WO2011074371A1 - Near infrared ray absorbent material and process for production thereof - Google Patents

Near infrared ray absorbent material and process for production thereof Download PDF

Info

Publication number
WO2011074371A1
WO2011074371A1 PCT/JP2010/070557 JP2010070557W WO2011074371A1 WO 2011074371 A1 WO2011074371 A1 WO 2011074371A1 JP 2010070557 W JP2010070557 W JP 2010070557W WO 2011074371 A1 WO2011074371 A1 WO 2011074371A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
curable
infrared absorbing
composition
group
Prior art date
Application number
PCT/JP2010/070557
Other languages
French (fr)
Japanese (ja)
Inventor
友和 戸澤
雅大 藤原
越生 堀井
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009287833A external-priority patent/JP5878680B2/en
Priority claimed from JP2010159025A external-priority patent/JP5695356B2/en
Priority claimed from JP2010159026A external-priority patent/JP2012020448A/en
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2011074371A1 publication Critical patent/WO2011074371A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups

Definitions

  • the present invention relates to a near-infrared absorbing material and a manufacturing method thereof.
  • Imaging optical devices such as cameras and video use silicon diode elements, complementary metal oxide semiconductors (C-MOS), charge-coupled elements (CCDs), etc. to convert optical signals into electrical signals.
  • C-MOS complementary metal oxide semiconductors
  • CCDs charge-coupled elements
  • photoelectric conversion elements have a light sensitive region in a wide range from 300 nm to 1000 nm from the visible light region to the near infrared region, they are highly sensitive in the near infrared region, and the projected image has color blur and distortion. . Therefore, it is required to efficiently cut light in the near infrared region 700 to 1100 nm while transmitting visible light.
  • an optical component obtained by molding a resin composition in which a near-infrared absorber is blended with an acrylic resin described in Patent Document 2 is used for an infrared cut filter.
  • Patent Document 3 a means for applying a near-infrared absorbing coating to a substrate using a coating agent containing an organic near-infrared absorbing dye has been developed to facilitate the formation of a near-infrared absorbing filter. Has been.
  • conventional near-infrared absorbing materials made of transparent resin have insufficient heat resistance.
  • Patent Document 4 there is an example in which a near-infrared absorbing compound is added to various thermoplastic resins to form a molded body.
  • the near-infrared absorbing compound is thermally deteriorated.
  • Patent Document 5 a curable coating agent having near infrared absorption properties excellent in heat resistance and light resistance has not been disclosed so far.
  • near-infrared absorbing materials there are generally limitations on the dispersibility and solubility of the near-infrared absorbing compound in the base resin, and the desired visible light transmittance, near-infrared absorptivity, and heat resistance. It was difficult to obtain a near-infrared absorbing material having
  • the conventional near-infrared absorbing material made of transparent resin has low reliability in long-term use, and only a limited number of members are applicable.
  • a near-infrared absorbing composition for a solid-state imaging device that sufficiently absorbs light in the region of 650 to 750 nm without losing infrared absorption capability at a temperature of about 180 ° C. in the process of manufacturing the solid-state imaging device
  • a curable composition and a cured product that can maintain near-infrared absorption characteristics and optical transparency at 260 ° C. close to the upper limit of the reflow temperature have not been known so far.
  • the present invention has been made in view of the above-described problems, and its purpose is to have a large absorption in the near infrared region, and there is substantially no change in optical characteristics under high temperature conditions such as a solder reflow process.
  • the object is to realize a near-infrared absorbing material and an optical material containing the near-infrared absorbing material.
  • the curable resin composition according to the present invention has an absorption in the entire wavelength range of 700 to 1100 nm after the cured resin composition is held at 260 ° C. for 60 seconds.
  • the average light transmittance at 400 to 600 nm is 50% or more and the average transmittance at 750 to 850 nm is 20% or less in the cured resin composition.
  • the change rate of the transmittance at a wavelength of 750 nm is within ⁇ 5%.
  • the manufacturing method of the near-infrared absorption material which concerns on this invention is a manufacturing method of the said near-infrared absorption material which concerns on this invention, and a near-infrared absorptivity with respect to 100 weight part of organic solvents.
  • a solution in which the compound (B-2) is dispersed so as to be 1 to 50 parts by weight is prepared, and the solution is mixed with the curable composition (A), the nonionic infrared absorbing compound (B-1), and It is characterized by being applied to the surface of a molded body obtained from a transparent resin composition containing
  • the curable coating agent according to the present invention is a curable coating agent comprising the curable resin composition according to the present invention in order to solve the above-mentioned problems, and as a near-infrared absorbing compound (B), composite oxidation It includes at least one selected from the group consisting of tungsten compounds, phthalocyanine compounds, and naphthalocyanine compounds, and at least one selected from the group consisting of perylene compounds and quatarylene compounds.
  • the curable composition which concerns on this invention is a curable composition which consists of a curable resin composition which concerns on this invention, (A) an organic compound having at least two carbon-carbon double bonds reactive with SiH groups in one molecule; (B) a hydrosilylation catalyst; (C) a compound containing at least two SiH groups in one molecule; (D) a near-infrared absorbing composition comprising a quatarylene compound and at least one compound selected from a phthalocyanine compound and a naphthalocyanine compound; It is characterized by containing.
  • the optical material according to the present invention is characterized in that the near-infrared absorbing material according to the present invention is included as an infrared shielding body.
  • a near-infrared absorbing material having a large absorption in the near-infrared region and causing substantially no change in optical characteristics under high-temperature conditions such as a solder reflow process, and an optical material including the near-infrared absorbing material can be provided.
  • the cured resin composition of the present invention has absorption in the entire wavelength range of 700 to 1100 nm, and the operation of cooling to room temperature after holding at 260 ° C. for 60 seconds is repeated three times.
  • the average light transmittance at 400 to 600 nm in the cured resin composition is 50% or more
  • the average transmittance at 750 to 850 nm is 20% or less
  • the rate is within ⁇ 5%.
  • the near-infrared absorbing material of the present invention is an operation in which the cured resin composition has absorption in the entire wavelength range of 700 to 1100 nm and is cooled to room temperature after being held at 260 ° C. for 60 seconds. Before and after the reflow test repeated three times, the cured resin composition has an average light transmittance of 400 to 600 nm of 50% or more, an average transmittance of 750 to 850 nm of 20% or less, and a wavelength of 750 nm. The change rate of the transmittance is within ⁇ 5%.
  • the near-infrared absorbing material exhibiting the above physical properties, for example, the following near-infrared absorbing materials (I) to (III) are preferable.
  • a near-infrared absorbing compound (B-2) is contained on the surface of a molded product obtained from a transparent resin composition containing the curable composition (A) and a nonionic infrared absorbing compound (B-1).
  • Near-infrared absorbing material (I) which has a layer to do.
  • the near-infrared absorbing compound (B) at least one selected from the group consisting of complex tungsten oxide compounds, phthalocyanine compounds, and naphthalocyanine compounds, and at least selected from the group consisting of perylene compounds and quatarylene compounds
  • a near-infrared absorbing material (II) obtained by applying a curable coating agent containing at least one kind to at least one surface of a transparent substrate, evaporating the solvent, and then curing.
  • a near-infrared-absorbing composition comprising: a compound containing: a (d) quatarylene compound; and at least one compound selected from a phthalocyanine compound and a naphthalocyanine compound; Near-infrared absorbing material (cured product) (III) obtained by curing.
  • the near-infrared absorbing material (I) is formed on the surface of a molded product obtained from a transparent resin composition containing a curable composition (A) and a nonionic infrared-absorbing compound (B-1). It has a layer containing the absorbing compound (B-2).
  • Curable composition (A) As the curable composition (A), a curable acrylic composition, a curable norbornene composition, and a curable polyimide composition after considering the compatibility between the curable composition (A) and the near-infrared absorbing compound. Products, curable epoxy silicone compositions, and curable silicone compositions can be used. Hereinafter, each curable composition will be described.
  • Curable Acrylic Composition Generally, a curable acrylic composition is often cured with light or heat, and a photocurable acrylic resin is a photocurable acrylic that is cured using light such as ultraviolet rays. Compositions are also known. Such a photocurable acrylic composition has a high curing rate and can be cured at room temperature.
  • reaction stock solution containing a metathesis catalyst and a norbornene-based monomer and a reaction stock solution containing a co-catalyst and a norbornene-based monomer are prepared, and after mixing both the reaction stock solutions, the metathesis polymerization is started.
  • the polymerization is completed by reacting to the extent that the unreacted monomer does not substantially remain.
  • thermosetting norbornene polymer obtained by bulk polymerization of norbornene monomers according to a conventional method.
  • the norbornene-based monomer that can be used in the present invention may be any monomer as long as it has a norbornene ring, but if a tricyclic or higher polycyclic norbornene-based monomer is used, a polymer having a high heat distortion temperature can be obtained. Further, in order to make the ring-opening polymer to be thermosetting type, it is necessary to use at least 10% by weight, preferably 30% by weight or more of a crosslinkable monomer in all monomers.
  • norbornene monomers include bicyclic compounds such as norbornene and norbornadiene, tricyclic compounds such as dicyclopentadiene and dihydrodicyclopentadiene, tetracyclic compounds such as tetracyclododecene, and pentacyclic compounds such as tricyclopentadiene.
  • Heterocycles such as tetracyclopentadiene, alkyl substitutions thereof (eg, methyl, ethyl, propyl, butyl substitutions, etc.), alkenyl substitutions (eg, vinyl substitutions), alkylidene substitutions (eg, ethylidene substitutions) Etc.), aryl-substituted products (for example, phenyl, tolyl, naphthyl-substituted products, etc.), substituted products having polar groups such as ester groups, ether groups, cyano groups, and halogen atoms.
  • alkyl substitutions thereof eg, methyl, ethyl, propyl, butyl substitutions, etc.
  • alkenyl substitutions eg, vinyl substitutions
  • alkylidene substitutions eg, ethylidene substitutions
  • Etc. aryl-substituted products
  • substituted products having polar groups such as
  • the crosslinkable monomer is a polycyclic norbornene-based monomer having two or more reactive double bonds, and specific examples thereof include dicyclopentadiene, tricyclopentadiene, and tetracyclopentadiene.
  • the norbornene monomer and the crosslinkable monomer are the same, it is not necessary to use other crosslinkable monomers.
  • a monocyclic cycloolefin such as cyclobutene, cyclopentene, cyclopentadiene, cyclooctene, cyclododecene, or the like that can be ring-opening copolymerized with one or more of the norbornene-based monomers may be used in combination as long as the object of the present invention is not impaired. it can.
  • a known metathesis catalyst system comprising a metathesis catalyst and an activator can be used as a catalyst for ring-opening polymerization of a norbornene monomer.
  • the metathesis catalyst include halides such as tungsten, molybdenum, and tantalum, oxyhalides, oxides, and organic ammonium salts.
  • the activator (cocatalyst) include alkylaluminum halides, alkoxyalkylaluminum halides, aryloxyalkylaluminum halides, and organic tin compounds.
  • the metathesis catalyst is usually used in an amount of about 0.01 to 50 mmol, preferably 0.1 to 20 mmol, relative to 1 mol of the norbornene monomer.
  • the activator is preferably used in the range of 1 to 10 (molar ratio) with respect to the metathesis catalyst.
  • the metathesis catalyst and the activator are both preferably dissolved in the monomer, but may be used by suspending or dissolving in a small amount of solvent as long as the properties of the product are not essentially impaired.
  • thermosetting polyimide composition examples include, but are not limited to, nadic acid type polyimides such as bismaleimide type polyimide and allyl nadiimide, and acetylene type polyimides. .
  • Thermosetting polyimide has the advantage that it is easier to process than thermoplastic polyimide and non-thermoplastic (aromatic) polyimide. Although the high temperature characteristics are inferior to those of non-thermoplastic polyimides, it is a very good class among various organic polymers. Moreover, since voids and cracks hardly occur during curing, it is suitable as a component of the resin composition of the present invention.
  • the thermosetting polyimide can be obtained, for example, by using a low molecular weight monomer or oligomer having an unsaturated group at the terminal as a prepolymer, and three-dimensionally cross-linking it through an addition reaction, a condensation reaction or a radical reaction.
  • thermosetting polyimide for example, an allyl nadiimide type, a maleimide type, a triazine type, or a Michael addition type polyimide can be used.
  • the addition type polyimide is cured by an addition reaction of unsaturated groups in the prepolymer (low molecular weight monomer or oligomer). Therefore, condensed water and other volatile substances are not generated during curing, and a composition free from bubbles and cracks is obtained.
  • Prepolymers of addition type polyimides include, for example, reaction of allyl nadic acid anhydride and diamine (hexamethylenediamine, bis (4-aminophenyl) methane, m-xylylenediamine, etc.), allyl nadic acid anhydride and hydroxyphenyl It can be obtained by reaction with amine or allylamine, reaction of maleic anhydride or the like with diamine (for example, diaminodiphenylmethane), reaction of vinylbenzyl compound or the like with maleimide or the like.
  • diamine for example, diaminodiphenylmethane
  • the curable epoxy silicone composition has at least one aliphatic unsaturated monovalent hydrocarbon group in one molecule as an essential component, and at least 1 Use of an organosilicon compound having at least one silicon-bonded hydroxyl group, a hydrogenated epoxy resin partially or completely hydrogenated with an aromatic epoxy resin or aromatic ring, and a resin comprising an organohydrogenpolysiloxane It is preferable. In this case, it is preferable to mix a platinum group metal catalyst and an aluminum curing catalyst, and the curing mode is preferably heat curing.
  • curable Silicone Composition As the curable silicone composition, conventionally known curable silicone compositions can be used. For example, addition reaction curable silicone compositions, condensation reaction curable silicone compositions, An organic peroxide curable silicone composition and an ultraviolet curable silicone composition can be mentioned, and since the handling workability thereof is easy, a condensation reaction curable silicone composition or an addition reaction curable silicone composition is preferable. In the invention, addition reaction curable silicone compositions are particularly preferred.
  • Examples of the addition reaction curable silicone composition that can be preferably used include (a) an organic compound having two or more carbon-carbon double bonds having reactivity with SiH groups in one molecule, and (b) hydrosilyl. And a composition containing (c) a compound having at least two SiH groups in one molecule. By using the composition, it is possible to provide a material having both molding processability and reflow resistance.
  • Component (a) is an organic compound containing two or more carbon-carbon double bonds having reactivity with SiH groups in one molecule.
  • the organic compound does not contain a siloxane unit (Si—O—Si) such as polysiloxane-organic block copolymer or polysiloxane-organic graft copolymer, but includes C, H, N, O, S, and halogen. It is preferable that an element selected from the group consisting of: Those containing siloxane units may cause gas permeability and repelling problems.
  • the bonding position of the carbon-carbon double bond having reactivity with the SiH group is not particularly limited, and may be present anywhere in the molecule.
  • Component (a) organic compounds can be classified into organic polymer compounds and organic monomer compounds.
  • organic polymer compounds examples include polyether, polyester, polyarylate, polycarbonate, saturated hydrocarbon, unsaturated hydrocarbon, poly (meth) acrylate ester, polyamide, phenol-formaldehyde (Phenol resin type) and polyimide type compounds can be used.
  • polyesters, polycarbonates, and poly (meth) acrylates are preferred from the viewpoint of heat resistance and transparency.
  • organic monomer compounds examples include aromatic hydrocarbons such as phenols, bisphenols, benzene, and naphthalene; linear aliphatic hydrocarbons; alicyclic hydrocarbons such as cyclohexane, norbornene, and adamantane; Heterocyclic compounds such as isocyanuric compounds, tetrahydropyrans and triazines, and mixtures thereof.
  • the carbon-carbon double bond having reactivity with the SiH group of component (a) is not particularly limited, but the following general formula (I)
  • R 1 represents a hydrogen atom or a methyl group.
  • R 1 represents a hydrogen atom or a methyl group.
  • the group whose R ⁇ 1 > in the said general formula (I) is a hydrogen atom is especially preferable.
  • an alicyclic group having a partial structure represented by the following general formula (II) in the ring is the heat resistance of the cured product. Is preferable from the viewpoint of high.
  • R 2 each independently represents a hydrogen atom or a methyl group.
  • R 2 each independently represents a hydrogen atom or a methyl group.
  • an alicyclic group having a partial structure in which R 2 is a hydrogen atom in the general formula (II) in the ring is preferable.
  • the carbon-carbon double bond having reactivity with the SiH group may be directly bonded to the skeleton of the component (a) or may be covalently bonded through a divalent or higher substituent.
  • the divalent or higher valent substituent is not particularly limited as long as it is a substituent having 0 to 10 carbon atoms, but includes only an element selected from the group consisting of C, H, N, O, S, and halogen as a constituent element. Those are preferred. Examples of these substituents include
  • Two or more of these divalent or higher valent substituents may be connected by a covalent bond to form one divalent or higher valent substituent.
  • Examples of the group covalently bonded to the skeleton as described above include vinyl group, allyl group, methallyl group, acrylic group, methacryl group, 2-hydroxy-3- (allyloxy) propyl group, 2-allylphenyl group, 3 -Allylphenyl group, 4-allylphenyl group, 2- (allyloxy) phenyl group, 3- (allyloxy) phenyl group, 4- (allyloxy) phenyl group, 2- (allyloxy) ethyl group, 2,2-bis (allyl) Oxymethyl) butyl group, 3-allyloxy-2,2-bis (allyloxymethyl) propyl group, vinyl ether group,
  • component (a) examples include diallyl phthalate, triallyl trimellitate, diethylene glycol bisallyl carbonate, trimethylolpropane diallyl ether, trimethylolpropane triallyl ether, pentaerythritol triallyl ether, pentaerythritol tetraallyl ether, 1 , 1,2,2-tetraallyloxyethane, diarylidenepentaerythritol, triallyl cyanurate, triallyl isocyanurate, diallyl monoglycidyl isocyanurate, diallyl isocyanuric acid, diallyl monobenzyl isocyanurate, 1,2,4 -Trivinylcyclohexane, 1,4-butanediol divinyl ether, nonanediol divinyl ether, 1,4-cyclohexanedimethanol divinyl ether , Triethylene glycol divinyl ether, trimethylol
  • the glycidyl group of a conventionally known epoxy resin may be partially or entirely replaced with an allyl group or a (meth) acryloyl group.
  • a low molecular weight compound which is difficult to express separately as described above by dividing into a skeleton portion and an alkenyl group (a carbon-carbon double bond having reactivity with a SiH group) can also be used.
  • these low molecular weight compounds include aliphatic chain polyene compound systems such as butadiene, isoprene, octadiene and decadiene; fats such as cyclopentadiene, cyclohexadiene, cyclooctadiene, dicyclopentadiene, tricyclopentadiene and norbornadiene.
  • examples include aliphatic cyclic polyene compound systems; substituted aliphatic cyclic olefin compound systems such as vinylcyclopentene and vinylcyclohexene.
  • the average number of carbon-carbon double bonds reactive with the SiH group of component (a) may be at least 2 per molecule (preferably 2 to 6 per molecule). When it is desired to further improve the mechanical strength, it is preferably more than 2, more preferably 3 or more.
  • those having a molecular weight of less than 900 are preferable from the viewpoint of high mechanical heat resistance and from the viewpoint of low formability of the raw material liquid, good moldability, handleability, and coatability. Those less than 700 are more preferred, and those less than 500 are even more preferred.
  • the component (a) preferably has a viscosity at 23 ° C. of less than 100 Pa ⁇ s, more preferably less than 30 Pa ⁇ s, and still more preferably less than 3 Pa ⁇ s. .
  • the viscosity here refers to a value measured by an E-type viscometer.
  • Component (a) has the following general formula (IV) from the viewpoint of high heat resistance (reflow resistance) and light resistance.
  • R 3 represents a hydrogen atom or a monovalent organic group having 1 to 50 carbon atoms, and each R 3 may be different or the same, and at least two R 3 may be SiH groups and Including a carbon-carbon double bond having the reactivity of The compound represented by these is preferable.
  • R 3 in the general formula (IV) is composed only of an element selected from the group consisting of C, H, O, and N from the viewpoint that the heat resistance of the obtained cured product can be further increased.
  • An organic group is preferable, and the organic group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 4 carbon atoms.
  • Examples of these preferable R 3 include methyl group, ethyl group, propyl group, butyl group, phenyl group, benzyl group, phenethyl group, vinyl group, allyl group, glycidyl group,
  • R 3 in the general formula (IV) is only an element selected from the group consisting of C, H, and O as constituent elements from the viewpoint that the chemical thermal stability of the resulting cured product can be improved. It is preferably a monovalent organic group having 1 to 50 carbon atoms, more preferably a monovalent hydrocarbon group having 1 to 50 carbon atoms. Examples of these preferable R 3 include methyl group, ethyl group, propyl group, butyl group, phenyl group, benzyl group, phenethyl group, vinyl group, allyl group, glycidyl group,
  • At least one (preferably at least two) of the three R 3 is from the viewpoint of good reactivity.
  • R 5 represents a hydrogen atom or a methyl group. More preferably, it is a monovalent organic group having 1 to 50 carbon atoms, which contains at least one group represented by formula (II) and contains only elements selected from the group consisting of C, H, O and N as constituent elements. At least two of the three R 3 are represented by the following general formula (VII)
  • R 6 represents a direct bond or a divalent organic group having 1 to 48 carbon atoms
  • R 7 represents a hydrogen atom or a methyl group.
  • the organic group is represented by the formula (R 7 and R 6 may be different or the same).
  • R 6 in the general formula (VII) is a direct bond or a divalent organic group having 1 to 48 carbon atoms.
  • the direct bond or carbon It is preferably a divalent organic group having 1 to 20 carbon atoms, more preferably a direct bond or a divalent organic group having 1 to 10 carbon atoms, and a direct bond or a divalent organic group having 1 to 4 carbon atoms. More preferably, it is a group.
  • R 6 in the general formula (VII) is a direct bond or a group consisting of C, H, and O as constituent elements from the viewpoint that chemical thermal stability of the obtained cured product can be improved.
  • a divalent organic group having 1 to 48 carbon atoms containing only selected elements is preferred, and preferred examples of R 6 include the following.
  • R 7 in the general formula (VII) is a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint of good reactivity.
  • the organic compound represented by the general formula (IV) as described above it is necessary to contain two or more carbon-carbon double bonds having reactivity with the SiH group in one molecule. is there. From the viewpoint of further improving the heat resistance, it is more preferably an organic compound containing three or more carbon-carbon double bonds having reactivity with SiH groups in one molecule.
  • Preferred examples of the organic compound represented by the general formula (IV) as described above include triallyl isocyanurate, diallyl monoglycidyl isocyanurate, and mixtures thereof.
  • Component (a) can be used singly or in combination of two or more, and in order to adjust the flexibility of the resulting cured product, an organic compound having only one carbon-carbon double bond is suitably used. You may mix.
  • the component (a) is an aliphatic cyclic olefin compound having 6 to 50 carbon atoms having two or more vinyl groups or allyl groups, a vinyl group.
  • an isocyanuric derivative having two or more allyl groups is preferable.
  • C6-C50 aliphatic cyclic olefin compound having two or more vinyl groups or allyl groups include vinylcyclohexene, diallyl ether of 2,2-bis (4-hydroxycyclohexyl) propane, 1,2, Mention may be made of 4-trivinylcyclohexane.
  • isocyanuric derivatives having two or more vinyl groups or allyl groups include triallyl isocyanurate and diallyl monoglycidyl isocyanurate.
  • triallyl isocyanurate, diallyl monoglycidyl isocyanurate, diallyl ether of 2,2-bis (4-hydroxycyclohexyl) propane, and 1,2,4-trivinylcyclohexane are particularly preferable.
  • R 4 represents an organic group which may be substituted with a monovalent oxygen, nitrogen, sulfur or halogen atom having 1 to 50 carbon atoms, and each R 4 may be different or the same. May be good.
  • an organic compound having a structure represented by the formula (1) is preferable, and among them, a compound in which part or all of the glycidyl group bonded to the aromatic ring-containing epoxy resin is substituted with an allyl group is preferable.
  • divinylbenzenes divinylbiphenyl, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, and oligomers thereof, bisphenol A diallyl ether, bis [4- (2-allyloxy) ) Phenyl] sulfone, phenol novolac resin.
  • the hydrosilylation catalyst of component (b) is not particularly limited as long as it has catalytic activity for the hydrosilylation reaction.
  • platinum alone solid platinum supported on a support such as alumina, silica, carbon black; Platinum acid; complex of chloroplatinic acid and alcohol, aldehyde, ketone, etc .; platinum-olefin complex (for example, Pt (CH 2 ⁇ CH 2 ) 2 (PPh 3 ) 2 , Pt (CH 2 ⁇ CH 2 ) 2 Cl 2 ); Platinum-vinylsiloxane complexes (eg, Pt (ViMe 2 SiOSiMe 2 Vi) a , Pt [(MeViSiO) 4 ] b ); platinum-phosphine complexes (eg, Pt (PPh 3 ) 4 , Pt (PBu 3 ) 4 ); platinum - phosphite complex (e.g., Pt [P (OPh) 3 ] 4, Pt
  • platinum chloride-olefin complexes eg, platinum chloride-olefin complexes described in Modic US Pat. No. 3,516,946 are also useful in the present invention.
  • catalysts other than platinum compounds include RhCl (PPh) 3 , RhCl 3 , RhAl 2 O 3 , RuCl 3 , IrCl 3 , FeCl 3 , AlCl 3 , PdCl 2 .2H 2 O, NiCl 2 , TiCl 4. Etc.
  • chloroplatinic acid platinum-olefin complexes, platinum-vinylsiloxane complexes and the like are preferable from the viewpoint of catalytic activity.
  • these catalysts may be used independently and may be used together 2 or more types.
  • the amount of component (b) to be added is not particularly limited, but the lower limit of the preferable amount to be added is sufficient to have sufficient curability and keep the cost of the curable composition relatively low. 10 -8 mol per mol, and more preferably 10 -6 mole, 10 -1 moles per mole of the SiH group in the preferred amount of upper component (c), more preferably 10 -2 mol is there.
  • a cocatalyst can be used in combination with the catalyst.
  • the cocatalyst include a sulfur-based compound such as simple sulfur, and an amine-based compound such as triethylamine.
  • the addition amount of the co-catalyst is not particularly limited with respect to the hydrosilylation catalyst 1 mol, the lower limit 10 -2 mol, preferably in the range of the upper limit 10 2 mol, more preferably lower 10 -1 mol, the upper limit 10 mols It is.
  • Component (c) is a compound having at least two SiH groups in one molecule, but from the viewpoint of reducing compatibility with component (a) and volatility during curing, a polyorganosiloxane compound and an organic compound Are preferably partially reacted with each other (modified).
  • the reaction for modification is not particularly limited, and an addition reaction, a condensation reaction, a dehydrogenation reaction, and the like can be used. From the viewpoint that a side reaction is difficult to proceed and a SiH group-containing compound can be stably obtained, the following organic compounds are used.
  • a hydrosilylation product of the compound ( ⁇ ) and the polyorganosiloxane compound ( ⁇ ) (hereinafter sometimes referred to as “modified polyorganosiloxane compound”) is preferable.
  • Organic compound ( ⁇ ) Hereinafter, the organic compound ( ⁇ ) will be described.
  • the organic compound ( ⁇ ) may be an organic compound having at least one carbon-carbon double bond having reactivity with SiH group in one molecule, and the compounds listed in the component (a) are also the same. Can be used.
  • the organic compound ( ⁇ ) is represented by the following general formula (IV) from the viewpoint of further improving heat resistance and light resistance.
  • R 3 represents a hydrogen atom or a monovalent organic group having 1 to 50 carbon atoms, and each R 3 may be different or the same, and at least one R 3 may be a SiH group and Including a carbon-carbon double bond having the reactivity of It is preferable that it is an organic compound represented by these.
  • the organic compound ( ⁇ ) is preferably triallyl isocyanurate, diallyl monoglycidyl isocyanurate, or divinylbenzene from the viewpoint that heat resistance and light resistance can be further improved. Further, it is more preferable to use diallyl monoglycidyl isocyanurate or divinylbenzene because the degree of decrease in heat resistance and light transmittance on the long wavelength side is large.
  • styrene having one carbon-carbon double bond from the viewpoint of improving the refractive index, styrene having one carbon-carbon double bond, ⁇ -methylstyrene, allyl glycidyl ether, vinyl dioxolane, 4-vinyl-1-cyclohexene-1,2-epoxide, Compounds such as 4-vinyl-1,3-dioxolane, N-vinylcaprolactam, N-vinylphthalamide, 1-vinylpyrrolidone, monoallyldiglycidyl isocyanurate, and the following general formula (III)
  • R 4 represents an organic group which may be substituted with monovalent oxygen, nitrogen, sulfur or halogen atom having 1 to 50 carbon atoms, and each R 4 may be different and the same. Good.
  • a compound having one or two carbon-carbon double bonds having reactivity with a SiH group is preferable, and a compound having two is particularly preferable.
  • the compound having one carbon-carbon double bond examples include styrene, ⁇ -methylstyrene, allyl glycidyl ether, vinyl dioxolane, 4-vinyl-1-cyclohexene-1,2-epoxide, 4-vinyl-1 , 3-dioxolane, N-vinylcaprolactam, N-vinylphthalamide, 1-vinylpyrrolidone, monoallyl diglycidyl isocyanurate and the like.
  • the compound having two carbon-carbon double bonds include divinylbenzenes, divinylbiphenyl, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, and oligomers thereof,
  • a glycidyl group partially or entirely bonded to an aromatic ring-containing epoxy resin such as bisphenol A diallyl ether, bis [4- (2-allyloxy) phenyl] sulfone, or phenol novolak resin is preferably used. be able to.
  • organic compound ( ⁇ ) a compound represented by the following formula or a compound having a polycyclic aromatic hydrocarbon is used from the viewpoint that the heat resistance and refractive index of the obtained cured product can be further increased.
  • divinylbenzenes, bis [4- (2-allyloxy) phenyl] sulfone, and divinylnaphthalene are particularly preferable from the viewpoint of availability.
  • the various organic compounds ( ⁇ ) described above may be used alone or in combination of two or more.
  • the polyorganosiloxane compound ( ⁇ ) is not particularly limited as long as it is a polyorganopolysiloxane compound having at least 3 SiH groups in one molecule.
  • a polyorganopolysiloxane compound having at least 3 SiH groups in one molecule is used.
  • a chain, cyclic, branched or cage polyorganosiloxane compound having at least three SiH groups in one molecule is preferable. Specific compounds are described in Japanese Patent No. 35669919.
  • a chain organopolysiloxane having at least 3 SiH groups in one molecule is preferable, and in particular, at least 3 SiH groups in one molecule represented by the following formula:
  • a linear organopolysiloxane having the following formula is preferred.
  • R 9 , R 10 , and R 11 represent an organic group having 1 to 10 carbon atoms, and may be the same or different, l is 1 to 50, m is 0 to 50, and n is 2) To 50, p represents 0 to 50, q represents 3 to 50, and r represents a number from 0 to 50.
  • R 9 , R 10 and R 11 are preferably methyl groups from the viewpoints of availability and heat resistance, and are preferably phenyl groups from the viewpoint of increasing the strength of the cured product.
  • a branched organopolysiloxane is preferable from the viewpoint of high heat resistance of the cured product.
  • at least three SiH groups represented by the following formula are included in one molecule, and a T or Q structure is included in the molecule.
  • Branched or caged organopolysiloxanes are preferred.
  • R 12 and R 13 are the same or different and each represents an organic group having 1 to 10 carbon atoms, and n represents a number from 0 to 50.
  • R 12 and R 13 are particularly preferably methyl groups from the viewpoints of availability and heat resistance.
  • a cyclic organopolysiloxane is preferable, and among them, at least three SiH groups are represented in one molecule represented by the following general formula (VI). Cyclic organopolysiloxane is preferred.
  • R 14 and R 15 are the same or different and each represents an organic group composed of an element selected from the group consisting of C, H and O, n is 3 to 10, and m is 0 to 10) Represents the number of
  • the substituents R 3 and R 4 in the compound represented by the general formula (VI) are preferably organic groups having 1 to 10 carbon atoms, more preferably hydrocarbon groups, and methyl groups. Is more preferable. M is preferably 0.
  • 1,3,5,7-tetramethylcyclotetrasiloxane is preferable from the viewpoint of availability and reactivity.
  • the various polyorganosiloxane compounds ( ⁇ ) described above can be used alone or in combination of two or more.
  • the catalysts and promoters mentioned in the component (b) can be used in the same manner.
  • the addition amount of the catalyst is not particularly limited, but in order to keep the cost of the curable composition relatively low, the preferred lower limit of the addition amount is 10 ⁇ 8 mol per 1 mol of SiH groups of the polyorganosiloxane compound ( ⁇ ), More preferably, it is 10 ⁇ 6 mol, and the upper limit of the preferable addition amount is 10 ⁇ 1 mol, more preferably 10 ⁇ 2 mol, per 1 mol of SiH groups in the polyorganosiloxane compound ( ⁇ ).
  • the modified polyorganosiloxane compound in the present invention is a compound obtained by reacting an organic compound ( ⁇ ) and a polyorganosiloxane compound (compound ( ⁇ ) in the presence of a hydrosilylation catalyst.
  • the reaction temperature can be variously set.
  • the lower limit of the preferable temperature range is 30 ° C, more preferably 50 ° C
  • the upper limit of the preferable temperature range is 200 ° C, more preferably 150 ° C. If the reaction temperature is low, the reaction time for sufficiently reacting becomes long, and if the reaction temperature is high, it is not practical.
  • the reaction may be carried out at a constant temperature, but the temperature may be changed in multiple steps or continuously as required.
  • the reaction time and the pressure during the reaction can be set as required.
  • Oxygen can be used in the hydrosilylation reaction.
  • the hydrosilylation reaction can be promoted by adding oxygen to the gas phase portion of the reaction vessel. From the point of setting the amount of oxygen to be below the lower limit of explosion limit, the oxygen volume concentration in the gas phase must be controlled to 3% or less.
  • the oxygen volume concentration in the gas phase is preferably 0.1% or more, more preferably 1% or more, from the viewpoint that the effect of promoting the hydrosilylation reaction by addition of oxygen is observed.
  • a solvent may be used in the hydrosilylation reaction.
  • Solvents that can be used are not particularly limited as long as they do not inhibit the hydrosilylation reaction. Specific examples include hydrocarbon solvents such as benzene, toluene, hexane, heptane; tetrahydrofuran, 1,4-dioxane, 1, Ether solvents such as 3-dioxolane and diethyl ether; ketone solvents such as acetone and methyl ethyl ketone; halogen solvents such as chloroform, methylene chloride and 1,2-dichloroethane can be preferably used.
  • a solvent may be used independently and can also be used as 2 or more types of mixed solvents. As the solvent, toluene, tetrahydrofuran, 1,3-dioxolane and chloroform are preferable. The amount of solvent to be used can also be set as appropriate.
  • the mixing ratio of the organic compound ( ⁇ ) and the polyorganosiloxane compound ( ⁇ ) is not particularly limited as long as two or more SiH groups remain in one molecule. Considering the strength of the cured product of the present invention, since it is preferable that the ( ⁇ ) component has more SiH groups, the number of moles of carbon-carbon double bonds having reactivity with SiH groups in the organic compound ( ⁇ ).
  • the ratio of (A1) to the number of moles of SiH groups (B1) in the polyorganosiloxane compound ( ⁇ ) is preferably B1 / A1 ⁇ 2, and more preferably B1 / A1 ⁇ 2.5. preferable.
  • (1-2) Near-infrared absorbing compound In the near-infrared absorbing material (I), as a near-infrared absorbing compound, a nonionic infrared-absorbing compound (B-1) contained in the molded body and a layer on the surface of the molded body are contained.
  • the near infrared absorbing compound (B-2) As a near-infrared absorbing compound, a nonionic infrared-absorbing compound (B-1) contained in the molded body and a layer on the surface of the molded body are contained.
  • the near infrared absorbing compound (B-2) As a near-infrared absorbing compound, a nonionic infrared-absorbing compound (B-1) contained in the molded body and a layer on the surface of the molded body are contained.
  • Near-infrared rays generally represent a wavelength band of 700 to 2500 nm, but a region that needs to be cut in a light-sensitive region of an optical element represents a near-infrared wavelength band of approximately 700 to 1100 nm.
  • the near-infrared absorbing compound of the present application is a compound having a near-infrared absorbing ability, but can cover absorption in the near-infrared region of about 700 to 1100 nm.
  • the near-infrared absorbing compound preferably has a heat decomposition temperature of 260 ° C. or higher, preferably 300 ° C. or higher.
  • the near-infrared absorbing compound (B-1) is a nonionic compound. If the near-infrared absorbing compound in the molded body is an ionic compound, it will be modified or decomposed during curing of the matrix resin and will not exhibit its original absorption characteristics. There is a case.
  • the non-ionic near-infrared absorbing compound (B-1) is preferably a quatarylene compound and a perylene-based compound, or a combination thereof.
  • (B-2) is preferably an inorganic cesium-containing composite tungsten oxide.
  • the quatarylene compound and the perylene compound are preferably compounds having an absorption region band at 650 to 850 nm and a high heat resistance having a decomposition temperature of 300 ° C. or higher.
  • a compound represented by the following structural formula is used. Can be mentioned.
  • two Rs may be the same or different and are independent of each other and are hydrogen, ether functional 1-4 oxygen atoms, 1-4 imino groups, or 1-
  • the alkyl group in formula (VIII) may be linear or branched, and the alkyl-substituted phenyl group having 1 to 4 carbon atoms generally has 1 to 3 carbon atoms having 1 to 4 carbon atoms. It may have an alkyl substituent.
  • the nonionic near-infrared absorbing compound (B-1) a compound having solubility in an organic solvent, component (a) or component (c) is preferably used. When it is soluble in the organic solvent, component (a), or component (c), it becomes easy to produce the curable composition and the light transmittance in the visible light region is increased.
  • the solubility of the nonionic near-infrared absorbing compound (B-1) in the organic solvent, component (a), or component (c) is 100% by mass of the organic solvent, component (a), or component (c).
  • the solubility is preferably 0.001% by mass or more.
  • the organic solvent that can be used in the preparation of the curable composition is not particularly limited, and examples thereof include aromatic solvents such as toluene and xylene; alcohols such as iso-propyl alcohol, n-butyl alcohol, and propylene glycol methyl ether. Solvents; ester solvents such as butyl acetate, ethyl acetate and cellosolve acetate; ketone solvents such as acetone and methyl ethyl ketone; ether solvents such as diethyl ether, tetrahydrofuran and 1,4-dioxane; one or two of dimethylformamide and the like More than species.
  • aromatic solvents such as toluene and xylene
  • alcohols such as iso-propyl alcohol, n-butyl alcohol, and propylene glycol methyl ether.
  • Solvents such as butyl acetate, ethyl acetate and cellosolve acetate
  • aminothiol nickel complex compound anthraquinone compound; thiol nickel complex compound; triarylmethane compound; naphthoquinone compound; nitroso compound and its metal complex salt;
  • Organic substances such as carbon black, tin oxide doped with antimony oxide or indium oxide, inorganic oxides, oxides, carbides or borides of metals belonging to Group 4, 5 or 6 of the periodic table be able to.
  • these can be utilized according to the required heat resistance conditions, and may be used independently and may be used together 2 or more types.
  • Nonionic near-infrared absorbing compound (B-1) “Lumogen® IR-765” as a quartarylene compound, “Lumogen® IR-788” as a perylene compound (both trade names, manufactured by BASF), phthalocyanine compound "E-ex color IR-10", “e-ex color IR-12”, “e-ex color IR-14”, “e-ex color HA-1”, “e-ex color HA-14” (Manufactured by Nippon Shokubai Co., Ltd.), “YKR-3070”, “YKR-3080”, “YKR-3070” (all trade names, manufactured by Yamamoto Kasei Co., Ltd.), “Lumogen® IR-5055 as an organic / inorganic nanohybrid compound (Trade name, manufactured by BASF) and the like.
  • the amount of the nonionic near-infrared absorbing compound (B-1) used is component (a). And it is preferable to set it as 0.0005 weight part or more with respect to 100 weight part of total amounts with a component (c), and it is preferable to set it as 20 weight part or less. More preferably, it is 0.0015 weight part or more, and 10 weight part or less, More preferably, it is 0.002 weight part or more, and 7 weight part or less.
  • the cured product formed from the cured composition having near infrared absorption performance may not exhibit sufficient near infrared absorption performance, and if it is too large, the transmittance in the visible light region may decrease. Light may be scattered by aggregation.
  • the near-infrared absorbing compound (B-1) is preferably a phthalocyanine compound or a naphthalocyanine compound.
  • the phthalocyanine-based compound and naphthalocyanine-based compound exhibit an absorption region band at 800 to 1200 nm and preferably have high heat resistance. From the viewpoint of visible light transmission, a phthalocyanine-based compound is preferable.
  • the main central metal chelated to the phthalocyanine compound is copper, but is not particularly limited thereto.
  • inorganic fine particles are preferable from the viewpoint of heat resistance.
  • ATO antimony-doped tin oxide
  • ITO indium tin oxide
  • tungsten oxide which is an inorganic infrared absorber.
  • composite tungsten oxide is more preferable.
  • M element is H, He, alkali metal, alkaline earth metal, rare earth element, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be,
  • m and n are numbers satisfying 0.001 ⁇ m ⁇ 1.0 and 2.2 ⁇ n ⁇ 3.0. .
  • the composite tungsten oxide represented by the general formula (1) has excellent durability when it has a hexagonal, tetragonal, or cubic crystal structure, and is therefore selected from the hexagonal, tetragonal, and cubic crystals. Preferably it contains more than one crystal structure. Of these, hexagonal crystals are particularly preferred because they have the least absorption in the visible light region.
  • a composite tungsten oxide having a hexagonal crystal structure one type selected from each element of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn as preferable M elements.
  • a composite tungsten oxide containing the above elements can be given.
  • the addition amount (content) m of M element in the composite tungsten oxide is preferably 0.001 or more and 1.0 or less, more preferably about 0.33. This is because the value of m theoretically calculated from the hexagonal crystal structure is 0.33, and preferable optical characteristics as an infrared absorber can be obtained with the addition amount before and after this.
  • the amount n of oxygen is preferably 2.2 or more and 3.0 or less.
  • Typical examples include Cs 0.33 WO 3 , Rb 0.33 WO 3 , K 0.33 WO 3 , Ba 0.33 WO 3 and the like, and m and n fall within the above ranges. If it is a thing, a useful near-infrared absorption characteristic can be acquired.
  • a cesium-containing composite tungsten oxide is preferable from the viewpoints of optical properties, weather resistance, and the like as an infrared absorber.
  • -A) Cs 0.2 to 0.4 WO 2.5 to 3.0 (1-a) The compound represented by these can be mentioned.
  • the composite tungsten oxide has much better weather resistance and higher visible light transmittance than organic fluorine-containing phthalocyanine compounds, which are known to be particularly excellent in weather resistance.
  • the composite tungsten oxide is preferably used in the form of fine particles, and the average particle diameter is preferably 800 nm or less, and more preferably 100 nm or less, from the viewpoint of dispersibility, optical properties, and the like.
  • one type of the composite tungsten oxide may be used, or two or more types may be used in combination.
  • the content of the composite tungsten oxide is usually 5 to 60% by mass, preferably 10 to 40% by mass, from the viewpoints of near infrared absorption performance, dispersibility, performance as a hard coat layer, and the like.
  • ATO or ITO may be used, but from the viewpoint of near infrared absorption characteristics, tungsten oxide is more effective in the present invention.
  • inorganic infrared absorbents and organic infrared absorbents can be used in combination with the composite tungsten oxide as desired.
  • inorganic infrared absorbers include, for example, tungsten oxide compounds other than composite tungsten oxide, titanium oxide, zirconium oxide, tantalum oxide, niobium oxide, zinc oxide, indium oxide, tin-doped indium oxide (ITO), tin oxide , Antimony-doped tin oxide (ATO), cesium oxide, zinc sulfide, LaB 6 , CeB 6 , PrB 6 , NdB 6 , GdB 6 , TbB 6 , DyB 6 , HoB 6 , YB 6 , SmB 6 , EuB 6 , EuB 6 Examples thereof include hexaboride such as ErB 6 , TmB 6 , YbB 6 , LuB 6 , SrB 6 , CaB 6 , (La, Ce) B 6 .
  • tungsten oxide compounds other than composite tungsten oxide titanium oxide, zirconium oxide, tantalum oxide, niobium oxide, zinc oxide
  • cesium-containing composite tungsten oxide has little absorption in the visible light region and shows absorption in the region of 800 nm to 2600 nm.
  • Cesium-containing composite tungsten oxide (Cs 0.33 WO 3 ) can be obtained in the form of fine powder particles, and further dispersed in a solvent can be obtained.
  • the organic dispersant is a binder resin used when the cesium-containing composite tungsten oxide fine particles are manufactured.
  • the cesium-containing composite tungsten oxide fine particles are suitable from the viewpoint of optical properties and weather resistance, etc., although they are temporarily dispersed when mixed with the curable compositions used in the present invention, according to the study by the present inventors, It was clarified that the agglomerates were allowed to stand for several hours or when the curable composition was cured. Then, the present inventors apply a solution of the cesium-containing composite tungsten oxide composition to the surface of the cured composition molded body and dry the solution, so that the absorption characteristics from 800 nm of the cesium-containing composite tungsten oxide are obtained. Found that can be granted to. The inventors have also found that the spectral transmission intensity can be adjusted by adjusting the coating thickness.
  • the preparation method of the curable composition having near infrared absorption performance according to the present invention is not particularly limited and can be prepared by various methods. Various components may be mixed and prepared immediately before curing, or may be stored at a low temperature in a one-component state in which all components are mixed and prepared in advance.
  • the composition containing the components (a) to (c) described above is used as the curable composition (A)
  • the first component (near-infrared absorbing material (B-1)) is the ( All components may be mixed and prepared after dissolving in component a) or component (c).
  • An organic solvent solution of the near-infrared absorbing compound (B-1) is prepared and combined with component (a) or component (c) All components may be mixed and prepared after mixing and removing the organic solvent by devolatilization or the like.
  • these additives when using additives such as thermoplastic resins for the purpose of improving physical properties, these additives and a platinum compound that is a curing catalyst are mixed and stored in advance and immediately before curing.
  • the respective predetermined amounts may be mixed with each other.
  • the thermosetting temperature can be variously set, but the lower limit of the preferable temperature is 30 ° C, more preferably 60 ° C, and still more preferably 90 ° C.
  • the upper limit of preferable temperature is 250 degreeC, More preferably, it is 200 degreeC.
  • Curing may be performed at a constant temperature, but the temperature may be changed in multiple steps or continuously as necessary. It is preferable to carry out the reaction while raising the temperature in a multistage manner or continuously, rather than at a constant temperature, in that a cured product with less coloring and less distortion can be easily obtained.
  • the pressure during the reaction can be variously set as required, and the reaction can be performed under normal pressure, high pressure, or reduced pressure.
  • the shape of the cured product obtained by curing can be variously selected depending on the application, and is not particularly limited.
  • the shape of a lens, film, sheet, tube, rod, coating, bulk, etc. can do.
  • thermosetting resin molding method various methods including a conventional thermosetting resin molding method can be employed.
  • a casting method, a pressing method, a casting method, a transfer molding method, a coating method, a RIM method, a LIM method, or the like can be applied.
  • polishing glass, hard stainless steel polishing plate, polycarbonate plate, polyethylene terephthalate plate, polymethyl methacrylate plate, or the like can be applied.
  • polyethylene terephthalate film, polycarbonate film, polyvinyl chloride film, polyethylene film, polytetrafluoroethylene film, polypropylene film, polyimide film, gold or surface-treated gold A mold etc. can be applied.
  • Various processing can be performed as necessary during molding. For example, in order to suppress voids generated during molding, a process of defoaming the composition or a partially reacted composition by centrifugation, decompression, or the like, a process of releasing the pressure once during pressing, or the like can be applied.
  • the ratio of the component (a) to the component (c) is [SiH of component (a)].
  • the ratio of the number of moles of carbon-carbon double bonds having reactivity with the group / the number of moles of SiH groups in the component (c)] is preferably a ratio such that the lower limit is 0.05 and the upper limit is 10. More preferably, the ratio is in the range of 0.1 and an upper limit of 5.
  • the amount is small, the crosslinking effect due to the reaction between the alkenyl group and the SiH group tends to be insufficient.
  • the amount is large, the unreacted component (A) may bleed from the cured product.
  • a curing retarder in the curable composition according to the present invention, can be used for the purpose of improving the storage stability or adjusting the reactivity of the hydrosilylation reaction in the production process.
  • the curing retarder include a compound containing an aliphatic unsaturated bond, an organic phosphorus compound, an organic sulfur compound, a nitrogen-containing compound, a tin compound, and an organic peroxide. These may be used alone or in combination of two or more.
  • Examples of the compound containing an aliphatic unsaturated bond include propargyl alcohols, ene-yne compounds, maleate esters and the like.
  • organic phosphorus compound examples include triorganophosphine, diorganophosphine, organophosphine, and triorganophosphite.
  • organic sulfur compounds include organomercaptans, diorganosulfides, hydrogen sulfide, benzothiazole, thiazole, benzothiazole disulfide and the like.
  • nitrogen-containing compounds include ammonia, primary to tertiary alkylamines, arylamines, urea, hydrazine and the like.
  • tin compounds include stannous halide dihydrate and stannous carboxylate.
  • organic peroxides examples include di-tert-butyl peroxide, dicumyl peroxide, benzoyl peroxide, and tert-butyl perbenzoate.
  • benzothiazole thiazole, dimethyl malate, 3-hydroxy-3-methyl-1-butyne, 1-ethynyl-1- Cyclohexanol is preferred.
  • the amount added is large, it can be a curing inhibitor during the curing reaction.
  • these gelation inhibitors may be used alone or in combination of two or more.
  • the curable composition according to the present invention preferably uses a heat stabilizer for the purpose of improving the reflow resistance.
  • Any thermal stabilizer may be used as long as it can prevent thermal degradation and oxidation degradation of the cured product obtained by curing the curable composition according to the present invention.
  • the common antioxidant which is used can be used suitably. Examples of general antioxidants include hindered phenol compounds, hindered amine compounds, phosphite compounds, thioether compounds, and the like.
  • hindered phenol compounds include n-octadecyl 3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) -propionate, n-octadecyl 3- (3′-methyl-5 ′ -T-butyl-4'-hydroxyphenyl) -propionate, n-tetradecyl 3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) -propionate, 1,6-hexanediol bis [3 -(3,5-di-tert-butyl-4-hydroxyphenyl) -propionate], 1,4-butanediol bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) -propionate] 2,2'-methylene-bis (4-methyl-t-butylphenol), triethylene glycol bis [3- (3-t-butyl-5-methyl-4- Loxyphenyl
  • triethylene glycol bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) -propionate] and tetrakis [methylene-3- (3 ′, 5′-di-t-butyl- 4-hydroxyphenyl) propionate] methane and the like.
  • phosphite compound those in which at least one PO bond is bonded to an aromatic group are preferable.
  • tris (2,6-di-t-butylphenyl) phosphite, 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite, bis (2,6-di-t-butyl) -4-Methylphenyl) pentaerythritol di-phosphite, tetraphenyl-4,4'-biphenylene phosphite and the like can be preferably used.
  • thioether compounds include dilauryl thiodipropionate, ditridecyl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, pentaerythritol tetrakis (3-lauryl thiopropionate ), Pentaerythritol tetrakis (3-dodecyl thiopropionate), pentaerythritol tetrakis (3-octadecyl thiopropionate), pentaerythritol tetrakis (3-myristyl thiopropionate), pentaerythritol tetrakis (3-stearyl thiopro) Pionate). These may be used alone or in combination of two or more.
  • thermoplastic resin Various thermoplastic resins may be added to the curable composition according to the present invention for the purpose of modifying the characteristics.
  • thermoplastic resins can be used.
  • polymethyl methacrylate resins such as methyl methacrylate homopolymers or random, block, or graft polymers of methyl methacrylate and other monomers (for example, Hitachi) OPTRETZ etc. manufactured by Kasei Co., Ltd.)
  • acrylic resins represented by polybutyl acrylate resins such as butyl acrylate homopolymers or random, block or graft polymers of butyl acrylate and other monomers
  • bisphenol A, 3 3,5-trimethylcyclohexylidene bisphenol etc.
  • polycarbonate resin such as polycarbonate resin (for example, Panlite manufactured by Teijin Ltd.), norbornene derivative, vinyl monomer etc.
  • Resins alone or copolymerized Resins, cycloborn-based resins such as ring-opening metathesis polymerization of norbornene derivatives, or hydrogenated products thereof (for example, APEL manufactured by Mitsui Chemicals, ZEONOR, ZEONEX manufactured by Nippon Zeon, ARTON manufactured by JSR, etc.), ethylene Olefin-maleimide resins such as imide-maleimide copolymer (eg, TI-PAS manufactured by Tosoh Corporation), bisphenol A, bisphenol such as bis (4- (2-hydroxyethoxy) phenyl) fluorene, diethylene glycol, etc.
  • APEL manufactured by Mitsui Chemicals, ZEONOR, ZEONEX manufactured by Nippon Zeon, ARTON manufactured by JSR, etc. ethylene Olefin-maleimide resins such as imide-maleimide copolymer (eg, TI-PAS manufactured by Tosoh Corporation), bisphenol A, bisphenol such as bis
  • Polyester resins such as polyester (for example, DuPont linite) obtained by polycondensation of diols with phthalic acids such as terephthalic acid and isophthalic acid, and aliphatic dicarboxylic acids, polyethersulfone resins, polyarylate resins, polyvinyl acetal resins , Poly Styrene resins, polypropylene resins, polystyrene resins, polyamide resins, silicone resins, other like fluorine resin, not natural rubber, but the rubber-like resin is exemplified such EPDM is not limited thereto.
  • the thermoplastic resin may have other crosslinkable groups.
  • the crosslinkable group in this case include an epoxy group, an amino group, a radical polymerizable unsaturated group, a carboxyl group, an isocyanate group, a hydroxyl group, and an alkoxysilyl group. From the viewpoint that the heat resistance of the resulting cured product is likely to be high, it is preferable to have one or more crosslinkable groups per molecule on average.
  • the molecular weight of the thermoplastic resin is not particularly limited, but the number average molecular weight may be 10,000 or less in that the compatibility with the mixture of component (a) and component (c) tends to be good. Preferably, it is 5000 or less. On the contrary, the number average molecular weight is preferably 10,000 or more, more preferably 100,000 or more in that the resulting cured product is likely to be tough.
  • the molecular weight distribution (weight average molecular weight / number average molecular weight) is not particularly limited, but the molecular weight distribution is preferably 3 or less in that the viscosity of the mixture tends to be low and moldability tends to be good. More preferably, it is more preferably 1.5 or less.
  • the blending amount of the thermoplastic resin is not particularly limited, but a preferable range of use amount is 5 to 50% by weight, more preferably 10 to 30% by weight of the entire curable composition. If the amount added is small, the resulting cured product tends to be brittle. If the amount added is large, the heat resistance (elastic modulus at high temperature) tends to be low.
  • thermoplastic resin a single resin may be used, or a plurality of resins may be used in combination.
  • thermoplastic resin may be dissolved in the component (a) and / or the component (c) and mixed in a uniform state, pulverized and mixed in a particle state, or dissolved in a solvent and mixed. Then, it may be in a dispersed state. Further, the thermoplastic resin may be directly dissolved in the component (a) and / or the component (c), or may be mixed uniformly using a solvent, etc. It may be in a mixed state.
  • the average particle diameter can be variously set, but the preferable lower limit of the average particle diameter is 10 nm, and the preferable upper limit of the average particle diameter is 10 ⁇ m.
  • the particle size may have a distribution and may be monodispersed or have a plurality of peak particle sizes, but from the viewpoint that the viscosity of the curable composition is low and the moldability tends to be good.
  • the particle diameter variation coefficient is preferably 10% or less.
  • fillers are used.
  • silica-based fillers such as quartz, fume silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, ultrafine powder amorphous silica, silicon nitride, silver powder, etc.
  • Inorganic fillers such as alumina, aluminum hydroxide, titanium oxide, glass fiber, carbon fiber, mica, carbon black, graphite, diatomaceous earth, clay, clay, talc, calcium carbonate, magnesium carbonate, barium sulfate, inorganic balloon
  • fillers for conventional sealing materials such as epoxy-based fillers, fillers that are generally used and / or proposed can be mentioned.
  • radical inhibitor A radical inhibitor may be added to the curable composition according to the present invention.
  • radical inhibitors include 2,6-di-t-butyl-3-methylphenol (BHT), 2,2′-methylene-bis (4-methyl-6-t-butylphenol), tetrakis (methylene- Phenol radical inhibitors such as 3 (3,5-di-t-butyl-4-hydroxyphenyl) propionate) methane, phenyl- ⁇ -naphthylamine, ⁇ -naphthylamine, N, N′-secondarybutyl-p- Examples include amine radical inhibitors such as phenylenediamine, phenothiazine, N, N′-diphenyl-p-phenylenediamine.
  • radical inhibitors may be used alone or in combination of two or more.
  • UV absorber An ultraviolet absorber may be added to the curable composition according to the present invention.
  • the ultraviolet absorber include 2 (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, bis (2,2,6,6-tetramethyl-4-piperidine) sebacate, etc. Is mentioned.
  • these ultraviolet absorbers may be used independently and may be used together 2 or more types.
  • solvent When the curable composition according to the present invention has a high viscosity, it can be used by dissolving in a solvent.
  • Solvents that can be used are not particularly limited, and specific examples include hydrocarbon solvents such as benzene, toluene, hexane, heptane, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, diethyl ether, and the like.
  • Ether solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and other ketone solvents, propylene glycol-1-monomethyl ether-2-acetate (PGMEA), glycol solvents such as ethylene glycol diethyl ether, chloroform, methylene chloride, A halogen-based solvent such as 1,2-dichloroethane can be preferably used.
  • PMEA propylene glycol-1-monomethyl ether-2-acetate
  • glycol solvents such as ethylene glycol diethyl ether, chloroform, methylene chloride
  • a halogen-based solvent such as 1,2-dichloroethane can be preferably used.
  • toluene tetrahydrofuran
  • 1,3-dioxolane 1,3-dioxolane
  • propylene glycol-1-monomethyl ether-2-acetate propylene glycol-1-monomethyl ether-2-acetate, and chloroform are preferable.
  • the amount of solvent to be used can be appropriately set, but the lower limit of the preferred amount of use with respect to 1 g of the curable composition to be used is 0.1 mL, and the upper limit of the preferred amount of use is 10 mL. If the amount used is small, it is difficult to obtain the effect of using a solvent such as viscosity reduction. If the amount used is large, the solvent tends to remain in the material, causing problems such as thermal cracks, and also in terms of cost. It is disadvantageous and the industrial utility value decreases.
  • solvents may be used alone or as a mixed solvent of two or more.
  • the curable composition according to the present invention includes an adhesion-imparting agent, a colorant, a mold release agent, a flame retardant, a flame retardant aid, a surfactant, an antifoaming agent, an emulsifier, a leveling agent, a repellency inhibitor, Antimony-bismuth and other ion trapping agents, thixotropic agents, tackifiers, storage stability improvers, ozone degradation inhibitors, light stabilizers, thickeners, plasticizers, reactive diluents, conductivity enhancers, Antistatic agents, radiation blocking agents, nucleating agents, phosphorus peroxide decomposing agents, lubricants, pigments, metal deactivators, thermal conductivity-imparting agents, physical property modifiers and the like within a range that does not impair the purpose and effect of the present invention Can be added.
  • a near-infrared ray can be used. Examples thereof include a method of applying the absorbing compound (B-2) to the surface of the molded body.
  • the solvent used when applying the near-infrared absorbing compound (B-2) is an aliphatic hydrocarbon solvent selected from hexane and heptane; an aromatic hydrocarbon solvent selected from anisole, mesitylene, toluene, and xylene; Ketone solvents selected from methyl isobutyl ketone, cyclohexanone and acetone; ether solvents selected from tetrahydrofuran, dioxolane and dioxane; amide solvents selected from 1-methyl-2-pyrrolidinone, dimethylacetamide and dimethylformamide; and silicon solvents
  • aromatic carbonization selected from anisole, mesitylene, toluene, and xylene Hydrogen solvent is preferred , Especially anisole preferred among this.
  • Examples of the coating method include a dip coating method, a spray coating method, a spinner coating method, a bead coating method, a wire bar coating method, a blade coating method, a roller coating method, an air knife coating method, and a curtain coating method.
  • Other known coating methods can also be used.
  • the method applied in this method is most preferably a wire bar coating.
  • the near-infrared absorbing resin composition according to the present invention can be molded into a desired shape and used for various optical materials.
  • the optical material is a material used for the purpose of allowing light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material, and is specifically as follows.
  • Main applications include lenses that absorb and cut near infrared rays (camera lenses such as digital cameras, mobile phones, and in-vehicle cameras, optical lenses such as f- ⁇ lenses and pickup lenses), and optics for semiconductor light receiving elements.
  • Filters near-infrared absorbing films that block heat rays for energy saving and their coating agents and near-infrared absorbing plates, agricultural infrared-absorbing film coating agents for selective use of sunlight, near-infrared absorbing heat Recording media used, near-infrared cut filter for electronic equipment, near-infrared filter for photography, protective glasses, sunglasses, heat ray blocking film, optical recording compound (dye), optical character reading recording, confidential document copy prevention, electrophotographic photosensitive Used for body, laser welding, etc. It is also useful as a noise cut filter for CCD cameras and a filter for CMOS image sensors.
  • the present invention can also be restated as follows.
  • a near-infrared absorbing compound (B-2) is formed on the surface of a molded product obtained from a transparent resin composition comprising the curable composition (A) containing a nonionic near-infrared absorbing compound (B-1).
  • a near-infrared absorbing material comprising a layer containing
  • the curable composition (A) is selected from any one of a curable silicone composition, a curable epoxy silicone composition, a curable acrylic composition, a curable norbornene composition, and a curable polyimide composition.
  • a curable silicone composition a curable epoxy silicone composition, a curable acrylic composition, a curable norbornene composition, and a curable polyimide composition.
  • the curable composition (A) is (A) an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule; (B) an organosiloxane compound containing at least two SiH groups in one molecule; (C) a hydrosilylation catalyst, Is contained as an essential component, The near-infrared absorption material as described in (1) or (2) characterized by the above-mentioned.
  • the curable composition (A) contains 0.001 to 0.1 parts by weight of the nonionic near-infrared absorbing compound (B-1) with respect to 100 parts by weight (1) to The near infrared ray absorbing material according to any one of (3).
  • a solution in which the near-infrared absorbing compound (B-2) is dispersed so as to be 1 to 50 parts by weight with respect to 100 parts by weight of the organic solvent is prepared and applied.
  • the coating method includes spin coating, casting, micro gravure coating, gravure coating, knife coating, bar coating, roll coating, wire bar coating, dip coating, and spray coating.
  • the method for producing a near-infrared absorbing material according to any one of (1) to (7), wherein at least one of the above is used.
  • An ether solvent selected from tetrahydrofuran, dioxolane and dioxane; an amide solvent selected from 1-methyl-2-pyrrolidinone, dimethylacetamide and dimethylformamide; and at least one selected from the group consisting of silicon solvents The method for producing a near-infrared absorbing material according to any one of (1) to (8).
  • a near-infrared absorbing compound is dispersed in a transparent resin, and in addition, by applying another near-infrared absorbing compound coating to the resin molding, it has high visible light transmittance and near-infrared absorbing characteristics, and solder It is possible to provide a near-infrared absorbing resin material that does not substantially change optical characteristics even under high temperature conditions such as a reflow process. Moreover, the curable composition applied to the near-infrared absorbing material of the present invention maintains the original moldability and processability of the resin and can be formed into a desired shape.
  • the near-infrared absorbing material (II) includes, as the near-infrared absorbing compound (B), at least one selected from the group consisting of a composite tungsten oxide compound, a phthalocyanine-based compound, and a naphthalocyanine-based compound, a perylene-based compound, and quaterrylene It is obtained by applying a curable coating agent having infrared absorbing ability, which contains at least one selected from the group consisting of a system compound, to at least one surface of a transparent substrate, evaporating the solvent, and then curing.
  • a curable coating agent having infrared absorbing ability which contains at least one selected from the group consisting of a system compound, to at least one surface of a transparent substrate, evaporating the solvent, and then curing.
  • the curable coating agent used in the production of the near-infrared absorbing material (II) includes a composite tungsten oxide compound, a phthalocyanine-based compound, and a naphthalocyanine-based compound as the near-infrared absorbing compound (B). It includes at least one selected from the group consisting of compounds and at least one selected from the group consisting of perylene compounds and quatarylene compounds.
  • the curable coating agent preferably further includes a curable composition (A), and the near-infrared absorbing compound (B) is preferably dissolved or dispersed in the curable composition (A).
  • the curable coating agent preferably contains a solvent (C).
  • curable composition (A) in the present invention, the curable composition (A) described above in “(1-1) Curable composition (A)” can be used as the curable composition (A).
  • the ratio of the component (a) to the component (c) is [the reaction with the SiH group of the component (a).
  • the ratio of the number of moles of carbon-carbon double bond having a property / the number of moles of SiH groups in the component (c)] is preferably a ratio such that the lower limit is 0.05 and the upper limit is 10.
  • the ratio is more preferably in the range of the upper limit of 5.
  • the near-infrared absorbing material (II) is selected from the group consisting of “at least one selected from the group consisting of complex tungsten oxide compounds, phthalocyanine compounds, and naphthalocyanine compounds” and “perylene compounds and quatarylene compounds” Are used together, and both of them are classified as near-infrared absorbing compounds.
  • the present inventors have found that the above combination is excellent among many near infrared absorbing compounds, and have reached the present invention.
  • Near-infrared rays generally represent a wavelength band of 700 to 2500 nm, but a region that needs to be cut in a light-sensitive region of an optical element represents a near-infrared wavelength band of approximately 700 to 1100 nm.
  • the near-infrared absorbing dye of the present application is a compound having a near-infrared absorbing ability, but can cover absorption in the near-infrared region of about 700 to 1100 nm.
  • the near-infrared absorbing compound (B) preferably has a high heat resistance with a thermal decomposition temperature of 260 ° C. or higher, preferably 300 ° C. or higher, from the viewpoint of imparting thermal stability and reflow resistance.
  • the quatarylene compound perylene compound, composite tungsten oxide compound, phthalocyanine compound and naphthalocyanine compound used in the near infrared absorbing material (II), the compounds described above in “(1-2) Near infrared absorbing compound” can be used. Each can be used.
  • the compound which has the solubility to a solvent (C) and a curable composition (A) as a near-infrared absorption compound (B).
  • a solvent (C) and a curable composition (A) When it is soluble in the solvent (C) and the curable composition (A), the preparation of the curable coating liquid is facilitated and the light transmittance in the visible light region is increased.
  • the solubility of the near-infrared absorbing compound (B) in the solvent (C) and the curable composition (A) is such that the total amount of the solvent (C) and the curable composition (A) is 100% by mass. It is suitable that it is 0.001 mass% or more.
  • aminothiol nickel complex compound anthraquinone compound; cyanine compound; squarylium compound; thiol nickel complex compound; triarylmethane compound; naphthoquinone compound; nitroso compound and metal complex thereof; Inorganic nano-dye hybrid system; organic materials such as amino compounds; tin oxide doped with carbon black, antimony oxide or indium oxide, which are inorganic materials; oxides of metals belonging to Group 4, 5 or 6 of the periodic table; Carbides or borides; imonium compounds; diimonium compounds; aminium salt compounds and the like can be used in combination. Moreover, these can be utilized according to the required heat resistance conditions, and may be used independently and may be used together 2 or more types.
  • Examples of the amount of the near infrared absorbing compound used include the range described above in “(1-2) Near infrared absorbing compound”.
  • the near infrared absorbing compound (B) from the viewpoint of heat resistance, it is preferable to further use various inorganic fine particles described above in “(1-2) Near infrared absorbing compound”.
  • the cesium-containing composite tungsten oxide fine particles are preferable from the viewpoint of optical properties and weather resistance, etc.
  • the present inventors have studied, but when dispersed directly into the curable compositions to be used, It was clarified that when it was allowed to stand for about an hour, it separated and formed a precipitate.
  • the inventors can improve the dispersion state by adding a solvent to the mixture of the cesium-containing composite tungsten oxide fine particles and the cured composition, and further have another absorption having an absorption at 650 to 850 nm.
  • the inventors have invented a curable coating liquid having a near infrared absorption characteristic of 700 to 1100 nm. It was also discovered that the spectral transmission intensity can be adjusted by adjusting the coating thickness.
  • Solvents that can be used in the curable coating agent according to the present invention are not particularly limited, and specific examples include aliphatic hydrocarbon solvents selected from hexane and heptane; anisole, mesitylene, toluene, and Aromatic hydrocarbon solvents selected from xylene; alcohol solvents such as iso-propyl alcohol, n-butyl alcohol and propylene glycol methyl ether; ester solvents such as butyl acetate, ethyl acetate and cellosolve acetate; methyl ethyl ketone and methyl isobutyl ketone A ketone solvent selected from cyclohexanone and acetone; an ether solvent selected from dioxane such as tetrahydrofuran, diethyl ether, dioxolane and 1,4-dioxane; 1-methyl-2-pyrrolidinone, dimethylacetate Amide solvent selected from amide and di
  • the preparation method of the curable coating agent which has near-infrared absorption performance based on this invention is not specifically limited, It can prepare with various methods. Various components may be mixed and prepared immediately before curing, or may be stored at a low temperature in a one-component state in which all components are mixed and prepared in advance. Moreover, after dissolving in the curable composition (A) according to the present invention, all components may be mixed and prepared, and an organic solvent solution of the near-infrared absorbing compound (B) is prepared, and the curable composition (A) is prepared. It may be prepared by mixing with ingredients and adding a solvent.
  • the near-infrared absorbing compound (B) is preferably added in an amount of 0.01 to 100 parts by weight, more preferably 0.05 to 30 parts by weight, relative to 100 parts by weight of the curable composition (A). Further, 0 to 1000 parts by weight of the solvent (C) is preferably added to 100 parts by weight of the curable composition (A), more preferably 1 to 900 parts by weight, and more preferably 5 to 800 parts by weight. It is more preferable to add 100 to 400 parts by weight.
  • the mixture of the near-infrared absorbing compound (B) and the curable composition (A) may be coated as it is without adding the solvent (C).
  • additives such as thermoplastic resins are used for the purpose of improving physical properties
  • these additives and a platinum compound as a curing catalyst are mixed and stored in advance, and each predetermined amount is mixed immediately before curing. May be prepared.
  • the viscosity of the curable coating agent is appropriately adjusted depending on the addition ratio of the curable composition, near-infrared absorbing dye, organic solvent, additive, etc., but the range is 2 to 200 Pa ⁇ s (Pascal ⁇ second). For example, when application to a glass substrate is performed by a spin coating method, 2 to 5 Pa ⁇ s is preferable.
  • the solvent (C) used for preparing the curable coating solution is preferably the solvent described above in “(1-5) Coating method”.
  • thermosetting temperature can be variously set, but the lower limit of the preferable temperature is 30 ° C, more preferably 60 ° C, and still more preferably 90 ° C.
  • the upper limit of preferable temperature is 250 degreeC, More preferably, it is 200 degreeC.
  • Curing may be performed at a constant temperature, but the temperature may be changed in multiple steps or continuously as necessary. It is preferable to carry out the reaction while raising the temperature in a multistage manner or continuously, rather than at a constant temperature, in that a cured product with less coloring and less distortion can be easily obtained.
  • the pressure during the reaction can be variously set as required, and the reaction can be performed under normal pressure, high pressure, or reduced pressure.
  • Coating method examples include dip coating method, spray coating method, spinner coating method, bead coating method, wire bar coating method, blade coating method, roller coating method, air knife coating method, curtain coating method, etc.
  • a known coating method can also be used.
  • the method applied in this method is most preferably a wire bar coating.
  • the method for removing the solvent (C) is not particularly limited, but it is preferably performed by evaporating the solvent.
  • Examples of the method for evaporating the solvent include methods such as heating, decompression, and ventilation. Among them, it is preferable to evaporate the solvent by heating from the viewpoint of production efficiency and handleability, and it is more preferable to evaporate the solvent by heating with ventilation. Specifically, it is preferable to perform preliminary drying at 80 to 100 ° C. for 30 minutes to 2 hours, and heat treatment at 180 to 260 ° C. for 10 minutes to 30 minutes.
  • the transparent base material that coats the near-infrared coating agent only needs to have both transparency and heat resistance, and a polycarbonate film, a polyimide film, a silicone film, or the like can be applied.
  • (2-4) Applications The curable coating agent of the present invention can be used after being applied to various optical materials and dried.
  • the optical material here is synonymous with the optical material described in the section “(1-5) Applications”.
  • the present invention can also be restated as follows.
  • a curable coating agent having a near-infrared absorbing ability comprising a composite tungsten oxide and a compound selected from the group consisting of a perylene-based compound and a quatarylene-based compound as the near-infrared absorbing compound (B).
  • the solvent (C) is contained in an amount of 0 to 1000 parts by weight with respect to 100 parts by weight of the curable composition (A) and 0.01 to 100 parts by weight of the near infrared ray absorbing compound (B). ) Or a curable coating agent having near infrared absorption ability according to (2).
  • the curable composition (A) is selected from the group consisting of a curable silicone composition, a curable epoxy silicone composition, a curable acrylic composition, a curable norbornene composition, and a curable polyimide composition.
  • the curable coating agent having near-infrared absorbing ability according to (3), which is characterized in that it exists.
  • the curable composition (A) is (A) an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule; (B) a hydrosilylation catalyst, (C) an organosiloxane compound containing at least two SiH groups in one molecule;
  • the curable coating agent having near infrared absorption ability according to (3) or (4), characterized in that is an essential component.
  • Solvent (C) is hexane, heptane, anisole, mesitylene, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetone, tetrahydrofuran, dioxolane, dioxane, 1-methyl-2-pyrrolidinone, dimethylacetamide, dimethylformamide
  • a curable coating agent having near infrared absorption ability according to any one of (3) to (5), which is at least one selected from the group consisting of silicon solvents.
  • the curable coating agent having near infrared absorption ability of the present invention can be applied regardless of the shape of the transparent substrate, or the optical property does not substantially change even under high temperature conditions such as a sand reflow process.
  • it is useful as an optical material that requires high heat resistance and an infrared shielding function.
  • Near-infrared absorbing material (III) comprises (a) an organic compound having at least two carbon-carbon double bonds reactive with SiH groups in one molecule, (b) a hydrosilylation catalyst, (C) Near-infrared absorption comprising a compound containing at least two SiH groups in one molecule, (d) a quatarylene compound, and at least one compound selected from a phthalocyanine compound and a naphthalocyanine compound And a curable composition containing the curable composition.
  • the curable composition used in the production of the near-infrared absorbing material (III) comprises (a) at least a carbon-carbon double bond having reactivity with a SiH group in one molecule.
  • the components (a) to (c) described above in “(1-1-5) curable silicone composition” can be used.
  • Near-infrared rays generally represent a wavelength band of 700 to 2500 nm, but a region that needs to be cut in a light-sensitive region of an optical element represents a near-infrared wavelength band of approximately 700 to 1100 nm.
  • the component (d) of the present application is a compound having near-infrared absorption ability, but can cover absorption in the near-infrared region of about 700 to 1100 nm.
  • the component (d) in addition to the quartalylene compound and / or the perylene compound, at least two kinds selected from a phthalocyanine compound or a naphthalocyanine compound, that is, at least 3 It is preferable to mix and combine the specific compounds of the species.
  • Component (d) preferably has a high heat resistance with a thermal decomposition temperature of 200 ° C. or higher, preferably 260 ° C. or higher, from the viewpoint of providing thermal stability and reflow resistance.
  • the quatarylene compound perylene compound, phthalocyanine compound and naphthalocyanine compound used in the near infrared absorbing material (III)
  • the compounds described above in “(1-2) Near infrared absorbing compound” can be used. it can.
  • Component (d) is preferably a compound having solubility in an organic solvent, component (a) or component (c). When it is soluble in the organic solvent, component (a) or component (c), the preparation of the curable composition is facilitated and the light transmittance in the visible light region is increased.
  • the solubility of the component (d) with respect to the organic solvent, the component (a), or the component (c) is 0.001% by mass or more when the organic solvent, the component (a) or the component (c) is 100% by mass. Is preferred.
  • the organic solvent that can be used in the curable composition is not particularly limited.
  • aromatic solvents such as toluene and xylene
  • alcohol solvents such as iso-propyl alcohol, n-butyl alcohol, and propylene glycol methyl ether
  • acetic acid Ester solvents such as butyl, ethyl acetate and cellosolve acetate
  • ketone solvents such as acetone and methyl ethyl ketone
  • ether solvents such as diethyl ether, tetrahydrofuran and 1,4-dioxane; one or more of dimethylformamide and the like It is done.
  • aminothiol nickel complex compound anthraquinone compound; cyanine compound; squarylium compound; thiol nickel complex compound; triarylmethane compound; naphthoquinone compound; nitroso compound and metal complex thereof; Inorganic nano-dye hybrid system; organic materials such as amino compounds; tin oxide doped with carbon black, antimony oxide or indium oxide, which are inorganic materials; oxides of metals belonging to Group 4, 5 or 6 of the periodic table; Carbides or borides; imonium compounds; diimonium compounds; aminium salt compounds and the like can be used in combination. Moreover, these can be utilized according to the required heat resistance conditions, and may be used independently and may be used together 2 or more types.
  • the amount of component (d) used is preferably 0.0005 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight as the total of component (a) and component (c). Is preferred. More preferably, it is 0.0015 weight part or more, and 10 weight part or less, More preferably, it is 0.002 weight part or more, and 7 weight part or less.
  • the cured product formed from the cured composition having near-infrared absorption performance may not exhibit sufficient near-infrared absorption performance. There is a possibility that light may be scattered due to a possibility of decrease of the density or aggregation.
  • the ratio of component (a) to component (c) is [number of moles of carbon-carbon double bond reactive with SiH group of component (a) / number of moles of SiH group of component (c)].
  • the lower limit of 0.05 and the upper limit of 10 is preferable, and the lower limit of 0.1 and the upper limit of 5 is more preferable.
  • the amount is small, the crosslinking effect due to the reaction between the alkenyl group and the SiH group tends to be insufficient.
  • the amount is large, the unreacted component (A) may bleed from the cured product.
  • (3-2) Preparation method and curing method of curable composition The preparation method of the curable composition having near infrared absorption performance according to the present invention is not particularly limited, and can be prepared by various methods, for example, The method described above in “(1-3) Preparation method and curing method of curable composition” can be appropriately used.
  • Various components may be mixed and prepared immediately before curing, or may be stored at a low temperature in a one-component state in which all components are mixed and prepared in advance.
  • all the components may be mixed and prepared after the component (d) is dissolved in the component (a) or the component (c) of the present invention, an organic solvent solution of the component (d) is prepared, and the component (a) Or after mixing with (c) component and removing an organic solvent by a devolatilization process etc., all components may be mixed and prepared.
  • the curable composition used in the production of the near-infrared absorbing material (III) may contain various additives listed in “(1-4) Additives” according to various purposes. 1-4) Additives ”can be used within the range mentioned above.
  • a cured product obtained by curing the near-infrared absorption curable composition of the present invention can be molded into a desired shape and used for various optical materials.
  • the optical material here is synonymous with the optical material described in the section “(1-5) Applications”.
  • the present invention can also be restated as follows.
  • (1) (a) an organic compound having two or more carbon-carbon double bonds having reactivity with SiH groups in one molecule; (B) a hydrosilylation catalyst, (C) a compound having at least two SiH groups in one molecule, and (D) at least two types of compounds selected from quartarylene compounds and phthalocyanine compounds or naphthalocyanine compounds; A curable composition having near infrared absorption ability.
  • R 3 represents a hydrogen atom or a monovalent organic group having 1 to 50 carbon atoms, and each R 3 may be different or the same, and at least two R 3 may be SiH groups and Including a carbon-carbon double bond having the reactivity of
  • the curable composition which has the near-infrared absorptivity as described in (1) which is an organic compound represented by these.
  • R 4 represents an organic group which may be substituted with a monovalent oxygen, nitrogen, sulfur or halogen atom having 1 to 50 carbon atoms, and each R 4 may be different or the same. May be.
  • the curable composition which has the near-infrared absorptivity as described in (1) which is an organic compound which has a structure represented by these.
  • the component (c) is ( ⁇ ) an organic compound containing one or more carbon-carbon double bonds having reactivity with SiH groups in one molecule; ( ⁇ ) a polyorganosiloxane having a chain, cyclic, branched or cage structure having at least three SiH groups in one molecule;
  • the curable composition having near infrared absorption ability according to any one of (1) to (3), which is a compound obtainable by hydrosilylation reaction.
  • R 3 represents a hydrogen atom or a monovalent organic group having 1 to 50 carbon atoms, and each R 3 may be different or the same, and at least one R 3 may be a SiH group and Including a carbon-carbon double bond having the reactivity of
  • the curable composition which has the near-infrared absorptivity as described in (4) which is an organic compound represented by these.
  • R 4 represents an organic group which may be substituted with a monovalent oxygen, nitrogen, sulfur or halogen atom having 1 to 50 carbon atoms, and each R 4 may be different or the same. May be.
  • the curable composition having near infrared absorption ability according to (4) which is an organic compound having a structure represented by:
  • At least one of chain, cyclic, branched and cage polyorganosiloxane having at least three SiH groups in one molecule is represented by the following general formula (VI)
  • the present invention it is possible to provide a near-infrared absorbing material having reflow resistance. Moreover, the curable composition applied to the near-infrared absorbing material of the present invention maintains the original moldability and processability of the resin, and can be formed into a desired shape.
  • the reaction rate of the allyl group in the synthesis example was measured using a 300 MHz-NMR apparatus manufactured by Varian Technologies Japan Limited, adding the reaction solution diluted to about 1% with deuterated chloroform to the NMR tube, Calculated from the peak ratio of the methylene group derived from the unreacted allyl group and the methylene group derived from the reacted allyl group, and the content of the SiH group as the component (c) is 300 MHz NMR apparatus manufactured by Varian Technologies Japan Limited. Was obtained as the SiH group value (mmol / g) in terms of 1,2-dibromoethane.
  • the content of SiH groups determined by 1 H-NMR was 8.8 mmol / g.
  • the product is a mixture, it contains as a main component the following compound having 9 SiH groups per molecule, which is the component (c) in the present invention.
  • the content of SiH groups determined by 1 H-NMR was 7.6 mmol / g.
  • the product is a mixture, it contains, as a main component, the following compound having 6 SiH groups per molecule, which is the component (c) of the present invention.
  • the content of SiH groups determined by 1 H-NMR was 9.8 mmol / g.
  • the product is a mixture, it contains, as a main component, the following compound having 6 SiH groups per molecule, which is the component (c) of the present invention.
  • component 24.4 g, near-infrared absorbing compound (B-1) [“Lumogen IR 765” and / or “Lumogen IR 788” (made by BASF) as a nonionic near-infrared absorbing compound, “Kayasorb CY-40MC (F) (manufactured by Nippon Kayaku Co., Ltd.)” as an ionic near-infrared absorbing dye was mixed in the added number of parts shown in Table 1, and the mixture was stirred and degassed under reduced pressure. 0.12 g of the reaction product E obtained in 2 was added, and a mixture of 35.6 g of component (b) and 0.12 g of a retarder was further added to obtain a curable composition.
  • B-1 near-infrared absorbing compound (B-1) [“Lumogen IR 765” and / or “Lumogen IR 788” (made by BASF) as a nonionic near-infrared absorbing compound, “Kayasorb
  • triallyl isocyanurate was used as the component (a), and the reactant E was used as the component (b).
  • the obtained curable composition is poured into a cell prepared by sandwiching a 1 mm-thick silicone rubber sheet as a spacer between two glass plates, and heated in a hot air oven at 120 ° C. for 40 minutes as pre-curing.
  • heating was performed in a hot air oven at 180 ° C. for 15 minutes to obtain a plate-shaped cured product. All of the obtained cured products were transparent and could be used as various optical materials.
  • the physical properties are shown in Table 1.
  • Step 2 Application of near-infrared absorber (B-2)
  • B-2 near-infrared absorber
  • a powder containing 77% of an organic dispersant was used as the cesium-containing composite tungsten oxide.
  • An anisole solution of a cesium-containing composite tungsten oxide prepared to a concentration of 30% by weight or 35% by weight is placed on a wire bar (winding) on the plate-like cured product (8 ⁇ 8 ⁇ 0.6 mmt). No. 16) was used to prepare a coating film on each transparent cured product plate. This was dried at room temperature for 12 hours and then dried in an oven at 260 ° C. for 10 minutes. This was diced to a size of 10 ⁇ 30 mm, and the film thickness and transmission spectrum of the cesium-containing composite tungsten oxide coating were measured. The results are also shown in Table 1.
  • Example 5 (Step 1. Preparation of cured product) As a hydrosilyl group-containing polysiloxane having a three-dimensional structure, 3.52 g of MQH-5 (hydrosilyl group content 1.7 mol / kg) manufactured by Clariant, and as a vinyl group-containing polysiloxane having a three-dimensional structure, MQV- 7 (vinyl group content 3.5 mol / kg) 7.84 g was added and mixed in a polypropylene cup.
  • MQH-5 hydrosilyl group content 1.7 mol / kg manufactured by Clariant
  • MQV- 7 vinyl group-containing polysiloxane having a three-dimensional structure
  • this curable composition was poured into a cell prepared by sandwiching a 1 mm thick silicone rubber sheet as a spacer between two glass plates, pre-curing at 120 ° C. for 40 minutes, and post-curing at 180 ° C. for 15 minutes.
  • the plate-like cured product having a thickness of 1 mm was obtained by heating in a hot air oven.
  • Step 2 Application of near-infrared absorber (B-2)
  • B-2 As the cesium-containing composite tungsten oxide, a powder containing 77% of an organic dispersant was used. A cesium-containing composite tungsten oxide anisole solution prepared so as to have a concentration of 30% by weight or 35% by weight is placed on the plate-like cured product (8 ⁇ 8 ⁇ 0.6 mmt) with a wire bar (type 16).
  • a coating film on each transparent cured product plate This was dried at room temperature for 12 hours and then dried in an oven at 260 ° C. for 10 minutes. This was diced to a size of 10 ⁇ 30 mm, and the film thickness and transmission spectrum of the cesium-containing composite tungsten oxide coating were measured. The results are also shown in Table 1.
  • the cured product sample was measured at a scan speed of 300 nm / min using U-3300 manufactured by Hitachi, Ltd.
  • Table 1 shows the average transmittance of 400 to 600 nm, the average transmittance of 500 nm, 750 to 950 nm, and the light transmittance (% T) at 770 nm.
  • the curable composition contains a quartalylene or perylene compound that absorbs at 650 to 850 nm and has high heat resistance, and does not need to contain a cesium tungsten oxide compound that absorbs at 800 nm or more and has high heat resistance in the resin. It was exemplified that a near-infrared absorber having no substantial change in optical properties in the visible / near-infrared region even after the reflow heat test can be obtained by applying to the surface of the cured molded body (Examples 1 to 5).
  • the cured product only kneaded with quartalylene or perylene compound has heat resistance, but has a low near-infrared cutting power of 750 to 950 nm (Comparative Examples 2 and 3). From Comparative Example 4, only cesium tungsten is applied. In this case, it was found that the 770 nm cutting force was low and there was a problem in performance.
  • the near-infrared absorbing materials obtained in Examples 1 to 5 have absorption over the entire wavelength range of 700 to 1100 nm, and the reflow is repeated three times by holding for 60 seconds at 260 ° C. and then cooling to room temperature. Before and after the test, the average light transmittance at 400 to 600 nm in the cured resin composition was 20% or less and the rate of change in transmittance at a wavelength of 750 nm was within ⁇ 5%.
  • the curable composition was poured into a cell prepared by sandwiching a 1 mm-thick silicone rubber sheet as a spacer between two glass plates, and heated in a hot air oven at 120 ° C. for 40 minutes as pre-curing, As post-curing, heating was performed in a hot air oven at 180 ° C. for 20 minutes to obtain a 1 mm thick cured product. This was used as a transparent substrate.
  • Example 6 (C) Component 3 obtained in Synthesis Example 1 was added to 20 g of anisole solution containing 6 g of a cesium tungsten oxide composition containing a dispersant (1.4 g of cesium tungsten oxide component) and 2.2 g of triallyl isocyanurate as component (a). .3 g, 0.0225 g of a platinum divinyldisiloxane complex xylene solution (containing 3 wt%) as component (b) and 0.0225 g of a retarder 1-ethynyl-1-cyclohexanol were added and mixed. Using this as a mother liquor, a curable coating solution to which 0.01 g of a perylene compound (“Lumogen 788”, manufactured by BASF) was added was prepared.
  • a perylene compound (“Lumogen 788”, manufactured by BASF) was added was prepared.
  • a coating film was prepared from this curable coating solution on a transparent substrate (10 ⁇ 5 cm) using a wire bar (type 16). This was left in a fume hood at room temperature, the solvent was naturally dried and it was confirmed that there was no tackiness, and then the coating film was cured in an oven at 120 ° C. for 40 minutes and 180 ° C. for 15 minutes.
  • the coated specimen was placed in an oven (STH-120) manufactured by ESPEC, and held for 180 seconds at a sample actual temperature of 260 ° C., then removed from the oven and cooled to room temperature three times.
  • the coated transparent substrate was measured at a scan speed of 300 nm / min using a Hitachi 3300-made Sakai-3300, and the light transmittance at 400 nm to 600 nm and 750 nm to 950 nm before and after the reflow resistance test (% T) was calculated. The results are shown in Table 2.
  • the visible light transmittance and infrared ray cutting power were excellent in the combination of a perylene compound (Lumogeng788) and a cesium tungsten compound.
  • a diimonium dye having low heat resistance was used, the optical characteristics changed after the reflow test, and there was a problem in stability (Comparative Example 5).
  • a curable coating agent containing only a quaterrylene compound has heat resistance, but has a low near-infrared cutting power of 700 to 950 nm (Comparative Example 6), and has a problem in performance.
  • the near-infrared absorbing material obtained in Example 6 has absorption in the entire wavelength range of 700 to 1100 nm, and before and after the reflow test in which the operation of holding at 260 ° C. for 60 seconds and then cooling to room temperature is repeated three times.
  • the average light transmittance at 400 to 600 nm was 20% or less, and the rate of change in transmittance at a wavelength of 750 nm was within ⁇ 5%.
  • the curable composition was poured into a cell prepared by sandwiching the obtained curable composition between two glass plates with a 1 mm thick silicone rubber sheet as a spacer, and pre-cured at 120 ° C. for 40 minutes in a hot air oven.
  • a cured product was obtained by heating and heating in a hot air oven at 180 ° C. for 15 minutes as post-curing. All of the obtained cured products were transparent and could be used as various optical materials.
  • the physical properties are shown in Table 3.
  • in the physical properties of the cured product in the table indicates that there is no change in appearance dimension or color tone. Moreover, the color tone (before reflow) of the cured product properties is all transparent.
  • the near-infrared absorbing materials obtained in Examples 7 to 8 have absorption over the entire wavelength range of 700 to 1100 nm, and are reflowed by repeating the operation of holding at 260 ° C. for 60 seconds and then cooling to room temperature three times. Before and after the test, the average light transmittance at 400 to 600 nm in the cured resin composition was 20% or less and the rate of change in transmittance at a wavelength of 750 nm was within ⁇ 5%.
  • the near-infrared absorbing material of the present invention does not substantially change in optical characteristics under high temperature conditions such as 200 ° C. to 300 ° C. in the solder reflow process. Therefore, it can be suitably used for an infrared cut filter that is mounted on an imaging optical device that requires high productivity in manufacturing.

Abstract

Disclosed is a curable resin composition which can be cured into a product having absorption over the entire wavelength range of 700 to 1100 nm and has an an average light transmittance of 20% or less at 400 to 600 nm and a rate of change in the transmittance at a wavelength of 750 nm of within ± 5% before and after the reflow test in which a procedure of maintaining the cured product at 260°C for 60 seconds and subsequently cooling the cured product to room temperature is repeated three times. Thus, it is possible to provide: a near infrared absorbent material which has large absorption in a near infrared region and undergoes substantially no change in optical properties under high temperature conditions such as those employed in a solder reflow process; and an optical material comprising the near infrared absorbent material.

Description

近赤外線吸収材料及びその製造方法Near-infrared absorbing material and manufacturing method thereof
 本発明は、近赤外線吸収材料及びその製造方法に関する。 The present invention relates to a near-infrared absorbing material and a manufacturing method thereof.
 カメラやビデオ等の撮像系光学機器は、光信号を電気信号に変換するために、シリコンダイオード素子、相補型金属酸化物半導体(C-MOS)や電荷結合素子(CCD)等が使用されている。これらの光電変換素子は、可視光域から近赤外域の300~1000nmという広範囲に光感応領域を有するため、近赤外領域で強く感応してしまい、映し出された画像は色ボケや歪が生じる。このため、可視光線を透過しつつ近赤外領域700~1100nmの光を効率良くカットすることが求められている。 Imaging optical devices such as cameras and video use silicon diode elements, complementary metal oxide semiconductors (C-MOS), charge-coupled elements (CCDs), etc. to convert optical signals into electrical signals. . Since these photoelectric conversion elements have a light sensitive region in a wide range from 300 nm to 1000 nm from the visible light region to the near infrared region, they are highly sensitive in the near infrared region, and the projected image has color blur and distortion. . Therefore, it is required to efficiently cut light in the near infrared region 700 to 1100 nm while transmitting visible light.
 従来、カメラの測光用フィルターやビデオカメラ等の撮像系視感度を補正するために、赤外線吸収剤を含有した、あるいは赤外線を透過させず(反射させて)可視光を透過させるように設計された、誘電体多層膜で構成されるガラス製赤外線カットフィルターが使用されている。しかしながら、この種のガラス製フィルターは重く、製造に当たっては成形や研磨等の加工が難しいという欠点があった。例えば、この種のガラス製フィルターは、金属スパッタリングを用いて多層膜を作製する必要があり、工程が煩雑であった。 Conventionally, it was designed to transmit visible light that does not transmit (reflects) infrared rays or contains infrared absorbers in order to correct the photometric sensitivity of camera photometric filters and video cameras. A glass infrared cut filter composed of a dielectric multilayer film is used. However, this type of glass filter is heavy, and has a drawback that it is difficult to process such as molding and polishing in production. For example, this type of filter made of glass needs to produce a multilayer film using metal sputtering, and the process is complicated.
 このような問題を解決するため、成形が容易で軽量である材料への置き換えが進みつつあり、例えば、特許文献1に記載されている脂環式ポリオレフィン樹脂に近赤外線吸収剤を配合した樹脂組成物や、特許文献2に記載されているアクリル系樹脂に近赤外線吸収剤を配合した樹脂組成物を成形した光学部品が赤外線カットフィルターに利用されるようになっている。更には、特許文献3に示されるように、近赤外線吸収フィルターの形成を容易にするために有機系近赤外線吸収色素を含有するコーティング剤を用いて基材に近赤外線吸収コーティングを施す手段が開発されている。 In order to solve such a problem, replacement with a material that is easy to mold and lightweight is progressing. For example, a resin composition in which a near-infrared absorber is blended with an alicyclic polyolefin resin described in Patent Document 1 In addition, an optical component obtained by molding a resin composition in which a near-infrared absorber is blended with an acrylic resin described in Patent Document 2 is used for an infrared cut filter. Furthermore, as shown in Patent Document 3, a means for applying a near-infrared absorbing coating to a substrate using a coating agent containing an organic near-infrared absorbing dye has been developed to facilitate the formation of a near-infrared absorbing filter. Has been.
 しかしながら、近年、撮像系レンズモジュール組立て時における製造コストを低減するために、半田リフロー工程が導入されるケースが増えており、かかるリフロー工程では300℃近い温度に耐え得る材料が必要とされる。 However, in recent years, in order to reduce the manufacturing cost at the time of assembling the imaging system lens module, a case where a solder reflow process is introduced is increasing. In such a reflow process, a material that can withstand a temperature near 300 ° C. is required.
 具体的には、従来の透明樹脂製の近赤外線吸収材料では耐熱性が不十分であった。実際、特許文献4のように、種々の熱可塑性樹脂に近赤外線吸収化合物を添加して成形体を形成する例もあるが、熱履歴のかかる樹脂の成形プロセスにおいては近赤外線吸収化合物の熱劣化がどうしても生じてしまい、実用レベルに耐え得るものが無いのが現状である。 Specifically, conventional near-infrared absorbing materials made of transparent resin have insufficient heat resistance. In fact, as in Patent Document 4, there is an example in which a near-infrared absorbing compound is added to various thermoplastic resins to form a molded body. However, in the molding process of a resin having a heat history, the near-infrared absorbing compound is thermally deteriorated. However, there is nothing that can withstand practical levels.
 また、特許文献5に示されるように、耐熱性、耐光性に優れる近赤外線吸収特性を有する硬化性コーティング剤はこれまで開示されていなかった。 Further, as shown in Patent Document 5, a curable coating agent having near infrared absorption properties excellent in heat resistance and light resistance has not been disclosed so far.
 更には、近赤外線吸収材料を作製する際、一般的に、近赤外線吸収化合物の基材樹脂に対する分散性や溶解性には制限が有り、望まれる可視光透過性や近赤外線吸収性及び耐熱性を有する近赤外線吸収材料を得ることは困難であった。 Furthermore, when producing near-infrared absorbing materials, there are generally limitations on the dispersibility and solubility of the near-infrared absorbing compound in the base resin, and the desired visible light transmittance, near-infrared absorptivity, and heat resistance. It was difficult to obtain a near-infrared absorbing material having
 また、従来の透明樹脂製の近赤外線吸収材料では、長期使用での信頼性が低く、適用される部材が一部のものに限られていた。特許文献6のように、固体撮像素子を製造する工程における温度180℃程度で赤外線吸収能を失うことなく、650~750nmの領域の光を十分に吸収する固体撮像素子用近赤外線吸収組成物の例は知られているものの、例えば、リフロー温度の上限値に近い260℃で近赤外線吸収特性及び光学的透明性を維持し得る硬化性組成物及び硬化物はこれまでに知られていなかった。 In addition, the conventional near-infrared absorbing material made of transparent resin has low reliability in long-term use, and only a limited number of members are applicable. As in Patent Document 6, a near-infrared absorbing composition for a solid-state imaging device that sufficiently absorbs light in the region of 650 to 750 nm without losing infrared absorption capability at a temperature of about 180 ° C. in the process of manufacturing the solid-state imaging device Although an example is known, for example, a curable composition and a cured product that can maintain near-infrared absorption characteristics and optical transparency at 260 ° C. close to the upper limit of the reflow temperature have not been known so far.
日本国公開特許公報「特開2006-233096号」Japanese Published Patent Publication "Japanese Patent Laid-Open No. 2006-233096" 日本国公開特許公報「特開2000-7871号」Japanese Patent Publication “JP 2000-7871” 日本国公開特許公報「特開2006-137936号」Japanese Patent Publication “Japanese Patent Laid-Open No. 2006-137936” 日本国公開特許公報「特開2006-241410号」Japanese Patent Publication “JP 2006-241410” 日本国公開特許公報「特開2006-284630号」Japanese Patent Publication “Japanese Patent Laid-Open No. 2006-284630” 日本国公開特許公報「特開2006-343631号」Japanese Patent Publication “Japanese Patent Laid-Open No. 2006-343631”
 本発明は、前記の問題点に鑑みてなされたものであり、その目的は、近赤外域の吸収が大きく、半田リフロー工程のような高温条件において光学特性の変化が実質的に生じることのない近赤外線吸収材料、並びに当該近赤外線吸収材料を含む光学材料を実現することにある。 The present invention has been made in view of the above-described problems, and its purpose is to have a large absorption in the near infrared region, and there is substantially no change in optical characteristics under high temperature conditions such as a solder reflow process. The object is to realize a near-infrared absorbing material and an optical material containing the near-infrared absorbing material.
 本発明に係る硬化性樹脂組成物は、前記課題を解決するために、硬化後の樹脂組成物が、700~1100nmの波長範囲全域に吸収を有し、260℃の状態で60秒保持した後に室温まで冷却する操作を3回繰り返すリフロー試験前後において、硬化後の樹脂組成物における、400~600nmの平均光線透過率が50%以上であり、750~850nmの平均透過率が20%以下であり、且つ波長750nmの透過率の変化率が±5%以内であることを特徴としている。 In order to solve the above problems, the curable resin composition according to the present invention has an absorption in the entire wavelength range of 700 to 1100 nm after the cured resin composition is held at 260 ° C. for 60 seconds. Before and after the reflow test in which the operation of cooling to room temperature is repeated three times, the average light transmittance at 400 to 600 nm is 50% or more and the average transmittance at 750 to 850 nm is 20% or less in the cured resin composition. And the change rate of the transmittance at a wavelength of 750 nm is within ± 5%.
 また、本発明に係る近赤外線吸収材料の製造方法は、前記課題を解決するために、本発明に係る前記近赤外線吸収材料の製造方法であり、有機溶媒100重量部に対して近赤外線吸収性化合物(B-2)が1~50重量部となるように分散させた溶液を作製し、当該溶液を、硬化性組成物(A)と、非イオン性の赤外線吸収化合物(B-1)とを含有する透明性樹脂組成物から得られた成形体表面に塗布することを特徴としている。 Moreover, in order to solve the said subject, the manufacturing method of the near-infrared absorption material which concerns on this invention is a manufacturing method of the said near-infrared absorption material which concerns on this invention, and a near-infrared absorptivity with respect to 100 weight part of organic solvents. A solution in which the compound (B-2) is dispersed so as to be 1 to 50 parts by weight is prepared, and the solution is mixed with the curable composition (A), the nonionic infrared absorbing compound (B-1), and It is characterized by being applied to the surface of a molded body obtained from a transparent resin composition containing
 更には、本発明に係る硬化性コーティング剤は、前記課題を解決するために、本発明に係る硬化性樹脂組成物からなる硬化性コーティング剤であり、近赤外線吸収化合物(B)として、複合酸化タングステン化合物、フタロシアニン系化合物、及びナフタロシアニン系化合物からなる群から選択される少なくとも1種と、ペリレン系化合物及びクオタリレン系化合物からなる群から選択される少なくとも1種とを含むことを特徴としている。 Furthermore, the curable coating agent according to the present invention is a curable coating agent comprising the curable resin composition according to the present invention in order to solve the above-mentioned problems, and as a near-infrared absorbing compound (B), composite oxidation It includes at least one selected from the group consisting of tungsten compounds, phthalocyanine compounds, and naphthalocyanine compounds, and at least one selected from the group consisting of perylene compounds and quatarylene compounds.
 また、本発明に係る硬化性組成物は、前記課題を解決するために、本発明に係る硬化性樹脂組成物からなる硬化性組成物であり、
(a)SiH基と反応性を有する炭素-炭素二重結合を一分子中に少なくとも2個有する有機化合物と、
(b)ヒドロシリル化触媒と、
(c)1分子中に少なくとも2個のSiH基を含有する化合物と、
(d)クオタリレン系化合物と、フタロシアニン系化合物及びナフタロシアニン系化合物から選択される少なくとも1種の化合物とを含む近赤外線吸収性組成物と、
を含有することを特徴としている。
Moreover, in order to solve the said subject, the curable composition which concerns on this invention is a curable composition which consists of a curable resin composition which concerns on this invention,
(A) an organic compound having at least two carbon-carbon double bonds reactive with SiH groups in one molecule;
(B) a hydrosilylation catalyst;
(C) a compound containing at least two SiH groups in one molecule;
(D) a near-infrared absorbing composition comprising a quatarylene compound and at least one compound selected from a phthalocyanine compound and a naphthalocyanine compound;
It is characterized by containing.
 更には、本発明に係る光学材料は、本発明に係る前記近赤外線吸収材料を赤外線遮蔽体として含むことを特徴としている。 Furthermore, the optical material according to the present invention is characterized in that the near-infrared absorbing material according to the present invention is included as an infrared shielding body.
 本発明によれば、近赤外域の吸収が大きく、半田リフロー工程のような高温条件において光学特性の変化が実質的に生じることのない近赤外線吸収材料、並びに当該近赤外線吸収材料を含む光学材料を提供することができる。 According to the present invention, a near-infrared absorbing material having a large absorption in the near-infrared region and causing substantially no change in optical characteristics under high-temperature conditions such as a solder reflow process, and an optical material including the near-infrared absorbing material Can be provided.
 以下、本発明について詳しく説明する。 Hereinafter, the present invention will be described in detail.
 本発明の硬化性樹脂組成物は、硬化後の樹脂組成物が、700~1100nmの波長範囲全域に吸収を有し、260℃の状態で60秒保持した後に室温まで冷却する操作を3回繰り返すリフロー試験前後において、硬化後の樹脂組成物における、400~600nmの平均光線透過率が50%以上であり、750~850nmの平均透過率が20%以下であり、且つ波長750nmの透過率の変化率が±5%以内である。 In the curable resin composition of the present invention, the cured resin composition has absorption in the entire wavelength range of 700 to 1100 nm, and the operation of cooling to room temperature after holding at 260 ° C. for 60 seconds is repeated three times. Before and after the reflow test, the average light transmittance at 400 to 600 nm in the cured resin composition is 50% or more, the average transmittance at 750 to 850 nm is 20% or less, and the change in transmittance at a wavelength of 750 nm. The rate is within ± 5%.
 つまり、言い換えれば、本発明の近赤外線吸収材料は、硬化後の樹脂組成物が、700~1100nmの波長範囲全域に吸収を有し、260℃の状態で60秒保持した後に室温まで冷却する操作を3回繰り返すリフロー試験前後において、硬化後の樹脂組成物における、400~600nmの平均光線透過率が50%以上であり、750~850nmの平均透過率が20%以下であり、且つ波長750nmの透過率の変化率が±5%以内であるものである。 That is, in other words, the near-infrared absorbing material of the present invention is an operation in which the cured resin composition has absorption in the entire wavelength range of 700 to 1100 nm and is cooled to room temperature after being held at 260 ° C. for 60 seconds. Before and after the reflow test repeated three times, the cured resin composition has an average light transmittance of 400 to 600 nm of 50% or more, an average transmittance of 750 to 850 nm of 20% or less, and a wavelength of 750 nm. The change rate of the transmittance is within ± 5%.
 前記物性を発現する近赤外線吸収材料としては、例えば、下記近赤外線吸収材料(I)~(III)が好ましい。 As the near-infrared absorbing material exhibiting the above physical properties, for example, the following near-infrared absorbing materials (I) to (III) are preferable.
 硬化性組成物(A)と、非イオン性の赤外線吸収化合物(B-1)とを含有する透明性樹脂組成物から得られた成形体表面に、近赤外線吸収化合物(B-2)を含有する層を有する近赤外線吸収材料(I)。 A near-infrared absorbing compound (B-2) is contained on the surface of a molded product obtained from a transparent resin composition containing the curable composition (A) and a nonionic infrared absorbing compound (B-1). Near-infrared absorbing material (I) which has a layer to do.
 近赤外線吸収化合物(B)として、複合酸化タングステン化合物、フタロシアニン系化合物、及びナフタロシアニン系化合物からなる群から選択される少なくとも1種と、ペリレン系化合物及びクオタリレン系化合物からなる群から選択される少なくとも1種とを含む、硬化性コーティング剤を透明基材の少なくとも片面に塗布し、溶剤を蒸発させた後、硬化させて得られる、近赤外線吸収材料(II)。 As the near-infrared absorbing compound (B), at least one selected from the group consisting of complex tungsten oxide compounds, phthalocyanine compounds, and naphthalocyanine compounds, and at least selected from the group consisting of perylene compounds and quatarylene compounds A near-infrared absorbing material (II) obtained by applying a curable coating agent containing at least one kind to at least one surface of a transparent substrate, evaporating the solvent, and then curing.
 (a)SiH基と反応性を有する炭素-炭素二重結合を一分子中に少なくとも2個有する有機化合物と、(b)ヒドロシリル化触媒と、(c)1分子中に少なくとも2個のSiH基を含有する化合物と、(d)クオタリレン系化合物と、フタロシアニン系化合物及びナフタロシアニン系化合物から選択される少なくとも1種の化合物とを含む近赤外線吸収性組成物と、を含有する硬化性組成物を硬化させて得られる近赤外線吸収材料(硬化物)(III)。 (A) an organic compound having at least two carbon-carbon double bonds reactive with SiH groups in one molecule, (b) a hydrosilylation catalyst, and (c) at least two SiH groups in one molecule. A near-infrared-absorbing composition comprising: a compound containing: a (d) quatarylene compound; and at least one compound selected from a phthalocyanine compound and a naphthalocyanine compound; Near-infrared absorbing material (cured product) (III) obtained by curing.
 以下各材料について詳しく説明する。 Hereinafter, each material will be described in detail.
 〔1.近赤外線吸収材料(I)〕
 近赤外線吸収材料(I)は、硬化性組成物(A)と、非イオン性の赤外線吸収化合物(B-1)とを含有する透明性樹脂組成物から得られた成形体表面に、近赤外線吸収化合物(B-2)を含有する層を有する。
[1. Near-infrared absorbing material (I)]
The near-infrared absorbing material (I) is formed on the surface of a molded product obtained from a transparent resin composition containing a curable composition (A) and a nonionic infrared-absorbing compound (B-1). It has a layer containing the absorbing compound (B-2).
 (1-1)硬化性組成物(A)
 前記硬化性組成物(A)として、硬化性組成物(A)と近赤外線吸収性化合物との相溶性等を勘案した上で、硬化性アクリル組成物、硬化性ノルボルネン組成物、硬化性ポリイミド組成物、硬化性エポキシシリコーン組成物、硬化性シリコーン組成物を用いることができる。以下、各硬化性組成物について説明する。
(1-1) Curable composition (A)
As the curable composition (A), a curable acrylic composition, a curable norbornene composition, and a curable polyimide composition after considering the compatibility between the curable composition (A) and the near-infrared absorbing compound. Products, curable epoxy silicone compositions, and curable silicone compositions can be used. Hereinafter, each curable composition will be described.
 (1-1-1)硬化性アクリル組成物
 一般に、硬化性アクリル組成物は光または熱で硬化させる場合が多く、光硬化性アクリル樹脂は紫外線等の光を利用して硬化させる光硬化性アクリル組成物も知られている。かかる光硬化性アクリル組成物は硬化速度が速く、かつ、常温で硬化させることができる。
(1-1-1) Curable Acrylic Composition Generally, a curable acrylic composition is often cured with light or heat, and a photocurable acrylic resin is a photocurable acrylic that is cured using light such as ultraviolet rays. Compositions are also known. Such a photocurable acrylic composition has a high curing rate and can be cured at room temperature.
 (1-1-2)硬化性ノルボルネン組成物
 硬化性ノルボルネン組成物について説明する。一般に、反応射出成形(RIM)により、ジシクロペンタジエン(DCP)やメチルテトラシクロドデセン(MTD)等のノルボルネン系モノマーを、金型内でメタセシス触媒系の存在下に塊状重合することによりノルボルネン系ポリマーを得ることは周知の技術である(日本国公開特許公報「特開昭58-129013号」、日本国公開特許公報「特開昭59-51911号」、日本国公開特許公報「特開昭61-179214号」、日本国公開特許公報「特開昭61-293208号」等)。
(1-1-2) Curable Norbornene Composition The curable norbornene composition will be described. Generally, norbornene-based monomers are obtained by bulk polymerization of norbornene-based monomers such as dicyclopentadiene (DCP) and methyltetracyclododecene (MTD) in the presence of a metathesis catalyst system by reaction injection molding (RIM). Obtaining a polymer is a well-known technique (Japanese Published Patent Publication “JP-A 58-129003”, Japanese Published Patent Publication “JP-A 59-51911”, Japanese Published Patent Publication “JP-A Sho”. 61-179214 ", Japanese Patent Publication" JP-A 61-293208 ", etc.).
 一般にこれらの塊状重合においては、メタセシス触媒及びノルボルネン系モノマーを含む反応原液と、共触媒及びノルボルネン系モノマーを含む反応原液とをそれぞれ調製し、この両反応原液を混合後、メタセシス重合を開始し、未反応モノマーが実質的に残留しない程度まで反応させて、重合を完結させる。 In general, in these bulk polymerizations, a reaction stock solution containing a metathesis catalyst and a norbornene-based monomer and a reaction stock solution containing a co-catalyst and a norbornene-based monomer are prepared, and after mixing both the reaction stock solutions, the metathesis polymerization is started. The polymerization is completed by reacting to the extent that the unreacted monomer does not substantially remain.
 (ノルボルネン系ポリマー成形品)
 本発明において用いることのできる熱硬化性ノルボルネン系ポリマーは、常法に従って、ノルボルネン系モノマーを塊状重合して得たものである。
(Norbornene polymer molded product)
The thermosetting norbornene polymer that can be used in the present invention is obtained by bulk polymerization of norbornene monomers according to a conventional method.
 (ノルボルネン系モノマー)
 本発明において用い得るノルボルネン系モノマーは、ノルボルネン環を有するものであれば何れのモノマーでもよいが、三環体以上の多環ノルボルネン系モノマーを用いると、熱変形温度の高い重合体が得られる。また、生成する開環重合体を熱硬化型とするために、全モノマー中の少なくとも10重量%、好ましくは30重量%以上の架橋性モノマーを使用する必要がある。
(Norbornene monomer)
The norbornene-based monomer that can be used in the present invention may be any monomer as long as it has a norbornene ring, but if a tricyclic or higher polycyclic norbornene-based monomer is used, a polymer having a high heat distortion temperature can be obtained. Further, in order to make the ring-opening polymer to be thermosetting type, it is necessary to use at least 10% by weight, preferably 30% by weight or more of a crosslinkable monomer in all monomers.
 ノルボルネン系モノマーの具体例としては、ノルボルネン、ノルボルナジエン等の二環体、ジシクロペンタジエンやジヒドロジシクロペンタジエン等の三環体、テトラシクロドデセン等の四環体、トリシクロペンタジエン等の五環体、テトラシクロペンタジエン等の七環体、これらのアルキル置換体(例えば、メチル、エチル、プロピル、ブチル置換体等)、アルケニル置換体(例えば、ビニル置換体等)、アルキリデン置換体(例えば、エチリデン置換体等)、アリール置換体(例えば、フェニル、トリル、ナフチル置換体等)、エステル基、エーテル基、シアノ基、ハロゲン原子等の極性基を有する置換体等が例示される。これらのモノマーは、1種のみ用いてもよいし、2種以上を組み合わせて用いてもよい。中でも、入手の容易さ、反応性、耐熱性等の見地から、三環体または五環体を使用することが好ましい。 Specific examples of norbornene monomers include bicyclic compounds such as norbornene and norbornadiene, tricyclic compounds such as dicyclopentadiene and dihydrodicyclopentadiene, tetracyclic compounds such as tetracyclododecene, and pentacyclic compounds such as tricyclopentadiene. Heterocycles such as tetracyclopentadiene, alkyl substitutions thereof (eg, methyl, ethyl, propyl, butyl substitutions, etc.), alkenyl substitutions (eg, vinyl substitutions), alkylidene substitutions (eg, ethylidene substitutions) Etc.), aryl-substituted products (for example, phenyl, tolyl, naphthyl-substituted products, etc.), substituted products having polar groups such as ester groups, ether groups, cyano groups, and halogen atoms. These monomers may be used alone or in combination of two or more. Among these, from the viewpoint of availability, reactivity, heat resistance, and the like, it is preferable to use a tricycle or a pentacycle.
 架橋性モノマーは、反応性の二重結合を2個以上有する多環ノルボルネン系モノマーであり、その具体例としてジシクロペンタジエン、トリシクロペンタジエン、テトラシクロペンタジエン等が例示される。ノルボルネン系モノマーと架橋性モノマーとが同一物である場合には格別他の架橋性モノマーを用いる必要はない。尚、前記ノルボルネン系モノマーの1種以上と開環共重合し得るシクロブテン、シクロペンテン、シクロペンタジエン、シクロオクテン、シクロドデセン等の単環シクロオレフィン等を、本発明の目的を損なわない範囲で併用することができる。 The crosslinkable monomer is a polycyclic norbornene-based monomer having two or more reactive double bonds, and specific examples thereof include dicyclopentadiene, tricyclopentadiene, and tetracyclopentadiene. When the norbornene monomer and the crosslinkable monomer are the same, it is not necessary to use other crosslinkable monomers. In addition, a monocyclic cycloolefin such as cyclobutene, cyclopentene, cyclopentadiene, cyclooctene, cyclododecene, or the like that can be ring-opening copolymerized with one or more of the norbornene-based monomers may be used in combination as long as the object of the present invention is not impaired. it can.
 (メタセシス触媒系)
 本発明においては、ノルボルネン系モノマーの開環重合用触媒として、公知のメタセシス触媒と活性剤とからなるメタセシス触媒系が使用できる。メタセシス触媒の具体例としては、タングステン、モリブデン、タンタル等のハロゲン化物、オキシハロゲン化物、酸化物、有機アンモニウム塩等が挙げられる。活性剤(共触媒)の具体例としては、アルキルアルミニウムハライド、アルコキシアルキルアルミニウムハライド、アリールオキシアルキルアルミニウムハライド、有機スズ化合物等が挙げられる。
(Metathesis catalyst system)
In the present invention, a known metathesis catalyst system comprising a metathesis catalyst and an activator can be used as a catalyst for ring-opening polymerization of a norbornene monomer. Specific examples of the metathesis catalyst include halides such as tungsten, molybdenum, and tantalum, oxyhalides, oxides, and organic ammonium salts. Specific examples of the activator (cocatalyst) include alkylaluminum halides, alkoxyalkylaluminum halides, aryloxyalkylaluminum halides, and organic tin compounds.
 メタセシス触媒は、ノルボルネン系モノマー1モルに対し、通常、約0.01~50ミリモル、好ましくは0.1~20ミリモルの範囲で用いられる。活性剤は、メタセシス触媒に対して、好ましくは1~10(モル比)の範囲で用いられる。メタセシス触媒及び活性剤は、何れもモノマーに溶解して用いる方が好ましいが、生成物の性質を本質的に損なわない範囲であれば少量の溶剤に懸濁または溶解させて用いてもよい。 The metathesis catalyst is usually used in an amount of about 0.01 to 50 mmol, preferably 0.1 to 20 mmol, relative to 1 mol of the norbornene monomer. The activator is preferably used in the range of 1 to 10 (molar ratio) with respect to the metathesis catalyst. The metathesis catalyst and the activator are both preferably dissolved in the monomer, but may be used by suspending or dissolving in a small amount of solvent as long as the properties of the product are not essentially impaired.
 (1-1-3)熱硬化性ポリイミド組成物
 熱硬化性ポリイミドとしては、例えば、ビスマレイミド型ポリイミド、アリルナジイミド等のナジック酸型ポリイミド、アセチレン型ポリイミド等が挙げられるが、これらに限定されない。
(1-1-3) Thermosetting polyimide composition Examples of the thermosetting polyimide include, but are not limited to, nadic acid type polyimides such as bismaleimide type polyimide and allyl nadiimide, and acetylene type polyimides. .
 熱硬化性ポリイミドは、熱可塑性ポリイミドや非熱可塑性(芳香族)ポリイミドに比べ、加工が容易であるという利点を有する。高温特性は非熱可塑性ポリイミドと比べれば劣るものの、各種有機ポリマーの中では極めて良好な部類である。しかも、硬化の際にボイドやクラックを殆ど発生しないので、本発明の樹脂組成物の成分として好適である。熱硬化性ポリイミドは、例えば、末端に不飽和基を有する低分子量のモノマーまたはオリゴマーをプレポリマーとし、これを付加反応、縮合反応またはラジカル反応を介して三次元架橋することによって得ることができる。 Thermosetting polyimide has the advantage that it is easier to process than thermoplastic polyimide and non-thermoplastic (aromatic) polyimide. Although the high temperature characteristics are inferior to those of non-thermoplastic polyimides, it is a very good class among various organic polymers. Moreover, since voids and cracks hardly occur during curing, it is suitable as a component of the resin composition of the present invention. The thermosetting polyimide can be obtained, for example, by using a low molecular weight monomer or oligomer having an unsaturated group at the terminal as a prepolymer, and three-dimensionally cross-linking it through an addition reaction, a condensation reaction or a radical reaction.
 付加型の熱硬化性ポリイミドとしては、例えば、アリルナジイミド型、マレイミド型、トリアジン型、またはマイケル付加型等のポリイミドを使用することができる。付加型のポリイミドは、プレポリマー(低分子量モノマーまたはオリゴマー)中の不飽和基の付加反応によって硬化が進行する。それ故、硬化時に縮合水その他の揮発性物質が生じず、気泡やクラックのない組成物を与える。 As the addition type thermosetting polyimide, for example, an allyl nadiimide type, a maleimide type, a triazine type, or a Michael addition type polyimide can be used. The addition type polyimide is cured by an addition reaction of unsaturated groups in the prepolymer (low molecular weight monomer or oligomer). Therefore, condensed water and other volatile substances are not generated during curing, and a composition free from bubbles and cracks is obtained.
 付加型ポリイミドのプレポリマーは、例えば、アリルナジック酸無水物とジアミン(ヘキサメチレンジアミン、ビス(4-アミノフェニル)メタン、m-キシリレンジアミン等)との反応、アリルナジック酸無水物とヒドロキシフェニルアミンやアリルアミンとの反応、無水マレイン酸等とジアミン(例えば、ジアミノジフェニルメタン等)との反応、ビニルベンジル化合物等とマレイミド等との反応によって得ることができる。 Prepolymers of addition type polyimides include, for example, reaction of allyl nadic acid anhydride and diamine (hexamethylenediamine, bis (4-aminophenyl) methane, m-xylylenediamine, etc.), allyl nadic acid anhydride and hydroxyphenyl It can be obtained by reaction with amine or allylamine, reaction of maleic anhydride or the like with diamine (for example, diaminodiphenylmethane), reaction of vinylbenzyl compound or the like with maleimide or the like.
 (1-1-4)硬化性エポキシシリコーン組成物
 硬化性エポキシシリコーン組成物としては、必須成分として、一分子中に1個以上の脂肪族不飽和一価炭化水素基を有し、かつ少なくとも1個以上のケイ素原子結合水酸基を有する有機ケイ素化合物と、芳香族エポキシ樹脂もしくは芳香環を、一部もしくは完全に水添した水添型エポキシ樹脂と、オルガノハイドロジェンポリシロキサンからなる樹脂とを使用することが好ましい。この場合、これに白金族金属系触媒とアルミニウム系硬化触媒とを配合することが好ましく、硬化形態は加熱硬化が好ましい。
(1-1-4) Curable Epoxy Silicone Composition The curable epoxy silicone composition has at least one aliphatic unsaturated monovalent hydrocarbon group in one molecule as an essential component, and at least 1 Use of an organosilicon compound having at least one silicon-bonded hydroxyl group, a hydrogenated epoxy resin partially or completely hydrogenated with an aromatic epoxy resin or aromatic ring, and a resin comprising an organohydrogenpolysiloxane It is preferable. In this case, it is preferable to mix a platinum group metal catalyst and an aluminum curing catalyst, and the curing mode is preferably heat curing.
 (1-1-5)硬化性シリコーン組成物
 硬化性シリコーン組成物としては、従来公知の硬化性シリコーン組成物が使用でき、例えば、付加反応硬化性シリコーン組成物、縮合反応硬化性シリコーン組成物、有機過酸化物硬化性シリコーン組成物、紫外線硬化性シリコーン組成物が挙げられ、その取扱い作業性が容易であることから、縮合反応硬化性シリコーン組成物あるいは付加反応硬化性シリコーン組成物が好ましく、本発明では付加反応硬化性シリコーン組成物が特に好ましい。
(1-1-5) Curable Silicone Composition As the curable silicone composition, conventionally known curable silicone compositions can be used. For example, addition reaction curable silicone compositions, condensation reaction curable silicone compositions, An organic peroxide curable silicone composition and an ultraviolet curable silicone composition can be mentioned, and since the handling workability thereof is easy, a condensation reaction curable silicone composition or an addition reaction curable silicone composition is preferable. In the invention, addition reaction curable silicone compositions are particularly preferred.
 本発明で用いられる付加反応硬化性シリコーン組成物について、以下記述する。 The addition reaction curable silicone composition used in the present invention will be described below.
 好ましく用いることができる前記付加反応硬化性シリコーン組成物としては、(a)1分子中にSiH基との反応性を有する炭素-炭素二重結合を2個以上有する有機化合物と、(b)ヒドロシリル化触媒と、(c)1分子中に少なくとも2個のSiH基を有する化合物と、を含む組成物が挙げられる。当該組成物を用いることにより、成形加工性と耐リフロー性を両立した材料を提供することが可能となる。 Examples of the addition reaction curable silicone composition that can be preferably used include (a) an organic compound having two or more carbon-carbon double bonds having reactivity with SiH groups in one molecule, and (b) hydrosilyl. And a composition containing (c) a compound having at least two SiH groups in one molecule. By using the composition, it is possible to provide a material having both molding processability and reflow resistance.
 以下に(a)、(b)、及び(c)の各成分について説明する。 Hereinafter, the components (a), (b), and (c) will be described.
 <成分(a)>
 成分(a)は、SiH基と反応性を有する炭素-炭素二重結合を1分子中に2個以上含有する有機化合物である。当該有機化合物としては、ポリシロキサン-有機ブロックコポリマーやポリシロキサン-有機グラフトコポリマーのようなシロキサン単位(Si-O-Si)を含むものではなく、C、H、N、O、S、及びハロゲンからなる群から選ばれる元素を構成元素として含むものであることが好ましい。シロキサン単位を含むものは、ガス透過性やはじきの問題が発生する場合がある。
<Component (a)>
Component (a) is an organic compound containing two or more carbon-carbon double bonds having reactivity with SiH groups in one molecule. The organic compound does not contain a siloxane unit (Si—O—Si) such as polysiloxane-organic block copolymer or polysiloxane-organic graft copolymer, but includes C, H, N, O, S, and halogen. It is preferable that an element selected from the group consisting of: Those containing siloxane units may cause gas permeability and repelling problems.
 SiH基と反応性を有する炭素-炭素二重結合の結合位置は特に限定されず、分子内のどこに存在してもよい。 The bonding position of the carbon-carbon double bond having reactivity with the SiH group is not particularly limited, and may be present anywhere in the molecule.
 成分(a)の有機化合物は、有機重合体系化合物と有機単量体系化合物とに分類できる。 Component (a) organic compounds can be classified into organic polymer compounds and organic monomer compounds.
 有機重合体系化合物としては、例えば、ポリエーテル系、ポリエステル系、ポリアリレート系、ポリカーボネート系、飽和炭化水素系、不飽和炭化水素系、ポリ(メタ)アクリル酸エステル系、ポリアミド系、フェノール-ホルムアルデヒド系(フェノール樹脂系)、ポリイミド系の化合物を用いることができる。 Examples of organic polymer compounds include polyether, polyester, polyarylate, polycarbonate, saturated hydrocarbon, unsaturated hydrocarbon, poly (meth) acrylate ester, polyamide, phenol-formaldehyde (Phenol resin type) and polyimide type compounds can be used.
 特に、ポリエステル系、ポリカーボネート系、ポリ(メタ)アクリル酸エステル系が耐熱性及び透明性の点から好適である。 In particular, polyesters, polycarbonates, and poly (meth) acrylates are preferred from the viewpoint of heat resistance and transparency.
 有機単量体系化合物としては、例えば、フェノール系、ビスフェノール系、ベンゼン、ナフタレン等の芳香族炭化水素系;直鎖型脂肪族炭化水素系;シクロヘキサン、ノルボルネン、アダマンタン等の脂環式炭化水素系;イソシアヌル化合物、テトラヒドロピラン、トリアジン等の複素環系の化合物、及びこれらの混合物等が挙げられる。 Examples of organic monomer compounds include aromatic hydrocarbons such as phenols, bisphenols, benzene, and naphthalene; linear aliphatic hydrocarbons; alicyclic hydrocarbons such as cyclohexane, norbornene, and adamantane; Heterocyclic compounds such as isocyanuric compounds, tetrahydropyrans and triazines, and mixtures thereof.
 成分(a)のSiH基と反応性を有する炭素-炭素二重結合としては特に限定されないが、下記一般式(I) The carbon-carbon double bond having reactivity with the SiH group of component (a) is not particularly limited, but the following general formula (I)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素原子あるいはメチル基を表す。)
で示される基が反応性の点から好適である。また、原料の入手の容易さからは、前記一般式(I)中のRが水素原子である基が特に好ましい。
(In the formula, R 1 represents a hydrogen atom or a methyl group.)
Is preferable from the viewpoint of reactivity. Moreover, from the ease of acquisition of a raw material, the group whose R < 1 > in the said general formula (I) is a hydrogen atom is especially preferable.
 成分(a)のSiH基と反応性を有する炭素-炭素二重結合としては、下記一般式(II)で表される部分構造を環内に有する脂環式の基が、硬化物の耐熱性が高いという点から好適である。 As the carbon-carbon double bond having reactivity with the SiH group of component (a), an alicyclic group having a partial structure represented by the following general formula (II) in the ring is the heat resistance of the cured product. Is preferable from the viewpoint of high.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、Rは、互いに独立して、水素原子あるいはメチル基を表す。)
 また、原料の入手の容易さからは、前記一般式(II)においてRがともに水素原子である部分構造を環内に有する脂環式の基が好適である。
(In the formula, R 2 each independently represents a hydrogen atom or a methyl group.)
In view of the availability of the raw material, an alicyclic group having a partial structure in which R 2 is a hydrogen atom in the general formula (II) in the ring is preferable.
 SiH基と反応性を有する炭素-炭素二重結合は、成分(a)の骨格部分に直接結合していてもよく、2価以上の置換基を介して共有結合していてもよい。2価以上の置換基としては炭素数0~10の置換基であれば特に限定されないが、C、H、N、O、S、及び、ハロゲンからなる群から選ばれる元素のみを構成元素として含むものが好ましい。これらの置換基の例としては、 The carbon-carbon double bond having reactivity with the SiH group may be directly bonded to the skeleton of the component (a) or may be covalently bonded through a divalent or higher substituent. The divalent or higher valent substituent is not particularly limited as long as it is a substituent having 0 to 10 carbon atoms, but includes only an element selected from the group consisting of C, H, N, O, S, and halogen as a constituent element. Those are preferred. Examples of these substituents include
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
が挙げられる。また、これら2価以上の置換基の2つ以上が共有結合によりつながって1つの2価以上の置換基を構成していてもよい。 Is mentioned. Two or more of these divalent or higher valent substituents may be connected by a covalent bond to form one divalent or higher valent substituent.
 以上のような骨格部分に共有結合する基の例としては、ビニル基、アリル基、メタリル基、アクリル基、メタクリル基、2-ヒドロキシ-3-(アリルオキシ)プロピル基、2-アリルフェニル基、3-アリルフェニル基、4-アリルフェニル基、2-(アリルオキシ)フェニル基、3-(アリルオキシ)フェニル基、4-(アリルオキシ)フェニル基、2-(アリルオキシ)エチル基、2,2-ビス(アリルオキシメチル)ブチル基、3-アリルオキシ-2,2-ビス(アリルオキシメチル)プロピル基、ビニルエーテル基、 Examples of the group covalently bonded to the skeleton as described above include vinyl group, allyl group, methallyl group, acrylic group, methacryl group, 2-hydroxy-3- (allyloxy) propyl group, 2-allylphenyl group, 3 -Allylphenyl group, 4-allylphenyl group, 2- (allyloxy) phenyl group, 3- (allyloxy) phenyl group, 4- (allyloxy) phenyl group, 2- (allyloxy) ethyl group, 2,2-bis (allyl) Oxymethyl) butyl group, 3-allyloxy-2,2-bis (allyloxymethyl) propyl group, vinyl ether group,
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
が挙げられる。 Is mentioned.
 成分(a)の具体例としては、ジアリルフタレート、トリアリルトリメリテート、ジエチレングリコールビスアリルカーボネート、トリメチロールプロパンジアリルエーテル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールトリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、1,1,2,2-テトラアリロキシエタン、ジアリリデンペンタエリスリット、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、ジアリルイソシアヌル酸、ジアリルモノベンジルイソシアヌレート、1,2,4-トリビニルシクロヘキサン、1,4-ブタンジオールジビニルエーテル、ノナンジオールジビニルエーテル、1,4-シクロへキサンジメタノールジビニルエーテル、トリエチレングリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ビスフェノールSのジアリルエーテル、ジビニルベンゼン、ジビニルビフェニル、1,3-ジイソプロペニルベンゼン、1,4-ジイソプロペニルベンゼン、1,3-ビス(アリルオキシ)アダマンタン、1,3-ビス(ビニルオキシ)アダマンタン、1,3,5-トリス(アリルオキシ)アダマンタン、1,3,5-トリス(ビニルオキシ)アダマンタン、ジシクロペンタジエン、ビニルシクロへキセン、1,5-ヘキサジエン、1,9-デカジエン、ジアリルエーテル、ビスフェノールAジアリルエーテル、テトラアリルビスフェノールA、2,5-ジアリルフェノールアリルエーテル、及びそれらのオリゴマー、1,2-ポリブタジエン(1,2体の比率10~100モル%のもの、好ましくは1,2体の比率50~100モル%のもの)、ノボラックフェノールのアリルエーテル、アリル化ポリフェニレンオキサイド、 Specific examples of the component (a) include diallyl phthalate, triallyl trimellitate, diethylene glycol bisallyl carbonate, trimethylolpropane diallyl ether, trimethylolpropane triallyl ether, pentaerythritol triallyl ether, pentaerythritol tetraallyl ether, 1 , 1,2,2-tetraallyloxyethane, diarylidenepentaerythritol, triallyl cyanurate, triallyl isocyanurate, diallyl monoglycidyl isocyanurate, diallyl isocyanuric acid, diallyl monobenzyl isocyanurate, 1,2,4 -Trivinylcyclohexane, 1,4-butanediol divinyl ether, nonanediol divinyl ether, 1,4-cyclohexanedimethanol divinyl ether , Triethylene glycol divinyl ether, trimethylolpropane trivinyl ether, pentaerythritol tetravinyl ether, diallyl ether of bisphenol S, divinylbenzene, divinylbiphenyl, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, 1 , 3-bis (allyloxy) adamantane, 1,3-bis (vinyloxy) adamantane, 1,3,5-tris (allyloxy) adamantane, 1,3,5-tris (vinyloxy) adamantane, dicyclopentadiene, vinylcyclohexene 1,5-hexadiene, 1,9-decadiene, diallyl ether, bisphenol A diallyl ether, tetraallyl bisphenol A, 2,5-diallylphenol allyl ether, and These oligomers, 1,2-polybutadiene (the ratio of 1,2 is 10 to 100 mol%, preferably the ratio of 1,2 is 50 to 100 mol%), allyl ether of novolak phenol, allylation Polyphenylene oxide,
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
の他、従来公知のエポキシ樹脂のグリシジル基の一部もしくは全部を、アリル基もしくは(メタ)アクリロイル基に置き換えたもの等が挙げられる。 In addition, the glycidyl group of a conventionally known epoxy resin may be partially or entirely replaced with an allyl group or a (meth) acryloyl group.
 成分(a)としては、前記のように骨格部分とアルケニル基(SiH基と反応性を有する炭素-炭素二重結合)とに分けて表現し難い低分子量化合物も用いることができる。これらの低分子量化合物の具体例としては、ブタジエン、イソプレン、オクタジエン、デカジエン等の脂肪族鎖状ポリエン化合物系;シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、ジシクロペンタジエン、トリシクロペンタジエン、ノルボルナジエン等の脂肪族環状ポリエン化合物系;ビニルシクロペンテン、ビニルシクロヘキセン等の置換脂肪族環状オレフィン化合物系等が挙げられる。 As the component (a), a low molecular weight compound which is difficult to express separately as described above by dividing into a skeleton portion and an alkenyl group (a carbon-carbon double bond having reactivity with a SiH group) can also be used. Specific examples of these low molecular weight compounds include aliphatic chain polyene compound systems such as butadiene, isoprene, octadiene and decadiene; fats such as cyclopentadiene, cyclohexadiene, cyclooctadiene, dicyclopentadiene, tricyclopentadiene and norbornadiene. Examples include aliphatic cyclic polyene compound systems; substituted aliphatic cyclic olefin compound systems such as vinylcyclopentene and vinylcyclohexene.
 成分(a)のSiH基と反応性を有する炭素-炭素二重結合の数は、平均して、1分子あたり少なくとも2個(好ましくは1分子当たり2~6個)あればよいが、硬化物の力学強度をより向上したい場合には2を越えることが好ましく、3個以上であることがより好ましい。 The average number of carbon-carbon double bonds reactive with the SiH group of component (a) may be at least 2 per molecule (preferably 2 to 6 per molecule). When it is desired to further improve the mechanical strength, it is preferably more than 2, more preferably 3 or more.
 成分(a)のSiH基と反応性を有する炭素-炭素二重結合の数が1分子中当たり2個未満の場合は、成分(c)と反応してもグラフト構造となるのみで架橋構造とならない。一方、成分(a)のSiH基と反応性を有する炭素-炭素二重結合の数が1分子中当たり6個より多い場合は、硬化性組成物の貯蔵安定性が悪くなる傾向がある。 When the number of carbon-carbon double bonds having reactivity with the SiH group of component (a) is less than 2 per molecule, the reaction with component (c) only results in a graft structure, Don't be. On the other hand, when the number of carbon-carbon double bonds reactive with the SiH group of component (a) is more than 6 per molecule, the storage stability of the curable composition tends to deteriorate.
 成分(a)としては、力学的耐熱性が高いという観点及び原料液の糸引き性が少なく成形性、取扱い性、塗布性が良好であるという観点からは、分子量が900未満のものが好ましく、700未満のものがより好ましく、500未満のものが更に好ましい。 As the component (a), those having a molecular weight of less than 900 are preferable from the viewpoint of high mechanical heat resistance and from the viewpoint of low formability of the raw material liquid, good moldability, handleability, and coatability. Those less than 700 are more preferred, and those less than 500 are even more preferred.
 成分(a)としては、良好な作業性を得るためには、23℃における粘度が100Pa・s未満のものが好ましく、30Pa・s未満のものがより好ましく、3Pa・s未満のものが更に好ましい。ここでの粘度はE型粘度計によって測定した値を指す。 In order to obtain good workability, the component (a) preferably has a viscosity at 23 ° C. of less than 100 Pa · s, more preferably less than 30 Pa · s, and still more preferably less than 3 Pa · s. . The viscosity here refers to a value measured by an E-type viscometer.
 成分(a)としては、耐熱性(耐リフロー性)、耐光性が高いという観点から下記一般式(IV) Component (a) has the following general formula (IV) from the viewpoint of high heat resistance (reflow resistance) and light resistance.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、Rは水素原子または炭素数1~50の一価の有機基を表し、それぞれのRは異なっていても同一であってもよく、少なくとも2個のRはSiH基との反応性を有する炭素-炭素二重結合を含む。)
で表される化合物が好ましい。
(In the formula, R 3 represents a hydrogen atom or a monovalent organic group having 1 to 50 carbon atoms, and each R 3 may be different or the same, and at least two R 3 may be SiH groups and Including a carbon-carbon double bond having the reactivity of
The compound represented by these is preferable.
 前記一般式(IV)のRとしては、得られる硬化物の耐熱性がより高くなり得るという観点からは、構成元素がC、H、O、及びNからなる群から選ばれる元素のみからなる有機基であることが好ましく、当該有機基は、炭素数が1~20であることが好ましく、炭素数が1~10であることがより好ましく、炭素数が1~4であることが更に好ましい。これらの好ましいRの例としては、メチル基、エチル基、プロピル基、ブチル基、フェニル基、ベンジル基、フェネチル基、ビニル基、アリル基、グリシジル基、 R 3 in the general formula (IV) is composed only of an element selected from the group consisting of C, H, O, and N from the viewpoint that the heat resistance of the obtained cured product can be further increased. An organic group is preferable, and the organic group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 4 carbon atoms. . Examples of these preferable R 3 include methyl group, ethyl group, propyl group, butyl group, phenyl group, benzyl group, phenethyl group, vinyl group, allyl group, glycidyl group,
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
等が挙げられる。 Etc.
 前記一般式(IV)のRとしては、得られる硬化物の化学的な熱安定性が良好になり得るという観点からは、構成元素としてC、H、及びOからなる群から選ばれる元素のみを含む、炭素数1~50の一価の有機基であることが好ましく、炭素数1~50の一価の炭化水素基であることがより好ましい。これらの好ましいRの例としては、メチル基、エチル基、プロピル基、ブチル基、フェニル基、ベンジル基、フェネチル基、ビニル基、アリル基、グリシジル基、 R 3 in the general formula (IV) is only an element selected from the group consisting of C, H, and O as constituent elements from the viewpoint that the chemical thermal stability of the resulting cured product can be improved. It is preferably a monovalent organic group having 1 to 50 carbon atoms, more preferably a monovalent hydrocarbon group having 1 to 50 carbon atoms. Examples of these preferable R 3 include methyl group, ethyl group, propyl group, butyl group, phenyl group, benzyl group, phenethyl group, vinyl group, allyl group, glycidyl group,
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
等が挙げられる。 Etc.
 前記一般式(IV)のRとしては、反応性が良好になるという観点からは、3つのRのうち少なくとも1つ(好ましくは少なくとも2つ)が As R 3 of the general formula (IV), at least one (preferably at least two) of the three R 3 is from the viewpoint of good reactivity.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
で表される基を1個以上含み、かつ構成元素としてC、H、O、及びNからなる群から選ばれる元素のみ含む、炭素数1~50の一価の有機基であることが好ましく、下記一般式(V) It is preferably a monovalent organic group having 1 to 50 carbon atoms and containing only one element selected from the group consisting of C, H, O, and N as a constituent element. The following general formula (V)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式中、Rは水素原子あるいはメチル基を表す。)
で表される基を1個以上含み、かつ構成元素としてC、H、O、及びNからなる群から選ばれる元素のみ含む、炭素数1~50の一価の有機基であることがより好ましく、3つのRのうち少なくとも2つが下記一般式(VII)
(In the formula, R 5 represents a hydrogen atom or a methyl group.)
More preferably, it is a monovalent organic group having 1 to 50 carbon atoms, which contains at least one group represented by formula (II) and contains only elements selected from the group consisting of C, H, O and N as constituent elements. At least two of the three R 3 are represented by the following general formula (VII)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(式中、Rは直接結合あるいは炭素数1~48の二価の有機基を表し、Rは水素原子あるいはメチル基を表す。)
で表される有機基(R及びRはそれぞれ異なっていても同一であってもよい。)であることが更に好ましい。
(Wherein R 6 represents a direct bond or a divalent organic group having 1 to 48 carbon atoms, and R 7 represents a hydrogen atom or a methyl group.)
More preferably, the organic group is represented by the formula (R 7 and R 6 may be different or the same).
 前記一般式(VII)のRは、直接結合あるいは炭素数1~48の二価の有機基であるが、得られる硬化物の耐熱性がより高くなり得るという観点からは、直接結合あるいは炭素数1~20の二価の有機基であることが好ましく、直接結合あるいは炭素数1~10の二価の有機基であることがより好ましく、直接結合あるいは炭素数1~4の二価の有機基であることが更に好ましい。 R 6 in the general formula (VII) is a direct bond or a divalent organic group having 1 to 48 carbon atoms. From the viewpoint that the obtained cured product can have higher heat resistance, the direct bond or carbon It is preferably a divalent organic group having 1 to 20 carbon atoms, more preferably a direct bond or a divalent organic group having 1 to 10 carbon atoms, and a direct bond or a divalent organic group having 1 to 4 carbon atoms. More preferably, it is a group.
 前記一般式(VII)のRとしては、得られる硬化物の化学的な熱安定性が良好になり得るという観点からは、直接結合、あるいは構成元素としてC、H、及びOからなる群から選ばれる元素のみを含む、炭素数1~48の二価の有機基であることが好ましく、好ましいRの例としては、下記のものが挙げられる。 R 6 in the general formula (VII) is a direct bond or a group consisting of C, H, and O as constituent elements from the viewpoint that chemical thermal stability of the obtained cured product can be improved. A divalent organic group having 1 to 48 carbon atoms containing only selected elements is preferred, and preferred examples of R 6 include the following.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 前記一般式(VII)のRは、水素原子あるいはメチル基であるが、反応性が良好であるという観点からは、水素原子が好ましい。 R 7 in the general formula (VII) is a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint of good reactivity.
 但し、前記のような一般式(IV)で表される有機化合物の好ましい例においても、SiH基と反応性を有する炭素-炭素二重結合を1分子中に2個以上含有することは必要である。耐熱性をより向上し得るという観点からは、SiH基と反応性を有する炭素-炭素二重結合を1分子中に3個以上含有する有機化合物であることがより好ましい。 However, in the preferred examples of the organic compound represented by the general formula (IV) as described above, it is necessary to contain two or more carbon-carbon double bonds having reactivity with the SiH group in one molecule. is there. From the viewpoint of further improving the heat resistance, it is more preferably an organic compound containing three or more carbon-carbon double bonds having reactivity with SiH groups in one molecule.
 以上のような、一般式(IV)で表される有機化合物の好ましい具体例としては、トリアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、及びその混合物等が挙げられる。 Preferred examples of the organic compound represented by the general formula (IV) as described above include triallyl isocyanurate, diallyl monoglycidyl isocyanurate, and mixtures thereof.
 成分(a)は、単独又は2種以上のものを用いることが可能であり、得られる硬化物の柔軟性を調整するために、適宜、炭素-炭素二重結合を1個のみ有する有機化合物を混合してもよい。 Component (a) can be used singly or in combination of two or more, and in order to adjust the flexibility of the resulting cured product, an organic compound having only one carbon-carbon double bond is suitably used. You may mix.
 特に、得られる硬化物の着色が少なく、耐光性が高いという観点からは、成分(a)として、ビニル基またはアリル基を2個以上有する炭素数6~50の脂肪族環状オレフィン化合物、ビニル基またはアリル基を2個以上有するイソシアヌル誘導体が好ましい。 In particular, from the viewpoint that the obtained cured product is less colored and has high light resistance, the component (a) is an aliphatic cyclic olefin compound having 6 to 50 carbon atoms having two or more vinyl groups or allyl groups, a vinyl group. Alternatively, an isocyanuric derivative having two or more allyl groups is preferable.
 ビニル基またはアリル基を2個以上有する炭素数6~50の脂肪族環状オレフィン化合物として具体的には、ビニルシクロヘキセン、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパンのジアリルエーテル、1,2,4-トリビニルシクロヘキサンを挙げることができる。 Specific examples of the C6-C50 aliphatic cyclic olefin compound having two or more vinyl groups or allyl groups include vinylcyclohexene, diallyl ether of 2,2-bis (4-hydroxycyclohexyl) propane, 1,2, Mention may be made of 4-trivinylcyclohexane.
 ビニル基またはアリル基を2個以上有するイソシアヌル誘導体として具体的には、トリアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレートを挙げることができる。中でもトリアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパンのジアリルエーテル、1,2,4-トリビニルシクロヘキサンが特に好ましい。 Specific examples of the isocyanuric derivatives having two or more vinyl groups or allyl groups include triallyl isocyanurate and diallyl monoglycidyl isocyanurate. Of these, triallyl isocyanurate, diallyl monoglycidyl isocyanurate, diallyl ether of 2,2-bis (4-hydroxycyclohexyl) propane, and 1,2,4-trivinylcyclohexane are particularly preferable.
 中でも耐熱性及び屈折率が高いという観点から、下記一般式(III) Above all, from the viewpoint of high heat resistance and refractive index, the following general formula (III)
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式中、Rは炭素数1~50の一価の酸素、窒素、硫黄、あるいはハロゲン原子で置換されていてもよい有機基を表し、それぞれのRは異なっていても同一であってもよい。)
で表される構造を有する有機化合物であることが好ましく、その中でも特に、芳香環含有エポキシ樹脂に結合するグリシジル基の一部あるいは全部をアリル基に置換したものが好ましい。
(Wherein R 4 represents an organic group which may be substituted with a monovalent oxygen, nitrogen, sulfur or halogen atom having 1 to 50 carbon atoms, and each R 4 may be different or the same. May be good.)
Of these, an organic compound having a structure represented by the formula (1) is preferable, and among them, a compound in which part or all of the glycidyl group bonded to the aromatic ring-containing epoxy resin is substituted with an allyl group is preferable.
 具体的には、ジビニルベンゼン類、ジビニルビフェニル、1,3-ジイソプロペニルベンゼン、1,4-ジイソプロペニルベンゼン、及びそれらのオリゴマーや、ビスフェノールAジアリルエーテルや、ビス〔4-(2-アリルオキシ)フェニル〕スルホン、フェノールノボラック樹脂を挙げることができる。 Specifically, divinylbenzenes, divinylbiphenyl, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, and oligomers thereof, bisphenol A diallyl ether, bis [4- (2-allyloxy) ) Phenyl] sulfone, phenol novolac resin.
 また、前記一般式(III)としては、得られる硬化物の耐熱性がより高くなり得るという観点からは、 In addition, as the general formula (III), from the viewpoint that the heat resistance of the obtained cured product can be higher,
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
のように複数の芳香環を有することが好ましい。 It is preferable to have a plurality of aromatic rings.
 <成分(b)>
 次に、成分(b)であるヒドロシリル化触媒について説明する。
<Component (b)>
Next, the hydrosilylation catalyst as component (b) will be described.
 成分(b)のヒドロシリル化触媒としては、ヒドロシリル化反応の触媒活性があれば特に限定されないが、例えば、白金の単体;アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの;塩化白金酸;塩化白金酸とアルコール、アルデヒド、ケトン等との錯体;白金-オレフィン錯体(例えば、Pt(CH=CH(PPh、Pt(CH=CHCl);白金-ビニルシロキサン錯体(例えば、Pt(ViMeSiOSiMeVi)、Pt[(MeViSiO));白金-ホスフィン錯体(例えば、Pt(PPh、Pt(PBu);白金-ホスファイト錯体(例えば、Pt[P(OPh)、Pt[P(OBu))(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、a、bは、整数を示す。);ジカルボニルジクロロ白金;カールシュテト(Karstedt)触媒;白金-炭化水素複合体(例えば、アシュビー(Ashby)の米国特許第3159601号及び第3159662号明細書中に記載された白金-炭化水素複合体);白金アルコラート触媒(例えば、ラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒が挙げられる。 The hydrosilylation catalyst of component (b) is not particularly limited as long as it has catalytic activity for the hydrosilylation reaction. For example, platinum alone; solid platinum supported on a support such as alumina, silica, carbon black; Platinum acid; complex of chloroplatinic acid and alcohol, aldehyde, ketone, etc .; platinum-olefin complex (for example, Pt (CH 2 ═CH 2 ) 2 (PPh 3 ) 2 , Pt (CH 2 ═CH 2 ) 2 Cl 2 ); Platinum-vinylsiloxane complexes (eg, Pt (ViMe 2 SiOSiMe 2 Vi) a , Pt [(MeViSiO) 4 ] b ); platinum-phosphine complexes (eg, Pt (PPh 3 ) 4 , Pt (PBu 3 ) 4 ); platinum - phosphite complex (e.g., Pt [P (OPh) 3 ] 4, Pt [P (OBu) 3] 4) ( in the formula, Me Methyl group, Bu represents a butyl group, Vi represents a vinyl group, Ph represents a phenyl group, a and b represent an integer.); Dicarbonyldichloroplatinum; a Karlstedt catalyst; a platinum-hydrocarbon complex (for example, Platinum-hydrocarbon complexes described in Ashby, US Pat. Nos. 3,159,601 and 3,159,662; platinum alcoholate catalysts (eg, in Lamoreaux, US Pat. No. 3,220,972). Mention may be made of the platinum alcoholate catalysts described.
 更に、塩化白金-オレフィン複合体(例えば、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金-オレフィン複合体)も本発明において有用である。 In addition, platinum chloride-olefin complexes (eg, platinum chloride-olefin complexes described in Modic US Pat. No. 3,516,946) are also useful in the present invention.
 また、白金化合物以外の触媒の例としては、RhCl(PPh)、RhCl、RhAl、RuCl、IrCl、FeCl、AlCl、PdCl・2HO、NiCl、TiCl等が挙げられる。 Examples of catalysts other than platinum compounds include RhCl (PPh) 3 , RhCl 3 , RhAl 2 O 3 , RuCl 3 , IrCl 3 , FeCl 3 , AlCl 3 , PdCl 2 .2H 2 O, NiCl 2 , TiCl 4. Etc.
 これらの中では、触媒活性の点から、塩化白金酸、白金-オレフィン錯体、白金-ビニルシロキサン錯体等が好ましい。また、これらの触媒は単独で使用してもよく、2種以上併用してもよい。 Of these, chloroplatinic acid, platinum-olefin complexes, platinum-vinylsiloxane complexes and the like are preferable from the viewpoint of catalytic activity. Moreover, these catalysts may be used independently and may be used together 2 or more types.
 成分(b)の添加量は特に限定されないが、十分な硬化性を有し、かつ硬化性組成物のコストを比較的低く抑えるための好ましい添加量の下限は、成分(c)のSiH基1モルに対して10-8モル、より好ましくは10-6モルであり、好ましい添加量の上限は成分(c)のSiH基1モルに対して10-1モル、より好ましくは10-2モルである。 The amount of component (b) to be added is not particularly limited, but the lower limit of the preferable amount to be added is sufficient to have sufficient curability and keep the cost of the curable composition relatively low. 10 -8 mol per mol, and more preferably 10 -6 mole, 10 -1 moles per mole of the SiH group in the preferred amount of upper component (c), more preferably 10 -2 mol is there.
 また、前記触媒には助触媒を併用することが可能である。助触媒としては、例えば、単体の硫黄等の硫黄系化合物、トリエチルアミン等のアミン系化合物等が挙げられる。 In addition, a cocatalyst can be used in combination with the catalyst. Examples of the cocatalyst include a sulfur-based compound such as simple sulfur, and an amine-based compound such as triethylamine.
 助触媒の添加量は特に限定されないが、前記ヒドロシリル化触媒1モルに対して、下限10-2モル、上限10モルの範囲が好ましく、より好ましくは下限10-1モル、上限10モルの範囲である。 The addition amount of the co-catalyst is not particularly limited with respect to the hydrosilylation catalyst 1 mol, the lower limit 10 -2 mol, preferably in the range of the upper limit 10 2 mol, more preferably lower 10 -1 mol, the upper limit 10 mols It is.
 <成分(c)>
 次に、成分(c)について説明する。
<Component (c)>
Next, the component (c) will be described.
 成分(c)は、1分子中に少なくとも2個のSiH基を有する化合物であるが、成分(a)との相溶性や硬化時の揮発性を低減させる観点より、ポリオルガノシロキサン化合物と有機化合物とを一部反応させたもの(変性)が好ましい。変性のための反応は特に限定はされず、付加反応、縮合反応、脱水素反応等が使用できるが、副反応が進行しにくく安定的にSiH基含有化合物が得られやすいという観点より、下記有機化合物(α)とポリオルガノシロキサン化合物(β)とのヒドロシリル化生成物(以下、「変性ポリオルガノシロキサン化合物」と称することがある。)であることが好ましい。 Component (c) is a compound having at least two SiH groups in one molecule, but from the viewpoint of reducing compatibility with component (a) and volatility during curing, a polyorganosiloxane compound and an organic compound Are preferably partially reacted with each other (modified). The reaction for modification is not particularly limited, and an addition reaction, a condensation reaction, a dehydrogenation reaction, and the like can be used. From the viewpoint that a side reaction is difficult to proceed and a SiH group-containing compound can be stably obtained, the following organic compounds are used. A hydrosilylation product of the compound (α) and the polyorganosiloxane compound (β) (hereinafter sometimes referred to as “modified polyorganosiloxane compound”) is preferable.
 (有機化合物(α))
 以下に、有機化合物(α)について説明する。
(Organic compound (α))
Hereinafter, the organic compound (α) will be described.
 有機化合物(α)には、1分子中にSiH基との反応性を有する炭素-炭素二重結合を1個以上有する有機化合物であればよく、前記成分(a)に挙げた化合物も同様に使用することができる。 The organic compound (α) may be an organic compound having at least one carbon-carbon double bond having reactivity with SiH group in one molecule, and the compounds listed in the component (a) are also the same. Can be used.
 本発明においては、耐熱性及び耐光性をより向上し得るという観点から、有機化合物
(α)は下記一般式(IV)
In the present invention, the organic compound (α) is represented by the following general formula (IV) from the viewpoint of further improving heat resistance and light resistance.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式中、Rは水素原子または炭素数1~50の一価の有機基を表し、それぞれのRは異なっていても同一であってもよく、少なくとも1個のRはSiH基との反応性を有する炭素-炭素二重結合を含む。)
で表される有機化合物であることが好ましい。
(Wherein R 3 represents a hydrogen atom or a monovalent organic group having 1 to 50 carbon atoms, and each R 3 may be different or the same, and at least one R 3 may be a SiH group and Including a carbon-carbon double bond having the reactivity of
It is preferable that it is an organic compound represented by these.
 中でも、有機化合物(α)は、耐熱性及び耐光性をより向上し得るという観点から、トリアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、ジビニルベンゼンが好ましい。また、ジアリルモノグリシジルイソシアヌレートあるいはジビニルベンゼンを用いることが耐熱性、長波長側の光線透過率の低下度合いが大きくより好ましい。 Among them, the organic compound (α) is preferably triallyl isocyanurate, diallyl monoglycidyl isocyanurate, or divinylbenzene from the viewpoint that heat resistance and light resistance can be further improved. Further, it is more preferable to use diallyl monoglycidyl isocyanurate or divinylbenzene because the degree of decrease in heat resistance and light transmittance on the long wavelength side is large.
 本発明においては、屈折率向上の観点から、炭素―炭素二重結合を1個有するスチレン、α-メチルスチレン、アリルグリシジルエーテル、ビニルジオキソラン、4-ビニル-1-シクロヘキセン-1,2-エポキシド、4-ビニル-1,3-ジオキソラン、N-ビニルカプロラクタム、N-ビニルフタルアミド、1-ビニルピロリドン、モノアリルジグリシジルイソシアヌレート等の化合物、及び、下記一般式(III) In the present invention, from the viewpoint of improving the refractive index, styrene having one carbon-carbon double bond, α-methylstyrene, allyl glycidyl ether, vinyl dioxolane, 4-vinyl-1-cyclohexene-1,2-epoxide, Compounds such as 4-vinyl-1,3-dioxolane, N-vinylcaprolactam, N-vinylphthalamide, 1-vinylpyrrolidone, monoallyldiglycidyl isocyanurate, and the following general formula (III)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式中、Rは炭素数1~50の一価の酸素、窒素、硫黄、あるいはハロゲン原子で置換されていてもよい有機基を表し、それぞれのRは異なっていて同一であってもよい。)
で表される構造を有する有機化合物(α)を使用することが好ましい。
(In the formula, R 4 represents an organic group which may be substituted with monovalent oxygen, nitrogen, sulfur or halogen atom having 1 to 50 carbon atoms, and each R 4 may be different and the same. Good.)
It is preferable to use an organic compound (α) having a structure represented by:
 具体的には、SiH基との反応性を有する炭素―炭素二重結合を1個あるいは2個有する化合物が好ましく、2個有するものが特に好ましい。 Specifically, a compound having one or two carbon-carbon double bonds having reactivity with a SiH group is preferable, and a compound having two is particularly preferable.
 炭素―炭素二重結合を1個有する前記化合物の具体例として、スチレン、α-メチルスチレン、アリルグリシジルエーテル、ビニルジオキソラン、4-ビニル-1-シクロヘキセン-1,2-エポキシド、4-ビニル-1,3-ジオキソラン、N-ビニルカプロラクタム、N-ビニルフタルアミド、1-ビニルピロリドン、モノアリルジグリシジルイソシアヌレート等の化合物が挙げられる。 Specific examples of the compound having one carbon-carbon double bond include styrene, α-methylstyrene, allyl glycidyl ether, vinyl dioxolane, 4-vinyl-1-cyclohexene-1,2-epoxide, 4-vinyl-1 , 3-dioxolane, N-vinylcaprolactam, N-vinylphthalamide, 1-vinylpyrrolidone, monoallyl diglycidyl isocyanurate and the like.
 また、炭素―炭素二重結合を2個有する前記化合物の具体例として、ジビニルベンゼン類、ジビニルビフェニル、1,3-ジイソプロペニルベンゼン、1,4-ジイソプロペニルベンゼン、及びそれらのオリゴマーや、ビスフェノールAジアリルエーテルや、ビス〔4-(2-アリルオキシ)フェニル〕スルホン、フェノールノボラック樹脂等の芳香環含有エポキシ樹脂に結合するグリシジル基の一部あるいは全部をアリル基に置換したものを好適に用いることができる。 Specific examples of the compound having two carbon-carbon double bonds include divinylbenzenes, divinylbiphenyl, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, and oligomers thereof, A glycidyl group partially or entirely bonded to an aromatic ring-containing epoxy resin such as bisphenol A diallyl ether, bis [4- (2-allyloxy) phenyl] sulfone, or phenol novolak resin is preferably used. be able to.
 また、有機化合物(α)としては、得られる硬化物の耐熱性及び屈折率がより高くなり得るという観点から、下記式で表される構造、又は多環芳香族炭化水素を有する化合物を使用することが好ましく、その中でも入手性の観点からジビニルベンゼン類、ビス〔4-(2-アリルオキシ)フェニル〕スルホン、及びジビニルナフタレンが特に好ましい。 Further, as the organic compound (α), a compound represented by the following formula or a compound having a polycyclic aromatic hydrocarbon is used from the viewpoint that the heat resistance and refractive index of the obtained cured product can be further increased. Among them, divinylbenzenes, bis [4- (2-allyloxy) phenyl] sulfone, and divinylnaphthalene are particularly preferable from the viewpoint of availability.
 前記した各種有機化合物(α)は、単独で用いてもよいし、2種以上のものを混合して用いてもよい。 The various organic compounds (α) described above may be used alone or in combination of two or more.
 (ポリオルガノシロキサン化合物(β))
 次に、ポリオルガノシロキサン化合物(β)について説明する。
(Polyorganosiloxane compound (β))
Next, the polyorganosiloxane compound (β) will be described.
 ポリオルガノシロキサン化合物(β)については1分子中に少なくとも3個のSiH基を有するポリオルガノポリシロキサン化合物であれば特に限定されず、例えば、1分子中に少なくとも3個のSiH基を有するものが使用できる。耐酸化劣化性の観点から、1分子中に少なくとも3個のSiH基を有する、鎖状、環状、分岐状またはかご型のポリオルガノシロキサン化合物が好適である。具体的な化合物としては日本国特許第3569919号に記載されている。 The polyorganosiloxane compound (β) is not particularly limited as long as it is a polyorganopolysiloxane compound having at least 3 SiH groups in one molecule. For example, one having at least 3 SiH groups in one molecule is used. Can be used. From the viewpoint of resistance to oxidation deterioration, a chain, cyclic, branched or cage polyorganosiloxane compound having at least three SiH groups in one molecule is preferable. Specific compounds are described in Japanese Patent No. 35669919.
 硬化物に柔軟性が付与されるという観点では1分子中に少なくとも3個のSiH基を有する鎖状オルガノポリシロキサンが好ましく、中でも下記式で表される、1分子中に少なくとも3個のSiH基を有する鎖状オルガノポリシロキサンが好ましい。 From the viewpoint of imparting flexibility to the cured product, a chain organopolysiloxane having at least 3 SiH groups in one molecule is preferable, and in particular, at least 3 SiH groups in one molecule represented by the following formula: A linear organopolysiloxane having the following formula is preferred.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(式中、R、R10、R11は炭素数1~10の有機基を表し、同一であっても異なってもよく、lは、1~50、mは0~50、nは2~50、pは0~50、qは3~50、rは0~50の数を表す。)
 また、R、R10、R11は入手性、耐熱性の観点より特にメチル基であるものが好ましく、硬化物の強度が高くなるという観点より、特にフェニル基であるものが好ましい。
(Wherein R 9 , R 10 , and R 11 represent an organic group having 1 to 10 carbon atoms, and may be the same or different, l is 1 to 50, m is 0 to 50, and n is 2) To 50, p represents 0 to 50, q represents 3 to 50, and r represents a number from 0 to 50.)
R 9 , R 10 and R 11 are preferably methyl groups from the viewpoints of availability and heat resistance, and are preferably phenyl groups from the viewpoint of increasing the strength of the cured product.
 硬化物の耐熱性が高いという観点では分岐状オルガノポリシロキサンが好ましく、中でも、下記式で表される、1分子中に少なくとも3個のSiH基を有し、分子中にTまたはQ構造を有する、分岐状またはかご状オルガノポリシロキサンが好ましい。 A branched organopolysiloxane is preferable from the viewpoint of high heat resistance of the cured product. Among them, at least three SiH groups represented by the following formula are included in one molecule, and a T or Q structure is included in the molecule. Branched or caged organopolysiloxanes are preferred.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(式中、R12、R13は、それぞれ同一または異なって、炭素数1~10の有機基を表し、nは0~50の数を表す。)
 尚、R12、R13は入手性及び耐熱性の観点より、メチル基であるものが特に好ましい。
(In the formula, R 12 and R 13 are the same or different and each represents an organic group having 1 to 10 carbon atoms, and n represents a number from 0 to 50.)
R 12 and R 13 are particularly preferably methyl groups from the viewpoints of availability and heat resistance.
 入手性及び化合物(α)との反応性が良いという観点からは、環状オルガノポリシロキサンが好ましく、中でも、下記一般式(VI)で表される、1分子中に少なくとも3個のSiH基を有する環状オルガノポリシロキサンが好ましい。 From the viewpoint of availability and good reactivity with the compound (α), a cyclic organopolysiloxane is preferable, and among them, at least three SiH groups are represented in one molecule represented by the following general formula (VI). Cyclic organopolysiloxane is preferred.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(式中、R14、R15は、それぞれ同一または異なって、C、H、及びOからなる群から選ばれる元素から構成される有機基を表し、nは3~10、mは0~10の数を表す)。 (Wherein R 14 and R 15 are the same or different and each represents an organic group composed of an element selected from the group consisting of C, H and O, n is 3 to 10, and m is 0 to 10) Represents the number of
 一般式(VI)で表される化合物中の置換基R、Rは、炭素数1~10の有機基であることが好ましく、炭化水素基であることがより好ましく、メチル基であることが更に好ましい。またmは0であることが好ましい。 The substituents R 3 and R 4 in the compound represented by the general formula (VI) are preferably organic groups having 1 to 10 carbon atoms, more preferably hydrocarbon groups, and methyl groups. Is more preferable. M is preferably 0.
 一般式(VI)で表される化合物としては、入手容易性及び反応性の観点からは、1,3,5,7-テトラメチルシクロテトラシロキサンが好ましい。 As the compound represented by the general formula (VI), 1,3,5,7-tetramethylcyclotetrasiloxane is preferable from the viewpoint of availability and reactivity.
 前記した各種ポリオルガノシロキサン化合物(β)は、単独もしくは2種以上のものを混合して用いることが可能である。 The various polyorganosiloxane compounds (β) described above can be used alone or in combination of two or more.
 有機化合物(α)とポリオルガノシロキサン化合物(β)とをヒドロシリル化反応させる場合の触媒としては、成分(b)で挙げた触媒ならびに助触媒を同様に用いることができる。 As the catalyst for the hydrosilylation reaction between the organic compound (α) and the polyorganosiloxane compound (β), the catalysts and promoters mentioned in the component (b) can be used in the same manner.
 触媒の添加量は特に限定されないが、硬化性組成物のコストを比較的低く抑えるため、好ましい添加量の下限は、ポリオルガノシロキサン化合物(β)のSiH基1モルに対して10-8モル、より好ましくは10-6モルであり、好ましい添加量の上限はポリオルガノシロキサン化合物(β)のSiH基1モルに対して10-1モル、より好ましくは10-2モルである。 The addition amount of the catalyst is not particularly limited, but in order to keep the cost of the curable composition relatively low, the preferred lower limit of the addition amount is 10 −8 mol per 1 mol of SiH groups of the polyorganosiloxane compound (β), More preferably, it is 10 −6 mol, and the upper limit of the preferable addition amount is 10 −1 mol, more preferably 10 −2 mol, per 1 mol of SiH groups in the polyorganosiloxane compound (β).
 (有機化合物(α)とポリオルガノシロキサン化合物(β)との反応)
 本発明における変性ポリオルガノシロキサン化合物は、有機化合物(α)、及びポリオルガノシロキサン化合物(化合物(β)を、ヒドロシリル化触媒の存在下で反応させることにより得られる化合物である。
(Reaction between organic compound (α) and polyorganosiloxane compound (β))
The modified polyorganosiloxane compound in the present invention is a compound obtained by reacting an organic compound (α) and a polyorganosiloxane compound (compound (β) in the presence of a hydrosilylation catalyst.
 有機化合物(α)、ポリオルガノシロキサン化合物(β)の反応の順序、方法としては種々挙げられるが、低分子量体を含有し難いという観点から、過剰の有機化合物(α)とポリオルガノシロキサン化合物(β)、または過剰のポリオルガノシロキサン化合物(β)と有機化合物(α)とをヒドロシリル化反応させた後、一旦、未反応の有機化合物(α)もしくはポリオルガノシロキサン化合物(β)を除く方法がより好ましい。 There are various reaction orders and methods of the organic compound (α) and the polyorganosiloxane compound (β). From the viewpoint that it is difficult to contain a low molecular weight substance, an excess of the organic compound (α) and the polyorganosiloxane compound ( β), or an excess of the polyorganosiloxane compound (β) and the organic compound (α) are subjected to a hydrosilylation reaction, and then the unreacted organic compound (α) or the polyorganosiloxane compound (β) is temporarily removed. More preferred.
 反応温度としては種々設定できるが、この場合好ましい温度範囲の下限は30℃、より好ましくは50℃であり、好ましい温度範囲の上限は200℃、より好ましくは150℃である。反応温度が低いと十分に反応させるための反応時間が長くなり、反応温度が高いと実用的でない。反応は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。 The reaction temperature can be variously set. In this case, the lower limit of the preferable temperature range is 30 ° C, more preferably 50 ° C, and the upper limit of the preferable temperature range is 200 ° C, more preferably 150 ° C. If the reaction temperature is low, the reaction time for sufficiently reacting becomes long, and if the reaction temperature is high, it is not practical. The reaction may be carried out at a constant temperature, but the temperature may be changed in multiple steps or continuously as required.
 反応時間、反応時の圧力も必要に応じ種々設定できる。 The reaction time and the pressure during the reaction can be set as required.
 ヒドロシリル化反応の際に酸素を使用できる。反応容器の気相部に酸素を添加することで、ヒドロシリル化反応を促進することができる。酸素の添加量を爆発限界下限以下とする点から、気相部の酸素体積濃度は3%以下に管理する必要がある。酸素添加によるヒドロシリル化反応の促進効果が見られるという点からは、気相部の酸素体積濃度は0.1%以上が好ましく、1%以上がより好ましい。 Oxygen can be used in the hydrosilylation reaction. The hydrosilylation reaction can be promoted by adding oxygen to the gas phase portion of the reaction vessel. From the point of setting the amount of oxygen to be below the lower limit of explosion limit, the oxygen volume concentration in the gas phase must be controlled to 3% or less. The oxygen volume concentration in the gas phase is preferably 0.1% or more, more preferably 1% or more, from the viewpoint that the effect of promoting the hydrosilylation reaction by addition of oxygen is observed.
 また、ヒドロシリル化反応の際に溶媒を使用してもよい。使用できる溶剤はヒドロシリル化反応を阻害しない限り特に限定されるものではなく、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタン等の炭化水素系溶媒;テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、ジエチルエーテル等のエーテル系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;クロロホルム、塩化メチレン、1,2-ジクロロエタン等のハロゲン系溶媒を好適に用いることができる。溶媒は、単独で用いてもよいし、2種類以上の混合溶媒として用いることもできる。溶媒としては、トルエン、テトラヒドロフラン、1,3-ジオキソラン、クロロホルムが好ましい。使用する溶媒量も適宜設定できる。 Further, a solvent may be used in the hydrosilylation reaction. Solvents that can be used are not particularly limited as long as they do not inhibit the hydrosilylation reaction. Specific examples include hydrocarbon solvents such as benzene, toluene, hexane, heptane; tetrahydrofuran, 1,4-dioxane, 1, Ether solvents such as 3-dioxolane and diethyl ether; ketone solvents such as acetone and methyl ethyl ketone; halogen solvents such as chloroform, methylene chloride and 1,2-dichloroethane can be preferably used. A solvent may be used independently and can also be used as 2 or more types of mixed solvents. As the solvent, toluene, tetrahydrofuran, 1,3-dioxolane and chloroform are preferable. The amount of solvent to be used can also be set as appropriate.
 有機化合物(α)、ポリオルガノシロキサン化合物(β)をヒドロシリル化反応させた後に、溶媒及び/又は未反応の化合物を除去することもできる。これらの揮発分を除去することにより、得られる反応物が揮発分を有さないため、該反応物を用いて硬化物を作製する場合に、揮発分の揮発によるボイド、クラックの問題が生じにくい。除去する方法としては、例えば、減圧脱揮が挙げられる。減圧脱揮する場合、低温で処理することが好ましい。この場合の好ましい温度の上限は100℃であり、より好ましくは85℃である。高温で処理すると増粘等の変質を伴い易い。 It is also possible to remove the solvent and / or unreacted compound after the hydrosilylation reaction of the organic compound (α) and the polyorganosiloxane compound (β). By removing these volatile components, the reaction product obtained does not have volatile components. Therefore, when a cured product is produced using the reaction product, problems of voids and cracks due to volatilization of volatile components are unlikely to occur. . Examples of the removal method include vacuum devolatilization. When devolatilizing under reduced pressure, it is preferable to treat at a low temperature. The upper limit of the preferable temperature in this case is 100 ° C, more preferably 85 ° C. When treated at high temperatures, it tends to be accompanied by alterations such as thickening.
 有機化合物(α)とポリオルガノシロキサン化合物(β)との混合比率はSiH基が1分子中に2個以上が残るような範囲であれば、特に限定されない。本発明の硬化物の強度を考えた場合、(β)成分のSiH基が多い方が好ましいため、有機化合物(α)中のSiH基との反応性を有する炭素-炭素二重結合のモル数(A1)と、ポリオルガノシロキサン化合物(β)中のSiH基のモル数(B1)との比が、B1/A1≧2であることが好ましく、B1/A1≧2.5であることがより好ましい。 The mixing ratio of the organic compound (α) and the polyorganosiloxane compound (β) is not particularly limited as long as two or more SiH groups remain in one molecule. Considering the strength of the cured product of the present invention, since it is preferable that the (β) component has more SiH groups, the number of moles of carbon-carbon double bonds having reactivity with SiH groups in the organic compound (α). The ratio of (A1) to the number of moles of SiH groups (B1) in the polyorganosiloxane compound (β) is preferably B1 / A1 ≧ 2, and more preferably B1 / A1 ≧ 2.5. preferable.
 (1-2)近赤外線吸収化合物
 近赤外線吸収材料(I)では、近赤外線吸収化合物として、成形体に含有した非イオン性の赤外線吸収化合物(B-1)と、成形体表面の層に含有した近赤外線吸収化合物(B-2)とを含む。
(1-2) Near-infrared absorbing compound In the near-infrared absorbing material (I), as a near-infrared absorbing compound, a nonionic infrared-absorbing compound (B-1) contained in the molded body and a layer on the surface of the molded body are contained. The near infrared absorbing compound (B-2).
 近赤外線とは一般的には700~2500nmの波長帯を表すが、光学素子の光感応領域においてカットが必要とされる領域はおおよそ700~1100nmの近赤外線の波長帯を表す。本願の近赤外線吸収化合物は、近赤外線吸収能を有する化合物であるが、およそ700~1100nmの近赤外領域の吸収をカバーすることができる。 Near-infrared rays generally represent a wavelength band of 700 to 2500 nm, but a region that needs to be cut in a light-sensitive region of an optical element represents a near-infrared wavelength band of approximately 700 to 1100 nm. The near-infrared absorbing compound of the present application is a compound having a near-infrared absorbing ability, but can cover absorption in the near-infrared region of about 700 to 1100 nm.
 近赤外線吸収化合物は高い熱安定性、即ち耐リフロー性を持たせるという観点から、熱分解温度が260℃以上、好ましくは300℃以上の高い耐熱性を有するものが好ましい。 From the viewpoint of providing high thermal stability, that is, reflow resistance, the near-infrared absorbing compound preferably has a heat decomposition temperature of 260 ° C. or higher, preferably 300 ° C. or higher.
 近赤外線吸収化合物(B-1)は非イオン性化合物であり、成形体中の近赤外線吸収化合物がイオン性化合物であるとマトリックス樹脂の硬化中に変性または分解して本来の吸収特性を発揮しない場合がある。 The near-infrared absorbing compound (B-1) is a nonionic compound. If the near-infrared absorbing compound in the molded body is an ionic compound, it will be modified or decomposed during curing of the matrix resin and will not exhibit its original absorption characteristics. There is a case.
 近赤外線吸収材料(I)では、非イオン性の近赤外線吸収化合物(B-1)として、クオタリレン系化合物とペリレン系化合物を何れか1つまたはこれらの組み合わせて用いることが好ましく、近赤外線吸収化合物(B-2)としては、無機系のセシウム含有複合タングステン酸化物を用いることが好ましい。 In the near-infrared absorbing material (I), the non-ionic near-infrared absorbing compound (B-1) is preferably a quatarylene compound and a perylene-based compound, or a combination thereof. (B-2) is preferably an inorganic cesium-containing composite tungsten oxide.
 前記クオタリレン系化合物及びペリレン系化合物は650~850nmに吸収領域帯を示し、かつ分解温度が300℃以上である高い耐熱性を有する化合物が好ましく用いられ、例えば、下記構造式で表される化合物を挙げることができる。 The quatarylene compound and the perylene compound are preferably compounds having an absorption region band at 650 to 850 nm and a high heat resistance having a decomposition temperature of 300 ° C. or higher. For example, a compound represented by the following structural formula is used. Can be mentioned.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 式(VIII)中、2個のRは同一でも異なっていてもよく、互いに独立していて、水素、エーテル官能性の1~4個の酸素原子、1~4個のイミノ基、もしくは1~4個のN-(炭素数1~4のアルキル)イミノ基で中断されていてよい、炭素数1~20のアルキル基、又は、非置換の、もしくは炭素数1~4のアルキル置換されたフェニル基である。 In the formula (VIII), two Rs may be the same or different and are independent of each other and are hydrogen, ether functional 1-4 oxygen atoms, 1-4 imino groups, or 1- An alkyl group having 1 to 20 carbon atoms, which may be interrupted by four N- (alkyl having 1 to 4 carbon atoms) imino groups, or an unsubstituted or alkyl substituted phenyl having 1 to 4 carbon atoms It is a group.
 式(VIII)中のアルキル基としては、直鎖状であっても分岐状であってもよく、炭素数1~4のアルキル置換フェニル基は、一般に1~3個の炭素数1~4のアルキル置換基を有していてもよい。 The alkyl group in formula (VIII) may be linear or branched, and the alkyl-substituted phenyl group having 1 to 4 carbon atoms generally has 1 to 3 carbon atoms having 1 to 4 carbon atoms. It may have an alkyl substituent.
 非イオン性の近赤外線吸収性化合物(B-1)は、有機溶剤、成分(a)、または成分(c)への溶解性を有する化合物を用いることが好ましい。有機溶剤、成分(a)、または成分(c)に可溶であると、硬化性組成物の作製が容易になるとともに、可視光線域の光線透過率が高くなる。有機溶剤、成分(a)、または成分(c)に対する非イオン性の近赤外線吸収性化合物(B-1)の溶解度として、有機溶剤、成分(a)、または成分(c)を100質量%とした溶解度が0.001質量%以上であることが好適である。 As the nonionic near-infrared absorbing compound (B-1), a compound having solubility in an organic solvent, component (a) or component (c) is preferably used. When it is soluble in the organic solvent, component (a), or component (c), it becomes easy to produce the curable composition and the light transmittance in the visible light region is increased. The solubility of the nonionic near-infrared absorbing compound (B-1) in the organic solvent, component (a), or component (c) is 100% by mass of the organic solvent, component (a), or component (c). The solubility is preferably 0.001% by mass or more.
 硬化性組成物の作製の際に用い得る前記有機溶剤としては特に限定されず、例えば、トルエン、キシレン等の芳香族系溶媒;iso-プロピルアルコール、n-ブチルアルコール、プロピレングリコールメチルエーテル等のアルコール系溶媒;酢酸ブチル、酢酸エチル、セロソルブアセテート等のエステル系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒;ジメチルホルムアミド等の1種又は2種以上が挙げられる。 The organic solvent that can be used in the preparation of the curable composition is not particularly limited, and examples thereof include aromatic solvents such as toluene and xylene; alcohols such as iso-propyl alcohol, n-butyl alcohol, and propylene glycol methyl ether. Solvents; ester solvents such as butyl acetate, ethyl acetate and cellosolve acetate; ketone solvents such as acetone and methyl ethyl ketone; ether solvents such as diethyl ether, tetrahydrofuran and 1,4-dioxane; one or two of dimethylformamide and the like More than species.
 前記に加えて、例えば、アミノチオールニッケル錯塩系化合物;アントラキノン系化合物;チオールニッケル錯塩系化合物;トリアリールメタン系化合物;ナフトキノン系化合物;ニトロソ化合物及びその金属錯塩;有機無機ナノ化合物ハイブリッド系;アミノ化合物等の有機物質;無機物質であるカーボンブラックや、酸化アンチモン又は酸化インジウムをドーブした酸化錫;周期表の4族、5族又は6族に属する金属の酸化物、炭化物又はホウ化物;を併用することができる。また、これらは、要求される耐熱性条件に応じて利用することができ、単独で使用してもよく、2種以上併用してもよい。 In addition to the above, for example, aminothiol nickel complex compound; anthraquinone compound; thiol nickel complex compound; triarylmethane compound; naphthoquinone compound; nitroso compound and its metal complex salt; Organic substances such as carbon black, tin oxide doped with antimony oxide or indium oxide, inorganic oxides, oxides, carbides or borides of metals belonging to Group 4, 5 or 6 of the periodic table be able to. Moreover, these can be utilized according to the required heat resistance conditions, and may be used independently and may be used together 2 or more types.
 非イオン性の近赤外線吸収化合物(B-1)として、クォタリレン系化合物に「Lumogen IR-765」、ペリレン系化合物に「Lumogen IR-788」(何れも商品名、BASF社製)、フタロシアニン系化合物に「イーエクスカラーIR-10」、「イーエクスカラーIR-12」、「イーエクスカラーIR-14」、「イーエクスカラーHA-1」、「イーエクスカラーHA-14」(何れも商品名、日本触媒社製)、「YKR-3070」、「YKR-3080」、「YKR-3070」、(何れも商品名、山本化成社製)、有機・無機ナノハイブリッド系化合物として「Lumogen IR-5055」(商品名、BASF社製)等が挙げられる。 Nonionic near-infrared absorbing compound (B-1): “Lumogen® IR-765” as a quartarylene compound, “Lumogen® IR-788” as a perylene compound (both trade names, manufactured by BASF), phthalocyanine compound "E-ex color IR-10", "e-ex color IR-12", "e-ex color IR-14", "e-ex color HA-1", "e-ex color HA-14" (Manufactured by Nippon Shokubai Co., Ltd.), “YKR-3070”, “YKR-3080”, “YKR-3070” (all trade names, manufactured by Yamamoto Kasei Co., Ltd.), “Lumogen® IR-5055 as an organic / inorganic nanohybrid compound (Trade name, manufactured by BASF) and the like.
 硬化性組成物(A)として、上述した(a)~(c)成分を含む組成物を用いる場合、非イオン性の近赤外線吸収化合物(B-1)の使用量としては、成分(a)及び成分(c)との総量100重量部に対して、0.0005重量部以上とすることが好ましく、また、20重量部以下とすることが好ましい。より好ましくは、0.0015重量部以上であり、また、10重量部以下であり、更に好ましくは、0.002重量部以上であり、また、7重量部以下である。添加する量が少ないと、近赤外線吸収性能を有する硬化組成物から形成される硬化物が充分な近赤外線吸収性能を発揮しないおそれがあり、多すぎると可視光線域の透過率が低下するおそれや凝集によって光を散乱する可能性がある。 When the composition containing the components (a) to (c) described above is used as the curable composition (A), the amount of the nonionic near-infrared absorbing compound (B-1) used is component (a). And it is preferable to set it as 0.0005 weight part or more with respect to 100 weight part of total amounts with a component (c), and it is preferable to set it as 20 weight part or less. More preferably, it is 0.0015 weight part or more, and 10 weight part or less, More preferably, it is 0.002 weight part or more, and 7 weight part or less. If the amount to be added is small, the cured product formed from the cured composition having near infrared absorption performance may not exhibit sufficient near infrared absorption performance, and if it is too large, the transmittance in the visible light region may decrease. Light may be scattered by aggregation.
 樹脂分散性の観点からは、近赤外線吸収性化合物(B-1)としては、フタロシアニン系化合物、ナフタロシアニン系化合物が好ましい。 From the viewpoint of resin dispersibility, the near-infrared absorbing compound (B-1) is preferably a phthalocyanine compound or a naphthalocyanine compound.
 前記フタロシアニン系化合物及びナフタロシアニン系化合物は、800~1200nmに吸収領域帯を示し、耐熱性の高いものが好ましく、可視光透過性の観点から、フタロシアニン系化合物が好ましい。フタロシアニン系化合物にキレートしている主たる中心金属は銅であるが、特にこれに限定されることは無い。 The phthalocyanine-based compound and naphthalocyanine-based compound exhibit an absorption region band at 800 to 1200 nm and preferably have high heat resistance. From the viewpoint of visible light transmission, a phthalocyanine-based compound is preferable. The main central metal chelated to the phthalocyanine compound is copper, but is not particularly limited thereto.
 近赤外線吸収性化合物(B-2)としては、耐熱性の観点から、無機系微粒子が好ましい。 As the near-infrared absorbing compound (B-2), inorganic fine particles are preferable from the viewpoint of heat resistance.
 無機系微粒子としては、アンチモンドープ酸化錫(ATO)微粒子やインジウム酸化錫(ITO)微粒子等が好ましいが、近赤外線吸収性能及び可視光線透過性等の観点から、無機系赤外線吸収剤であるタングステン酸化物が好ましく、複合酸化タングステンが更に好ましい。 As the inorganic fine particles, antimony-doped tin oxide (ATO) fine particles and indium tin oxide (ITO) fine particles are preferable. From the viewpoints of near infrared absorption performance and visible light transmittance, tungsten oxide which is an inorganic infrared absorber. Are preferable, and composite tungsten oxide is more preferable.
 前記複合酸化タングステンとしては、一般式(1)
  MmWOn…(1)
(式中、M元素はH、He、アルカリ金属、アルカリ土類金属、希土類元素、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの中から選択される1種類以上の元素を示し、m及びnは、0.001≦m≦1.0及び2.2≦n≦3.0を満たす数である。)
で表される化合物を挙げることができる。
As the composite tungsten oxide, the general formula (1)
MmWOn (1)
(In the formula, M element is H, He, alkali metal, alkaline earth metal, rare earth element, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, One or more elements selected from Hf, Os, Bi, and I are shown, and m and n are numbers satisfying 0.001 ≦ m ≦ 1.0 and 2.2 ≦ n ≦ 3.0. .)
The compound represented by these can be mentioned.
 前記一般式(1)で表される複合酸化タングステンは、六方晶、正方晶、立方晶の結晶構造を有する場合に耐久性に優れることから、該六方晶、正方晶、立方晶から選ばれる1つ以上の結晶構造を含むことが好ましい。これらの中で、六方晶が可視光領域の吸収が最も少ないため、特に好ましい。例えば、六方晶の結晶構造を持つ複合酸化タングステンとしては、好ましいM元素として、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snの各元素から選択される1種類以上の元素を含む複合酸化タングステンが挙げられる。 The composite tungsten oxide represented by the general formula (1) has excellent durability when it has a hexagonal, tetragonal, or cubic crystal structure, and is therefore selected from the hexagonal, tetragonal, and cubic crystals. Preferably it contains more than one crystal structure. Of these, hexagonal crystals are particularly preferred because they have the least absorption in the visible light region. For example, as a composite tungsten oxide having a hexagonal crystal structure, one type selected from each element of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn as preferable M elements. A composite tungsten oxide containing the above elements can be given.
 当該複合酸化タングステンにおけるM元素の添加量(含有量)mは、0.001以上1.0以下が好ましく、更に好ましくは0.33程度である。これは六方晶の結晶構造から理論的に算出されるmの値が0.33であり、この前後の添加量で赤外線吸収剤としての好ましい光学特性が得られるからである。 The addition amount (content) m of M element in the composite tungsten oxide is preferably 0.001 or more and 1.0 or less, more preferably about 0.33. This is because the value of m theoretically calculated from the hexagonal crystal structure is 0.33, and preferable optical characteristics as an infrared absorber can be obtained with the addition amount before and after this.
 一方、酸素の存在量nは、2.2以上3.0以下が好ましい。典型的な例としてはCs0.33WO、Rb0.33WO、K0.33WO、Ba0.33WO等を挙げることができるが、m、nが前記の範囲に収まるものであれば、有用な近赤外線吸収特性を得ることができる。 On the other hand, the amount n of oxygen is preferably 2.2 or more and 3.0 or less. Typical examples include Cs 0.33 WO 3 , Rb 0.33 WO 3 , K 0.33 WO 3 , Ba 0.33 WO 3 and the like, and m and n fall within the above ranges. If it is a thing, a useful near-infrared absorption characteristic can be acquired.
 本発明においては、複合酸化タングステンとして、セシウム含有複合タングステン酸化物が、赤外線吸収剤としての光学特性及び耐候性等の観点から、好適である、このセシウム含有複合タングステン酸化物としては、式(1-a)
Cs0.2~0.4WO2.5~3.0 …(1-a)
で表される化合物を挙げることができる。
In the present invention, as the composite tungsten oxide, a cesium-containing composite tungsten oxide is preferable from the viewpoints of optical properties, weather resistance, and the like as an infrared absorber. -A)
Cs 0.2 to 0.4 WO 2.5 to 3.0 (1-a)
The compound represented by these can be mentioned.
 当該複合酸化タングステンは、有機系赤外線吸収剤の中でも、特に耐候性に優れることが知られているフッ素含有フタロシアニン化合物に比べて、耐候性が格段に優れており、しかも可視光線透過性が高い。 The composite tungsten oxide has much better weather resistance and higher visible light transmittance than organic fluorine-containing phthalocyanine compounds, which are known to be particularly excellent in weather resistance.
 当該複合酸化タングステンは微粒子形状で用いるのが好ましく、その平均粒径は、分散性及び光学特性等の観点から、800nm以下が好ましく、100nm以下がより好ましい。 The composite tungsten oxide is preferably used in the form of fine particles, and the average particle diameter is preferably 800 nm or less, and more preferably 100 nm or less, from the viewpoint of dispersibility, optical properties, and the like.
 本発明においては、前記複合酸化タングステンを1種用いてもよいし、2種以上組み合わせて用いてもよい。また、当該複合酸化タングステンの含有量は、近赤外線吸収性能、分散性及びハードコート層としての性能等の観点から、通常5~60質量%、好ましくは10~40質量%である。 In the present invention, one type of the composite tungsten oxide may be used, or two or more types may be used in combination. The content of the composite tungsten oxide is usually 5 to 60% by mass, preferably 10 to 40% by mass, from the viewpoints of near infrared absorption performance, dispersibility, performance as a hard coat layer, and the like.
 無機系赤外線吸収剤として、ATOやITOを用いてもよいが、近赤外線吸収特性の観点から、タングステン酸化物の方が本発明における効果が高い。 As the inorganic infrared absorber, ATO or ITO may be used, but from the viewpoint of near infrared absorption characteristics, tungsten oxide is more effective in the present invention.
 本発明においては、本発明の効果が損なわれない範囲で、所望により、当該複合酸化タングステンと共に、他の無機系赤外線吸収剤や有機系赤外線吸収剤を、適宜併用することができる。 In the present invention, as long as the effect of the present invention is not impaired, other inorganic infrared absorbents and organic infrared absorbents can be used in combination with the composite tungsten oxide as desired.
 他の無機系赤外線吸収剤としては、例えば、複合酸化タングステン以外の酸化タングステン系化合物、酸化チタン、酸化ジルコニウム、酸化タンタル、酸化ニオブ、酸化亜鉛、酸化インジウム、錫ドープ酸化インジウム(ITO)、酸化錫、アンチモンドープ酸化錫(ATO)、酸化セシウム、硫化亜鉛、さらにはLaB、CeB、PrB、NdB、GdB、TbB、DyB、HoB、YB、SmB、EuB、ErB、TmB、YbB、LuB、SrB、CaB、(La,Ce)B等の六ホウ化物等が挙げられる。 Other inorganic infrared absorbers include, for example, tungsten oxide compounds other than composite tungsten oxide, titanium oxide, zirconium oxide, tantalum oxide, niobium oxide, zinc oxide, indium oxide, tin-doped indium oxide (ITO), tin oxide , Antimony-doped tin oxide (ATO), cesium oxide, zinc sulfide, LaB 6 , CeB 6 , PrB 6 , NdB 6 , GdB 6 , TbB 6 , DyB 6 , HoB 6 , YB 6 , SmB 6 , EuB 6 , EuB 6 Examples thereof include hexaboride such as ErB 6 , TmB 6 , YbB 6 , LuB 6 , SrB 6 , CaB 6 , (La, Ce) B 6 .
 日本国公開特許公報「特開2009-114326号」明細書中に示されるように、セシウム含有複合タングステン酸化物は可視光域の吸収が少なく、800nm~2600nmの領域に吸収を示す。セシウム含有複合タングステン酸化物(Cs0.33WO)は粉末微粒子状態で入手でき、更に溶剤に分散したものを入手することができる。有機分散剤は前記セシウム含有複合タングステン酸化物微粒子を製造される際に用いられるバインダー樹脂である。 As shown in the specification of Japanese Patent Application Publication No. 2009-114326, cesium-containing composite tungsten oxide has little absorption in the visible light region and shows absorption in the region of 800 nm to 2600 nm. Cesium-containing composite tungsten oxide (Cs 0.33 WO 3 ) can be obtained in the form of fine powder particles, and further dispersed in a solvent can be obtained. The organic dispersant is a binder resin used when the cesium-containing composite tungsten oxide fine particles are manufactured.
 セシウム含有複合タングステン酸化物微粒子は、光学特性及び耐候性等の観点から好適であるが、本発明者らの検討により、本発明で用いる硬化性組成物類に混合すると一時的に分散するものの、数時間程度放置する、あるいは硬化性組成物を硬化させると凝集することが明らかになった。そして本発明者らは、硬化組成物成形体の表面にセシウム含有複合タングステン酸化物組成物の溶液を塗布し乾燥させることで、セシウム含有複合タングステン酸化物の800nmからの吸収特性を硬化性組成物に付与することができることを発見した。また本発明者らは、塗布する膜厚を調節することで、スペクトル透過強度を調節することができることを発見した。 Although the cesium-containing composite tungsten oxide fine particles are suitable from the viewpoint of optical properties and weather resistance, etc., although they are temporarily dispersed when mixed with the curable compositions used in the present invention, according to the study by the present inventors, It was clarified that the agglomerates were allowed to stand for several hours or when the curable composition was cured. Then, the present inventors apply a solution of the cesium-containing composite tungsten oxide composition to the surface of the cured composition molded body and dry the solution, so that the absorption characteristics from 800 nm of the cesium-containing composite tungsten oxide are obtained. Found that can be granted to. The inventors have also found that the spectral transmission intensity can be adjusted by adjusting the coating thickness.
 (1-3)硬化性組成物の調整法及び硬化方法
 本発明に係る、近赤外線吸収性能を有する硬化性組成物の調製方法は、特には限定されず、種々の方法で調製可能である。各種成分を硬化直前に混合調製してもよく、全成分を予め混合調製した一液の状態で低温貯蔵しておいてもよい。また、硬化性組成物(A)として、上述した(a)~(c)成分を含む組成物を用いる場合、第一の成分(近赤外線吸収材料(B-1))を、本発明の(a)成分または(c)成分に溶解させた後に全成分を混合調製してもよく、近赤外線吸収化合物(B-1)の有機溶剤溶液を調製し、(a)成分または(c)成分と混合し、有機溶剤を脱揮処理等により除去した後に全成分を混合調製してもよい。
(1-3) Preparation method and curing method of curable composition The preparation method of the curable composition having near infrared absorption performance according to the present invention is not particularly limited and can be prepared by various methods. Various components may be mixed and prepared immediately before curing, or may be stored at a low temperature in a one-component state in which all components are mixed and prepared in advance. When the composition containing the components (a) to (c) described above is used as the curable composition (A), the first component (near-infrared absorbing material (B-1)) is the ( All components may be mixed and prepared after dissolving in component a) or component (c). An organic solvent solution of the near-infrared absorbing compound (B-1) is prepared and combined with component (a) or component (c) All components may be mixed and prepared after mixing and removing the organic solvent by devolatilization or the like.
 変性ポリオルガノシロキサン化合物の他に、物性改良の目的で熱可塑性樹脂等の添加剤を使用する場合は、これらの添加剤と硬化触媒である白金化合物を予め混合して貯蔵しておき、硬化直前にそれぞれの所定量を混合して調製してもよい。 In addition to the modified polyorganosiloxane compound, when using additives such as thermoplastic resins for the purpose of improving physical properties, these additives and a platinum compound that is a curing catalyst are mixed and stored in advance and immediately before curing. The respective predetermined amounts may be mixed with each other.
 熱硬化温度としては種々設定できるが、好ましい温度の下限は30℃、より好ましくは60℃、更に好ましくは90℃である。好ましい温度の上限は250℃、より好ましくは200℃である。反応温度が低いと十分に反応させるための反応時間が長くなる。反応温度が高いと着色や隆起することがある。 The thermosetting temperature can be variously set, but the lower limit of the preferable temperature is 30 ° C, more preferably 60 ° C, and still more preferably 90 ° C. The upper limit of preferable temperature is 250 degreeC, More preferably, it is 200 degreeC. When the reaction temperature is low, the reaction time for sufficient reaction is prolonged. If the reaction temperature is high, coloring or bulging may occur.
 硬化は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。一定の温度で行うより多段階的あるいは連続的に温度を上昇させながら反応させた方が、着色が少なく、歪の少ない硬化物が得られやすいという点において好ましい。 Curing may be performed at a constant temperature, but the temperature may be changed in multiple steps or continuously as necessary. It is preferable to carry out the reaction while raising the temperature in a multistage manner or continuously, rather than at a constant temperature, in that a cured product with less coloring and less distortion can be easily obtained.
 反応時の圧力も必要に応じ種々設定でき、常圧、高圧、あるいは減圧状態で反応させることもできる。 The pressure during the reaction can be variously set as required, and the reaction can be performed under normal pressure, high pressure, or reduced pressure.
 硬化させて得られる硬化物の形状も用途に応じて種々とり得るので特に限定されないが、例えば、レンズ状、フィルム状、シート状、チューブ状、ロッド状、塗膜状、バルク状等の形状とすることができる。 The shape of the cured product obtained by curing can be variously selected depending on the application, and is not particularly limited. For example, the shape of a lens, film, sheet, tube, rod, coating, bulk, etc. can do.
 成形する方法も従来の熱硬化性樹脂の成形方法をはじめとして種々の方法をとることができる。例えば、キャスト法、プレス法、注型法、トランスファー成形法、コーティング法、RIM法、LIM法等の成形方法を適用することができる。成形型は研磨ガラス、硬質ステンレス研磨板、ポリカーボネート板、ポリエチレンテレフタレート板、ポリメチルメタクリレート板等を適用することができる。 As the molding method, various methods including a conventional thermosetting resin molding method can be employed. For example, a casting method, a pressing method, a casting method, a transfer molding method, a coating method, a RIM method, a LIM method, or the like can be applied. As the mold, polishing glass, hard stainless steel polishing plate, polycarbonate plate, polyethylene terephthalate plate, polymethyl methacrylate plate, or the like can be applied.
 また、成形型との離型性を向上させるため、ポリエチレンテレフタレートフィルム、ポリカーボネートフィルム、ポリ塩化ビニルフィルム、ポリエチレンフィルム、ポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、ポリイミドフィルム、フッ素又はめっきにより表面処理された金型等を適用することができる。 In addition, in order to improve releasability from the mold, polyethylene terephthalate film, polycarbonate film, polyvinyl chloride film, polyethylene film, polytetrafluoroethylene film, polypropylene film, polyimide film, gold or surface-treated gold A mold etc. can be applied.
 成形時に必要に応じ各種処理を施すこともできる。例えば、成形時に発生するボイドの抑制のために組成物あるいは一部反応させた組成物を遠心、減圧等により脱泡する処理、プレス時に一旦圧力を開放する処理等を適用することもできる。 Various processing can be performed as necessary during molding. For example, in order to suppress voids generated during molding, a process of defoaming the composition or a partially reacted composition by centrifugation, decompression, or the like, a process of releasing the pressure once during pressing, or the like can be applied.
 尚、硬化性組成物(A)として、上述した(a)~(c)成分を含む組成物を用いる場合、成分(a)と成分(c)との比率は、[(a)成分のSiH基と反応性を有する炭素-炭素二重結合のモル数/(c)成分のSiH基のモル数]の値が、下限0.05、上限10の範囲となる比率であることが好ましく、下限0.1、上限5の範囲となる比率であることがより好ましい。少ない場合はアルケニル基とSiH基との反応による架橋の効果が不十分になる傾向にあり、多い場合は硬化物から未反応の(A)成分がブリードしてくる場合がある。 When the composition containing the components (a) to (c) described above is used as the curable composition (A), the ratio of the component (a) to the component (c) is [SiH of component (a)]. The ratio of the number of moles of carbon-carbon double bonds having reactivity with the group / the number of moles of SiH groups in the component (c)] is preferably a ratio such that the lower limit is 0.05 and the upper limit is 10. More preferably, the ratio is in the range of 0.1 and an upper limit of 5. When the amount is small, the crosslinking effect due to the reaction between the alkenyl group and the SiH group tends to be insufficient. When the amount is large, the unreacted component (A) may bleed from the cured product.
 (1-4)添加剤
 本発明に係る硬化組成物では、目的によって種々の添加剤を使用することができる。
(1-4) Additives In the curable composition according to the present invention, various additives can be used depending on the purpose.
 (硬化遅延剤)
 本発明に係る硬化性組成物では、保存安定性を改良する目的、又は製造工程でのヒドロシリル化反応の反応性を調整する目的で、硬化遅延剤を使用することができる。硬化遅延剤としては、例えば、脂肪族不飽和結合を含有する化合物、有機リン化合物、有機硫黄化合物、窒素含有化合物、スズ系化合物、有機過酸化物等が挙げられる。これらは、単独で使用してもよく、2種以上併用してよい。
(Curing retarder)
In the curable composition according to the present invention, a curing retarder can be used for the purpose of improving the storage stability or adjusting the reactivity of the hydrosilylation reaction in the production process. Examples of the curing retarder include a compound containing an aliphatic unsaturated bond, an organic phosphorus compound, an organic sulfur compound, a nitrogen-containing compound, a tin compound, and an organic peroxide. These may be used alone or in combination of two or more.
 脂肪族不飽和結合を含有する化合物としては、プロパルギルアルコール類、エン-イン化合物類、マレイン酸エステル類等が例示される。 Examples of the compound containing an aliphatic unsaturated bond include propargyl alcohols, ene-yne compounds, maleate esters and the like.
 有機リン化合物としては、トリオルガノフォスフィン類、ジオルガノフォスフィン類、オルガノフォスフォン類、トリオルガノフォスファイト類等が例示される。 Examples of the organic phosphorus compound include triorganophosphine, diorganophosphine, organophosphine, and triorganophosphite.
 有機硫黄化合物としては、オルガノメルカプタン類、ジオルガノスルフィド類、硫化水素、ベンゾチアゾール、チアゾール、ベンゾチアゾールジサルファイド等が例示される。 Examples of organic sulfur compounds include organomercaptans, diorganosulfides, hydrogen sulfide, benzothiazole, thiazole, benzothiazole disulfide and the like.
 窒素含有化合物としては、アンモニア、1~3級アルキルアミン類、アリールアミン類、尿素、ヒドラジン等が例示される。 Examples of nitrogen-containing compounds include ammonia, primary to tertiary alkylamines, arylamines, urea, hydrazine and the like.
 スズ系化合物としては、ハロゲン化第一スズ2水和物、カルボン酸第一スズ等が例示される。 Examples of tin compounds include stannous halide dihydrate and stannous carboxylate.
 有機過酸化物としては、ジ-tert-ブチルペルオキシド、ジクミルペルオキシド、ベンゾイルペルオキシド、過安息香酸tert-ブチル等が例示される。 Examples of organic peroxides include di-tert-butyl peroxide, dicumyl peroxide, benzoyl peroxide, and tert-butyl perbenzoate.
 これらの硬化遅延剤のうち、遅延活性が良好で原料が入手し易いという観点からは、ベンゾチアゾール、チアゾール、ジメチルマレート、3-ヒドロキシ-3-メチル-1-ブチン、1-エチニル-1-シクロヘキサノールが好ましい。 Among these curing retarders, from the viewpoint of good retarding activity and easy availability of raw materials, benzothiazole, thiazole, dimethyl malate, 3-hydroxy-3-methyl-1-butyne, 1-ethynyl-1- Cyclohexanol is preferred.
 硬化遅延剤の添加量は、使用するヒドロシリル化触媒1モルに対して、下限10-1モル、上限10モルの範囲が好ましく、より好ましくは下限1モル、上限50モルの範囲である。添加量が少ないと、所望の保存安定性や減圧脱揮時のゲル化抑制効果が得られない。添加量が多いと、硬化反応時の硬化阻害剤になり得る。 Amount of the curing retarder, towards hydrosilylation catalyst 1 mole to be used, the lower limit 10 -1 mol, the range of the upper limit 10 3 moles and preferably, more preferably the lower limit 1 mol, the range of the upper limit 50 mol. When there is little addition amount, the desired storage stability and the gelatinization inhibitory effect at the time of vacuum devolatilization are not acquired. If the amount added is large, it can be a curing inhibitor during the curing reaction.
 また、これらのゲル化抑制剤は単独で使用してもよく、2種以上併用してもよい。 Moreover, these gelation inhibitors may be used alone or in combination of two or more.
 (熱安定剤)
 本発明に係る硬化性組成物は、耐リフロー特性を向上する目的で、熱安定剤を使用することが好ましい。熱安定剤としては、本発明に係る硬化性組成物を硬化させて得られる硬化物の熱劣化及び酸化劣化を防止できるものであればどのようなものでもよく、熱可塑性樹脂に配合して用いられている、一般的な酸化防止剤を好適に用いることができる。一般的な酸化防止剤としては、ヒンダードフェノール系化合物、ヒンダードアミン系化合物、ホスファイト系化合物、チオエーテル系化合物等を挙げることができる。
(Heat stabilizer)
The curable composition according to the present invention preferably uses a heat stabilizer for the purpose of improving the reflow resistance. Any thermal stabilizer may be used as long as it can prevent thermal degradation and oxidation degradation of the cured product obtained by curing the curable composition according to the present invention. The common antioxidant which is used can be used suitably. Examples of general antioxidants include hindered phenol compounds, hindered amine compounds, phosphite compounds, thioether compounds, and the like.
 ヒンダードフェノール系化合物の例としては、n-オクタデシル3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)-プロピオネート、n-オクタデシル3-(3’-メチル-5’-t-ブチル-4’-ヒドロキシフェニル)-プロピオネート、n-テトラデシル3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)-プロピオネート、1,6-ヘキサンジオールビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート]、1,4-ブタンジオールビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート]、2,2’-メチレン-ビス(4-メチル-t-ブチルフェノール)、トリエチレングリコールビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)-プロピオネート]、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、3,9-ビス[2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、N,N’-ビス-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオニルヘキサメチレンジアミン、N,N’-テトラメチレン-ビス[3-(3’-メチル-5’-t-ブチル-4’-ヒドロキシフェニル)プロピオニル]ジアミン、N,N’-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオニル]ヒドラジン、N-サリチロイル-N’-サリチリデンヒドラジン、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、N,N’-ビス[2-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}エチル]オキシアミド等を挙げることができる。 Examples of hindered phenol compounds include n-octadecyl 3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) -propionate, n-octadecyl 3- (3′-methyl-5 ′ -T-butyl-4'-hydroxyphenyl) -propionate, n-tetradecyl 3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) -propionate, 1,6-hexanediol bis [3 -(3,5-di-tert-butyl-4-hydroxyphenyl) -propionate], 1,4-butanediol bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) -propionate] 2,2'-methylene-bis (4-methyl-t-butylphenol), triethylene glycol bis [3- (3-t-butyl-5-methyl-4- Loxyphenyl) -propionate], tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4-hydroxyphenyl) propionate] methane, 3,9-bis [2- {3- (3-t -Butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] 2,4,8,10-tetraoxaspiro (5,5) undecane, N, N′-bis-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionylhexamethylenediamine, N, N′-tetramethylene-bis [3- (3′-methyl-5′-t-butyl-4 '-Hydroxyphenyl) propionyl] diamine, N, N'-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) -propionyl] hydrazine, N-salicylo Ru-N'-salicylidenehydrazine, 3- (N-salicyloyl) amino-1,2,4-triazole, N, N'-bis [2- {3- (3,5-di-t-butyl- 4-hydroxyphenyl) propionyloxy} ethyl] oxyamide and the like.
 好ましくは、トリエチレングリコールビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)-プロピオネート]、及びテトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン等が例示される。 Preferably, triethylene glycol bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) -propionate] and tetrakis [methylene-3- (3 ′, 5′-di-t-butyl- 4-hydroxyphenyl) propionate] methane and the like.
 ホスファイト系化合物として、少なくとも1つのP-O結合が芳香族基に結合しているものが好ましく、具体的には、トリス(2,6-ジ-t-ブチルフェニル)ホスファイト、テトラキス(2,6-ジ-t-ブチルフェニル)4,4’-ビフェニレンホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシル)ホスファイト、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチルフェニル)ブタン、トリス(ミックスドモノ及びジ-ノニルフェニル)ホスファイト、4,4’-イソプロピリデンビス(フェニル-ジアルキルホスファイト)等が挙げられる。 As the phosphite compound, those in which at least one PO bond is bonded to an aromatic group are preferable. Specifically, tris (2,6-di-t-butylphenyl) phosphite, tetrakis (2 , 6-Di-t-butylphenyl) 4,4′-biphenylene phosphite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol di-phosphite, 2,2-methylenebis ( 4,6-di-tert-butylphenyl) octyl phosphite, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) phosphite, 1,1,3-tris ( 2-methyl-4-ditridecyl phosphite-5-t-butylphenyl) butane, tris (mixed mono and di-nonylphenyl) phosphite, 4,4′- Seo propylidene bis (phenyl - dialkyl phosphite), and the like.
 中でも、トリス(2,6-ジ-t-ブチルフェニル)ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、テトラフェニル-4,4’-ビフェニレンホスファイト等が好ましく使用できる。 Among them, tris (2,6-di-t-butylphenyl) phosphite, 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite, bis (2,6-di-t-butyl) -4-Methylphenyl) pentaerythritol di-phosphite, tetraphenyl-4,4'-biphenylene phosphite and the like can be preferably used.
 チオエーテル系化合物の具体的な例としては、ジラウリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)、ペンタエリスリトールテトラキス(3-ドデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3-オクタデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3-ミリスチルチオプロピオネート)、ペンタエリスリトールテトラキス(3-ステアリルチオプロピオネート)等が挙げられる。これらは単独で用いてもよいし、2種以上混合して使用してもよい。 Specific examples of thioether compounds include dilauryl thiodipropionate, ditridecyl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, pentaerythritol tetrakis (3-lauryl thiopropionate ), Pentaerythritol tetrakis (3-dodecyl thiopropionate), pentaerythritol tetrakis (3-octadecyl thiopropionate), pentaerythritol tetrakis (3-myristyl thiopropionate), pentaerythritol tetrakis (3-stearyl thiopro) Pionate). These may be used alone or in combination of two or more.
 (熱可塑性樹脂)
 本発明に係る硬化性組成物には、特性を改質する等の目的で種々の熱可塑性樹脂を添加することも可能である。
(Thermoplastic resin)
Various thermoplastic resins may be added to the curable composition according to the present invention for the purpose of modifying the characteristics.
 熱可塑性樹脂としては種々のものを用いることができるが、例えば、メチルメタクリレートの単独重合体あるいはメチルメタクリレートと他モノマーとのランダム、ブロック、またはグラフト重合体等のポリメチルメタクリレート系樹脂(例えば、日立化成社製オプトレッツ等)、ブチルアクリレートの単独重合体あるいはブチルアクリレートと他モノマーとのランダム、ブロック、またはグラフト重合体等のポリブチルアクリレート系樹脂等に代表されるアクリル系樹脂、ビスフェノールA、3,3,5-トリメチルシクロヘキシリデンビスフェノール等をモノマー構造として含有するポリカーボネート樹脂等のポリカーボネート系樹脂(例えば、帝人社製パンライト等)、ノルボルネン誘導体、ビニルモノマー等を単独あるいは共重合した樹脂、ノルボルネン誘導体を開環メタセシス重合させた樹脂、あるいはその水素添加物等のシクロオレフィン系樹脂(例えば、三井化学社製APEL、日本ゼオン社製ZEONOR、ZEONEX、JSR社製ARTON等)、エチレンとマレイミドとの共重合体等のオレフィン-マレイミド系樹脂(例えば、東ソー社製TI-PAS等)、ビスフェノールA、ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン等のビスフェノール類やジエチレングリコール等のジオール類とテレフタル酸、イソフタル酸等のフタル酸類や脂肪族ジカルボン酸類とを重縮合させたポリエステル等のポリエステル系樹脂(例えば、デュポン製ライナイト等)、ポリエーテルスルホン樹脂、ポリアリレート樹脂、ポリビニルアセタール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリアミド樹脂、シリコーン樹脂、フッ素樹脂等の他、天然ゴム、EPDMといったゴム状樹脂が例示されるがこれに限定されるものではない。 Various thermoplastic resins can be used. For example, polymethyl methacrylate resins such as methyl methacrylate homopolymers or random, block, or graft polymers of methyl methacrylate and other monomers (for example, Hitachi) OPTRETZ etc. manufactured by Kasei Co., Ltd.), acrylic resins represented by polybutyl acrylate resins such as butyl acrylate homopolymers or random, block or graft polymers of butyl acrylate and other monomers, bisphenol A, 3 , 3,5-trimethylcyclohexylidene bisphenol etc. as a monomer structure polycarbonate resin such as polycarbonate resin (for example, Panlite manufactured by Teijin Ltd.), norbornene derivative, vinyl monomer etc. alone or copolymerized Resins, cycloborn-based resins such as ring-opening metathesis polymerization of norbornene derivatives, or hydrogenated products thereof (for example, APEL manufactured by Mitsui Chemicals, ZEONOR, ZEONEX manufactured by Nippon Zeon, ARTON manufactured by JSR, etc.), ethylene Olefin-maleimide resins such as imide-maleimide copolymer (eg, TI-PAS manufactured by Tosoh Corporation), bisphenol A, bisphenol such as bis (4- (2-hydroxyethoxy) phenyl) fluorene, diethylene glycol, etc. Polyester resins such as polyester (for example, DuPont linite) obtained by polycondensation of diols with phthalic acids such as terephthalic acid and isophthalic acid, and aliphatic dicarboxylic acids, polyethersulfone resins, polyarylate resins, polyvinyl acetal resins , Poly Styrene resins, polypropylene resins, polystyrene resins, polyamide resins, silicone resins, other like fluorine resin, not natural rubber, but the rubber-like resin is exemplified such EPDM is not limited thereto.
 熱可塑性樹脂は、その他の架橋性基を有していてもよい。この場合の架橋性基としては、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基等が挙げられる。得られる硬化物の耐熱性が高くなり易いという点においては、架橋性基を平均して1分子中に1個以上有していることが好ましい。 The thermoplastic resin may have other crosslinkable groups. Examples of the crosslinkable group in this case include an epoxy group, an amino group, a radical polymerizable unsaturated group, a carboxyl group, an isocyanate group, a hydroxyl group, and an alkoxysilyl group. From the viewpoint that the heat resistance of the resulting cured product is likely to be high, it is preferable to have one or more crosslinkable groups per molecule on average.
 熱可塑製樹脂の分子量としては、特に限定はないが、成分(a)及び成分(c)との混合物との相溶性が良好となりやすいという点においては、数平均分子量が10000以下であることが好ましく、5000以下であることがより好ましい。逆に、得られる硬化物が強靭となり易いという点においては、数平均分子量が10000以上であることが好ましく、100000以上であることがより好ましい。分子量分布(重量平均分子量/数平均分子量)についても特に限定はないが、混合物の粘度が低くなり成形性が良好となり易いという点においては、分子量分布が3以下であることが好ましく、2以下であることがより好ましく、1.5以下であることが更に好ましい。 The molecular weight of the thermoplastic resin is not particularly limited, but the number average molecular weight may be 10,000 or less in that the compatibility with the mixture of component (a) and component (c) tends to be good. Preferably, it is 5000 or less. On the contrary, the number average molecular weight is preferably 10,000 or more, more preferably 100,000 or more in that the resulting cured product is likely to be tough. The molecular weight distribution (weight average molecular weight / number average molecular weight) is not particularly limited, but the molecular weight distribution is preferably 3 or less in that the viscosity of the mixture tends to be low and moldability tends to be good. More preferably, it is more preferably 1.5 or less.
 熱可塑性樹脂の配合量としては特に限定はないが、好ましい使用量の範囲は硬化性組成物全体の5~50重量%、より好ましくは10~30重量%である。添加量が少ないと得られる硬化物が脆くなり易い。添加量が多いと耐熱性(高温での弾性率)が低くなり易い。 The blending amount of the thermoplastic resin is not particularly limited, but a preferable range of use amount is 5 to 50% by weight, more preferably 10 to 30% by weight of the entire curable composition. If the amount added is small, the resulting cured product tends to be brittle. If the amount added is large, the heat resistance (elastic modulus at high temperature) tends to be low.
 熱可塑性樹脂としては単一のものを用いてもよいし、複数のものを組み合わせて用いてもよい。 As the thermoplastic resin, a single resin may be used, or a plurality of resins may be used in combination.
 熱可塑性樹脂は成分(a)及び/又は成分(c)に溶解して均一な状態として混合してもよいし、粉砕して粒子状態で混合してもよいし、溶媒に溶かして混合する等して分散状態としてもよい。また、熱可塑性樹脂を成分(a)及び/又は成分(c)に直接溶解させてもよいし、溶媒等を用いて均一に混合してもよいし、その後溶媒を除いて均一な分散状態及び/又は混合状態としてもよい。 The thermoplastic resin may be dissolved in the component (a) and / or the component (c) and mixed in a uniform state, pulverized and mixed in a particle state, or dissolved in a solvent and mixed. Then, it may be in a dispersed state. Further, the thermoplastic resin may be directly dissolved in the component (a) and / or the component (c), or may be mixed uniformly using a solvent, etc. It may be in a mixed state.
 熱可塑性樹脂を分散させて用いる場合は、平均粒子径は種々設定できるが、好ましい平均粒子径の下限は10nmであり、好ましい平均粒子径の上限は10μmである。粒子径は分布を有していてもよく、単一分散であっても複数のピーク粒径を持っていてもよいが、硬化性組成物の粘度が低く成形性が良好となり易いという観点からは、粒子径の変動係数が10%以下であることが好ましい。 When the thermoplastic resin is dispersed and used, the average particle diameter can be variously set, but the preferable lower limit of the average particle diameter is 10 nm, and the preferable upper limit of the average particle diameter is 10 μm. The particle size may have a distribution and may be monodispersed or have a plurality of peak particle sizes, but from the viewpoint that the viscosity of the curable composition is low and the moldability tends to be good. The particle diameter variation coefficient is preferably 10% or less.
 (充填材)
 本発明に係る硬化性組成物には透明性を損なわない範囲において、充填材を添加してもよい。
(Filler)
In the range which does not impair transparency, you may add a filler to the curable composition which concerns on this invention.
 充填材としては各種のものが用いられるが、例えば、石英、ヒュームシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等のシリカ系充填材、窒化ケイ素、銀粉、アルミナ、水酸化アルミニウム、酸化チタン、ガラス繊維、炭素繊維、マイカ、カーボンブラック、グラファイト、ケイソウ土、白土、クレー、タルク、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、無機バルーン等の無機充填材をはじめとして、エポキシ系等の従来の封止材の充填材として一般に使用及び/又は提案されている充填材等を挙げることができる。 Various fillers are used. For example, silica-based fillers such as quartz, fume silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, ultrafine powder amorphous silica, silicon nitride, silver powder, etc. Inorganic fillers such as alumina, aluminum hydroxide, titanium oxide, glass fiber, carbon fiber, mica, carbon black, graphite, diatomaceous earth, clay, clay, talc, calcium carbonate, magnesium carbonate, barium sulfate, inorganic balloon As fillers for conventional sealing materials such as epoxy-based fillers, fillers that are generally used and / or proposed can be mentioned.
 (ラジカル禁止剤)
 本発明に係る硬化性組成物にはラジカル禁止剤を添加してもよい。ラジカル禁止剤としては、例えば、2,6-ジ-t-ブチル-3-メチルフェノール(BHT)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、テトラキス(メチレン-3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)メタン等のフェノール系ラジカル禁止剤や、フェニル-β-ナフチルアミン、α-ナフチルアミン、N,N’-第二ブチル-p-フェニレンジアミン、フェノチアジン、N,N’-ジフェニル-p-フェニレンジアミン等のアミン系ラジカル禁止剤等が挙げられる。
(Radical inhibitor)
A radical inhibitor may be added to the curable composition according to the present invention. Examples of radical inhibitors include 2,6-di-t-butyl-3-methylphenol (BHT), 2,2′-methylene-bis (4-methyl-6-t-butylphenol), tetrakis (methylene- Phenol radical inhibitors such as 3 (3,5-di-t-butyl-4-hydroxyphenyl) propionate) methane, phenyl-β-naphthylamine, α-naphthylamine, N, N′-secondarybutyl-p- Examples include amine radical inhibitors such as phenylenediamine, phenothiazine, N, N′-diphenyl-p-phenylenediamine.
 また、これらのラジカル禁止剤は単独で使用してもよく、2種以上併用してもよい。 In addition, these radical inhibitors may be used alone or in combination of two or more.
 (紫外線吸収剤)
 本発明に係る硬化性組成物には紫外線吸収剤を添加してもよい。紫外線吸収剤としては、例えば、2(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、ビス(2,2,6,6-テトラメチル-4-ピペリジン)セバケート等が挙げられる。また、これらの紫外線吸収剤は単独で使用してもよく、2種以上併用してもよい。
(UV absorber)
An ultraviolet absorber may be added to the curable composition according to the present invention. Examples of the ultraviolet absorber include 2 (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, bis (2,2,6,6-tetramethyl-4-piperidine) sebacate, etc. Is mentioned. Moreover, these ultraviolet absorbers may be used independently and may be used together 2 or more types.
 (溶剤)
 本発明に係る硬化組成物が高粘度である場合、溶剤に溶解して用いることも可能である。使用できる溶剤は特に限定されるものではなく、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタン等の炭化水素系溶媒、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、ジエチルエーテル等のエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、プロピレングリコール-1-モノメチルエーテル-2-アセテート(PGMEA)、エチレングリコールジエチルエーテル等のグリコール系溶剤、クロロホルム、塩化メチレン、1,2-ジクロロエタン等のハロゲン系溶媒を好適に用いることができる。
(solvent)
When the curable composition according to the present invention has a high viscosity, it can be used by dissolving in a solvent. Solvents that can be used are not particularly limited, and specific examples include hydrocarbon solvents such as benzene, toluene, hexane, heptane, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, diethyl ether, and the like. Ether solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and other ketone solvents, propylene glycol-1-monomethyl ether-2-acetate (PGMEA), glycol solvents such as ethylene glycol diethyl ether, chloroform, methylene chloride, A halogen-based solvent such as 1,2-dichloroethane can be preferably used.
 これらの中でも、トルエン、テトラヒドロフラン、1,3-ジオキソラン、プロピレングリコール-1-モノメチルエーテル-2-アセテート、クロロホルムが好ましい。 Of these, toluene, tetrahydrofuran, 1,3-dioxolane, propylene glycol-1-monomethyl ether-2-acetate, and chloroform are preferable.
 使用する溶媒量は適宜設定できるが、用いる硬化性組成物1gに対しての好ましい使用量の下限は0.1mLであり、好ましい使用量の上限は10mLである。使用量が少ないと、低粘度化等の溶媒を用いることの効果が得られ難く、また、使用量が多いと、材料に溶剤が残留して熱クラック等の問題となり易く、またコスト的にも不利になり工業的利用価値が低下する。 The amount of solvent to be used can be appropriately set, but the lower limit of the preferred amount of use with respect to 1 g of the curable composition to be used is 0.1 mL, and the upper limit of the preferred amount of use is 10 mL. If the amount used is small, it is difficult to obtain the effect of using a solvent such as viscosity reduction. If the amount used is large, the solvent tends to remain in the material, causing problems such as thermal cracks, and also in terms of cost. It is disadvantageous and the industrial utility value decreases.
 これらの溶媒は単独で使用してもよく、2種類以上の混合溶媒として用いることもできる。 These solvents may be used alone or as a mixed solvent of two or more.
 (その他添加剤)
 本発明に係る硬化性組成物には、その他、接着性付与剤、着色剤、離型剤、難燃剤、難燃助剤、界面活性剤、消泡剤、乳化剤、レベリング剤、はじき防止剤、アンチモン-ビスマス等のイオントラップ剤、チクソ性付与剤、粘着性付与剤、保存安定改良剤、オゾン劣化防止剤、光安定剤、増粘剤、可塑剤、反応性希釈剤、導電性付与剤、帯電防止剤、放射線遮断剤、核剤、リン系過酸化物分解剤、滑剤、顔料、金属不活性化剤、熱伝導性付与剤、物性調整剤等を本発明の目的及び効果を損なわない範囲において添加することができる。
(Other additives)
In addition, the curable composition according to the present invention includes an adhesion-imparting agent, a colorant, a mold release agent, a flame retardant, a flame retardant aid, a surfactant, an antifoaming agent, an emulsifier, a leveling agent, a repellency inhibitor, Antimony-bismuth and other ion trapping agents, thixotropic agents, tackifiers, storage stability improvers, ozone degradation inhibitors, light stabilizers, thickeners, plasticizers, reactive diluents, conductivity enhancers, Antistatic agents, radiation blocking agents, nucleating agents, phosphorus peroxide decomposing agents, lubricants, pigments, metal deactivators, thermal conductivity-imparting agents, physical property modifiers and the like within a range that does not impair the purpose and effect of the present invention Can be added.
 (1-5)塗布方法
 非イオン性の赤外吸収化合物(B-1)を含有する成形体表面に、近赤外線吸収化合物(B-2)を含有する層を形成する方法としては、近赤外線吸収化合物(B-2)を成形体表面に塗布する方法が挙げられる。
(1-5) Coating method As a method for forming a layer containing a near-infrared absorbing compound (B-2) on the surface of a molded article containing a nonionic infrared-absorbing compound (B-1), a near-infrared ray can be used. Examples thereof include a method of applying the absorbing compound (B-2) to the surface of the molded body.
 近赤外線吸収性化合物(B-2)を塗布するときに用いる溶媒は、ヘキサン及びヘプタンから選ばれる脂肪族炭化水素系溶媒;アニソール、メシチレン、トルエン、及びキシレンから選ばれる芳香族炭化水素系溶媒;メチルイソブチルケトン、シクロヘキサノン及びアセトンから選ばれるケトン系溶媒;テトラヒドロフラン、ジオキソラン及びジオキサンから選ばれるエーテル系溶媒;1-メチル-2-ピロリジノン、ジメチルアセトアミド及びジメチルホルムアミドから選ばれるアミド系溶媒;並びにシリコン系溶媒からなる群より選ばれる少なくとも1種であればよいが、近赤外線吸収性化合物(B-2)の分散性及び成膜性の観点から、アニソール、メシチレン、トルエン、及びキシレンから選ばれる芳香族炭化水素系溶媒が好ましく、この中でも特にアニソールが好ましい。 The solvent used when applying the near-infrared absorbing compound (B-2) is an aliphatic hydrocarbon solvent selected from hexane and heptane; an aromatic hydrocarbon solvent selected from anisole, mesitylene, toluene, and xylene; Ketone solvents selected from methyl isobutyl ketone, cyclohexanone and acetone; ether solvents selected from tetrahydrofuran, dioxolane and dioxane; amide solvents selected from 1-methyl-2-pyrrolidinone, dimethylacetamide and dimethylformamide; and silicon solvents However, from the viewpoint of dispersibility and film-forming property of the near-infrared absorbing compound (B-2), aromatic carbonization selected from anisole, mesitylene, toluene, and xylene Hydrogen solvent is preferred , Especially anisole preferred among this.
 塗布液の塗布方法としては、浸漬コーティング法、スプレーコーティング法、スピナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、エアーナイフコーティング法、カーテンコーティング法等が挙げられるが、他の公知のコーティング法を用いることも可能である。本方法で適用される手法は、ワイヤーバーによるコーティングが最も好適である。 Examples of the coating method include a dip coating method, a spray coating method, a spinner coating method, a bead coating method, a wire bar coating method, a blade coating method, a roller coating method, an air knife coating method, and a curtain coating method. Other known coating methods can also be used. The method applied in this method is most preferably a wire bar coating.
 (1-6)用途
 本発明に係る近赤外線吸収性樹脂組成物は、所望の形に成形して、各種光学材料に用いることが可能である。
(1-6) Applications The near-infrared absorbing resin composition according to the present invention can be molded into a desired shape and used for various optical materials.
 ここでいう光学材料とは、可視光、赤外線、紫外線、X線、レーザー等の光をその材料中を通過させる用途に用いる材料であり、具体的には下記のとおりである。 Here, the optical material is a material used for the purpose of allowing light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material, and is specifically as follows.
 主な用途として、近赤外線を吸収・カットする機能を有するレンズ(デジタルカメラや携帯電話や車載カメラ等のカメラ用レンズ、f-θレンズ、ピックアップレンズ等の光学レンズ)及び半導体受光素子用の光学フィルター、省エネルギー用に熱線を遮断する近赤外線吸収フィルム用及びそのコーティング剤や近赤外線吸収板、太陽光の選択的な利用を目的とする農業用赤外線吸収フィルム用コーティング剤、近赤外線の吸収熱を利用する記録媒体、電子機器用近赤外線カットフィルター、写真用近赤外線フィルター、保護めがね、サングラス、熱線遮断フィルム、光学記録用化合物(色素)、光学文字読み取り記録、機密文書複写防止用、電子写真感光体、レーザー溶着等に用いられる。また、CCDカメラ用ノイズカットフィルター、CMOSイメージセンサ用フィルターとしても有用である。 Main applications include lenses that absorb and cut near infrared rays (camera lenses such as digital cameras, mobile phones, and in-vehicle cameras, optical lenses such as f-θ lenses and pickup lenses), and optics for semiconductor light receiving elements. Filters, near-infrared absorbing films that block heat rays for energy saving and their coating agents and near-infrared absorbing plates, agricultural infrared-absorbing film coating agents for selective use of sunlight, near-infrared absorbing heat Recording media used, near-infrared cut filter for electronic equipment, near-infrared filter for photography, protective glasses, sunglasses, heat ray blocking film, optical recording compound (dye), optical character reading recording, confidential document copy prevention, electrophotographic photosensitive Used for body, laser welding, etc. It is also useful as a noise cut filter for CCD cameras and a filter for CMOS image sensors.
 尚、本発明は、以下のようにも言い換えることができる。 The present invention can also be restated as follows.
 (1)硬化性組成物(A)に非イオン性の近赤外線吸収化合物(B-1)を含有してなる透明樹脂組成物から得られる成形体表面に、近赤外線吸収化合物(B-2)を含有する層を有することを特徴とする近赤外線吸収材料。 (1) A near-infrared absorbing compound (B-2) is formed on the surface of a molded product obtained from a transparent resin composition comprising the curable composition (A) containing a nonionic near-infrared absorbing compound (B-1). A near-infrared absorbing material comprising a layer containing
 (2)硬化性組成物(A)が、硬化性シリコーン組成物、硬化性エポキシシリコーン組成物、硬化性アクリル組成物、硬化性ノルボルネン組成物、硬化性ポリイミド組成物の何れかから選ばれるものであることを特徴とする、(1)に記載の近赤外線吸収材料。 (2) The curable composition (A) is selected from any one of a curable silicone composition, a curable epoxy silicone composition, a curable acrylic composition, a curable norbornene composition, and a curable polyimide composition. The near-infrared absorbing material according to (1), wherein
 (3)硬化性組成物(A)が、
(a)SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物、
(b)1分子中に少なくとも2個のSiH基を含有するオルガノシロキサン化合物、
(c)ヒドロシリル化触媒、
を必須成分として含有することを特徴とする、(1)または(2)に記載の近赤外線吸収材料。
(3) The curable composition (A) is
(A) an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule;
(B) an organosiloxane compound containing at least two SiH groups in one molecule;
(C) a hydrosilylation catalyst,
Is contained as an essential component, The near-infrared absorption material as described in (1) or (2) characterized by the above-mentioned.
 (4)硬化性組成物(A)100重量部に対し、非イオン性の近赤外線吸収化合物(B-1)を0.001から0.1重量部含有することを特徴とする(1)~(3)の何れか1項に記載の近赤外線吸収材料。 (4) The curable composition (A) contains 0.001 to 0.1 parts by weight of the nonionic near-infrared absorbing compound (B-1) with respect to 100 parts by weight (1) to The near infrared ray absorbing material according to any one of (3).
 (5)非イオン性の近赤外線吸収化合物(B-1)が、ぺリレン系化合物及び/又はクオタリレン系化合物である、(1)~(4)の何れか1項に記載の近赤外線吸収材料。 (5) The near-infrared absorbing material according to any one of (1) to (4), wherein the nonionic near-infrared absorbing compound (B-1) is a perylene compound and / or a quatarylene compound. .
 (6)近赤外線吸収性化合物(B-2)が複合酸化タングステン化合物である、(1)~(5)の何れか1項に記載の近赤外線吸収材料。 (6) The near-infrared absorbing material according to any one of (1) to (5), wherein the near-infrared absorbing compound (B-2) is a composite tungsten oxide compound.
 (7)近赤外線吸収性化合物(B-2)が有機溶媒100重量部に対して1~50重量部となるように分散させた溶液を作製し、それを塗布することを特徴とする、(1)~(6)の何れか1項に記載の近赤外線吸収材料の製造方法。 (7) A solution in which the near-infrared absorbing compound (B-2) is dispersed so as to be 1 to 50 parts by weight with respect to 100 parts by weight of the organic solvent is prepared and applied. 1. The method for producing a near infrared ray absorbing material according to any one of 1) to (6).
 (8)前記塗布法は、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、ナイフコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法の中の少なくとも1種が用いられる、(1)~(7)の何れか1項に記載の近赤外線吸収材料の製造方法。 (8) The coating method includes spin coating, casting, micro gravure coating, gravure coating, knife coating, bar coating, roll coating, wire bar coating, dip coating, and spray coating. The method for producing a near-infrared absorbing material according to any one of (1) to (7), wherein at least one of the above is used.
 (9)前記有機溶媒が、ヘキサン及びヘプタンから選ばれる脂肪族炭化水素系溶媒;アニソール、メシチレン、トルエン、及びキシレンから選ばれる芳香族炭化水素系溶媒;メチルイソブチルケトン、シクロヘキサノン及びアセトンから選ばれるケトン系溶媒;テトラヒドロフラン、ジオキソラン及びジオキサンから選ばれるエーテル系溶媒;1-メチル-2-ピロリジノン、ジメチルアセトアミド及びジメチルホルムアミドから選ばれるアミド系溶媒;ならびにシリコン系溶媒からなる群より選ばれる少なくとも1種である、(1)~(8)の何れか1項に記載の近赤外線吸収材料の製造方法。 (9) An aliphatic hydrocarbon solvent in which the organic solvent is selected from hexane and heptane; an aromatic hydrocarbon solvent selected from anisole, mesitylene, toluene, and xylene; a ketone selected from methyl isobutyl ketone, cyclohexanone, and acetone An ether solvent selected from tetrahydrofuran, dioxolane and dioxane; an amide solvent selected from 1-methyl-2-pyrrolidinone, dimethylacetamide and dimethylformamide; and at least one selected from the group consisting of silicon solvents The method for producing a near-infrared absorbing material according to any one of (1) to (8).
 (10)前記塗布された複合酸化タングステン組成物の膜厚が0.1μmから10μmの範囲にあることを特徴とする、(1)~(9)の何れか1項に記載の近赤外線吸収材料。 (10) The near-infrared absorbing material according to any one of (1) to (9), wherein a film thickness of the applied composite tungsten oxide composition is in a range of 0.1 μm to 10 μm. .
 (11)前記複合タングステン酸化物が、セシウム含有複合タングステン酸化物である、(1)~(10)の何れか1項に記載の近赤外線吸収材料。 (11) The near-infrared absorbing material according to any one of (1) to (10), wherein the composite tungsten oxide is a cesium-containing composite tungsten oxide.
 (12)(1)~(11)に記載の前記近赤外線吸収材料が、赤外線遮蔽体として用いられることを特徴とする光学材料。 (12) An optical material, wherein the near-infrared absorbing material described in (1) to (11) is used as an infrared shielding body.
 本発明によれば、透明樹脂に近赤外線吸収化合物を分散させ、加えて樹脂成型体に別の近赤外線吸収化合物コーティングを施すことで、高い可視光透過性と近赤外線吸収特性を持ち、かつ半田リフロー工程のような高温条件でも、光学特性の変化が実質的生じることのない近赤外線吸収性樹脂材料を提供することが可能となる。また、本発明の近赤外線吸収材に適用される硬化性組成物は、樹脂本来の成形性及び加工性を維持しており、所望どおりの形状に形成させられる。 According to the present invention, a near-infrared absorbing compound is dispersed in a transparent resin, and in addition, by applying another near-infrared absorbing compound coating to the resin molding, it has high visible light transmittance and near-infrared absorbing characteristics, and solder It is possible to provide a near-infrared absorbing resin material that does not substantially change optical characteristics even under high temperature conditions such as a reflow process. Moreover, the curable composition applied to the near-infrared absorbing material of the present invention maintains the original moldability and processability of the resin and can be formed into a desired shape.
 〔2.近赤外線吸収材料(II)〕
 近赤外線吸収材料(II)は、近赤外線吸収化合物(B)として、複合酸化タングステン化合物、フタロシアニン系化合物、及びナフタロシアニン系化合物からなる群から選択される少なくとも1種以上と、ペリレン系化合物及びクオタリレン系化合物からなる群から選択される少なくとも1種とを含む、赤外線吸収能を有する硬化性コーティング剤を透明基材の少なくとも片面に塗布し、溶剤を蒸発させた後、硬化させて得られる。
[2. Near-infrared absorbing material (II)]
The near-infrared absorbing material (II) includes, as the near-infrared absorbing compound (B), at least one selected from the group consisting of a composite tungsten oxide compound, a phthalocyanine-based compound, and a naphthalocyanine-based compound, a perylene-based compound, and quaterrylene It is obtained by applying a curable coating agent having infrared absorbing ability, which contains at least one selected from the group consisting of a system compound, to at least one surface of a transparent substrate, evaporating the solvent, and then curing.
 (2-1)硬化性コーティング剤
 近赤外線吸収材料(II)の製造において用いられる前記硬化性コーティング剤は、近赤外線吸収化合物(B)として、複合酸化タングステン化合物、フタロシアニン系化合物、及びナフタロシアニン系化合物からなる群から選択される少なくとも1種以上と、ペリレン系化合物及びクオタリレン系化合物からなる群から選択される少なくとも1種とを含む。
(2-1) Curable coating agent The curable coating agent used in the production of the near-infrared absorbing material (II) includes a composite tungsten oxide compound, a phthalocyanine-based compound, and a naphthalocyanine-based compound as the near-infrared absorbing compound (B). It includes at least one selected from the group consisting of compounds and at least one selected from the group consisting of perylene compounds and quatarylene compounds.
 前記硬化性コーティング剤は、硬化性組成物(A)を更に含み、かつ近赤外線吸収化合物(B)が硬化性組成物(A)中に溶解又は分散していることが好ましい。 The curable coating agent preferably further includes a curable composition (A), and the near-infrared absorbing compound (B) is preferably dissolved or dispersed in the curable composition (A).
 また、前記硬化性コーティング剤は、溶剤(C)を含むことが好ましい。 The curable coating agent preferably contains a solvent (C).
 (2-1-1)硬化性組成物(A)
 本発明においては、硬化性組成物(A)として、「(1-1)硬化性組成物(A)」で上述した硬化性組成物(A)を用いることができる。
(2-1-1) Curable composition (A)
In the present invention, the curable composition (A) described above in “(1-1) Curable composition (A)” can be used as the curable composition (A).
 硬化性組成物(A)として、上述した(a)~(c)成分を含む組成物を用いる場合、成分(a)と成分(c)との比率は[(a)成分のSiH基と反応性を有する炭素-炭素二重結合のモル数/(c)成分のSiH基のモル数]の値が、下限0.05、上限10の範囲となる比率であることが好ましく、下限0.1、上限5の範囲となる比率であることがより好ましい。少ない場合はアルケニル基とSiH基との反応による架橋の効果が不十分になる傾向にあり、多い場合は硬化物から未反応の(a)成分がブリードしてくる場合がある。 When the composition containing the components (a) to (c) described above is used as the curable composition (A), the ratio of the component (a) to the component (c) is [the reaction with the SiH group of the component (a). The ratio of the number of moles of carbon-carbon double bond having a property / the number of moles of SiH groups in the component (c)] is preferably a ratio such that the lower limit is 0.05 and the upper limit is 10. The ratio is more preferably in the range of the upper limit of 5. When the amount is small, the effect of crosslinking due to the reaction between the alkenyl group and the SiH group tends to be insufficient. When the amount is large, the unreacted component (a) may bleed from the cured product.
 (2-1-2)近赤外線吸収化合物(B)
 近赤外線吸収材料(II)は、「複合酸化タングステン化合物、フタロシアニン系化合物、及びナフタロシアニン系化合物からなる群から選択される少なくとも1種」と「ぺリレン系化合物及びクオタリレン系化合物からなる群より選択される少なくとも1種」とを併用するものであるが、これらはともに、近赤外線吸収化合物に分類される。本発明者らは、数多くの近赤外線吸収化合物の中から、前記の組合せが優れることを発見し、本発明に到達した。
(2-1-2) Near-infrared absorbing compound (B)
The near-infrared absorbing material (II) is selected from the group consisting of “at least one selected from the group consisting of complex tungsten oxide compounds, phthalocyanine compounds, and naphthalocyanine compounds” and “perylene compounds and quatarylene compounds” Are used together, and both of them are classified as near-infrared absorbing compounds. The present inventors have found that the above combination is excellent among many near infrared absorbing compounds, and have reached the present invention.
 近赤外線とは一般的には700~2500nmの波長帯を表すが、光学素子の光感応領域においてカットが必要とされる領域はおおよそ700~1100nmの近赤外線の波長帯を表す。本願の近赤外線吸収色素は、近赤外線吸収能を有する化合物であるが、およそ700~1100nmの近赤外領域の吸収をカバーすることができる。 Near-infrared rays generally represent a wavelength band of 700 to 2500 nm, but a region that needs to be cut in a light-sensitive region of an optical element represents a near-infrared wavelength band of approximately 700 to 1100 nm. The near-infrared absorbing dye of the present application is a compound having a near-infrared absorbing ability, but can cover absorption in the near-infrared region of about 700 to 1100 nm.
 近赤外線吸収化合物(B)は、熱安定性更には耐リフロー性を持たせるという観点から、熱分解温度が260℃以上、好ましくは300℃以上の高い耐熱性を有するものが好ましい。 The near-infrared absorbing compound (B) preferably has a high heat resistance with a thermal decomposition temperature of 260 ° C. or higher, preferably 300 ° C. or higher, from the viewpoint of imparting thermal stability and reflow resistance.
 近赤外線吸収材料(II)に用いられるクオタリレン系化合物、ペリレン系化合物、複合酸化タングステン化合物、フタロシアニン系化合物及びナフタロシアニン系化合物としては、「(1-2)近赤外線吸収化合物」で上述した化合物をそれぞれ用いることができる。 As the quatarylene compound, perylene compound, composite tungsten oxide compound, phthalocyanine compound and naphthalocyanine compound used in the near infrared absorbing material (II), the compounds described above in “(1-2) Near infrared absorbing compound” can be used. Each can be used.
 尚、近赤外線吸収化合物(B)は、溶剤(C)及び硬化性組成物(A)への溶解性を有する化合物を用いることが好ましい。溶剤(C)及び硬化性組成物(A)に可溶であると、硬化性コーティング液の作製が容易になるとともに、可視光線域の光線透過率が高くなる。溶剤(C)及び硬化性組成物(A)に対する、近赤外線吸収性化合物(B)の溶解度は、溶剤(C)と硬化性組成物(A)との合計量を100質量%とした溶解度が0.001質量%以上であることが好適である。 In addition, it is preferable to use the compound which has the solubility to a solvent (C) and a curable composition (A) as a near-infrared absorption compound (B). When it is soluble in the solvent (C) and the curable composition (A), the preparation of the curable coating liquid is facilitated and the light transmittance in the visible light region is increased. The solubility of the near-infrared absorbing compound (B) in the solvent (C) and the curable composition (A) is such that the total amount of the solvent (C) and the curable composition (A) is 100% by mass. It is suitable that it is 0.001 mass% or more.
 前記に加えて、例えば、アミノチオールニッケル錯塩系化合物;アントラキノン系化合物;シアニン系化合物;スクワリリウム系化合物;チオールニッケル錯塩系化合物;トリアリールメタン系化合物;ナフトキノン系化合物;ニトロソ化合物及びその金属錯塩;有機無機ナノ色素ハイブリッド系;アミノ化合物等の有機物質;無機物質であるカーボンブラックや、酸化アンチモン又は酸化インジウムをドーブした酸化錫;周期表の4族、5族又は6族に属する金属の酸化物、炭化物又はホウ化物;イモニウム系化合物;ジイモニウム系化合物;アミニウム塩系化合物等を併用することができる。また、これらは、要求される耐熱性条件に応じて利用することができ、単独で使用してもよく、2種以上併用してもよい。 In addition to the above, for example, aminothiol nickel complex compound; anthraquinone compound; cyanine compound; squarylium compound; thiol nickel complex compound; triarylmethane compound; naphthoquinone compound; nitroso compound and metal complex thereof; Inorganic nano-dye hybrid system; organic materials such as amino compounds; tin oxide doped with carbon black, antimony oxide or indium oxide, which are inorganic materials; oxides of metals belonging to Group 4, 5 or 6 of the periodic table; Carbides or borides; imonium compounds; diimonium compounds; aminium salt compounds and the like can be used in combination. Moreover, these can be utilized according to the required heat resistance conditions, and may be used independently and may be used together 2 or more types.
 近赤外線吸収化合物の使用量としては、「(1-2)近赤外線吸収化合物」で上述した範囲が挙げられる。 Examples of the amount of the near infrared absorbing compound used include the range described above in “(1-2) Near infrared absorbing compound”.
 更に、近赤外線吸収性化合物(B)として、耐熱性の観点から、(1-2)近赤外線吸収化合物」で上述した各種無機系微粒子を更に用いることが好ましい。 Further, as the near infrared absorbing compound (B), from the viewpoint of heat resistance, it is preferable to further use various inorganic fine particles described above in “(1-2) Near infrared absorbing compound”.
 尚、セシウム含有複合タングステン酸化物微粒子は光学特性及び耐候性等の観点から好適であるが、本発明者らの検討により、用いる硬化性組成物類に直接混合すると一時的に分散するものの、数時間程度放置すると分離し沈殿を形成してしまうことが明らかとなった。ここで発明者らは、セシウム含有複合タングステン酸化物微粒子と硬化組成物との混合物に対して溶剤を添加することで分散状態を改善することができ、更に650~850nmに吸収を有する別の近赤外線吸収化合物を添加することで、700~1100nmの近赤外線吸収特性を有する硬化性コーティング液を発明するに至った。また塗布する膜厚を調節することで、スペクトル透過強度を調節することが可能となることを発見した。 Although the cesium-containing composite tungsten oxide fine particles are preferable from the viewpoint of optical properties and weather resistance, etc., the present inventors have studied, but when dispersed directly into the curable compositions to be used, It was clarified that when it was allowed to stand for about an hour, it separated and formed a precipitate. Here, the inventors can improve the dispersion state by adding a solvent to the mixture of the cesium-containing composite tungsten oxide fine particles and the cured composition, and further have another absorption having an absorption at 650 to 850 nm. By adding an infrared absorbing compound, the inventors have invented a curable coating liquid having a near infrared absorption characteristic of 700 to 1100 nm. It was also discovered that the spectral transmission intensity can be adjusted by adjusting the coating thickness.
 (2-1-3)溶剤(C)
 本発明に係る硬化性コーティング剤で使用できる溶剤としては、特に限定されるものではなく、具体的に例示すれば、ヘキサン及びヘプタンから選ばれる脂肪族炭化水素系溶剤;アニソール、メシチレン、トルエン、及びキシレンから選ばれる芳香族炭化水素系溶剤;iso-プロピルアルコール、n-ブチルアルコール、プロピレングリコールメチルエーテル等のアルコール系溶剤;酢酸ブチル、酢酸エチル、セロソルブアセテート等のエステル系溶剤;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びアセトンから選ばれるケトン系溶剤;テトラヒドロフラン、ジエチルエーテル、ジオキソラン及び1,4-ジオキサン等のジオキサンから選ばれるエーテル系溶剤;1-メチル-2-ピロリジノン、ジメチルアセトアミド及びジメチルホルムアミドから選ばれるアミド系溶剤;シリコン系溶剤;プロピレングリコール-1-モノメチルエーテル-2-アセテート(PGMEA)、エチレングリコールジエチルエーテル等のグリコール系溶剤、クロロホルム、塩化メチレン、1,2-ジクロロエタン等のハロゲン系溶剤より選ばれる少なくとも一種類の溶剤を好適に用いることができる。これらの中でも、アニソール、メチルエチルケトンが好ましい。
(2-1-3) Solvent (C)
Solvents that can be used in the curable coating agent according to the present invention are not particularly limited, and specific examples include aliphatic hydrocarbon solvents selected from hexane and heptane; anisole, mesitylene, toluene, and Aromatic hydrocarbon solvents selected from xylene; alcohol solvents such as iso-propyl alcohol, n-butyl alcohol and propylene glycol methyl ether; ester solvents such as butyl acetate, ethyl acetate and cellosolve acetate; methyl ethyl ketone and methyl isobutyl ketone A ketone solvent selected from cyclohexanone and acetone; an ether solvent selected from dioxane such as tetrahydrofuran, diethyl ether, dioxolane and 1,4-dioxane; 1-methyl-2-pyrrolidinone, dimethylacetate Amide solvent selected from amide and dimethylformamide; silicon solvent; glycol solvents such as propylene glycol-1-monomethyl ether-2-acetate (PGMEA), ethylene glycol diethyl ether, chloroform, methylene chloride, 1,2-dichloroethane At least one kind of solvent selected from halogen-based solvents such as can be suitably used. Among these, anisole and methyl ethyl ketone are preferable.
 (2-2)硬化性コーティング剤の調整法及び硬化方法
 (硬化性コーティング剤の調製方法)
 本発明に係る、近赤外線吸収性能を有する硬化性コーティング剤の調製方法は特に限定されず、種々の方法で調製可能である。各種成分を硬化直前に混合調製してもよく、全成分を予め混合調製した一液の状態で低温貯蔵しておいてもよい。また、本発明に係る硬化性組成物(A)に溶解させた後に全成分を混合調製してもよく、近赤外線吸収化合物(B)の有機溶剤溶液を調製し、硬化性組成物(A)成分と混合し、溶剤を加えて調製してもよい。
(2-2) Preparation method and curing method of curable coating agent (Preparation method of curable coating agent)
The preparation method of the curable coating agent which has near-infrared absorption performance based on this invention is not specifically limited, It can prepare with various methods. Various components may be mixed and prepared immediately before curing, or may be stored at a low temperature in a one-component state in which all components are mixed and prepared in advance. Moreover, after dissolving in the curable composition (A) according to the present invention, all components may be mixed and prepared, and an organic solvent solution of the near-infrared absorbing compound (B) is prepared, and the curable composition (A) is prepared. It may be prepared by mixing with ingredients and adding a solvent.
 硬化性組成物(A)100重量部に対して、近赤外線吸収化合物(B)を0.01~100重量部添加することが好ましく、更に0.05~30重量部添加することが好ましい。また、硬化性組成物(A)100重量部に対して、溶剤(C)0~1000重量部添加することが好ましく、1~900重量部添加することがより好ましく、5~800重量部添加することが更に好ましく、100~400重量部添加することが特に好ましい。 The near-infrared absorbing compound (B) is preferably added in an amount of 0.01 to 100 parts by weight, more preferably 0.05 to 30 parts by weight, relative to 100 parts by weight of the curable composition (A). Further, 0 to 1000 parts by weight of the solvent (C) is preferably added to 100 parts by weight of the curable composition (A), more preferably 1 to 900 parts by weight, and more preferably 5 to 800 parts by weight. It is more preferable to add 100 to 400 parts by weight.
 近赤外線吸収化合物(B)と硬化性組成物(A)との混合物は、溶剤(C)を添加しなくてもよく、そのままコーティングすることも可能である。物性改良の目的で熱可塑性樹脂等の添加剤を使用する場合は、これらの添加剤と硬化触媒である白金化合物とを予め混合して貯蔵しておき、硬化直前にそれぞれの所定量を混合して調製してもよい。硬化性コーティング剤の粘度は硬化性組成物、近赤外線吸収色素、有機溶剤、添加剤等の添加割合によって適宜調整されるが、その範囲は2~200Pa・s(パスカル・秒)である。例えば、ガラス基板への塗布をスピンコート法で行う場合は、2~5Pa・sが好ましい。スクリーン印刷法で1回塗布して膜厚10~20μmを得るには、50~200Pa・sが好ましい。ブレードコーター法やダイコーター法等を用いる場合は、2~20Pa・sが好ましい。 The mixture of the near-infrared absorbing compound (B) and the curable composition (A) may be coated as it is without adding the solvent (C). When additives such as thermoplastic resins are used for the purpose of improving physical properties, these additives and a platinum compound as a curing catalyst are mixed and stored in advance, and each predetermined amount is mixed immediately before curing. May be prepared. The viscosity of the curable coating agent is appropriately adjusted depending on the addition ratio of the curable composition, near-infrared absorbing dye, organic solvent, additive, etc., but the range is 2 to 200 Pa · s (Pascal · second). For example, when application to a glass substrate is performed by a spin coating method, 2 to 5 Pa · s is preferable. In order to obtain a film thickness of 10 to 20 μm by coating once by screen printing, 50 to 200 Pa · s is preferable. When using a blade coater method, a die coater method, or the like, 2 to 20 Pa · s is preferable.
 尚、硬化性コーティング液を調製するときの前記溶剤(C)は、「(1-5)塗布方法」で上述した溶剤が好ましい。 The solvent (C) used for preparing the curable coating solution is preferably the solvent described above in “(1-5) Coating method”.
 (コーティング膜の硬化方法)
 熱硬化温度としては種々設定できるが、好ましい温度の下限は30℃、より好ましくは60℃、更に好ましくは90℃である。好ましい温度の上限は250℃、より好ましくは200℃である。反応温度が低いと十分に反応させるための反応時間が長くなる。反応温度が高いと着色や隆起することがある。
(Coating film curing method)
The thermosetting temperature can be variously set, but the lower limit of the preferable temperature is 30 ° C, more preferably 60 ° C, and still more preferably 90 ° C. The upper limit of preferable temperature is 250 degreeC, More preferably, it is 200 degreeC. When the reaction temperature is low, the reaction time for sufficient reaction is prolonged. If the reaction temperature is high, coloring or bulging may occur.
 硬化は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。一定の温度で行うより多段階的あるいは連続的に温度を上昇させながら反応させた方が、着色が少なく、歪の少ない硬化物が得られやすいという点において好ましい。 Curing may be performed at a constant temperature, but the temperature may be changed in multiple steps or continuously as necessary. It is preferable to carry out the reaction while raising the temperature in a multistage manner or continuously, rather than at a constant temperature, in that a cured product with less coloring and less distortion can be easily obtained.
 反応時の圧力も必要に応じ種々設定でき、常圧、高圧、あるいは減圧状態で反応させることもできる。 The pressure during the reaction can be variously set as required, and the reaction can be performed under normal pressure, high pressure, or reduced pressure.
 (コーティング法)
 コーティング方法としては、浸漬コーティング法、スプレーコーティング法、スピナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、エアーナイフコーティング法、カーテンコーティング法等が挙げられるが、他の公知のコーティング法を用いることも可能である。本方法で適用される手法は、ワイヤーバーによるコーティングが最も好適である。
(Coating method)
Examples of the coating method include dip coating method, spray coating method, spinner coating method, bead coating method, wire bar coating method, blade coating method, roller coating method, air knife coating method, curtain coating method, etc. A known coating method can also be used. The method applied in this method is most preferably a wire bar coating.
 (溶剤の蒸発法)
 溶剤(C)の除去の方法は特に限定されないが、溶剤を蒸発させることにより行うことが好ましい。溶剤を蒸発させる方法としては、加熱、減圧、通風等の方法が挙げられる。中でも生産効率、取扱い性の点から加熱により溶剤を蒸発することが好ましく、通風しつつ加熱して溶剤を蒸発せしめることがより好ましい。具体的には、80~100℃で30分~2時間予備乾燥を行い、180~260℃で10分~30分熱処理を行うことが好ましい。
(Solvent evaporation method)
The method for removing the solvent (C) is not particularly limited, but it is preferably performed by evaporating the solvent. Examples of the method for evaporating the solvent include methods such as heating, decompression, and ventilation. Among them, it is preferable to evaporate the solvent by heating from the viewpoint of production efficiency and handleability, and it is more preferable to evaporate the solvent by heating with ventilation. Specifically, it is preferable to perform preliminary drying at 80 to 100 ° C. for 30 minutes to 2 hours, and heat treatment at 180 to 260 ° C. for 10 minutes to 30 minutes.
 近赤外性コーティング剤をコーティングする透明基材は、透明性と耐熱性とを兼ね備えたものであればよく、ポリカーボネートフィルム、ポリイミドフィルム、シリコーン系フィルム等を適用することができる。 The transparent base material that coats the near-infrared coating agent only needs to have both transparency and heat resistance, and a polycarbonate film, a polyimide film, a silicone film, or the like can be applied.
 (2-3)添加剤
 本発明の硬化性コーティング剤は、各種目的によって、「(1-4)添加剤」で挙げた各種添加剤を、「(1-4)添加剤」で挙げた範囲内で使用することができる。
(2-3) Additives In the curable coating agent of the present invention, various additives listed in “(1-4) Additives” can be used in various ranges according to various purposes. Can be used within.
 (2-4)用途
 本発明の硬化性コーティング剤とは、各種光学材料に塗布し乾燥後、用いることが可能である。ここでいう光学材料とは、「(1-5)用途」の項で説明した光学材料と同義である。
(2-4) Applications The curable coating agent of the present invention can be used after being applied to various optical materials and dried. The optical material here is synonymous with the optical material described in the section “(1-5) Applications”.
 尚、本発明は、以下のようにも言い換えることができる。 The present invention can also be restated as follows.
 (1)近赤外線吸収化合物(B)として、複合タングステン酸化物と、ぺリレン系化合物及びクオタリレン系化合物からなる群より選ばれる化合物、を含む近赤外線吸収能を有する硬化性コーティング剤。 (1) A curable coating agent having a near-infrared absorbing ability, comprising a composite tungsten oxide and a compound selected from the group consisting of a perylene-based compound and a quatarylene-based compound as the near-infrared absorbing compound (B).
 (2)前記複合タングステン化合物がセシウム含有タングステン酸化物である、(1)に記載の近赤外線吸収能を有する硬化性コーティング剤。 (2) The curable coating agent having near infrared absorption ability according to (1), wherein the composite tungsten compound is a cesium-containing tungsten oxide.
 (3)硬化性組成物(A)100重量部、及び、近赤外線吸収化合物(B)0.01~100重量部に対して、溶剤(C)0~1000重量部含有してなる、(1)または(2)に記載の近赤外線吸収能を有する硬化性コーティング剤。 (3) The solvent (C) is contained in an amount of 0 to 1000 parts by weight with respect to 100 parts by weight of the curable composition (A) and 0.01 to 100 parts by weight of the near infrared ray absorbing compound (B). ) Or a curable coating agent having near infrared absorption ability according to (2).
 (4)硬化性組成物(A)が、硬化性シリコーン組成物、硬化性エポキシシリコーン組成物、硬化性アクリル組成物、硬化性ノルボルネン組成物及び硬化性ポリイミド組成物からなる群より選ばれるものであることを特徴とする、(3)に記載の近赤外線吸収能を有する硬化性コーティング剤。 (4) The curable composition (A) is selected from the group consisting of a curable silicone composition, a curable epoxy silicone composition, a curable acrylic composition, a curable norbornene composition, and a curable polyimide composition. The curable coating agent having near-infrared absorbing ability according to (3), which is characterized in that it exists.
 (5)硬化性組成物(A)が、
(a)SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物、
(b)ヒドロシリル化触媒、
(c)1分子中に少なくとも2個のSiH基を含有するオルガノシロキサン化合物、
を必須成分とすることを特徴とする、(3)または(4)に記載の近赤外線吸収能を有する硬化性コーティング剤。
(5) The curable composition (A) is
(A) an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule;
(B) a hydrosilylation catalyst,
(C) an organosiloxane compound containing at least two SiH groups in one molecule;
The curable coating agent having near infrared absorption ability according to (3) or (4), characterized in that is an essential component.
 (6)溶剤(C)が、ヘキサン、ヘプタン、アニソール、メシチレン、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトン、テトラヒドロフラン、ジオキソラン、ジオキサン、1-メチル-2-ピロリジノン、ジメチルアセトアミド、ジメチルホルムアミド、及びシリコン系溶剤からなる群より選ばれる少なくとも1種である、(3)~(5)の何れか1項に記載の近赤外線吸収能を有する硬化性コーティング剤。 (6) Solvent (C) is hexane, heptane, anisole, mesitylene, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetone, tetrahydrofuran, dioxolane, dioxane, 1-methyl-2-pyrrolidinone, dimethylacetamide, dimethylformamide And a curable coating agent having near infrared absorption ability according to any one of (3) to (5), which is at least one selected from the group consisting of silicon solvents.
 (7)(1)~(6)の何れか1項に記載の近赤外線吸収能を有する硬化性コーティング剤を透明基材の少なくとも片面に塗布し溶剤を蒸発させた後、硬化させて得られる近赤外線吸収材。 (7) Obtained by applying the curable coating agent having near infrared absorption ability according to any one of (1) to (6) to at least one surface of a transparent substrate, evaporating the solvent, and then curing the coating. Near infrared absorbing material.
 (8)(7)で得られる近赤外線吸収材が近赤外線遮蔽体として用いられることを特徴とする光学材料。 (8) An optical material characterized in that the near-infrared absorbing material obtained in (7) is used as a near-infrared shield.
 本発明の近赤外線吸収能を有する硬化性コーティング剤は、透明基材の形状に依らず塗布ができ、またはんだリフロー工程のような高温条件下でも光学特性の変化が実質的生じることのない近赤外線吸収材を与えるため、高耐熱性と赤外線遮蔽機能が必要な光学材料等として有用である。 The curable coating agent having near infrared absorption ability of the present invention can be applied regardless of the shape of the transparent substrate, or the optical property does not substantially change even under high temperature conditions such as a sand reflow process. In order to provide an infrared absorbing material, it is useful as an optical material that requires high heat resistance and an infrared shielding function.
 〔3.近赤外線吸収材料(III)〕
 近赤外線吸収材料(硬化物)(III)は、(a)SiH基と反応性を有する炭素-炭素二重結合を一分子中に少なくとも2個有する有機化合物と、(b)ヒドロシリル化触媒と、(c)1分子中に少なくとも2個のSiH基を含有する化合物と、(d)クオタリレン系化合物と、フタロシアニン系化合物及びナフタロシアニン系化合物から選択される少なくとも1種の化合物とを含む近赤外線吸収性組成物と、を含有する硬化性組成物を硬化させて得られる。
[3. Near-infrared absorbing material (III)]
Near-infrared absorbing material (cured product) (III) comprises (a) an organic compound having at least two carbon-carbon double bonds reactive with SiH groups in one molecule, (b) a hydrosilylation catalyst, (C) Near-infrared absorption comprising a compound containing at least two SiH groups in one molecule, (d) a quatarylene compound, and at least one compound selected from a phthalocyanine compound and a naphthalocyanine compound And a curable composition containing the curable composition.
 (3-1)硬化性組成物
 近赤外線吸収材料(III)の製造において用いられる前記硬化性組成物は、(a)SiH基と反応性を有する炭素-炭素二重結合を一分子中に少なくとも2個有する有機化合物と、(b)ヒドロシリル化触媒と、(c)1分子中に少なくとも2個のSiH基を含有する化合物と、(d)クオタリレン系化合物と、フタロシアニン系化合物及びナフタロシアニン系化合物から選択される少なくとも1種の化合物とを含む近赤外線吸収性組成物と、を含有する。これにより、近赤外線吸収性を有し、成型加工性と耐リフロー性を両立した材料を提供することが可能となる。
(3-1) Curable composition The curable composition used in the production of the near-infrared absorbing material (III) comprises (a) at least a carbon-carbon double bond having reactivity with a SiH group in one molecule. Two organic compounds, (b) a hydrosilylation catalyst, (c) a compound containing at least two SiH groups in one molecule, (d) a quatarylene compound, a phthalocyanine compound, and a naphthalocyanine compound And a near-infrared absorbing composition containing at least one compound selected from the group consisting of: Thereby, it becomes possible to provide a material having near infrared absorptivity and having both moldability and reflow resistance.
 (a)~(c)成分としては、「(1-1-5)硬化性シリコーン組成物」において上述した成分(a)~(c)をそれぞれ用いることができる。 As the components (a) to (c), the components (a) to (c) described above in “(1-1-5) curable silicone composition” can be used.
 成分(d)について以下説明する。 Component (d) will be described below.
 近赤外線とは一般的には700~2500nmの波長帯を表すが、光学素子の光感応領域においてカットが必要とされる領域はおおよそ700~1100nmの近赤外線の波長帯を表す。本願の成分(d)は近赤外線吸収能を有する化合物であるが、およそ700~1100nmの近赤外領域の吸収をカバーすることができる。 Near-infrared rays generally represent a wavelength band of 700 to 2500 nm, but a region that needs to be cut in a light-sensitive region of an optical element represents a near-infrared wavelength band of approximately 700 to 1100 nm. The component (d) of the present application is a compound having near-infrared absorption ability, but can cover absorption in the near-infrared region of about 700 to 1100 nm.
 そのために、近赤外線吸収材料(III)では、成分(d)として、クォタリレン系化合物及び/又はペリレン系化合物に加えて、フタロシアニン系化合物またはナフタロシアニン系化合物から選ばれる少なくとも2種、即ち、少なくとも3種の特定の化合物を組み合わせて配合することが好ましい。 Therefore, in the near-infrared absorbing material (III), as the component (d), in addition to the quartalylene compound and / or the perylene compound, at least two kinds selected from a phthalocyanine compound or a naphthalocyanine compound, that is, at least 3 It is preferable to mix and combine the specific compounds of the species.
 成分(d)は熱安定性更には耐リフロー性を持たせるという観点から、熱分解温度が200℃以上、好ましくは260℃以上の高い耐熱性を有するものが好ましい。 Component (d) preferably has a high heat resistance with a thermal decomposition temperature of 200 ° C. or higher, preferably 260 ° C. or higher, from the viewpoint of providing thermal stability and reflow resistance.
 近赤外線吸収材料(III)に用いられる、クオタリレン系化合物、ペリレン系化合物、フタロシアニン系化合物及びナフタロシアニン系化合物としては、「(1-2)近赤外線吸収化合物」で上述した化合物をそれぞれ用いることができる。 As the quatarylene compound, perylene compound, phthalocyanine compound and naphthalocyanine compound used in the near infrared absorbing material (III), the compounds described above in “(1-2) Near infrared absorbing compound” can be used. it can.
 成分(d)は有機溶剤、成分(a)または成分(c)への溶解性を有する化合物を用いることが好ましい。有機溶剤、成分(a)または成分(c)に可溶であると、硬化性組成物の作製が容易になるとともに、可視光線域の光線透過率が高くなる。有機溶剤、成分(a)、または成分(c)に対する成分(d)の溶解度として、有機溶剤、成分(a)または成分(c)を100質量%とした溶解度が0.001質量%以上であることが好適である。 Component (d) is preferably a compound having solubility in an organic solvent, component (a) or component (c). When it is soluble in the organic solvent, component (a) or component (c), the preparation of the curable composition is facilitated and the light transmittance in the visible light region is increased. The solubility of the component (d) with respect to the organic solvent, the component (a), or the component (c) is 0.001% by mass or more when the organic solvent, the component (a) or the component (c) is 100% by mass. Is preferred.
 硬化性組成物に用いられ得る有機溶剤としては特に限定されず、例えば、トルエン、キシレン等の芳香族系溶媒;iso-プロピルアルコール、n-ブチルアルコール、プロピレングリコールメチルエーテル等のアルコール系溶媒;酢酸ブチル、酢酸エチル、セロソルブアセテート等のエステル系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒;ジメチルホルムアミド等の1種又は2種以上が挙げられる。 The organic solvent that can be used in the curable composition is not particularly limited. For example, aromatic solvents such as toluene and xylene; alcohol solvents such as iso-propyl alcohol, n-butyl alcohol, and propylene glycol methyl ether; acetic acid Ester solvents such as butyl, ethyl acetate and cellosolve acetate; ketone solvents such as acetone and methyl ethyl ketone; ether solvents such as diethyl ether, tetrahydrofuran and 1,4-dioxane; one or more of dimethylformamide and the like It is done.
 前記に加えて、例えば、アミノチオールニッケル錯塩系化合物;アントラキノン系化合物;シアニン系化合物;スクワリリウム系化合物;チオールニッケル錯塩系化合物;トリアリールメタン系化合物;ナフトキノン系化合物;ニトロソ化合物及びその金属錯塩;有機無機ナノ色素ハイブリッド系;アミノ化合物等の有機物質;無機物質であるカーボンブラックや、酸化アンチモン又は酸化インジウムをドーブした酸化錫;周期表の4族、5族又は6族に属する金属の酸化物、炭化物又はホウ化物;イモニウム系化合物;ジイモニウム系化合物;アミニウム塩系化合物等を併用することができる。また、これらは、要求される耐熱性条件に応じて利用することができ、単独で使用してもよく、2種以上併用してもよい。 In addition to the above, for example, aminothiol nickel complex compound; anthraquinone compound; cyanine compound; squarylium compound; thiol nickel complex compound; triarylmethane compound; naphthoquinone compound; nitroso compound and metal complex thereof; Inorganic nano-dye hybrid system; organic materials such as amino compounds; tin oxide doped with carbon black, antimony oxide or indium oxide, which are inorganic materials; oxides of metals belonging to Group 4, 5 or 6 of the periodic table; Carbides or borides; imonium compounds; diimonium compounds; aminium salt compounds and the like can be used in combination. Moreover, these can be utilized according to the required heat resistance conditions, and may be used independently and may be used together 2 or more types.
 (d)成分の使用量としては、成分(a)及び成分(c)との総量100重量部に対して、0.0005重量部以上とすることが好ましく、また、20重量部以下とすることが好ましい。より好ましくは、0.0015重量部以上であり、また、10重量部以下であり、更に好ましくは、0.002重量部以上であり、また、7重量部以下である。 The amount of component (d) used is preferably 0.0005 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight as the total of component (a) and component (c). Is preferred. More preferably, it is 0.0015 weight part or more, and 10 weight part or less, More preferably, it is 0.002 weight part or more, and 7 weight part or less.
 (d)成分を添加する量が少ないと、近赤外線吸収性能を有する硬化組成物から形成される硬化物が充分な近赤外線吸収性能を発揮しないおそれがあり、多すぎると可視光線域の透過率が低下するおそれや凝集によって光を散乱する可能性がある。 If the amount of the component (d) added is small, the cured product formed from the cured composition having near-infrared absorption performance may not exhibit sufficient near-infrared absorption performance. There is a possibility that light may be scattered due to a possibility of decrease of the density or aggregation.
 尚、成分(a)と成分(c)との比率は、[(a)成分のSiH基と反応性を有する炭素-炭素二重結合のモル数/(c)成分のSiH基のモル数]の値が、下限0.05、上限10の範囲となる比率であることが好ましく、下限0.1、上限5の範囲となる比率であることがより好ましい。少ない場合はアルケニル基とSiH基との反応による架橋の効果が不十分になる傾向にあり、多い場合は硬化物から未反応の(A)成分がブリードしてくる場合がある。 The ratio of component (a) to component (c) is [number of moles of carbon-carbon double bond reactive with SiH group of component (a) / number of moles of SiH group of component (c)]. Of the lower limit of 0.05 and the upper limit of 10 is preferable, and the lower limit of 0.1 and the upper limit of 5 is more preferable. When the amount is small, the crosslinking effect due to the reaction between the alkenyl group and the SiH group tends to be insufficient. When the amount is large, the unreacted component (A) may bleed from the cured product.
 (3-2)硬化性組成物の調整方法及び硬化方法
 本発明に係る、近赤外線吸収性能を有する硬化性組成物の調製方法は特に限定されず、種々の方法で調製可能であり、例えば、「(1-3)硬化性組成物の調整法及び硬化方法」で上述した方法を適宜用いることができる。
(3-2) Preparation method and curing method of curable composition The preparation method of the curable composition having near infrared absorption performance according to the present invention is not particularly limited, and can be prepared by various methods, for example, The method described above in “(1-3) Preparation method and curing method of curable composition” can be appropriately used.
 各種成分を硬化直前に混合調製してもよく、全成分を予め混合調製した一液の状態で低温貯蔵しておいてもよい。また、(d)成分を本発明の(a)成分または(c)成分に溶解させた後に全成分を混合調製してもよく、(d)成分の有機溶剤溶液を調製し、(a)成分または(c)成分と混合し、有機溶剤を脱揮処理等により除去した後に全成分を混合調製してもよい。 Various components may be mixed and prepared immediately before curing, or may be stored at a low temperature in a one-component state in which all components are mixed and prepared in advance. Alternatively, all the components may be mixed and prepared after the component (d) is dissolved in the component (a) or the component (c) of the present invention, an organic solvent solution of the component (d) is prepared, and the component (a) Or after mixing with (c) component and removing an organic solvent by a devolatilization process etc., all components may be mixed and prepared.
 (3-3)添加剤
 近赤外線吸収材料(III)の製造において用いられる前記硬化性組成物には、各種目的によって、「(1-4)添加剤」で挙げた各種添加剤を、「(1-4)添加剤」で挙げた範囲内で使用することができる。
(3-3) Additives The curable composition used in the production of the near-infrared absorbing material (III) may contain various additives listed in “(1-4) Additives” according to various purposes. 1-4) Additives ”can be used within the range mentioned above.
 (3-4)用途
 本発明の近赤外線吸収硬化性組成物を硬化させてなる硬化物は所望の形に成形して、各種光学材料に用いることが可能である。ここでいう光学材料とは、「(1-5)用途」の項で説明した光学材料と同義である。
(3-4) Applications A cured product obtained by curing the near-infrared absorption curable composition of the present invention can be molded into a desired shape and used for various optical materials. The optical material here is synonymous with the optical material described in the section “(1-5) Applications”.
 尚、本発明は、以下のようにも言い換えることができる。 The present invention can also be restated as follows.
 (1)(a)1分子中にSiH基との反応性を有する炭素-炭素二重結合を2個以上有する有機化合物、
(b)ヒドロシリル化触媒、
(c)1分子中に少なくとも2個のSiH基を有する化合物、及び、
(d)クォタリレン系化合物と、フタロシアニン系化合物あるいはナフタロシアニン系化合物から選ばれる化合物を少なくとも2種類、
を含有する近赤外線吸収能を有する硬化性組成物。
(1) (a) an organic compound having two or more carbon-carbon double bonds having reactivity with SiH groups in one molecule;
(B) a hydrosilylation catalyst,
(C) a compound having at least two SiH groups in one molecule, and
(D) at least two types of compounds selected from quartarylene compounds and phthalocyanine compounds or naphthalocyanine compounds;
A curable composition having near infrared absorption ability.
 (2)(a)成分が、下記一般式(IV) (2) The component (a) is represented by the following general formula (IV)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(式中、Rは水素原子または炭素数1~50の一価の有機基を表し、それぞれのRは異なっていても同一であってもよく、少なくとも2個のRはSiH基との反応性を有する炭素-炭素二重結合を含む。)
で表される有機化合物である、(1)に記載の近赤外線吸収能を有する硬化性組成物。
(In the formula, R 3 represents a hydrogen atom or a monovalent organic group having 1 to 50 carbon atoms, and each R 3 may be different or the same, and at least two R 3 may be SiH groups and Including a carbon-carbon double bond having the reactivity of
The curable composition which has the near-infrared absorptivity as described in (1) which is an organic compound represented by these.
 (3)(a)成分が、下記一般式(III) (3) The component (a) is represented by the following general formula (III)
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(式中、Rは炭素数1~50の一価の酸素、窒素、硫黄、あるいはハロゲン原子で置換
されていてもよい有機基を表し、それぞれのRは異なっていても同一であってもよい。)
で表される構造を有する有機化合物である、(1)に記載の近赤外線吸収能を有する硬化性組成物。
(Wherein R 4 represents an organic group which may be substituted with a monovalent oxygen, nitrogen, sulfur or halogen atom having 1 to 50 carbon atoms, and each R 4 may be different or the same. May be.)
The curable composition which has the near-infrared absorptivity as described in (1) which is an organic compound which has a structure represented by these.
 (4)(c)成分が、
(α)1分子中にSiH基と反応性を有する炭素-炭素二重結合を1個以上含有する有機化合物と、
(β)1分子中に少なくとも3個のSiH基を有する鎖状、環状、分岐状及びかご型の何れかの構造を有するポリオルガノシロキサンと、
をヒドロシリル化反応して得ることができる化合物である、(1)~(3)の何れか1項に記載の近赤外線吸収能を有する硬化性組成物。
(4) The component (c) is
(Α) an organic compound containing one or more carbon-carbon double bonds having reactivity with SiH groups in one molecule;
(Β) a polyorganosiloxane having a chain, cyclic, branched or cage structure having at least three SiH groups in one molecule;
The curable composition having near infrared absorption ability according to any one of (1) to (3), which is a compound obtainable by hydrosilylation reaction.
 (5)(α)成分が、下記一般式(IV) (5) The component (α) is represented by the following general formula (IV)
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(式中、Rは水素原子または炭素数1~50の一価の有機基を表し、それぞれのRは異なっていても同一であってもよく、少なくとも1個のRはSiH基との反応性を有する炭素-炭素二重結合を含む。)
で表される有機化合物である、(4)に記載の近赤外線吸収能を有する硬化性組成物。
(Wherein R 3 represents a hydrogen atom or a monovalent organic group having 1 to 50 carbon atoms, and each R 3 may be different or the same, and at least one R 3 may be a SiH group and Including a carbon-carbon double bond having the reactivity of
The curable composition which has the near-infrared absorptivity as described in (4) which is an organic compound represented by these.
 (6)(α)成分が、下記一般式(X) (6) The component (α) is represented by the following general formula (X)
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(式中、Rは炭素数1~50の一価の酸素、窒素、硫黄、あるいはハロゲン原子で置換されていてもよい有機基を表し、それぞれのRは異なっていても同一であってもよい。)
で表される構造を有する有機化合物である、(4)に記載の近赤外線吸収能を有する硬化性組成物。
(Wherein R 4 represents an organic group which may be substituted with a monovalent oxygen, nitrogen, sulfur or halogen atom having 1 to 50 carbon atoms, and each R 4 may be different or the same. May be.)
The curable composition having near infrared absorption ability according to (4), which is an organic compound having a structure represented by:
 (7)(β)1分子中に少なくとも3個のSiH基を有する、鎖状、環状、分岐状及びかご型のポリオルガノシロキサンの少なくとも1種として、下記一般式(VI) (7) (β) At least one of chain, cyclic, branched and cage polyorganosiloxane having at least three SiH groups in one molecule is represented by the following general formula (VI)
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(式中、R14、R15は炭素数1~10の有機基を表し、nは3~10、mは0~10の数を表す。)
で表されるSiH基を有するポリオルガノシロキサン化合物が含有される化合物である、(4)~(6)の何れか1項に記載の近赤外線吸収能を有する硬化性組成物。
(Wherein R 14 and R 15 represent an organic group having 1 to 10 carbon atoms, n represents 3 to 10, and m represents a number of 0 to 10)
The curable composition having near infrared absorption ability according to any one of (4) to (6), which is a compound containing a polyorganosiloxane compound having a SiH group represented by:
 (8)(1)~(7)の何れか1項に記載の近赤外線吸収能を有する硬化性組成物を硬化させて得られる硬化物。 (8) A cured product obtained by curing the curable composition having near infrared absorption ability according to any one of (1) to (7).
 本発明によれば、耐リフロー性を有する近赤外線吸収材料を提供することが可能となる。また、本発明の近赤外線吸収材料に適用される硬化性組成物が樹脂本来の成形性及び加工性を維持しており、所望どおりの形状に形成させることができる。 According to the present invention, it is possible to provide a near-infrared absorbing material having reflow resistance. Moreover, the curable composition applied to the near-infrared absorbing material of the present invention maintains the original moldability and processability of the resin, and can be formed into a desired shape.
 以下に、本発明の実施例及び比較例を示すが、本発明は以下によって限定されるものではない。尚、合成例におけるアリル基の反応率は、バリアン・テクノロジーズ・ジャパン・リミテッド製300MHz―NMR装置を用い、反応液を重クロロホルムで1%程度まで希釈したものをNMR用チューブに加えて測定し、未反応アリル基由来のメチレン基のピークと、反応アリル基由来のメチレン基のピーク比から算出し、(c)成分のSiH基の含有量は、バリアン・テクノロジーズ・ジャパン・リミテッド製300MHz―NMR装置を用い、1,2―ジブロモエタン換算でのSiH基価(mmol/g)として求めた。 Examples and Comparative Examples of the present invention are shown below, but the present invention is not limited to the following. In addition, the reaction rate of the allyl group in the synthesis example was measured using a 300 MHz-NMR apparatus manufactured by Varian Technologies Japan Limited, adding the reaction solution diluted to about 1% with deuterated chloroform to the NMR tube, Calculated from the peak ratio of the methylene group derived from the unreacted allyl group and the methylene group derived from the reacted allyl group, and the content of the SiH group as the component (c) is 300 MHz NMR apparatus manufactured by Varian Technologies Japan Limited. Was obtained as the SiH group value (mmol / g) in terms of 1,2-dibromoethane.
 〔合成例1〕
 5Lの四つロフラスコに、攪拌装置、滴下漏斗、冷却管をセットした。このフラスコにトルエン1800g、1,3,5,7-テトラメチルシクロテトラシロキサン1440gを入れ、気相部を窒素置換した後、120℃のオイルバス中で加熱、攪拌した。トリアリルイソシアヌレート200g、トルエン200g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)1.44mlの混合液を50分かけて滴下した。滴下終了から6時間後にH―NMRでアリル基の反応率が95%以上であることを確認し、冷却により反応を終了させた。
[Synthesis Example 1]
A stirrer, a dropping funnel, and a condenser tube were set in a 5-L four-necked flask. To this flask, 1800 g of toluene and 1440 g of 1,3,5,7-tetramethylcyclotetrasiloxane were placed, and the gas phase portion was purged with nitrogen, and then heated and stirred in a 120 ° C. oil bath. A mixed solution of 200 g of triallyl isocyanurate, 200 g of toluene and 1.44 ml of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) was added dropwise over 50 minutes. Six hours after the completion of the dropwise addition, it was confirmed by 1 H-NMR that the reaction rate of the allyl group was 95% or more, and the reaction was terminated by cooling.
 トルエン及び未反応の1,3,5,7-テトラメチルシクロテトラシロキサンを60℃2時間、80℃2時間にて減圧留去し、無色透明の液体「反応物E」を得た。 Toluene and unreacted 1,3,5,7-tetramethylcyclotetrasiloxane were distilled off under reduced pressure at 60 ° C. for 2 hours and at 80 ° C. for 2 hours to obtain a colorless transparent liquid “Reactant E”.
 H-NMRによって求めたSiH基の含有量は8.8mmol/gであった。生成物は混合物であるが、本発明における(c)成分である、1分子あたり9個のSiH基を有する下記化合物を主成分として含有している。 The content of SiH groups determined by 1 H-NMR was 8.8 mmol / g. Although the product is a mixture, it contains as a main component the following compound having 9 SiH groups per molecule, which is the component (c) in the present invention.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 〔合成例2〕
 500mL四つロフラスコにトルエン100g、1,3,5,7-テトラメチルシクロテトラシロキサン57.49gを入れ、気相部を窒素置換した後、内温105℃で加熱、攪拌した。ジアリルモノグリシジルイソシアヌレート12.7g、トルエン12.7g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.0112gの混合溶液を30分かけて滴下した。滴下終了から6時間後にH―NMRでアリル基の反応率が95%以上であることを確認し、冷却により反応を終了させた。
[Synthesis Example 2]
A 500 mL four-necked flask was charged with 100 g of toluene and 57.49 g of 1,3,5,7-tetramethylcyclotetrasiloxane, and the gas phase was purged with nitrogen, and then heated and stirred at an internal temperature of 105 ° C. A mixed solution of 12.7 g of diallyl monoglycidyl isocyanurate, 12.7 g of toluene and 0.0112 g of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) was added dropwise over 30 minutes. Six hours after the completion of the dropwise addition, it was confirmed by 1 H-NMR that the reaction rate of the allyl group was 95% or more, and the reaction was terminated by cooling.
 トルエン及び未反応の1,3,5,7-テトラメチルシクロテトラシロキサンを60℃2時間、80℃2時間にて減圧留去し、無色透明の液体「反応物F」を得た。 Toluene and unreacted 1,3,5,7-tetramethylcyclotetrasiloxane were distilled off under reduced pressure at 60 ° C. for 2 hours and at 80 ° C. for 2 hours to obtain a colorless transparent liquid “Reaction product F”.
 H―NMRによって求めたSiH基の含有量は7.6mmol/gであった。生成物は混合物であるが、本発明の(c)成分である、1分子あたり6個のSiH基を有する下記化合物を主成分として含有している。 The content of SiH groups determined by 1 H-NMR was 7.6 mmol / g. Although the product is a mixture, it contains, as a main component, the following compound having 6 SiH groups per molecule, which is the component (c) of the present invention.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 〔合成例3〕
 2L四つロフラスコにトルエン600g、1,3,5,7-テトラメチルシクロテトラシロキサン600gを入れ、気相部を窒素置換した後、内温90℃で加熱、攪拌した。ジビニルベンゼン73.5g、トルエン73.5g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.006gの混合溶液を1時間かけて滴下した。滴下終了から6時間後にH―NMRでビニル基の反応率が95%以上であることを確認し、冷却により反応を終了させた。
[Synthesis Example 3]
600 g of toluene and 600 g of 1,3,5,7-tetramethylcyclotetrasiloxane were placed in a 2 L four-neck flask, and the gas phase portion was purged with nitrogen, and then heated and stirred at an internal temperature of 90 ° C. A mixed solution of 73.5 g of divinylbenzene, 73.5 g of toluene and 0.006 g of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) was added dropwise over 1 hour. Six hours after the completion of the dropwise addition, it was confirmed by 1 H-NMR that the reaction rate of the vinyl group was 95% or more, and the reaction was terminated by cooling.
 トルエン及び未反応の1,3,5,7-テトラメチルシクロテトラシロキサンを60℃2時間、80℃2時間にて減圧留去し、無色透明の液体「反応物G」を得た。 Toluene and unreacted 1,3,5,7-tetramethylcyclotetrasiloxane were distilled off under reduced pressure at 60 ° C. for 2 hours and at 80 ° C. for 2 hours to obtain a colorless transparent liquid “Reaction product G”.
 H―NMRによって求めたSiH基の含有量は9.8mmol/gであった。生成物は混合物であるが、本発明の(c)成分である、1分子あたり6個のSiH基を有する下記化合物を主成分として含有している。 The content of SiH groups determined by 1 H-NMR was 9.8 mmol / g. Although the product is a mixture, it contains, as a main component, the following compound having 6 SiH groups per molecule, which is the component (c) of the present invention.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 1.近赤外線吸収材料(I)
 〔実施例1~4、比較例1~4〕
 (ステップ1.硬化物の作製)
 合成例1で得た反応物Eに対し、表1に示す配合組成で硬化性組成物を調製した。具体的には、(a)成分24.4g、近赤外線吸収化合物(B-1)〔非イオン性近赤外線吸収化合物として「Lumogen IR 765」及び/又は「Lumogen IR 788」(BASF社製)、イオン性近赤外線吸収色素として「Kayasorb CY-40MC(F)(日本化薬社製)〕を表1に示す添加部数で混合し、当該混合物を減圧攪拌脱泡後、(c)成分として合成例2で得た反応物Eを0.12g添加し、(b)成分35.6gと硬化遅延剤0.12gとの混合物を更に加えて硬化性組成物を得た。
1. Near-infrared absorbing material (I)
[Examples 1 to 4, Comparative Examples 1 to 4]
(Step 1. Preparation of cured product)
A curable composition was prepared with the formulation shown in Table 1 for the reactant E obtained in Synthesis Example 1. Specifically, (a) component 24.4 g, near-infrared absorbing compound (B-1) [“Lumogen IR 765” and / or “Lumogen IR 788” (made by BASF) as a nonionic near-infrared absorbing compound, “Kayasorb CY-40MC (F) (manufactured by Nippon Kayaku Co., Ltd.)” as an ionic near-infrared absorbing dye was mixed in the added number of parts shown in Table 1, and the mixture was stirred and degassed under reduced pressure. 0.12 g of the reaction product E obtained in 2 was added, and a mixture of 35.6 g of component (b) and 0.12 g of a retarder was further added to obtain a curable composition.
 尚、(a)成分としてトリアリルイソシアヌレートを用い、(b)成分として反応物Eを用いた。 In addition, triallyl isocyanurate was used as the component (a), and the reactant E was used as the component (b).
 次に、1mm厚みのシリコーンゴムシートを2枚のガラス板の間にスペーサーとして挟み込んで作製したセルに、得られた硬化性組成物を流し込み、プレ硬化として120℃で40分、熱風オーブンにて加熱を行い、ポスト硬化として180℃15分間、熱風オーブンにて加熱を行うことにより、板状の硬化物を得た。得られた硬化物は何れも透明であり、各種光学材料として用いることができるものであった。その物性を表1に示す。 Next, the obtained curable composition is poured into a cell prepared by sandwiching a 1 mm-thick silicone rubber sheet as a spacer between two glass plates, and heated in a hot air oven at 120 ° C. for 40 minutes as pre-curing. As a post-curing, heating was performed in a hot air oven at 180 ° C. for 15 minutes to obtain a plate-shaped cured product. All of the obtained cured products were transparent and could be used as various optical materials. The physical properties are shown in Table 1.
 (ステップ2.近赤外線吸収剤(B-2)の塗布)
 セシウム含有複合タングステン酸化物は、有機分散剤を77%含有した粉末を使用した。30重量%または35重量%の濃度になるように調製した、セシウム含有複合タングステン酸化物のアニソール溶液を、前記の板状の硬化物(8×8×0.6mmt)上にワイヤーバー(巻線No.16)を用いてコーティングし、各透明硬化物板の上にコーティング膜を作製した。これを室温で12時間乾燥後、オーブン中で260℃雰囲気下10分間乾燥させた。これを10×30mmのサイズにダイシングして、セシウム含有複合タングステン酸化物コーティングの膜厚と透過スペクトルとを測定した。結果を表1に併せて示す。
(Step 2. Application of near-infrared absorber (B-2))
As the cesium-containing composite tungsten oxide, a powder containing 77% of an organic dispersant was used. An anisole solution of a cesium-containing composite tungsten oxide prepared to a concentration of 30% by weight or 35% by weight is placed on a wire bar (winding) on the plate-like cured product (8 × 8 × 0.6 mmt). No. 16) was used to prepare a coating film on each transparent cured product plate. This was dried at room temperature for 12 hours and then dried in an oven at 260 ° C. for 10 minutes. This was diced to a size of 10 × 30 mm, and the film thickness and transmission spectrum of the cesium-containing composite tungsten oxide coating were measured. The results are also shown in Table 1.
 〔実施例5〕
 (ステップ1.硬化物の作製)
 三次元構造を有するヒドロシリル基含有ポリシロキサンとしてクラリアント社製MQH-5(ヒドロシリル基含有量1.7モル/kg)3.52gと、三次元構造を有するビニル基含有ポリシロキサンとしてクラリアント社製MQV―7(ビニル基含有量3.5モル/kg)7.84gとを加え、ポリプロピレンカップ中で混合した。これに、白金ビニルシロキサン錯体のキシレン溶液(白金として3重量%含有)を23.7mgとテトラメチルエチレンジアミン(0.1%キシレン溶液)を74.2mgと1-エチニル-1-シクロヘキサノール(1%キシレン溶液)76.9mgを加えて攪拌した。この硬化性シリコーン組成物100重量部に対して、近赤外線吸収化合物(B-1)としてのペリレン系化合物(Lumogen IR 788、BASF社製)が0.02重量部となるように、1,3-ジオキソラン溶液を添加した。この溶液を減圧攪拌脱泡処理し、室温で液状の硬化性シリコーン組成物を得た。続いて、2枚のガラス板に厚さ1mmのシリコーンゴムシートをスペーサーとして挟み込んで作製したセルに、この硬化性組成物を流し込み、プレ硬化として120℃で40分、ポスト硬化として180℃15分間、熱風オーブンにて加熱を行うことにより、1mm厚の板状硬化物を得た。
Example 5
(Step 1. Preparation of cured product)
As a hydrosilyl group-containing polysiloxane having a three-dimensional structure, 3.52 g of MQH-5 (hydrosilyl group content 1.7 mol / kg) manufactured by Clariant, and as a vinyl group-containing polysiloxane having a three-dimensional structure, MQV- 7 (vinyl group content 3.5 mol / kg) 7.84 g was added and mixed in a polypropylene cup. To this, 23.7 mg of a xylene solution of platinum vinylsiloxane complex (containing 3% by weight of platinum), 74.2 mg of tetramethylethylenediamine (0.1% xylene solution), 1-ethynyl-1-cyclohexanol (1% (Xylene solution) 76.9 mg was added and stirred. The perylene compound (Lumogen IR 788, manufactured by BASF) as the near-infrared absorbing compound (B-1) is 0.02 part by weight with respect to 100 parts by weight of the curable silicone composition. -Dioxolane solution was added. This solution was subjected to degassing with stirring under reduced pressure to obtain a curable silicone composition that was liquid at room temperature. Subsequently, this curable composition was poured into a cell prepared by sandwiching a 1 mm thick silicone rubber sheet as a spacer between two glass plates, pre-curing at 120 ° C. for 40 minutes, and post-curing at 180 ° C. for 15 minutes. The plate-like cured product having a thickness of 1 mm was obtained by heating in a hot air oven.
 (ステップ2.近赤外線吸収剤(B-2)の塗布)
 セシウム含有複合タングステン酸化物は、有機分散剤を77%含有した粉末を使用した。濃度が30重量%または35重量%になるように調製した、セシウム含有複合タングステン酸化物のアニソール溶液を前記の板状の硬化物(8×8×0.6mmt)上にワイヤーバー(タイプ16)を用いて、各透明硬化物板の上にコーティング膜を作製した。これを室温で12時間乾燥後、オーブン中で260℃雰囲気下10分間乾燥させた。これを10×30mmのサイズにダイシングして、セシウム含有複合タングステン酸化物コーティングの膜厚と透過スペクトルとを測定した。結果を表1に併せて示す。
(Step 2. Application of near-infrared absorber (B-2))
As the cesium-containing composite tungsten oxide, a powder containing 77% of an organic dispersant was used. A cesium-containing composite tungsten oxide anisole solution prepared so as to have a concentration of 30% by weight or 35% by weight is placed on the plate-like cured product (8 × 8 × 0.6 mmt) with a wire bar (type 16). Was used to prepare a coating film on each transparent cured product plate. This was dried at room temperature for 12 hours and then dried in an oven at 260 ° C. for 10 minutes. This was diced to a size of 10 × 30 mm, and the film thickness and transmission spectrum of the cesium-containing composite tungsten oxide coating were measured. The results are also shown in Table 1.
 (膜厚の測定)
 メトリコン製プリズムカプラ測定装置を用いて、コーティング膜厚を計測した。コーティング膜厚が厚くプリズムカプラで計測できないサンプルは、ミツトヨ製リニアゲージを用いて基材の厚さとコーティングを施したサンプル厚さとをN=10で計測し、最小値と最大値を除いて平均した厚みをコーティング基材から基材の厚みを引いて算出した。
(Measurement of film thickness)
The coating film thickness was measured using a metricon prism coupler measuring device. For samples with a thick coating thickness that cannot be measured with a prism coupler, the thickness of the substrate and the thickness of the coated sample were measured at N = 10 using a Mitutoyo linear gauge and averaged except for the minimum and maximum values. The thickness was calculated by subtracting the thickness of the substrate from the coated substrate.
 (耐リフロー性試験)
 各種硬化物を、ESPEC社製オーブン(STH―120)に入れ、サンプル実温が260℃の状態で180秒保持した後、オーブンから取り出し、室温まで冷却することを3回繰り返し、試験前後においての光線透過率(下記方法)、及び色変化(目視)を測定した。
(Reflow resistance test)
Various cured products are put into an oven (STH-120) manufactured by ESPEC, and after holding for 180 seconds at a sample actual temperature of 260 ° C., taking out from the oven and cooling to room temperature are repeated three times. The light transmittance (the following method) and the color change (visual observation) were measured.
 (光線透過率)
 硬化物サンプルを、(株)日立製作所製U-3300を用いて、スキャンスピード300nm/minにて測定した。400~600nmの平均透過率、500nm、750~950nmの平均透過率及び770nmでの光線透過率(%T)を表1に示す。
(Light transmittance)
The cured product sample was measured at a scan speed of 300 nm / min using U-3300 manufactured by Hitachi, Ltd. Table 1 shows the average transmittance of 400 to 600 nm, the average transmittance of 500 nm, 750 to 950 nm, and the light transmittance (% T) at 770 nm.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 表1より、以下の特性を理解することができる。つまり、650~850nmに吸収を有し耐熱性の高いクオタリレンまたはペリレン化合物を硬化性組成物に含有させ、更に800nm以上に吸収を有し耐熱性の高いセシウム酸化タングステン化合物を樹脂に含有させなくとも硬化成形体表面に塗布することで、リフロー耐熱試験後でも可視・近赤外線域の光学特性に実質的な変化のない近赤外線吸収材が得られることが例示された(実施例1~5)。 From Table 1, the following characteristics can be understood. In other words, the curable composition contains a quartalylene or perylene compound that absorbs at 650 to 850 nm and has high heat resistance, and does not need to contain a cesium tungsten oxide compound that absorbs at 800 nm or more and has high heat resistance in the resin. It was exemplified that a near-infrared absorber having no substantial change in optical properties in the visible / near-infrared region even after the reflow heat test can be obtained by applying to the surface of the cured molded body (Examples 1 to 5).
 耐熱性の低いシアニン系化合物を用いるとリフロー試験後に光学特性に変化を生じ、光学特性の安定性に問題があった(比較例1)。 When a cyanine compound having low heat resistance was used, the optical characteristics changed after the reflow test, and there was a problem in the stability of the optical characteristics (Comparative Example 1).
 クオタリレンまたはペリレン化合物の練り込みのみの硬化物は、耐熱性はあるものの、750~950nmの近赤外域カット力が低く(比較例2と3)、また、比較例4から、セシウムタングステンのみの塗布の場合、770nmカット力が低く性能上問題があることが判明した。 The cured product only kneaded with quartalylene or perylene compound has heat resistance, but has a low near-infrared cutting power of 750 to 950 nm (Comparative Examples 2 and 3). From Comparative Example 4, only cesium tungsten is applied. In this case, it was found that the 770 nm cutting force was low and there was a problem in performance.
 尚、実施例1~5で得られた近赤外線吸収材料は、700~1100nmの波長範囲全域に吸収を有し、260℃の状態で60秒保持した後に室温まで冷却する操作を3回繰り返すリフロー試験前後において、硬化後の樹脂組成物における、400~600nmの平均光線透過率が20%以下であり、且つ波長750nmの透過率の変化率が±5%以内であった。 The near-infrared absorbing materials obtained in Examples 1 to 5 have absorption over the entire wavelength range of 700 to 1100 nm, and the reflow is repeated three times by holding for 60 seconds at 260 ° C. and then cooling to room temperature. Before and after the test, the average light transmittance at 400 to 600 nm in the cured resin composition was 20% or less and the rate of change in transmittance at a wavelength of 750 nm was within ± 5%.
 2.近赤外線吸収材料(II)
 〔透明基材の作製〕
 (a)成分トリアリルイソシアヌレート24.4gに(b)成分である白金ジビニルジシロキサン錯体のキシレン溶液(3wt%含有)0.12gを加えた。これに合成例1で得た(c)成分35.6g及び硬化遅延剤(1-エチニルシクロヘキサノール)0.12gを混合し、室温で液状の硬化性組成物を得た。続いて、2枚のガラス板に1mm厚みのシリコーンゴムシートをスペーサーとして挟み込んで作製したセルに、該硬化性組成物を流し込み、プレ硬化として120℃で40分、熱風オーブンにて加熱を行い、ポスト硬化として180℃20分間、熱風オーブンにて加熱を行うことにより、1mm厚の硬化物を得た。これを透明基材とした。
2. Near-infrared absorbing material (II)
(Production of transparent substrate)
To 24.4 g of component (a) triallyl isocyanurate, 0.12 g of a xylene solution of platinum divinyldisiloxane complex (containing 3 wt%) as component (b) was added. This was mixed with 35.6 g of component (c) obtained in Synthesis Example 1 and 0.12 g of a retarder (1-ethynylcyclohexanol) to obtain a curable composition that was liquid at room temperature. Subsequently, the curable composition was poured into a cell prepared by sandwiching a 1 mm-thick silicone rubber sheet as a spacer between two glass plates, and heated in a hot air oven at 120 ° C. for 40 minutes as pre-curing, As post-curing, heating was performed in a hot air oven at 180 ° C. for 20 minutes to obtain a 1 mm thick cured product. This was used as a transparent substrate.
 〔実施例6〕
 分散剤入セシウム酸化タングステン組成物6g(セシウム酸化タングステン成分1.4g)、(a)成分であるトリアリルイソシアヌレート2.2gを含むアニソール溶液20gに、合成例1で得た(c)成分3.3g、(b)成分である、白金ジビニルジシロキサン錯体のキシレン溶液(3wt%含有)0.0225g、硬化遅延剤1-エチニル-1-シクロヘキサノール0.0225gを加え混合した。これを母液とし、ペリレン化合物(「Lumogen 788」、BASF社製)0.01gを添加した硬化性コーティング液を調製した。
Example 6
(C) Component 3 obtained in Synthesis Example 1 was added to 20 g of anisole solution containing 6 g of a cesium tungsten oxide composition containing a dispersant (1.4 g of cesium tungsten oxide component) and 2.2 g of triallyl isocyanurate as component (a). .3 g, 0.0225 g of a platinum divinyldisiloxane complex xylene solution (containing 3 wt%) as component (b) and 0.0225 g of a retarder 1-ethynyl-1-cyclohexanol were added and mixed. Using this as a mother liquor, a curable coating solution to which 0.01 g of a perylene compound (“Lumogen 788”, manufactured by BASF) was added was prepared.
 この硬化性コーティング溶液を透明基材(10×5cm)上にワイヤーバー(タイプ16)を用いてコーティング膜を作製した。これを室温中ドラフト内で放置し、溶剤を自然乾燥させタック性が無いことを確認後、オーブン中で120℃40分、180℃15分でコーティング膜を硬化させた。コーティングした試験体を、ESPEC社製オーブン(STH-120)に入れ、サンプル実温が260℃の状態で180秒保持した後、オーブンから取り出し、室温まで冷却することを3回繰り返した。 A coating film was prepared from this curable coating solution on a transparent substrate (10 × 5 cm) using a wire bar (type 16). This was left in a fume hood at room temperature, the solvent was naturally dried and it was confirmed that there was no tackiness, and then the coating film was cured in an oven at 120 ° C. for 40 minutes and 180 ° C. for 15 minutes. The coated specimen was placed in an oven (STH-120) manufactured by ESPEC, and held for 180 seconds at a sample actual temperature of 260 ° C., then removed from the oven and cooled to room temperature three times.
 コーティングされた透明基材を(株)日立製作所製∪-3300を用いて、スキャンスピード300nm/minにて測定し、耐リフロー試験前後の、400nm~600nm及び750nm~950nmでの光線透過率(%T)を算出した。結果を表2に示す。 The coated transparent substrate was measured at a scan speed of 300 nm / min using a Hitachi 3300-made Sakai-3300, and the light transmittance at 400 nm to 600 nm and 750 nm to 950 nm before and after the reflow resistance test (% T) was calculated. The results are shown in Table 2.
 〔比較例5〕
 ジイモ二ウム化合物(「CIR―RL」、日本カーリット製)1.0g、(a)成分であるトリアリルイソシアヌレート2.2g含むアニソール溶液20gに、合成例1で得た(c)成分3.3g、(b)成分である白金ジビニルジシロキサン錯体のキシレン溶液(3wt%含有)0.0225g、硬化遅延剤1-エチニル-1-シクロヘキサノール0.0225gを加え混合した。これに、クオタリレン系化合物(「Lumogen 765」、BASF社製)0.01gを加えた硬化性コーティング液を調製した。これを実施例7と同様の手法で処理し評価サンプルを作製後、耐熱試験を実施した。続いて耐熱試験前後のサンプルスペクトルを測定し光線透過率を算出した。結果を表2に示す。
[Comparative Example 5]
The component (c) obtained in Synthesis Example 1 was added to 20 g of an anisole solution containing 1.0 g of a diimonium compound (“CIR-RL”, manufactured by Nippon Carlit) and 2.2 g of triallyl isocyanurate as the component (a). 3 g, 0.0225 g of a platinum divinyldisiloxane complex xylene solution (containing 3 wt%) as component (b) and 0.0225 g of a retarder 1-ethynyl-1-cyclohexanol were added and mixed. A curable coating solution was prepared by adding 0.01 g of a quatarylene compound (“Lumogen 765”, manufactured by BASF) to this. This was processed in the same manner as in Example 7 to produce an evaluation sample, and then a heat resistance test was performed. Subsequently, the light transmittance was calculated by measuring the sample spectra before and after the heat resistance test. The results are shown in Table 2.
 〔比較例6〕
 (a)成分であるトリアリルイソシアヌレートを2.2g含むアニソール溶液20gに、合成例1で得た(c)成分3.3g、(b)成分である白金ジビニルジシロキサン錯体のキシレン溶液(3wt%含有)0.0225g、硬化遅延剤1-エチニル-1-シクロヘキサノール0.0225gを加え混合した。これにクオタリレン系化合物(「Lumogen 765」、BASF社製)0.01gを添加した硬化性コーティング液を調製した。これを実施例7と同様の手法でコーティング処理し評価サンプルを作製後、耐熱試験を実施した。続いて耐熱試験前後のサンプルスペクトルを測定し光線透過率を算出した。結果を表2に示す。
[Comparative Example 6]
To 20 g of anisole solution containing 2.2 g of triallyl isocyanurate as component (a), 3.3 g of component (c) obtained in Synthesis Example 1, and xylene solution of platinum divinyldisiloxane complex as component (b) (3 wt. 0.0225 g) and a retarder 1-ethynyl-1-cyclohexanol 0.0225 g were added and mixed. A curable coating solution was prepared by adding 0.01 g of a quatarylene compound (“Lumogen 765”, manufactured by BASF) to this. This was coated by the same method as in Example 7 to produce an evaluation sample, and then a heat resistance test was performed. Subsequently, the light transmittance was calculated by measuring the sample spectra before and after the heat resistance test. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 表2より、以下の特性を理解することができる。近赤外線吸収性化合物として650~850nmに吸収を示し耐熱性の高いペリレン化合物(Lumogen 788)と、800nm以上に吸収を示し耐熱性の高いセシウム酸化タングステン酸化物とを含む硬化性コーティング剤から得られたサンプルは、リフロー耐熱試験後でも可視・近赤外線域の光学特性に実質的な変化のない近赤外線吸収材が得られることが例示された(実施例6)。 From Table 2, the following characteristics can be understood. It is obtained from a curable coating agent containing a perylene compound (Lumogen 788) that absorbs at 650 to 850 nm and has high heat resistance as a near-infrared absorbing compound and cesium tungsten oxide that absorbs at 800 nm and has high heat resistance. It was exemplified that a near-infrared absorber having no substantial change in optical properties in the visible / near-infrared region was obtained even after the reflow heat test (Example 6).
 可視光透過性と赤外線カット力とは、ペリレン化合物(Lumogen 788)とセシウムタングステン化合物との組合せが優れていた。耐熱性の低いジイモ二ウム系色素を用いるとリフロー試験後に光学特性に変化を生じ、安定性に問題があった(比較例5)。クオタリレン系化合物のみを含む硬化性コーティング剤は、耐熱性はあるもの700~950nmの近赤外域カット力が低く(比較例6)、性能上問題がある。 The visible light transmittance and infrared ray cutting power were excellent in the combination of a perylene compound (Lumogeng788) and a cesium tungsten compound. When a diimonium dye having low heat resistance was used, the optical characteristics changed after the reflow test, and there was a problem in stability (Comparative Example 5). A curable coating agent containing only a quaterrylene compound has heat resistance, but has a low near-infrared cutting power of 700 to 950 nm (Comparative Example 6), and has a problem in performance.
 尚、実施例6で得られた近赤外線吸収材料は、700~1100nmの波長範囲全域に吸収を有し、260℃の状態で60秒保持した後に室温まで冷却する操作を3回繰り返すリフロー試験前後において、硬化後の樹脂組成物における、400~600nmの平均光線透過率が20%以下であり、且つ波長750nmの透過率の変化率が±5%以内であった。 The near-infrared absorbing material obtained in Example 6 has absorption in the entire wavelength range of 700 to 1100 nm, and before and after the reflow test in which the operation of holding at 260 ° C. for 60 seconds and then cooling to room temperature is repeated three times. In the cured resin composition, the average light transmittance at 400 to 600 nm was 20% or less, and the rate of change in transmittance at a wavelength of 750 nm was within ± 5%.
 3.近赤外線吸収材料(III)
 〔実施例7~8、比較例7~14〕
 合成例1、合成例2及び合成例3で得た反応物E、F及びGに対し、表3に示される配合組成で硬化性組成物を調製した。調整方法は、(a)成分、(d)成分を1,3-ジオキソランに溶解し混合した。その後、エバポレーションにより溶剤である1,3-ジオキソランを留去し、そこへ(c)成分を添加した。別途、(b)成分及び硬化遅延剤を混合したものを更に加えて硬化性組成物を得た。
3. Near-infrared absorbing material (III)
[Examples 7 to 8, Comparative Examples 7 to 14]
A curable composition was prepared with the composition shown in Table 3 for the reactants E, F, and G obtained in Synthesis Example 1, Synthesis Example 2, and Synthesis Example 3. In the preparation method, the component (a) and the component (d) were dissolved in 1,3-dioxolane and mixed. Thereafter, 1,3-dioxolane as a solvent was distilled off by evaporation, and the component (c) was added thereto. Separately, a mixture of component (b) and a retarder was further added to obtain a curable composition.
 得られた硬化性組成を2枚のガラス板に厚さ1mmのシリコーンゴムシートをスペーサーとして挟み込んで作製したセルに、硬化性組成物を流し込み、プレ硬化として120℃で40分、熱風オーブンにて加熱を行い、ポスト硬化として180℃15分間、熱風オーブンにて加熱を行うことにより、硬化物を得た。得られた硬化物は何れも透明であり、各種光学材料として用いることができるものであった。その物性を表3に示す。 The curable composition was poured into a cell prepared by sandwiching the obtained curable composition between two glass plates with a 1 mm thick silicone rubber sheet as a spacer, and pre-cured at 120 ° C. for 40 minutes in a hot air oven. A cured product was obtained by heating and heating in a hot air oven at 180 ° C. for 15 minutes as post-curing. All of the obtained cured products were transparent and could be used as various optical materials. The physical properties are shown in Table 3.
 (耐リフロー性試験)
 ダイヤモンドカッターで10×30mmにカットした硬化物を、ESPEC社製オーブン(STH-120)に入れ、サンプル実温が260℃の状態で60秒保持した後、オーブンから取り出し室温まで冷却した。この操作を3回繰り返し、試験前後においての光線透過率(下記方法)、色変化(目視)及び熱変形(ノギスで寸法測定してその変化を確認した)を測定した。
(Reflow resistance test)
The cured product cut to 10 × 30 mm with a diamond cutter was placed in an oven (STH-120) manufactured by ESPEC, held at a sample actual temperature of 260 ° C. for 60 seconds, then removed from the oven and cooled to room temperature. This operation was repeated three times, and the light transmittance before and after the test (the following method), color change (visual observation), and thermal deformation (measured with calipers to confirm the change) were measured.
 (光線透過率)
 ダイヤモンドカッターで10×30mmにカットした硬化物を、(株)日立製作所製U-3300を用いて、スキャンスピード300nm/minにて測定し、550、750及び850nmでの光線透過率(%T)を測定した。その結果を表3に示す。
(Light transmittance)
A cured product cut to 10 × 30 mm with a diamond cutter was measured using a U-3300 manufactured by Hitachi, Ltd. at a scan speed of 300 nm / min, and light transmittance (% T) at 550, 750 and 850 nm. Was measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 尚、表中の硬化物物性の「○」は、外観寸法あるいは色調の変化がないことを表す。また、硬化物物性の色調(リフロー前)は全て透明である。 In addition, “◯” in the physical properties of the cured product in the table indicates that there is no change in appearance dimension or color tone. Moreover, the color tone (before reflow) of the cured product properties is all transparent.
 また、実施例7~8で得られた近赤外線吸収材料は、700~1100nmの波長範囲全域に吸収を有し、260℃の状態で60秒保持した後に室温まで冷却する操作を3回繰り返すリフロー試験前後において、硬化後の樹脂組成物における、400~600nmの平均光線透過率が20%以下であり、且つ波長750nmの透過率の変化率が±5%以内であった。 The near-infrared absorbing materials obtained in Examples 7 to 8 have absorption over the entire wavelength range of 700 to 1100 nm, and are reflowed by repeating the operation of holding at 260 ° C. for 60 seconds and then cooling to room temperature three times. Before and after the test, the average light transmittance at 400 to 600 nm in the cured resin composition was 20% or less and the rate of change in transmittance at a wavelength of 750 nm was within ± 5%.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 本発明の近赤外線吸収材料は、半田リフロー工程における200℃~300℃のような高温条件で光学的特性に変化が実質的に生じることがない。よって、製造に高い生産性が求められる撮像系光学機器に搭載する赤外線カットフィルターに好適に用いることができる。 The near-infrared absorbing material of the present invention does not substantially change in optical characteristics under high temperature conditions such as 200 ° C. to 300 ° C. in the solder reflow process. Therefore, it can be suitably used for an infrared cut filter that is mounted on an imaging optical device that requires high productivity in manufacturing.

Claims (29)

  1.  硬化後の樹脂組成物が、700~1100nmの波長範囲全域に吸収を有し、
     260℃の状態で60秒保持した後に室温まで冷却する操作を3回繰り返すリフロー試験前後において、硬化後の樹脂組成物における、400~600nmの平均光線透過率が50%以上であり、750~850nmの平均透過率が20%以下であり、且つ波長750nmの透過率の変化率が±5%以内である、硬化性樹脂組成物。
    The cured resin composition has absorption over the entire wavelength range of 700 to 1100 nm,
    Before and after the reflow test in which the operation of holding at 260 ° C. for 60 seconds and then cooling to room temperature is repeated three times, the average light transmittance at 400 to 600 nm in the cured resin composition is 50% or more, and 750 to 850 nm. A curable resin composition having an average transmittance of 20% or less and a change rate of transmittance at a wavelength of 750 nm within ± 5%.
  2.  硬化性組成物(A)と近赤外線吸収化合物(B)とを含有する、請求項1に記載の硬化性樹脂組成物。 The curable resin composition of Claim 1 containing a curable composition (A) and a near-infrared absorption compound (B).
  3.  請求項2に記載の硬化性樹脂組成物を用いて得られる近赤外線吸収材料であり、
     硬化性組成物(A)と、非イオン性の赤外線吸収化合物(B-1)とを含有する透明性樹脂組成物から得られた成形体表面に、近赤外線吸収化合物(B-2)を含有する層を有する、近赤外線吸収材料。
    A near-infrared absorbing material obtained using the curable resin composition according to claim 2,
    A near-infrared absorbing compound (B-2) is contained on the surface of a molded product obtained from a transparent resin composition containing the curable composition (A) and a nonionic infrared absorbing compound (B-1). A near-infrared absorbing material having a layer to perform.
  4.  前記硬化性組成物(A)が、硬化性シリコーン組成物、硬化性エポキシシリコーン組成物、硬化性アクリル組成物、硬化性ノルボルネン組成物、及び硬化性ポリイミド組成物からなる群から選択される少なくとも1種である、請求項3に記載の近赤外線吸収材料。 The curable composition (A) is at least one selected from the group consisting of a curable silicone composition, a curable epoxy silicone composition, a curable acrylic composition, a curable norbornene composition, and a curable polyimide composition. The near-infrared absorbing material according to claim 3, which is a seed.
  5.  前記硬化性組成物(A)が、
    (a)SiH基と反応性を有する炭素-炭素二重結合を一分子中に少なくとも2個有する有機化合物と、
    (b)ヒドロシリル化触媒と、
    (c)1分子中に少なくとも2個のSiH基を含有するオルガノシロキサン化合物と、
    を必須成分として含有する、請求項3又は4に記載の近赤外線吸収材料。
    The curable composition (A) is
    (A) an organic compound having at least two carbon-carbon double bonds reactive with SiH groups in one molecule;
    (B) a hydrosilylation catalyst;
    (C) an organosiloxane compound containing at least two SiH groups in one molecule;
    The near-infrared absorption material of Claim 3 or 4 which contains as an essential component.
  6.  硬化性組成物(A)100重量部に対し、非イオン性の赤外線吸収化合物(B-1)を0.001~0.1重量部含有する、請求項3~5の何れか1項に記載の近赤外線吸収材料。 The nonionic infrared absorbing compound (B-1) is contained in an amount of 0.001 to 0.1 parts by weight with respect to 100 parts by weight of the curable composition (A). Near-infrared absorbing material.
  7.  非イオン性の近赤外線吸収化合物(B-1)が、ペリレン系化合物及びクオタリレン系化合物からなる群から選択される少なくとも1種である、請求項3~6の何れか1項に記載の近赤外線吸収材料。 The near-infrared ray according to any one of claims 3 to 6, wherein the nonionic near-infrared absorbing compound (B-1) is at least one selected from the group consisting of perylene compounds and quatarylene compounds. Absorbing material.
  8.  近赤外線吸収性化合物(B-2)が、複合酸化タングステン化合物である、請求項3~7の何れか1項に記載の近赤外線吸収材料。 The near-infrared absorbing material according to any one of claims 3 to 7, wherein the near-infrared absorbing compound (B-2) is a composite tungsten oxide compound.
  9.  前記複合酸化タングステン化合物を含有する層の膜厚が0.1μm~10μmの範囲内である、請求項8に記載の近赤外線吸収材料。 The near-infrared absorbing material according to claim 8, wherein the layer containing the composite tungsten oxide compound has a thickness in a range of 0.1 µm to 10 µm.
  10.  前記複合酸化タングステン化合物が、セリウム含有複合タングステン酸化物である、請求項8又は9に記載の近赤外線吸収材料。 The near-infrared absorbing material according to claim 8 or 9, wherein the composite tungsten oxide compound is a cerium-containing composite tungsten oxide.
  11.  請求項3~9の何れか1項に記載の近赤外線吸収材料の製造方法であり、
     有機溶媒100重量部に対して近赤外線吸収性化合物(B-2)が1~50重量部となるように分散させた溶液を作製し、
     当該溶液を、硬化性組成物(A)と、非イオン性の赤外線吸収化合物(B-1)とを含有する透明性樹脂組成物から得られた成形体表面に塗布する、近赤外線吸収材料の製造方法。
    A method for producing a near-infrared absorbing material according to any one of claims 3 to 9,
    A solution in which the near-infrared absorbing compound (B-2) is dispersed so as to be 1 to 50 parts by weight with respect to 100 parts by weight of the organic solvent is prepared,
    A near-infrared absorbing material for applying the solution to the surface of a molded product obtained from a transparent resin composition containing a curable composition (A) and a nonionic infrared absorbing compound (B-1). Production method.
  12.  前記塗布は、スピンコート法、キャスチング法、マイクログラビアコート法、グラビアコート法、ナイフコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、及びスプレーコート法の少なくとも1種を用いて行なわれる、請求項11に記載の近赤外線吸収材料の製造方法。 The coating is performed by at least one of spin coating, casting, micro gravure coating, gravure coating, knife coating, bar coating, roll coating, wire bar coating, dip coating, and spray coating. The manufacturing method of the near-infrared absorption material of Claim 11 performed by using.
  13.  前記有機溶媒が、ヘキサン及びヘプタンから選ばれる脂肪族炭化水素系溶媒;アニソール、メシチレン、トルエン、及びキシレンから選ばれる芳香族炭化水素系溶媒;メチルイソブチルケトン、シクロヘキサノン及びアセトンから選ばれるケトン系溶媒;テトラヒドロフラン、ジオキソラン及びジオキサンから選ばれるエーテル系溶媒;1-メチル-2-ピロリジノン、ジメチルアセトアミド及びジメチルホルムアミドから選ばれるアミド系溶媒;ならびにシリコン系溶媒からなる群より選ばれる少なくとも1種である、請求項11又は12に記載の近赤外線吸収材料の製造方法。 An aliphatic hydrocarbon solvent selected from hexane and heptane; an aromatic hydrocarbon solvent selected from anisole, mesitylene, toluene, and xylene; a ketone solvent selected from methyl isobutyl ketone, cyclohexanone, and acetone; An ether solvent selected from tetrahydrofuran, dioxolane, and dioxane; an amide solvent selected from 1-methyl-2-pyrrolidinone, dimethylacetamide, and dimethylformamide; and at least one selected from the group consisting of silicon solvents. A method for producing a near infrared ray absorbing material according to 11 or 12.
  14.  請求項2に記載の硬化性樹脂組成物からなる硬化性コーティング剤であり、
     近赤外線吸収化合物(B)として、複合酸化タングステン化合物、フタロシアニン系化合物、及びナフタロシアニン系化合物からなる群から選択される少なくとも1種と、ペリレン系化合物及びクオタリレン系化合物からなる群から選択される少なくとも1種とを含む、硬化性コーティング剤。
    A curable coating agent comprising the curable resin composition according to claim 2,
    As the near-infrared absorbing compound (B), at least one selected from the group consisting of complex tungsten oxide compounds, phthalocyanine compounds, and naphthalocyanine compounds, and at least selected from the group consisting of perylene compounds and quatarylene compounds One type of curable coating agent.
  15.  前記複合酸化タングステン化合物が、セシウム含有タングステン酸化物である、請求項14に記載の硬化性コーティング剤。 The curable coating agent according to claim 14, wherein the composite tungsten oxide compound is a cesium-containing tungsten oxide.
  16.  溶剤(C)を更に含み、
     硬化性組成物(A)100重量部に対して、0.01~100重量部の近赤外線吸収化合物(B)と、0重量部よりも高く、1000重量部以下の溶剤(C)とを含有する、請求項14又は15に記載の硬化性コーティング剤。
    Further comprising a solvent (C),
    Contains 0.01 to 100 parts by weight of the near-infrared absorbing compound (B) and higher than 0 parts by weight and 1000 parts by weight or less of the solvent (C) with respect to 100 parts by weight of the curable composition (A). The curable coating agent according to claim 14 or 15.
  17.  硬化性組成物(A)が、硬化性シリコーン組成物、硬化性エポキシシリコーン組成物、硬化性アクリル組成物、硬化性ノルボルネン組成物、及び硬化性ポリイミド組成物からなる群から選択される少なくとも1種である、請求項16に記載の硬化性コーティング剤。 The curable composition (A) is at least one selected from the group consisting of a curable silicone composition, a curable epoxy silicone composition, a curable acrylic composition, a curable norbornene composition, and a curable polyimide composition. The curable coating agent according to claim 16, wherein
  18.  硬化性組成物(A)が、
    (a)SiH基と反応性を有する炭素-炭素二重結合を一分子中に少なくとも2個有する有機化合物と、
    (b)ヒドロシリル化触媒と、
    (c)1分子中に少なくとも2個のSiH基を含有するオルガノシロキサン化合物と、
    を必須成分として含有する、請求項16又は17に記載の硬化性コーティング剤。
    The curable composition (A) is
    (A) an organic compound having at least two carbon-carbon double bonds reactive with SiH groups in one molecule;
    (B) a hydrosilylation catalyst;
    (C) an organosiloxane compound containing at least two SiH groups in one molecule;
    The curable coating agent of Claim 16 or 17 which contains as an essential component.
  19.  溶剤(C)が、ヘキサン、ヘプタン、アニソール、メシチレン、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトン、テトラヒドロフラン、ジオキソラン、ジオキサン、1-メチル-2-ピロリジノン、ジメチルアセトアミド、ジメチルホルムアミド、及びシリコン系溶剤からなる群より選ばれる少なくとも1種である、請求項16~18の何れか1項に記載の硬化性コーティング剤。 Solvent (C) is hexane, heptane, anisole, mesitylene, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetone, tetrahydrofuran, dioxolane, dioxane, 1-methyl-2-pyrrolidinone, dimethylacetamide, dimethylformamide, and silicon The curable coating agent according to any one of claims 16 to 18, which is at least one selected from the group consisting of a system solvent.
  20.  請求項14~19の何れか1項に記載の硬化性コーティング剤を透明基材の少なくとも片面に塗布し、溶剤を蒸発させた後、硬化させて得られる、近赤外線吸収材料。 A near-infrared absorbing material obtained by applying the curable coating agent according to any one of claims 14 to 19 to at least one surface of a transparent substrate, evaporating the solvent, and then curing.
  21.  請求項2に記載の硬化性樹脂組成物からなる硬化性組成物であり、
     (a)SiH基と反応性を有する炭素-炭素二重結合を一分子中に少なくとも2個有する有機化合物と、
     (b)ヒドロシリル化触媒と、
     (c)1分子中に少なくとも2個のSiH基を含有する化合物と、
     (d)クオタリレン系化合物と、フタロシアニン系化合物及びナフタロシアニン系化合物から選択される少なくとも1種の化合物とを含む近赤外線吸収性組成物と、
    を含有する、硬化性組成物。
    A curable composition comprising the curable resin composition according to claim 2,
    (A) an organic compound having at least two carbon-carbon double bonds reactive with SiH groups in one molecule;
    (B) a hydrosilylation catalyst;
    (C) a compound containing at least two SiH groups in one molecule;
    (D) a near-infrared absorbing composition comprising a quatarylene compound and at least one compound selected from a phthalocyanine compound and a naphthalocyanine compound;
    A curable composition containing
  22.  前記(a)成分が、下記一般式(IV)
    Figure JPOXMLDOC01-appb-C000001

    (式中、Rは水素原子又は炭素数1~50の一価の有機基を有し、それぞれのRは異なっていても同一であってもよく、少なくとも2個のRは、SiH基との反応性を有する炭素-炭素二重結合を含む。)
    で表される有機化合物である、請求項21に記載の硬化性組成物。
    The component (a) is represented by the following general formula (IV)
    Figure JPOXMLDOC01-appb-C000001

    (Wherein R 3 has a hydrogen atom or a monovalent organic group having 1 to 50 carbon atoms, and each R 3 may be different or the same, and at least two R 3 may be SiH Including carbon-carbon double bonds that are reactive with groups)
    The curable composition of Claim 21 which is an organic compound represented by these.
  23.  前記(a)成分が、下記一般式(III)
    Figure JPOXMLDOC01-appb-C000002

    (式中、Rは、酸素、窒素、硫黄若しくはハロゲン原子で置換されていてもよい、炭素数1~50の一価の有機基を表し、それぞれのRは異なっていても同一であってもよい。)
    で表される有機化合物である、請求項21に記載の硬化性組成物。
    The component (a) is represented by the following general formula (III)
    Figure JPOXMLDOC01-appb-C000002

    (Wherein R 4 represents a monovalent organic group having 1 to 50 carbon atoms which may be substituted with oxygen, nitrogen, sulfur or halogen atoms, and each R 4 may be the same even if different. May be.)
    The curable composition of Claim 21 which is an organic compound represented by these.
  24.  前記(c)成分が、
    (α)SiH基と反応性を有する炭素-炭素二重結合を1分子中に1個以上有する有機化合物と、
    (β)1分子中に少なくとも3個のSiH基を有する、鎖状、環状、分岐状又はかご型の構造を有するポリオルガノシロキサンと、
    をヒドロシリル化反応して得られた化合物である、請求項21~23の何れか1項に記載の硬化性組成物。
    The component (c) is
    (Α) an organic compound having at least one carbon-carbon double bond reactive with a SiH group in one molecule;
    (Β) a polyorganosiloxane having a chain, cyclic, branched or cage structure having at least three SiH groups in one molecule;
    The curable composition according to any one of claims 21 to 23, which is a compound obtained by hydrosilylation reaction.
  25.  前記(α)成分が、下記一般式(IV)
    Figure JPOXMLDOC01-appb-C000003

    (式中、Rは水素原子又は炭素数1~50の一価の有機基を表し、それぞれのRは異なっていても同一であってもよく、少なくとも1個のRは、SiH基との反応性を有する炭素-炭素二重結合を含む。)
    で表される有機化合物である、請求項24に記載の硬化性組成物。
    The component (α) is represented by the following general formula (IV)
    Figure JPOXMLDOC01-appb-C000003

    (Wherein R 3 represents a hydrogen atom or a monovalent organic group having 1 to 50 carbon atoms, and each R 3 may be different or the same, and at least one R 3 is a SiH group. Including carbon-carbon double bonds that are reactive with
    The curable composition of Claim 24 which is an organic compound represented by these.
  26.  前記(α)成分が、下記一般式(III)
    Figure JPOXMLDOC01-appb-C000004

    (式中、Rは、酸素、窒素、硫黄若しくはハロゲン原子で置換されていてもよい、炭素数1~50の一価の有機基を表し、それぞれのRは異なっていても同一であってもよい。)
    で表される構造を有する有機化合物である、請求項24に記載の硬化性組成物。
    The component (α) is represented by the following general formula (III)
    Figure JPOXMLDOC01-appb-C000004

    (Wherein R 4 represents a monovalent organic group having 1 to 50 carbon atoms which may be substituted with oxygen, nitrogen, sulfur or halogen atoms, and each R 4 may be the same even if different. May be.)
    The curable composition of Claim 24 which is an organic compound which has a structure represented by these.
  27.  前記(β)成分として、下記一般式(VI)
    Figure JPOXMLDOC01-appb-C000005

    (式中、R14及びR15は、それぞれ独立して、炭素数1~10の有機基を表し、nは3~10、mは0~10の数を表す。)
    で表される化合物を含有する、請求項24~26の何れか1項に記載の硬化性組成物。
    As the component (β), the following general formula (VI)
    Figure JPOXMLDOC01-appb-C000005

    (Wherein R 14 and R 15 each independently represents an organic group having 1 to 10 carbon atoms, n represents 3 to 10, and m represents a number of 0 to 10).
    The curable composition according to any one of claims 24 to 26, which comprises a compound represented by:
  28.  請求項21~27の何れか1項に記載の硬化性組成物を硬化させて得られる硬化物。 A cured product obtained by curing the curable composition according to any one of claims 21 to 27.
  29.  請求項3~10及び20の何れか1項に記載の近赤外線吸収材料、又は請求項28に記載の硬化物を赤外線遮蔽体として含む光学材料。 An optical material comprising the near-infrared absorbing material according to any one of claims 3 to 10 and 20, or the cured product according to claim 28 as an infrared shielding body.
PCT/JP2010/070557 2009-12-18 2010-11-18 Near infrared ray absorbent material and process for production thereof WO2011074371A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009287833A JP5878680B2 (en) 2009-12-18 2009-12-18 Curable composition having near infrared absorption ability, and cured product
JP2009-287833 2009-12-18
JP2010-159026 2010-07-13
JP2010-159025 2010-07-13
JP2010159025A JP5695356B2 (en) 2010-07-13 2010-07-13 Curable coating agent having near-infrared absorbing ability, and near-infrared absorbing material
JP2010159026A JP2012020448A (en) 2010-07-13 2010-07-13 Near infrared ray absorbing material

Publications (1)

Publication Number Publication Date
WO2011074371A1 true WO2011074371A1 (en) 2011-06-23

Family

ID=44167135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070557 WO2011074371A1 (en) 2009-12-18 2010-11-18 Near infrared ray absorbent material and process for production thereof

Country Status (2)

Country Link
TW (1) TW201134880A (en)
WO (1) WO2011074371A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127025A (en) * 2009-12-18 2011-06-30 Kaneka Corp Curable composition having near-infrared ray absorption capacity, and cured product
JP2013137337A (en) * 2011-12-27 2013-07-11 Fujifilm Corp Method of manufacturing infrared cut filter, infrared absorption liquid composition used for the same, infrared cut filter, and camera module and method of manufacturing the same
WO2014084289A1 (en) * 2012-11-30 2014-06-05 富士フイルム株式会社 Curable resin composition, and image-sensor-chip production method and image sensor chip using same
WO2015037198A1 (en) * 2013-09-11 2015-03-19 ナガセケムテックス株式会社 Composition for forming functional film, and functional film laminate
JP2015060184A (en) * 2013-09-20 2015-03-30 株式会社日本触媒 Imaging element curable resin composition and application thereof
CN104823086A (en) * 2012-11-30 2015-08-05 旭硝子株式会社 Near-infrared ray cut filter
EP3076432A4 (en) * 2013-11-26 2017-11-01 Sony Corporation Imaging element
WO2019026848A1 (en) * 2017-07-31 2019-02-07 Jsr株式会社 Photoelectric conversion device
CN113614052A (en) * 2019-03-26 2021-11-05 松下知识产权经营株式会社 Composite member, and heat generating device, building member, and light emitting device using same
CN114859454A (en) * 2022-07-06 2022-08-05 宁波永新光学股份有限公司 Black optical filter for vehicle-mounted laser radar window

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7029236B2 (en) * 2017-07-04 2022-03-03 三菱マテリアル電子化成株式会社 Heat ray shielding particle dispersion liquid and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294741A (en) * 2003-03-27 2004-10-21 Kanegafuchi Chem Ind Co Ltd Optical lens and method for manufacturing optical lens
JP2010275366A (en) * 2009-05-26 2010-12-09 Kaneka Corp Curable composition having near infrared ray absorbing capacity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294741A (en) * 2003-03-27 2004-10-21 Kanegafuchi Chem Ind Co Ltd Optical lens and method for manufacturing optical lens
JP2010275366A (en) * 2009-05-26 2010-12-09 Kaneka Corp Curable composition having near infrared ray absorbing capacity

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127025A (en) * 2009-12-18 2011-06-30 Kaneka Corp Curable composition having near-infrared ray absorption capacity, and cured product
JP2013137337A (en) * 2011-12-27 2013-07-11 Fujifilm Corp Method of manufacturing infrared cut filter, infrared absorption liquid composition used for the same, infrared cut filter, and camera module and method of manufacturing the same
WO2014084289A1 (en) * 2012-11-30 2014-06-05 富士フイルム株式会社 Curable resin composition, and image-sensor-chip production method and image sensor chip using same
CN104823086A (en) * 2012-11-30 2015-08-05 旭硝子株式会社 Near-infrared ray cut filter
WO2015037198A1 (en) * 2013-09-11 2015-03-19 ナガセケムテックス株式会社 Composition for forming functional film, and functional film laminate
JP2015060184A (en) * 2013-09-20 2015-03-30 株式会社日本触媒 Imaging element curable resin composition and application thereof
EP3076432A4 (en) * 2013-11-26 2017-11-01 Sony Corporation Imaging element
WO2019026848A1 (en) * 2017-07-31 2019-02-07 Jsr株式会社 Photoelectric conversion device
JPWO2019026848A1 (en) * 2017-07-31 2020-08-13 Jsr株式会社 Photoelectric conversion device
CN113614052A (en) * 2019-03-26 2021-11-05 松下知识产权经营株式会社 Composite member, and heat generating device, building member, and light emitting device using same
CN114859454A (en) * 2022-07-06 2022-08-05 宁波永新光学股份有限公司 Black optical filter for vehicle-mounted laser radar window
CN114859454B (en) * 2022-07-06 2022-10-18 宁波永新光学股份有限公司 Black optical filter for vehicle-mounted laser radar window

Also Published As

Publication number Publication date
TW201134880A (en) 2011-10-16

Similar Documents

Publication Publication Date Title
JP5695356B2 (en) Curable coating agent having near-infrared absorbing ability, and near-infrared absorbing material
WO2011074371A1 (en) Near infrared ray absorbent material and process for production thereof
JP6252611B2 (en) Near-infrared cut filter and device using near-infrared cut filter
JP4066229B2 (en) Curing agent, curable composition, composition for optical material, optical material, method for producing the same, and liquid crystal display device and LED using the same
CN112946804B (en) Optical filter and device using the same
JP6183255B2 (en) Near-infrared cut filter
TWI820403B (en) Optical filters and devices using optical filters
KR101075732B1 (en) Ring-opening metathesis polymer, hydrogenated product thereof, method for preparing the same, and use thereof
TW201728454A (en) Near-infrared cutoff filter, method for manufacturing near-infrared cutoff filter, and solid image-pickup element
TW201506461A (en) Optical filter and apparatus using the optical filter
JP4993806B2 (en) Composition for optical material, optical material, method for producing the same, and liquid crystal display device using the same
JP5996901B2 (en) Light selective transmission filter, resin sheet, and solid-state image sensor
JP2021006901A (en) Optical filter and uses thereof
JP2002341101A (en) Composition for optical material, optical material, method for producing the same and liquid crystal display and light emitting diode each using the same
JP2012020448A (en) Near infrared ray absorbing material
JP2010275366A (en) Curable composition having near infrared ray absorbing capacity
TW201840683A (en) Near-infrared blocking filter, method for producing near-infrared blocking filter, solid-state imaging element, camera module and image display device
JP5539690B2 (en) Curable composition
CN113544193B (en) Polyorganosiloxane and composition for forming hard coat layer
JP2002241501A (en) Curing agent, curable composition and cured product
JP2010163520A (en) Optical material
JP5878680B2 (en) Curable composition having near infrared absorption ability, and cured product
JP5032236B2 (en) Method for producing compound having SiH group and curable composition
TW201700701A (en) Near-infrared absorbing composition, near-infrared blocking filter, method for producing near-infrared blocking filter, apparatus, method for producing copper-containing polymer, and copper-containing polymer
JP5848654B2 (en) Light selective transmission filter, resin sheet, and solid-state image sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837400

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837400

Country of ref document: EP

Kind code of ref document: A1