WO2015037033A1 - 電力増幅器及び送信装置 - Google Patents

電力増幅器及び送信装置 Download PDF

Info

Publication number
WO2015037033A1
WO2015037033A1 PCT/JP2013/005409 JP2013005409W WO2015037033A1 WO 2015037033 A1 WO2015037033 A1 WO 2015037033A1 JP 2013005409 W JP2013005409 W JP 2013005409W WO 2015037033 A1 WO2015037033 A1 WO 2015037033A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
adjustment
signal
amplifier
impedance
Prior art date
Application number
PCT/JP2013/005409
Other languages
English (en)
French (fr)
Inventor
卓弥 谷本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2013/005409 priority Critical patent/WO2015037033A1/ja
Priority to JP2015536292A priority patent/JP6187591B2/ja
Priority to US14/910,746 priority patent/US9531329B2/en
Priority to EP13893257.9A priority patent/EP3046254B1/en
Publication of WO2015037033A1 publication Critical patent/WO2015037033A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • H04B3/06Control of transmission; Equalising by the transmitted signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/192A hybrid coupler being used at the input of an amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/204A hybrid coupler being used at the output of an amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/423Amplifier output adaptation especially for transmission line coupling purposes, e.g. impedance adaptation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/20Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F2203/21Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F2203/211Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • H03F2203/21142Output signals of a plurality of power amplifiers are parallel combined to a common output

Definitions

  • the present invention relates to a power amplifier and a transmission apparatus, and more particularly to a power amplifier and a transmission apparatus that amplify signals in different frequency bands.
  • a Doherty amplifier In a transmission apparatus such as a base station that transmits a signal to a mobile phone terminal, a Doherty amplifier is used as an amplifier that efficiently performs signal amplification.
  • a main amplifier having characteristics such as an AB class operates.
  • a peak amplifier having characteristics such as a C class is combined with the main amplifier. Operate. In this way, highly efficient signal amplification is realized by controlling the amplifier that operates in accordance with the level of the input signal.
  • a configuration example of a general Doherty amplifier will be described with reference to FIG.
  • a general Doherty amplifier an input signal is distributed, and the distributed signal is output to the main amplifier 110 and the peak amplifier 112.
  • a signal input to the main amplifier 110 is amplified by the main amplifier 110 and transmitted via the adjustment line 111.
  • the signal input to the peak amplifier 112 is amplified by the peak amplifier 112 and transmitted via the adjustment line 113.
  • Signals transmitted through the adjustment line 111 and the adjustment line 113 are combined, and the combined signal is transmitted through the adjustment line 114.
  • the adjustment line 115 and the adjustment line 116 are arranged in front of the main amplifiers 110 and 112, respectively, in order to match the phase in the signal combining portion.
  • the Doherty amplifier can amplify a signal having a predetermined frequency with high efficiency by adjusting the electrical length of the adjustment lines 111, 113, and 114.
  • the electrical length is indicated by using a phase, and may be expressed as 90 degrees, for example.
  • the phase may be indicated using the wavelength ⁇ , for example, ⁇ / 4 phase shift indicates a 90 degree phase shift.
  • the adjustment line 114 having a characteristic impedance of 35.5 ⁇ and an electrical length of 90 degrees at 666 MHz is used.
  • the frequency band having a return loss characteristic of ⁇ 30 dB or less is the effective band
  • the effective band when the adjustment line 114 is used is approximately 630 MHz to 700 MHz.
  • each of the adjustment line 111 and the adjustment line 113 is adjusted so that a signal having a frequency of 630 MHz to 700 MHz can be transmitted with high efficiency.
  • Patent Document 1 discloses a configuration of a Doherty amplifier in which the output section of a carrier amplifier (main amplifier) and the output section of a peak amplifier are arranged in the same straight line so as to face each other.
  • An object of the present invention is to provide an amplification device that can reduce the burden of maintenance work in order to solve the above-described problems.
  • a power amplifier includes a device housing in which a hole for maintenance is formed, and an inner portion covered by the device housing, and transmits according to a frequency band of an input signal.
  • a transmission line section in which the line length is adjusted, and an element that does not require adjustment of the transmission line even when the transmission line section needs to be adjusted by changing the frequency band of the input signal.
  • the transmission line section is disposed near the surface of the apparatus that can be accessed from the outside through the maintenance hole section, and an element that does not require adjustment of the transmission line is disposed through the maintenance hole section. Embedded in a device housing that cannot be accessed.
  • a transmission device includes a signal generation unit capable of generating an input signal at an arbitrary frequency, a device housing in which a hole for maintenance is formed, and the device housing.
  • a transmission line unit that is arranged inside and covered so that the transmission line length is adjusted according to the frequency band of the input signal, and the transmission line unit needs to be adjusted by changing the frequency band of the input signal.
  • the transmission line is provided with an element that does not require adjustment of the transmission line, and a signal transmission unit that transmits a signal output from the transmission line unit and an element that does not require adjustment of the transmission line to a facing device,
  • the transmission line section is arranged near the surface of the apparatus that can be accessed from the outside through the maintenance hole section, and elements that do not require adjustment of the transmission line are accessed through the maintenance hole section. Cannot It is intended to be embedded within Do apparatus housing.
  • FIG. 1 is a configuration diagram of a power amplifier according to a first exemplary embodiment
  • FIG. 3 is a configuration diagram of a power amplifier according to a second exemplary embodiment.
  • FIG. 6 is an arrangement diagram of adjustment lines according to the second exemplary embodiment.
  • FIG. 6 is a configuration diagram of an impedance converter and a coupler according to a second embodiment.
  • FIG. 6 is a configuration diagram of an impedance converter according to a third embodiment. It is a figure explaining the frequency band which can be used at the time of using the impedance conversion part concerning Embodiment 3.
  • FIG. It is a figure explaining the frequency band which can be used at the time of using the impedance conversion part concerning Embodiment 3.
  • FIG. 6 is a configuration diagram of an impedance converter according to a fourth embodiment.
  • FIG. 10 is a configuration diagram of a transmission device according to a fifth embodiment; It is a block diagram of a general Doherty amplifier. It is a figure explaining the frequency band which can be used at the time of using a general Doherty amplifier.
  • FIG. 1 a configuration example of the power amplifier according to the first exemplary embodiment of the present invention will be described with reference to FIG.
  • the power amplifier of FIG. 1 is covered by a device housing 10. Further, a maintenance hole 11 is formed in the apparatus housing. A maintenance person or the like exchanges, repairs, or adjusts a circuit, a part, or the like disposed inside the apparatus housing 10 through the hole 11 for maintenance.
  • a lid may be provided on the hole 11.
  • the transmission line unit 12 is disposed inside the device housing 10 covered by the device housing 10. Furthermore, the transmission line length of the transmission line unit 12 is adjusted according to the frequency band of the signal input to the power amplifier. Based on the transmission line length of the transmission line unit 12, the frequency of a signal that can be amplified with high efficiency by the Doherty amplifier is determined. The transmission line length may be paraphrased as an electrical length, for example. Furthermore, the transmission line unit 12 is used for transmitting a signal output from the amplifier. The transmission line unit 12 may be used for shifting the phase of the signal and further performing impedance conversion. For example, a copper plate may be used for the transmission line unit 12. By using a copper plate for the transmission line portion 12, an increase in transmission loss can be prevented as compared with the case where the transmission line portion 12 is configured with a PWB (PrintedPrintWiring Board) pattern.
  • PWB PrintPrintWiring Board
  • a maintenance person etc. adjusts the transmission line length of the transmission line part 12 through the hole part 11 formed in the apparatus housing.
  • the adjustment of the transmission line length of the transmission line unit 12 may include, for example, replacement with another transmission line unit having a transmission line length of an appropriate length.
  • the transmission line part 12 is arranged in the vicinity of the apparatus surface that can be accessed from the outside through the hole 11 for maintenance. That is, the maintenance person can exchange the transmission line portion 12 for another transmission line portion having a different transmission line length through the hole portion 11. When the maintenance hole 11 is covered, the maintenance person removes the lid and adjusts the transmission line length of the transmission line 12 through the hole 11.
  • an element that does not require adjustment is defined as an adjustment-unnecessary element 13.
  • the adjustment unnecessary element 13 is embedded in the apparatus housing 10 that is not accessible through the maintenance hole 11.
  • the transmission line unit 12 can be easily accessed through the maintenance hole 11 provided in the apparatus housing 10. Is arranged. Therefore, the maintenance person can easily adjust or replace the transmission line portion 12 through the maintenance hole portion 11 provided in the apparatus housing 10. Therefore, for example, the maintenance person can easily adjust or replace the transmission line unit 12 as compared with the case where the transmission line unit 12 is disposed at a position where it can be finally accessed by removing the partition plate. Etc. can be implemented.
  • the adjustment unnecessary element 13 by arranging the adjustment unnecessary element 13 at a position where it cannot be accessed from the maintenance hole 11, there is an advantage that the area of the partition plate on which the transmission line 12 is arranged can be reduced. That is, since the adjustment unnecessary element 13 can be disposed at a position where it cannot be directly accessed from the maintenance hole 11, the degree of freedom regarding the position where the adjustment unnecessary element 13 is disposed is increased. As a result, the apparatus housing 10 can be downsized.
  • the power amplifier of this figure includes a main amplifier 20, an adjustment line 21, a peak amplifier 22, an adjustment line 23, an impedance converter 24, an adjustment line 25, an adjustment line 26, a main amplifier 30, an adjustment line 31, a peak amplifier 32, and an adjustment line. 33, an impedance converter 34, an adjustment line 35, an adjustment line 36, a coupler 40, and a coupler 42. In addition, a terminator 41 is connected to the coupler 40.
  • the power amplifier of this figure is configured as a Doherty amplifier using a main amplifier and a peak amplifier.
  • the adjustment lines 25, 26, 35, and 36 are the main up 20, the peak amplifier 22, the main amplifier 30, and the peak amplifier 32 in order to match the phases in the synthesis unit of the adjustment lines 21 and 23 and the synthesis unit of the adjustment lines 31 and 33. Are arranged in front of each.
  • the input signal is distributed by the coupler 42 and output to the main amplifier 20, the peak amplifier 22, the main amplifier 30 and the peak amplifier 32.
  • the coupler 42 is, for example, a 3 dB coupler.
  • the main amplifier 20 amplifies the input signal.
  • the main amplifier 20 for example, an A class, B class, or AB class amplifier may be used.
  • the main amplifier 20 transmits the amplified signal via the adjustment line 21.
  • the signal input to the power amplifier may be a so-called high frequency signal such as several hundred MHz or several GHz.
  • the peak amplifier 22 amplifies the input signal.
  • the peak amplifier 22 for example, a C-class amplifier having high efficiency characteristics may be used.
  • the peak amplifier 22 transmits the amplified signal via the adjustment line 23.
  • the adjustment line 21 and the adjustment line 23 correspond to the transmission line unit 12 in FIG.
  • a copper plate is used for the adjustment line 21 and the adjustment line 23, and the length of the copper plate is adjusted according to the frequency band of the signal to be transmitted.
  • the adjustment line 21 and the adjustment line 23 are copper plates having a characteristic impedance of 50 ⁇ .
  • the length of the adjustment line 21 and the adjustment line 23 is the length in the same direction as the direction in which the signal is transmitted, and the width is the length in the direction orthogonal to the direction in which the signal is transmitted.
  • the adjustment line 21 may be a copper plate having an electrical length 90 degrees longer than that of the adjustment line 23. That is, the adjustment line 21 makes the electrical length 90 degrees longer than the adjustment line 23, and delays the phase of the signal to be transmitted by 90 degrees.
  • the reason why the adjustment line 21 is 90 degrees longer than the electrical length of the adjustment line 23 is as follows.
  • the peak amplifier 22 is turned on or off depending on the level of the input signal. For example, when the level of the input signal is lower than a predetermined level, the operation of the peak amplifier 22 is stopped and turned off. As described above, when the peak amplifier 22 is in the OFF state, it is necessary to prevent the signal output from the main amplifier 20 from passing through the adjustment line 21 from flowing into the adjustment line 23 and the peak amplifier 22. That is, when the peak amplifier 22 is in the OFF state, all signals output from the main amplifier 20 need to be transmitted to the impedance converter 24. At this time, when the adjustment line 23 is 90 degrees shorter than the electrical length of the adjustment line 21, it is possible to prevent the signal output from the main amplifier 20 from entering the adjustment line 23 and the peak amplifier 22. for that reason. The electrical length of the adjustment line 21 is formed to be 90 degrees longer than that of the adjustment line 23.
  • the signals transmitted through the adjustment line 21 and the adjustment line 23 are combined, and the combined signal is output to the impedance converter 24.
  • the impedance conversion unit 24 converts the impedance of the combined signal obtained by combining the signals output from the adjustment line 21 and the adjustment line 23 into an impedance applied to the signal output from the power amplifier. For example, the impedance conversion unit 24 performs impedance conversion of the combined signal so that the characteristic impedance of the signal output from the power amplifier is 50 ⁇ .
  • the impedance converter 24 has an electrical length of ⁇ / 4, for example. The electrical length of ⁇ / 4 is the same as having an electrical length of 90 degrees.
  • the frequency of a signal that can perform impedance conversion or the frequency of a signal that can be transmitted is determined in advance as in the case of the adjustment line 21 and the adjustment line 23.
  • the characteristic impedance value of the impedance converter 24 will be described.
  • the impedance conversion unit 24 outputs a signal in which 50 ⁇ is generally set as a characteristic impedance of a signal output to another circuit.
  • the impedance of the combined portion of the adjustment line 21 and the adjustment line 23 is set to 25 ⁇ because a line having a characteristic impedance of 50 ⁇ is connected in parallel.
  • the impedance in the impedance converter 24 is calculated as a square root of 50 ( ⁇ ) ⁇ 25 ( ⁇ ). That is, the characteristic impedance of the impedance converter 24 is set to 35 ⁇ .
  • the main amplifier 30, the adjustment line 31, the peak amplifier 32, the adjustment line 33, and the impedance conversion unit 34 have the same functions as the main amplifier 20, the adjustment line 21, the peak amplifier 22, the adjustment line 23, and the impedance conversion unit 24. Further, the connection configuration is the same. Therefore, detailed descriptions of the main amplifier 30, the adjustment line 31, the peak amplifier 32, the adjustment line 33, and the impedance conversion unit 34 are omitted.
  • the coupler 40 is, for example, a 3 dB coupler.
  • the coupler 40 absorbs the reflected wave generated in the antenna or the like once reaching the amplifiers 20, 22, 30, and 32, and then the re-reflected wave is further combined by the 3dB coupler 40 to the terminator 41 side. , To prevent standing waves. This can prevent the standing wave from affecting the high-efficiency operation of the main amplifier and the peak amplifier.
  • the adjustment lines 21, 23, 31 and 33 are formed using a copper plate. Further, an area where the adjustment lines 21, 23, 31 and 33 are arranged is an adjustment area.
  • the adjustment area indicates an area where the transmission line unit 12 of FIG. 1 is arranged. That is, the maintenance person can adjust or exchange the adjustment line arranged in the adjustment area through the maintenance hole 11.
  • the configuration in which only the adjustment lines 21, 23, 31 and 33 are arranged in the adjustment area is described.
  • the impedance converters 24 and 34 are also arranged in the adjustment area. Also good.
  • the Doherty amplifier can amplify signals in various frequency bands by adjusting or exchanging the electrical length of an adjustment line or an impedance converter arranged in the adjustment area.
  • the adjustment line 21 connected to the main amplifier 20 is formed so that the electrical length is 90 degrees longer than the adjustment line 23 connected to the peak amplifier 22. Furthermore, the adjustment line 31 connected to the main amplifier 30 is formed so that the electrical length is 90 degrees longer than the adjustment line 33 connected to the peak amplifier 32.
  • the signal transmitted through the adjustment line 21 and the adjustment line 23 is output to the impedance conversion unit 24.
  • the signal transmitted through the adjustment line 31 and the adjustment line 33 is output to the impedance conversion unit 34.
  • the adjustment lines 21, 23, 31 and 33 are arranged so as not to contact each other.
  • the main amplifier 20 and the peak amplifier 22 are disposed at positions where outputs are opposed to each other, and the adjustment lines 21 and 23 are disposed between the main amplifier 20 and the peak amplifier 22.
  • the main amplifier 30 and the peak amplifier 32 are arranged at positions where outputs are opposed to each other, and the adjustment lines 31 and 33 are arranged between the main amplifier 30 and the peak amplifier 32.
  • the adjustment lines 21 and 31 are arranged symmetrically with respect to the center point on the arranged plane.
  • the adjustment lines 23 and 33 are also arranged symmetrically with respect to the center point on the arranged plane.
  • the impedance conversion unit 24 combines the signals transmitted via the adjustment line 21 and the adjustment line 23 and performs impedance conversion of the combined signal.
  • the impedance converter 24 outputs the signal subjected to impedance conversion to the coupler 40.
  • the impedance converter 34 combines the signals transmitted through the adjustment line 31 and the adjustment line 33 and performs impedance conversion of the combined signal.
  • the impedance converter 34 outputs the signal subjected to impedance conversion to the coupler 40.
  • the coupler 40 transmits some of the signals output from the impedance converters 24 and 34 to an external device of the power amplifier.
  • the coupler 40 synthesizes two signals output from the impedance conversion unit 24 and the impedance conversion unit 34 (a signal having a phase difference of 90 degrees, and this phase difference is set in advance by the distribution side). Send to the device.
  • the impedance conversion unit 24 and the impedance conversion unit 34 adjust the lines 21, 23, and 31 when the electrical length needs to be adjusted or replaced when the frequency band of the signal input to the power amplifier is changed. And 33 are arranged in the adjustment area.
  • the power amplifier according to the second exemplary embodiment of the present invention has the following advantages.
  • the input signal Maintenance work associated with changing the frequency band can be easily performed.
  • the impedance converter 24 includes impedance converters 61 to 63.
  • the impedance converters 61 to 63 are connected in series between the combining unit of the adjustment lines 21 and 23 and the output terminal.
  • the impedance converter 34 has the same configuration as the impedance converter 24, detailed description thereof is omitted.
  • the impedance converters 61 to 63 are transmission lines having an electrical length of ⁇ / 4 (90 degrees). Also, the impedance converters 61 to 63 determine the characteristic impedance based on the length of the width in the direction orthogonal to the length direction of the electrical length.
  • the change of the usable frequency band when the impedance converter 17 of FIG. 5 is used will be described with reference to FIG.
  • the characteristic impedance of the impedance converters 61 to 63 when the impedance at the output terminal of the Doherty amplifier is 50 ⁇ and the impedance at the signal synthesis unit is 25 ⁇ will be described.
  • the characteristic impedance at the output terminal is generally set to 50 ⁇ , which is used as the characteristic impedance of a signal output to another circuit.
  • the impedance at the signal branch point is 25 ⁇ because lines having characteristic impedance of 50 ⁇ are connected in parallel.
  • the characteristic impedance in the impedance converter 62 disposed in the center is calculated as a square root of 50 ( ⁇ ) ⁇ 25 ( ⁇ ).
  • the characteristic impedance of the impedance converter 62 is set to 35.4 ⁇ .
  • the characteristic impedance of the impedance converter 61 is calculated as a square root of 25 ⁇ 35.4.
  • the characteristic impedance of the impedance converter 61 is set to 29.7 ⁇ .
  • the characteristic impedance of the impedance converter 63 is calculated as a square root of 50 ⁇ 35.4.
  • the characteristic impedance of the impedance converter 63 is set to 42 ⁇ .
  • the characteristic impedance in the impedance converters 61 to 63 is set to a value that increases from the impedance converter 61 toward the impedance converter 63.
  • FIG. 6 shows the relationship between the frequency and the return loss characteristic when the characteristic impedance calculated in this way is set in the impedance converters 61 to 63.
  • FIG. 6 shows that the effective band is approximately 630 MHz to 700 MHz when an area of ⁇ 30 dB or less is an effective band.
  • FIG. 7 shows a case where the characteristic impedance of the impedance converter 61 is set to 28.2 ⁇ , the characteristic impedance of the impedance converter 62 is set to 35.9 ⁇ , and the characteristic impedance of the impedance converter 63 is set to 45.5 ⁇ .
  • the relationship between frequency and return loss characteristics is shown.
  • the characteristic impedance in each impedance converter may be adjusted using, for example, a simulation device.
  • the effective band is approximately 420 MHz to 900 MHz. Compared with FIG. It has been expanded and widened.
  • the impedance converter 24 By making the impedance converter 24 wider, for example, when the frequency of the signal input to the Doherty amplifier changes in the range of 420 MHz to 900 MHz, the electrical power of the adjustment lines 21, 23, 31, and 33 is changed. Even if the length is adjusted to an appropriate length or replaced with an adjustment line having an appropriate electrical length, it is necessary to adjust the electrical length of the impedance converters 61 to 63 constituting the impedance converters 24 and 34, etc. Absent.
  • the number of connections may be changed according to the expansion width of the effective frequency band.
  • a frequency band used for terrestrial digital broadcasting or the like in the UHF band can be covered.
  • the following effects can be obtained by widening the impedance converters 24 and 34 and not having to change the electrical length or the like within a predetermined frequency band.
  • the impedance converters 24 and 34 are arranged inside the apparatus which is difficult to access in maintenance work or the like, and the adjustment line 21 that requires adjustment or replacement work, You may make it arrange
  • the degree of freedom regarding the position where the impedance converters 24 and 34 are arranged is increased, and the design of a device having a Doherty amplifier is facilitated.
  • the area of the adjustment area can be reduced. Therefore, the space of the device having the Doherty amplifier can be used effectively, and the device can be downsized.
  • the impedance converter 24 includes distributed constant circuit elements 71 to 76.
  • distributed constant circuit elements 71 to 75 are connected in series.
  • each circuit element is, for example, a transmission line having a different electrical length and width, and distributed constant circuit elements.
  • a plurality of transmission lines may be connected to 71 to 76 to form one transmission line.
  • one transmission line configured in this way has transmission lines with different widths, it may be a transmission line with uneven width. Further, one transmission line to which a plurality of distributed constant circuit elements are connected may be formed using a copper plate. Moreover, since the impedance converter 34 has the same configuration as the impedance converter 24, detailed description thereof is omitted.
  • the change in the usable frequency band when the impedance converter 24 of FIG. 8 is used will be described with reference to FIG.
  • the characteristic impedance of the 4-impedance converters 61 to 63 when the characteristic impedance at the output terminal of the Doherty amplifier is 50 ⁇ and the impedance at the signal combining unit is 25 ⁇ will be described.
  • the length and width of the distributed constant circuit element 71 are set so that the electrical length is 8 degrees at 666 MHz and the characteristic impedance is 100 ⁇ .
  • the distributed constant circuit element 72 has an electric length of 43 degrees and a characteristic impedance of 20 ⁇ at 666 MHz
  • the distributed constant circuit element 73 has an electric length of 19 degrees and a characteristic impedance of 100 ⁇ at 666 MHz.
  • the element 74 has an electrical length of 33 degrees and a characteristic impedance of 20 ⁇ at 666 MHz
  • the distributed constant circuit element 75 has an electrical length of 23 degrees and a characteristic impedance of 100 ⁇
  • the distributed constant circuit element 76 has an electrical length at 666 MHz. Is set to 13 degrees and the characteristic impedance is set to 20 ⁇ .
  • FIG. 9 shows the relationship between the return loss characteristic and the frequency when the electrical length and the transmission line width are set as described above.
  • FIG. 9 shows that approximately 450 MHz to 900 MHz is an effective band when an area of ⁇ 30 dB or less is an effective band. Therefore, the impedance converter 24 can be widened by configuring the impedance converter 17 using a distributed constant circuit as shown in FIG.
  • the electrical length of the impedance converter 17 in FIG. 8 is 139 degrees at the frequency of 666 MHz, and the electrical length is 270 degrees at 666 MHz. Compared with, it can be a short electrical length. Therefore, the downsizing of the Doherty amplifier 10 can be realized.
  • FIG. 10 shows the relationship between the return loss characteristic and the insertion loss characteristic when the frequency band is expanded to GHz.
  • the impedance converter 24 configured using a distributed constant circuit also operates as an LPF (Low Pass Filter) having a pass band of about 500 MHz to 900 MHz. That is, even when the impedance conversion unit 24 is an LPF, the bandwidth can be increased so as to pass a signal of a predetermined frequency band.
  • LPF Low Pass Filter
  • the configuration of the LPF using a distributed constant circuit has been described as the impedance converter 24, but an LPF having a different circuit configuration may be used. Further, the impedance conversion unit 24 operates as an LPF, so that harmonic components generated in the main amplifier 20 and the peak amplifier 22 can be removed.
  • Transmitting apparatus 100 may be, for example, a broadcasting communication apparatus that supports communication of a plurality of channels, or may be a base station apparatus or the like.
  • the communication device is not limited to a broadcast communication device or a base station device, and may be a communication device having a wider use frequency.
  • the transmission apparatus 100 includes a signal generation unit 101, a Doherty amplifier 102, and a transmission unit 103.
  • the Doherty amplifier 102 is the same as the Doherty amplifier described in FIG. Therefore, detailed description regarding the Doherty amplifier 102 is omitted.
  • the signal generation unit 101 generates an RF (Radio-Frequency) signal.
  • the signal generation unit 101 outputs the generated RF signal to the Doherty amplifier 102.
  • the signal generation unit 101 may generate an RF signal at an arbitrary frequency.
  • the signal generation unit 101 may change the frequency band of the generated RF signal when channels having different usage frequency bands are set.
  • the frequency band that can be generated by the signal generation unit 101 may be determined according to the frequency band of a signal that can be amplified by the Doherty amplifier 102. For example, in the Doherty amplifier 102, when the usable frequency band is changed by exchanging the transmission line unit, the signal generating unit 101 may generate an RF signal having the changed frequency band. .
  • the signal generation unit 101 may generate RF signals of a plurality of frequency bands, or when the transmission device 100 includes a plurality of signal generation units 101, signal generation to be used in accordance with the change of the frequency band of the RF signal.
  • the unit 101 may be switched.
  • the Doherty amplifier 102 amplifies the RF signal output from the signal generation unit 101.
  • the Doherty amplifier 102 outputs the amplified RF signal to the transmission unit 103.
  • the transmission unit 103 transmits the RF signal output from the Doherty amplifier 102 to another communication device different from the transmission device 100.
  • the Doherty amplifier 102 is disposed in the transmission device 100, for example, and is used to amplify the RF signal processed by the transmission device 100. At this time, by adjusting or exchanging the transmission line unit in the Doherty amplifier 102, the transmission device 100 can transmit RF signals in various frequency bands.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)

Abstract

保守作業の負担を軽減することができる増幅装置を提供することを目的とする。本発明にかかる電力増幅器は、保守用の穴部(11)が形成された装置筐体(10)と、装置筐体(10)によっておおわれた内部に配置され、入力される信号の周波数帯域に応じて伝送線路長が調整される伝送線路部(12)と、入力される信号の周波数帯域が変更されることによって伝送線路部(12)の調整が必要となった場合においても、伝送線路の調整を要しない素子(13)と、を備える。伝送線路部(12)は、保守用の穴部(11)を介して外部からのアクセスが可能な装置表面近傍に配置され、伝送線路の調整を要しない素子(13)は、保守用の穴部(11)を介してアクセスが不可能な装置筐体内部に埋設される。

Description

電力増幅器及び送信装置
 本発明は電力増幅器及び送信装置に関し、特に異なる周波数帯域の信号を増幅する電力増幅器及び送信装置に関する。
 携帯電話端末へ信号を送信する基地局等の送信装置において、効率的に信号増幅を行う増幅器としてドハティアンプが用いられている。ドハティアンプは、低レベルの信号が入力された場合、ABクラス等の特性を有するメインアンプが動作し、高レベルの信号が入力された場合、メインアンプとともにCクラス等の特性を有するピークアンプが動作する。このように、入力される信号のレベルに応じて動作するアンプを制御することによって、高効率な信号増幅を実現している。
 図12を用いて、一般的なドハティアンプの構成例を説明する。一般的なドハティアンプは、入力された信号が分配され、分配された信号がメインアンプ110及びピークアンプ112へ出力される。メインアンプ110へ入力された信号は、メインアンプ110において増幅され、調整ライン111を介して伝送される。また、ピークアンプ112へ入力された信号は、ピークアンプ112において増幅され、調整ライン113を介して伝送される。調整ライン111及び調整ライン113を介してそれぞれ伝送された信号は、合成され、合成された信号は、調整ライン114を介して伝送される。また、調整ライン115及び調整ライン116は、信号の合成部分における位相を合わせるために、それぞれメインアンプ110及び112の前段に配置される。
 ここで、ドハティアンプは、調整ライン111、113及び114の電気長を調整することによって、予め定められた周波数を有する信号の増幅を高効率で行うことができる。ここで、電気長は、位相を用いて示され、例えば90度等とあらわされてもよい。例えば、電気長90度とした場合、信号を90度位相シフトすることを示す。また、位相は、波長λを用いて示されてもよく、例えば、λ/4位相シフトは、90度位相シフトを示す。
 例えば、調整ライン114の出力側インピーダンスが50Ω、調整ライン114の入力側インピーダンスが25Ωに整合させる場合、35.5Ωの特性インピーダンスを有した666MHzにおける電気長90度の調整ライン114を用いるとする。このような場合、図13に示すように、リターンロス特性が-30dB以下の周波数帯域を有効帯域とすると、調整ライン114を用いた場合の有効帯域は、大体630MHz~700MHzとなる。
 また、調整ライン111及び調整ライン113についても、630MHz~700MHzの周波数を有する信号を高効率に伝送することができるように、それぞれ電気長が調整される。
 このようにして、調整ライン111、113及び114の電気長を制御することによって、所望の周波数帯域の信号を高効率で増幅するドハティアンプを動作させることができる。
 さらに、特許文献1には、キャリア増幅器(メインアンプ)の出力部とピーク増幅器の出力部とが対向するように同一直線状に配置されているドハティアンプの構成が開示されている。
特開2012-114711号公報
 ここで、ドハティアンプを用いる場合、増幅する信号の周波数帯域を変更する際に、図12における調整ライン111、113及び114の電気長を調整する必要がある。そのため、ドハティアンプを有する増幅装置を広い周波数帯域に用いる場合、調整ラインの調整もしくは調整ラインの交換を行わなければならないという問題がある。さらに、頻繁に、増幅する信号の周波数帯域を変更する場合、調整ラインの調整を行う保守作業に関する負担が増加するという問題がある。
 本発明の目的は、上述した課題を解決するために保守作業の負担を軽減することができる増幅装置を提供することにある。
 本発明の第1の態様にかかる電力増幅器は、保守用の穴部が形成された装置筐体と、前記装置筐体によっておおわれた内部に配置され、入力される信号の周波数帯域に応じて伝送線路長が調整される伝送線路部と、入力される信号の周波数帯域が変更されることによって前記伝送線路部の調整が必要となった場合においても、伝送線路の調整を要しない素子と、を備え、前記伝送線路部は、前記保守用の穴部を介して外部からのアクセスが可能な装置表面近傍に配置され、前記伝送線路の調整を要しない素子は、前記保守用の穴部を介してアクセスが不可能な装置筐体内部に埋設されるものである。
 本発明の第2の態様にかかる送信装置は、任意の周波数における入力信号を生成することが可能な信号生成部と、保守用の穴部が形成された装置筐体と、前記装置筐体によっておおわれた内部に配置され、前記入力信号の周波数帯域に応じて伝送線路長が調整される伝送線路部と、入力される信号の周波数帯域が変更されることによって前記伝送線路部の調整が必要となった場合においても、伝送線路の調整を要しない素子と、前記伝送線路部及び前記伝送線路の調整を要しない素子から出力された信号を対向する装置へ送信する信号送信部と、を備え、前記伝送線路部は、前記保守用の穴部を介して外部からのアクセスが可能な装置表面近傍に配置され、前記伝送線路の調整を要しない素子は、前記保守用の穴部を介してアクセスが不可能な装置筐体内部に埋設されるものである。
 本発明により、保守作業の負担を軽減することができる電力増幅器及び送信装置を提供することができる。
実施の形態1にかかる電力増幅器の構成図である。 実施の形態2にかかる電力増幅器の構成図である。 実施の形態2にかかる調整ラインの配置図である。 実施の形態2にかかるインピーダンス変換部及びカプラの構成図である。 実施の形態3にかかるインピーダンス変換部の構成図である。 実施の形態3にかかるインピーダンス変換部を用いた場合の使用可能周波数帯域を説明する図である。 実施の形態3にかかるインピーダンス変換部を用いた場合の使用可能周波数帯域を説明する図である。 実施の形態4にかかるインピーダンス変換部の構成図である。 実施の形態4にかかるインピーダンス変換部を用いた場合の使用可能周波数帯域を説明する図である。 実施の形態4にかかるインピーダンス変換部を用いた場合の使用可能周波数帯域を説明する図である。 実施の形態5にかかる送信装置の構成図である。 一般的なドハティアンプの構成図である。 一般的なドハティアンプを用いた場合の使用可能周波数帯域を説明する図である。
 (実施の形態1)
 以下、図面を参照して本発明の実施の形態について説明する。はじめに図1を用いて本発明の実施の形態1にかかる電力増幅器の構成例について説明する。図1の電力増幅器は、装置筐体10によっておおわれている。さらに、装置筐体には、保守用の穴部11が形成されている。保守者等は、保守用の穴部11を介して装置筐体10内部に配置された回路、部品等の交換、修理、調整等を行う。本図においては、装置筐体10に穴部11が形成されている例を示しているが、装置筐体10内部の信号処理によって生じる放射ノイズが装置筐体10の外部へ漏れることを防止するために、穴部11に蓋を設けてもよい。
 伝送線路部12は、装置筐体10によっておおわれた装置筐体10の内部に配置されている。さらに、伝送線路部12は、電力増幅器に入力される信号の周波数帯域に応じて伝送線路長が調整される。伝送線路部12の伝送線路長に基づいて、ドハティアンプが高効率に増幅できる信号の周波数が定められる。伝送線路長は、例えば電気長と言い換えられてもよい。さらに、伝送線路部12は、アンプから出力される信号を伝送するために用いられる。伝送線路部12は、信号の位相をシフトし、さらに、インピーダンス変換を行うために用いられてもよい。伝送線路部12は、例えば、銅板が用いられてもよい。伝送線路部12に銅板を用いることによって、PWB(Printed Wiring Board)パターンによって伝送線路部12を構成する場合と比較して伝送ロスの増大を防止することができる。
 保守者等は、装置筐体に形成された穴部11を介して、伝送線路部12の伝送線路長の調整を行う。伝送線路部12の伝送線路長の調整は、例えば、適切な長さの伝送線路長を有する他の伝送線路部に交換することを含んでもよい。
 伝送線路部12は、保守用の穴部11を介して外部からのアクセスが可能な装置表面近傍に配置される。つまり、保守者は、穴部11を介して伝送線路部12を伝送線路長が異なる他の伝送線路部へ交換を行うことができる。また、保守用の穴部11に蓋がされている場合、保守者は、蓋を取り外し、穴部11を介して伝送線路部12の伝送線路長を調整する。
 電力増幅器に入力される信号の周波数帯域が変更されることによって、伝送線路部12の伝送線路長を調整する場合であっても、調整を要しない素子を調整不要素子13とする。調整不要素子13は、保守用の穴部11を介してアクセスが不可能な装置筐体10内部に埋設される。
 保守用の穴部11を介してアクセスが不可能とは、例えば、図1において、伝送線路部12が仕切り板に設けられている場合に、その仕切り版を取り外さなければ、埋設されている調整不要素子13へアクセスできない場合等も含む。
 以上説明したように、本発明の実施の形態1にかかる電力増幅器は、伝送線路部12が、装置筐体10に設けられた保守用の穴部11を介して容易にアクセスすることができる位置に配置されている。そのため、保守者は、装置筐体10に設けられた保守用の穴部11を介して容易に伝送線路部12の調整もしくは交換等を行うことができる。そのため、例えば、伝送線路部12が、仕切り板を外すことによってようやくアクセスすることができる位置等に配置されている場合と比較して、保守者は、容易に伝送線路部12の調整もしくは交換作業等を実施することができる。
 また、調整不要素子13を、保守用の穴部11からアクセスすることができない位置に配置することによって、伝送線路部12を配置する例えば仕切り板の面積を縮小することができるという利点もある。つまり、調整不要素子13を、保守用の穴部11から直接アクセスすることができない位置に配置することができるため、調整不要素子13を配置する位置に関する自由度が増す。これによって、装置筐体10の小型化を実現することができる。
 (実施の形態2)
 続いて、図2を用いて本発明の実施の形態2にかかる電力増幅器の構成例について説明する。本図の電力増幅器は、メインアンプ20、調整ライン21、ピークアンプ22、調整ライン23、インピーダンス変換部24、調整ライン25、調整ライン26、メインアンプ30、調整ライン31、ピークアンプ32、調整ライン33、インピーダンス変換部34、調整ライン35、調整ライン36、カプラ40及びカプラ42を有している。また、カプラ40には、終端器41が接続されている。本図の電力増幅器は、メインアンプ及びピークアンプを用いるドハティアンプとして構成されている。調整ライン25、26、35及び36は、調整ライン21及び23の合成部並びに調整ライン31及び33の合成部における位相を合わせるために、メインアップ20、ピークアンプ22、メインアンプ30及びピークアンプ32の前段にそれぞれ配置される。また、入力された信号は、カプラ42において分配され、メインアンプ20、ピークアンプ22、メインアンプ30及びピークアンプ32へ出力される。また、カプラ42は、例えば3dBカプラが用いられる。
 メインアンプ20は、入力された信号を増幅する。メインアンプ20は、例えば、Aクラス、BクラスもしくはABクラスのアンプが用いられてもよい。メインアンプ20は、増幅した信号を、調整ライン21を介して伝送する。また、電力増幅器へ入力される信号は、例えば、数百MHz、数GHz等のいわゆる高周波信号であってもよい。
 ピークアンプ22は、入力された信号を増幅する。ピークアンプ22は、例えば、高効率な特性を有するCクラスのアンプが用いられてもよい。ピークアンプ22は、増幅した信号を、調整ライン23を介して伝送する。
 調整ライン21及び調整ライン23は、図1における伝送線路部12に相当する。調整ライン21及び調整ライン23には、例えば銅板が用いられ、伝送する信号の周波数帯域に応じて銅板の長さが調整される。例えば、調整ライン21及び調整ライン23は、特性インピーダンスが50Ωである銅板が用いられる。ここで、調整ライン21及び調整ライン23の長さとは、信号が伝送する方向と同一方向の長さであり、幅とは、信号が伝送する方向と直交する方向の長さである。
 また、調整ライン21は、調整ライン23よりも電気長が90度長い銅板が用いられてもよい。つまり、調整ライン21は、調整ライン23よりも電気長を90度長くし、伝送する信号の位相を90度遅らせる。調整ライン21が、調整ライン23の電気長よりも90度長くする理由は、次のとおりである。
 ピークアンプ22は、入力される信号のレベルに応じて、ON状態もしくはOFF状態となる。例えば、入力される信号のレベルが予め定められたレベルよりも低い場合、ピークアンプ22の動作は停止され、OFF状態となる。このようにピークアンプ22がOFF状態である場合、調整ライン21を介してメインアンプ20から出力される信号が、調整ライン23及びピークアンプ22へ回り込むことを防止する必要がある。つまり、ピークアンプ22がOFF状態である場合、メインアンプ20から出力される信号は、全てインピーダンス変換部24へ伝送される必要がある。この時、調整ライン23が、調整ライン21の電気長よりも90度短い場合、メインアンプ20から出力された信号が、調整ライン23及びピークアンプ22へ回り込むことを防止することができる。そのため。調整ライン21の電気長は、調整ライン23よりも90度長くなるように形成されている。
 調整ライン21及び調整ライン23を介して伝送された信号は、合成され、合成された信号がインピーダンス変換部24へ出力される。
 インピーダンス変換部24は、調整ライン21及び調整ライン23から出力される信号を合成した合成信号のインピーダンスを電力増幅器から出力される信号に適用するインピーダンスへ変換する。例えば、インピーダンス変換部24は、電力増幅器から出力される信号の特性インピーダンスが50Ωとなるように、合成信号のインピーダンス変換を行う。また、インピーダンス変換部24は、例えば、λ/4の電気長を有する。λ/4の電気長とは、90度の電気長を有することと同様である。
 インピーダンス変換部24は、調整ライン21及び調整ライン23と同様にインピーダンス変換を行うことができる信号の周波数もしくは伝送することができる信号の周波数が予め定められている。ここで、インピーダンス変換部24の特性インピーダンスの値について説明する。
 インピーダンス変換部24は、一般的に他の回路へ出力する信号の特性インピーダンスとして50Ωが設定された信号を出力する。この場合、調整ライン21及び調整ライン23の合成部におけるインピーダンスは、特性インピーダンス50Ωの線路が並列に接続されているので25Ωを設定する。
 この場合のインピーダンス変換部24におけるインピーダンスは、50(Ω)×25(Ω)の平方根として算出される。つまり、インピーダンス変換部24の特性インピーダンスを35Ωと設定する。
 メインアンプ30、調整ライン31、ピークアンプ32、調整ライン33及びインピーダンス変換部34は、メインアンプ20、調整ライン21、ピークアンプ22、調整ライン23及びインピーダンス変換部24と同様の機能等を有し、さらに、接続構成も同様である。そのため、メインアンプ30、調整ライン31、ピークアンプ32、調整ライン33及びインピーダンス変換部34に関する詳細な説明を省略する。
 カプラ40は、例えば3dBカプラが用いられる。電力増幅器内に、複数のメインアンプ及びピークアンプがある場合、増幅された信号は、最終的にカプラ40を用いて合成される。また、カプラ40は、アンテナ等において発生する反射波が一旦アンプ20,22,30,32まで到達し、そこでさらに再反射した波が3dBカプラ40で終端器41側に合成されることで吸収させ、定在波が発生することを防止する。これによって、定在波がメインアンプ及びピークアンプの高効率動作へ与える影響を防止することができる。
 続いて、図3を用いて本発明の実施の形態2にかかる調整ライン21、23、31及び33の具体的な構成例について説明する。調整ライン21、23、31及び33は、銅板を用いて形成されている。また、調整ライン21、23、31及び33が配置されるエリアを、調整エリアとする。調整エリアは、図1の伝送線路部12が配置されるエリアを示している。つまり、保守者は、調整エリア内に配置された調整ラインを、保守用の穴部11を介して調整もしくは交換することができる。
 また、本図においては、調整エリア内には、調整ライン21、23、31及び33のみが配置される構成について説明しているが、インピーダンス変換部24及び34も、調整エリア内に配置されてもよい。調整エリア内に配置された調整ラインもしくはインピーダンス変換部等の電気長を調整もしくは交換することによって、ドハティアンプは、様々な周波数帯域の信号を増幅することができる。
 メインアンプ20に接続されている調整ライン21は、ピークアンプ22に接続されている調整ライン23よりも、電気長が90度長くなるように形成されている。さらに、メインアンプ30に接続されている調整ライン31は、ピークアンプ32に接続されている調整ライン33よりも、電気長が90度長くなるように形成されている。
 調整ライン21及び調整ライン23を介して伝送された信号は、インピーダンス変換部24へ出力される。調整ライン31及び調整ライン33を介して伝送された信号は、インピーダンス変換部34へ出力される。
 ここで、調整ライン21、23、31及び33は、互いに接触しないように配置される。例えば、メインアンプ20及びピークアンプ22は、出力が対向する位置に配置されており、調整ライン21及び23は、メインアンプ20とピークアンプ22との間に配置される。また、メインアンプ30及びピークアンプ32は、出力が対向する位置に配置されており、調整ライン31及び33は、メインアンプ30とピークアンプ32との間に配置される。
 さらに、調整ライン21及び31は、配置される平面上の中心点を基準として点対称に配置される。調整ライン23及び33も、配置される平面上の中心点を基準として点対称に配置される。このように配置することによって、調整ライン21、23、31及び33が互いに接触することを防止することが可能となる。さらに、小さいスペースに効率的に調整ライン21、23、31及び33を配置することができる。
 続いて、図4を用いて本発明の実施の形態2にかかるインピーダンス変換部及びカプラの構成例について説明する。インピーダンス変換部24は、調整ライン21及び調整ライン23を介して伝送された信号が合成され、合成された信号のインピーダンス変換を行う。インピーダンス変換部24は、インピーダンス変換を行った信号をカプラ40へ出力する。また、インピーダンス変換部34は、調整ライン31及び調整ライン33を介して伝送された信号が合成され、合成した信号のインピーダンス変換を行う。インピーダンス変換部34は、インピーダンス変換を行った信号をカプラ40へ出力する。
 カプラ40は、インピーダンス変換部24及び34から出力された信号の一部を電力増幅器の外部装置等へ送信する。ここで、カプラ40は、インピーダンス変換部24及びインピーダンス変換部34から出力された信号(位相差90度をもつ信号、この位相差は分配側によって予め設定しておく)を2合成して、外部装置等へ送信する。
 ここで、インピーダンス変換部24及びインピーダンス変換部34は、電力増幅器へ入力される信号の周波数帯域が変更される際に、電気長の調整もしくは交換が必要である場合、調整ライン21、23、31及び33と同様に調整エリア内に配置される。
 以上説明したように、本発明の実施の形態2にかかる電力増幅器は次の利点がある。保守用の穴部11から直接アクセス可能な調整エリア内に、入力される信号の周波数帯域の変更に伴い調整等を行う必要がある調整ライン及びインピーダンス変換部を配置することによって、入力される信号の周波数帯域が変更されることに伴う保守作業を容易に行うことができる。
 (実施の形態3)
 続いて、図5を用いて本発明の実施の形態3にかかるインピーダンス変換部24の構成例について説明する。インピーダンス変換部24は、インピーダンス変換器61~63を有している。インピーダンス変換器61~63は、調整ライン21及び23の合成部と出力端子との間において、直列に接続している。また、インピーダンス変換部34は、インピーダンス変換部24と同様の構成を有するため、詳細な説明を省略する。
 インピーダンス変換器61~63は、電気長がλ/4(90度)である伝送線路である。また、インピーダンス変換器61~63は、電気長の長さの方向と直交する方向の幅の長さに基づいて、特性インピーダンスが決定される。
 ここで、図6を用いて、図5のインピーダンス変換部17を用いた場合の使用可能周波数帯域の変化について説明する。例えば、ドハティアンプの出力端子におけるインピーダンスを50Ωとし、信号の合成部におけるインピーダンスを25Ωとした場合におけるインピーダンス変換器61~63の特性インピーダンスについて説明する。出力端子における特性インピーダンスは、一般的に他の回路へ出力する信号の特性インピーダンスとして用いられる50Ωと設定する。信号の分岐点におけるインピーダンスは、特性インピーダンス50Ωの線路が並列に接続されているので25Ωとなる。
 この場合、直列に接続されるインピーダンス変換器61~63のうち、中央に配置されるインピーダンス変換器62における特性インピーダンスは、50(Ω)×25(Ω)の平方根として算出される。ここでは、インピーダンス変換器62の特性インピーダンスを35.4Ωと設定する。さらに、インピーダンス変換器61の特性インピーダンスは、25×35.4の平方根として算出される。ここでは、インピーダンス変換器61の特性インピーダンスは、29.7Ωと設定する。さらに、インピーダンス変換器63の特性インピーダンスは、50×35.4の平方根として算出される。ここでは、インピーダンス変換器63の特性インピーダンスは、42Ωと設定する。
 このように、インピーダンス変換器61~63における特性インピーダンスは、インピーダンス変換器61からインピーダンス変換器63に向かうにつれて大きくなる値が設定される。
 図6は、このように算出された特性インピーダンスをインピーダンス変換器61~63に設定した場合における周波数とリターンロス特性との関係を示している。図6は、-30dB以下の領域を有効帯域とすると、大体630MHz~700MHzが有効帯域であることを示している。
 ここで、図7において、インピーダンス変換器61~63の特性インピーダンスを、さらに調整した場合の使用可能周波数帯域の変化について説明する。図7は、インピーダンス変換器61の特性インピーダンスを28.2Ωに設定し、インピーダンス変換器62の特性インピーダンスを35.9Ωに設定し、インピーダンス変換器63の特性インピーダンスを45.5Ωに設定した場合における周波数とリターンロス特性との関係を示している。それぞれのインピーダンス変換器における特性インピーダンスは、例えば、シミュレーション装置等を用いて調整されてもよい。
 図7において示されるように、リターンロス特性が-30dB以下の領域を有効帯域とすると、大体420MHz~900MHzが有効帯域となっており、図6と比較すると、インピーダンス変換部24は、有効帯域が拡大され、広帯域化している。
 このように、インピーダンス変換部24を広帯域化することによって、例えば、ドハティアンプに入力される信号の周波数が、420MHz~900MHzの範囲において変化した場合において、調整ライン21、23、31及び33の電気長を適切な長さに調整もしくは適切な長さの電気長を持つ調整ラインに交換しても、インピーダンス変換部24及び34を構成するインピーダンス変換器61~63の電気長等を調整する必要はない。
 つまり、入力される信号の周波数帯域が変更された場合において、ドハティアンプの調整ライン21、23、31及び33のみを調整もしくは交換することによって、周波数が変更された後の信号をドハティアンプによって高効率で増幅することができる。
 ここで、図5のインピーダンス変換部17として、インピーダンス変換器を3つ直列に接続している構成について説明したが、有効周波数帯域の拡大幅に応じて接続数を変更してもよい。インピーダンス変換器を3つ直列に接続することによって、UHF帯のうち地上デジタル放送等に用いられる周波数帯域をカバーすることができる。
 また、インピーダンス変換部24及び34を広帯域化し、所定の周波数帯域内であれば電気長等の変更を行う必要がないことによって、次のような効果も得られる。例えば、装置筐体10内にドハティアンプを配置する際に、インピーダンス変換部24及び34は、保守作業等においてアクセスしづらい装置内部に配置し、調整もしくは交換作業等が必要となる調整ライン21、23、31及び33を、保守作業時にアクセスが容易となる装置表面に近い位置に配置するようにしてもよい。つまり、インピーダンス変換部24及び34は、装置内部の実質的には操作不可能な位置に配置し、調整ライン21、23、31及び33を、装置表面の蓋を取り外した保守用の穴部11を介して容易に操作可能な位置に配置してもよい。
 このようにすることによって、インピーダンス変換部24及び34を配置する位置に関する自由度が増し、ドハティアンプを有する装置の設計が容易となる。また、インピーダンス変換部24及びインピーダンス変換部34を調整エリア内に配置する必要がなくなるため、調整エリアの面積を小さくすることができる。そのため、ドハティアンプを有する装置の空間を有効に利用することが可能となり、装置の小型化を実現することができる。
 (実施の形態4)
 続いて、図8を用いて、インピーダンス変換部24に分布定数回路を用いた場合のインピーダンス変換部24の構成例について説明する。インピーダンス変換部24は、分布定数回路素子71~76を有している。ここでは、説明の便宜上、分布定数回路素子71~75が直列に接続していることを示しているが、それぞれの回路素子は、例えば電気長及び幅が異なる伝送線路であり、分布定数回路素子71~76は、複数の伝送線路が接続し、一つの伝送線路を構成していてもよい。
 このように構成された一つの伝送線路は、幅の異なる伝送線路を有するため、凹凸の幅を有する伝送線路であってもよい。また、複数の分布定数回路素子が接続されている1つの伝送線路は、銅板を用いて形成されてもよい。また、インピーダンス変換部34は、インピーダンス変換部24と同様の構成を有するため、詳細な説明を省略する。
 ここで、図9を用いて、図8のインピーダンス変換部24を用いた場合の使用可能周波数帯域の変化について説明する。例えば、ドハティアンプの出力端子における特性インピーダンスを50Ωとし、信号の合成部におけるインピーダンスを25Ωとした場合における4インピーダンス変換器61~63の特性インピーダンスについて説明する。
 例えば、分布定数回路素子71は、電気長が666MHzにおいて8度、特性インピーダンスが100Ωとなるように長さ及び幅が設定する。また、同様に、分布定数回路素子72は、666MHzにおける電気長が43度、特性インピーダンスが20Ωとし、分布定数回路素子73は、666MHzにおける電気長が19度、特性インピーダンスが100Ωとし、分布定数回路素子74は、666MHzにおける電気長が33度、特性インピーダンスが20Ωとし、分布定数回路素子75は、666MHzにおける電気長が23度、特性インピーダンスが100Ωとし、分布定数回路素子76は、666MHzにおける電気長が13度、特性インピーダンスが20Ωとなるようにそれぞれの長さ及び幅を設定する。これらの分布定数回路素子を接続することによって、凹凸の幅を有する一つの伝送線路が形成される。
 図9は、上記のように電気長及び伝送線路幅を設定した場合における、リターンロス特性と周波数との関係を示している。図9は、-30dB以下の領域を有効帯域とすると、大体450MHz~900MHzが有効帯域であることを示している。したがって、図8のようにインピーダンス変換部17を分布定数回路を用いて構成することによっても、インピーダンス変換部24を広帯域化することができる。また、上記のように電気長を設定した場合、図8のインピーダンス変換部17の電気長は、666MHzの周波数において139度であり、電気長が666MHzにおいて270度である図5のインピーダンス変換部17と比較して、短い電気長とすることができる。そのため、ドハティアンプ10の小型化を実現することができる。
 さらに、図10は、周波数帯域をGHzまで広げた場合における、リターンロス特性と挿入損失特性の関係を示している。図10に示されているように、分布定数回路を用いて構成されたインピーダンス変換部24は、大体500MHz~900MHzを通過帯域とするLPF(Low Pass Filter)としても動作する。つまり、インピーダンス変換部24をLPFとした場合においても、所定の周波数帯域の信号を通過させるように広帯域化することができる。
 本図においては、インピーダンス変換部24として、分布定数回路を用いたLPFの構成について説明したが、異なる回路構成のLPFを用いてもよい。また、インピーダンス変換部24が、LPFとして動作することによって、メインアンプ20及びピークアンプ22において発生する高調波成分を除去することもできる。
 (実施の形態5)
 続いて、図11を用いて本発明の実施の形態5にかかる送信装置100の構成例について説明する。送信装置100は、例えば、複数チャンネルの通信に対応した放送用通信装置であってもよく、もしくは、基地局装置等であってもよい。または、放送用通信装置もしくは基地局装置等に制限されず、使用周波数が広帯域化された通信装置であってもよい。
 送信装置100は、信号生成部101、ドハティアンプ102及び送信部103を有している。ドハティアンプ102は、図2において説明したドハティアンプと同様である。そのため、ドハティアンプ102に関する詳細な説明を省略する。
 信号生成部101は、RF(Radio Frequency)信号を生成する。信号生成部101は、生成したRF信号をドハティアンプ102へ出力する。ここで、信号生成部101は、任意の周波数におけるRF信号を生成してもよい。例えば、信号生成部101は、使用周波数帯域が異なるチャネルが設定された場合に、生成するRF信号の周波数帯域を変更してもよい。
 信号生成部101が生成可能な周波数帯域は、ドハティアンプ102において増幅可能な信号の周波数帯域に応じて定められてもよい。例えば、ドハティアンプ102において、伝送線路部を交換したことにより使用可能な周波数帯域が変更された場合、信号生成部101においても、変更後の周波数帯域を有するRF信号を生成するようにしてもよい。
 信号生成部101は、複数の周波数帯域のRF信号を生成してもよく、もしくは、送信装置100が複数の信号生成部101を有する場合、RF信号の周波数帯域の変更に伴い、使用する信号生成部101を切り替えてもよい。
 ドハティアンプ102は、信号生成部101から出力されたRF信号を増幅する。ドハティアンプ102は、増幅したRF信号を送信部103へ出力する。送信部103は、ドハティアンプ102から出力されたRF信号を送信装置100とは異なる他の通信装置へ送信する。
 以上説明したように、ドハティアンプ102は、例えば、送信装置100内に配置され、送信装置100が処理するRF信号を増幅するために用いられる。この時、ドハティアンプ102内の伝送線路部を調整もしくは交換することによって、送信装置100は、様々な周波数帯域のRF信号を送信することができる。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
 10 装置筐体
 11 穴部
 12 伝送線路部
 13 調整不要素子
 20 メインアンプ
 21 調整ライン
 22 ピークアンプ
 23 調整ライン
 24 インピーダンス変換部
 25 調整ライン
 26 調整ライン
 30 メインアンプ
 31 調整ライン
 32 ピークアンプ
 33 調整ライン
 34 インピーダンス変換部
 35 調整ライン
 36 調整ライン
 40 カプラ
 41 終端器
 42 カプラ
 61~63 インピーダンス変換器
 71~76 分布定数回路素子
 100 送信装置
 101 信号生成部
 102 ドハティアンプ
 103 送信部

Claims (8)

  1.  保守用の穴部が形成された装置筐体と、
     前記装置筐体によっておおわれた内部に配置され、入力される信号の周波数帯域に応じて伝送線路長が調整される伝送線路部と、
     入力される信号の周波数帯域が変更されることによって前記伝送線路部の調整が必要となった場合においても、伝送線路の調整を要しない素子と、を備え、
     前記伝送線路部は、前記保守用の穴部を介して外部からのアクセスが可能な装置表面近傍に配置され、前記伝送線路の調整を要しない素子は、前記保守用の穴部を介してアクセスが不可能な装置筐体内部に埋設される、電力増幅器。
  2.  前記伝送線路部は、
     ドハティアンプを構成するメインアンプとピークアンプとから出力される信号を伝送する、請求項1に記載の電力増幅器。
  3.  前記メインアンプから出力された信号と、前記ピークアンプから出力された信号とを合成した合成信号のインピーダンス変換を行うインピーダンス変換部をさらに備え、
     前記インピーダンス変換部は、
     複数のλ/4伝送線路が直列に接続されたことを特徴とする請求項2に記載の電力増幅器。
  4.  前記伝送線路部は、
     第1のメインアンプから出力される信号を伝送する第1の伝送線路部と、第1のピークアンプから出力される信号を伝送する第2の伝送線路部と、第2のメインアンプから出力される信号を伝送する第3の伝送線路部と、第2のピークアンプから出力される信号を伝送する第4の伝送線路部と、を有し、
     前記インピーダンス変換部は、
     前記第1の伝送線路部及び第2の伝送線路部を介して伝送された信号を合成した第1の合成信号のインピーダンス変換を行う第1のインピーダンス変換部と、前記第3の伝送線路部及び第4の伝送線路部を介して伝送された信号を合成した第2の合成信号のインピーダンス変換を行う第2のインピーダンス変換部と、を有する、請求項3に記載の電力増幅器。
  5.  前記第1乃至第4の伝送線路部は、銅板であって、
     前記第1の伝送線路部は、前記第2の伝送線路部よりも電気長が90度長く形成され、前記第3の伝送線路部は、前記第4の伝送線路部よりも電気長が90度長く形成される、請求項4に記載の電力増幅器。
  6.  前記第1乃至第4の伝送線路部は、同一平面上に配置され、平面上の中心点を基準として、前記第1の伝送線路部は、前記第3の伝送線路部と点対称の位置に配置され、前記中心点を基準として、前記第2の伝送線路部は、前記第4の伝送線路部と点対称の位置に配置され、前記第1乃至第4の伝送線路部は、互いに接触しない位置に配置される、請求項5に記載の電力増幅器。
  7.  前記第1のインピーダンス変換部及び前記第2のインピーダンス変換部から出力された信号を合成するカプラをさらに備え、
     前記カプラは、前記保守用の穴部を介してアクセスが不可能な装置筐体内部に埋設される、請求項4乃至6のいずれか1項に記載の電力増幅器。
  8.  任意の周波数における入力信号を生成する信号生成部と、
     保守用の穴部が形成された装置筐体と、
     前記装置筐体によっておおわれた内部に配置され、前記入力信号の周波数帯域に応じて伝送線路長が調整される伝送線路部と、
     入力される信号の周波数帯域が変更されることによって前記伝送線路部の調整が必要となった場合においても、伝送線路の調整を要しない素子と、
     前記伝送線路部及び前記伝送線路の調整を要しない素子から出力された信号を送信する送信部と、を備え、
     前記伝送線路部は、前記保守用の穴部を介して外部からのアクセスが可能な装置表面近傍に配置され、前記伝送線路の調整を要しない素子は、前記保守用の穴部を介してアクセスが不可能な装置筐体内部に埋設される、送信装置。
PCT/JP2013/005409 2013-09-12 2013-09-12 電力増幅器及び送信装置 WO2015037033A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/005409 WO2015037033A1 (ja) 2013-09-12 2013-09-12 電力増幅器及び送信装置
JP2015536292A JP6187591B2 (ja) 2013-09-12 2013-09-12 電力増幅器及び送信装置
US14/910,746 US9531329B2 (en) 2013-09-12 2013-09-12 Power amplifier and transmission apparatus
EP13893257.9A EP3046254B1 (en) 2013-09-12 2013-09-12 Power amplifier and transmission apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/005409 WO2015037033A1 (ja) 2013-09-12 2013-09-12 電力増幅器及び送信装置

Publications (1)

Publication Number Publication Date
WO2015037033A1 true WO2015037033A1 (ja) 2015-03-19

Family

ID=52665176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005409 WO2015037033A1 (ja) 2013-09-12 2013-09-12 電力増幅器及び送信装置

Country Status (4)

Country Link
US (1) US9531329B2 (ja)
EP (1) EP3046254B1 (ja)
JP (1) JP6187591B2 (ja)
WO (1) WO2015037033A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199178A1 (ja) * 2015-06-08 2016-12-15 日本電気株式会社 電力増幅装置およびテレビジョン信号送信システム
EP3179628A3 (en) * 2015-12-11 2017-08-23 NXP USA, Inc. Amplifier devices with in-package transmission line combiner

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6332565B2 (ja) * 2015-09-01 2018-05-30 日本電気株式会社 電力増幅装置およびテレビジョン信号送信システム
JP6273247B2 (ja) * 2015-12-03 2018-01-31 株式会社東芝 高周波半導体増幅器
US11233483B2 (en) 2017-02-02 2022-01-25 Macom Technology Solutions Holdings, Inc. 90-degree lumped and distributed Doherty impedance inverter
EP3616319A1 (en) 2017-04-24 2020-03-04 MACOM Technology Solutions Holdings, Inc. Improved efficiency, symmetrical doherty power amplifier
US11050389B2 (en) 2017-04-24 2021-06-29 Macom Technology Solutions Holdings, Inc. Inverted Doherty power amplifier with large RF and instantaneous bandwidths
US11159125B2 (en) 2017-04-24 2021-10-26 Macom Technology Solutions Holdings, Inc. Inverted Doherty power amplifier with large RF fractional and instantaneous bandwidths
CN111480292B (zh) 2017-10-02 2024-03-29 镁可微波技术有限公司 空载调制高效功率放大器
EP3776847A1 (en) * 2018-03-26 2021-02-17 Telefonaktiebolaget LM Ericsson (publ) Baseband frequency selective magnitude and phase adjustment for wideband doherty power amplifier
CN112640298A (zh) 2018-10-05 2021-04-09 镁可微波技术有限公司 低负载调制功率放大器
IT201800009997A1 (it) 2018-10-31 2020-05-01 Gatesair Srl Metodo per trasformare l’impedenza di una linea di trasmissione a radiofrequenza di un circuito stampato e relativo circuito stampato
WO2021137951A1 (en) 2019-12-30 2021-07-08 Macom Technology Solutions Holdings, Inc. Low-load-modulation broadband amplifier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147628U (ja) * 1980-04-04 1981-11-06
JP2005341048A (ja) * 2004-05-25 2005-12-08 Mitsubishi Electric Corp 増幅器
JP2007019578A (ja) * 2005-07-05 2007-01-25 Hitachi Ltd 電力増幅器およびそれを用いた送信機
JP2012114711A (ja) 2010-11-25 2012-06-14 Mitsubishi Electric Corp 増幅器及び通信装置
JP2013172174A (ja) * 2012-02-17 2013-09-02 Nec Corp 電力増幅器及び送信システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3117379A (en) * 1960-11-17 1964-01-14 Sanders Associates Inc Adjustable impedance strip transmission line
US4814729A (en) * 1987-12-09 1989-03-21 Rockwell International Corporation Precisely tunable impatt diode module for weather radar apparatus
JPH08279687A (ja) * 1995-04-05 1996-10-22 Canon Inc Rfモジュールのシールド構造
US6362708B1 (en) * 1998-05-21 2002-03-26 Lucix Corporation Dielectric resonator tuning device
KR20050031663A (ko) * 2003-09-30 2005-04-06 광운대학교 산학협력단 도허티 전력 증폭 장치
JP4793807B2 (ja) * 2005-05-24 2011-10-12 株式会社日立国際電気 増幅器
JP4821479B2 (ja) * 2006-07-25 2011-11-24 日本電気株式会社 高周波電力合成器
EP2159912A1 (en) * 2008-08-29 2010-03-03 Alcatel, Lucent Multi-band Doherty amplifier
JP5516425B2 (ja) * 2009-02-04 2014-06-11 日本電気株式会社 高周波電力増幅器
EP2262107B1 (en) * 2009-06-10 2012-09-12 Alcatel Lucent Inverse class F amplifier and method
US8576010B2 (en) * 2010-10-19 2013-11-05 Samsung Electronics Co., Ltd. Apparatus and method for a switched capacitor architecture for multi-band doherty power amplifiers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147628U (ja) * 1980-04-04 1981-11-06
JP2005341048A (ja) * 2004-05-25 2005-12-08 Mitsubishi Electric Corp 増幅器
JP2007019578A (ja) * 2005-07-05 2007-01-25 Hitachi Ltd 電力増幅器およびそれを用いた送信機
JP2012114711A (ja) 2010-11-25 2012-06-14 Mitsubishi Electric Corp 増幅器及び通信装置
JP2013172174A (ja) * 2012-02-17 2013-09-02 Nec Corp 電力増幅器及び送信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3046254A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199178A1 (ja) * 2015-06-08 2016-12-15 日本電気株式会社 電力増幅装置およびテレビジョン信号送信システム
JPWO2016199178A1 (ja) * 2015-06-08 2018-03-08 日本電気株式会社 電力増幅装置およびテレビジョン信号送信システム
US10250204B2 (en) 2015-06-08 2019-04-02 Nec Corporation Power amplification device and television signal transmission system
US10587230B2 (en) 2015-06-08 2020-03-10 Nec Corporation Power amplification device and television signal transmission system
EP3179628A3 (en) * 2015-12-11 2017-08-23 NXP USA, Inc. Amplifier devices with in-package transmission line combiner

Also Published As

Publication number Publication date
US20160197584A1 (en) 2016-07-07
EP3046254A4 (en) 2017-04-19
EP3046254B1 (en) 2019-10-23
EP3046254A1 (en) 2016-07-20
JPWO2015037033A1 (ja) 2017-03-02
JP6187591B2 (ja) 2017-08-30
US9531329B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
JP6187591B2 (ja) 電力増幅器及び送信装置
JP6026062B1 (ja) 負荷変調増幅器
WO2015037034A1 (ja) ドハティアンプ及び送信装置
US20100127951A1 (en) Multi- antenna system feed device and wireless link terminal equipped with such a device
JP2013533713A (ja) ドハティ拡張を有する高周波電力増幅器
US9148100B2 (en) Parallel amplifier architecture with feedback control based on reflected signal strength
JP2009182635A (ja) ドハティ増幅器
JP5035846B2 (ja) ドハティ増幅回路
US9667197B2 (en) Signal amplification system
JP2013172174A (ja) 電力増幅器及び送信システム
TWI409986B (zh) 功率分配器及雙輸出之無線訊號發射器
JP5754362B2 (ja) 増幅器
JP5582782B2 (ja) 分散デュプレクサを使用した基地局アーキテクチュア
JP6834094B2 (ja) ドハティ型増幅器
JP5390495B2 (ja) 高周波増幅器
KR20110033383A (ko) 클래스 f 및 인버스 클래스 f 도허티 증폭기
JP2010206351A (ja) 電力検出器
JP7490050B2 (ja) 電力増幅回路、送信機、およびネットワークデバイス
JP2007124581A (ja) 無線装置
JP2007150377A (ja) 分配器及び合成器並びにそれらを用いた電力増幅装置
JP2010273117A (ja) 増幅器
JP2005151401A (ja) フィードフォワード型電力増幅器
JP4835698B2 (ja) 高周波送受信モジュール
JP4962308B2 (ja) 高周波電力送信装置
KR20160025230A (ko) 고주파 신호 생성 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893257

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14910746

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013893257

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013893257

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015536292

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE