WO2015035926A1 - 一种压缩机 - Google Patents

一种压缩机 Download PDF

Info

Publication number
WO2015035926A1
WO2015035926A1 PCT/CN2014/086306 CN2014086306W WO2015035926A1 WO 2015035926 A1 WO2015035926 A1 WO 2015035926A1 CN 2014086306 W CN2014086306 W CN 2014086306W WO 2015035926 A1 WO2015035926 A1 WO 2015035926A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor according
casing
pipe
sealing
hole
Prior art date
Application number
PCT/CN2014/086306
Other languages
English (en)
French (fr)
Inventor
钟晓峰
Original Assignee
天津明贤科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2013104183647A external-priority patent/CN103437857A/zh
Priority claimed from CN2013104201255A external-priority patent/CN103470639A/zh
Priority claimed from CN201310506817.1A external-priority patent/CN103557407B/zh
Priority claimed from CN201310612733.6A external-priority patent/CN103615410A/zh
Priority claimed from CN201320760827.3U external-priority patent/CN203641508U/zh
Priority claimed from CN201310611634.6A external-priority patent/CN103615515B/zh
Priority claimed from CN201310616038.7A external-priority patent/CN103615517A/zh
Priority claimed from CN201310642367.9A external-priority patent/CN103615612A/zh
Application filed by 天津明贤科技有限公司 filed Critical 天津明贤科技有限公司
Publication of WO2015035926A1 publication Critical patent/WO2015035926A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0055Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes
    • F04B39/0061Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes using muffler volumes

Definitions

  • the invention relates to the field of mechanical design and processing, and in particular to a compressor.
  • the compressor is a mechanical device that compresses the gas and simultaneously raises the pressure of the gas, and is widely used.
  • higher requirements are placed on the structural design and processing technology of each component in the compressor.
  • the pulley includes: a belt covering surface 11, an outer ring 12, a hub 13 and a spoke plate 14; wherein the spoke plate 14 is a flat web.
  • the present invention proposes a compressor which improves the pulley of the compressor and improves the heat dissipation efficiency of the compressor.
  • the embodiment of the present invention provides a compressor, the pulley used includes: a hub and an outer ring, the hub is cooperatively mounted on the pulley shaft, wherein the pulley used further comprises: a blade web; The outer ring is integrally coupled to the hub by a plurality of the blade webs.
  • the blade web is a twisted web.
  • the outer ring surface of the outer ring is a covered surface, and the covered surface is hung.
  • the cooperation manner of the hub and the pulley shaft is a shaft hole fit.
  • the cooperation manner of the hub and the pulley shaft is a taper sleeve locking fit.
  • the pipe casing used in the compressor comprises: a casing and at least two tuyées; the casing is tubular, and the two end faces of the pipe are flanged and have flanged holes, and the pipe The at least two tuyées are opened on the side of the profile.
  • the pipe casing used in the compressor comprises: a casing, at least two tuyées, two ferrule flange slots and four ferrule flanges; the casing is tubular, two tubes Each of the sleeve end faces is provided with a ferrule flange groove, and each of the ferrule flange slots and the two ferrule flanges are fixed by screws; the at least two vents are opened on the tubular side.
  • the pipe casing used further comprises at least two sealing grooves, and each of the tuyées is provided with a sealing groove.
  • the number of tuyes of the at least two tuyaves is 2, respectively serving as an air inlet or an air outlet of the pipe casing.
  • the end surface of the machine casing is rounded on the runway.
  • the ferrule flange is U-shaped.
  • the processing method of the pipe casing used in the compressor comprises: processing the pipe into a circular pipe which is consistent with the end surface of the casing; and cutting the pipe into the casing, in the casing Two end face machining a screw hole or a ferrule groove; a tuyere is machined on the side of the casing.
  • the processing method of the pipe casing further comprises: processing a sealing groove at the tuyere.
  • processing the tube into a circular tube conforming to the end surface of the machine casing comprises: adopting an upper molding die and a lower molding die having a cavity section conforming to the end surface of the casing, and placing the pipe into the upper molding die and the lower molding Between the molds, the upper molding die and the lower molding die simultaneously force to press the pipe into a circular pipe that conforms to the end surface of the casing.
  • the processing the tube into a circular tube conforming to the end surface of the machine casing comprises: adopting a drawing and rolling die with a cavity section conforming to the end surface of the machine casing, and introducing the pipe into the drawing and rolling die, from the side of the drawing and rolling die The pipe is pulled out and pressed, and the pipe is drawn into a circular pipe which is consistent with the end surface of the casing.
  • processing of the pipe into a circular pipe conforming to the end surface of the casing comprises: adopting a cold/hot roll set having an outer section conforming to the end surface of the casing, and introducing the pipe into the cold/hot roll set; After the cold/hot rolling of the cold/hot roll group, the round pipe is aligned with the end surface of the casing.
  • the muffler connected to the air inlet of the compressor comprises: a pipeline connecting pipe, a casing, a casing, a folding chamber, at least one folding conduit and a filter screen; wherein the pipeline connecting pipe, the casing and the outer casing are in turn Connecting the inside of the casing, and connecting the casing to the casing through the wall of the folding chamber; the screen is installed in the folding chamber; the casing, the outer cover and the folding body
  • the anti-cavity and the reversing duct are made of a composite material.
  • the gap between the casing and the outer casing sucks gas into the folding chamber, and is purified by the filter screen and introduced into the pipeline connecting pipe through the folding and reversing conduit; wherein the gas sound wave is in the folding
  • the cavity and the reversing conduit are continuously refracted and reflected, and the noise energy is reduced in an inverse amplitude canceling manner.
  • the muffler connected to the air inlet further comprises a reinforcing skeleton, and the reinforcing skeleton is wrapped on the outer side of the casing.
  • the muffler connected to the air inlet/air outlet of the compressor comprises: an inlet pipe connection pipe, an outlet pipe connection pipe, a casing, a reverse cavity partition plate and at least one folding pipe; wherein the inlet pipe The take-up pipe and the outlet pipe joint are connected by the casing; the baffle duct is installed inside the casing, and is connected to the casing through the baffle cavity partition; the casing and the fold Both the cavity separator and the reverse conduit are made of a composite material.
  • the inlet pipe takes in the gas into the casing; the gas sound waves are continuously refracted and reflected in the casing and the folding conduit, and the noise energy is reduced in an inverse amplitude canceling manner.
  • the muffler connected to the air inlet/air outlet further includes a reinforcing skeleton, and the reinforcing skeleton is wrapped on the outer side of the casing.
  • the pipeline connection joint adopted by the compressor comprises: a straight pipe section, a straight hole section, a sealing groove and a sealing ring, wherein the sealing groove is provided with a sealing ring, and the straight pipe section and the straight hole section are A clearance fit achieves a gap seal through the seal groove and the seal ring.
  • the sealing groove is disposed on an outer side surface of the straight pipe section.
  • the sealing groove is disposed on an inner side surface of the straight hole section.
  • the number of the sealing grooves is at least one.
  • the sealing ring material is an elastic material capable of withstanding the working temperature.
  • the sealing ring has a C-shaped, wedge-shaped, X-shaped or O-shaped cross section.
  • the straight pipe section and the end of the straight hole section have a sufficiently large chamfer.
  • the bearing sealing end plate used in the compressor comprises: a cover end plate and a support frame; wherein the cover end plate has at least one shaft hole, and the support frame also has at least one bearing hole And the two are coaxially positioned by the coaxial positioning of the shaft hole and the bearing hole; wherein the end surface of the cover end plate or the end surface of the support frame serves as a mounting surface for mounting the device on the sealed end plate of the bearing;
  • the cover end plate and the support frame are separately processed and formed.
  • the cover end plate is provided with a slot; the outer surface of the support frame is inserted into the slot surface of the cover end plate to achieve coaxial positioning.
  • bearing sealing end plate further comprises a positioning pin sleeve
  • a pin sleeve mounting hole is formed on the cover end plate and the support frame; the positioning pin sleeve is respectively inserted into the pin sleeve mounting hole on the cover end plate and the pin sleeve mounting hole on the support frame To achieve coaxial positioning.
  • bearing sealing end plate further comprises a positioning pin
  • the cover end plate and the support frame are respectively provided with pin holes; the positioning pins are respectively inserted into the pin holes of the cover end plate and the pin holes on the support frame to achieve coaxial positioning.
  • the number of bearing holes of the at least one bearing hole is 2.
  • the gear used in the compressor comprises: a gear body and a hydraulic top sleeve; the gear body is centrally provided with a cylindrical clamping hole for engaging with the shaft, and the gear body is opened with the clip a concentric sleeve groove of the shaft hole, the hydraulic top sleeve is engaged with the gear body through the jacket groove; the bottom of the jacket groove is filled with an oil chamber and filled with hydraulic oil; wherein the gear body and the gear body The hydraulic top sleeve is locked by a bolt connection, and the bolt is locked so that the hydraulic oil in the oil chamber is pressed to cause the clamping shaft hole to be reduced in deformation, and the hydraulic top sleeve is clamped by the reduced deformation of the clamping shaft hole. On the shaft.
  • the end surface of the gear body is provided with a bolt hole
  • the end surface of the hydraulic top sleeve is provided with a light hole coaxial with the bolt hole, and the gear body and the hydraulic top sleeve pass through the bolt hole The bolt connection with the optical hole is locked.
  • the sealing cavity formed by the hydraulic top sleeve and the jacket groove serves as an oil chamber and is filled with hydraulic oil.
  • each set of sealing grooves comprises at least one sealing groove.
  • the gear used further includes: two sets of sealing rings respectively located in two sets of sealing grooves on both inner and outer sides of the hydraulic top cover, each set of sealing rings including at least one sealing ring for sealing The hydraulic oil in the oil chamber.
  • the end surface of the hydraulic top sleeve is provided with a disassembled threaded hole.
  • the gear used in the compressor comprises: a gear body and an elastic taper sleeve; the gear body is centrally provided with a cylindrical clamping hole for engaging with the shaft, and the gear body is opened with the clip a tapered conical groove of the shaft hole, the tapered sleeve has a radial cross section; the elastic sleeve is interference fit with the gear body through the taper sleeve; wherein the gear body is The elastic taper sleeve is locked by a bolt connection, and the bolt locking causes the pinch hole to be subjected to a force to reduce deformation, and the elastic taper sleeve is clamped on the shaft by the reduced deformation of the pinch hole.
  • the end surface of the gear body is provided with a bolt hole
  • an end surface of the elastic taper sleeve is provided with a light hole coaxial with the bolt hole, and the gear body and the elastic taper sleeve pass through the bolt hole The bolt connection with the optical hole is locked.
  • the clamping hole has at least one deformation groove radially.
  • the elastic taper sleeve has at least one deformation groove in the radial direction.
  • the end surface of the elastic taper sleeve is provided with a disassembled threaded hole.
  • the rotor set used in the compressor includes an impeller, a left half shaft and a right half shaft, and the right half shaft and the left half shaft are respectively integrally connected with the impeller by friction welding.
  • the two end faces of the impeller are reserved with a friction welding special surface
  • the right half shaft and the one end surface of the left half shaft contacting the impeller are reserved for the friction welding special surface
  • the special surface for the reserved friction welding is connected with the special surface for the friction welding of the right end surface of the impeller
  • the special surface for the reserved friction welding of the left half shaft is connected with the special surface for the friction welding of the left end surface of the impeller.
  • the friction welding is combined in a plane matching plane.
  • the friction welding is combined with a tapered surface with a tapered surface.
  • the surface for the reserved friction welding of the right half shaft and the surface for the friction welding of the right end surface of the impeller are both plane; or one side is a tapered surface, one side is a tapered surface; or one side is a tapered shaft The side is a tapered surface.
  • the surface reserved for friction welding of the left half shaft and the surface reserved for friction welding of the left end surface of the impeller are both plane; or one side is a tapered surface, one side is a tapered surface; or one side is a tapered shaft The side is a tapered surface.
  • the radial sealing device used in the compressor comprises: a moving ring and two static rings, the two static rings are interlocked, the moving ring is clamped in the middle, the moving ring and the two
  • the sealing fins of the stationary ring are tapered and arranged in a cross.
  • the number of the moving ring sealing fins is at least one, and the number of the static ring sealing fins is at least one.
  • the number of the moving ring sealing fins is equal to or different from the number of the static ring sealing fins.
  • the static ring and the static ring sealing fin are directly processed on the main body.
  • the radial sealing device further includes: a floating moving ring and a corrugated piece, wherein the floating moving ring is disposed on the moving ring, and the floating moving ring and the moving ring are connected by a corrugated piece.
  • sealing fin on the moving ring is processed on the floating moving ring.
  • the moving ring and the static ring are made of a non-metallic sealing material.
  • the radial sealing device used further comprises: a sealing filler bonded to the bottom of the groove, the sealing fin being in direct contact with the sealing packing.
  • the radial sealing device used further comprises: an O-ring, the moving ring and the shaft are sealed by an O-ring.
  • a pulley is provided by providing a blade web between a hub and an outer ring, so that the pulley can generate airflow when rotated.
  • the traditional pulley and the fan are integrated into one body, and one round is used for a long time.
  • the large amplitude reduces the structural size of the assembly and has the function of cooling the main body.
  • FIG. 1 is a schematic structural view of a pulley provided by the prior art.
  • FIG. 2 is a schematic structural view of a pulley according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a pipe casing according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a pipe casing according to another embodiment of the present invention.
  • FIG. 5 is a flow chart showing a method for processing a pipe casing according to an embodiment of the present invention.
  • FIG. 6 is a schematic view showing a forging processing method of a pipe casing according to an embodiment of the present invention.
  • FIG. 7 is a schematic view showing a method for drawing and pressing a pipe casing according to an embodiment of the present invention.
  • FIG. 8 is a schematic view showing a cold/hot roll processing method for a pipe casing according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a muffler according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a muffler according to another embodiment of the present invention.
  • FIG. 11 is a schematic structural view of a pipe joint according to an embodiment of the present invention.
  • FIG. 12 is a partial schematic view of a pipeline connection joint according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural view of a bearing seal end plate according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural view of a bearing seal end plate according to another embodiment of the present invention.
  • FIG. 15 is a schematic structural view of a bearing seal end plate according to another embodiment of the present invention.
  • FIG. 16 is a schematic structural view of a gear according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural view of a gear according to another embodiment of the present invention.
  • FIG. 18 is a schematic structural view of a rotor assembly according to an embodiment of the present invention.
  • FIG. 19 is a schematic structural view of a rotor assembly according to another embodiment of the present invention.
  • FIG. 20 is a schematic structural view of a rotor assembly according to another embodiment of the present invention.
  • FIG. 21 is a schematic structural view of a radial sealing device according to an embodiment of the present invention.
  • FIG. 22 is a schematic structural view of a radial sealing device according to another embodiment of the present invention.
  • FIG. 23 is a schematic structural view of a radial sealing device according to another embodiment of the present invention.
  • FIG. 24 is a schematic structural view of a radial sealing device according to another embodiment of the present invention.
  • FIG. 25 is a schematic structural view of a compressor according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a pulley according to an embodiment of the present invention.
  • the pulley is mounted on a pulley shaft (not shown) in use, the pulley includes: a hub 23, an outer ring 22 and a plurality of blade webs 24, and the hub 23 is fitted in the belt
  • the outer ring 22 is an annular structure, the outer ring surface of the annular structure is a belt covering surface 21, with a covering surface 21 hanging strap, and the outer ring 22 passes through a plurality of blade webs 24 and a hub 23 connected into one.
  • the belt cover 21 can be attached to any type of belt.
  • the belt covering surface 21 is a cylindrical surface for hooking a flat belt; or a circumferential V-shaped groove surface for hooking a V-shaped belt or a narrow V-belt or a V-ribbed belt, V
  • the number of slots is at least 1; or an axial trapezoidal groove surface or a semi-circular groove surface for hooking the timing belt.
  • the blade web 24 is a twisted web.
  • the twisted web can be used as a blade to better cool the main engine.
  • the manner in which the hub and the pulley shaft are coupled is a shaft hole fit or a taper sleeve locking fit.
  • the pulley provided by the embodiment of the invention integrates the traditional pulley and the fan into one body, and the wheel is multi-purpose and large.
  • the amplitude reduces the structural size of the assembly, providing the host with an active cooling system that increases the safety of the host.
  • FIG. 3 is a schematic structural view of a pipe casing according to an embodiment of the present invention.
  • the pipe casing comprises: a casing 31 and two tuyées 32, 33; the two end faces 34, 35 of the casing 31 are rounded on the runway, and the two end faces 34, 35 are directly used
  • the flanges 36 are open to the sides of the casing 31.
  • the two tuyées 32, 33 are respectively provided with sealing grooves 37, 38.
  • the two tuyIER 32, 33 can be used as air inlets or air outlets, and when the two tuyeres 32, 33 are optical apertures, it is not necessary to open a sealing groove.
  • FIG. 4 is a schematic structural view of a pipe casing according to another embodiment of the present invention.
  • the pipe casing comprises: a casing 41, four U-shaped ferrule flanges 42, 43, 44, 45, two ferrule flange grooves 46, 47, and two vents 48, 49. And two sealing grooves 410, 411.
  • the end surface of the casing 41 is a runway round tube type, and the two tubular end faces are respectively provided with ferrule flange grooves 46 and 47, and the ferrule flange grooves 46 and 47 are provided with a sleeve for fixing the U-shaped ferrule flange. Threaded hole; the ferrule flange groove 46 and the U-shaped ferrule flanges 42, 43 are fixed by screws; the ferrule flange groove 47 and the U-shaped ferrule flanges 44, 45 are fixed by screws; The air outlets 48 and 49 are provided with a sealing groove 410 at the tuyere 48 and a sealing groove 411 at the tuyere 49.
  • the structure of the casing of the compressor is complicated, and the defects of casting molding or welding molding are adopted;
  • the structure of the pipe casing provided by the embodiment of the invention is simple and easy to assemble, and is a whole thick-wall structure, the strength of the casing. high.
  • FIG. 5 is a flow chart showing a method for processing a pipe casing according to an embodiment of the present invention. As shown in FIG. 5, the method includes:
  • Step 51 The pipe is processed into a circular pipe that conforms to the end surface of the casing.
  • the processed and deformed pipe can be directly segmented into a plurality of machine casings, and the production efficiency is high, which satisfies the requirements of batch production.
  • Step 52 The circular tube section is divided into machine casings, and flange screw holes or flange slots are machined on both end faces of the machine casing.
  • Step 53 processing a tuyere on a side of the casing, and processing a sealing groove at the tuyere.
  • FIG. 6 is a schematic view showing a forging processing method of a pipe casing according to an embodiment of the present invention.
  • the forging process is such that the upper molding die 61 and the lower molding die 62 having the cavity section conforming to the end surface of the casing are used to place the pipe 63 between the upper molding die 61 and the lower molding die 62.
  • the upper molding die 61 and the lower molding die 62 are simultaneously energized, and the pipe 63 is deformed by force, and is forged into a circular pipe 64 conforming to the end surface of the casing.
  • FIG. 7 is a schematic view showing a method for drawing and pressing a pipe casing according to an embodiment of the present invention. As shown in Figure 7, the process of the drawing process The drawing and drawing die 72 having the cavity section and the end surface of the casing is used to introduce the pipe 71 into the drawing and rolling die, and the round pipe 73 conforming to the end surface of the casing is pulled out from one side of the drawing and rolling die 72.
  • FIG. 8 is a schematic view showing a cold/hot roll processing method for a pipe casing according to an embodiment of the present invention.
  • the cold/hot roll processing process is: introducing the pipe 81 into the cold/hot roll set 83 by using a cold/hot roll set 83 having an outer section conforming to the end face of the casing; the pipe 81 is passed through After the cold/hot rolling of the cold/hot roll group 83, the round pipe 82 conforms to the end surface of the casing.
  • the casting process has low yield, high manufacturing cost, large pollution, large thermal stress of the welding process, and high cost of the de-stressing process; the pipe processing and forming method provided by the embodiment of the invention is unloaded There is no special process and no welding requirements, the production cycle is short, the yield is high, the overall cost is low, and batch processing is easy.
  • FIG. 9 is a schematic structural diagram of a muffler according to an embodiment of the present invention.
  • the muffler includes: a pipe connecting pipe 91, a casing 92, a casing 93, a folding chamber 94, a folding duct 95 and a screen 96; wherein the pipe connecting pipe 91, the casing 92 and the outer casing 93 are in turn
  • the reversing duct 95 is mounted inside the casing 92 and connected to the casing 92 through the wall of the folding chamber 94; the screen 96 is mounted in the folding chamber 94.
  • the housing 92, the outer cover 93, the folding chamber 94, and the folding duct 95 are all made of a composite material.
  • the gap between the casing 92 and the outer cover 93 is sucked into the recessed chamber 94, purified by the filter 96, and then introduced into the pipeline connecting pipe 91 through the folding conduit 95; the pipe connecting pipe 91 is used to connect the air inlet of the device.
  • the gas sound waves are continuously refracted and reflected in the folding chamber 94 and the folding duct 95, and the noise energy is reduced by the inverse amplitude canceling method.
  • the muffler of FIG. 9 further includes a reinforcing skeleton 98 that is wrapped around the outside of the casing 92.
  • FIG. 10 is a schematic structural diagram of a muffler according to another embodiment of the present invention.
  • the muffler includes: a pipe connection 101, a pipe connection 102, a casing 103, a folding chamber partition 104, and two folding conduits 105, 106; wherein the pipeline connection 101 and the pipeline
  • the connecting tube 102 is connected by the housing 103; the two folding and reflecting ducts 105, 106 are mounted inside the housing 103, and are connected to the housing 103 through the folded-back cavity partition 104;
  • the housing 103, the folded-back chamber partition 104 and the two folded-back conduits 105, 106 are each made of a composite material.
  • the gas enters the casing 103 through the pipe connection 101 or the pipe connection 102; the gas sound waves are continuously refracted and reflected in the casing 103 and the two folding conduits 105, 106, and the noise energy is reduced by the amplitude inversion cancellation manner. It is then led out through the line connection 102 or the line connection 101.
  • the muffler of FIG. 10 further includes a reinforcing skeleton 107 that is wrapped around the outside of the casing 103.
  • reinforcing skeleton may also be wrapped inside the casing, installed inside the casing or not used.
  • composite materials include mineral castings, epoxy honeycomb materials, and microporous composites.
  • the line connection 101 or the line connection 102 can be used both to introduce a gas to be silenced and to derive a gas that is silenced.
  • the pipe connection 101 is used for connecting the air inlet of the device.
  • the pipe connection 102 is used for introducing outside air.
  • the muffler is used for sound elimination at the air inlet of the device; those skilled in the art can understand that the pipeline
  • the nozzle 102 can also be used to connect the air outlet of the device.
  • the pipe connection 101 is used to derive the muffed air, and the muffler is used for the muffling action at the air outlet of the device.
  • the resistance muffler disposed at the air inlet of the compressor adopts a sound absorbing material, the energy absorption of the high frequency noise is strong, the noise reduction effect on the low frequency noise is poor, and the sound absorbing material needs to be exposed.
  • the anti-type muffler disposed in the air outlet of the compressor in the prior art adopts a barrel-shaped structure formed by steel plate welding, for a certain
  • the offset effect of the specified low frequency is better, the reverse cancellation efficiency of the noise and high frequency noise of other frequencies is low, and the sound insulation effect of the steel barrel wall is also poor;
  • the muffler provided by the embodiment of the present invention combines the resistance muffler and the anti-resistance The advantages of the muffler.
  • the folding space conduit, the folding cavity and the folding cavity partition form a geometric space structure, and the noise energy is reduced by the reversed amplitude of the sound wave in which the reflection and reflection are mutually canceled; and the composite material component has the characteristics of vibration absorption. It is capable of absorbing a part of the energy of the sound wave vibration; and then utilizing the characteristic that the composite material conductance attenuation is larger than that of the steel material, and the energy of the partial sound vibration is blocked within the casing, thereby achieving triple noise reduction.
  • FIG. 11 is a schematic structural view of a pipe joint according to an embodiment of the present invention.
  • the compressor 111 is connected to the external line 112 through the pipe connection joint.
  • the pipe connection joint includes a straight pipe section 113, a straight hole section 114, a sealing groove 115 and a sealing ring 116.
  • the sealing ring 116 is disposed in the sealing groove 115.
  • the straight hole section 114 is designed on the compressor 111
  • the straight pipe section 113 is a light pipe
  • the sealing groove 115 is disposed on the outer side surface of the straight hole section 114.
  • the compressor 111 also achieves connection fixing to the external line 112 through the compressor foot 117 and the foot support 118.
  • the assembly Since the straight pipe section 113 and the straight hole section 114 have a clearance fit, the assembly has no assembly stress after the installation, the sealing structure is simple, the structure size is greatly reduced, and only the insertion can be performed during the installation. Simply dial out and the assembly process is simple.
  • the straight hole section 114 may be disposed on the external pipe 112, and the straight pipe section 113 is disposed on the compressor 111; the sealing groove 115 may also be disposed on the inner side of the straight pipe section 113.
  • FIG. 12 is a partial schematic view of a pipeline connection joint according to an embodiment of the present invention.
  • the joint includes: a straight pipe section 121, a straight hole section 122, a seal groove 123, a seal ring 124, a straight pipe section pipe end chamfer 128, and a straight hole section hole end chamfer 129.
  • at least one sealing groove 123 is disposed on the inner side surface of the straight hole segment 122, and the sealing groove 123 is fitted with a sealing ring 124, which is made of an elastic material capable of withstanding the working temperature.
  • the cross section may be C-shaped, O-shaped, X-shaped or wedge-shaped, as shown in Figures 12a, 12b, 12c, and 12d, respectively.
  • the ends of the straight pipe section 121 and the straight hole section 122 are respectively provided with a pipe end chamfer 128 and a hole end chamfer 129 to facilitate the insertion of the straight pipe section 121 into the straight hole section 122.
  • the seal groove 123 may also be disposed on the outer side of the straight pipe section 121 as shown in Figs. 12c and 12d.
  • the pipeline connection joint provided by the embodiment of the invention is connected in the manner that the compressor inlet and outlet ducts are inserted into the straight hole section with the straight pipe section, so that the compressor and the assembly are assembled. No closed dimensional chain is formed, so that no assembly stress is generated and the assembly process is simple.
  • FIG. 13 is a schematic structural view of a bearing seal end plate according to an embodiment of the present invention.
  • the bearing seal end plate provided by this embodiment includes: a cover end plate 131 and a support frame 132.
  • the cover end plate 131 has two shaft holes respectively, and the support frame 132 has two bearing holes respectively, and the two are bolted by the coaxial positioning of the shaft hole and the bearing hole; the cover end plate 131
  • the end face 133 or the end face 134 of the support frame 132 serves as a mounting surface for mounting the device on the bearing seal end plate.
  • the end surface 133 of the capping end plate 131 or the end surface 134 of the support frame 132 serves as a mounting surface of the lubricating oil tank of the device to which the bearing seal end plate is mounted.
  • the cover end plate 131 and the support frame 132 are separately formed and formed.
  • the cover end plate 131 is provided with a stop groove 136; the outer surface 135 of the support frame 131 is inserted into the stop groove 136 of the cover end plate for coaxial positioning.
  • the bearing mounting location 137 is retained and a larger sealed mounting location 138 is formed for larger, more complex seals.
  • FIG. 14 is a schematic structural view of a bearing seal end plate according to another embodiment of the present invention. As shown in FIG. 14, in comparison with the embodiment shown in FIG. 13, the bearing seal end plate of this embodiment has no mouth groove 136, but includes a positioning pin sleeve 143.
  • the cover end plate 141 and the support frame 142 are respectively provided with pin sleeve mounting holes 144 and 145; the positioning pin sleeve 143 is respectively inserted into the pin sleeve mounting hole 144 on the cover end plate 141 and the pin sleeve on the support frame 142
  • the holes 145 are mounted to achieve coaxial positioning.
  • FIG. 15 is a schematic structural view of a bearing seal end plate according to another embodiment of the present invention. As shown in Fig. 15, compared to the embodiment shown in Fig. 13, the bearing seal end plate of this embodiment has no mouth groove 136, but includes a positioning pin 153.
  • the cover end plate 151 and the support frame 152 are respectively provided with pin holes 154 and 155; the positioning pins 153 are respectively inserted into the pin holes 154 on the cover end plate 151 and the pin holes 155 on the support frame 152 to realize Coaxial positioning.
  • the number of bearing holes on the cover end plate and the support frame shown in the above embodiments may vary according to the number of axes of the installed equipment. If the installed equipment is a parallel two-axis compressor, the seal is The cover end plate and the support frame each have two bearing holes and have a parallel structure.
  • the end plate of the compressor is composed of three blocks of a capping end plate module, a support frame module and a lubricating oil tank connecting flange module, and is formed by integral casting, so that the component material has low strength and limited sealing performance.
  • the manufacturing cycle is long and the cost is high;
  • the bearing sealing end plate provided by the embodiment of the invention adopts a split assembly steel structure design scheme, and the original integrated structure is divided into two parts, a cover end plate and a support frame, and the structure is simple.
  • FIG. 16 is a schematic structural view of a gear according to an embodiment of the present invention. As shown in FIG. 16, the gear includes a gear body 161 and a hydraulic top cover 162.
  • the gear body 161 is provided with a clamping hole 163 for engaging with the shaft, and the gear body is provided with a clamping groove 164 concentric with the clamping hole 163.
  • the hydraulic top sleeve 162 is engaged with the gear body 161 through the clamping groove 164.
  • the bottom of the sleeve 164 serves as an oil chamber 167 and is filled with hydraulic oil.
  • a bolt hole 165A is opened on the end surface of the gear body 161, and a bolt hole 165A is opened on the end surface of the hydraulic top cover 162
  • the concentric light hole 165B, the bolt 166 axially locks the gear body 161 and the hydraulic top cover 162 through the bolt hole 165A and the light hole 165B; during the axial locking process, the hydraulic oil in the oil chamber 167 is pressed to cause the clamping shaft
  • the hole 163 is deformed so that the gear body 161 is clamped on the shaft.
  • a set of sealing grooves 168 are formed on the inner and outer sides of the bottom of the hydraulic top cover 162.
  • two sets of sealing rings 169 are respectively disposed in the two sets of sealing grooves 168 on the inner and outer sides of the hydraulic top cover 162 for sealing the hydraulic oil in the oil chamber 167. This further ensures the tightness of the hydraulic oil, so that a better clamping effect is obtained when the hydraulic oil is pressurized.
  • a set of sealing grooves 168 and a set of sealing rings 169 respectively include at least one sealing groove and at least one sealing ring, each sealing groove being sealed by a sealing ring.
  • the end face of the hydraulic top cover 162 is provided with a disassembly threaded hole 1610 for removing the hydraulic top cover 162.
  • FIG. 17 is a schematic structural view of a gear according to another embodiment of the present invention.
  • the gear body 171 and the elastic taper sleeve 172 have a cylindrical pinch hole 173 for engaging the shaft in the center of the gear body 171, and the gear body 171 is provided with a taper sleeve concentric with the pinch hole 173.
  • the groove 174 has a tapered cross section in a radial direction; the elastic sleeve 172 is interference-fitted with the gear body 171 through the sleeve groove 174.
  • a bolt hole 175A is formed on the end surface of the gear body 171, and an optical hole 175B concentric with the bolt hole 175A is opened on the end surface of the elastic taper sleeve 172.
  • the bolt 176 passes through the bolt hole 175A and the optical hole 175B to axially the gear body 171 and the elastic taper sleeve 172.
  • the elastic taper sleeve 172 is interfered with the gear body 171 by the taper clamping principle.
  • the pinch hole 173 is deformed by force, so that the gear body 171 is clamped on the shaft.
  • the clamping hole 173 and the elastic sleeve 172 are radially opened with at least one deformation groove 1710, so that the clamping hole 173 and the elastic sleeve 172 have a larger locking process.
  • the end surface of the elastic sleeve 172 is provided with a disassembling threaded hole 1711 for detaching the elastic sleeve 172.
  • the gap between the hole and the hub axial surface is a clearance fit, the radial runout error is large, and the effective bearing capacity is low;
  • the gear provided by the embodiment of the invention converts the axial locking force into the clamping shaft by using a hydraulic top sleeve or an elastic sleeve
  • the radial locking force of the hole, the gear body is clamped on the shaft by the reduced deformation of the clamping shaft hole, and there is no contact surface between the hydraulic top sleeve or the elastic sleeve and the shaft, and the installation of the hydraulic top sleeve or the elastic sleeve
  • the disassembly has no relative motion or friction with the shaft.
  • FIG. 18 is a schematic structural view of a rotor assembly according to another embodiment of the present invention.
  • the rotor group includes an impeller 181, a right half shaft 182, and a left half shaft 183.
  • the friction welding special surfaces 184 and 185 are respectively reserved on both sides of the impeller 181; the friction welding special surface 186 is reserved on the right half shaft 182 side, and The friction welding dedicated surface 184 of the impeller 181 is connected; a friction welding dedicated surface 187 is reserved on one side of the left half shaft 183, and is connected to the friction welding dedicated surface 185 of the impeller 181.
  • the friction welding special surface 44 and the friction welding special surface 186, the friction welding special surface 185 and the friction welding special surface 187 rub against each other, and pressurize the left and right half shafts toward the impeller direction, so that the friction welding special surface 187
  • the friction welding dedicated surface 186 and the friction welding dedicated surface 185 are respectively connected to the friction welding dedicated surface 186 such that the right half shaft 182 and the left half shaft 183 are welded to the impeller 181 to form an integral rotor group.
  • FIG. 19 is a schematic view showing the structure of a rotor group according to another example of the present invention. As shown in FIG. 19, the rotor group includes an impeller 191, a right half shaft 192, and a left half shaft 193.
  • the frictional welding tapered surface 194 and 195 are respectively reserved on both sides of the impeller 191; the frictional welding tapered surface 196 is reserved on the right half shaft 192 side, and is connected with the friction welding cone surface 194 of the impeller 191; A tapered surface 197 for friction welding is reserved on the left half shaft 193 side, and is connected to the friction welding tapered surface 195 of the impeller 191.
  • the frictional welding tapered surface 194 and the friction welding tapered surface 196 frictionally weld the tapered surface 195 and the friction welding tapered surface 197 to each other, and add the left and right half shafts toward the impeller.
  • the pressure is such that the friction welding tapered shaft surface 196 and the friction welding tapered shaft surface 197 are respectively joined into the friction welding tapered surface 194 and the friction welding tapered surface 195, so that the right half shaft 192 and the left half shaft 193 are connected. Welding is performed on the impeller 191 to form an integral rotor set.
  • FIG. 20 is a schematic structural view of a rotor assembly according to an embodiment of the present invention. As shown in FIG. 20, the rotor group includes an impeller 201, a right half shaft 202, and a left half shaft 203.
  • the frictional welding tapered surface 204 and 205 are respectively reserved on both sides of the impeller 201; the frictional welding tapered surface 206 is reserved on the right half shaft 202 side, and is connected with the friction welding cone surface 204 of the impeller 201; A friction welding tapered surface 207 is reserved on the left half shaft 203 side, and is connected to the friction welding tapered shaft surface 205 of the impeller 201.
  • the frictional welding tapered surface 204 and the friction welding tapered surface 206 frictionally weld the tapered axial surface 204 and the friction welding tapered surface 207 to each other, and add the left and right half shafts toward the impeller.
  • the pressure is such that the friction welding tapered shaft surface 204 and the friction welding tapered shaft surface 205 are respectively pushed into the friction welding tapered surface 206 and the friction welding tapered surface 207 is connected, so that the right half shaft 202 and the left half shaft 203 are connected. Welding is performed on the impeller 201 to form an integral rotor set.
  • the above friction welding method can be used in combination, for example, a plane friction welding method is adopted between the impeller and the right half shaft, and a friction welding method of a tapered shaft surface and a tapered surface is adopted between the impeller and the left half shaft; Or the tapered end surface of the impeller shaft is reserved at one end of the impeller, and the friction welding special surface corresponding to both sides of the impeller is reserved in the right and left half shafts, and the connection and welding manner are similar to those provided in the above embodiments. , will not repeat them here.
  • the limitation of the invention is that the strength and the rigidity of the shaft cannot be improved, and the performance of the whole machine is also directly limited.
  • the rotor group provided by the embodiment of the invention adopts friction welding to realize the connection between the impeller and the shaft, and the welding temperature is low and the heat is low. The stress is small, the molding process is simple, the cost is low, and the overall strength is high; and the shaft diameter can be increased to the geometric maximum value. After the shaft diameter is enlarged, the corresponding support bearing size is increased, the rigidity of the whole machine is improved, and the working performance can be greatly improved.
  • FIG. 21 is a schematic structural view of a radial sealing device according to an embodiment of the present invention.
  • the radial sealing device comprises: a moving ring 211 and two static rings 212.
  • the two stationary rings 212 are interlocked, and a moving ring 211 is sandwiched therebetween.
  • the moving ring 211 seals the number of the fins 214 and the static ring 212 seals the fins 213.
  • the number of lanes is equal or different, and at least one (three lanes are shown).
  • the sealing fins 214 of the moving ring 211 and the sealing fins 213 of the stationary ring 212 are tapered and cross-aligned to improve the axial direction of the sealing fins.
  • the moving ring 211 and the stationary ring 212 are made of a non-metal sealing material, and the static ring 212 and the sealing fin 213 can be directly processed on the main body, which can greatly reduce the axial dimension, reduce the span between the main bearings, and improve the host. rigidity.
  • FIG. 22 is a schematic structural view of a radial sealing device according to another embodiment of the present invention.
  • the radial sealing device further includes a floating moving ring 225 and a corrugated sheet 226, and the floating moving ring 225 is disposed on the moving ring 221, and the floating moving ring 225 and the moving ring are provided on the basis of the device shown in FIG.
  • the 221 is connected by a corrugated piece 226, and the moving ring 221 is rigidly fitted with the shaft, and the shaft is tilted in the axial direction, and is adapted by the elastic deformation of the corrugated piece.
  • FIG. 23 is a schematic structural view of a radial sealing device according to another embodiment of the present invention.
  • the radial device further includes: a sealing filler 237, an O-ring 238, and a sealing filler 237 adhered to the bottom of the groove to prevent the sealing filler from rotating and slipping, and the moving ring 231 seals the fin 234 and
  • the static ring 232 sealing fin 233 is in direct contact with the sealing packing 237 to form a micro interference fit state, so that the sealing working state is in a critical contact sealing state between the contact sealing and the non-contact sealing.
  • the moving ring 231 is rigidly fitted with the shaft, and the moving ring 231 and the shaft are sealed by an O-ring 238.
  • FIG. 24 is a schematic structural view of a radial sealing device according to another embodiment of the present invention.
  • the sealing device further includes: a sealing filler 247, an O-ring 248, and a sealing filler 247 adhered to the bottom of the groove to prevent the sealing packing from rotating and slipping, and the moving ring 241 seals the fin 244 and the static portion.
  • the ring 242 sealing fins 243 are in direct contact with the sealing packing 247 to form a micro-interference fit condition such that the sealing operation is in a critical contact sealing state between the contact seal and the non-contact seal.
  • the moving ring 241 and the shaft are gap-fitted, and the axial yaw of the shaft does not cause the moving ring 241 to move in the axial direction, thereby preventing the sealing packing 247 from being cut, and the moving ring 241 and the shaft are sealed by O-rings.
  • the sealing fin Compared with the radial sealing device of the compressor in the prior art, the sealing fin has a rectangular cross section, the contact area with the static ring and the moving ring is small, the sealing fin is thin, and the sealing fin edge is perpendicular to the axial direction, resulting in sealing.
  • the axial rigidity of the wing is poor, and the sealing fin is prone to the rooting phenomenon when the machine is in operation;
  • the radial sealing device provided by the embodiment of the invention improves the axial rigidity of the sealing fin by tapering the cross section of the sealing fin.
  • the sealing fin has a broken root phenomenon when the machine is running.
  • FIG. 25 is a schematic structural view of a compressor according to an embodiment of the present invention.
  • the compressor includes: a pipe casing 251, an air inlet muffler 252, an air outlet muffler 253, a pipe connection joint 254a, a pipe connection joint 254b, a motor 255, a bearing seal end plate 256, an axle 257a, Axle 257b, pulley 258, gear 259a, gear 259b, rotor set 260, radial seal 261a, and radial seal 261b.
  • some or all of the components employed in the compressor may employ the components provided by the above embodiments of the present invention.
  • the side of the pipe casing 251 is provided with two tuyées (not shown), one of the tuyées is connected to the air inlet muffler 252 through the pipe connection joint 254a, and the other tuyere is connected to the air outlet muffler 253 through the pipe connection joint 254b and the air outlet muffler 253 Connecting;
  • the bearing sealing end plate 256 is mounted on one end surface of the pipe casing 251;
  • the inside of the pipe casing 251 is internally bored with two axles 257a and 257b parallel to each other, wherein one end of the axle 257a passes through the bearing seal end plate 256 and is mounted with a pulley 258; the other end of the axle 257a is mounted with a gear 259a; the axle 257b One end of the gear is mounted with another gear 259b, and the gear 259a and the gear 259b are coupled to each other;
  • the rotor group 260 is mounted in the pipe casing 251 with the axle
  • the tubing housing 251 and the motor 255 are mounted above the air outlet muffler 253.
  • the pulley 258 is rotated by the motor 255, and the rotation of the gear 259a is driven by the axle 257a, and the gear 259b that meshes with the gear 259a is also rotated, thereby driving the gear 259b to be mounted on the same axle 257b.
  • the rotation of the upper rotor set 260 When the air enters the pipe casing 251 after being silenced by the air inlet muffler 252, the pressure is increased under the high speed rotation of the impeller on the rotor group 260, and then discharged through the air outlet muffler 253.
  • the scope of protection of the present invention should also include: a compressor including the pulley provided by the embodiment of the present invention, a compressor including the tubular casing provided by the embodiment of the present invention, and a A compressor for a muffler according to an embodiment of the present invention, a compressor including the pipe joint of the embodiment of the present invention, a compressor including the bearing seal end plate provided by the embodiment of the present invention, A compressor comprising a gear provided by an embodiment of the present invention, a compressor comprising a rotor set provided by an embodiment of the present invention, a compression comprising a radial sealing device provided by an embodiment of the present invention machine.
  • Embodiments of the invention should also include a technical solution for protecting a single component as a separate component. That is, the scope of protection of the present invention should also include a pulley, a pipe casing, a muffler, a pipe joint, a bearing seal end plate, a gear, and a brake, respectively, as described in the above embodiments.
  • a rotor set and a radial seal are examples of a radial seal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种压缩机,所采用的带轮通过在轮毂(23)和外圈(22)之间设置扇叶辐板(24),从而使带轮在转动时能产生气流;同时,这样将带轮与风扇集成在一体上,一轮多用,减小了装配的结构尺寸,具备冷却主机的功能。该压缩机所采用的带轮包括:轮毂(23)和外圈(22),所述轮毂(23)配合安装在带轮轴上;所采用的带轮进一步包括:扇叶辐板(24);所述外圈(22)通过多个所述扇叶辐板(24)与所述轮毂(23)连接成一体。

Description

一种压缩机 技术领域
本发明涉及机械设计、加工领域,特别涉及一种压缩机。
发明背景
随着经济的不断发展,大型制造业机械设备的应用越来越广泛,而在现代机械生产加工过程中,对于压缩机类设备的需求不断增加。压缩机是一种将气体压缩并同时提升气体压力的机械设备,应用广泛。随着对压缩机设备的加工成本、使用寿命和性能要求的不断提高,对压缩机中各组件的结构设计和加工工艺都提出了更高的要求。
图1为现有技术中压缩机所采用的一种带轮的结构示意图。如图1所示,该带轮包括:带包覆面11、外圈12、轮毂13和轮辐板14;其中,轮辐板14为平辐板。
由图1可见,现有技术中压缩机的带轮仅能实现带动传动带的转动,功能十分单一。
发明内容
针对现有技术中压缩机存在的上述问题,本发明提出一种压缩机,对压缩机的带轮进行了改进,提高了压缩机的散热效率。
本发明实施例提供了一种压缩机,所采用的带轮包括:轮毂和外圈,所述轮毂配合安装在带轮轴上,其中,所采用的带轮进一步包括:扇叶辐板;所述外圈通过多个所述扇叶辐板与所述轮毂连接成一体。
其中,所述扇叶辐板为扭曲式辐板。
其中,所述外圈的外环面为带包覆面,所述带包覆面挂接带。
其中,所述轮毂与所述带轮轴的配合方式为轴孔配合。
其中,所述轮毂与所述带轮轴的配合方式为锥套锁紧配合。
其中,所述压缩机所采用的管材机壳包括:机壳体和至少两个风口;所述机壳体为管型,两个管型端面作为法兰面并开有法兰螺孔,管型侧面上开有所述至少两个风口。
其中,所述压缩机所采用的管材机壳包括:机壳体、至少两个风口、两个卡套法兰槽和四个卡套法兰;所述机壳体为管型,两个管型端面上分别开有一个所述卡套法兰槽,每个所述卡套法兰槽与两个所述卡套法兰通过螺钉固定;管型侧面上开有所述至少两个风口。
其中,所采用的管材机壳进一步包括至少两个密封槽,每个所述风口处开有一个密封槽。
其中,所述至少两个风口的风口数量为2,分别作为所述管材机壳的进风口或出风口。
其中,所述机壳体的端面为跑道圆形。
其中,所述卡套法兰为U形。
其中,所述压缩机所采用的管材机壳的加工方法包括:将管材加工成与机壳体端面一致的圆管;将所述圆管分段切分成机壳体,在所述机壳体的两个端面加工法 兰螺孔或卡套法兰槽;在所述机壳体的侧面加工风口。
其中,所采用的管材机壳的加工方法进一步包括:在所述风口处加工密封槽。
其中,所述将管材加工成与机壳体端面一致的圆管包括:采用型腔断面与机壳体端面一致的上模压模具和下模压模具,将管材放入所述上模压模具和下模压模具之间,所述上模压模具和下模压模具同时加力,将管材锻压成与机壳体端面一致的圆管。
其中,所述将管材加工成与机壳体端面一致的圆管包括:采用型腔断面与机壳体端面一致的拉压延模具,将管材导入拉压延模具,从所述拉压延模具的一侧拉压出所述管材,将管材拉压成与机壳体端面一致的圆管。
其中,所述将管材加工成与机壳体端面一致的圆管包括:采用外型断面与机壳体端面一致的冷/热轧辊组,将管材导入冷/热轧辊组;所述管材经所述冷/热轧辊组的冷/热辊压后成为与机壳体端面一致的圆管。
其中,所述压缩机的进风口上连接的消声器包括:管路接管、壳体、外罩、折反腔、至少一个折反导管和滤网;其中,所述管路接管、壳体和外罩依次连接;所述折反导管安装于所述壳体内部,通过所述折反腔壁与所述壳体相连;所述滤网安装于所述折反腔中;所述壳体、外罩、折反腔、折反导管均由复合材料制成。
其中,所述壳体和所述外罩的缝隙吸入气体到所述折反腔,经所述滤网净化后通过所述折反导管导入所述管路接管;其中,气体声波在所述折反腔和所述折反导管中不断折射和反射,以反相振幅抵消方式降低噪声能量。
其中,进风口上连接的消声器进一步包括增强骨架,所述增强骨架包覆在所述壳体外侧。
其中,所述压缩机的进风口/出风口上连接的消声器包括:进口管路接管、出口管路接管、壳体、折反腔隔板和至少一个折反导管;其中,所述进口管路接管和所述出口管路接管通过所述壳体连接;所述折反导管安装于所述壳体内部,通过所述折反腔隔板与所述壳体相连;所述壳体、折反腔隔板和折反导管均由复合材料制成。
其中,所述进口管路接管吸入气体到所述壳体;气体声波在所述壳体和所述折反导管中不断折射和反射,以反相振幅抵消方式降低噪声能量。
其中,进风口/出风口上连接的消声器进一步包括增强骨架,所述增强骨架包覆在所述壳体外侧。
其中,所述压缩机所采用的管路连接接头包括:直管段、直孔段、密封槽、密封圈,所述密封槽内卡装有密封圈,所述直管段与所述直孔段为间隙配合,通过所述密封槽和所述密封圈实现间隙密封。
其中,所述密封槽设置于所述直管段外侧面。
其中,所述密封槽设置于所述直孔段内侧面。
其中,所述密封槽的数量至少为一个。
其中,所述密封圈材料为能耐受工作温度的弹性材料。
其中,所述密封圈截面为C型、楔型、X型或O型。
其中,所述直管段及所述直孔段的端部倒有足够大的倒角。
其中,所述压缩机所采用的轴承密封端板包括:封盖端板和支撑架;其中,所述封盖端板开有至少一个轴孔,所述支撑架上也开有至少一个轴承孔,且二者以轴孔和轴承孔同轴定位方式采用螺栓连接;其中,所述封盖端板的端面或支撑架的端面,作为在所述轴承密封端板上安装设备的安装面;其中,所述封盖端板和支撑架分别独立加工成型。
其中,所述封盖端板上开有止口槽;所述支撑架外沿面插入所述封盖端板上的止口槽面以实现同轴定位。
其中,所述轴承密封端板进一步包括定位销套;
所述封盖端板和所述支撑架上均开有销套安装孔;所述定位销套分别插入所述封盖端板上的销套安装孔和所述支撑架上的销套安装孔以实现同轴定位。
其中,所述轴承密封端板进一步包括定位销钉;
其中,所述封盖端板和支撑架上均开有销孔;所述定位销钉分别插入所述封盖端板上的销孔和所述支撑架上的销孔中以实现同轴定位。
其中,所述至少一个轴承孔的轴承孔数量为2。
其中,所述压缩机所采用的齿轮包括:齿轮体和液压顶套;所述齿轮体中心开有用于与轴配合的圆柱形的夹轴孔,同时所述齿轮体上开有与所述夹轴孔同心的夹套槽,所述液压顶套通过所述夹套槽与所述齿轮体配合;所述夹套槽底部开有油腔并装满液压油;其中,所述齿轮体与所述液压顶套通过螺栓连接锁紧,螺栓锁紧使所述油腔中的液压油受压导致所述夹轴孔产生缩小变形,所述液压顶套通过所述夹轴孔的缩小变形夹紧在轴上。
其中,所述齿轮体端面上开有螺栓孔,所述液压顶套端面上开有与所述螺栓孔同轴的光孔,所述齿轮体与所述液压顶套通过穿过所述螺栓孔和所述光孔的螺栓连接锁紧。
其中,所述液压顶套与所述夹套槽形成的密封空腔作为油腔并装满液压油。
其中,所述液压顶套底部内外两面各开有一组密封槽,每组密封槽包括至少一个密封槽。
其中,所采用的齿轮进一步包括:两组密封圈,所述两组密封圈分别位于所述液压顶套内外两面的两组密封槽中,每组密封圈包括至少一个密封圈,用于密封所述油腔中的液压油。
其中,所述液压顶套的端面上开有拆卸螺纹孔。
其中,所述压缩机所采用的齿轮包括:齿轮体和弹性锥套;所述齿轮体中心开有用于与轴配合的圆柱形的夹轴孔,同时所述齿轮体上开有与所述夹轴孔同心的锥套槽,所述锥套槽的径向断面为锥形;所述弹性锥套通过所述锥套槽与所述齿轮体过盈配合;其中,所述齿轮体与所述弹性锥套通过螺栓连接锁紧,螺栓锁紧使所述夹轴孔受力产生缩小变形,所述弹性锥套通过所述夹轴孔的缩小变形夹紧在轴上。
其中,所述齿轮体端面上开有螺栓孔,所述弹性锥套端面上开有与所述螺栓孔同轴的光孔,所述齿轮体与所述弹性锥套通过穿过所述螺栓孔和所述光孔的螺栓连接锁紧。
其中,所述夹轴孔沿径向开有至少一个变形槽。
其中,所述弹性锥套沿径向开有至少一个变形槽。
其中,所述弹性锥套的端面上开有拆卸螺纹孔。
其中,所述压缩机所采用的转子组包括:叶轮、左半轴及右半轴,所述右半轴和所述左半轴采用摩擦焊的方式分别与所述叶轮连接成一体。
其中,所述叶轮的两侧端面预留有摩擦焊专用表面,所述右半轴及所述左半轴与所述叶轮接触的一侧端面预留摩擦焊专用表面;所述右半轴的预留摩擦焊专用表面与所述叶轮的右侧端面预留摩擦焊专用表面相连;所述左半轴的预留摩擦焊专用表面与所述叶轮的左侧端面预留摩擦焊专用表面相连。
其中,所述摩擦焊的结合方式为平面配平面。
其中,所述摩擦焊的结合方式为锥轴面配锥孔面。
其中,所述平面与平面及所述锥轴面与锥孔面通过摩擦加压结合在一起。
其中,所述右半轴的预留摩擦焊专用表面与所述叶轮的右侧端面预留摩擦焊专用表面均为平面;或一边为锥孔面,一边为锥轴面;或一边为锥轴面,一边为锥孔面。
其中,所述左半轴的预留摩擦焊专用表面与所述叶轮的左侧端面预留摩擦焊专用表面均为平面;或一边为锥孔面,一边为锥轴面;或一边为锥轴面,一边为锥孔面。
其中,所述压缩机所采用的径向密封装置包括:动环及两个静环,所述两个静环相扣,将所述动环夹于中间,所述动环及所述两个静环的密封翅截面为锥形,交叉排列。
其中,所述动环密封翅的道数至少为一道,所述静环密封翅的道数至少为一道。
其中,所述动环密封翅的道数与所述静环密封翅的道数相等或相差一道。
其中,所述静环及静环密封翅直接加工在主机本体上。
其中,所采用的径向密封装置进一步包括:浮动动环及波纹片,浮动动环设置于动环上,浮动动环与动环之间用波纹片连接。
其中,所述动环上的密封翅加工在所述浮动动环上。
其中,所述动环及所述静环由非金属密封材料制成。
其中,所采用的径向密封装置进一步包括:密封填料,所述密封填料粘接在槽底,所述密封翅直接与密封填料接触。
其中,所采用的径向密封装置进一步包括:O形圈,所述动环与轴间用O形圈密封。
本发明实施例所提供的一种压缩机,所采用的带轮通过在轮毂和外圈之间设置扇叶辐板,从而使带轮在转动时能产生气流。这样将传统带轮与风扇集成在一体上,一轮多用,大辐度减小了装配的结构尺寸,具备冷却主机的功能。
附图简要说明
图1所示为现有技术提供的一种带轮的结构示意图。
图2所示为本发明实施例提供的一种带轮的结构示意图。
图3所示为本发明一实施例提供的一种管材机壳的结构示意图。
图4所示为本发明另一实施例提供的一种管材机壳的结构示意图。
图5所示为本发明实施例提供的一种管材机壳加工方法的流程图。
图6所示为本发明实施例提供的一种管材机壳锻压加工方法示意图。
图7所示为本发明实施例提供的一种管材机壳拉压加工方法示意图。
图8所示为本发明实施例提供的一种管材机壳冷/热辊压加工方法示意图。
图9所示为本发明一实施例提供的一种消声器结构示意图。
图10所示为本发明另一实施例提供的一种消声器结构示意图。
图11所示为本发明实施例提供的管路连接接头结构示意图。
图12所示为本发明实施例提供的管路连接接头局部示意图。
图13所示为本发明一实施例提供的一种轴承密封端板的结构示意图。
图14所示为本发明另一实施例提供的一种轴承密封端板的结构示意图。
图15所示为本发明另一实施例提供的一种轴承密封端板的结构示意图。
图16所示为本发明一实施例提供的一种齿轮的结构示意图。
图17所示为本发明另一实施例提供的一种齿轮的结构示意图。
图18所示为本发明一实施例提供的一种转子组结构示意图。
图19所示为本发明另一实施例提供的一种转子组结构示意图。
图20所示为本发明另一实施例提供的一种转子组结构示意图。
图21所示为本发明一实施例提供的一种径向密封装置的结构示意图。
图22所示为本发明另一实施例提供的径向密封装置的结构示意图。
图23所示为本发明另一实施例提供的径向密封装置的结构示意图。
图24所示为本发明另一实施例提供的径向密封装置的结构示意图。
图25所示为本发明实施例提供的一种压缩机的结构示意图。
实施本发明的方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图2所示为本发明实施例提供的一种带轮的结构示意图。如图2所示,该带轮使用时安装在一带轮轴(图中未示出)上,该带轮包括:轮毂23、外圈22和多个扇叶辐板24,轮毂23配合安装在带轮轴上,外圈22为一环状结构,该环状结构的的外环面为带包覆面21,带包覆面21挂接带,外圈22通过多个扇叶辐板24与轮毂23连接成一体。
带包覆面21上可挂接任意形式的带。在本发明一实施例中,带包覆面21为圆柱面,用于挂接平带;或为周向V形槽面,用于挂接V形带或窄V带或多楔带,V形槽的数量至少为1;或为轴向梯形槽面或半圆形槽面,用于挂接同步带。
在本发明一实施例中,扇叶辐板24为扭曲式辐板,在带轮旋转传递功率或运动的同时,扭曲辐板可作为扇叶使用,可以更好的起到冷却主机的作用。
在本发明一实施例中,轮毂与带轮轴的配合方式为轴孔配合或锥套锁紧配合。
本发明实施例所提供的带轮,将传统带轮与风扇集成在一体上,一轮多用,大 幅度减小装配的结构尺寸,给主机提供了主动冷却系统,提高了主机的安全性。
图3所示为本发明实施例提供的一种管材机壳的结构示意图。如图3所示,该管材机壳包括:机壳体31和两个风口32、33;机壳体31的两个端面34、35为跑道圆形,两个端面34、35直接用做法兰面并开有法兰螺孔36;两个风口32、33为分别位于机壳体31的两个侧面。
在本发明一实施例中,两个风口32、33处分别开有密封槽37、38。
本领域技术人员可以理解,两个风口32、33都可作为进风口或出风口,且当两个风口32、33为光孔时,不需开设密封槽。
图4所示为本发明另一实施例提供的一种管材机壳的结构示意图。如图4所示,该管材机壳包括:机壳体41,四个U形卡套法兰42、43、44、45,两个卡套法兰槽46、47、两个风口48、49和两个密封槽410、411。
机壳体41端面为跑道圆管型,两个管型端面上分别开有卡套法兰槽46、47,卡套法兰槽46、47内开有用于配套固定U形卡套法兰的螺纹孔;卡套法兰槽46与U形卡套法兰42、43通过螺钉固定;卡套法兰槽47与U形卡套法兰44、45通过螺钉固定;管型侧面上开有两个风口48、49,且风口48处开有密封槽410、风口49处开有密封槽411。
相比于现有技术中压缩机的机壳结构复杂,且采用铸造成型或焊接成型的缺点;本发明实施例所提供的管材机壳结构简单易装配,且为整体厚壁结构,机壳强度高。
图5所示为本发明实施例提供的一种管材机壳加工方法的流程图。如图5所示,该方法包括:
步骤51:将管材加工成与机壳体端面一致的圆管。
这样可将经过加工变形的管材直接分段切分成多个机壳体,生产效率高,满足了批生产的需求。
步骤52:将所述圆管分段切分成机壳体,在所述机壳体的两个端面加工法兰螺孔或法兰槽。
当所加工的管材机壳采用图3所示的结构时,在所述机壳体的两个端面加工法兰螺孔;当所加工的管材机壳采用图4所示的结构时,在所述机壳体的两个端面加工法兰槽。
步骤53:在所述机壳体的侧面加工风口,在所述风口处加工密封槽。
本领域技术人员可以理解,当本发明实施例所提供的管材机壳中不需要密封槽时,步骤53中不需要在所述风口处加工密封槽。
在本发明一实施例中,步骤51采用的加工方法为锻压。图6所示为本发明实施例提供的一种管材机壳锻压加工方法示意图。如图6所示,该锻压加工的过程为:采用型腔断面与机壳体端面一致的上模压模具61和下模压模具62,将管材63放入上模压模具61和下模压模具62之间,上模压模具61和下模压模具62同时加力,管材63受力变形,被锻压成与机壳体端面一致的圆管64。
在本发明另一实施例中,步骤51采用的加工方法为拉压。图7所示为本发明实施例提供的一种管材机壳拉压加工方法示意图。如图7所示,该拉压加工的过程 为:采用型腔断面与机壳体端面一致的拉压延模具72,将管材71导入拉压延模具,从拉压延模具72的一侧拉压出与机壳体端面一致的圆管73。
在本发明另一实施例中,步骤51采用的加工方法为冷/热辊压。图8所示为本发明实施例提供的一种管材机壳冷/热辊压加工方法示意图。如图8所示,,该冷/热辊压加工的过程为:采用外型断面与机壳体端面一致的冷/热轧辊组83,将管材81导入冷/热轧辊组83;管材81经冷/热轧辊组83的冷/热辊压后成为与机壳体端面一致的圆管82。
相比于现有技术中铸造成型的工艺成品率低,制造成本高昂,污染大及焊接工艺热应力大,去应力工艺成本高昂的缺点;本发明实施例所提供的管材加工成形方法,下料与加工无特殊工艺,无焊接要求,生产周期短、成品率高、总体成本低廉,易实现批量加工。
图9所示为本发明一实施例提供的一种消声器的结构示意图。如图9所示,该消声器包括:管路接管91、壳体92、外罩93、折反腔94、折反导管95和滤网96;其中,管路接管91、壳体92和外罩93依次连接;折反导管95安装于壳体92内部,通过折反腔94壁与壳体92相连;所述滤网96安装于折反腔94中。
壳体92、外罩93、折反腔94、折反导管95均由复合材料制成。
其中,所述壳体92和外罩93的缝隙97吸入气体到折反腔94,经滤网96净化后通过折反导管95导入管路接管91;管路接管91用于连接设备的进风口。其中,气体声波在折反腔94和折反导管95中不断折射和反射,以反相振幅抵消方式降低噪声能量。
在本发明一实施例中,图9所述消声器进一步包括增强骨架98,增强骨架98包覆在壳体92外侧。
图10所示为本发明另一实施例提供的一种消声器的结构示意图。如图10所示,所述消声器包括:管路接管101、管路接管102、壳体103、折反腔隔板104和两个折反导管105、106;其中,管路接管101和管路接管102通过壳体103连接;两个折反导管105、106安装于壳体103内部,通过折反腔隔板104与壳体103相连;
壳体103、折反腔隔板104和两个折反导管105、106均由复合材料制成。
其中,气体通过管路接管101或管路接管102进入到壳体103;气体声波在壳体103和两个折反导管105、106中不断折射和反射,以振幅反相抵消方式降低噪声能量,再通过管路接管102或管路接管101导出。在本发明一实施例中,图10所述消声器进一步包括增强骨架107,增强骨架107包覆在壳体103外侧。
本领域技术人员可以理解,所述增强骨架也可以包覆在壳体内侧、安装在壳体内部或不使用。
本领域技术人员可以理解,所述复合材料包括矿物铸件、环氧树脂蜂窝材料和微孔复合材料等。
本领域技术人员同样可以理解,所述消声器中的折反导管可有多个。
本领域技术人员同样可以理解,管路接管101或管路接管102既可用于导入待消声气体,也可用于导出经消声的气体。在本发明一实施例中,当气体由管路接管 102导入,并由管路接管101导出时。管路接管101用于连接设备的进风口,此时管路接管102用于导入外界空气,此时该消声器用于在设备的进风口起到消声作用;本领域技术人员可以理解,管路接管102也可以用于连接设备的出风口,此时管路接管101用于导出经消声的空气,此时该消声器用于在设备的出风口起到消声作用。
相比于现有技术中设置在压缩机的进风口的阻式消声器采用吸声材料,对高频噪声的能量吸收较强,对低频噪声的降噪效果较差,而且该吸声材料需要裸露在气体流通的空间中,会有纤维丝或碎块等随气流排出,污染下游工作流程,以及现有技术中设置在压缩机出风口的抗式消声器采用钢板焊接成型的桶状结构,对某指定低频的抵消效果好些,对其它频率的噪声和高频噪声的反相抵消效率很低,钢质桶壁的隔音效果也差的缺点;本发明实施例提供的消声器结合了阻式消声器和抗式消声器的优点。其中的折反导管、折反腔、折反腔隔板之间组成几何空间结构,利用声波在其中折射和反射的反相振幅相互抵消的方式降低噪声能量;同时复合材料料组件具备吸振的特性,能够吸收一部分声波振动的能量;再利用复合材料传导衰减比钢材大的特性,将部分声音振动的能量阻隔在所述壳体以内,由此实现三重降噪。
图11所示为本发明实施例提供的管路连接接头结构示意图。如图11所示,压缩机111通过该管路连接接头与外接管路112连接。其中,管路连接接头包括:直管段113、直孔段114、密封槽115和密封圈116,密封圈116设置于密封槽115内。在本实施例中,直孔段114设计在压缩机111上,直管段113为光管,设计在外接管路112上,密封槽115设置在直孔段114外侧面上。压缩机111还通过压缩机底脚117与底脚支撑118实现与外接管路112的连接固定。由于直管段113与直孔段114之间为间隙配合,使得机组在安装后,管间连接没有装配应力产生,密封结构简单,大幅度减小结构尺寸,且安装时只需插入即可,拆卸时只需拨出即可,装配工艺简单。
在本发明另一实施例中,直孔段114可设置在外接管路112上,直管段113设置在压缩机111上;密封槽115也可以设置在直管段113内侧面上。
图12所示为本发明实施例提供的管路连接接头局部示意图。如图12a所示,该接头包括:直管段121、直孔段122、密封槽123、密封圈124、直管段管端倒角128及直孔段孔端倒角129。其中,在直孔段122内侧面上设置有至少一个密封槽123(图中示出一个),密封槽123内卡装有密封圈124,该密封圈124采用能够耐受工作温度的弹性材料制成,其截面可以为C型、O型、X型或楔型,分别如图12a、12b、12c、12d所示。直管段121及直孔段122的端部分别设置有管端倒角128及孔端倒角129,方便直管段121插入直孔段122。密封槽123也可设置在直管段121外侧面上,如图12c及12d所示。
相比于现有技术中压缩机的连接接头在和压缩机进行安装时,由加工和装配产生的尺寸误差会在压缩机内产生很大的装配应力,严重影响压缩机的安全运行,而且由于安装后的空间狭小使得拆装操作非常困难的缺点;本发明实施例提供的管路连接接头在压缩机进出风管与间以直管段插入直孔段的方式连接,使得压缩机与在装配时不形成封闭的尺寸链,从而无装配应力产生,且装配工艺简单。
图13所示为本发明实施例提供的一种轴承密封端板的结构示意图。如图13所示,该实施例所提供的轴承密封端板包括:封盖端板131和支撑架132。其中,封盖端板131上各开有两个轴孔,支撑架132上各开有两个轴承孔,且二者以轴孔和轴承孔同轴定位方式采用螺栓连接;封盖端板131的端面133或支撑架132的端面134作为在轴承密封端板上安装设备的安装面。当应用于润滑油箱时,封盖端板131的端面133或支撑架132的端面134作为轴承密封端板所安装设备的润滑油箱的安装面。封盖端板131和支撑架132分别独立加工成型。
封盖端板131上开有止口槽136;支撑架131外沿面135插入封盖端板上的止口槽136以实现同轴定位。
这样,封盖端板和支撑架装配后,保留了轴承安装位137,并形成更大的密封安装位138,可安装更大,更复杂的密封件。
图14所示为本发明另一实施例提供的一种轴承密封端板的结构示意图。如图14所示,相比图13所示的实施例,在本实施例轴承密封端板没有止口槽136,而是包括定位销套143。
此时封盖端板141和支撑架142分别开有销套安装孔144和145;定位销套143分别插入封盖端板141上的销套安装孔144和所述支撑架142上的销套安装孔145以实现同轴定位。
图15所示为本发明另一实施例提供的一种轴承密封端板的结构示意图。如图15所示,相比与图13所示的实施例,在本实施例轴承密封端板没有止口槽136,而是包括定位销钉153。
此时,封盖端板151和支撑架152分别开有销孔154和155;定位销钉153分别插入封盖端板151上的销孔154和所述支撑架152上的销孔155中以实现同轴定位。
本领域技术人员可以理解,以上实施例所示的封盖端板和支撑架上轴承孔的数量可根据所安装设备的轴数变化,如所安装设备为平行双轴压缩机,则所述封盖端板和支撑架上各有两个轴承孔且呈平行结构。
相比于现有技术中压缩机的端板由封盖端板模块、支撑架模块、润滑油箱连接法兰模块三大块组成并采用整体铸造方式成型,因而组件材料强度低、密封性能有限且生产周期长成本高昂的缺点;本发明实施例提供的轴承密封端板采用分体组装式钢结构设计方案,将原来的一体式结构拆分成封盖端板和支撑架两部分,结构简单,下料与加工无特殊工艺,组件强度高;且封盖端板和支撑架间的空间完全开放,可有足够空间安装更大,更复杂的密封件;同时,由于安装密封的径向空间尺寸不受限制,可放置径向密封结构件。
图16所示为本发明实施例提供的一种齿轮的结构示意图。如图16所示,该齿轮包括:齿轮体161和液压顶套162。
齿轮体161中心开有用于与轴配合的夹轴孔163,同时齿轮体上开有与夹轴孔163同心的夹套槽164,液压顶套162通过夹套槽164与齿轮体161配合,夹套槽164的底部作为油腔167并装满液压油。
齿轮体161端面上开有螺栓孔165A,液压顶套162端面上开有与螺栓孔165A 同心的光孔165B,螺栓166穿过螺栓孔165A和光孔165B将齿轮体161与液压顶套162轴向锁紧;在轴向锁紧过程中,油腔167中的液压油受压使得夹轴孔163产生变形,从而使齿轮体161夹紧在轴上。
此时,液压顶套162底部内外两面各开有一组密封槽168。同时还包括两组密封圈169,分别位于液压顶套162内外两面的两组密封槽168中,用于密封油腔167中的液压油。这样可进一步保证液压油的密封性,从而在液压油受压时获得更好的夹紧效果。
在本发明一实施例中,一组密封槽168和一组密封圈169分别包括至少一个密封槽和至少一个密封圈,每个密封槽通过一个密封圈实现密封。
在本发明一实施例中,液压顶套162的端面上开有用于拆卸液压顶套162的拆卸螺纹孔1610。
图17所示为本发明另一实施例提供的一种齿轮的结构示意图。如图17所示,齿轮体171和弹性锥套172,齿轮体171中心开有用于与轴配合的圆柱形的夹轴孔173,同时齿轮体171上开有与夹轴孔173同心的锥套槽174,锥套槽174的径向断面为锥形;弹性锥套172通过锥套槽174与齿轮体171过盈配合。
齿轮体171端面上开有螺栓孔175A,弹性锥套172端面上开有与螺栓孔175A同心的光孔175B,螺栓176穿过螺栓孔175A和光孔175B将齿轮体171与弹性锥套172轴向锁紧;在锁紧过程中,由于锥套槽174的径向断面为锥形,弹性锥套172通过外力轴向移动时,利用锥面夹紧原理使得弹性锥套172与齿轮体171过盈配合,使得夹轴孔173受力产生变形,从而使齿轮体171夹紧在轴上。
在本发明一实施例中,夹轴孔173以及弹性锥套172沿径向开有至少一个变形槽1710,使得夹轴孔173以及弹性锥套172在锁紧变形的过程中有了更大的弹性变形范围。
在本发明一实施例中,弹性锥套172的端面上开有用于拆卸弹性锥套172的拆卸螺纹孔1711。
相比于现有技术中压缩机的齿轮在安装时,齿轮在轴向移动的同时会产生周向转动,使齿轮的周向位置窜动,从而造成同步角度偏离,导致齿轮需要反复拆卸和调整安装,齿轮的拆卸和安装都必需要有专用拆卸和安装工具,以及现有技术中压缩机的齿轮在安装过程中,轮毂与轴直接接触且为过盈配合,轮毂拆装不便,同时齿轮内孔与轮毂轴面之间为间隙配合,径向跳动误差大,有效承载能力低的缺点;本发明实施例提供的齿轮通过使用液压顶套或弹性锥套将轴向锁紧力转化为夹轴孔的径向锁紧力,利用夹轴孔的缩小变形将齿轮体夹紧在轴上,且液压顶套或弹性锥套与轴之间没有接触表面,液压顶套或弹性锥套的安装与拆卸均与轴没有相对运动或摩擦。在齿轮安装过程中,只要调整好齿轮体的相位角,齿轮体在与液压顶套或弹性锥套螺栓锁紧时没有与轴之间的相对运动,调整好的相位角不会因螺栓锁紧而被破坏,提高了定位精度。
图18所示为本发明另一实施例提供的一种转子组结构示意图。如图18所示,该转子组包括:叶轮181、右半轴182及左半轴183。其中,叶轮181两侧分别预留有摩擦焊专用表面184和185;右半轴182一侧预留有摩擦焊专用表面186,与 叶轮181的摩擦焊专用表面184连接;左半轴183一侧预留有摩擦焊专用表面187,与叶轮181的摩擦焊专用表面185连接。通过摩擦焊专用表面44和摩擦焊专用表面186,摩擦焊专用表面185和摩擦焊专用表面187间的相互摩擦,并对左半轴和右半轴朝叶轮方向加压,使得摩擦焊专用表面187与摩擦焊专用表面186分别摩擦焊专用表面184和摩擦焊专用表面185实现连接,这样将右半轴182和左半轴183焊接在叶轮181上,形成整体转子组。
本发明一实施例中,叶轮与右半轴及左半轴之间可采用锥轴面配锥孔面的摩擦焊接方式连接。图19所示为本发明另一实例提供的一种转子组结构示意图。如图19所示,该转子组包括:叶轮191、右半轴192及左半轴193。其中,叶轮191两侧分别预留有摩擦焊接用锥孔面194和195;右半轴192一侧预留有摩擦焊接用锥轴面196,与叶轮191的摩擦焊接用锥孔面194连接;左半轴193一侧预留有摩擦焊接用锥轴面197,与叶轮191的摩擦焊接用锥孔面195连接。通过摩擦焊接用锥孔面194和摩擦焊接用锥轴面196,摩擦焊接用锥孔面195和摩擦焊接用锥轴面197间的相互摩擦,并对左半轴和右半轴朝叶轮方向加压,使得摩擦焊接用锥轴面196与摩擦焊接用锥轴面197分别挤入摩擦焊接用锥孔面194和摩擦焊接用锥孔面195实现连接,这样将右半轴192和左半轴193焊接在叶轮191上,形成整体转子组。
本发明一实施例中,也可在叶轮两端分别留有摩擦焊接用锥轴面,而将锥孔面留在右半轴及左半轴上。图20所示为本发明一实例提供的一种转子组结构示意图。如图20所示,该转子组包括:叶轮201、右半轴202及左半轴203。其中,叶轮201两侧分别预留有摩擦焊接用锥轴面204和205;右半轴202一侧预留有摩擦焊接用锥孔面206,与叶轮201的摩擦焊接用锥轴面204连接;左半轴203一侧预留有摩擦焊接用锥孔面207,与叶轮201的摩擦焊接用锥轴面205连接。通过摩擦焊接用锥轴面204和摩擦焊接用锥孔面206,摩擦焊接用锥轴面204和摩擦焊接用锥孔面207间的相互摩擦,并对左半轴和右半轴朝叶轮方向加压,使得摩擦焊接用锥轴面204和摩擦焊接用锥轴面205分别挤入摩擦焊接用锥孔面206与摩擦焊接用锥孔面207实现连接,这样将右半轴202和左半轴203焊接在叶轮201上,形成整体转子组。
本领域技术人员可以理解,上述摩擦焊接方式可结合使用,如在叶轮与右半轴之间采用平面摩擦焊接方式,叶轮与左半轴之间采用锥轴面与锥孔面的摩擦焊接方式;或者叶轮一端预留锥轴面另一端预留锥孔面,右半轴及左半轴预留有与叶轮两侧相对应的摩擦焊接专用表面,其连接及焊接方式与上述实施例提供的类似,此处不再赘述。
相比于现有技术中由三种方法成型的(一是叶轮中轴孔内穿通长轴结构,二是半轴端法兰盘连接结构,三是整体铸造)压缩机的转子组受轴径的限制,致使轴的强度和刚性都不能提高,整机的性能也直接受限的缺点;本发明实施例提供的转子组,采用摩擦焊接的方式实现叶轮与轴的连接,焊接温度低,热应力小,成型工艺简单,成本低,整体强度高;且轴径可加大到几何最大值,在轴径放大后,相应支撑轴承尺寸加大,整机刚性提高,工作性能可大幅度提高。
图21所示为本发明一实施例提供的径向密封装置的结构示意图。如图21所示, 该径向密封装置包括:动环211及两个静环212,两个静环212相扣,中间夹一个动环211,其中动环211密封翅214的道数及静环212密封翅213的道数相等或相差一道,且至少为一道(图中示出了三道),动环211的密封翅214及静环212的密封翅213截面为锥形,交叉排列,以提高密封翅轴向刚度,防止实机运行时密封翅出现断根现象。其中,动环211及静环212由非金属密封材料制成,静环212及密封翅213可直接加工在主机本体上,可大幅度减小轴向尺寸,缩小主机轴承间跨距,提高主机刚性。
图22所示为本发明另一实施例提供的径向密封装置的结构示意图。如图22所示,该径向密封装置在图22所示装置的基础上进一步包括:浮动动环225及波纹片226,浮动动环225设置于动环221上,浮动动环225与动环221之间用波纹片226连接,动环221与轴为刚性配合安装,轴系沿轴向的窜动,由波纹片的弹变适配。
图23所示为本发明另一实施例提供的径向密封装置的结构示意图。如图23所示,该径向装置在图23的基础上进一步包括:密封填料237,O形圈238,密封填料237粘接在槽底,防止密封填料旋转滑脱,动环231密封翅234及静环232密封翅233直接与密封填料237接触,形成微过盈配合状态,使密封工作状态处于接触密封和非接触密封之间的临界接触密封状态。动环231与轴间为刚性配合安装,动环231与轴间用O形圈238密封。
图24所示为本发明另一实施例提供的径向密封装置的结构示意图。如图24所示,该密封装置在图22的基础上进一步包括:密封填料247,O形圈248,密封填料247粘接在槽底,防止密封填料旋转滑脱,动环241密封翅244及静环242密封翅243直接与密封填料247接触,形成微过盈配合状态,使密封工作状态处于接触密封和非接触密封之间的临界接触密封状态。动环241与轴间为间隙配合,轴系的轴向窜动不会带动动环241沿轴向窜动,防止切断密封填料247,动环241与轴间用O形圈密封。
相比于现有技术中压缩机的径向密封装置的密封翅截面为长方形,与静环及动环的连接处接触面积小,密封翅体薄,且密封翅边缘与轴向垂直,导致密封翅轴向刚性差,实机运行时密封翅容易出现断根现象的缺点;本发明实施例提供的一种径向密封装置,通过将密封翅截面锥形化,提高了密封翅轴向刚性,防止实机运行时密封翅出现断根现象。
图25所示为本发明实施例提供的一种压缩机的结构示意图。如图25所示,该压缩机包括:管材机壳251、进风口消声器252、出风口消声器253、管路连接接头254a、管路连接接头254b、马达255、轴承密封端板256、轮轴257a、轮轴257b、带轮258、齿轮259a、齿轮259b、转子组260、径向密封装置261a和径向密封装置261b。其中,压缩机采用的部分/全部组件可采用以上本发明实施例所提供的组件。
其中,管材机壳251的侧面设有两个风口(图中未标注),其中一个风口通过管路连接接头254a与进风口消声器252连接,另一个风口通过管路连接接头254b与出风口消声器253连接;轴承密封端板256安装在管材机壳251的一个端面上; 管材机壳251内部贯穿有相互平行的两个轮轴257a和257b,其中,轮轴257a的一端穿过轴承密封端板256,并安装有带轮258;轮轴257a的另一端安装有齿轮259a;轮轴257b的一端安装有另一齿轮259b,齿轮259a与齿轮259b相互齿合;转子组260以轮轴257b为轴心安装在管材机壳251中;转子组260的两端分别通过径向密封装置261a和径向密封装置261b与管材机壳251进行径向密封。
在本发明一实施例中,管材机壳251和马达255安装在出风口消声器253上方。
在压缩机使用过程中,通过马达255带动带轮258转动,进而通过轮轴257a带动齿轮259a的转动,与齿轮259a相互齿合的齿轮259b也随之转动,因此带动与齿轮259b安装在同一轮轴257b上的转子组260的转动。当空气通过进风口消声器252经消声后进入管材机壳251后,会在转子组260上叶轮的高速转动下增大压强,再通过出风口消声器253排出。
在本发明以上实施例中,分别对现有压缩机的各个组件都进行了改进。但本领域技术人员可以理解,如果仅仅对压缩机的部分组件采取本发明实施例提供的技术方案,其他组件依然采用现有技术中的技术,也是可行的,也应在本发明的保护范围之内。即,本发明的保护范围也应该包括:一种包含了本发明实施例所提供的带轮的压缩机,一种包含了本发明实施例所提供的管材机壳的压缩机,一种包含了本发明实施例所提供的消声器的压缩机,一种包含了本发明实施例所提供的管路连接接头的压缩机,一种包含了本发明实施例所提供的轴承密封端板的压缩机,一种包含了本发明实施例所提供的齿轮的压缩机,一种包含了本发明实施例所提供的转子组的压缩机,一种包含了本发明实施例所提供的径向密封装置的压缩机。
本领域技术人员还可以理解,本发明实施例中压缩机的每个组件都可以被单独使用在其他装置和设备中。本发明实施例也应该包含将单个组件作为独立部件进行保护的技术方案。即,本发明的保护范围也应该包含如上实施例分别记载的一种带轮、一种管材机壳、一种消声器、一种管路连接接头、一种轴承密封端板、一种齿轮、一种转子组以及一种径向密封装置。
上述实施例只为说明本发明的技术构思及特点,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换等,均应包含在本发明的保护范围之内。

Claims (61)

  1. 一种压缩机,所采用的带轮包括:轮毂和外圈,所述轮毂配合安装在带轮轴上,其特征在于,所采用的带轮进一步包括:扇叶辐板;所述外圈通过多个所述扇叶辐板与所述轮毂连接成一体。
  2. 根据权利要求1所述的压缩机,其特征在于,所述扇叶辐板为扭曲式辐板。
  3. 根据权利要求1或2所述的压缩机,其特征在于,所述外圈的外环面为带包覆面,所述带包覆面挂接带。
  4. 根据权利要求1或2所述的压缩机,其特征在于,所述轮毂与所述带轮轴的配合方式为轴孔配合。
  5. 根据权利要求1或2所述的压缩机,其特征在于,所述轮毂与所述带轮轴的配合方式为锥套锁紧配合。
  6. 根据权利要求1所述的压缩机,其特征在于,所采用的管材机壳包括:机壳体和至少两个风口;所述机壳体为管型,两个管型端面作为法兰面并开有法兰螺孔,管型侧面上开有所述至少两个风口。
  7. 根据权利要求1所述的压缩机,其特征在于,所采用的管材机壳包括:机壳体、至少两个风口、两个卡套法兰槽和四个卡套法兰;所述机壳体为管型,两个管型端面上分别开有一个所述卡套法兰槽,每个所述卡套法兰槽与两个所述卡套法兰通过螺钉固定;管型侧面上开有所述至少两个风口。
  8. 根据权利要求6或7所述的压缩机,其特征在于,所采用的管材机壳进一步包括至少两个密封槽,每个所述风口处开有一个密封槽。
  9. 根据权利要求6或7所述的压缩机,其特征在于,所述至少两个风口的风口数量为2,分别作为所述管材机壳的进风口或出风口。
  10. 根据权利要求6或7所述的压缩机,其特征在于,所述机壳体的端面为跑道圆形。
  11. 根据权利要求7所述的压缩机,其特征在于,所述卡套法兰为U形。
  12. 根据权利要求1、6、7中任一所述的压缩机,其特征在于,所采用的管材机壳的加工方法包括:将管材加工成与机壳体端面一致的圆管;将所述圆管分段切分成机壳体,在所述机壳体的两个端面加工法兰螺孔或卡套法兰槽;在所述机壳体的侧面加工风口。
  13. 根据权利要求12所述的压缩机,其特征在于,所采用的管材机壳的加工方法进一步包括:在所述风口处加工密封槽。
  14. 根据权利要求12所述的压缩机,其特征在于,所述将管材加工成与机壳体端面一致的圆管包括:采用型腔断面与机壳体端面一致的上模压模具和下模压模具,将管材放入所述上模压模具和下模压模具之间,所述上模压模具和下模压模具同时加力,将管材锻压成与机壳体端面一致的圆管。
  15. 根据权利要求12所述的压缩机,其特征在于,所述将管材加工成与机壳体端面一致的圆管包括:采用型腔断面与机壳体端面一致的拉压延模具,将管材导入拉压延模具,从所述拉压延模具的一侧拉压出所述管材,将管材拉压成与机壳体 端面一致的圆管。
  16. 根据权利要求12所述的压缩机,其特征在于,所述将管材加工成与机壳体端面一致的圆管包括:采用外型断面与机壳体端面一致的冷/热轧辊组,将管材导入冷/热轧辊组;所述管材经所述冷/热轧辊组的冷/热辊压后成为与机壳体端面一致的圆管。
  17. 根据权利要求1、6、7、12中任一所述的压缩机,其特征在于,压缩机的进风口上连接的消声器包括:管路接管、壳体、外罩、折反腔、至少一个折反导管和滤网;其中,所述管路接管、壳体和外罩依次连接;所述折反导管安装于所述壳体内部,通过所述折反腔壁与所述壳体相连;所述滤网安装于所述折反腔中;所述壳体、外罩、折反腔、折反导管均由复合材料制成。
  18. 根据权利要求17所述的压缩机,其特征在于,所述壳体和所述外罩的缝隙吸入气体到所述折反腔,经所述滤网净化后通过所述折反导管导入所述管路接管;其中,气体声波在所述折反腔和所述折反导管中不断折射和反射,以反相振幅抵消方式降低噪声能量。
  19. 根据权利要求17所述的压缩机,其特征在于,进风口上连接的消声器进一步包括增强骨架,所述增强骨架包覆在所述壳体外侧。
  20. 根据权利要求1、6、7、12中任一所述的压缩机,其特征在于,压缩机的进风口/出风口上连接的消声器包括:进口管路接管、出口管路接管、壳体、折反腔隔板和至少一个折反导管;其中,进口管路接管和出口管路接管通过壳体连接;所述折反导管安装于壳体内部,通过折反腔隔板与壳体相连;所述壳体、折反腔隔板和折反导管均由复合材料制成。
  21. 根据权利要求20所述的压缩机,其特征在于,所述进口管路接管吸入气体到所述壳体;气体声波在所述壳体和所述折反导管中不断折射和反射,以反相振幅抵消方式降低噪声能量。
  22. 根据权利要求20所述的压缩机,其特征在于,进风口/出风口上连接的消声器进一步包括增强骨架,所述增强骨架包覆在所述壳体外侧。
  23. 根据权利要求1、6、7、12、17、20中任一所述的压缩机,其特征在于,所采用的管路连接接头包括:直管段、直孔段、密封槽、密封圈,所述密封槽内卡装有密封圈,所述直管段与所述直孔段为间隙配合,通过所述密封槽和所述密封圈实现间隙密封。
  24. 根据权利要求23所述的压缩机,其特征在于,所述密封槽设置于所述直管段外侧面。
  25. 根据权利要求23所述的压缩机,其特征在于,所述密封槽设置于所述直孔段内侧面。
  26. 根据权利要求24或25所述的压缩机,其特征在于,所述密封槽的数量至少为一个。
  27. 根据权利要求23所述的压缩机,其特征在于,所述密封圈材料为能耐受工作温度的弹性材料。
  28. 根据权利要求23所述的压缩机,其特征在于,所述密封圈截面为C型、楔型、X型或O型。
  29. 根据权利要求23所述的压缩机,其特征在于,所述直管段及所述直孔段的端部倒有足够大的倒角。
  30. 根据权利要求1、6、7、12、17、20、23中任一所述的压缩机,其特征在于,所采用的轴承密封端板包括:封盖端板和支撑架;其中,所述封盖端板开有至少一个轴孔,所述支撑架上也开有至少一个轴承孔,且二者以轴孔和轴承孔同轴定位方式采用螺栓连接;
    其中,所述封盖端板的端面或支撑架的端面,作为在所述轴承密封端板上安装设备的安装面;
    其中,所述封盖端板和支撑架分别独立加工成型。
  31. 根据权利要求30所述的压缩机,其特征在于,所述封盖端板上开有止口槽;所述支撑架外沿面插入所述封盖端板上的止口槽面以实现同轴定位。
  32. 根据权利要求30所述的压缩机,其特征在于,所述轴承密封端板进一步包括定位销套;
    所述封盖端板和所述支撑架上均开有销套安装孔;所述定位销套分别插入所述封盖端板上的销套安装孔和所述支撑架上的销套安装孔以实现同轴定位。
  33. 根据权利要求30所述的压缩机,其特征在于,所述轴承密封端板进一步包括定位销钉;
    其中,所述封盖端板和支撑架上均开有销孔;所述定位销钉分别插入所述封盖端板上的销孔和所述支撑架上的销孔中以实现同轴定位。
  34. 根据权利要求30所述的压缩机,其特征在于,所述至少一个轴承孔的轴承孔数量为2。
  35. 根据权利要求1、6、7、12、17、20、23、30中任一所述的压缩机,所采用的齿轮包括:齿轮体和液压顶套;所述齿轮体中心开有用于与轴配合的圆柱形的夹轴孔,同时所述齿轮体上开有与所述夹轴孔同心的夹套槽,所述液压顶套通过所述夹套槽与所述齿轮体配合;所述夹套槽底部开有油腔并装满液压油;
    其中,所述齿轮体与所述液压顶套通过螺栓连接锁紧,螺栓锁紧使所述油腔中的液压油受压导致所述夹轴孔产生缩小变形,所述液压顶套通过所述夹轴孔的缩小变形夹紧在轴上。
  36. 根据权利要求35所述的压缩机,其特征在于,所述齿轮体端面上开有螺栓孔,所述液压顶套端面上开有与所述螺栓孔同轴的光孔,所述齿轮体与所述液压顶套通过穿过所述螺栓孔和所述光孔的螺栓连接锁紧。
  37. 根据权利要求35所述的压缩机,其特征在于,所述液压顶套与所述夹套槽形成的密封空腔作为油腔并装满液压油。
  38. 根据权利要求35或37所述的压缩机,其特征在于,所述液压顶套底部内外两面各开有一组密封槽,每组密封槽包括至少一个密封槽。
  39. 根据权利要求38所述的压缩机,其特征在于,所采用的齿轮进一步包括: 两组密封圈,所述两组密封圈分别位于所述液压顶套内外两面的两组密封槽中,每组密封圈包括至少一个密封圈,用于密封所述油腔中的液压油。
  40. 根据权利要求35所述的压缩机,其特征在于,所述液压顶套的端面上开有拆卸螺纹孔。
  41. 根据权利要求1、6、7、12、17、20、23、30中任一所述的压缩机,其特征在于,所采用的齿轮包括:齿轮体和弹性锥套;所述齿轮体中心开有用于与轴配合的圆柱形的夹轴孔,同时所述齿轮体上开有与所述夹轴孔同心的锥套槽,所述锥套槽的径向断面为锥形;所述弹性锥套通过所述锥套槽与所述齿轮体过盈配合;
    其中,所述齿轮体与所述弹性锥套通过螺栓连接锁紧,螺栓锁紧使所述夹轴孔受力产生缩小变形,所述弹性锥套通过所述夹轴孔的缩小变形夹紧在轴上。
  42. 根据权利要求41所述的压缩机,其特征在于,所述齿轮体端面上开有螺栓孔,所述弹性锥套端面上开有与所述螺栓孔同轴的光孔,所述齿轮体与所述弹性锥套通过穿过所述螺栓孔和所述光孔的螺栓连接锁紧。
  43. 根据权利要求41所述的压缩机,其特征在于,所述夹轴孔沿径向开有至少一个变形槽。
  44. 根据权利要求41所述的压缩机,其特征在于,所述弹性锥套沿径向开有至少一个变形槽。
  45. 根据权利要求41所述的压缩机,其特征在于,所述弹性锥套的端面上开有拆卸螺纹孔。
  46. 根据权利要求1、6、7、12、17、20、23、30、35、41中任一所述的压缩机,其特征在于,所采用的转子组包括:叶轮、左半轴及右半轴,所述右半轴和所述左半轴采用摩擦焊的方式分别与所述叶轮连接成一体。
  47. 根据权利要求41所述的压缩机,其特征在于,所述叶轮的两侧端面预留有摩擦焊专用表面,所述右半轴及所述左半轴与所述叶轮接触的一侧端面预留摩擦焊专用表面;所述右半轴的预留摩擦焊专用表面与所述叶轮的右侧端面预留摩擦焊专用表面相连;所述左半轴的预留摩擦焊专用表面与所述叶轮的左侧端面预留摩擦焊专用表面相连。
  48. 根据权利要求41所述的压缩机,其特征在于,所述摩擦焊的结合方式为平面配平面。
  49. 根据权利要求41所述的压缩机,其特征在于,所述摩擦焊的结合方式为锥轴面配锥孔面。
  50. 根据权利要求41所述的压缩机,其特征在于,所述平面与平面及所述锥轴面与锥孔面通过摩擦加压结合在一起。
  51. 根据权利要求41所述的压缩机,其特征在于,所述右半轴的预留摩擦焊专用表面与所述叶轮的右侧端面预留摩擦焊专用表面均为平面;或一边为锥孔面,一边为锥轴面;或一边为锥轴面,一边为锥孔面。
  52. 根据权利要求41所述的压缩机,其特征在于,所述左半轴的预留摩擦焊专用表面与所述叶轮的左侧端面预留摩擦焊专用表面均为平面;或一边为锥孔面, 一边为锥轴面;或一边为锥轴面,一边为锥孔面。
  53. 根据权利要求1、6、7、12、17、20、23、30、35、41、46中任一所述的压缩机,其特征在于,所采用的径向密封装置包括:动环及两个静环,所述两个静环相扣,将所述动环夹于中间,所述动环及所述两个静环的密封翅截面为锥形,交叉排列。
  54. 根据权利要求53所述的压缩机,其特征在于,所述动环密封翅的道数至少为一道,所述静环密封翅的道数至少为一道。
  55. 根据权利要求53所述的压缩机,其特征在于,所述动环密封翅的道数与所述静环密封翅的道数相等或相差一道。
  56. 根据权利要求53所述的压缩机,其特征在于,所述静环及静环密封翅直接加工在主机本体上。
  57. 根据权利要求53所述的压缩机,其特征在于,所采用的径向密封装置进一步包括:浮动动环及波纹片,浮动动环设置于动环上,浮动动环与动环之间用波纹片连接。
  58. 根据权利要求57所述的压缩机,其特征在于,所述动环上的密封翅加工在所述浮动动环上。
  59. 根据权利要求53至57中任一所述的压缩机,其特征在于,所述动环及所述静环由非金属密封材料制成。
  60. 根据权利要求53至57中任一所述的压缩机,其特征在于,所采用的径向密封装置进一步包括:密封填料,所述密封填料粘接在槽底,所述密封翅直接与密封填料接触。
  61. 根据权利要求53至57中任一所述的压缩机,其特征在于,所采用的径向密封装置进一步包括:O形圈,所述动环与轴间用O形圈密封。
PCT/CN2014/086306 2013-09-13 2014-09-11 一种压缩机 WO2015035926A1 (zh)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN201310418364.7 2013-09-13
CN2013104183647A CN103437857A (zh) 2013-09-13 2013-09-13 一种消声器及系统
CN2013104201255A CN103470639A (zh) 2013-09-13 2013-09-13 轴承密封端板
CN201310420125.5 2013-09-13
CN201310506817.1A CN103557407B (zh) 2013-10-24 2013-10-24 管材机壳的加工方法
CN201310506817.1 2013-10-24
CN201310612733.6A CN103615410A (zh) 2013-11-26 2013-11-26 一种转子组
CN201310612733.6 2013-11-26
CN201320760827.3U CN203641508U (zh) 2013-11-26 2013-11-26 一种径向密封装置
CN201310611634.6 2013-11-26
CN201320760827.3 2013-11-26
CN201310611634.6A CN103615515B (zh) 2013-11-26 2013-11-26 一种齿轮
CN201310616038.7A CN103615517A (zh) 2013-11-27 2013-11-27 一种带轮
CN201310616038.7 2013-11-27
CN201310642367.9A CN103615612A (zh) 2013-12-02 2013-12-02 一种管路连接接头
CN201310642367.9 2013-12-02

Publications (1)

Publication Number Publication Date
WO2015035926A1 true WO2015035926A1 (zh) 2015-03-19

Family

ID=52665081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086306 WO2015035926A1 (zh) 2013-09-13 2014-09-11 一种压缩机

Country Status (1)

Country Link
WO (1) WO2015035926A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021244856A1 (de) 2020-06-05 2021-12-09 Sew-Eurodrive Gmbh & Co. Kg Antrieb, insbesondere von einem elektromotor angetriebenes getriebe, mit einer welle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151886A (ja) * 1995-11-29 1997-06-10 Sanyo Electric Co Ltd 密閉型回転圧縮機
US6447267B1 (en) * 2000-06-14 2002-09-10 Wabtec Corporation Locomotive air compressor with motor supported by outside bearing
CN2549302Y (zh) * 2002-05-22 2003-05-07 上海航天长垣新型管道有限公司 密封圈承插管接头
CN1418300A (zh) * 2000-03-07 2003-05-14 勃姆巴迪尔运输有限公司 可旋转构件之间的迷宫式密封
CN2682226Y (zh) * 2004-02-12 2005-03-02 复盛易利达(上海)压缩机有限公司 进气过滤器
CN2735035Y (zh) * 2004-07-02 2005-10-19 合肥通用机械研究所 压缩机用蝶翼式混流风扇皮带轮
US7229259B2 (en) * 2003-12-04 2007-06-12 Carrier Corporation Compressor motor-end bearing having oil leakage path
CN201225289Y (zh) * 2008-07-17 2009-04-22 广东正力精密机械有限公司 一种单螺杆压缩机壳体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151886A (ja) * 1995-11-29 1997-06-10 Sanyo Electric Co Ltd 密閉型回転圧縮機
CN1418300A (zh) * 2000-03-07 2003-05-14 勃姆巴迪尔运输有限公司 可旋转构件之间的迷宫式密封
US6447267B1 (en) * 2000-06-14 2002-09-10 Wabtec Corporation Locomotive air compressor with motor supported by outside bearing
CN2549302Y (zh) * 2002-05-22 2003-05-07 上海航天长垣新型管道有限公司 密封圈承插管接头
US7229259B2 (en) * 2003-12-04 2007-06-12 Carrier Corporation Compressor motor-end bearing having oil leakage path
CN2682226Y (zh) * 2004-02-12 2005-03-02 复盛易利达(上海)压缩机有限公司 进气过滤器
CN2735035Y (zh) * 2004-07-02 2005-10-19 合肥通用机械研究所 压缩机用蝶翼式混流风扇皮带轮
CN201225289Y (zh) * 2008-07-17 2009-04-22 广东正力精密机械有限公司 一种单螺杆压缩机壳体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021244856A1 (de) 2020-06-05 2021-12-09 Sew-Eurodrive Gmbh & Co. Kg Antrieb, insbesondere von einem elektromotor angetriebenes getriebe, mit einer welle

Similar Documents

Publication Publication Date Title
US9850820B2 (en) Power transmission system for a turbine engine
CN102713308A (zh) 离心式压缩机的扩散器-导流叶片连接装置
JP2013019355A (ja) 過給機用消音器、これを備えた過給機およびハイブリッド過給機
WO2015035926A1 (zh) 一种压缩机
KR20130105517A (ko) 원심 압축 장치 및 그 조립 방법
CN107559196B (zh) 一种高气密型水冷式罗茨风机设备
JP5927262B2 (ja) 一体型トルク伝達/回転シール用のシステムおよび方法
CN109027029A (zh) 一种应用于高速大功率工况的低振膜片联轴器
CN116379002B (zh) 一种等转速反转式扩压器结构设计方法及扩压器结构
KR20060074897A (ko) 더블 랩 스크롤 유체 기계
EP3561239B1 (en) Wedge adapter seal
CN206280440U (zh) 双原动力驱动用齿轮箱和超越离合器集成
CN215805310U (zh) 一种无蜗壳风机进风口连接装置
CN213451596U (zh) 一种烘缸驱动装置
CN103547809B (zh) 鼓风机装置以及气体激光振荡装置
JP5876753B2 (ja) 遠心圧縮装置
CN210068477U (zh) 一种螺杆空压机传动系统中心定位机构
CN211423054U (zh) 一种软管膨胀驱动式气动马达
CN210343697U (zh) 一种螺杆空压机传动系统
JP2013189921A (ja) 過給機
CN208138142U (zh) 压缩机和空调机组
EP3458691B1 (en) A conduit connection assembly with pressure relief
JP5392163B2 (ja) ケーシング構造
CN105339665A (zh) 涡旋式流体设备及其垫圈
CN217632924U (zh) 一种一体式单级螺杆压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A) - 25.07.2016

122 Ep: pct application non-entry in european phase

Ref document number: 14843831

Country of ref document: EP

Kind code of ref document: A1