/PSSよりも導電性が向上することが報告されている。
A method for obtaining high conductivity by combining this highly conductive graphene oxide with PEDOT / PSS has been disclosed. For example, in Non-Patent Document 3, highly conductive graphene oxide is produced by adding hydrazine as a reducing agent to an aqueous solution in which graphene oxide and SDBS (sodium dodecylbenzene sulfonate) are mixed, and heating at 100 ° C. for 24 hours. It has been reported that sheet resistance is reduced by about 1/3 by adding graphene oxide to PEDOT / PSS.
Further, in Non-Patent Document 4, the conductivity of graphene oxide is improved by three orders of magnitude by adding butylamine to an aqueous dispersion of graphene oxide, and the aqueous dispersion of graphene oxide to which butylamine is added is added to PEDOT / PSS. Thus, it has been reported that the conductivity is improved as compared with PEDOT / PSS.

非特許文献5および特許文献3では酸化グラフェンとナフィオンを混合した水溶液に還元剤としてヒドラジンを添加して100℃,24時間加熱することで高導電化酸化グラフェンを作製し、その高導電化酸化グラフェンをPEDOT/PSSに添加することで導電率を30から60倍向上できることが報告されている。 In Non-Patent Document 5 and Patent Document 3, high conductivity graphene oxide is produced by adding hydrazine as a reducing agent to an aqueous solution in which graphene oxide and Nafion are mixed and heating at 100 ° C. for 24 hours. It has been reported that the conductivity can be improved 30 to 60 times by adding to PEDOT / PSS.

このように高導電化酸化グラフェンをPEDOT/PSSに添加することにより全体としての導電性を向上させることは報告されているが、高導電化するような処理を行わない酸化グラフェンをPEDOT/PSSに添加することでPEDOT/PSSをより高導電化することはこれまで報告されていなかった。これは高導電化処理を行わない酸化グラフェンは導電性が悪く、導電性が悪い酸化グラフェンをPEDOT/PSSに添加することで導電性を向上させることは困難と考えられていたためである。
一方で、酸化グラフェンは酸化されていることによりグラフェンと比べてπ電子の広がりが小さくなっており、導電性が悪い反面透明性はグラフェンよりも高い。逆に還元などの処理を行った場合、再度π電子が広がることで導電性は向上するが透明性は悪化する。このことから、透明性の観点からは酸化グラフェンは高導電化しない状態で使用することが望ましい。
Although it has been reported that adding highly conductive graphene oxide to PEDOT / PSS as a whole improves the overall conductivity, graphene oxide that is not subjected to a treatment to increase conductivity is added to PEDOT / PSS. It has not been reported so far to make PEDOT / PSS more conductive by the addition. This is because graphene oxide not subjected to high conductivity treatment has poor conductivity, and it was considered difficult to improve conductivity by adding graphene oxide having poor conductivity to PEDOT / PSS.
On the other hand, since graphene oxide is oxidized, the spread of π electrons is smaller than that of graphene, and the conductivity is poor, but the transparency is higher than that of graphene. On the other hand, when a treatment such as reduction is performed, the conductivity is improved by the spread of π electrons again, but the transparency is deteriorated. From this point of view, it is desirable to use graphene oxide in a state where it is not highly conductive from the viewpoint of transparency.

PEDOT/PSSを塗布液として使用する場合、通常バインダーも添加されている。これはPEDOT/PSSだけでは、塗布膜として基板との密着性や耐擦傷性などが悪いことから、これらの物性を改善する目的でバインダーを添加している。バインダーとPEDOT/PSSの混合比に関して、PEDOT/PSSの割合が多くなると塗布膜本来の物性が悪化することから、PEDOT/PSSの割合は少ないほど望ましい。しかし、PEDOT/PSSの割合が少ないと塗布膜に導電性が得られないため、導電性塗布膜とするにはパーコレーションしきい値(導電性が得られる最低の添加量)以上に添加する必要がある。このようなことから、パーコレーションしきい値は小さいほど望ましいが、PEDOT/PSSはアスペクト比が高い材料ではないため、パーコレーションしきい値は通常10質量%以上である。そのために、塗布膜に導電性をだすにはPEDOT/PSSを少なくとも10質量%以上、十分な導電性を出すには20質量%以上添加する必要があり、塗布膜本来の物性を維持することが難しいという問題がある。 When using PEDOT / PSS as a coating solution, a binder is also usually added. This is because PEDOT / PSS alone has poor adhesion to the substrate and scratch resistance as a coating film, and therefore a binder is added for the purpose of improving these physical properties. Regarding the mixing ratio of the binder and PEDOT / PSS, if the ratio of PEDOT / PSS is increased, the original physical properties of the coating film are deteriorated. Therefore, the ratio of PEDOT / PSS is preferably as small as possible. However, if the ratio of PEDOT / PSS is small, conductivity cannot be obtained in the coating film. Therefore, in order to obtain a conductive coating film, it is necessary to add more than the percolation threshold (minimum addition amount for obtaining conductivity). is there. For this reason, the percolation threshold is preferably as small as possible. However, since PEDOT / PSS is not a material with a high aspect ratio, the percolation threshold is usually 10% by mass or more. Therefore, it is necessary to add PEDOT / PSS at least 10% by mass in order to provide conductivity to the coating film, and 20% by mass or more in order to obtain sufficient conductivity, so that the original physical properties of the coating film can be maintained. There is a problem that it is difficult.

特開平10−251510号公報Japanese Patent Laid-Open No. 10-251510 特開2002−53313号公報JP 2002-53313 A KR2010078444KR2010078444

倉本憲幸著,はじめての導電性高分子(工業調査会,2002)Noriyuki Kuramoto, first conducting polymer (Industry Research Committee, 2002) N. A. Kotov et al., Ultrathin Graphite Oxide-Polyelectrolyte Composites Prepared by Self-Assembly: Transition Between Conductive and Non-Conductive States, Adv. Mater., 8, 637 (1996)N. A. Kotov et al., Ultrathin Graphite Oxide-Polyelectrolyte Composites Prepared by Self-Assembly: Transition Between Conductive and Non-Conductive States, Adv. Mater., 8, 637 (1996) A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode,Adv. Funct. Mater. 2010, 20, 2893A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode, Adv. Funct. Mater. 2010, 20, 2893 Preparation of extended alkylated graphene oxide conducting layers and effect study on the electrical properties of PEDOT:PSS polymer composites,Chemical Physics Letters 494 (2010) 264Preparation of extended alkylated graphene oxide conducting layers and effect study on the electrical properties of PEDOT: PSS polymer composites, Chemical Physics Letters 494 (2010) 264 Synthesis of aqueous dispersion of graphenes via reduction of graphite oxide in the solution of conductive polymer,Journal of Physics and Chemistry of Solids71(2010)483Synthesis of aqueous dispersion of graphenes via reduction of graphite oxide in the solution of conductive polymer, Journal of Physics and Chemistry of Solids 71 (2010) 483

本発明の課題は、導電性、透明性など有用な特性を発揮するPEDOT/PSSに関して、溶媒への分散性を悪化させることなく、導電性をより向上させた導電性塗料であって、組成物に対するPEDOT/PSSのパーコレーションしきい値が小さい導電性塗料を提供することにある。 An object of the present invention is to provide a conductive coating material with improved conductivity without deteriorating dispersibility in a solvent, with respect to PEDOT / PSS that exhibits useful properties such as conductivity and transparency. It is to provide a conductive paint having a small percolation threshold of PEDOT / PSS.

本発明者らは、上記課題を解決するために、鋭意検討を重ねた結果、酸化グラフェンとPEDOTとPSSを組み合わせた組成では、PEDOT/PSS成分の溶媒への分散性を悪化させることなく、PEDOT/PSS系単独よりも高い導電率が得られることを発見し発明を完成するに至った。導電性の悪い酸化グラフェンを添加することでPEDOT/PSS系単独よりも導電率が向上するという優れた効果は誠に驚くべきことであるが、そのような効果の発現は、酸化グラフェンの表面にPEDOT/PSS成分が吸着し、吸着したPEDOT/PSS成分が部分的に結晶化することで、導電性が向上したのだと考えている。この効果により、PEDOT/PSS系単独よりも導電性が向上する一方で、酸化グラフェンは溶媒への分散性が高いことから、結晶化が進んだPEDOT/PSS成分が部分的に吸着していても、溶媒への分散性を維持できる。これにより、導電性と分散性というトレードオフの関係を両立し、溶媒への分散性を悪化させることなく導電性を向上させることに成功した。 As a result of intensive studies to solve the above problems, the inventors of the present invention have found that a combination of graphene oxide, PEDOT, and PSS does not deteriorate the dispersibility of the PEDOT / PSS component in the solvent. The inventors discovered that a higher electrical conductivity than that of the / PSS system alone can be obtained and completed the invention. The excellent effect that the conductivity is improved as compared with the PEDOT / PSS system alone by adding graphene oxide having poor conductivity is quite surprising, but the manifestation of such an effect is caused by the addition of PEDOT to the surface of graphene oxide. The / PSS component is adsorbed, and the adsorbed PEDOT / PSS component is partially crystallized, so that the conductivity is improved. This effect improves the conductivity compared to the PEDOT / PSS system alone, while graphene oxide has high dispersibility in the solvent, so that even if the PEDOT / PSS component that has been crystallized is partially adsorbed The dispersibility in the solvent can be maintained. As a result, the trade-off relationship between conductivity and dispersibility was achieved, and the conductivity was successfully improved without deteriorating the dispersibility in the solvent.

本発明における導電性塗料としては、平滑な基板に塗布したときに表面抵抗率が1012(Ω/□)以下になる塗料を意味するものとする。 The conductive paint in the present invention means a paint having a surface resistivity of 10 12 (Ω / □) or less when applied to a smooth substrate.

ここで、酸化グラフェンが少なすぎると、酸化グラフェンに吸着するPEDOT/PSS成分の量が少ないため、PEDOT/PSSの導電性がほとんど向上しない。そのため、酸化グラフェンの最小量は質量基準で、(酸化グラフェンの固形分質量)÷(PEDOTの固形分質量+PSSの固形分質量+酸化グラフェンの固形分質量)(以下 「(酸化グラフェン)÷(PEDOT/PSS+酸化グラフェン)」)の関係が0.02以上であることが望ましく、より高い導電性を得るためには、0.04以上であるとさらに好ましい。一方で酸化グラフェンを増やしていくと、導電性の悪い酸化グラフェンの割合が多くなり、全体として導電性は向上しなくなるため、酸化グラフェンの最大量は(酸化グラフェン)÷(PEDOT/PSS+酸化グラフェン)が0.45以下であることが望ましく、より高い導電性を得るためには、0.40以下であるとさらに好ましい。例えば、先の非特許文献4では(酸化グラフェン)÷(PEDOT/PSS+酸化グラフェン)が0.5となるように酸化グラフェンとPEDOT/PSSを複合しているが、酸化グラフェンの割合が多いために、酸化グラフェンを添加することでPEDOT/PSS単独よりも導電性が悪化している。さらに非特許文献4ではCheaptubes社の酸化グラフェン(ホームページ記載の粒子の大きさは300〜800nm)を使用して、さらに粒子径を小さくする効果のある超音波処理を行っており、粒子径が小さいことで酸化グラフェンを添加したときの導電性の向上効果が弱いことも導電性がよくない原因の1つと推測される。   Here, when there is too little graphene oxide, since the quantity of the PEDOT / PSS component adsorb | sucked to a graphene oxide is small, the electroconductivity of PEDOT / PSS hardly improves. Therefore, the minimum amount of graphene oxide is on a mass basis, (solid mass of graphene oxide) / (solid mass of PEDOT + solid mass of PSS + solid mass of graphene oxide) (hereinafter “(graphene oxide) ÷ (PEDOT) / PSS + graphene oxide)))) is preferably 0.02 or more, and more preferably 0.04 or more in order to obtain higher conductivity. On the other hand, when graphene oxide is increased, the proportion of graphene oxide with poor conductivity increases, and overall conductivity is not improved. Therefore, the maximum amount of graphene oxide is (graphene oxide) / (PEDOT / PSS + graphene oxide) Is preferably 0.45 or less, and more preferably 0.40 or less in order to obtain higher conductivity. For example, in the previous Non-Patent Document 4, graphene oxide and PEDOT / PSS are combined so that (graphene oxide) ÷ (PEDOT / PSS + graphene oxide) becomes 0.5, but the ratio of graphene oxide is large. In addition, the conductivity is worse than that of PEDOT / PSS alone by adding graphene oxide. Further, Non-Patent Document 4 uses Cheaptubes graphene oxide (the particle size described on the homepage is 300 to 800 nm), and performs ultrasonic treatment with an effect of further reducing the particle size, and the particle size is small. Therefore, it is speculated that the conductivity improvement effect when graphene oxide is added is also one of the causes of poor conductivity.

酸化グラフェンとPEDOT/PSSおよび、バインダーを添加した塗料の場合では、PEDOT/PSSと酸化グラフェンの特殊な相互作用により、組成物に対するPEDOT/PSSのパーコレーションしきい値を小さくすることができる。つまり、組成物中のPEDOT/PSSの配合量が少なくても導電性が確保することができる。これは、アスペクト比が高いことでパーコレーションしきい値を小さくすることができる酸化グラフェンにPEDOT/PSSが吸着することで、PEDOT/PSSのパーコレーションしきい値を小さくすることができるためだと考えられる。   In the case of a paint in which graphene oxide and PEDOT / PSS and a binder are added, the percolation threshold of PEDOT / PSS to the composition can be reduced by a special interaction between PEDOT / PSS and graphene oxide. That is, conductivity can be ensured even if the blending amount of PEDOT / PSS in the composition is small. This is thought to be because the PEDOT / PSS percolation threshold can be reduced by adsorbing PEDOT / PSS to graphene oxide, which can reduce the percolation threshold due to its high aspect ratio. .

即ち本発明は、以下の通りである。
(1) (A)ポリ(3,4−エチレンジオキシ)チオフェンと(B)ポリスチレンスルホン酸と(C)酸化グラフェンを含む組成物からなる導電性塗料であって、成分(A)、(B)及び(C)の各成分の合計質量に対する成分(C)の質量の比が0.02≦(C)/((A)+(B)+(C))≦0.45なる関係式を満たすことを特徴とする導電性塗料。
(2) 成分(C)に占める厚さ5nm以下の粒子の個数の割合が60%以上であることを特徴とする(1)記載の導電性塗料。
(3) 成分(C)の粒子の平均粒子径が1μm以上であることを特徴とする(1)〜(2)のいずれかに記載の導電性塗料。
(4) 組成物が更に(D)バインダーを含むことを特徴とする(1)〜(3)のいずれかに記載の導電性塗料。
(5) バインダーの質量割合が0.01≦((A)+(B))/((A)+(B)+(D))≦0.3の関係であることを特徴とする(4)記載の導電性塗料。
(6) バインダーがポリエステル樹脂であることを特徴とする(4)または(5)記載の導電性塗料。
(7) 組成物が更に還元剤を含むことを特徴とする(1)〜(6)のいずれかに記載の導電性塗料。
(8) 還元剤が2つ以上の水酸基を有する化合物であることを特徴とする(7)記載の導電性塗料。
(9) 還元剤がヒドロキノン、ピロガロール、カテコール、レゾルシノールおよび没食子酸からなる群から選ばれる少なくとも1種であることを特徴とする(8)記載の導電性塗料。
That is, the present invention is as follows.
(1) A conductive paint comprising a composition comprising (A) poly (3,4-ethylenedioxy) thiophene, (B) polystyrene sulfonic acid, and (C) graphene oxide, wherein the components (A) and (B ) And (C) The ratio of the mass of the component (C) to the total mass of the components is 0.02 ≦ (C) / ((A) + (B) + (C)) ≦ 0.45 A conductive paint characterized by satisfying.
(2) The conductive paint according to (1), wherein the proportion of the number of particles having a thickness of 5 nm or less in the component (C) is 60% or more.
(3) The conductive paint according to any one of (1) to (2), wherein the average particle size of the component (C) particles is 1 μm or more.
(4) The conductive paint according to any one of (1) to (3), wherein the composition further comprises (D) a binder.
(5) The mass ratio of the binder has a relationship of 0.01 ≦ ((A) + (B)) / ((A) + (B) + (D)) ≦ 0.3 (4 ) The conductive paint described.
(6) The conductive paint according to (4) or (5), wherein the binder is a polyester resin.
(7) The conductive paint according to any one of (1) to (6), wherein the composition further contains a reducing agent.
(8) The conductive paint according to (7), wherein the reducing agent is a compound having two or more hydroxyl groups.
(9) The conductive paint according to (8), wherein the reducing agent is at least one selected from the group consisting of hydroquinone, pyrogallol, catechol, resorcinol and gallic acid.

本発明によれば、PEDOT/PSS成分の溶媒への分散性を悪化させることなく導電性塗料を得ることができ、塗布膜の導電性をより向上させることが可能となり、PEDOT/PSSの幅広い用途展開が可能となる。 According to the present invention, a conductive paint can be obtained without deteriorating the dispersibility of the PEDOT / PSS component in the solvent, the conductivity of the coating film can be further improved, and a wide range of uses of PEDOT / PSS. Deployment is possible.

実施例1から実施例6および比較例1,2の、(酸化グラフェン)÷(PEDOT/PSS+酸化グラフェン)の値をX軸に、導電率をY軸にプロットしたグラフ。The graph which plotted the value of (graphene oxide) ÷ (PEDOT / PSS + graphene oxide) of Example 1 to Example 6 and Comparative Examples 1 and 2 on the X-axis and the conductivity on the Y-axis.

以下、本発明の実施形態について詳細に説明する。
酸化グラフェンは酸化黒鉛を層状に剥離することで得ることができる。酸化黒鉛は黒鉛を特定の方法で酸化することにより製造されるが、酸化黒鉛を得るための黒鉛の酸化法としては、公知のBrodie法(硝酸、塩素酸カリウムを使用)、Staudenmaier法(硝酸、硫酸、塩素酸カリウムを使用)、Hummers−Offeman法(硫酸、硝酸ナトリウム、過マンガン酸カリウムを使用)などを利用できる。これらのうち、特に酸化が進行するのはHummers−Offeman法(W.S.Hummers et al.,J.Am.Chem.Soc.,80,1339(1958);米国特許No.2798878(1957))であり、この酸化方法が特に推奨される。
Hereinafter, embodiments of the present invention will be described in detail.
Graphene oxide can be obtained by exfoliating graphite oxide in layers. Graphite oxide is produced by oxidizing graphite by a specific method. As a method for oxidizing graphite to obtain graphite oxide, known Brodie method (using nitric acid and potassium chlorate), Staudenmaier method (nitric acid, Sulfuric acid and potassium chlorate are used, and the Hummers-Offeman method (sulfuric acid, sodium nitrate, and potassium permanganate are used). Of these, oxidation proceeds particularly in the Hummers-Offeman method (WS Hummers et al., J. Am. Chem. Soc., 80, 1339 (1958); US Pat. No. 2,798,878 (1957)). This oxidation method is particularly recommended.

酸化黒鉛を層状に剥離し酸化グラフェンを得るためには、酸化黒鉛の精製を十分行えばよい。精製操作には、デカンテーション、濾過、遠心分離、透析、イオン交換などの公知の手段を用いればよい。精製時において、多層構造の分離は自発的に生じるが、これに加えて、振とうなどの撹拌操作やせん断力などの物理力を加えると分離がさらに促進されるので望ましい。超音波照射も利用可能であるが、層の分離と共に各層の基本構造が破壊されてアスペクト比が小さくなる傾向がある。
以上の方法により、酸化グラフェンの水分散液を作製することができる。
In order to exfoliate graphite oxide in layers and obtain graphene oxide, graphite oxide may be sufficiently purified. For the purification operation, known means such as decantation, filtration, centrifugation, dialysis, and ion exchange may be used. At the time of purification, separation of the multilayer structure occurs spontaneously, but in addition to this, it is desirable to apply a stirring operation such as shaking or a physical force such as a shearing force because the separation is further promoted. Ultrasonic irradiation can also be used, but the aspect ratio tends to be reduced due to destruction of the basic structure of each layer as the layers are separated.
By the above method, an aqueous dispersion of graphene oxide can be produced.

本発明の「酸化グラフェン」においてはPEDOT/PSS成分との相互作用が強くなること、酸化黒鉛の層状剥離が容易になることから、酸化グラフェンは十分に酸化されていることが望ましく、酸化グラフェンのラマンスペクトルにおけるピークの高さの比H/Hとして、1≦H/H≦1.5の範囲にあることが望ましく、1.1≦H/H≦1.4であることがより望ましい。ここで、Hはラマンシフト1650cm−1付近に検出されるG線に由来するピーク(酸化されていない領域由来)の高さを意味し、Hはラマンシフト1350cm−1付近に検出されるD線に由来するピーク(酸化によりグラフェン構造が崩れた領域由来)の高さを意味する。H/Hの値が1.5より大きくなると酸化が不十分なため酸化黒鉛の層状剥離が困難になり、1よりも小さくなるとPEDOT/PSS成分との相互作用が弱くなってしまう。 In the “graphene oxide” of the present invention, the interaction with the PEDOT / PSS component is strengthened, and the layered peeling of graphite oxide is facilitated. Therefore, it is desirable that the graphene oxide is sufficiently oxidized. The peak height ratio H G / H D in the Raman spectrum is preferably in the range of 1 ≦ H G / H D ≦ 1.5, and 1.1 ≦ H G / H D ≦ 1.4. It is more desirable. Here, H G denotes the height of the peaks derived from the G rays detected near a Raman shift 1650 cm -1 (derived unoxidized region), H D is detected near a Raman shift 1350 cm -1 It means the height of the peak derived from the D line (derived from the region where the graphene structure is broken by oxidation). When the value of H G / H D is greater than 1.5, the oxidation is insufficient, so that delamination of graphite oxide becomes difficult, and when it is less than 1, the interaction with the PEDOT / PSS component is weakened.

酸化グラフェンの厚みはできるだけ薄いものほど、酸化グラフェンの表面積を大きくすることができるため望ましい。これは、導電性の向上が酸化グラフェンにPEDOT/PSSが吸着することに起因するためであり、酸化グラフェンの導電性は高くないことから、できるだけ少量の酸化グラフェンで多くのPEDOT/PSSを吸着することが望ましいためである。そこで、酸化グラフェンの厚みとしては、5nm以下の厚みの酸化グラフェンを60%以上含有しているものが好ましく、1.5nm以下の厚みの酸化グラフェンを60%以上含有するものであるとさらに好ましい。厚みの評価は原子間力顕微鏡を用いて次のような方法で行うことができる。希釈した酸化グラフェン粒子の水分散液を基板(マイカ)の上に滴下し、原子間力顕微鏡により重なりのない孤立した粒子を見つけ、原子間力顕微鏡で測定される基板と孤立粒子の高さの差が粒子の厚みとなる。粒子にしわが形成されている場合、しわの部分は厚さを反映していないので、しわのない部分と基板との高さの差で厚みを評価するようにする。吸着水の影響もあるため、厚みが1.5nm以下は酸化グラフェンの層数が1層と考えられる。一定厚み以下の酸化グラフェンの含有割合は、30個の粒子について厚みを測定し、30個中の一定厚み以下の酸化グラフェンの割合で算出することとする。 The thinner the graphene oxide is, the more preferable it is because the surface area of the graphene oxide can be increased. This is because the improvement in conductivity is due to adsorption of PEDOT / PSS to graphene oxide. Since the conductivity of graphene oxide is not high, a large amount of graphene oxide adsorbs as much PEDOT / PSS as possible. This is because it is desirable. Therefore, the thickness of graphene oxide is preferably 60% or more of graphene oxide having a thickness of 5 nm or less, and more preferably 60% or more of graphene oxide having a thickness of 1.5 nm or less. The thickness can be evaluated by the following method using an atomic force microscope. Drop the diluted aqueous dispersion of graphene oxide particles onto the substrate (mica), find isolated particles that do not overlap with the atomic force microscope, and measure the height of the substrate and the isolated particles measured by the atomic force microscope. The difference is the thickness of the particles. In the case where wrinkles are formed in the particles, the wrinkled portion does not reflect the thickness. Therefore, the thickness is evaluated based on the difference in height between the wrinkled portion and the substrate. Because of the influence of adsorbed water, it is considered that the number of graphene oxide layers is one when the thickness is 1.5 nm or less. The content ratio of graphene oxide having a certain thickness or less is calculated by measuring the thickness of 30 particles and calculating the ratio of graphene oxide having a certain thickness or less in 30 particles.

本発明で使用される酸化グラフェンの面方向の大きさの平均値としては、0.1〜30μmであることが望ましく、1〜20μmであることがより望ましい。酸化グラフェンの面方向の大きさが30μmより大きくなると、原料に大きな黒鉛を使用する必要があり、酸化に要する時間が長くなるといった問題がある。逆に0.1μmよりも小さくなると酸化グラフェンのアスペクト比が小さいため、PEDOT/PSS成分と複合したときの導電性を向上させる効果が弱くなってしまうという問題がある。酸化グラフェンの面方向の大きさは、例えば原子間力顕微鏡や電子顕微鏡などの酸化グラフェンの形状を確認できる評価装置を用いて、最大径(外側輪郭線上の任意の2点を、その間の長さが最大になるように選んだ時の長さ)で評価することができる。大きさの平均値としてはランダムに選択した粒子30個の平均値により算出することができる。 The average value in the plane direction of the graphene oxide used in the present invention is preferably 0.1 to 30 μm, and more preferably 1 to 20 μm. When the size of the graphene oxide in the plane direction is larger than 30 μm, it is necessary to use large graphite as a raw material, and there is a problem that the time required for oxidation becomes long. On the other hand, when the thickness is smaller than 0.1 μm, the aspect ratio of graphene oxide is small, so that there is a problem that the effect of improving conductivity when combined with the PEDOT / PSS component is weakened. The size of the graphene oxide in the plane direction can be determined by using an evaluation device capable of confirming the shape of graphene oxide, such as an atomic force microscope or an electron microscope, and using the maximum diameter (any two points on the outer contour line, the length between them). Can be evaluated by the length (when selected to maximize). The average size can be calculated from the average value of 30 randomly selected particles.

本発明で使用される酸化グラフェンとしては、分散媒に分散した分散液で使用することが望ましい。分散媒としては、水、メタノール、エタノール、NMP(N−メチルピロリドン)、DMF(ジメチルホルムアミド)、DMAc(ジメチルアセトアミド)などの単独の液あるいは混合した液を使用することが可能である。特に環境負荷も少なく、酸化グラフェンが均一に分散することから、水を分散媒として使用することが望ましい。   The graphene oxide used in the present invention is desirably used in a dispersion liquid dispersed in a dispersion medium. As the dispersion medium, it is possible to use a single liquid or a mixed liquid such as water, methanol, ethanol, NMP (N-methylpyrrolidone), DMF (dimethylformamide), DMAc (dimethylacetamide) and the like. In particular, it is desirable to use water as a dispersion medium because the environmental load is small and graphene oxide is uniformly dispersed.

本発明で使用されるPEDOTとPSSとしては、例えばBayton PやBayton P HC V4、CLEVIOS Pなどの商品として販売されているPEDOT/PSSの分散液を使用することが可能である。PEDOT/PSSはドーパントとなるPSS存在下で3,4−エチレンジオキシチオフェン(EDOT)を重合することで製造され、PSSが水への溶解性が高いことから、PSSにPEDOTが吸着して複合した状態(PEDOT/PSSと記す)で水に分散していると考えられている。PEDTO:PSSの比率は一般に質量基準で1:2.0 〜 1:3.0程度であり、分散している粒子の大きさは10〜1000nm程度である。 As PEDOT and PSS used in the present invention, it is possible to use a PEDOT / PSS dispersion liquid sold as a product such as Bayton P, Bayton P HC V4, CLEVIOS P, or the like. PEDOT / PSS is produced by polymerizing 3,4-ethylenedioxythiophene (EDOT) in the presence of PSS as a dopant. Since PSS is highly soluble in water, PEDOT is adsorbed on PSS and combined. It is thought that it is dispersed in water in the state (denoted as PEDOT / PSS). The ratio of PEDTO: PSS is generally about 1: 2.0 to 1: 3.0 on a mass basis, and the size of dispersed particles is about 10 to 1000 nm.

本発明で使用されるバインダーとしては、ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ゴム系樹脂、ポリビニルアルコールなど有機物系バインダーやSiOやTiOなどの無機物系バインダーを用いることができる。バインダーは溶媒に分散した分散液あるいは溶解した溶液として用いることが望ましい。溶媒としては水、メタノール、エタノール、アセトン、NMP(N−メチルピロリドン)、DMF(ジメチルホルムアミド)、DMAc(ジメチルアセトアミド)などの単独の液あるいは混合した液を使用することが可能である。特に酸化グラフェンおよびPEDOT/PSSが良好に分散する水を溶媒の主成分とすることが望ましい。
有機物系バインダーの中でもポリエステル樹脂はポリエステル、ポリカーボネート、塩ビなどの透明フィルムとの密着性が高い、耐熱性・耐久性も優れるなどの特性を有することからバインダーとしてより望ましい。
Examples of the binder used in the present invention include polyester binders, acrylic resins, polyurethane resins, polyamide resins, polyethylene resins, polypropylene resins, rubber resins, organic binders such as polyvinyl alcohol, and inorganic binders such as SiO 2 and TiO 2. Can be used. The binder is desirably used as a dispersion liquid or a solution dissolved in a solvent. As the solvent, it is possible to use a single liquid or a mixed liquid such as water, methanol, ethanol, acetone, NMP (N-methylpyrrolidone), DMF (dimethylformamide), DMAc (dimethylacetamide) and the like. In particular, it is desirable to use water in which graphene oxide and PEDOT / PSS are well dispersed as a main component of the solvent.
Among organic binders, polyester resins are more desirable as binders because of their properties such as high adhesion to transparent films such as polyester, polycarbonate, and vinyl chloride, and excellent heat resistance and durability.

バインダーの添加量としては、PEDOT/PSSに対してバインダーが少なすぎると塗布膜の物性(基板との密着性や耐擦傷性など)が悪くなり、逆にバインダーが多すぎると塗布膜の導電性が得られないことから、バインダーの添加量は質量基準で、(PEDOT固形分質量+PSS固形分質量)÷(PEDOT固形分質量+PSS固形分質量+バインダー固形分質量)の関係(以下、(PEDOT/PSS)÷(PEDOT/PSS+バインダー)と記す)が、0.01〜0.3の値であることが望ましく、0.025〜0.2であることがより好ましい。さらに、0.05〜0.1であることが導電性と塗布膜の物性のバランスがよく、もっとも好ましい。 As for the amount of binder added, if the amount of binder is too small relative to PEDOT / PSS, the physical properties of the coating film (adhesion to the substrate, scratch resistance, etc.) will deteriorate, and conversely if the amount of binder is too large, the coating film will become conductive. Therefore, the amount of binder added is based on mass, and the relationship of (PEDOT solid content mass + PSS solid content mass) ÷ (PEDOT solid content mass + PSS solid content mass + binder solid content mass) (hereinafter referred to as (PEDOT / (PSS) / (denoted as PEDOT / PSS + binder)) is preferably a value of 0.01 to 0.3, more preferably 0.025 to 0.2. Furthermore, it is most preferable that it is 0.05-0.1 since the balance of the electroconductivity and the physical property of a coating film is good.

酸化グラフェンは還元により高導電化できるが、溶媒への分散性と透明性の観点からは、酸化グラフェンとしては、高導電化しない方が望ましいが、例えば高い透明性が必要とされない場合など目的に応じて、還元により酸化グラフェンを高導電化してもよい。ただし、本発明の効果は高導電化酸化グラフェンではなく、酸化グラフェンで発揮されることから、酸化グラフェンを還元する場合には塗布膜を形成後に還元することが望ましい。これは、塗布膜形成後に還元するならば、分散性を考慮する必要はなく、さらに酸化グラフェンの構造変化によるPEDOT/PSSの導電性向上効果への悪影響が防げるためである。酸化グラフェンを還元する方法としては、酸化グラフェンとPEDOT/PSSを含む塗布膜を形成した後に200℃以上に加熱する方法がある。塗布膜を形成した基板の耐熱性が低い場合、塗料に還元剤を添加することで還元のための加熱温度を下げることが可能である。還元剤としては、塗料中の酸化グラフェンが塗布膜形成までは高導電化酸化グラフェンに還元されず、塗布膜形成後の加熱により還元が起きるものであることが必要であり、このような還元剤としては、例えば、ヒドロキノン、ピロガロール、カテコール、レゾルシノール、没食子酸、L−システイン、ヨウ化水素酸、ヒドラジン、ホスフィン酸、クエン酸、チオ硫酸ナトリウム、チオ硫酸アンモニウム、次亜リン酸ナトリウム、L(+)アスコルビン酸などが挙げられ(特許4591666)、中でも2つ以上の水酸基を有する還元剤(例えばヒドロキノン、ピロガロール、カテコール、レゾルシノール、没食子酸)は、PEDOT/PSSの導電性を向上させる効果もあることから(特開2010−80237)、より望ましい。 Although graphene oxide can be made highly conductive by reduction, from the viewpoint of dispersibility in a solvent and transparency, it is desirable not to make graphene oxide highly conductive, but for example, when high transparency is not required Accordingly, graphene oxide may be made highly conductive by reduction. However, since the effect of the present invention is exhibited not by highly conductive graphene oxide but by graphene oxide, when graphene oxide is reduced, it is desirable to reduce after forming the coating film. This is because if the reduction is performed after the coating film is formed, it is not necessary to consider dispersibility, and further, an adverse effect on the conductivity enhancement effect of PEDOT / PSS due to the structural change of graphene oxide can be prevented. As a method of reducing graphene oxide, there is a method of heating to 200 ° C. or higher after forming a coating film containing graphene oxide and PEDOT / PSS. When the heat resistance of the substrate on which the coating film is formed is low, it is possible to lower the heating temperature for reduction by adding a reducing agent to the paint. As the reducing agent, it is necessary that the graphene oxide in the coating is not reduced to highly conductive graphene oxide until the formation of the coating film, and that the reduction occurs by heating after the coating film is formed. As, for example, hydroquinone, pyrogallol, catechol, resorcinol, gallic acid, L-cysteine, hydroiodic acid, hydrazine, phosphinic acid, citric acid, sodium thiosulfate, ammonium thiosulfate, sodium hypophosphite, L (+) Ascorbic acid and the like can be mentioned (patent 4591666). Among them, reducing agents having two or more hydroxyl groups (for example, hydroquinone, pyrogallol, catechol, resorcinol, gallic acid) have the effect of improving the conductivity of PEDOT / PSS. (JP 2010-80237), more desirable.

酸化グラフェンとPEDOTとPSSおよびバインダーの混合方法としては、それぞれが溶媒に分散あるいは溶解した分散液(溶液)の状態で混合することが望ましい。PEDOTとPSSは混合された状態で製造され、混合物として溶媒に分散しているので、PEDOT/PSSとして溶媒に分散した分散液を使用することが望ましい。還元剤を用いる場合は、分散液に還元剤を溶解させることで混合することができる。混合後には撹拌やホモジナイザー等の方法により均一になるまで混合することで導電性塗料を作製することができる。   As a method for mixing graphene oxide, PEDOT, PSS, and a binder, it is desirable to mix them in the state of a dispersion (solution) in which each is dispersed or dissolved in a solvent. Since PEDOT and PSS are produced in a mixed state and dispersed in a solvent as a mixture, it is desirable to use a dispersion liquid dispersed in a solvent as PEDOT / PSS. When using a reducing agent, it can mix by dissolving a reducing agent in a dispersion liquid. After mixing, the conductive paint can be prepared by mixing until uniform by a method such as stirring or homogenizer.

塗布の方法は、基材上への塗布が可能であれば特に限定されるものではなく、例えばスピンコータ法、バーコータ法、ロールコータ法、スプレーコート法などの方法を用いることができる。塗布膜の乾燥も特に限定されるものではなく、加熱乾燥などの一般的な方法で行うことが可能である。乾燥温度は基材の耐熱性や溶媒の沸点に依存するが、溶媒として水を使っている場合は、60〜100℃が望ましい。酸化グラフェンを還元する場合には、乾燥処理とは別に、あるいは乾燥処理を兼ねて加熱処理を行えばよい。加熱処理の温度は200℃以上が望ましい。塗料に還元剤を添加した場合には加熱処理の温度を低くすることが可能で、還元剤の種類にも依存するが、100℃〜170℃で加熱処理を行うことが望ましい。   The application method is not particularly limited as long as it can be applied onto a substrate, and for example, a spin coater method, a bar coater method, a roll coater method, a spray coat method, or the like can be used. The drying of the coating film is not particularly limited, and can be performed by a general method such as heat drying. The drying temperature depends on the heat resistance of the substrate and the boiling point of the solvent, but when water is used as the solvent, 60 to 100 ° C. is desirable. In the case of reducing graphene oxide, heat treatment may be performed separately from the drying treatment or as the drying treatment. The temperature of the heat treatment is desirably 200 ° C. or higher. When a reducing agent is added to the paint, the temperature of the heat treatment can be lowered, and depending on the type of the reducing agent, it is desirable to perform the heat treatment at 100 ° C. to 170 ° C.

以下、実施例及び比較例を挙げて本発明をさらに詳しく説明するが、本発明は以下の実施例に何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not limited to a following example at all.

(酸化グラフェンの合成例)
天然黒鉛SNO−3(純度99.97質量%以上)10gを、硝酸ナトリウム(純度99%)7.5g、硫酸(純度96%)621g、過マンガン酸カリウム(純度99%)45gからなる混合液中に入れ、約20℃で5日間、緩やかに撹拌しながら放置した。得られた高粘度の液を、5質量%硫酸水溶液1000cmに約1時間で撹拌しながら加えて、さらに2時間撹拌した。得られた液に過酸化水素(30質量%水溶液)30gを加えて、2時間撹拌した。
(Synthesis example of graphene oxide)
10 g of natural graphite SNO-3 (purity 99.97% by mass or more), 7.5 g of sodium nitrate (purity 99%), 621 g of sulfuric acid (purity 96%), and 45 g of potassium permanganate (purity 99%) It was put in and allowed to stand at about 20 ° C. for 5 days with gentle stirring. The obtained high-viscosity liquid was added to 1000 cm 3 of a 5% by mass sulfuric acid aqueous solution with stirring for about 1 hour, and further stirred for 2 hours. Hydrogen peroxide (30 mass% aqueous solution) 30g was added to the obtained liquid, and it stirred for 2 hours.

この液を、水により十分精製することで、平板状の酸化グラフェンの水分散液を得た。液の一部を40℃で真空乾燥させ、乾燥前後の質量変化を測定した結果から、液中の酸化グラフェンの固形分濃度は1.3質量%と算出された。また、40℃で真空乾燥させた酸化グラフェンの元素分析で、酸素は42質量%、水素は2質量%であった。ラマンスペクトルを測定した結果、G線に由来するピークの高さHとD線に由来するピークの高さHの比H/Hは1.29であった。液の一部を水で希釈してからマイカの上で乾燥させ、原子間力顕微鏡を使って酸化グラフェンの厚みを評価したところ、30個の粒子で確認された厚みは1.1nm,2.2nm,0.8nm,0.9nm,1.7nm,1.5nm,1.1nm,1.8nm,0.9nm,1.0nm,1.6nm,2.2nm,1.1nm,1.0nm,1.3nm,0.9nm,0.9nm,1.2nm,1.9nm,1.4nm,1.7nm,1.8nm,1.0nm,1.3nm,1.1nm,0.8nm,2.0nm,1.4nm,1.8nm,1.3nmであり、1.5nm以下の厚みの酸化グラフェン粒子が20個で67%、5nm以下の厚みの酸化グラフェンは30個で100%と、いずれも全体の60%以上含有していた。30個の粒子で確認された粒子径は、2.0μm,4.3μm,5.4μm,2.5μm,1.0μm,6.8μm,10.5μm,2.3μm,4.4μm,1.4μm,4.1μm,1.6μm,1.5μm,2.1μm,1.2μm,1.6μm,1.1μm,1.0μm,1.4μm,1.7μm,2.9μm,4.4μm,2.9μm,1.9μm,1.2μm,1.8μm,2.6μm,6.8μm,1.8μm,6.0μmであり、平均の粒子径は3μmであった。上記の1.3質量%酸化グラフェン水分散液を1.0質量%に濃度調整した分散液を以下、「分散液A」と呼ぶ。 The liquid was sufficiently purified with water to obtain a flat graphene oxide dispersion in water. From the result of vacuum drying a part of the liquid at 40 ° C. and measuring the mass change before and after drying, the solid content concentration of graphene oxide in the liquid was calculated to be 1.3% by mass. Further, elemental analysis of graphene oxide vacuum-dried at 40 ° C. revealed that oxygen was 42% by mass and hydrogen was 2% by mass. Results of the measurement of the Raman spectrum, the ratio H G / H D of the height H D of the peak derived from the height H G and D lines of the peak derived from the G line was 1.29. A portion of the liquid was diluted with water, dried on mica, and the thickness of graphene oxide was evaluated using an atomic force microscope. The thickness confirmed for 30 particles was 1.1 nm. 2 nm, 0.8 nm, 0.9 nm, 1.7 nm, 1.5 nm, 1.1 nm, 1.8 nm, 0.9 nm, 1.0 nm, 1.6 nm, 2.2 nm, 1.1 nm, 1.0 nm, 1.3 nm, 0.9 nm, 0.9 nm, 1.2 nm, 1.9 nm, 1.4 nm, 1.7 nm, 1.8 nm, 1.0 nm, 1.3 nm, 1.1 nm, 0.8 nm, 2. 0 nm, 1.4 nm, 1.8 nm, and 1.3 nm, 20 graphene oxide particles having a thickness of 1.5 nm or less, 67%, and 30 graphene oxide particles having a thickness of 5 nm or less, 30 particles and 100%. It contained 60% or more of the whole. The particle diameters confirmed for 30 particles are 2.0 μm, 4.3 μm, 5.4 μm, 2.5 μm, 1.0 μm, 6.8 μm, 10.5 μm, 2.3 μm, 4.4 μm, 1. 4 μm, 4.1 μm, 1.6 μm, 1.5 μm, 2.1 μm, 1.2 μm, 1.6 μm, 1.1 μm, 1.0 μm, 1.4 μm, 1.7 μm, 2.9 μm, 4.4 μm, They were 2.9 μm, 1.9 μm, 1.2 μm, 1.8 μm, 2.6 μm, 6.8 μm, 1.8 μm, 6.0 μm, and the average particle size was 3 μm. A dispersion obtained by adjusting the concentration of the above 1.3 mass% graphene oxide aqueous dispersion to 1.0 mass% is hereinafter referred to as “dispersion A”.

(導電率の測定)
2端子法で塗布膜の抵抗を測定し、得られた抵抗値から導電率(S/cm)を算出した。導電率の計算の際に塗布膜の厚みは、使用したコート液の組成と比重をPEDOT/PSS=1g/cm、酸化グラフェン=1g/cmとして計算した。抵抗の測定は室温(20〜25℃)、湿度40〜50%で行った。なお、同様の塗布膜を3枚作製し、それぞれの塗布膜に対して1回導電率を測定し、3回分の導電率の平均値を算出した。
(Measurement of conductivity)
The resistance of the coating film was measured by a two-terminal method, and the conductivity (S / cm) was calculated from the obtained resistance value. When calculating the conductivity, the thickness of the coating film was calculated assuming that the composition and specific gravity of the coating solution used were PEDOT / PSS = 1 g / cm 3 and graphene oxide = 1 g / cm 3 . The resistance was measured at room temperature (20 to 25 ° C.) and humidity of 40 to 50%. Three similar coating films were prepared, and the conductivity was measured once for each coating film, and the average value of the conductivity for three times was calculated.

(表面抵抗率の測定)
ダイヤインスツルメント社製低抵抗計ロレスタGPを用いて、塗布膜(厚み10μm程度)の表面抵抗(Ω/□)を測定した。測定は室温(20〜25℃)、湿度40〜50%で行った。
(Measurement of surface resistivity)
The surface resistance (Ω / □) of the coating film (thickness of about 10 μm) was measured using a low resistance meter Loresta GP manufactured by Dia Instruments. The measurement was performed at room temperature (20 to 25 ° C.) and humidity of 40 to 50%.

(実施例1)
ポリ(3,4−エチレンジオキシ)チオフェンとポリスチレンスルホン酸の混合物(PEDOT/PSS)の水分散液(PEDOT:0.5質量%,PSS:0.8質量%。Aldrich社製,conductive grade)を「導電性高分子液A」と呼ぶ。導電性高分子液Aを水で希釈して濃度を1質量%とした。得られた液を以下、「導電性高分子液B」と呼ぶ。9.76gの導電性高分子液Bと0.24gの分散液Aを十分混合し、導電性塗料を作製した。得られた導電性組成物をガラス基板上に塗布し、70℃で30分以上乾燥して導電性塗料の塗布膜を作製した。得られた塗布膜の導電率を測定した。結果を表1に示す。
Example 1
Water dispersion of poly (3,4-ethylenedioxy) thiophene and polystyrene sulfonic acid mixture (PEDOT / PSS) (PEDOT: 0.5 mass%, PSS: 0.8 mass%, manufactured by Aldrich, conductive grade) Is referred to as “conductive polymer liquid A”. The conductive polymer solution A was diluted with water to a concentration of 1% by mass. Hereinafter, the obtained liquid is referred to as “conductive polymer liquid B”. 9.76 g of the conductive polymer liquid B and 0.24 g of the dispersion liquid A were sufficiently mixed to prepare a conductive paint. The obtained electroconductive composition was apply | coated on the glass substrate, and it dried at 70 degreeC for 30 minutes or more, and produced the coating film of the electroconductive paint. The conductivity of the obtained coating film was measured. The results are shown in Table 1.

(実施例2)
実施例1の導電性高分子液Bと分散液Aの添加量をそれぞれ9.52gと0.48gに変更した以外は実施例1と同様にして導電性塗料の塗布膜を作製し、導電率を測定した。結果を表1に示す。
(Example 2)
A coating film of conductive paint was prepared in the same manner as in Example 1 except that the addition amounts of the conductive polymer liquid B and the dispersion liquid A in Example 1 were changed to 9.52 g and 0.48 g, respectively. Was measured. The results are shown in Table 1.

(実施例3)
実施例1の導電性高分子液Bと分散液Aの添加量をそれぞれ9.09gと0.91gに変更した以外は実施例1と同様にして導電性塗料の塗布膜を作製し、導電率を測定した。結果を表1に示す。
(Example 3)
A coating film of the conductive paint was prepared in the same manner as in Example 1 except that the addition amounts of the conductive polymer liquid B and the dispersion liquid A of Example 1 were changed to 9.09 g and 0.91 g, respectively. Was measured. The results are shown in Table 1.

(実施例4)
実施例1の導電性高分子液Bと分散液Aの添加量をそれぞれ8.33gと1.67gに変更した以外は実施例1と同様にして導電性塗料の塗布膜を作製し、導電率を測定した。結果を表1に示す。
Example 4
A coating film of a conductive paint was prepared in the same manner as in Example 1 except that the addition amounts of the conductive polymer liquid B and the dispersion liquid A of Example 1 were changed to 8.33 g and 1.67 g, respectively. Was measured. The results are shown in Table 1.

(実施例5)
実施例1の導電性高分子液Bと分散液Aの添加量をそれぞれ7.14gと2.86gに変更した以外は実施例1と同様にして導電性塗料の塗布膜を作製し、導電率を測定した。結果を表1に示す。
(Example 5)
A coating film of conductive paint was prepared in the same manner as in Example 1 except that the addition amounts of the conductive polymer liquid B and the dispersion liquid A in Example 1 were changed to 7.14 g and 2.86 g, respectively. Was measured. The results are shown in Table 1.

(実施例6)
実施例1の導電性高分子液Bと分散液Aの添加量をそれぞれ5.56gと4.44gに変更した以外は実施例1と同様にして導電性塗料の塗布膜を作製し、導電率を測定した。結果を表1に示す。
(Example 6)
A coating film of conductive paint was prepared in the same manner as in Example 1 except that the addition amounts of the conductive polymer liquid B and the dispersion liquid A of Example 1 were changed to 5.56 g and 4.44 g, respectively. Was measured. The results are shown in Table 1.

(比較例1)
実施例1の導電性高分子液Bと分散液Aの添加量をそれぞれ4.44gと5.56gに変更した以外は実施例1と同様にして導電性塗料の塗布膜を作製し、導電率を測定した。結果を表1に示す。
(Comparative Example 1)
A coating film of conductive paint was prepared in the same manner as in Example 1 except that the addition amounts of the conductive polymer liquid B and the dispersion liquid A of Example 1 were changed to 4.44 g and 5.56 g, respectively. Was measured. The results are shown in Table 1.

(比較例2)
実施例1の導電性組成物として導電性高分子液Bを使用した以外は実施例1と同様にして導電性塗料の塗布膜を作製し、導電率を測定した。結果を表1に示す。
(Comparative Example 2)
A conductive coating film was prepared in the same manner as in Example 1 except that the conductive polymer solution B was used as the conductive composition of Example 1, and the conductivity was measured. The results are shown in Table 1.

(比較例3)
実施例1の導電性組成物として分散液Aを使用した以外は実施例1と同様にして導電性塗料の塗布膜を作製し、導電率を測定した。結果を表1に示す。
(Comparative Example 3)
A coating film of a conductive paint was produced in the same manner as in Example 1 except that the dispersion A was used as the conductive composition of Example 1, and the conductivity was measured. The results are shown in Table 1.

Figure 2013035966
実施例1から実施例6および比較例1,2の酸化グラフェン/(「PEDOT/PSS」+酸化グラフェン)をX軸に導電率をY軸にプロットしたグラフを図1に示す。この結果から、酸化グラフェン/(「PEDOT/PSS」+酸化グラフェン)が0.02以上0.45以下の範囲ではPEDOT/PSS単独よりも導電率が向上していることがわかる。さらに、0.04以上0.40以下の範囲では導電率の向上が大きいことがわかる。
Figure 2013035966
FIG. 1 is a graph in which graphene oxide / (“PEDOT / PSS” + graphene oxide) of Examples 1 to 6 and Comparative Examples 1 and 2 is plotted on the X axis and the conductivity is plotted on the Y axis. From this result, it can be seen that the conductivity is improved as compared with PEDOT / PSS alone when the graphene oxide / (“PEDOT / PSS” + graphene oxide) is in the range of 0.02 to 0.45. Furthermore, it can be seen that the conductivity is greatly improved in the range of 0.04 to 0.40.

(実施例7)
3.85gの導電性高分子液Aと1.00gの分散液Aと2.94gのポリエステル系高分子バインダー MD1200(34質量%。東洋紡績製)を十分混合し、導電性塗料を作製した。得られた導電性塗料をガラス基板上に塗布し、70℃で60分乾燥して導電性塗料の塗布膜を作製した。得られた塗布膜の表面抵抗率を測定した。結果を表2に示す。
(Example 7)
3.85 g of conductive polymer liquid A, 1.00 g of dispersion A, and 2.94 g of polyester polymer binder MD1200 (34% by mass, manufactured by Toyobo Co., Ltd.) were sufficiently mixed to prepare a conductive paint. The obtained conductive paint was applied on a glass substrate and dried at 70 ° C. for 60 minutes to prepare a conductive paint coating film. The surface resistivity of the obtained coating film was measured. The results are shown in Table 2.

(実施例8)
実施例7の導電性高分子液Aと分散液AとMD1200の添加量をそれぞれ3.85gと1.00gと1.76gに変更した以外は実施例7と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。結果を表2に示す。
(Example 8)
Coating film of conductive paint in the same manner as in Example 7 except that the addition amounts of conductive polymer liquid A, dispersion liquid A and MD1200 of Example 7 were changed to 3.85 g, 1.00 g and 1.76 g, respectively. The surface resistivity was measured. The results are shown in Table 2.

(実施例9)
実施例7の導電性高分子液Aと分散液AとMD1200の添加量をそれぞれ3.85gと1.00gと0.88gに変更した以外は実施例7と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。結果を表2に示す。
Example 9
Coating film of conductive paint in the same manner as in Example 7, except that the addition amounts of conductive polymer liquid A, dispersion liquid A and MD1200 of Example 7 were changed to 3.85 g, 1.00 g and 0.88 g, respectively. The surface resistivity was measured. The results are shown in Table 2.

(実施例10)
実施例7の導電性高分子液Aと分散液AとMD1200の添加量をそれぞれ3.85gと2.00gと2.94gに変更した以外は実施例7と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。結果を表2に示す。
(Example 10)
Coating film of conductive paint in the same manner as in Example 7, except that the addition amounts of conductive polymer liquid A, dispersion liquid A and MD1200 in Example 7 were changed to 3.85 g, 2.00 g and 2.94 g, respectively. The surface resistivity was measured. The results are shown in Table 2.

(実施例11)
実施例7の導電性高分子液Aと分散液AとMD1200の添加量をそれぞれ3.85gと2.00gと1.76gに変更した以外は実施例7と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。結果を表2に示す。
(Example 11)
Coating film of conductive paint in the same manner as in Example 7 except that the addition amounts of conductive polymer liquid A, dispersion liquid A and MD1200 in Example 7 were changed to 3.85 g, 2.00 g and 1.76 g, respectively. The surface resistivity was measured. The results are shown in Table 2.

(実施例12)
実施例7の導電性高分子液Aと分散液AとMD1200の添加量をそれぞれ3.85gと2.00gと0.88gに変更した以外は実施例7と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。結果を表2に示す。
(Example 12)
Coating film of conductive paint in the same manner as in Example 7 except that the addition amounts of conductive polymer liquid A, dispersion liquid A and MD1200 of Example 7 were changed to 3.85 g, 2.00 g and 0.88 g, respectively. The surface resistivity was measured. The results are shown in Table 2.

(実施例13)
実施例7の導電性高分子液Aと分散液AとMD1200の添加量をそれぞれ3.85gと4.00gと2.94gに変更した以外は実施例7と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。結果を表2に示す。
(Example 13)
Coating film of conductive paint in the same manner as in Example 7 except that the addition amounts of conductive polymer liquid A, dispersion liquid A and MD1200 of Example 7 were changed to 3.85 g, 4.00 g and 2.94 g, respectively. The surface resistivity was measured. The results are shown in Table 2.

(実施例14)
実施例7の導電性高分子液Aと分散液AとMD1200の添加量をそれぞれ3.85gと4.00gと1.76gに変更した以外は実施例7と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。結果を表2に示す。
(Example 14)
Coating film of conductive paint in the same manner as in Example 7 except that the addition amounts of conductive polymer liquid A, dispersion liquid A and MD1200 of Example 7 were changed to 3.85 g, 4.00 g and 1.76 g, respectively. The surface resistivity was measured. The results are shown in Table 2.

(実施例15)
実施例7の導電性高分子液Aと分散液AとMD1200の添加量をそれぞれ3.85gと4.00gと0.88gに変更した以外は実施例7と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。結果を表2に示す。
(Example 15)
Coating film of conductive paint in the same manner as in Example 7 except that the addition amounts of the conductive polymer liquid A, dispersion liquid A and MD1200 of Example 7 were changed to 3.85 g, 4.00 g and 0.88 g, respectively. The surface resistivity was measured. The results are shown in Table 2.

(比較例4)
実施例7の導電性高分子液Aと分散液AとMD1200の添加量をそれぞれ1.92gと10.00gと1.47gに変更した以外は実施例7と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。結果を表2に示す。
(Comparative Example 4)
Coating film of conductive paint in the same manner as in Example 7, except that the addition amounts of conductive polymer liquid A, dispersion liquid A and MD1200 in Example 7 were changed to 1.92 g, 10.00 g and 1.47 g, respectively. The surface resistivity was measured. The results are shown in Table 2.

(比較例5)
実施例7の導電性高分子液Aと分散液AとMD1200の添加量をそれぞれ1.92gと10.00gと0.88gに変更した以外は実施例7と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。結果を表2に示す。
(Comparative Example 5)
Coating film of conductive paint in the same manner as in Example 7 except that the addition amounts of the conductive polymer liquid A, dispersion liquid A and MD1200 of Example 7 were changed to 1.92 g, 10.00 g and 0.88 g, respectively. The surface resistivity was measured. The results are shown in Table 2.

(比較例6)
実施例7の導電性高分子液Aと分散液AとMD1200の添加量をそれぞれ1.92gと10.00gと0.44gに変更した以外は実施例7と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。結果を表2に示す。
(Comparative Example 6)
Coating film of conductive paint in the same manner as in Example 7 except that the addition amounts of conductive polymer liquid A, dispersion liquid A and MD1200 of Example 7 were changed to 1.92 g, 10.00 g and 0.44 g, respectively. The surface resistivity was measured. The results are shown in Table 2.

(比較例7)
実施例7の導電性高分子液AとMD1200の添加量をそれぞれ3.85gと2.94gに変更し、分散液Aを添加しない以外は実施例7と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。結果を表2に示す。
(Comparative Example 7)
The coating amount of the conductive paint was changed in the same manner as in Example 7 except that the addition amounts of the conductive polymer liquid A and MD1200 in Example 7 were changed to 3.85 g and 2.94 g, respectively, and the dispersion A was not added. Fabricated and measured for surface resistivity. The results are shown in Table 2.

(比較例8)
実施例7の導電性高分子液AとMD1200の添加量をそれぞれ3.85gと1.76gに変更し、分散液Aを添加しない以外は実施例7と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。結果を表2に示す。
(Comparative Example 8)
The coating amount of the conductive paint was changed in the same manner as in Example 7 except that the addition amounts of the conductive polymer liquid A and MD1200 in Example 7 were changed to 3.85 g and 1.76 g, respectively, and the dispersion A was not added. Fabricated and measured for surface resistivity. The results are shown in Table 2.

(比較例9)
実施例7の導電性高分子液AとMD1200の添加量をそれぞれ3.85gと0.88gに変更し、分散液Aを添加しない以外は実施例7と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。結果を表2に示す。
(Comparative Example 9)
The coating amount of the conductive paint was changed in the same manner as in Example 7 except that the addition amounts of the conductive polymer liquid A and MD1200 in Example 7 were changed to 3.85 g and 0.88 g, respectively, and the dispersion A was not added. Fabricated and measured for surface resistivity. The results are shown in Table 2.

Figure 2013035966
表2をみると、(酸化グラフェン)÷(PEDOT/PSS+酸化グラフェン)が0.80(比較例4〜6)と0.00(比較例7〜9)の場合には、(PEDOT/PSS)÷(PEDOT/PSS+MD1200)が0.077でも表面抵抗が高いことから、パーコレーションしきい値は0.077よりも大きいことがわかる。一方、(酸化グラフェン)÷(PEDOT/PSS+酸化グラフェン)が0.17(実施例7〜9)と0.29(実施例10〜12)、0.44(実施例13〜15)では、(PEDOT/PSS)÷(PEDOT/PSS+MD1200)が0.077のときに表面抵抗が低くなっており、パーコレーションしきい値は0.077よりも小さいことがわかる。このように、酸化グラフェンを所定量添加することでPEDOT/PSSの組成物に対するパーコレーションしきい値が小さくなっていることがわかる。
Figure 2013035966
Table 2 shows that when (graphene oxide) ÷ (PEDOT / PSS + graphene oxide) is 0.80 (Comparative Examples 4 to 6) and 0.00 (Comparative Examples 7 to 9), (PEDOT / PSS) ÷ Since the surface resistance is high even when (PEDOT / PSS + MD1200) is 0.077, it can be seen that the percolation threshold is larger than 0.077. On the other hand, when (graphene oxide) ÷ (PEDOT / PSS + graphene oxide) is 0.17 (Examples 7 to 9), 0.29 (Examples 10 to 12), and 0.44 (Examples 13 to 15), It can be seen that when PEDOT / PSS) / (PEDOT / PSS + MD1200) is 0.077, the surface resistance is low, and the percolation threshold is smaller than 0.077. Thus, it can be seen that the percolation threshold for the PEDOT / PSS composition is reduced by adding a predetermined amount of graphene oxide.

(実施例16)
3.85gの導電性高分子液Aと1.00gの分散液Aと5.88gのポリエステル系高分子バインダー MD1200(34%。東洋紡績製)および0.005gのピロガロール(還元剤)を十分混合し、導電性塗料を作製した。導電性塗料はピロガロール無添加時と同じ茶褐色のままであり、酸化グラフェンの凝集も認められておらず、酸化グラフェンは還元されていなかった。得られた導電性塗料をガラス基板上に塗布し、70℃で60分乾燥した後に170℃で60分加熱処理を行い導電性塗料の塗布膜を作製した。加熱処理後には色が黒色に変化しており、酸化グラフェンの還元が起こっていた。得られた塗布膜の表面抵抗率を測定した。結果を表3に示す。
(Example 16)
3.85 g of conductive polymer liquid A, 1.00 g of dispersion A, 5.88 g of polyester polymer binder MD1200 (34%, manufactured by Toyobo) and 0.005 g of pyrogallol (reducing agent) are mixed thoroughly. Then, a conductive paint was produced. The conductive paint remained the same brown color as when no pyrogallol was added, no aggregation of graphene oxide was observed, and the graphene oxide was not reduced. The obtained conductive paint was applied on a glass substrate, dried at 70 ° C. for 60 minutes, and then heat-treated at 170 ° C. for 60 minutes to prepare a coating film of the conductive paint. After the heat treatment, the color changed to black, and graphene oxide was reduced. The surface resistivity of the obtained coating film was measured. The results are shown in Table 3.

(実施例17)
実施例16の導電性高分子液Aと分散液AとMD1200およびピロガロール(還元剤)の添加量をそれぞれ3.85gと1.00gと2.94gおよび0.005gに変更した以外は実施例16と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。なお、導電性塗料はピロガロール無添加時と同じ茶褐色のままであり、酸化グラフェンの凝集も認められておらず、酸化グラフェンは還元されていなかった。さらに、加熱処理後には色が黒色に変化しており、酸化グラフェンの還元が起こっていた。結果を表3に示す。
(Example 17)
Example 16 except that the addition amounts of the conductive polymer liquid A, dispersion A, MD1200, and pyrogallol (reducing agent) of Example 16 were changed to 3.85 g, 1.00 g, 2.94 g, and 0.005 g, respectively. In the same manner, a coating film of a conductive paint was prepared, and the surface resistivity was measured. Note that the conductive coating remained the same brown color as when no pyrogallol was added, no graphene oxide aggregation was observed, and the graphene oxide was not reduced. Furthermore, the color changed to black after the heat treatment, and graphene oxide was reduced. The results are shown in Table 3.

(実施例18)
実施例16の導電性高分子液Aと分散液AとMD1200およびピロガロール(還元剤)の添加量をそれぞれ3.85gと1.00gと1.76gおよび0.005gに変更した以外は実施例16と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。なお、導電性塗料はピロガロール無添加時と同じ茶褐色のままであり、酸化グラフェンの凝集も認められておらず、酸化グラフェンは還元されていなかった。さらに、加熱処理後には色が黒色に変化しており、酸化グラフェンの還元が起こっていた。結果を表3に示す。
(Example 18)
Example 16 except that the addition amounts of the conductive polymer liquid A, dispersion A, MD1200, and pyrogallol (reducing agent) of Example 16 were changed to 3.85 g, 1.00 g, 1.76 g, and 0.005 g, respectively. In the same manner, a coating film of a conductive paint was prepared, and the surface resistivity was measured. Note that the conductive coating remained the same brown color as when no pyrogallol was added, no graphene oxide aggregation was observed, and the graphene oxide was not reduced. Furthermore, the color changed to black after the heat treatment, and graphene oxide was reduced. The results are shown in Table 3.

(実施例19)
実施例16の導電性高分子液Aと分散液AとMD1200およびピロガロール(還元剤)の添加量をそれぞれ3.85gと1.00gと0.88gおよび0.005gに変更した以外は実施例16と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。なお、導電性塗料はピロガロール無添加時と同じ茶褐色のままであり、酸化グラフェンの凝集も認められておらず、酸化グラフェンは還元されていなかった。さらに、加熱処理後には色が黒色に変化しており、酸化グラフェンの還元が起こっていた。結果を表3に示す。
(Example 19)
Example 16 except that the addition amounts of the conductive polymer liquid A, dispersion A, MD1200, and pyrogallol (reducing agent) of Example 16 were changed to 3.85 g, 1.00 g, 0.88 g, and 0.005 g, respectively. In the same manner, a coating film of a conductive paint was prepared, and the surface resistivity was measured. Note that the conductive coating remained the same brown color as when no pyrogallol was added, no graphene oxide aggregation was observed, and the graphene oxide was not reduced. Furthermore, the color changed to black after the heat treatment, and graphene oxide was reduced. The results are shown in Table 3.

(実施例20)
実施例16の導電性高分子液Aと分散液AとMD1200およびピロガロール(還元剤)の添加量をそれぞれ3.85gと2.00gと5.88gおよび0.01gに変更した以外は実施例16と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。なお、導電性塗料はピロガロール無添加時と同じ茶褐色のままであり、酸化グラフェンの凝集も認められておらず、酸化グラフェンは還元されていなかった。さらに、加熱処理後には色が黒色に変化しており、酸化グラフェンの還元が起こっていた。結果を表3に示す。
(Example 20)
Example 16 except that the addition amounts of the conductive polymer liquid A, dispersion A, MD1200, and pyrogallol (reducing agent) of Example 16 were changed to 3.85 g, 2.00 g, 5.88 g, and 0.01 g, respectively. In the same manner, a coating film of a conductive paint was prepared, and the surface resistivity was measured. Note that the conductive coating remained the same brown color as when no pyrogallol was added, no graphene oxide aggregation was observed, and the graphene oxide was not reduced. Furthermore, the color changed to black after the heat treatment, and graphene oxide was reduced. The results are shown in Table 3.

(実施例21)
実施例16の導電性高分子液Aと分散液AとMD1200およびピロガロール(還元剤)の添加量をそれぞれ3.85gと2.00gと2.94gおよび0.01gに変更した以外は実施例16と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。なお、導電性塗料はピロガロール無添加時と同じ茶褐色のままであり、酸化グラフェンの凝集も認められておらず、酸化グラフェンは還元されていなかった。さらに、加熱処理後には色が黒色に変化しており、酸化グラフェンの還元が起こっていた。結果を表3に示す。
(Example 21)
Example 16 except that the addition amounts of the conductive polymer liquid A, dispersion A, MD1200, and pyrogallol (reducing agent) of Example 16 were changed to 3.85 g, 2.00 g, 2.94 g, and 0.01 g, respectively. In the same manner, a coating film of a conductive paint was prepared, and the surface resistivity was measured. Note that the conductive coating remained the same brown color as when no pyrogallol was added, no graphene oxide aggregation was observed, and the graphene oxide was not reduced. Furthermore, the color changed to black after the heat treatment, and graphene oxide was reduced. The results are shown in Table 3.

(実施例22)
実施例16の導電性高分子液Aと分散液AとMD1200およびピロガロール(還元剤)の添加量をそれぞれ3.85gと2.00gと1.76gおよび0.01gに変更した以外は実施例16と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。なお、導電性塗料はピロガロール無添加時と同じ茶褐色のままであり、酸化グラフェンの凝集も認められておらず、酸化グラフェンは還元されていなかった。さらに、加熱処理後には色が黒色に変化しており、酸化グラフェンの還元が起こっていた。結果を表3に示す。
(Example 22)
Example 16 except that the addition amounts of the conductive polymer liquid A, dispersion A, MD1200, and pyrogallol (reducing agent) of Example 16 were changed to 3.85 g, 2.00 g, 1.76 g, and 0.01 g, respectively. In the same manner, a coating film of a conductive paint was prepared, and the surface resistivity was measured. Note that the conductive coating remained the same brown color as when no pyrogallol was added, no graphene oxide aggregation was observed, and the graphene oxide was not reduced. Furthermore, the color changed to black after the heat treatment, and graphene oxide was reduced. The results are shown in Table 3.

(実施例23)
実施例16の導電性高分子液Aと分散液AとMD1200およびピロガロール(還元剤)の添加量をそれぞれ3.85gと2.00gと0.88gおよび0.01gに変更した以外は実施例16と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。なお、導電性塗料はピロガロール無添加時と同じ茶褐色のままであり、酸化グラフェンの凝集も認められておらず、酸化グラフェンは還元されていなかった。さらに、加熱処理後には色が黒色に変化しており、酸化グラフェンの還元が起こっていた。結果を表3に示す。
(Example 23)
Example 16 except that the addition amounts of the conductive polymer liquid A, dispersion A, MD1200, and pyrogallol (reducing agent) of Example 16 were changed to 3.85 g, 2.00 g, 0.88 g, and 0.01 g, respectively. In the same manner, a coating film of a conductive paint was prepared, and the surface resistivity was measured. Note that the conductive coating remained the same brown color as when no pyrogallol was added, no graphene oxide aggregation was observed, and the graphene oxide was not reduced. Furthermore, the color changed to black after the heat treatment, and graphene oxide was reduced. The results are shown in Table 3.

(実施例24)
実施例16の導電性高分子液Aと分散液AとMD1200およびピロガロール(還元剤)の添加量をそれぞれ1.92gと2.00gと2.94gおよび0.0125gに変更した以外は実施例16と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。なお、導電性塗料はピロガロール無添加時と同じ茶褐色のままであり、酸化グラフェンの凝集も認められておらず、酸化グラフェンは還元されていなかった。さらに、加熱処理後には色が黒色に変化しており、酸化グラフェンの還元が起こっていた。結果を表3に示す。
(Example 24)
Example 16 except that the addition amounts of the conductive polymer liquid A, dispersion A, MD1200, and pyrogallol (reducing agent) of Example 16 were changed to 1.92 g, 2.00 g, 2.94 g, and 0.0125 g, respectively. In the same manner, a coating film of a conductive paint was prepared, and the surface resistivity was measured. Note that the conductive coating remained the same brown color as when no pyrogallol was added, no graphene oxide aggregation was observed, and the graphene oxide was not reduced. Furthermore, the color changed to black after the heat treatment, and graphene oxide was reduced. The results are shown in Table 3.

(実施例25)
実施例16の導電性高分子液Aと分散液AとMD1200およびピロガロール(還元剤)の添加量をそれぞれ1.92gと2.00gと1.47gおよび0.0125gに変更した以外は実施例16と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。なお、導電性塗料はピロガロール無添加時と同じ茶褐色のままであり、酸化グラフェンの凝集も認められておらず、酸化グラフェンは還元されていなかった。さらに、加熱処理後には色が黒色に変化しており、酸化グラフェンの還元が起こっていた。結果を表3に示す。
(Example 25)
Example 16 except that the addition amounts of the conductive polymer liquid A, dispersion A, MD1200, and pyrogallol (reducing agent) of Example 16 were changed to 1.92 g, 2.00 g, 1.47 g, and 0.0125 g, respectively. In the same manner, a coating film of a conductive paint was prepared, and the surface resistivity was measured. Note that the conductive coating remained the same brown color as when no pyrogallol was added, no graphene oxide aggregation was observed, and the graphene oxide was not reduced. Furthermore, the color changed to black after the heat treatment, and graphene oxide was reduced. The results are shown in Table 3.

(実施例26)
実施例16の導電性高分子液Aと分散液AとMD1200およびピロガロール(還元剤)の添加量をそれぞれ1.92gと2.00gと0.88gおよび0.0125gに変更した以外は実施例16と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。なお、導電性塗料はピロガロール無添加時と同じ茶褐色のままであり、酸化グラフェンの凝集も認められておらず、酸化グラフェンは還元されていなかった。さらに、加熱処理後には色が黒色に変化しており、酸化グラフェンの還元が起こっていた。結果を表3に示す。
(Example 26)
Example 16 except that the addition amounts of the conductive polymer liquid A, dispersion A, MD1200, and pyrogallol (reducing agent) of Example 16 were changed to 1.92 g, 2.00 g, 0.88 g, and 0.0125 g, respectively. In the same manner, a coating film of a conductive paint was prepared, and the surface resistivity was measured. Note that the conductive coating remained the same brown color as when no pyrogallol was added, no graphene oxide aggregation was observed, and the graphene oxide was not reduced. Furthermore, the color changed to black after the heat treatment, and graphene oxide was reduced. The results are shown in Table 3.

(実施例27)
実施例16の導電性高分子液Aと分散液AとMD1200およびピロガロール(還元剤)の添加量をそれぞれ1.92gと2.00gと0.44gおよび0.0125gに変更した以外は実施例16と同様にして導電性塗料の塗布膜を作製し、表面抵抗率を測定した。なお、導電性塗料はピロガロール無添加時と同じ茶褐色のままであり、酸化グラフェンの凝集も認められておらず、酸化グラフェンは還元されていなかった。さらに、加熱処理後には色が黒色に変化しており、酸化グラフェンの還元が起こっていた。結果を表3に示す。
(Example 27)
Example 16 except that the addition amounts of the conductive polymer liquid A, dispersion A, MD1200, and pyrogallol (reducing agent) of Example 16 were changed to 1.92 g, 2.00 g, 0.44 g, and 0.0125 g, respectively. In the same manner, a coating film of a conductive paint was prepared, and the surface resistivity was measured. Note that the conductive coating remained the same brown color as when no pyrogallol was added, no graphene oxide aggregation was observed, and the graphene oxide was not reduced. Furthermore, the color changed to black after the heat treatment, and graphene oxide was reduced. The results are shown in Table 3.

Figure 2013035966
表3をみると、(PEDOT/PSS)÷(PEDOT/PSS+MD1200)が0.048の場合でも表面抵抗が低く、還元剤を添加した場合でも、パーコレーションしきい値は0.048よりも小さいことがわかる。このように、酸化グラフェンを所定量添加することで、還元剤を添加した場合でも、PEDOT/PSSの組成物に対するパーコレーションしきい値が小さくなっていることがわかる。
Figure 2013035966
Table 3 shows that even when (PEDOT / PSS) / (PEDOT / PSS + MD1200) is 0.048, the surface resistance is low, and even when a reducing agent is added, the percolation threshold is smaller than 0.048. I understand that. Thus, it can be seen that by adding a predetermined amount of graphene oxide, the percolation threshold for the PEDOT / PSS composition is reduced even when a reducing agent is added.

本発明によって得られる導電性塗料は、高い導電性が得られ、組成物に対するPEDOT/PSSのパーコレーションしきい値も小さくすることができることから、透明導電膜など各種コーティング用途や導電インキなどの機能性材料への応用が期待される。 Since the conductive paint obtained by the present invention has high conductivity and can reduce the percolation threshold value of PEDOT / PSS for the composition, it can be used for various coating applications such as a transparent conductive film and functional properties such as conductive ink. Application to materials is expected.

Claims (9)

(A)ポリ(3,4−エチレンジオキシ)チオフェン、(B)ポリスチレンスルホン酸及び(C)酸化グラフェンを含む組成物からなる導電性塗料であって、成分(A)、(B)及び(C)の各成分の合計質量に対する成分(C)の質量の比が0.02≦(C)/((A)+(B)+(C))≦0.45なる関係式を満たすことを特徴とする導電性塗料。 A conductive paint comprising a composition comprising (A) poly (3,4-ethylenedioxy) thiophene, (B) polystyrene sulfonic acid and (C) graphene oxide, wherein the components (A), (B) and ( The ratio of the mass of the component (C) to the total mass of each component of C) satisfies the relational expression of 0.02 ≦ (C) / ((A) + (B) + (C)) ≦ 0.45. Characteristic conductive paint. 成分(C)に占める厚さ5nm以下の粒子の個数の割合が60%以上であることを特徴とする請求項1記載の導電性塗料。 The conductive paint according to claim 1, wherein the proportion of the number of particles having a thickness of 5 nm or less in the component (C) is 60% or more. 成分(C)の粒子の平均粒子径が1μm以上であることを特徴とする請求項1〜2のいずれかに記載の導電性塗料。 The conductive paint according to claim 1, wherein the average particle size of the component (C) particles is 1 μm or more. 組成物が更に(D)バインダーを含むことを特徴とする請求項1〜3のいずれかに記載の導電性塗料。 The conductive paint according to claim 1, wherein the composition further comprises (D) a binder. (D)バインダーの質量割合が0.01≦((A)+(B))/((A)+(B)+(D))≦0.3の関係であることを特徴とする請求項4記載の導電性塗料。 The mass ratio of (D) binder is 0.01 ≦ ((A) + (B)) / ((A) + (B) + (D)) ≦ 0.3. 4. The conductive paint according to 4. (D)バインダーがポリエステル樹脂であることを特徴とする請求項4または請求項5記載の導電性塗料。 6. The conductive paint according to claim 4, wherein (D) the binder is a polyester resin. 組成物が更に還元剤を含むことを特徴とする請求項1〜6のいずれかに記載の導電性塗料。 The conductive paint according to claim 1, wherein the composition further contains a reducing agent. 還元剤が2つ以上の水酸基を有することを特徴とする請求項7記載の導電性塗料。 The conductive paint according to claim 7, wherein the reducing agent has two or more hydroxyl groups. 還元剤がヒドロキノン、ピロガロール、カテコール、レゾルシノール及び没食子酸からなる群から選ばれる少なくとも1種であることを特徴とする請求項8記載の導電性塗料。 The conductive paint according to claim 8, wherein the reducing agent is at least one selected from the group consisting of hydroquinone, pyrogallol, catechol, resorcinol and gallic acid.
JP2011174205A 2011-08-09 2011-08-09 Conductive paint Expired - Fee Related JP5748606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011174205A JP5748606B2 (en) 2011-08-09 2011-08-09 Conductive paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011174205A JP5748606B2 (en) 2011-08-09 2011-08-09 Conductive paint

Publications (2)

Publication Number Publication Date
JP2013035966A true JP2013035966A (en) 2013-02-21
JP5748606B2 JP5748606B2 (en) 2015-07-15

Family

ID=47885869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011174205A Expired - Fee Related JP5748606B2 (en) 2011-08-09 2011-08-09 Conductive paint

Country Status (1)

Country Link
JP (1) JP5748606B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468057A (en) * 2013-08-23 2013-12-25 苏州艾特斯环保材料有限公司 Graphene conductive ink
KR20140120557A (en) * 2013-04-03 2014-10-14 주식회사 동진쎄미켐 Moisture transmission resistant coating composition comprising graphene oxide and silicon
WO2014200035A1 (en) * 2013-06-13 2014-12-18 住友ベークライト株式会社 Electromagnetic wave shielding film, and electronic component mounting substrate
JP2015023284A (en) * 2013-07-18 2015-02-02 ダエハ マンテック シーオー エルティディ Conductive coating solution composition with electromagnetic interference shielding function, production method of the same, and conductive coating film with electromagnetic interference shielding function produced using the composition
WO2015037198A1 (en) * 2013-09-11 2015-03-19 ナガセケムテックス株式会社 Composition for forming functional film, and functional film laminate
CN104893538A (en) * 2015-06-04 2015-09-09 栾万强 Waterborne antistatic coating as well as preparation method and application thereof
JP2016505077A (en) * 2012-10-29 2016-02-18 スリーエム イノベイティブ プロパティズ カンパニー Conductive ink and conductive polymer coating
JP2016517905A (en) * 2013-04-03 2016-06-20 ドンジン セミケム カンパニー リミテッド Coating composition comprising a bis-type silane compound
WO2016153429A1 (en) * 2015-03-24 2016-09-29 National University Of Singapore A resistive microfluidic pressure sensor
CN106085201A (en) * 2016-08-05 2016-11-09 代长华 A kind of graphene oxide electrically-conducting paint and preparation method thereof
KR101679916B1 (en) * 2014-02-14 2016-11-25 산꼬 가가꾸 고교 가부시끼가이샤 Conductive oligothiophene, method for production thereof, conductive composition, a coating material, antistatic coated material and electronic device
US20170018327A1 (en) * 2015-07-13 2017-01-19 National University Corporation Nagoya University Conducting film and method for producing the same
JP2017135379A (en) * 2016-01-21 2017-08-03 株式会社東芝 Transparent electrode, electronic device, and method of manufacturing the electronic device
WO2017145940A1 (en) 2016-02-22 2017-08-31 積水化学工業株式会社 Composite material, conductive material, conductive particles, and conductive film
JP2018534412A (en) * 2015-10-15 2018-11-22 ジ オーストラリアン ナショナル ユニヴァーシティーThe Australian National University Traction drive fluid
CN109125813A (en) * 2018-08-17 2019-01-04 西南交通大学 A kind of conductive adherency hydrogel preparation method and application for tissue repair
CN109836871A (en) * 2019-01-20 2019-06-04 中国科学院宁波材料技术与工程研究所 A kind of preparation method of graphene composite material and a kind of polymer coating
KR20190128880A (en) * 2018-05-09 2019-11-19 전남대학교산학협력단 Manufacturing method of environmentally-friendly super capacitor
CN111171552A (en) * 2020-02-20 2020-05-19 上海超碳石墨烯产业技术有限公司 Graphene flexible conductive composite film and preparation method thereof
US10795220B2 (en) * 2016-12-30 2020-10-06 Shenzhen China Star Optoelectronics Technology Co., Ltd. Graphene transparent conductive film and method for manufacturing the same
JP2021093377A (en) * 2021-03-04 2021-06-17 信越ポリマー株式会社 Method for producing conductive particle
JP2021526988A (en) * 2018-06-15 2021-10-11 アルセロールミタル Coated metal substrate
JP2021526987A (en) * 2018-06-15 2021-10-11 アルセロールミタル Coated non-conductive substrate
CN115678398A (en) * 2021-07-30 2023-02-03 北京化工大学 Antistatic waterborne polyurethane coating material and preparation method thereof
CN116080057A (en) * 2023-03-06 2023-05-09 可孚医疗科技股份有限公司 Triglyceride biosensor, nano-gold conductive composite material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063951A (en) * 2003-07-23 2005-03-10 Mitsubishi Gas Chem Co Inc Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof
KR20080078444A (en) * 2007-02-23 2008-08-27 엘지전자 주식회사 The method of managing broadcasting signals, the data structure for controlling the same, and the receiver for controlling the same
JP2009093873A (en) * 2007-10-05 2009-04-30 Shin Etsu Polymer Co Ltd Conductive polymer solution, conductive film coating, and input device
JP2010123280A (en) * 2008-11-17 2010-06-03 Mitsubishi Gas Chemical Co Inc Method of manufacturing conductor
JP2011500488A (en) * 2007-10-19 2011-01-06 ユニバーシティー オブ ウロンゴング Method for producing graphene
JP2011105569A (en) * 2009-11-20 2011-06-02 Fuji Electric Holdings Co Ltd Method for manufacturing graphene thin film
JP2011520241A (en) * 2008-02-05 2011-07-14 ジョン・エム・クレイン Printing electronics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063951A (en) * 2003-07-23 2005-03-10 Mitsubishi Gas Chem Co Inc Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof
KR20080078444A (en) * 2007-02-23 2008-08-27 엘지전자 주식회사 The method of managing broadcasting signals, the data structure for controlling the same, and the receiver for controlling the same
JP2009093873A (en) * 2007-10-05 2009-04-30 Shin Etsu Polymer Co Ltd Conductive polymer solution, conductive film coating, and input device
JP2011500488A (en) * 2007-10-19 2011-01-06 ユニバーシティー オブ ウロンゴング Method for producing graphene
JP2011520241A (en) * 2008-02-05 2011-07-14 ジョン・エム・クレイン Printing electronics
JP2010123280A (en) * 2008-11-17 2010-06-03 Mitsubishi Gas Chemical Co Inc Method of manufacturing conductor
JP2011105569A (en) * 2009-11-20 2011-06-02 Fuji Electric Holdings Co Ltd Method for manufacturing graphene thin film

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
H. CHANG, ET AL.: "A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode", ADVANCED FUNCTIONAL MATERIALS, vol. 20, JPN6015009020, 13 July 2010 (2010-07-13), pages 2893 - 2902, ISSN: 0003021983 *
KOICHI SUGANUMA, 外3名: "Fabrication of Transparent and Flexible Organic Field-Effect Transistors with Solution-Processed Gra", APPPLIED PHYSICS EXPRESS, vol. 4, no. 2, JPN6015007295, 19 January 2011 (2011-01-19), pages 1 - 021603, ISSN: 0003069114 *
S. B. BON, ET AL.: "Preparation of extended alkylated graphene oxide conducting layers and effect study on the electrica", CHEMICAL PHYSICS LETTERS, vol. 494, JPN6015009022, 11 June 2010 (2010-06-11), pages 264 - 268, ISSN: 0003021985 *
S. LEE, ET AL.: "Synthesis of aqueous dispersion of graphenes via reduction of graphite oxide in the solution of cond", JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, vol. 71, JPN6015009021, 16 December 2009 (2009-12-16), pages 483 - 486, ISSN: 0003021984 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9803097B2 (en) 2012-10-29 2017-10-31 3M Innovative Properties Company Conductive inks and conductive polymeric coatings
JP2016505077A (en) * 2012-10-29 2016-02-18 スリーエム イノベイティブ プロパティズ カンパニー Conductive ink and conductive polymer coating
KR102101749B1 (en) * 2013-04-03 2020-05-12 주식회사 동진쎄미켐 Moisture transmission resistant coating composition comprising graphene oxide and silicone
KR20140120557A (en) * 2013-04-03 2014-10-14 주식회사 동진쎄미켐 Moisture transmission resistant coating composition comprising graphene oxide and silicon
US10011739B2 (en) 2013-04-03 2018-07-03 Dongjin Semichem Co., Ltd. Coating composition comprising bis-type silane compound
JP2016517905A (en) * 2013-04-03 2016-06-20 ドンジン セミケム カンパニー リミテッド Coating composition comprising a bis-type silane compound
WO2014200035A1 (en) * 2013-06-13 2014-12-18 住友ベークライト株式会社 Electromagnetic wave shielding film, and electronic component mounting substrate
JP2015023284A (en) * 2013-07-18 2015-02-02 ダエハ マンテック シーオー エルティディ Conductive coating solution composition with electromagnetic interference shielding function, production method of the same, and conductive coating film with electromagnetic interference shielding function produced using the composition
CN103468057A (en) * 2013-08-23 2013-12-25 苏州艾特斯环保材料有限公司 Graphene conductive ink
JP2015078338A (en) * 2013-09-11 2015-04-23 ナガセケムテックス株式会社 Composition for formation of functional film and functional film laminate
WO2015037198A1 (en) * 2013-09-11 2015-03-19 ナガセケムテックス株式会社 Composition for forming functional film, and functional film laminate
KR101679916B1 (en) * 2014-02-14 2016-11-25 산꼬 가가꾸 고교 가부시끼가이샤 Conductive oligothiophene, method for production thereof, conductive composition, a coating material, antistatic coated material and electronic device
WO2016153429A1 (en) * 2015-03-24 2016-09-29 National University Of Singapore A resistive microfluidic pressure sensor
US10488276B2 (en) 2015-03-24 2019-11-26 National University Of Singapore Resistive microfluidic pressure sensor
CN107615031A (en) * 2015-03-24 2018-01-19 新加坡国立大学 Resistance-type miniflow pressure sensor
CN104893538A (en) * 2015-06-04 2015-09-09 栾万强 Waterborne antistatic coating as well as preparation method and application thereof
US10804004B2 (en) 2015-07-13 2020-10-13 National University Corporation Nagoya University Conducting film and method for producing the same
US20170018327A1 (en) * 2015-07-13 2017-01-19 National University Corporation Nagoya University Conducting film and method for producing the same
CN106356115A (en) * 2015-07-13 2017-01-25 国立大学法人名古屋大学 Conducting film and method for producing the same
JP2017022095A (en) * 2015-07-13 2017-01-26 国立大学法人名古屋大学 Conductive film and manufacturing method therefor
JP2018534412A (en) * 2015-10-15 2018-11-22 ジ オーストラリアン ナショナル ユニヴァーシティーThe Australian National University Traction drive fluid
US11124734B2 (en) 2015-10-15 2021-09-21 Flex-G Pty Ltd Traction drive fluid
JP2017135379A (en) * 2016-01-21 2017-08-03 株式会社東芝 Transparent electrode, electronic device, and method of manufacturing the electronic device
WO2017145940A1 (en) 2016-02-22 2017-08-31 積水化学工業株式会社 Composite material, conductive material, conductive particles, and conductive film
EP3421545A4 (en) * 2016-02-22 2020-03-11 Sekisui Chemical Co., Ltd. Composite material, conductive material, conductive particles, and conductive film
CN106085201A (en) * 2016-08-05 2016-11-09 代长华 A kind of graphene oxide electrically-conducting paint and preparation method thereof
US10795220B2 (en) * 2016-12-30 2020-10-06 Shenzhen China Star Optoelectronics Technology Co., Ltd. Graphene transparent conductive film and method for manufacturing the same
KR102094136B1 (en) * 2018-05-09 2020-03-27 전남대학교산학협력단 Manufacturing method of environmentally-friendly super capacitor
KR20190128880A (en) * 2018-05-09 2019-11-19 전남대학교산학협력단 Manufacturing method of environmentally-friendly super capacitor
JP2021526988A (en) * 2018-06-15 2021-10-11 アルセロールミタル Coated metal substrate
JP7429654B2 (en) 2018-06-15 2024-02-08 アルセロールミタル coated metal substrate
JP7374132B2 (en) 2018-06-15 2023-11-06 アルセロールミタル Coated non-conductive substrate
JP2021526987A (en) * 2018-06-15 2021-10-11 アルセロールミタル Coated non-conductive substrate
US11945963B2 (en) 2018-06-15 2024-04-02 Arcelormittal Coated non-conductive substrate
CN109125813B (en) * 2018-08-17 2021-01-29 西南交通大学 Preparation method and application of conductive adhesive hydrogel for tissue repair
CN109125813A (en) * 2018-08-17 2019-01-04 西南交通大学 A kind of conductive adherency hydrogel preparation method and application for tissue repair
CN109836871A (en) * 2019-01-20 2019-06-04 中国科学院宁波材料技术与工程研究所 A kind of preparation method of graphene composite material and a kind of polymer coating
CN111171552A (en) * 2020-02-20 2020-05-19 上海超碳石墨烯产业技术有限公司 Graphene flexible conductive composite film and preparation method thereof
JP2021093377A (en) * 2021-03-04 2021-06-17 信越ポリマー株式会社 Method for producing conductive particle
JP7133054B2 (en) 2021-03-04 2022-09-07 信越ポリマー株式会社 Method for producing conductive particles
CN115678398A (en) * 2021-07-30 2023-02-03 北京化工大学 Antistatic waterborne polyurethane coating material and preparation method thereof
CN116080057A (en) * 2023-03-06 2023-05-09 可孚医疗科技股份有限公司 Triglyceride biosensor, nano-gold conductive composite material and preparation method thereof

Also Published As

Publication number Publication date
JP5748606B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5748606B2 (en) Conductive paint
Zhang et al. Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films
Zhao et al. PEDOT-based composites as electrode materials for supercapacitors
Cho et al. Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT: PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor
Jo et al. Stable aqueous dispersion of reduced graphene nanosheets via non-covalent functionalization with conducting polymers and application in transparent electrodes
Valentini et al. A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films
Li et al. Synthesis and electrochemical applications of the composites of conducting polymers and chemically converted graphene
Tung et al. Poly (ionic liquid)-stabilized graphene sheets and their hybrid with poly (3, 4-ethylenedioxythiophene)
Imani et al. Facile synthesis and characterization of polypyrrole-multiwalled carbon nanotubes by in situ oxidative polymerization
Sang et al. Electromagnetic interference shielding performance of polyurethane composites: A comparative study of GNs-IL/Fe3O4 and MWCNTs-IL/Fe3O4 hybrid fillers
Han et al. Characterization and electrical properties of conductive polymer/colloidal graphite oxide nanocomposites
Kumar et al. Carbon-polyaniline nanocomposites as supercapacitor materials
Lai et al. Flexible Poly (vinyl alcohol)/reduced graphene oxide coated carbon composites for electromagnetic interference shielding
Kim et al. Influence of Ag doped graphene on electrochemical behaviors and specific capacitance of polypyrrole-based nanocomposites
US20160254070A1 (en) Hybrid pani/carbon nano-composites for production of thin, transparent and conductive films
Mo et al. Flexible transparent conductive films combining flexographic printed silver grids with CNT coating
Liu et al. Controllable reduction of graphene oxide and its application during the fabrication of high dielectric constant composites
JP5554552B2 (en) Transparent conductive film and method for producing the same
Trang et al. Preparation and characterization of graphene composites with conducting polymers
Zheming et al. Electrical properties and morphology of highly conductive composites based on polypropylene and hybrid fillers
JP2015508556A (en) Laminated transparent electrode containing metal nanowires and carbon nanotubes
KR20130104867A (en) Transparent conductive films by graphene oxide/silver nanowire having high flexibilities
Rahman et al. Prospects of conducting polymer and graphene as counter electrodes in dye-sensitized solar cells
Dhibar et al. Copper chloride‐doped polyaniline/multiwalled carbon nanotubes nanocomposites: Superior electrode material for supercapacitor applications
Azoubel et al. Controlling Adhesion Properties of SWCNT–PET Films Prepared by Wet Deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150512

R151 Written notification of patent or utility model registration

Ref document number: 5748606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees