WO2015037034A1 - ドハティアンプ及び送信装置 - Google Patents

ドハティアンプ及び送信装置 Download PDF

Info

Publication number
WO2015037034A1
WO2015037034A1 PCT/JP2013/005411 JP2013005411W WO2015037034A1 WO 2015037034 A1 WO2015037034 A1 WO 2015037034A1 JP 2013005411 W JP2013005411 W JP 2013005411W WO 2015037034 A1 WO2015037034 A1 WO 2015037034A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
transmission line
distribution
signal
amplifier
Prior art date
Application number
PCT/JP2013/005411
Other languages
English (en)
French (fr)
Inventor
卓弥 谷本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015536293A priority Critical patent/JPWO2015037034A1/ja
Priority to PCT/JP2013/005411 priority patent/WO2015037034A1/ja
Priority to EP13893254.6A priority patent/EP3046253B1/en
Priority to US14/911,512 priority patent/US9787253B2/en
Publication of WO2015037034A1 publication Critical patent/WO2015037034A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/04Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers
    • H03F1/06Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers to raise the efficiency of amplifying modulated radio frequency waves; to raise the efficiency of amplifiers acting also as modulators
    • H03F1/07Doherty-type amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/36Indexing scheme relating to amplifiers the amplifier comprising means for increasing the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/423Amplifier output adaptation especially for transmission line coupling purposes, e.g. impedance adaptation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to a Doherty amplifier and transmission device, and more particularly to a Doherty amplifier and transmission device that amplifies signals in a plurality of frequency bands.
  • a Doherty amplifier In a transmission apparatus such as a base station that transmits a signal to a mobile phone terminal, a Doherty amplifier is used as an amplifier that efficiently performs signal amplification.
  • a main amplifier having characteristics such as an AB class operates.
  • a peak amplifier having characteristics such as a C class is combined with the main amplifier. Operate. In this way, highly efficient signal amplification is realized by controlling the amplifier that operates in accordance with the level of the input signal.
  • a configuration example of a general Doherty amplifier will be described with reference to FIG.
  • a general Doherty amplifier an input signal is distributed, and the distributed signal is output to the main amplifier 110 and the peak amplifier 112.
  • a signal input to the main amplifier 110 is amplified by the main amplifier 110 and transmitted via the adjustment line 111.
  • the signal input to the peak amplifier 112 is amplified by the peak amplifier 112 and transmitted via the adjustment line 113.
  • Signals transmitted through the adjustment line 111 and the adjustment line 113 are combined, and the combined signal is transmitted through the adjustment line 114.
  • the adjustment line 115 and the adjustment line 116 are arranged in front of the main amplifiers 110 and 112, respectively, in order to match the phase in the signal combining portion.
  • the Doherty amplifier can amplify a signal having a predetermined frequency with high efficiency by adjusting the electrical length of the adjustment lines 111, 113, and 114.
  • the electrical length is indicated by using a phase, and may be expressed as 90 degrees, for example.
  • the phase may be indicated using the wavelength ⁇ , for example, ⁇ / 4 phase shift indicates a 90 degree phase shift.
  • the adjustment line 114 having a characteristic impedance of 35.5 ⁇ and an electrical length of 90 degrees at 666 MHz is used.
  • the effective band when the adjustment line 114 is used is approximately 630 MHz to 700 MHz.
  • each of the adjustment line 111 and the adjustment line 113 is adjusted so that a signal having a frequency of 630 MHz to 700 MHz can be transmitted with high efficiency.
  • the Doherty amplifier of FIG. 10 when the Doherty amplifier of FIG. 10 is used, there is a problem that it can be applied only to a so-called narrow band signal.
  • a Doherty amplifier In general, a Doherty amplifier is used in a base station or the like that communicates with a mobile phone terminal, and the frequency band used when communicating between the mobile phone terminal and the base station is predetermined. . Therefore, a Doherty amplifier that is applied to a so-called narrow-band signal is used in the base station.
  • Doherty amplifiers that can be used in a wide frequency range.
  • Patent Document 1 discloses a configuration of an impedance matching circuit having a high-pass filter and a low-pass filter.
  • the impedance control circuit disclosed in Patent Document 1 is used in a Doherty amplifier used for performing narrowband communication, and an impedance matching circuit that simply operates in a wideband. It only discloses the configuration.
  • An object of the present invention is to provide a Doherty amplifier that can be used in a wide frequency range, which is the above-described problem.
  • a Doherty amplifier includes a distribution unit that distributes an input signal, a main amplifier that amplifies a first distribution signal output from the distribution unit, and the first amplifier that is amplified by the main amplifier.
  • a first transmission line section that transmits one distribution signal; a peak amplifier that amplifies a second distribution signal output from the distribution section; and a second distribution signal that is amplified by the peak amplifier.
  • a synthesized signal obtained by synthesizing the second transmission line section, the first distribution signal output from the first transmission line section, and the second distribution signal output from the second transmission line section.
  • an impedance converter that performs impedance conversion of the combined signal output from the combiner, and the impedance converter includes a plurality of ⁇ / 4 transmission lines connected in series. It is characterized in that it was.
  • a transmission device includes a signal generation unit capable of generating an input signal at an arbitrary frequency, a distribution unit that distributes the input signal, and a first output from the distribution unit.
  • a main amplifier for amplifying the distribution signal, a first transmission line section for transmitting the first distribution signal amplified by the main amplifier, and a peak for amplifying the second distribution signal output from the distribution section.
  • An amplifier a second transmission line section that transmits the second distribution signal amplified in the peak amplifier, and has substantially the same impedance as the first transmission line section; and the first transmission line A combining unit that combines the first distribution signal output from the unit and the second distribution signal output from the second transmission line unit and outputs a combined signal; and outputs from the combining unit
  • the composite signal An impedance conversion unit that performs impedance conversion of the signal, and a signal transmission unit that transmits a signal output from the impedance conversion unit to an opposing device, wherein the frequency of the input signal is changed in the impedance conversion unit Accordingly, when it is necessary to adjust the transmission line length of the first and second transmission line sections, the bandwidth is increased to such an extent that adjustment of the transmission line length is unnecessary.
  • FIG. 1 is a configuration diagram of a Doherty amplifier according to a first exemplary embodiment
  • FIG. 3 is a configuration diagram of a transmission device according to a second exemplary embodiment
  • FIG. 3 is a configuration diagram of a Doherty amplifier according to a second exemplary embodiment
  • FIG. 6 is a configuration diagram of an impedance converter according to a second embodiment. It is a figure explaining the frequency band which can be used at the time of using the impedance conversion part concerning Embodiment 2.
  • FIG. It is a figure explaining the frequency band which can be used at the time of using the impedance conversion part concerning Embodiment 2.
  • FIG. FIG. 6 is a configuration diagram of an impedance converter according to a third embodiment.
  • FIG. It is a figure explaining the frequency band which can be used at the time of using the impedance conversion part concerning Embodiment 3.
  • FIG. It is a figure explaining the frequency band which can be used at the time of using the impedance conversion part concerning Embodiment 3.
  • FIG. It is a block diagram of a general Doherty amplifier. It is a figure explaining the frequency band which can be used at the time of using a general Doherty amplifier.
  • the Doherty amplifier 10 in FIG. 1 includes a distribution unit 11, a main amplifier 12, a transmission line unit 13, a peak amplifier 14, a transmission line unit 15, a combining unit 16, and an impedance conversion unit 17.
  • the distributing unit 11 distributes the signal input to the Doherty amplifier 10, and outputs the distributed signal to the main amplifier 12 and the peak amplifier 14, respectively.
  • the signal input to the Doherty amplifier 10 may be a so-called high frequency signal such as several hundred MHz or several GHz.
  • the main amplifier 12 amplifies the distribution signal output from the distribution unit 11.
  • the main amplifier 12 for example, an amplifier of A class, B class, or AB class may be used.
  • the main amplifier 12 transmits the amplified distribution signal via the transmission line unit 13.
  • the transmission line unit 13 is used to transmit a signal output from the main amplifier 12.
  • the transmission line unit 13 shifts the phase of the signal while the characteristic impedance remains 50 ⁇ .
  • a copper plate may be used for the transmission line unit 13.
  • PWB PrintPrintWiring Board
  • the transmission line length may be paraphrased as an electrical length, for example.
  • the transmission line unit 13 is set to the frequency of the input signal in advance. Accordingly, the transmission line portion 13 having an appropriate electrical length is adjusted. Alternatively, the transmission line unit 13 is replaced in advance with a transmission line unit having an appropriate electrical length according to the frequency of the input signal.
  • the peak amplifier 14 amplifies the distribution signal output from the distribution unit 11.
  • the peak amplifier 14 for example, a C-class amplifier having high efficiency characteristics may be used.
  • the peak amplifier 14 transmits the amplified distribution signal via the transmission line unit 15.
  • the transmission line unit 15 is used to transmit a signal output from the peak amplifier 14.
  • the transmission line unit 15 shifts the phase of the signal while the characteristic impedance remains 50 ⁇ .
  • a copper plate may be used similarly to the transmission line unit 13. Based on the electrical length of the transmission line unit 15, when the peak amplifier 14 is turned OFF and only the main amplifier 12 is operated when a small electric power is input, the transmission line unit 15 becomes OPEN when viewed from the main amplifier 12 (no effect). Is determined.
  • the transmission line unit 15 when a signal having a frequency other than the frequency of a signal that appears to be OPEN when viewed from the main amplifier 12 side is input to the Doherty amplifier 10 when the peak amplifier 14 is OFF in the transmission line unit 15, the transmission line unit 15 The transmission line unit 15 having an appropriate electrical length is adjusted according to the frequency of the input signal. Alternatively, the transmission line unit 15 is replaced in advance with a transmission line unit 15 having an appropriate electrical length according to the frequency of the input signal.
  • the amplified signal from the main amplifier 12 transmitted through the transmission line unit 13 and the amplified signal from the peak amplifier 14 transmitted through the transmission line unit 15 are input to the combining unit 16.
  • the synthesizer 16 synthesizes the amplified signals from the respective amplifiers input via the transmission line units 13 and 15.
  • the synthesizer 16 outputs the synthesized signal synthesized to the impedance converter 17.
  • the impedance conversion unit 17 converts the characteristic impedance of the synthesis unit 16 to the characteristic impedance at the output of the Doherty amplifier 10. For example, the impedance conversion unit 17 performs impedance conversion from the characteristic impedance 25 ⁇ of the combining unit 16 to the characteristic impedance of the output unit of the Doherty amplifier 10 from 50 ⁇ .
  • the frequency of a signal that can be subjected to impedance conversion or the frequency of a signal that can be transmitted is determined in advance as in the transmission line unit 13 and the transmission line unit 15.
  • the frequency of the signal that can be processed by the impedance conversion unit 17 is sufficiently widened as compared with the transmission line unit 13 and the transmission line unit 15.
  • the impedance converter 17 is widened to the extent that adjustment of the length is unnecessary.
  • the impedance converter 17 By making the impedance converter 17 wider, it is possible to reduce the transmission line length, that is, the place where the electrical length is adjusted. For example, in the Doherty amplifier of FIG. 10, when signals having different frequencies are input, it is necessary to adjust the electrical length of the adjustment lines 111, 113, and 114. On the other hand, in the Doherty amplifier 10 of FIG. 1, the impedance converter 17 can transmit signals of various frequencies because the impedance converter 17 has a wide band. Therefore, in the Doherty amplifier 10, only the electrical lengths of the transmission line unit 13 and the transmission line unit 15 need be adjusted even when signals having different frequencies are input. That is, compared to the Doherty amplifier of FIG. 10, the Doherty amplifier 10 of FIG. 1 has the effect that one element that needs to be adjusted is reduced when signals having different frequencies are input.
  • the transmission device 40 may be, for example, a broadcast communication device that supports multi-channel communication, or may be a base station device or the like.
  • the communication device is not limited to a broadcast communication device or a base station device, and may be a communication device having a wider use frequency.
  • the transmission device 40 includes a signal generation unit 20, a Doherty amplifier 10, and a transmission unit 30.
  • the Doherty amplifier 10 is the same as the Doherty amplifier 10 described in FIG. Therefore, detailed description regarding the Doherty amplifier 10 is omitted.
  • the signal generation unit 20 generates an RF (Radio Frequency) signal.
  • the signal generation unit 20 outputs the generated RF signal to the Doherty amplifier 10.
  • the signal generation unit 20 may generate an RF signal at an arbitrary frequency.
  • the signal generation unit 20 may change the frequency band of the generated RF signal when channels having different usage frequency bands are set.
  • the frequency band that can be generated by the signal generation unit 20 may be determined according to the frequency band of a signal that can be amplified by the Doherty amplifier 10. For example, in the Doherty amplifier 10, when the usable frequency band is changed by exchanging the transmission line unit, the signal generation unit 20 may generate an RF signal having the changed frequency band. .
  • the signal generation unit 20 may generate RF signals of a plurality of frequency bands, or when the transmission device 40 includes a plurality of signal generation units 20, the signal generation unit 20 generates a signal to be used as the frequency band of the RF signal is changed.
  • the unit 20 may be switched.
  • the Doherty amplifier 10 amplifies the RF signal output from the signal generation unit 20.
  • the Doherty amplifier 10 outputs the amplified RF signal to the transmission unit 30.
  • the transmission unit 30 transmits the RF signal output from the Doherty amplifier 10 to another communication device different from the transmission device 40.
  • the Doherty amplifier 10 is disposed in the transmission device 40, for example, and is used to amplify the RF signal processed by the transmission device 40. At this time, the transmitter 40 can transmit RF signals of various frequency bands by adjusting or exchanging the transmission line section in the Doherty amplifier 10.
  • the Doherty amplifier 10 includes a distribution unit 11, a main amplifier 12, an adjustment line 51, a peak amplifier 14, an adjustment line 52, an adjustment line 53, an adjustment line 54, and a synthesis unit 16.
  • the distribution unit 11 is a connection point between the input terminal, the main amplifier 12 and the peak amplifier 14. Since the main amplifier 12 and the peak amplifier 14 are the same as those in FIG.
  • the combining unit 16 is a connection point between the adjustment line 51, the adjustment line 52, and the impedance conversion unit 17.
  • the adjustment line 51 and the adjustment line 52 correspond to the transmission line unit 13 and the transmission line unit 15 in FIG.
  • a copper plate is used for the adjustment line 51 and the adjustment line 52, and the length of the copper plate is adjusted according to the frequency band of the signal to be transmitted.
  • the characteristic impedance of the line is changed by adjusting the width of the adjustment line 51 and the adjustment line 52.
  • the adjustment line 51 and the adjustment line 52 are copper plates having a characteristic impedance of 50 ⁇ .
  • the length of the adjustment line 51 and the adjustment line 52 is the length in the same direction as the direction in which the signal is transmitted, and the width is the length in the direction orthogonal to the direction in which the signal is transmitted.
  • the adjustment line 51 may be a copper plate having an electrical length 90 degrees longer than that of the adjustment line 52. That is, the adjustment line 51 makes the electrical length 90 degrees longer than the adjustment line 52, and delays the phase of the signal to be transmitted by 90 degrees.
  • the reason why the adjustment line 51 is 90 degrees longer than the electrical length of the adjustment line 52 is as follows.
  • the peak amplifier 14 is turned on or off depending on the level of the input signal. For example, when the level of the input signal is lower than a predetermined level, the operation of the peak amplifier 14 is stopped and is turned off. Thus, when the peak amplifier 14 is in the OFF state, it is necessary to prevent a signal output from the main amplifier 12 from passing through the adjustment line 51 to the adjustment line 52 and the peak amplifier 14. That is, when the peak amplifier 14 is in the OFF state, all signals output from the main amplifier 12 need to be transmitted to the impedance converter 17. At this time, when the adjustment line 52 is 90 degrees shorter than the electrical length of the adjustment line 51, it is possible to prevent the signal output from the main amplifier 12 from entering the adjustment line 52 and the peak amplifier 14. Therefore, the electrical length of the adjustment line 51 is formed to be 90 degrees longer than the adjustment line 52.
  • the signals transmitted through the adjustment line 51 and the adjustment line 52 are combined in the combining unit 16 and output to the impedance conversion unit 17. Further, the adjustment lines 53 and 54 are arranged between the distribution unit 11 and the main amplifier 12 and between the distribution unit 11 and the peak amplifier 14 in order to match the phase in the synthesis unit 16.
  • the impedance converter 17 includes impedance converters 61 to 63.
  • the impedance converters 61 to 63 are connected in series between the combining unit 16 and the output terminal.
  • the impedance converters 61 to 63 are transmission lines having an electrical length of ⁇ / 4 (90 degrees). Further, the impedance converters 61 to 63 determine the characteristic impedance based on the width of the length in the direction orthogonal to the direction of the electrical length.
  • the change in the usable frequency band when the impedance converter 17 of FIG. 4 is used will be described with reference to FIG.
  • the characteristic impedance of the impedance converters 61 to 63 when the impedance at the output terminal of the Doherty amplifier 10 is 50 ⁇ and the impedance at the combining unit 16 is 25 ⁇ will be described.
  • the characteristic impedance at the output terminal is generally set to 50 ⁇ , which is used as the characteristic impedance of a signal output to another circuit.
  • the impedance at the branch point is 25 ⁇ because lines having a characteristic impedance of 50 ⁇ are connected in parallel.
  • the characteristic impedance in the impedance converter 62 disposed in the center is calculated as a square root of 50 ( ⁇ ) ⁇ 25 ( ⁇ ).
  • the characteristic impedance of the impedance converter 62 is set to 35.4 ⁇ .
  • the characteristic impedance of the impedance converter 61 is calculated as a square root of 25 ⁇ 35.4.
  • the characteristic impedance of the impedance converter 61 is set to 29.7 ⁇ .
  • the characteristic impedance of the impedance converter 63 is calculated as a square root of 50 ⁇ 35.4.
  • the characteristic impedance of the impedance converter 63 is set to 42 ⁇ .
  • the characteristic impedance in the impedance converters 61 to 63 is set to a value that increases from the impedance converter 61 toward the impedance converter 63.
  • FIG. 5 shows the relationship between the frequency and the return loss characteristic when the characteristic impedance calculated in this way is set in the impedance converters 61-63.
  • FIG. 5 shows an overall improvement in the return loss characteristic compared to FIG. 11 showing the relationship between the frequency and the return loss characteristic when only one impedance converter having a characteristic impedance of 35.5 ⁇ is used. It is shown that. However, assuming that the region of ⁇ 30 dB or less is an effective band, the effective band is approximately 630 MHz to 700 MHz, which is not significantly different from FIG.
  • FIG. 6 shows the case where the characteristic impedance of the impedance converter 61 is set to 28.2 ⁇ , the characteristic impedance of the impedance converter 62 is set to 35.9 ⁇ , and the characteristic impedance of the impedance converter 63 is set to 45.5 ⁇ .
  • the relationship between frequency and return loss characteristics is shown.
  • the characteristic impedance in each impedance converter may be adjusted using, for example, a simulation device.
  • the effective band is approximately 420 MHz to 900 MHz.
  • the effective bandwidth has been expanded and widened.
  • the impedance converter 17 By making the impedance converter 17 wider, for example, when the frequency of the signal input to the Doherty amplifier 10 changes in the range of 420 MHz to 900 MHz, the electrical lengths of the adjustment line 51 and the adjustment line 52. It is not necessary to adjust the electrical length or the like of the impedance converters 61 to 63 constituting the impedance conversion unit 17 even if it is adjusted to an appropriate length or replaced with an adjustment line having an appropriate electrical length.
  • the number of connections may be changed according to the expansion width of the effective frequency band.
  • a frequency band used for terrestrial digital broadcasting or the like in the UHF band can be covered.
  • the impedance converter 17 can be made wider and changing the electrical length or the like within a predetermined frequency band.
  • the impedance conversion unit 17 is disposed inside the device that is difficult to access in maintenance work or the like, and an adjustment line 51 and an adjustment line that require adjustment or replacement work or the like. 52 may be arranged at a position close to the surface of the apparatus that can be easily accessed during maintenance work.
  • the impedance conversion unit 17 is disposed at a position that is substantially inoperable inside the apparatus, and the adjustment line 51 and the adjustment line 52 are at positions that can be easily operated when the cover on the surface of the apparatus is removed. You may arrange.
  • the degree of freedom regarding the position where the impedance conversion unit 17 is arranged increases, and the design of the apparatus having the Doherty amplifier 10 becomes easy.
  • the impedance conversion unit 17 includes distributed constant circuit elements 71 to 76.
  • distributed constant circuit elements 71 to 75 are connected in series.
  • each circuit element is, for example, a transmission line having a different electrical length and width, and distributed constant circuit elements.
  • a plurality of transmission lines may be connected to 71 to 76 to form one transmission line. Since one transmission line configured in this manner has transmission lines with different widths, it may be a transmission line having an uneven width. Further, one transmission line to which a plurality of distributed constant circuit elements are connected may be formed using a copper plate.
  • the change of the usable frequency band when the impedance conversion unit 17 of FIG. 7 is used will be described with reference to FIG.
  • the characteristic impedances of the impedance converters 61 to 63 when the characteristic impedance at the output terminal of the Doherty amplifier 10 is 50 ⁇ and the impedance at the combining unit 16 is 25 ⁇ will be described.
  • the length and width of the distributed constant circuit element 71 are set so that the electrical length is 8 degrees at 666 MHz and the characteristic impedance is 100 ⁇ .
  • the distributed constant circuit element 72 has an electric length of 43 degrees and a characteristic impedance of 20 ⁇ at 666 MHz
  • the distributed constant circuit element 73 has an electric length of 19 degrees and a characteristic impedance of 100 ⁇ at 666 MHz.
  • the element 74 has an electrical length of 33 degrees and a characteristic impedance of 20 ⁇ at 666 MHz
  • the distributed constant circuit element 75 has an electrical length of 23 degrees and a characteristic impedance of 100 ⁇
  • the distributed constant circuit element 76 has an electrical length at 666 MHz. Is set to 13 degrees and the characteristic impedance is set to 20 ⁇ .
  • FIG. 8 shows the relationship between the return loss characteristic and the frequency when the electrical length and the transmission line width are set as described above.
  • FIG. 8 shows that the effective band is about 450 MHz to 900 MHz when the region of ⁇ 30 dB or less is defined as the effective band. Therefore, the impedance converter 17 can also be widened by configuring the impedance converter 17 using a distributed constant circuit as shown in FIG. Further, when the electrical length is set as described above, the electrical length of the impedance converter 17 in FIG. 7 is 139 degrees at the frequency of 666 MHz, and the electrical length is 270 degrees at 666 MHz. Compared with, it can be a short electrical length. Therefore, the downsizing of the Doherty amplifier 10 can be realized.
  • FIG. 9 shows the relationship between the return loss characteristic and the insertion loss characteristic when the frequency band is expanded to GHz.
  • the impedance converter 17 configured using a distributed constant circuit also operates as an LPF (Low Pass Filter) having a pass band of about 500 MHz to 900 MHz. That is, even when the impedance conversion unit 17 is an LPF, the bandwidth can be increased so as to pass a signal of a predetermined frequency band.
  • LPF Low Pass Filter
  • the configuration of the LPF using the distributed constant circuit has been described as the impedance conversion unit 17, but an LPF having a different circuit configuration may be used. Further, the impedance conversion unit 17 operates as an LPF, so that harmonic components generated in the main amplifier 12 and the peak amplifier 14 can be removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

 本発明におけるドハティアンプ(10)は、入力信号を分配する分配部(11)と、分配部(11)から出力された第1の分配信号を増幅するメインアンプ(12)と、メインアンプ(12)において増幅された第1の分配信号を伝送する伝送線路部(13)と、分配部(11)から出力された第2の分配信号を増幅するピークアンプ(14)と、ピークアンプ(14)において増幅された第2の分配信号を伝送する伝送線路部(15)と、第1の分配信号と第2の分配信号とを合成して合成信号を出力する合成部(16)と、合成部(16)から出力される合成信号のインピーダンス変換を行うインピーダンス変換部(17)と、を備え、インピーダンス変換部(17)は、複数のλ/4伝送線路が直列に接続される。

Description

ドハティアンプ及び送信装置
 本発明はドハティアンプ及び送信装置に関し、特に複数の周波数帯域の信号を増幅するドハティアンプ及び送信装置に関する。
 携帯電話端末へ信号を送信する基地局等の送信装置において、効率的に信号増幅を行う増幅器としてドハティアンプが用いられている。ドハティアンプは、低レベルの信号が入力された場合、ABクラス等の特性を有するメインアンプが動作し、高レベルの信号が入力された場合、メインアンプとともにCクラス等の特性を有するピークアンプが動作する。このように、入力される信号のレベルに応じて動作するアンプを制御することによって、高効率な信号増幅を実現している。
 図10を用いて、一般的なドハティアンプの構成例を説明する。一般的なドハティアンプは、入力された信号が分配され、分配された信号がメインアンプ110及びピークアンプ112へ出力される。メインアンプ110へ入力された信号は、メインアンプ110において増幅され、調整ライン111を介して伝送される。また、ピークアンプ112へ入力された信号は、ピークアンプ112において増幅され、調整ライン113を介して伝送される。調整ライン111及び調整ライン113を介してそれぞれ伝送された信号は、合成され、合成された信号は、調整ライン114を介して伝送される。また、調整ライン115及び調整ライン116は、信号の合成部分における位相を合わせるために、それぞれメインアンプ110及び112の前段に配置される。
 ここで、ドハティアンプは、調整ライン111、113及び114の電気長を調整することによって、予め定められた周波数を有する信号の増幅を高効率で行うことができる。ここで、電気長は、位相を用いて示され、例えば90度等とあらわされてもよい。例えば、電気長90度とした場合、信号を90度位相シフトすることを示す。また、位相は、波長λを用いて示されてもよく、例えば、λ/4位相シフトは、90度位相シフトを示す。
 例えば、調整ライン114の出力側インピーダンスが50Ω、調整ライン114の入力側インピーダンスが25Ωに整合させる場合、35.5Ωの特性インピーダンスを有した666MHzにおける電気長90度の調整ライン114を用いるとする。このような場合、図11に示すように、リターンロス特性が-30dB以下の周波数帯域を有効帯域とすると、調整ライン114を用いた場合の有効帯域は、大体630MHz~700MHzとなる。
 また、調整ライン111及び調整ライン113についても、630MHz~700MHzの周波数を有する信号を高効率に伝送することができるように、それぞれ電気長が調整される。
 このようにして、調整ライン111、113及び114の電気長を制御することによって、所望の周波数帯域の信号を高効率で増幅するドハティアンプを動作させることができる。
特表2010-502117号公報
 しかし、図10のドハティアンプを用いる場合、予め定められたいわゆる狭帯域の信号のみにしか適用することができないという問題がある。一般的に、ドハティアンプは、携帯電話端末と通信を行う基地局等に用いられており、携帯電話端末と基地局との間において通信を行う際に用いられる周波数帯域は、予め定められていた。そのため、基地局にいわゆる狭帯域の信号に適用されるドハティアンプが用いられていた。しかし、今後、様々なチャネルを有する放送機器にドハティアンプを適用することを考慮して、広帯域な周波数において使用することができるドハティアンプが求められている。
 例えば、特許文献1には、高域通過フィルタ及び低域通過フィルタを有するインピーダンス整合回路の構成が開示されている。しかし、特許文献1に開示されているインピーダンス制御回路は、狭帯域通信を行うために用いられるドハティアンプにおいてどのように用いられるかについては何ら示唆されておらず、単に広帯域で動作するインピーダンス整合回路の構成を開示しているに過ぎない。
 本発明の目的は、上述した課題である、広帯域な周波数において使用することができるドハティアンプを提供することにある。
 本発明の第1の態様にかかるドハティアンプは、入力信号を分配する分配部と、前記分配部から出力された第1の分配信号を増幅するメインアンプと、前記メインアンプにおいて増幅された前記第1の分配信号を伝送する第1の伝送線路部と、前記分配部から出力された第2の分配信号を増幅するピークアンプと、前記ピークアンプにおいて増幅された前記第2の分配信号を伝送する第2の伝送線路部と、前記第1の伝送線路部から出力される前記第1の分配信号と前記第2の伝送線路部から出力される前記第2の分配信号とを合成して合成信号を出力する合成部と、前記合成部から出力される前記合成信号のインピーダンス変換を行うインピーダンス変換部と、を備え、前記インピーダンス変換部は、複数のλ/4伝送線路が直列に接続されたことを特徴とするものである。
 本発明の第2の態様にかかる送信装置は、任意の周波数における入力信号を生成することが可能な信号生成部と、前記入力信号を分配する分配部と、前記分配部から出力された第1の分配信号を増幅するメインアンプと、前記メインアンプにおいて増幅された前記第1の分配信号を伝送する第1の伝送線路部と、前記分配部から出力された第2の分配信号を増幅するピークアンプと、前記ピークアンプにおいて増幅された前記第2の分配信号を伝送し、前記第1の伝送線路部と実質的に同一のインピーダンスを有する第2の伝送線路部と、前記第1の伝送線路部から出力される前記第1の分配信号と前記第2の伝送線路部から出力される前記第2の分配信号とを合成して合成信号を出力する合成部と、前記合成部から出力される前記合成信号のインピーダンス変換を行うインピーダンス変換部と、前記インピーダンス変換部から出力された信号を対向する装置へ送信する信号送信部と、を備え、前記インピーダンス変換部は、前記入力信号の周波数が変更されることに伴い前記第1及び第2の伝送線路部の伝送線路長の調整が必要となる場合に、伝送線路長の調整が不要な程度に広帯域化されたものである。
 本発明により、広帯域な周波数における中で任意のチャンネルへ容易に調整して使用することができるドハティアンプを提供することができる。
実施の形態1にかかるドハティアンプの構成図である。 実施の形態2にかかる送信装置の構成図である。 実施の形態2にかかるドハティアンプの構成図である。 実施の形態2にかかるインピーダンス変換部の構成図である。 実施の形態2にかかるインピーダンス変換部を用いた場合の使用可能周波数帯域を説明する図である。 実施の形態2にかかるインピーダンス変換部を用いた場合の使用可能周波数帯域を説明する図である。 実施の形態3にかかるインピーダンス変換部の構成図である。 実施の形態3にかかるインピーダンス変換部を用いた場合の使用可能周波数帯域を説明する図である。 実施の形態3にかかるインピーダンス変換部を用いた場合の使用可能周波数帯域を説明する図である。 一般的なドハティアンプの構成図である。 一般的なドハティアンプを用いた場合の使用可能周波数帯域を説明する図である。
 (実施の形態1)
 以下、図面を参照して本発明の実施の形態について説明する。はじめに、図1を用いて本発明の実施の形態1にかかるドハティアンプの構成例について説明する。図1のドハティアンプ10は、分配部11、メインアンプ12、伝送線路部13、ピークアンプ14、伝送線路部15、合成部16及びインピーダンス変換部17を有している。
 分配部11は、ドハティアンプ10に入力された信号を分配し、分配した信号をそれぞれメインアンプ12及びピークアンプ14へ出力する。ドハティアンプ10に入力される信号は、例えば、数百MHz、数GHz等のいわゆる高周波信号であってもよい。
 次に、メインアンプ12は、分配部11から出力された分配信号を増幅する。メインアンプ12は、例えば、Aクラス、BクラスもしくはABクラスのアンプが用いられてもよい。メインアンプ12は、増幅した分配信号を、伝送線路部13を介して伝送する。
 伝送線路部13は、メインアンプ12から出力される信号を伝送するために用いられる。伝送線路部13は、特性インピーダンスが50Ωのままで信号の位相をシフトさせる。伝送線路部13は、例えば、銅板が用いられてもよい。伝送線路部13に銅板を用いることによって、PWB(Printed Wiring Board)パターンによって伝送線路部13を構成する場合と比較して伝送ロスの増大を防止することができる。伝送線路部13の伝送線路長に基づいて、メインアンプ12が高効率に動作することができる信号の周波数が定められる。伝送線路長は、例えば電気長と言い換えられてもよい。例えば、伝送線路部13においてメインアンプ12が高効率に動作できる信号の周波数以外の周波数を有する信号がドハティアンプ10に入力される場合、事前に伝送線路部13は、入力される信号の周波数に応じて適切な電気長を有する伝送線路部13に調整される。もしくは、事前に伝送線路部13は、入力される信号の周波数に応じて適切な電気長を有する伝送線路部に交換される。
 次に、ピークアンプ14は、分配部11から出力された分配信号を増幅する。ピークアンプ14は、例えば、高効率な特性を有するCクラスのアンプが用いられてもよい。ピークアンプ14は、増幅した分配信号を、伝送線路部15を介して伝送する。
 伝送線路部15は、ピークアンプ14から出力される信号を伝送するために用いられる。伝送線路部15は、特性インピーダンスが50Ωのままで信号の位相をシフトさせる。伝送線路部15は、例えば、伝送線路部13と同様に銅板が用いられてもよい。伝送線路部15の電気長に基づいて、小電力入力時にピークアンプ14がOFFとなりメインアンプ12だけが動作した際に伝送線路部15がメインアンプ12から見てOPENとなる(影響が無くなる)信号の周波数が定められる。例えば、伝送線路部15においてピークアンプ14がOFFの場合にメインアンプ12側からみてOPENと見える信号の周波数以外の周波数を有する信号がドハティアンプ10に入力される場合、事前に伝送線路部15は、入力される信号の周波数に応じて適切な電気長を有する伝送線路部15に調整される。もしくは、事前に伝送線路部15は、入力される信号の周波数に応じて適切な電気長を有する伝送線路部15に交換される。
 伝送線路部13を介して伝送されたメインアンプ12による増幅信号及び伝送線路部15を介して伝送されたピークアンプ14による増幅信号は、合成部16へ入力される。合成部16は、伝送線路部13及び15を介して入力されたそれぞれのアンプからの増幅信号を合成する。合成部16は、合成した合成信号をインピーダンス変換部17へ出力する。
 インピーダンス変換部17は、合成部16の特性インピーダンスからドハティアンプ10の出力における特性インピーダンスへ変換する。例えば、インピーダンス変換部17は、合成部16の特性インピーダンス25Ωからドハティアンプ10の出力部の特性インピーダンスが50Ωまでのインピーダンス変換を行う。
 ここで、インピーダンス変換部17は、伝送線路部13及び伝送線路部15と同様にインピーダンス変換を行うことができる信号の周波数もしくは伝送することができる信号の周波数が予め定められている。但し、インピーダンス変換部17が処理することができる信号の周波数は、伝送線路部13と伝送線路部15と比較すると十分に広帯域化されている。具体的には、ドハティアンプ10に入力される信号の周波数が変更されることに伴い伝送線路部13及び伝送線路部15の電気長を調整する必要がある場合においても、インピーダンス変換部17の電気長の調整が不要な程度まで、インピーダンス変換部17は広帯域化される。
 以上説明したように、ドハティアンプ10におけるインピーダンス変換部17を広帯域化し、伝送線路部13及び伝送線路部15のみの調整を行うことによって、ドハティアンプ10を高効率で使用することが可能な周波数帯域を広帯域化することができる。
 さらに、インピーダンス変換部17を広帯域化することによって、伝送線路長、つまり電気長の調整を行う箇所を減少させることができる。例えば、図10のドハティアンプにおいては、異なる周波数の信号を入力する場合、調整ライン111、113及び114の電気長を調整する必要がある。これに対して、図1のドハティアンプ10は、インピーダンス変換部17が広帯域化されていることによって、インピーダンス変換部17は、様々な周波数の信号を伝送させることができる。そのため、ドハティアンプ10においては、異なる周波数の信号が入力される場合においても、伝送線路部13及び伝送線路部15の電気長のみを調整すればよい。つまり、図10のドハティアンプと比較して、図1のドハティアンプ10は、異なる周波数の信号を入力する場合において、調整が必要となる素子が1つ減るという効果を有する。
 (実施の形態2)
 続いて、図2を用いて本発明の実施の形態2にかかる送信装置40の構成例について説明する。送信装置40は、例えば、複数チャンネルの通信に対応した放送用通信装置であってもよく、もしくは、基地局装置等であってもよい。または、放送用通信装置もしくは基地局装置等に制限されず、使用周波数が広帯域化された通信装置であってもよい。
 送信装置40は、信号生成部20、ドハティアンプ10及び送信部30を有している。ドハティアンプ10は、図1において説明したドハティアンプ10と同様である。そのため、ドハティアンプ10に関する詳細な説明を省略する。
 信号生成部20は、RF(Radio Frequency)信号を生成する。信号生成部20は、生成したRF信号をドハティアンプ10へ出力する。ここで、信号生成部20は、任意の周波数におけるRF信号を生成してもよい。例えば、信号生成部20は、使用周波数帯域が異なるチャネルが設定された場合に、生成するRF信号の周波数帯域を変更してもよい。
 信号生成部20が生成可能な周波数帯域は、ドハティアンプ10において増幅可能な信号の周波数帯域に応じて定められてもよい。例えば、ドハティアンプ10において、伝送線路部を交換したことにより使用可能な周波数帯域が変更された場合、信号生成部20においても、変更後の周波数帯域を有するRF信号を生成するようにしてもよい。
 信号生成部20は、複数の周波数帯域のRF信号を生成してもよく、もしくは、送信装置40が複数の信号生成部20を有する場合、RF信号の周波数帯域の変更に伴い、使用する信号生成部20を切り替えてもよい。
 ドハティアンプ10は、信号生成部20から出力されたRF信号を増幅する。ドハティアンプ10は、増幅したRF信号を送信部30へ出力する。送信部30は、ドハティアンプ10から出力されたRF信号を送信装置40とは異なる他の通信装置へ送信する。
 以上説明したように、ドハティアンプ10は、例えば、送信装置40内に配置され、送信装置40が処理するRF信号を増幅するために用いられる。この時、ドハティアンプ10内の伝送線路部を調整もしくは交換することによって、送信装置40は、様々な周波数帯域のRF信号を送信することができる。
 続いて、図3を用いて本発明の実施の形態2にかかるドハティアンプ10の構成例について説明する。図3においては、主に分配部11と合成部16との間の構成例について説明する。
 ドハティアンプ10は、分配部11、メインアンプ12、調整ライン51、ピークアンプ14、調整ライン52、調整ライン53、調整ライン54及び合成部16を有している。分配部11は、入力端子、メインアンプ12及びピークアンプ14の接続点である。メインアンプ12及びピークアンプ14は、図1と同様であるため詳細な説明を省略する。また、合成部16は、調整ライン51、調整ライン52及びインピーダンス変換部17の接続点である。
 調整ライン51及び調整ライン52は、図1における伝送線路部13及び伝送線路部15に相当する。調整ライン51及び調整ライン52には、例えば銅板が用いられ、伝送する信号の周波数帯域に応じて銅板の長さが調整される。また、調整ライン51及び調整ライン52は、幅を調整することによって線路の特性インピーダンスが変更される。例えば、調整ライン51及び調整ライン52は、特性インピーダンスが50Ωである銅板が用いられる。ここで、調整ライン51及び調整ライン52の長さとは、信号が伝送する方向と同一方向の長さであり、幅とは、信号が伝送する方向と直交する方向の長さである。
 また、調整ライン51は、調整ライン52よりも電気長が90度長い銅板が用いられてもよい。つまり、調整ライン51は、調整ライン52よりも電気長を90度長くし、伝送する信号の位相を90度遅らせる。調整ライン51が、調整ライン52の電気長よりも90度長くする理由は、次のとおりである。
 ピークアンプ14は、入力される信号のレベルに応じて、ON状態もしくはOFF状態となる。例えば、入力される信号のレベルが予め定められたレベルよりも低い場合、ピークアンプ14の動作は停止され、OFF状態となる。このようにピークアンプ14がOFF状態である場合、調整ライン51を介してメインアンプ12から出力される信号が、調整ライン52及びピークアンプ14へ回り込むことを防止する必要がある。つまり、ピークアンプ14がOFF状態である場合、メインアンプ12から出力される信号は、全てインピーダンス変換部17へ伝送される必要がある。この時、調整ライン52が、調整ライン51の電気長よりも90度短い場合、メインアンプ12から出力された信号が、調整ライン52及びピークアンプ14へ回り込むことを防止することができる。そのため、調整ライン51の電気長は、調整ライン52よりも90度長くなるように形成されている。
 調整ライン51及び調整ライン52を介して伝送された信号は、合成部16において合成され、インピーダンス変換部17へ出力される。また、調整ライン53及び54は、合成部16における位相を合わせるために、分配部11とメインアンプ12との間及び、分配部11とピークアンプ14との間にそれぞれ配置される。
 続いて、図4を用いて本発明の実施の形態2にかかるインピーダンス変換部17の構成例について説明する。インピーダンス変換部17は、インピーダンス変換器61~63を有している。インピーダンス変換器61~63は、合成部16と出力端子との間において、直列に接続している。
 インピーダンス変換器61~63は、電気長がλ/4(90度)である伝送線路である。また、インピーダンス変換器61~63は、電気長の長さの方向と直交する方向の長さの幅に基づいて、特性インピーダンスが決定される。
 ここで、図5を用いて、図4のインピーダンス変換部17を用いた場合の使用可能周波数帯域の変化について説明する。例えば、ドハティアンプ10の出力端子におけるインピーダンスを50Ωとし、合成部16におけるインピーダンスを25Ωとした場合におけるインピーダンス変換器61~63の特性インピーダンスについて説明する。出力端子における特性インピーダンスは、一般的に他の回路へ出力する信号の特性インピーダンスとして用いられる50Ωと設定する。分岐点におけるインピーダンスは、特性インピーダンス50Ωの線路が並列に接続されているので25Ωとなる。
 この場合、直列に接続されるインピーダンス変換器61~63のうち、中央に配置されるインピーダンス変換器62における特性インピーダンスは、50(Ω)×25(Ω)の平方根として算出される。ここでは、インピーダンス変換器62の特性インピーダンスを35.4Ωと設定する。さらに、インピーダンス変換器61の特性インピーダンスは、25×35.4の平方根として算出される。ここでは、インピーダンス変換器61の特性インピーダンスは、29.7Ωと設定する。さらに、インピーダンス変換器63の特性インピーダンスは、50×35.4の平方根として算出される。ここでは、インピーダンス変換器63の特性インピーダンスは、42Ωと設定する。
 このように、インピーダンス変換器61~63における特性インピーダンスは、インピーダンス変換器61からインピーダンス変換器63に向かうにつれて大きくなる値が設定される。
 図5は、このように算出された特性インピーダンスをインピーダンス変換器61~63に設定した場合における周波数とリターンロス特性との関係を示している。図5は、特性インピーダンスが35.5Ωであるインピーダンス変換器を一つだけ用いた場合の周波数とリターンロス特性の関係を示している図11と比較して、全体的にリターンロス特性が改善していることが示されている。但し、-30dB以下の領域を有効帯域とすると、大体630MHz~700MHzが有効帯域であり、図11と大差はない。
 ここで、図6において、インピーダンス変換器61~63の特性インピーダンスを、さらに調整した場合の使用可能周波数帯域の変化について説明する。図6は、インピーダンス変換器61の特性インピーダンスを28.2Ωに設定し、インピーダンス変換器62の特性インピーダンスを35.9Ωに設定し、インピーダンス変換器63の特性インピーダンスを45.5Ωに設定した場合における周波数とリターンロス特性との関係を示している。それぞれのインピーダンス変換器における特性インピーダンスは、例えば、シミュレーション装置等を用いて調整されてもよい。
 図6において示されるように、リターンロス特性が-30dB以下の領域を有効帯域とすると、大体420MHz~900MHzが有効帯域となっており、図11及び図5と比較すると、インピーダンス変換部17は、有効帯域が拡大され、広帯域化している。
 このように、インピーダンス変換部17を広帯域化することによって、例えば、ドハティアンプ10に入力される信号の周波数が、420MHz~900MHzの範囲において変化した場合において、調整ライン51及び調整ライン52の電気長を適切な長さに調整もしくは適切な長さの電気長を持つ調整ラインに交換しても、インピーダンス変換部17を構成するインピーダンス変換器61~63の電気長等を調整する必要はない。
 つまり、入力される信号の周波数帯域が変更された場合において、ドハティアンプ10の調整ライン51及び調整ライン52のみを調整もしくは交換することによって、周波数が変更された後の信号をドハティアンプ10によって高効率で増幅することができる。
 ここで、図4のインピーダンス変換部17として、インピーダンス変換器を3つ直列に接続している構成について説明したが、有効周波数帯域の拡大幅に応じて接続数を変更してもよい。インピーダンス変換器を3つ直列に接続することによって、UHF帯のうち地上デジタル放送等に用いられる周波数帯域をカバーすることができる。
 また、インピーダンス変換部17を広帯域化し、所定の周波数帯域内であれば電気長等の変更を行う必要がないことによって、次のような効果も得られる。例えば、送信装置40内にドハティアンプ10を配置する際に、インピーダンス変換部17は、保守作業等においてアクセスしづらい装置内部に配置し、調整もしくは交換作業等が必要となる調整ライン51及び調整ライン52を、保守作業時にアクセスが容易となる装置表面に近い位置に配置するようにしてもよい。つまり、インピーダンス変換部17は、装置内部の実質的には操作不可能な位置に配置し、調整ライン51及び調整ライン52を、装置表面の蓋を取り外した際等に容易に操作可能な位置に配置してもよい。
 このようにすることによって、インピーダンス変換部17を配置する位置に関する自由度が増し、ドハティアンプ10を有する装置の設計が容易となる。
 (実施の形態3)
 続いて、図7を用いて、インピーダンス変換部17に分布定数回路を用いた場合のインピーダンス変換部17の構成例について説明する。インピーダンス変換部17は、分布定数回路素子71~76を有している。ここでは、説明の便宜上、分布定数回路素子71~75が直列に接続していることを示しているが、それぞれの回路素子は、例えば電気長及び幅が異なる伝送線路であり、分布定数回路素子71~76は、複数の伝送線路が接続し、一つの伝送線路を構成していてもよい。このように構成された一つの伝送線路は、幅の異なる伝送線路を有するため、凹凸の幅を有する伝送線路であってもよい。また、複数の分布定数回路素子が接続されている1つの伝送線路は、銅板を用いて形成されてもよい。
 ここで、図8を用いて、図7のインピーダンス変換部17を用いた場合の使用可能周波数帯域の変化について説明する。例えば、ドハティアンプ10の出力端子における特性インピーダンスを50Ωとし、合成部16におけるインピーダンスを25Ωとした場合におけるインピーダンス変換器61~63の特性インピーダンスについて説明する。
 例えば、分布定数回路素子71は、電気長が666MHzにおいて8度、特性インピーダンスが100Ωとなるように長さ及び幅が設定する。また、同様に、分布定数回路素子72は、666MHzにおける電気長が43度、特性インピーダンスが20Ωとし、分布定数回路素子73は、666MHzにおける電気長が19度、特性インピーダンスが100Ωとし、分布定数回路素子74は、666MHzにおける電気長が33度、特性インピーダンスが20Ωとし、分布定数回路素子75は、666MHzにおける電気長が23度、特性インピーダンスが100Ωとし、分布定数回路素子76は、666MHzにおける電気長が13度、特性インピーダンスが20Ωとなるようにそれぞれの長さ及び幅を設定する。これらの分布定数回路素子を接続することによって、凹凸の幅を有する一つの伝送線路が形成される。
 図8は、上記のように電気長及び伝送線路幅を設定した場合における、リターンロス特性と周波数との関係を示している。図8は、-30dB以下の領域を有効帯域とすると、大体450MHz~900MHzが有効帯域であることを示している。したがって、図7のようにインピーダンス変換部17を分布定数回路を用いて構成することによっても、インピーダンス変換部17を広帯域化することができる。また、上記のように電気長を設定した場合、図7のインピーダンス変換部17の電気長は、666MHzの周波数において139度であり、電気長が666MHzにおいて270度である図4のインピーダンス変換部17と比較して、短い電気長とすることができる。そのため、ドハティアンプ10の小型化を実現することができる。
 さらに、図9は、周波数帯域をGHzまで広げた場合における、リターンロス特性と挿入損失特性の関係を示している。図9に示されているように、分布定数回路を用いて構成されたインピーダンス変換部17は、大体500MHz~900MHzを通過帯域とするLPF(Low Pass Filter)としても動作する。つまり、インピーダンス変換部17をLPFとした場合においても、所定の周波数帯域の信号を通過させるように広帯域化することができる。
 本図においては、インピーダンス変換部17として、分布定数回路を用いたLPFの構成について説明したが、異なる回路構成のLPFを用いてもよい。また、インピーダンス変換部17が、LPFとして動作することによって、メインアンプ12及びピークアンプ14において発生する高調波成分を除去することもできる。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
 10 ドハティアンプ
 11 分配部
 12 メインアンプ
 13 伝送線路部
 14 ピークアンプ
 15 伝送線路部
 16 合成部
 17 インピーダンス変換部
 20 信号生成部
 30 送信部
 40 送信装置
 51 調整ライン
 52 調整ライン
 53 調整ライン
 54 調整ライン
 61 インピーダンス変換器
 62 インピーダンス変換器
 63 インピーダンス変換器
 71 分布定数回路素子
 72 分布定数回路素子
 73 分布定数回路素子
 74 分布定数回路素子
 75 分布定数回路素子
 76 分布定数回路素子
 110 メインアンプ
 111 調整ライン
 112 ピークアンプ
 113 調整ライン
 114 調整ライン
 115 調整ライン
 116 調整ライン

Claims (7)

  1.  入力信号を分配する分配部と、
     前記分配部から出力された第1の分配信号を増幅するメインアンプと、
     前記メインアンプにおいて増幅された前記第1の分配信号を伝送する第1の伝送線路部と、
     前記分配部から出力された第2の分配信号を増幅するピークアンプと、
     前記ピークアンプにおいて増幅された前記第2の分配信号を伝送する第2の伝送線路部と、
     前記第1の伝送線路部から出力される前記第1の分配信号と前記第2の伝送線路部から出力される前記第2の分配信号とを合成して合成信号を出力する合成部と、
     前記合成部から出力される前記合成信号のインピーダンス変換を行うインピーダンス変換部と、を備え、
     前記インピーダンス変換部は、
     複数のλ/4伝送線路が直列に接続されたことを特徴とする、ドハティアンプ。
  2.  前記インピーダンス変換部は、
     ローパスフィルタ回路である、請求項1に記載のドハティアンプ。
  3.  前記ローパスフィルタ回路は、
     分布定数回路である、請求項2に記載のドハティアンプ。
  4.  前記分布定数回路は、
     異なる伝送線路長及び伝送線路幅を有する複数の分布定数回路素子が直列に接続される、請求項3に記載のドハティアンプ。
  5.  前記第1及び第2の伝送線路部は、銅板を用いて構成され、前記入力信号の周波数が変更される場合、前記銅板の長さを調整する、請求項1乃至4のいずれか1項に記載のドハティアンプ。
  6.  任意の周波数における入力信号を生成する信号生成部と、
     前記入力信号を分配する分配部と、
     前記分配部から出力された第1の分配信号を増幅するメインアンプと、
     前記メインアンプにおいて増幅された前記第1の分配信号を伝送する第1の伝送線路部と、
     前記分配部から出力された第2の分配信号を増幅するピークアンプと、
     前記ピークアンプにおいて増幅された前記第2の分配信号を伝送し、前記第1の伝送線路部と実質的に同一のインピーダンスを有する第2の伝送線路部と、
     前記第1の伝送線路部から出力される前記第1の分配信号と前記第2の伝送線路部から出力される前記第2の分配信号とを合成して合成信号を出力する合成部と、
     前記合成部から出力される前記合成信号のインピーダンス変換を行うインピーダンス変換部と、
     前記インピーダンス変換部から出力された信号を対向する装置へ送信する信号送信部と、を備え、
     前記インピーダンス変換部は、
     前記入力信号の周波数が変更されることに伴い前記第1及び第2の伝送線路部の伝送線路長の調整が必要となる場合に、伝送線路長の調整が不要な程度に広帯域化された、送信装置。
  7.  前記第1及び第2の伝送線路を、前記送信装置の外部から操作可能な位置に配置し、前記インピーダンス変換部を、前記送信装置の外部から実質的に操作不可能な位置に配置する、請求項6に記載の送信装置。
PCT/JP2013/005411 2013-09-12 2013-09-12 ドハティアンプ及び送信装置 WO2015037034A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015536293A JPWO2015037034A1 (ja) 2013-09-12 2013-09-12 ドハティアンプ及び送信装置
PCT/JP2013/005411 WO2015037034A1 (ja) 2013-09-12 2013-09-12 ドハティアンプ及び送信装置
EP13893254.6A EP3046253B1 (en) 2013-09-12 2013-09-12 Doherty amplifier and transmission apparatus
US14/911,512 US9787253B2 (en) 2013-09-12 2013-09-12 Doherty amplifier and transmission apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/005411 WO2015037034A1 (ja) 2013-09-12 2013-09-12 ドハティアンプ及び送信装置

Publications (1)

Publication Number Publication Date
WO2015037034A1 true WO2015037034A1 (ja) 2015-03-19

Family

ID=52665177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005411 WO2015037034A1 (ja) 2013-09-12 2013-09-12 ドハティアンプ及び送信装置

Country Status (4)

Country Link
US (1) US9787253B2 (ja)
EP (1) EP3046253B1 (ja)
JP (1) JPWO2015037034A1 (ja)
WO (1) WO2015037034A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109818581A (zh) * 2017-12-04 2019-05-28 恩智浦美国有限公司 具有沿放大器输出端间的反相器的串联组件的多路放大器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9748902B2 (en) * 2015-05-15 2017-08-29 Nxp Usa, Inc. Phase correction in a Doherty power amplifier
BR112018001247A2 (ja) * 2015-09-01 2018-07-24 Nec Corporation An electric power amplifying device and a television signal transmitting system
US11271527B2 (en) 2018-02-11 2022-03-08 Telefonaktiebolaget Lm Ericsson (Publ) Broadband harmonic load modulation doherty amplifiers
US10833634B2 (en) 2018-04-04 2020-11-10 City University Of Hong Kong Doherty power amplifier circuit
US10972055B2 (en) * 2018-06-15 2021-04-06 Skyworks Solutions, Inc. Integrated doherty power amplifier
US11177855B2 (en) * 2020-02-21 2021-11-16 Mobix Labs, Inc. Extendable wire-based data communication cable assembly
US11165500B2 (en) 2020-02-21 2021-11-02 Mobix Labs, Inc. Cascadable data communication cable assembly
US11175463B2 (en) 2020-02-21 2021-11-16 Mobix Labs, Inc. Extendable optical-based data communication cable assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204405A (ja) * 2004-01-15 2005-07-28 Daihen Corp 高周波電源装置
JP2006157900A (ja) * 2004-11-05 2006-06-15 Hitachi Kokusai Electric Inc 増幅器
JP2006345341A (ja) * 2005-06-10 2006-12-21 Hitachi Kokusai Electric Inc 増幅器
JP2007124460A (ja) * 2005-10-31 2007-05-17 Hitachi Kokusai Electric Inc 増幅器
JP2010502117A (ja) 2006-08-21 2010-01-21 ハリス コーポレイション 高域通過フィルタ部及び低域通過フィルタ部を用いる広帯域インピーダンス整合回路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3452299A (en) * 1965-10-15 1969-06-24 Rca Corp Transmit-receive switch
JP2671051B2 (ja) 1990-02-09 1997-10-29 日本電信電話株式会社 インピーダンス整合回路
US6262629B1 (en) 1999-07-06 2001-07-17 Motorola, Inc. High efficiency power amplifier having reduced output matching networks for use in portable devices
JP3428928B2 (ja) 1999-07-22 2003-07-22 松下電器産業株式会社 帯域内群遅延一定型誘電体フィルタとそれを用いた歪み補償型増幅器
JP3728393B2 (ja) 2000-02-16 2005-12-21 三菱電機株式会社 半導体装置
KR100546491B1 (ko) 2001-03-21 2006-01-26 학교법인 포항공과대학교 초고주파 도허티 증폭기의 출력 정합 장치
US7847630B2 (en) 2004-11-05 2010-12-07 Hitachi Kokusai Electric Inc. Amplifier
JP4486620B2 (ja) 2006-06-23 2010-06-23 株式会社エヌ・ティ・ティ・ドコモ マルチバンドドハティ増幅器
JP5479282B2 (ja) * 2010-09-15 2014-04-23 株式会社東芝 ドハティ増幅器
US8193857B1 (en) 2011-03-01 2012-06-05 Infineon Technologies Ag Wideband doherty amplifier circuit
US9209511B2 (en) 2011-10-14 2015-12-08 Anaren, Inc. Doherty power amplifier network
WO2013086658A1 (en) * 2011-12-15 2013-06-20 Telefonaktiebolaget L M Ericsson (Publ) Doherty power amplification apparatus and method
CN103178785B (zh) 2011-12-20 2016-08-03 上海贝尔股份有限公司 一种新型道尔蒂功率放大器
US9154094B2 (en) 2013-05-21 2015-10-06 Telefonaktiebolaget L M Ericsson (Publ) Efficient power amplification over large operating average power range

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204405A (ja) * 2004-01-15 2005-07-28 Daihen Corp 高周波電源装置
JP2006157900A (ja) * 2004-11-05 2006-06-15 Hitachi Kokusai Electric Inc 増幅器
JP2006345341A (ja) * 2005-06-10 2006-12-21 Hitachi Kokusai Electric Inc 増幅器
JP2007124460A (ja) * 2005-10-31 2007-05-17 Hitachi Kokusai Electric Inc 増幅器
JP2010502117A (ja) 2006-08-21 2010-01-21 ハリス コーポレイション 高域通過フィルタ部及び低域通過フィルタ部を用いる広帯域インピーダンス整合回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109818581A (zh) * 2017-12-04 2019-05-28 恩智浦美国有限公司 具有沿放大器输出端间的反相器的串联组件的多路放大器

Also Published As

Publication number Publication date
EP3046253A4 (en) 2017-06-21
US20160190997A1 (en) 2016-06-30
JPWO2015037034A1 (ja) 2017-03-02
EP3046253A1 (en) 2016-07-20
EP3046253B1 (en) 2019-01-16
US9787253B2 (en) 2017-10-10

Similar Documents

Publication Publication Date Title
WO2015037034A1 (ja) ドハティアンプ及び送信装置
JP6187591B2 (ja) 電力増幅器及び送信装置
JP6160689B2 (ja) 電力増幅器
US10439281B2 (en) Calibrated circuit boards and related integrated antenna systems having enhanced inter-band isolation
WO2017145258A1 (ja) 負荷変調増幅器
JP6345916B2 (ja) 増幅装置、送信装置
JP5905459B2 (ja) ドハティ拡張を有する高周波電力増幅器
JP6176333B2 (ja) 電力増幅器及び電力増幅方法
WO2019167416A1 (ja) 高周波モジュール及び通信装置
JP2009182635A (ja) ドハティ増幅器
JP2013172174A (ja) 電力増幅器及び送信システム
JP2008236105A (ja) 電力分配合成システム
US8594596B2 (en) Amplifier
JP5582782B2 (ja) 分散デュプレクサを使用した基地局アーキテクチュア
JP2018074255A (ja) ドハティ型増幅器
JP2014241488A (ja) マルチバンド増幅器及び信号増幅方法
JP5913442B2 (ja) ドハティ増幅器
JP2007150377A (ja) 分配器及び合成器並びにそれらを用いた電力増幅装置
JP5370097B2 (ja) 通信端末装置、通信回路及び通信方法
JP2014176001A (ja) 高周波増幅器
JP2017195451A (ja) ドハティ増幅器
JP2020205495A (ja) イコライザ
JP2012129870A (ja) フィードフォワード歪み補償高周波増幅装置
JP2005151401A (ja) フィードフォワード型電力増幅器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536293

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013893254

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013893254

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14911512

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE