WO2015035683A1 - 一种锂空气电池及其制备方法 - Google Patents

一种锂空气电池及其制备方法 Download PDF

Info

Publication number
WO2015035683A1
WO2015035683A1 PCT/CN2013/085682 CN2013085682W WO2015035683A1 WO 2015035683 A1 WO2015035683 A1 WO 2015035683A1 CN 2013085682 W CN2013085682 W CN 2013085682W WO 2015035683 A1 WO2015035683 A1 WO 2015035683A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
air battery
positive electrode
electrolyte
carbon
Prior art date
Application number
PCT/CN2013/085682
Other languages
English (en)
French (fr)
Inventor
罗仲宽
王芳
梁春生
陈静
徐扬海
刘�东
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2015035683A1 publication Critical patent/WO2015035683A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the field of electrochemical energy, in particular to a lithium air battery and a preparation method thereof.
  • the lithium air battery is a high-energy battery with a very high energy density.
  • the positive active material of the lithium air battery is oxygen in the air, which is inexhaustible. In the case of excess anode, the termination of discharge is controlled by the discharge product clogging the air electrode channels. In practical applications, oxygen is supplied by the external environment, so the lithium-air battery energy density is 1-2 orders of magnitude higher than the existing lithium battery system.
  • the lithium-air battery is an environmentally friendly new battery system that provides clean battery energy for the future.
  • the reversible cycle of lithium-air battery will be greatly promoted, which will greatly promote the metal air battery such as lithium air battery in the field of power storage, electric vehicle, aerospace and other fields. development of. This will not only bring revolutionary technological breakthroughs to the battery industry, but will also be a milestone for the entire metal-air battery.
  • the object of the present invention is to provide a lithium air battery and a preparation method thereof, which have excellent cycle performance to solve the problem of poor cycle performance of the current lithium air battery.
  • the technical solution for achieving the above object of the present invention is: a lithium air battery comprising a positive electrode, a negative electrode and an electrolyte, the positive electrode comprising a carbon paper current collector; the electrolyte comprising sulfolane and a lithium salt.
  • the lithium salt is at least one of lithium bis(trifluoromethylsulfonyl)imide (LiTFSI), lithium hexafluorophosphate (LiPF 6 ), lithium dioxalate borate (LiBOB), and lithium tetrafluoroborate (LiBF 4 ).
  • LiTFSI lithium bis(trifluoromethylsulfonyl)imide
  • LiPF 6 lithium hexafluorophosphate
  • LiBOB lithium dioxalate borate
  • LiBF 4 lithium tetrafluoroborate
  • the electrolyte further includes dimethyl sulfoxide and/or tetraglyme.
  • the molar concentration of the lithium salt in the electrolytic solution is 0.5 to 5 mol/L.
  • the carbon paper current collector is carbon fiber paper having hydrophobicity on at least one side.
  • the positive electrode further includes a coating layer on the carbon paper current collector, the coating layer includes carbon, lithium peroxide and polytetrafluoroethylene, and the quality of the polytetrafluoroethylene is 5 of the coating layer quality. % ⁇ 10%; the mass of the lithium peroxide is 5% of the sum of the mass of carbon and lithium peroxide ⁇ 60%.
  • the invention also provides a preparation method of a lithium air battery, comprising the following steps:
  • Lithium metal is a negative electrode
  • the electrolyte solution, the positive electrode, and the negative electrode are encapsulated in an inert gas atmosphere to obtain the lithium air battery.
  • the electrolyte solution in the step A further includes dimethyl sulfoxide and/or tetraglyme.
  • the lithium salt in the step A is at least one of LiTFSI, LiPF 6 , LiBOB, and LiBF 4 .
  • the carbon paper current collector is carbon fiber paper having hydrophobicity on at least one side.
  • the mass of the polytetrafluoroethylene in the step B is 5% to 10% of the mass of the mixed solution; and the mass of the lithium peroxide is 5% to 60% of the total mass of the carbon and the lithium peroxide.
  • the volume of the methylpyrrolidone in the step B is 3 to 5 times the volume of the mixed solution.
  • the package in the step D further includes a separator, a battery case, a gasket, and a spring piece, and the order of the package is from a negative electrode to a positive electrode, and in turn, a negative battery case, a spring piece, a gasket, a metal lithium, an electrolyte, a separator, Electrolyte, positive electrode, and positive battery case.
  • control pressure of the package in the step D is 45-50 MPa, and the content of water and oxygen in the package environment is less than 0.5. Ppm.
  • the lithium air battery of the present invention maintains a charge-discharge specific capacity of 1000 With mAh/g and a voltage range of 2.2-5.0 V, the number of cycles can be more than 1000 times, with very superior cycle performance up to 1100 cycles.
  • the specific capacity retention rate and energy efficiency are high.
  • the battery of the present invention has a specific capacity retention rate of 100% and an initial energy efficiency of about 85%. Even after 1100 cycles, it still has a specific capacity retention rate of 100%, and the average energy efficiency can be maintained at 69%.
  • the lithium-air battery prepared by combining the electrolyte system of sulfolane and lithium salt with the positive electrode coated with porous carbon-lithium oxide is a new system of lithium air battery, and it is the best combination so far.
  • the specific discharge capacity is 1000 In the case of mAh/g and voltage range of 2.2-5.0 V, the number of cycles can reach as many as 1,100 times, which is the highest number of cycles in the world under the same conditions.
  • 1 is a lithium air battery model of the present invention.
  • Figure 2 is a graph showing the specific capacity-voltage relationship of a LiTFSI-containing lithium air battery.
  • Figure 3 is a plot of specific capacity versus voltage for a LiPF 6 lithium air battery.
  • Figure 4 is a graph showing the specific capacity-voltage relationship of a LiBOB-containing lithium air battery.
  • Figure 5 is a graph showing the specific capacity-voltage relationship of a LiBF 4 lithium-containing air battery.
  • Fig. 6 is a graph showing a specific capacity-voltage relationship of a lithium air battery according to Embodiment 1 of the present invention.
  • Fig. 7 is a capacity-voltage curve of a nickel foam positive electrode lithium battery.
  • Figure 8 is a capacity-voltage curve of a single-sided hydrophobic carbon paper lithium battery.
  • the invention develops a lithium air battery with excellent electrochemical performance, good safety performance and excellent cycle characteristics through various improvements of battery materials. Maintain a charge-discharge ratio of 1000 In the case of mAh/g and a voltage range of 2.2 to 5.0 V, the number of cycles obtained by the present invention can be up to 1,100 times or more.
  • the present invention combines the advantages of a high pressure, a high dielectric constant, and a chemical stability in combination with a sulfolane electrolyte solvent, and sulfolane is selected as an electrolyte solvent, and other solvents such as dimethyl sulfoxide (DMSO) and or tetraglycan may be added.
  • DMSO dimethyl sulfoxide
  • tetraglycan tetraglycan
  • TEGDME Mixed modification of alcohol dimethyl ether
  • the melting point of the tetraethylene glycol dimethyl ether modified electrolyte is lowered, so that the electrolyte is adapted to be used under lower temperature conditions; the dimethyl sulfoxide is used as an electrolyte additive to make the charging voltage of the lithium air battery relatively low.
  • the present invention employs at least one of LiTFSI, LiPF 6 , LiBOB, and LiBF 4 as the electrolyte lithium salt of the lithium air battery, so that the lithium air battery achieves a high cycle life.
  • the lithium salt concentration in the electrolyte is appropriately increased, or when the lithium salt is a mixture of two or more kinds, the ionic conductivity in the electrolyte can be improved, the stability of the battery can be improved, and the lithium air battery can be efficiently and stably circulated.
  • the carbon paper current collector may be any one of carbon fiber, graphite foil, and carbon cloth, and is preferably a carbon fiber paper current collector.
  • the present invention employs a carbon paper current collector having at least one side having hydrophobic properties, wherein one carbon paper current collector is one-sided hydrophobic and the other side is a conductive layer, so that water vapor can be better separated to prevent water vapor from being lithium. The intrusion of the air battery can provide a better current collecting function and promote the lithium battery to have higher performance.
  • Another carbon paper current collector has a hydrophobic layer on both sides, which can better isolate water vapor and is safer from a practical point of view.
  • a surface of the carbon paper current collector is coated with a coating film including porous conductive carbon, lithium peroxide, and polytetrafluoroethylene (PTFE).
  • the quality of the polytetrafluoroethylene is 5% ⁇ 10% of the quality of the coating layer, and the property of the polytetrafluoroethylene is stable, and the binder can better accommodate the positive active material; the carbon and the lithium peroxide can be mixed at any ratio.
  • the mass of the lithium peroxide is 5% to 60% of the total mass of the carbon and the lithium peroxide, and the appropriate amount of lithium peroxide as the discharge product and the active material can effectively promote the crystallization of the discharge product and compensate for the deficiency of the active material during charging.
  • the purpose of promoting the smooth progress of the charge-discharge reaction is achieved; the porous conductive carbon can not only promote the electron conduction of the positive electrode, but also has a reasonable pore size, and can effectively control the discharge product to block the air positive electrode.
  • the conductivity of the pole piece ranges from 108.92 From s/cm to 147.10 s/cm, the open circuit voltage of the battery is about 3.0 V.
  • the present invention in combination with the above various systems, provides a lithium air battery having excellent cycle performance.
  • the battery has a lithium metal as a negative electrode, a sulfolane and a lithium salt as an electrolyte system, and a positive electrode as a hydrophobic carbon paper coated with a carbon, lithium peroxide or polytetrafluoroethylene coating layer.
  • the preparation method of the lithium air battery having excellent cycle performance of the invention comprises the following steps:
  • Lithium metal is a negative electrode
  • the electrolyte solution, the positive electrode, and the negative electrode are encapsulated in an inert gas atmosphere to obtain the lithium air battery.
  • porous conductive carbon and 4.95 g of lithium peroxide were weighed and automatically ground by an agate mortar or a ball mill to obtain a homogeneous mixture of porous conductive carbon and lithium peroxide.
  • the above mixture was added to 1 g of polytetrafluoroethylene (PTFE) to form a mixture.
  • PTFE polytetrafluoroethylene
  • NMP 20g-methylpyrrolidone
  • the viscous suspension is uniformly dispersed on one side of the dried carbon paper placed on the vacuum plate, and is uniformly heated by a strong wind and driven by an automatic coating dryer at a speed of 10 to 15 mm per second to obtain a belt. A shiny, moist positive film. Finally the drying oven at 60-80 o C temperature conditions methylpyrrolidone (NMP) after drying for 3 hours to obtain the target positive electrode sheet.
  • NMP methylpyrrolidone
  • the electrolyte solution, positive electrode sheet, and lithium metal anode prepared in steps A, B, and C are all less than 0.5 in water and oxygen.
  • the assembled lithium air battery is integrally moved into the mold pressure groove of the manual press, and the control pressure is 45-50 MPa to press the battery, and after 30 seconds, the lithium air battery is obtained.
  • the current density is controlled to be 0.05 mA/cm 2
  • the specific capacity is 1000 mAh/g
  • the specific capacitance and voltage change curves of the charge, discharge and discharge are measured as shown in FIG. 2 .
  • 3, 4, 5 are shown. All batteries can be circulated more than 150 times, and the lithium air battery prepared by the invention has excellent cycle performance.
  • the effect is best when the lithium salt is selected to be LiTFSI.
  • the lithium air battery prepared in Example 1 of the present invention has a control current density of 0.05 mA/cm 2 and a specific capacity of 1000 mAh/g.
  • the specific capacity-voltage curve of the battery is measured as shown in FIG.
  • the lithium air battery maintains a specific capacity of 1000 mAh/g in a voltage range of 2.2 to 5.0 V, and can achieve 1100 cycles with excellent cycle performance.
  • Example 2 Other conditions were the same as in Example 1, except that the positive current collector material was changed, and a lithium-air battery was prepared by replacing the single-sided hydrophobic carbon paper with foamed nickel.
  • the charge and discharge capacity is 0.1 mAh
  • the measured lithium-air battery capacity of the foamed nickel as the positive electrode material-voltage charge-discharge cycle curve is shown in FIG. 7
  • the battery capacity-voltage charge-discharge cycle curve of the carbon paper as the positive electrode material is as shown in FIG.
  • the present invention specifically selects carbon paper as a current collector to exhibit a more stable electrochemical performance in combination with a sulfolane-containing electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

一种锂空气电池及其制备方法,电池包括:(1)正极,多孔疏水的碳纸集流体和碳纸集流体上的涂覆层;(2)负极,金属锂;(3)环丁砜和锂盐为电解质体系。环丁砜具有较高的电介质常数和化学稳定性,基于环丁砜的电解液电化学窗口宽且离子导电性和稳定性较好,特异性地与多孔导电的碳纸集流体组合,所制备的锂空气电池具有优良的循环性能。

Description

一种锂空气电池及其制备方法 技术领域
   本发明涉及电化学能源领域,尤其涉及一种锂空气电池及其制备方法。
背景技术
   锂空气电池是一种具有很高能量密度的高能电池,与通常的锂离子电池正极材料相比,锂空气电池的正极活性物质是空气中的氧气,取之不尽。在阳极过量的情况下,放电的终止是由放电产物堵塞空气电极孔道所控制。实际应用中,氧气由外界环境提供,因此锂空气电池能量密度比现有锂电池体系高出1—2个数量级。此外,锂空气电池是一种环境友好的新型电池体系,可以为未来提供清洁的电池能源。综合其价格低廉、安全环保,比能量高等各方面的优势,锂空气电池的可逆循环一旦真正建立起来,将大大推动锂空气电池等金属空气电池在电网储能、电动汽车、航空航天等领域的发展。这不仅会对电池行业带来革命性的技术突破,也将成为整个金属空气电池的一个里程碑。
   国内外有关锂空气电池的研究非常活跃,而对其合理的构造尚无定论。为了建立锂空气电池真正的可逆循环,必须具备稳定的电解质体系,合适的正极集流体,以及能够提高电池充放电性能的涂膜物质。如,申请号201310120005.3的专利文献公开了一种锂空气电池用砜类电解液,所述砜类电解液具有低挥发性、高的溶解氧能力、电化学窗口宽,尤其对超氧根具有优异的稳定性,有利于可逆产物生成及副反应的抑制。而该文献中未采用合适的空气正极,所制备锂空气电池仅有5个循环。现有技术中通常以铝网、泡沫镍、多孔陶瓷片为空气正极基体,有机碳酸酯类或者醚类为电解液,循环次数普遍也仅有100多次。
技术问题
本发明的目的在于提供一种锂空气电池及其制备方法,所述锂空气电池具有优良的循环性能,以解决当前锂空气电池循环性能差的问题。
技术解决方案
   本发明实现上述目的的技术方案是:一种锂空气电池,包括正极,负极和电解液,所述正极包括碳纸集流体;所述电解液包括环丁砜和锂盐。
   进一步地,所述锂盐为二(三氟甲基磺酰)亚胺锂(LiTFSI)、六氟磷酸锂(LiPF6)、二草酸硼酸锂(LiBOB)、四氟硼酸锂(LiBF4)中的至少一种。
   进一步地,所述电解液还包括二甲基亚砜和/或四甘醇二甲醚。
   进一步地,所述电解液中锂盐的摩尔浓度为0.5~5mol/L。
   进一步地,所述碳纸集流体为至少一面具有疏水性的碳纤维纸。
   进一步地,所述正极还包括碳纸集流体上的涂覆层,所述涂覆层包括碳、过氧化锂和聚四氟乙烯,所述聚四氟乙烯的质量为涂覆层质量的5%~10%;所述过氧化锂的质量为碳和过氧化锂质量总和的5% ~60%。
   本发明还提供一种锂空气电池的制备方法,包括如下步骤:
   A.电解质溶液的配置
   将锂盐与环丁砜混合,制得电解质溶液,其中,所述锂盐的浓度为0.5-5mol/L;
   B.正极的制作
   (1)将多孔导电碳和过氧化锂混合,研磨后与聚四氟乙烯混合,得混合液;(2)将所述混合液加入到甲基吡咯酮中,在40-80oC下搅拌,得混合浆料;(3)将所述混合浆料涂膜于碳纸集流体上,烘干,得正极;
   C.负极的制作
   锂金属为负极;
   D.将所述电解质溶液、正极、负极,在惰性气体气氛中封装得到所述锂空气电池。
   进一步地,步骤A中所述电解质溶液还包括二甲基亚砜和/或四甘醇二甲醚。
   进一步地,步骤A中所述锂盐为LiTFSI、LiPF6、LiBOB、LiBF4中的至少一种。
   进一步地,所述碳纸集流体为至少一面具有疏水性的碳纤维纸。
   进一步地,步骤B中所述聚四氟乙烯的质量为混合液质量的5%~10%;所述过氧化锂的质量为碳和过氧化锂质量总和的5% ~60%。
   进一步地,步骤B中所述甲基吡咯酮的体积为混合液体积的3~5倍。
   进一步地,步骤D中所述封装还包括隔膜、电池壳、垫片、弹片,所述封装的顺序从负极到正极,依次是负极电池壳、弹片、垫片、金属锂、电解液、隔膜、电解液、正极、正极电池壳。
进一步地,所述步骤D中封装的控制压力为45—50Mpa,封装环境中水和氧气的含量均小于0.5 ppm。
有益效果
   本发明的有益效果在于:
   (1)优良的循环性能。本发明所述锂空气电池在保持充放电比容量为1000 mAh/g、电压范围为2.2—5.0 V的情况之下,循环次数均可达1000次以上,具有非常优越的循环性能,最高可达1100次循环。
   (2)比容量保持率、能量效率高。本发明的电池具有100%的比容量保持率,初始能量效率可达85%左右。即使在循环1100次后,依然具有100%的比容量保持率,平均能量效率也可以保持在69%。
   (3)有效控制正极腐蚀现象。普通的碳纸或金属集流体(镍网、捏泡沫、铝箔等)材料在充电电压高于4.2 V之后普遍存在有腐蚀现象,本发明选用疏水碳纸作为集流体,有效控制了正极腐蚀现象的发生。
总之,环丁砜和锂盐的电解质体系,与涂覆有多孔碳-过氧化锂的正极结合制备得到的锂空气电池是一个全新体系的锂空气电池,也是目前为止效果最佳的组合,在保持充放电比容量为1000 mAh/g、电压范围为2.2—5.0 V的情况之下,循环次数可达1100次之多,是目前世界上在同等条件下得到最高的循环次数。
附图说明
   图1是本发明锂空气电池模型。
   图2是含LiTFSI锂空气电池比容量-电压关系曲线。
   图3是含LiPF6锂空气电池比容量-电压关系曲线。
   图4是含LiBOB锂空气电池比容量-电压关系曲线。
   图5是含LiBF4锂空气电池比容量-电压关系曲线。
   图6是本发明实施例1锂空气电池的比容量-电压关系曲线。
   图7是镍泡沫正极锂电池的容量-电压关系曲线。
图8是单面疏水碳纸锂电池的容量-电压关系曲线。
本发明的实施方式
   为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。此处所描述的具体实施例仅仅用以解释本发明,并不限定本发明。
   本发明通过对电池材料的多种改进研究出一种电化学性能优,安全性能好,具有卓越循环特性的锂空气电池。在保持充放电比容量为1000 mAh/g、电压范围为2.2—5.0 V的情况下,本发明得到的循环次数最高可达1100次以上。
   本发明对电池材料的多种改进包括:
   电解质方面,本发明结合环丁砜电解质溶剂能抗较高电压、电介质常数高、化学性质稳定等优点,选择环丁砜作为电解质溶剂,另可添加其他溶剂,如二甲基亚砜(DMSO)和或四甘醇二甲醚(TEGDME)等混合改性。四甘醇二甲醚改性的电解液熔点降低,使电解液适应于在较低温度条件下使用;二甲基亚砜作为电解液添加剂使得锂空气电池充电电压比较低。
   电解质锂盐方面,本发明采用了LiTFSI、LiPF6、LiBOB、LiBF4中的至少一种作为锂空气电池的电解质锂盐,使锂空气电池达到较高的循环寿命。尤其是当电解液中锂盐浓度适当增加时,或当锂盐为两种或两种以上的混合物时,可提高电解液中离子电导率,改善电池稳定性,使锂空气电池高效稳定循环。
   集流体方面,碳纸集流体可以为碳纤维、石墨箔、碳布中的任意一种,优选碳纤维纸集流体。本发明采用了至少一面具有疏水性能的碳纸集流体,其中一种碳纸集流体为单面疏水,另一面是导电层,这样既能更好的隔开水蒸气,以防止水蒸气对锂空气电池的侵害,又能提供较好的集流作用,促使锂空气电池有较高的性能。另一种碳纸集流体则两面均有疏水层,这样可以更好的隔离水蒸气,从实用的角度而言安全性更高。
   正极材料方面,为了更进一步提高电池的性能,在碳纸集流体表面覆有一层涂膜,所述涂膜包括多孔导电碳、过氧化锂及聚四氟乙烯(PTFE)。其中聚四氟乙烯的质量为涂覆层质量的5%~10%,聚四氟乙烯性质稳定,作粘结剂,可以较好地容纳正极活性物质;碳和过氧化锂可以任意比混合,优选过氧化锂的质量为碳和过氧化锂的质量总和的5%~60%,适量过氧化锂作为放电产物和活性物质,能有效促进放电产物的结晶,以及弥补充电时活性物质的不足,达到促进充放电反应顺利进行的目的;多孔导电碳不仅能促进正极的电子传导,且具有合理孔径,可以有效控制放电产物堵塞空气正极。极片的电导率范围为108.92 s/cm到147.10 s/cm,得到的电池开路电压在3.0 V左右。
   本发明结合上述各个体系,得到了具有优良循环性能的锂空气电池。该电池以金属锂为负极,环丁砜和锂盐为电解质体系,正极为涂覆有碳、过氧化锂、聚四氟乙烯涂覆层的疏水碳纸。
   本发明具有优异循环性能的锂空气电池的制备方法包括如下步骤:
   A.电解质溶液的配置
   将锂盐与环丁砜混合,制得电解质溶液,其中,所述锂盐的浓度为0.5-5mol/L;
   B.正极的制作
   (1)将多孔导电碳和过氧化锂混合,研磨后与聚四氟乙烯混合,得混合物;(2)将所述混合物加入到甲基吡咯酮中,在40-80oC下搅拌,得混合浆料;(3)将所述混合浆料涂膜于碳纸集流体上,烘干,得正极;
   C.负极的制作
   锂金属为负极;
   D.将所述电解质溶液、正极、负极,在惰性气体气氛中封装得到所述锂空气电池。
   以下通过多个实施例对本发明做进一步描述:
   实施例1
   A.电解质溶液的配制
   称取0.1mol的LiTFSI,量取0.1 L液态环丁砜溶剂,在水含量小于0.5ppm的环境条件下,将锂盐缓缓加入环丁砜溶剂中,充分搅拌1小时配制成浓度为1mol/L的均匀电解质溶液。电解质的游离酸和水的含量均要求小于10ppm。
   B.正极的制备
  首先,量取4.05g多孔导电碳,4.95g过氧化锂,采用玛瑙研钵手工研磨或球磨机自动研磨,得到多孔导电碳和过氧化锂均匀混合物。将上述混合物加入到1g聚四氟乙烯(PTFE)中形成混合物。将上述混合物加入到20g甲基吡咯烷酮(NMP)分散剂中,在磁力加热搅拌器中以40—80oC温度共混4小时,形成包含全部正极涂膜材料的粘稠悬浮液。将粘稠悬浮液均匀分散到置于真空板的干燥碳纸的一侧,使用强风加热并在自动涂膜烘干机的推动下,以每秒10~15mm的速度进行均匀涂膜,得到带有光泽的、湿润的正极片。最后将其放入干燥箱中在60—80oC温度条件下将甲基吡咯烷酮(NMP)烘干3小时,即得目标正极片。
   C.以金属锂为负极
   D. 将步骤A、B、C 中准备好的电解质溶液、正极片、锂金属负极在水和氧气的含量均小于0.5 ppm全封闭手套箱中,组装成锂空气电池;封装的顺序从负极到正极,依次是负极电池壳、弹片、垫片、金属锂、电解液、隔膜、电解液、正极、正极电池壳;将组装好的锂空气电池整体移动至手动压力机的模具压槽中,控制压力为45—50Mpa压紧电池,待30秒后将其取下即可得到所述锂空气电池。
   实施例2
   其他条件同实施例1,仅改变电解质溶液配制中所使用的锂盐为0.1mol的LiPF6
   实施例3
   其他条件同实施例1,仅改变电解质溶液配制中所使用的锂盐为0.1mol的LiBOB。
   实施例4
   其他条件同实施例1,仅改变电解质溶液配制中所使用的锂盐为0.1mol的LiBF4
   
   [实验例1]含不同锂盐的锂空气电池循环性能测试
   取本发明实施例1、2、3、4所制备锂空气电池,控制电流密度为0.05mA/cm2,比容量为1000mAh/g,测得充放电放电比容量与电压变化曲线如附图2、3、4、5所示。所有电池均可循环150次以上,本发明所制备锂空气电池具有优良的循环性能。比较附图可知,总体而言,当锂盐选择为LiTFSI时效果最佳。
   
   [实验例2] 电化学性能测试
   以本发明实施例1所制备锂空气电池,控制测试电流密度为0.05mA/cm2,比容量为1000mAh/g,测得电池的比容量-电压曲线如附图6所示。由图可知,该锂空气电池在2.2到5.0 V的电压范围内,保持比容量为1000 mAh/g,能实现1100次循环,具备非常优良的循环性能。
   
   [实验例3] 不同正极集流体材料对比
其他条件同实施例1,仅改变正极集流体材料,以泡沫镍取代单面疏水碳纸制备锂空气电池。在0.088 mA条件下,充放电容量均为0.1 mAh,测得的泡沫镍为正极材料的锂空气电池容量-电压充放电循环曲线如附图7所示;碳纸为正极材料的电池容量-电压充放电循环曲线如附图8所示。从图中可以看出,本发明特异地选择碳纸作集流体与含环丁砜的电解质组合表现出更稳定的电化学性能。

Claims (14)

  1. 一种锂空气电池,包括正极,负极和电解液,其特征在于,所述正极包括碳纸集流体;所述电解液包括环丁砜和锂盐。
  2. 根据权利要求1所述的一种锂空气电池,其特征在于,所述锂盐为LiTFSI、LiPF6、LiBOB、LiBF4中的至少一种。
  3. 根据权利要求1所述的一种锂空气电池,其特征在于,所述电解液还包括二甲基亚砜和/或四甘醇二甲醚。
  4. 根据权利要求1或2所述的一种锂空气电池,其特征在于,所述电解液中锂盐的摩尔浓度为0.5~5mol/L。
  5. 根据权利要求1所述的一种锂空气电池,其特征在于,所述碳纸集流体为至少一面具有疏水性的碳纤维纸。
  6. 根据权利要求1所述的一种锂空气电池,其特征在于,所述正极还包括碳纸集流体上的涂覆层,所述涂覆层包括碳、过氧化锂和聚四氟乙烯,所述聚四氟乙烯的质量为涂覆层质量的5%~10%;所述过氧化锂的质量为碳和过氧化锂质量总和的5% ~60%。
  7. 一种锂空气电池的制备方法,其特征在于,包括如下步骤:
       A.电解质溶液的配置
       将锂盐与环丁砜混合,制得电解质溶液,其中,所述锂盐的浓度为0.5-5mol/L;
       B.正极的制作
       (1)将多孔导电碳和过氧化锂混合,研磨后与聚四氟乙烯混合,得混合物;(2)将所述混合物加入到甲基吡咯酮中,在40-80oC下搅拌,得混合浆料;(3)将所述混合浆料涂膜于碳纸集流体上,烘干,得正极;
       C.负极的制作
       锂金属为负极;
    D.将所述电解质溶液、正极、负极,在惰性气体气氛中封装得到所述锂空气电池。
  8. 根据权利要求7所述的制备方法,其特征在于,步骤A中所述电解质溶液还包括二甲基亚砜和/或四甘醇二甲醚。
  9. 根据权利要求7所述的制备方法,其特征在于,步骤A中所述锂盐为LiTFSI、LiPF6、LiBOB、LiBF4中的至少一种。
  10. 根据权利要求7所述的制备方法,其特征在于,所述碳纸集流体为至少一面具有疏水性的碳纤维纸。
  11. 根据权利要求7所述的制备方法,其特征在于,步骤B中所述聚四氟乙烯的质量为混合液质量的5%~10%;所述过氧化锂的质量为碳和过氧化锂质量总和的5% ~60%。
  12. 根据权利要求7所述的制备方法,其特征在于,步骤B中所述甲基吡咯酮的体积为混合液体积的3~5倍。
  13. 根据权利要求7所述的制备方法,其特征在于,步骤D中所述封装还包括隔膜、电池壳、垫片、弹片,所述封装的顺序从负极到正极,依次是负极电池壳、弹片、垫片、金属锂、电解液、隔膜、电解液、正极、正极电池壳。
  14. 根据权利要求7所述的制备方法,其特征在于,所述步骤D中封装的控制压力为45—50Mpa,封装环境中水和氧气的含量均小于0.5 ppm。
PCT/CN2013/085682 2013-09-13 2013-10-22 一种锂空气电池及其制备方法 WO2015035683A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013104186429A CN103474723A (zh) 2013-09-13 2013-09-13 一种锂空气电池及其制备方法
CN201310418642.9 2013-09-13

Publications (1)

Publication Number Publication Date
WO2015035683A1 true WO2015035683A1 (zh) 2015-03-19

Family

ID=49799475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085682 WO2015035683A1 (zh) 2013-09-13 2013-10-22 一种锂空气电池及其制备方法

Country Status (2)

Country Link
CN (1) CN103474723A (zh)
WO (1) WO2015035683A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110988687A (zh) * 2019-12-24 2020-04-10 华侨大学 锂空气电池测试模具
CN113178647A (zh) * 2021-04-26 2021-07-27 常州大学 一种全封闭结构有机电解质锂氧电池及其制作方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904386A (zh) * 2014-02-26 2014-07-02 深圳大学 一种软包锂空气电池及其制作方法
CN105161795A (zh) * 2015-06-19 2015-12-16 深圳大学 一种锂空气电池用电解液及其制备方法和锂空气电池
CN105655632A (zh) * 2016-03-17 2016-06-08 湖北知本信息科技有限公司 一种锂空气电池制备方法及制备的锂空气电池
CN107611478B (zh) * 2017-08-20 2019-10-11 桂林理工大学 一种导电胶体电解质锂空气电池的组装方法
CN108598627B (zh) * 2018-05-16 2020-11-13 东北大学秦皇岛分校 一种高容量钾-氧气电池
CN109378491A (zh) * 2018-09-27 2019-02-22 山东大学 一种锂空气电池及其制备方法
CN109904567A (zh) * 2019-02-20 2019-06-18 深圳大学 锂空气电池和其制备方法
CN110444728A (zh) * 2019-06-26 2019-11-12 苏州宇量电池有限公司 一种含有补锂添加剂的涂碳铝箔及其制备方法
CN111446522B (zh) * 2020-03-21 2023-10-03 复旦大学 一种可以低温工作的锂二氧化碳电池及其制备方法
CN111430722A (zh) * 2020-04-07 2020-07-17 武汉兰钧新能源科技有限公司 一种纸质集流体、其制备方法、电极及电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544522A (zh) * 2012-01-11 2012-07-04 复旦大学 一种锂空气电池的复合空气电极及其制备方法
CN102948006A (zh) * 2010-04-27 2013-02-27 汉阳大学校产学协力团 锂空气电池
CN103208668A (zh) * 2013-04-08 2013-07-17 中国科学院长春应用化学研究所 锂空气电池用砜类电解液

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5050225B2 (ja) * 2009-01-16 2012-10-17 トヨタ自動車株式会社 空気二次電池およびその製造方法
CN102227035B (zh) * 2011-05-16 2013-10-16 清华大学 一种双层可控正极结构锂空气电池
CN102263311A (zh) * 2011-06-27 2011-11-30 清华大学 一种双极结构锂空气电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102948006A (zh) * 2010-04-27 2013-02-27 汉阳大学校产学协力团 锂空气电池
CN102544522A (zh) * 2012-01-11 2012-07-04 复旦大学 一种锂空气电池的复合空气电极及其制备方法
CN103208668A (zh) * 2013-04-08 2013-07-17 中国科学院长春应用化学研究所 锂空气电池用砜类电解液

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110988687A (zh) * 2019-12-24 2020-04-10 华侨大学 锂空气电池测试模具
CN113178647A (zh) * 2021-04-26 2021-07-27 常州大学 一种全封闭结构有机电解质锂氧电池及其制作方法
CN113178647B (zh) * 2021-04-26 2022-06-14 常州大学 一种全封闭结构有机电解质锂氧电池及其制作方法

Also Published As

Publication number Publication date
CN103474723A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
WO2015035683A1 (zh) 一种锂空气电池及其制备方法
Xu et al. Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery
Zhu et al. A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery
US11843109B2 (en) Method of preparing and application of carbon-selenium composites
Zhang et al. Solid-state lithium metal batteries enabled with high loading composite cathode materials and ceramic-based composite electrolytes
CN102610862B (zh) 以聚吡咯包覆硼化镁为负极材料的锂电池的制备方法
Jiang et al. Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes
Zhang et al. Surface-modified boron nitride as a filler to achieve high thermal stability of polymer solid-state lithium-metal batteries
WO2021248766A1 (zh) 一种复合聚合物固态电解质材料及其制备方法和应用
CN111180791A (zh) 一种基于金属有机框架/离子液体复合固态电解质的制备方法
CN102034971B (zh) 锂离子电池磷酸铁锂/聚并吡啶复合正极材料及其制备方法
CN108394884A (zh) 一种壳聚糖基高比表面积氮/磷共掺杂碳纳米片的制备方法
Zhang et al. PEO/Li 1.25 Al 0.25 Zr 1.75 (PO 4) 3 composite solid electrolytes for high-rate and ultra-stable all-solid-state lithium metal batteries with impregnated cathode modification
US20220037636A1 (en) Lithium-manganese dioxide primary battary and preparation thereof
Zheng et al. Co-contribution of quenching and nanocrystallization on ionic-conductivity improvement of a composite electrolyte of polyethylene Oxide/Li7La3Zr2O12 nanofibers at 45° C for all-solid-state Li metal batteries
Liu et al. Construction and destruction of passivating layer on LixC6 in organic electrolytes: an impedance study
Na et al. Novel fast lithium-ion conductor LiTa2PO8 enhances the performance of poly (ethylene oxide)-based polymer electrolytes in all-solid-state lithium metal batteries
Gu et al. Preparation of new composite electrolytes for solid-state lithium rechargeable batteries by compounding LiTFSI, PVDF-HFP and LLZTO
Gan et al. Synergetic effects of silica-coated silver nanowires in composite single-ion conducting polymer electrolytes for lithium metal batteries
CN114188541A (zh) 一种锂离子电池正极电极片及其制备方法
Yang et al. Polyaniline cathode material for lithium batteries
CN117038849A (zh) 一种高倍率的固态电解质硅一体化电极及制备方法与应用
Cai et al. Architecting with a flexible and modified polyethylene oxide coating for ambient-temperature solid-state Li metal batteries
Song et al. Electrochemical preparation of lithium-Rich graphite anode for LiFePO 4 battery
CN109888198B (zh) 一种金属插层氧化钼材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893244

Country of ref document: EP

Kind code of ref document: A1