WO2015033727A1 - 超電導線材用基板及びその製造方法、並びに超電導線材 - Google Patents

超電導線材用基板及びその製造方法、並びに超電導線材 Download PDF

Info

Publication number
WO2015033727A1
WO2015033727A1 PCT/JP2014/070685 JP2014070685W WO2015033727A1 WO 2015033727 A1 WO2015033727 A1 WO 2015033727A1 JP 2014070685 W JP2014070685 W JP 2014070685W WO 2015033727 A1 WO2015033727 A1 WO 2015033727A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
superconducting wire
layer
crystal orientation
ratio
Prior art date
Application number
PCT/JP2014/070685
Other languages
English (en)
French (fr)
Inventor
哲平 黒川
貴史 神代
岡山 浩直
Original Assignee
東洋鋼鈑株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社, 住友電気工業株式会社 filed Critical 東洋鋼鈑株式会社
Priority to US14/916,305 priority Critical patent/US10115501B2/en
Priority to EP14842998.8A priority patent/EP3043359B1/en
Priority to KR1020167002576A priority patent/KR102188566B1/ko
Priority to CN201480048657.3A priority patent/CN105518808B/zh
Publication of WO2015033727A1 publication Critical patent/WO2015033727A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • H10N60/0632Intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide

Definitions

  • the present invention relates to a substrate for a superconducting wire and a method for manufacturing the same.
  • the present invention also relates to a superconducting wire using a substrate for a superconducting wire.
  • the superconducting wire is a single layer or multiple layers of cerium oxide (CeO 2 ), zirconia-added yttrium oxide (YSZ), yttrium oxide (Y 2 O 3 ) or other oxide layer on the metal substrate.
  • a superconducting layer (RE123 film, RE: Y, Gd, Ho, etc.) is laminated on a base material on which an intermediate layer made of is laminated.
  • an ion-assisted beam film-forming method in which a superconducting layer inherits crystal orientation by forming an oriented intermediate layer on a non-oriented metal substrate such as Hastelloy.
  • a method for forming a film by taking over the crystal orientation with the intermediate layer and the superconducting layer by using a metal substrate with biaxial crystal orientation.
  • the latter method is advantageous in consideration of future production efficiency such as film formation speed, but in order to improve the superconducting characteristics, it is necessary to highly orient the metal substrate in biaxial crystal orientation.
  • the crystal orientation of the metal substrate is evaluated by, for example, the c-axis orientation ratio of the outermost layer of the substrate and the value of ⁇ .
  • Patent Document 1 includes a metal layer and a copper layer bonded to at least one surface of the metal layer, and the copper layer has a ⁇ 100 ⁇ ⁇ 001> cube in which ⁇ is ⁇ ⁇ 6 °.
  • a clad oriented metal substrate for forming an epitaxial thin film having a texture is disclosed.
  • Patent Document 2 a non-magnetic metal plate and a metal foil made of Cu or Cu alloy cold-rolled at a high pressure rate are laminated by surface activation bonding, and after the lamination, the metal is subjected to heat treatment.
  • a method of manufacturing a metal substrate for a superconducting wire is disclosed in which a foil is biaxially crystallized and then an Ni or Ni alloy epitaxial growth film is provided on the surface of the metal foil. It is described that the crystal orientation rate and ⁇ of the surface Ni plating layer are improved.
  • Patent Document 3 discloses a step of removing the surface adsorbate by sputter etching the surface of the copper foil, a step of removing the surface adsorbate by sputter etching the surface of the nonmagnetic metal plate, A step of joining the copper foil and the metal plate with a rolling roll at a pressure of 300 MPa to 1500 MPa, a step of heating the joined laminate to a temperature equal to or higher than a crystal orientation temperature of copper, and crystal orientation of the copper; And a step of coating a protective layer on the copper side surface of the laminate.
  • a method for producing a metal substrate for a superconducting wire is described, and the metal substrate obtained by this method comprises copper foil and Ni. It is described that the c-axis orientation ratio and ⁇ of the plating layer are improved.
  • the conventional superconducting wire substrate is manufactured with specific values of the c-axis orientation ratio and ⁇ of the outermost layer of the biaxial crystal-oriented metal substrate, and the c-axis orientation ratio is high. It is known that a higher superconducting characteristic can be obtained as ⁇ is smaller and smaller.
  • the superconducting wire obtained using this substrate Superconducting properties may vary.
  • an object of the present invention is to provide a substrate for a superconducting wire for producing a superconducting wire having excellent superconducting properties and a method for producing the same.
  • the present inventors have found that the crystal orientation of the outermost layer metal of the superconducting wire substrate has a specific c-axis orientation ratio and ⁇ , and the outermost layer crystal It has been found that a superconducting wire material with improved superconducting characteristics can be obtained by controlling the ratio of the area whose orientation is deviated by more than a specific angle from (001) [100] within a predetermined range. completed. That is, the gist of the present invention is as follows.
  • a superconducting wire having the superconducting wire substrate according to (1) or (2), an intermediate layer laminated on the substrate, and a superconducting layer laminated on the intermediate layer.
  • the c-axis orientation ratio is defined as 99% or more, ⁇ is defined as 6 ° or less, and the crystal orientation is from (001) [100].
  • FIG. It is a figure which shows the EBSD measurement result of the board
  • FIG. It is a figure which shows the EBSD measurement result of the board
  • the crystal orientation of the outermost metal is c-axis orientation ratio of 99% or more, ⁇ (in-plane orientation degree) is 6 ° or less, and the crystal orientation is (001) The ratio of the area displaced by 6 ° or more from [100] is 6% or less per unit area (1 mm 2 ).
  • represents the degree of in-plane orientation.
  • is an average value, and it is unclear how much each individual crystal grain is, so it does not become an index of the ratio of the area where the crystal orientation is deviated by more than a specific angle from (001) [100].
  • the ratio of the area where the crystal orientation is shifted from the (001) [100] by OO ° or more means that the angle difference from the (001) [100] is XX when observed by the EBSD method.
  • the ratio of the area of the crystal that is at least °.
  • EBSD Electron Back Scatter Diffraction: Electron Back Scattering Diffraction
  • Kikuchi line diffraction Kikuchi pattern
  • the surface of the outermost layer is irradiated with an electron beam, and the information obtained at this time is azimuth information up to a depth of several tens of nm into which the electron beam penetrates, that is, azimuth information of the outermost layer.
  • the substrate for a superconducting wire according to the present invention is characterized in that the ratio of the area where the crystal orientation of the outermost metal is shifted by 6 ° or more from (001) [100] is 6% or less per unit area.
  • the ratio of the area where the crystal orientation of the outermost layer of the metal is shifted by 10 ° or more from (001) [100] is less than 1% per unit area, and is 15 ° or more.
  • the ratio of the displaced area is less than 0.3% per unit area.
  • the outermost layer of the substrate for a superconducting wire of the present invention is preferably a face-centered cubic lattice metal, for example, one or more selected from the group consisting of nickel, copper, silver, aluminum and palladium, or an alloy thereof.
  • a face-centered cubic lattice metal for example, one or more selected from the group consisting of nickel, copper, silver, aluminum and palladium, or an alloy thereof.
  • it is made of copper, nickel, or an alloy thereof because of easy axial crystal orientation and good lattice matching with the intermediate layer.
  • the outermost layer only needs to have the crystal orientation and crystal orientation of the metal, and another non-oriented metal layer may be present under the layer.
  • the thickness of the superconducting wire substrate of the present invention is not particularly limited, but is preferably 50 ⁇ m to 200 ⁇ m. This is because if the thickness is less than 50 ⁇ m, the mechanical strength of the substrate cannot be ensured, and if the thickness is greater than 200 ⁇ m, the workability when processing the superconducting wire cannot be ensured.
  • a substrate for a superconducting wire according to the present invention includes a nonmagnetic metal plate and a crystal-oriented high-rolled metal layer (hereinafter referred to as a crystal-oriented metal layer) laminated on the nonmagnetic metal plate.
  • a crystal-oriented metal layer that has been crystallized by heat treatment is referred to as a crystal-oriented metal layer.
  • the high-rolled metal layer may be laminated only on one side of the nonmagnetic metal plate, or may be laminated on both sides of the metal plate.
  • non-magnetic means a state that is not ferromagnetic at 77 K or higher, that is, a Curie point or Neel point is present at 77 K or lower, and becomes a paramagnetic or antiferromagnetic material at a temperature of 77 K or higher.
  • a nickel alloy or an austenitic stainless steel plate is preferably used because it has a role as a reinforcing material having excellent strength.
  • austenitic stainless steel is non-magnetic at room temperature, that is, the metal structure is 100% austenite ( ⁇ ) phase, but the martensite ( ⁇ ′) phase transformation point (Ms point) which is a ferromagnetic material is 77K.
  • the ⁇ ′ phase which is a ferromagnetic substance, may develop at the liquid nitrogen temperature. Therefore, as a substrate for a superconducting wire used at a liquid nitrogen temperature (77K), a substrate whose Ms point is designed to be 77K or less is preferably used.
  • SUS316, SUS316L, SUS310, and SUS305 have a stable ⁇ phase designed with a Ms point sufficiently lower than 77K, and are generally popular and available at a relatively low price. Etc. is preferably used.
  • the thickness of these metal plates is usually applicable as long as it is 20 ⁇ m or more, and considering the thinning and strength of the superconducting wire, it is preferably 50 ⁇ m to 100 ⁇ m, but is not limited to this range. .
  • the “highly rolled metal layer” means cold rolling at a high rolling reduction ratio of preferably 90% or more, more preferably 95% or more at the time of final rolling. It means a metal layer that is not subjected to heat treatment for crystals and retains a rolling texture developed by cold rolling. If the rolling reduction is less than 90%, the metal may not be oriented in the subsequent heat treatment.
  • the highly rolled metal layer used in the substrate of the present invention is selected from one or more selected from the group consisting of metals that are crystallized by heat treatment after rolling, for example, nickel, copper, silver, and aluminum, or alloys thereof. However, it is preferably made of copper or a copper alloy because of easy biaxial crystal orientation and good lattice matching with the intermediate layer.
  • the high-rolled metal layer may contain a trace amount of elements of about 1% or less in order to further improve the biaxial crystal orientation by the heat treatment described later.
  • an additive element include one or more elements selected from Ag, Sn, Zn, Zr, O, N, and the like. These additive elements and the metal contained in the high-rolled metal layer form a solid solution, but if the addition amount exceeds 1%, impurities such as oxides other than the solid solution increase, which adversely affects the crystal orientation. There is a fear.
  • a metal foil is preferably used as the highly rolled metal layer.
  • the metal foil that can be used is generally available.
  • copper foil high-rolled copper foil (HA foil (trade name)) manufactured by JX Nippon Mining & Metals, Hitachi Cable ( High rolled copper foil (HX foil (trade name)) manufactured by Co., Ltd.
  • the thickness of the high-rolled metal layer is usually preferably in the range of 7 ⁇ m to 70 ⁇ m in order to ensure the strength of the high-rolled metal layer itself and improve the workability when processing the superconducting wire later.
  • a highly rolled metal layer such as a copper foil having a glossiness of, for example, 45 or less, preferably in the range of 20 to 45, more preferably in the range of 20 to 43 can be used.
  • the glossiness is L * , a * , b * before and after being laminated on a non-magnetic metal plate in a method for producing a substrate described later, and with a color difference meter for a high-rolled metal layer after rolling. L value obtained by measurement.
  • the superconducting wire substrate of the present invention may include a protective layer formed on the crystallographic metal layer.
  • the protective layer used for the superconducting wire substrate of the present invention is preferably a face-centered cubic lattice metal, for example, made of nickel, palladium, silver or an alloy thereof, preferably made of nickel or a nickel alloy.
  • the protective layer containing nickel is excellent in oxidation resistance, and the presence of the protective layer produces a metal oxide film contained in the crystal orientation metal layer when an intermediate layer such as CeO 2 is formed thereon. This is because the crystal orientation can be prevented from being lost.
  • an element contained in an alloy of nickel, palladium, or silver those having reduced magnetic properties are preferable, and examples thereof include elements such as Cu, Sn, W, and Cr. Further, impurities may be included as long as the crystal orientation is not adversely affected.
  • the thickness of the protective layer is too thin, the surface of the superconducting wire is oxidized when the intermediate layer and the superconducting layer are laminated thereon, and the metal in the crystal orientation metal layer diffuses to the surface of the protective layer. There is a possibility, and if it is too thick, the crystal orientation of the protective layer is lost, and the plating strain is also increased. Specifically, it is preferably in the range of 1 ⁇ m to 5 ⁇ m.
  • the superconducting wire substrate of the present invention has a c-axis orientation ratio of 99% or more, ⁇ of 6 ° or less, and a crystal orientation of (001) [100] to 6 by heat treatment. It can be produced by a method including a step of forming a layer in which the ratio of the area shifted by more than 0 ° is 6% or less per unit area.
  • the c-axis orientation ratio formed by heat treatment is 99% or more, ⁇ is 6 ° or less, and the crystal orientation is shifted by 6 ° or more from (001) [100].
  • a layer having an area ratio of 6% or less per unit area is a crystallographic metal layer.
  • the heat treatment is performed at a temperature of 150 ° C. or higher, for example.
  • the heat treatment time varies depending on the temperature.
  • the heat treatment time is preferably 1 to 10 hours at 400 ° C. and several seconds to 5 minutes at a high temperature of 700 ° C. or higher. If the heat treatment temperature is too high, the high-rolled metal layer is liable to cause secondary recrystallization, and the crystal orientation deteriorates.
  • heat treatment at 600 ° C. to 900 ° C. is preferable.
  • stepwise, after heat treatment at low temperature, heat treatment heat treatment at high temperature is performed, so that the crystal orientation and surface roughness of the crystal orientation metal layer and the protective layer formed thereafter are improved.
  • heat treatment it is particularly preferable to perform heat treatment at 800 to 900 ° C. after heat treatment at 200 to 400 ° C.
  • the substrate for a superconducting wire has a step of laminating a nonmagnetic metal plate and a highly rolled metal layer by surface activation bonding, and the c-axis orientation ratio is 99% or more, Heat-treating the high-rolled metal layer so that the ratio of the area where ⁇ is 6 ° or less and the crystal orientation is shifted by 6 ° or more from (001) [100] is 6% or less per unit area.
  • the ratio of the area where the crystal orientation of the outermost layer of the obtained substrate for superconducting wire is shifted by 6 ° or more from (001) [100] is set to 6% or less per unit area.
  • a method of adjusting the glossiness of a highly rolled metal layer such as a copper foil to be used can be mentioned.
  • the glossiness of the highly rolled metal layer is, for example, 45 or less, preferably in the range of 20 to 45, more preferably in the range of 20 to 43.
  • the glossiness is an L value obtained by measuring L * , a * , and b * with a color difference meter for a high-rolled metal layer after rolling before being laminated on a nonmagnetic substrate.
  • the ratio of copper orientation (Copper orientation) in the rolling texture of the high-rolled metal layer is increased and brass is used.
  • the ratio of the orientation Brass orientation
  • the step of laminating a nonmagnetic metal plate and a highly rolled metal layer by surface activated bonding is described.
  • the surface adsorption layer and the surface oxide film are removed and activated by performing a sputter etching process on the respective surfaces of the layers, and then the two activated surfaces are joined by cold pressure welding.
  • surface activated bonding is performed by preparing a non-magnetic metal plate and a high-rolled metal layer as a long coil having a width of 150 mm to 600 mm, activating the two surfaces to be bonded in advance, Press contact.
  • a nonmagnetic metal plate having a joint surface and a high-rolled metal layer are each grounded as one electrode, and an alternating current of 1 MHz to 50 MHz is applied between the other insulated and supported electrodes. Glow discharge is generated, and the area of the electrode exposed in the plasma generated by the glow discharge is sputter-etched so that it is 1/3 or less of the area of the other electrode.
  • the inert gas argon, neon, xenon, krypton, or a mixed gas containing at least one of these can be used.
  • the surface adsorption layer may be removed and the surface oxide film may be further removed by sputtering the surface to which the non-magnetic metal plate and the highly rolled metal layer are bonded with an inert gas.
  • the surfaces to be joined are activated by.
  • the grounded electrode is in the form of a cooling roll to prevent the temperature of each conveying material from rising.
  • the press-contact roll process continuously conveys to the press-contact roll process, and presses the activated surfaces.
  • the surface subjected to the activation treatment is re-oxidized during the transfer and affects the adhesion.
  • the laminated body brought into close contact through the pressure contact process is conveyed to the winding process, and is wound there.
  • the adsorbate on the bonding surface is completely removed, but the surface oxide layer need not be completely removed. Even if an oxide layer remains on the entire surface, the reduction ratio is increased in the bonding process, and the base is exposed by friction on the bonding surface, thereby ensuring the bondability between the non-magnetic metal plate and the highly rolled metal layer. Because it can.
  • the oxide layer is completely removed by dry etching, high plasma output or long-time etching is required, and the temperature of the material increases.
  • the sputter etching process if the temperature rises above the recrystallization start temperature of the metal in the high-rolled metal layer, the high-rolled metal layer will recrystallize, and the high-rolled metal layer will be crystallized before joining. .
  • strain is introduced into the highly rolled metal layer, and the biaxial crystal orientation of the highly rolled metal layer is deteriorated. For this reason, in the sputter etching process, it is necessary to keep the temperature of the highly rolled metal layer below the metal recrystallization start temperature.
  • the temperature of the copper foil is kept below 150 ° C.
  • the metal structure of the high-rolled metal layer is maintained at a temperature of 100 ° C. or lower and the rolled texture is maintained.
  • the plasma plate is processed at a high plasma power, or if the metal plate temperature is increased to a temperature higher than the recrystallization disclosure temperature of the metal in the high-rolled metal layer, the high temperature during pressure welding is increased.
  • the temperature of the high-rolled metal layer rises due to contact with the rolled metal layer, and the high-rolled metal layer may be recrystallized simultaneously with rolling, and the biaxial crystal orientation may be deteriorated.
  • the temperature of the metal plate below the recrystallization start temperature of the metal in the high-rolled metal layer also in the sputter etching process of the nonmagnetic metal plate.
  • the copper foil is held at less than 150 ° C.
  • the high rolled metal layer is kept at room temperature to 100 ° C.
  • the degree of vacuum at this time is preferably higher in order to prevent re-adsorbed substances on the surface, but may be in the range of 10 ⁇ 5 Pa to 10 ⁇ 2 Pa.
  • the rolling roll bonding is performed in a non-oxidizing atmosphere such as an inert gas atmosphere such as Ar It is also preferable to do.
  • the pressing by the rolling roll is performed in order to ensure the adhesion area of the bonding interface, and to partially peel the surface oxide film layer by friction occurring at the bonding interface at the time of rolling down, to expose the substrate, and it is preferable to add 300 MPa or more, In particular, since the nonmagnetic metal plate and the highly rolled metal layer are both hard materials, pressurization at 600 MPa to 1.5 GPa is preferable.
  • the pressure may be higher than this, and it has been confirmed that the crystal orientation does not deteriorate after the subsequent heat treatment up to a reduction rate of 30%, but the pressure is preferably reduced to a reduction rate of less than 5%. When a pressure exceeding 30% is applied at the rolling reduction, cracks are generated on the surface of the high-rolled metal layer, and the crystal orientation of the crystal-oriented metal layer after rolling and heat treatment is deteriorated.
  • the laminate of the non-magnetic metal plate and the highly rolled metal layer laminated by surface activation bonding as described above has a c-axis orientation ratio of 99% or more, ⁇ of 6 ° or less, and a crystal orientation of (001)
  • the high-rolled metal layer is heat-treated so that the ratio of the area displaced by 6 ° or more from [001] is 6% or less per unit area.
  • the heat treatment is performed at a temperature of 150 ° C. or higher, for example.
  • the heat treatment time varies depending on the temperature. For example, the heat treatment time is preferably 1 to 10 hours at 400 ° C. and several seconds to 5 minutes at a high temperature of 700 ° C. or higher.
  • heat treatment temperature is too high, the high-rolled metal layer is liable to cause secondary recrystallization, and the crystal orientation deteriorates.
  • heat treatment at 600 ° C. to 900 ° C. is preferable. More preferably, stepwise, after heat treatment at a low temperature, heat treatment at a high temperature is performed, so that the crystal orientation and surface roughness of the crystal orientation metal layer and the protective layer formed thereafter are improved. Specifically, it is particularly preferable to perform heat treatment at 800 to 900 ° C. after heat treatment at 200 to 400 ° C.
  • the substrate for a superconducting wire of the present invention can include a protective layer formed on the crystal orientation metal layer.
  • the crystal orientation of the crystal orientation metal layer is formed on the crystal orientation metal layer by plating the biaxial crystal orientation crystal orientation metal layer obtained by heat treatment of the high-roll metal layer and a nonmagnetic metal plate. Can be formed.
  • the plating treatment can be performed by appropriately adopting conditions that reduce the plating strain of the protective layer.
  • the plating strain refers to the degree of strain (strain) generated in the plating film when plating is applied to a base such as a metal plate.
  • a layer made of nickel is formed as the protective layer, it can be performed using a Watt bath or a sulfamic acid bath known conventionally as a plating bath.
  • the sulfamic acid bath is preferably used because it easily reduces the plating strain of the protective layer.
  • the preferable range of a plating bath composition is as follows, it is not limited to this.
  • the current density at the time of performing the plating process is not particularly limited, and is appropriately set in consideration of the balance with the time required for the plating process. Specifically, for example, when a plating film of 2 ⁇ m or more is formed as a protective layer, the time required for the plating process becomes long if the current density is low, and the line speed is slowed down in order to secure the time.
  • the current density is preferably set to 10 A / dm 2 or more because the properties may be lowered or the control of the plating may be difficult.
  • the upper limit of the current density varies depending on the type of plating bath and is not particularly limited.
  • it is 25 A / dm 2 or less for a watt bath and 35 A / dm 2 or less for a sulfamic acid bath. Is preferred. Generally, when the current density exceeds 35 A / dm 2 , good crystal orientation may not be obtained due to so-called plating burn.
  • the formed protective layer may generate micropits on the surface depending on plating conditions. In that case, if necessary, the surface can be smoothed by further averaging after the plating.
  • the heat treatment temperature at that time is preferably 700 ° C. to 1000 ° C., for example.
  • a process for reducing the surface roughness Ra of the high-rolled metal layer may be performed. Specifically, methods such as rolling with a rolling roll, buff polishing, electrolytic polishing, and electrolytic abrasive polishing can be used. By these methods, the surface roughness Ra is, for example, 20 nm or less, preferably 10 nm or less. Is desirable.
  • Superconducting wire can be produced by sequentially laminating an intermediate layer and a superconducting layer on a superconducting wire substrate as described above according to a conventional method. Specifically, an intermediate layer such as CeO 2 , YSZ, SrTiO 3 , MgO, Y 2 O 3 is epitaxially formed on the outermost layer of the superconducting wire substrate by means of a sputtering method or the like, and further thereon A superconducting compound layer such as Y123 is applied to the PLD (Pulse Laser Deposition) method, MOD (Metal Organic Deposition) method, MOCVD (Metal Organic Chemical Vapor Deposition) method, etc. A superconducting wire can be obtained by forming a film by this method.
  • the intermediate layer may be a plurality of layers. If necessary, a protective film made of Ag, Cu or the like may be further provided on the superconducting compound layer.
  • Example 1 After rolling using SUS316L (thickness 100 ⁇ m) as a non-magnetic metal plate, rolling as a high rolling metal layer at a rolling reduction of 96% to 99%, and measuring with a color difference meter (Nippon Denshoku Industries Co., Ltd. NR-3000) A copper foil (thickness: 18 ⁇ m) having a glossiness of 42.8 was used. SUS316L and copper foil were surface activated bonded at room temperature using a surface activated bonding apparatus to form a laminate of SUS316L and copper foil.
  • sputter etching was performed under 0.1 Pa, with a plasma output of 200 W and a sputter irradiation time of 20 seconds on the bonding surface, and the SUS316L and the copper foil adsorbate layer were completely removed.
  • the pressurization with the rolling roll was 600 MPa.
  • the laminated material After polishing the copper foil side surface of the laminated material to a surface roughness Ra of 20 nm or less, the laminated material was maintained at a temperature of 250 ° C. for 5 minutes and then maintained at 850 ° C. for 5 minutes.
  • the copper foil was biaxially crystallized by heat treatment in a continuous heat treatment furnace.
  • the ratio of the area where the crystal orientation was shifted by 6 ° or more from (001) [100] was 4.9%.
  • nickel plating was performed on the copper foil to form a nickel layer as a protective layer to obtain a substrate.
  • the composition of the plating bath is as follows.
  • the nickel plating thickness was 2.5 ⁇ m
  • the plating bath temperature was set to 60 ° C.
  • the pH of the plating bath was set to pH 4.
  • Example 2 The same operation as in Example 1 was performed except that a copper foil (thickness: 18 ⁇ m) having a glossiness of 43.2 that was rolled at a rolling reduction of 96% to 99% was used as the high rolled metal layer. Note that the ratio of the area where the crystal orientation on the surface of the copper foil after the heat treatment before the formation of the protective layer was shifted by 6 ° or more from (001) [100] was 3.9%.
  • Example 1 The same operation as in Example 1 was performed except that a copper foil (thickness: 18 ⁇ m) having a glossiness of 55.4 that was rolled at a rolling reduction of 96% to 99% was used as the high rolled metal layer.
  • the analysis result of the substrate of Example 2 is shown in FIG. 1, and the analysis result of the substrate of Comparative Example 1 is shown in FIG. 1 and 2, the dark gray or gray region indicates a crystal whose crystal orientation is shifted by 6 ° or more from (001) [100].
  • the substrate of Example 2 shown in FIG. 1 has an apparently smaller area where the crystal orientation is shifted by 6 ° or more from (001) [100] compared to the substrate of Comparative Example 1 shown in FIG.
  • is a difference of about 0.3 ° to 0.6 °, but the crystal orientation of the outermost layer of the substrate is (001) [100]. Since the difference in the ratio of the area shifted by 6 ° or more is greatly different as 8% or more, ⁇ and the ratio of the area where the crystal orientation is shifted by 6 ° or more from (001) [100] are directly related to a proportional relationship or the like. It can be seen that there is no corresponding relationship. That is, when ⁇ is simply reduced, the proportion of the area where the crystal orientation is shifted by 6 ° or more from (001) [100] does not decrease accordingly. Is a factor.
  • Example 3 and Comparative Example 2 An intermediate layer (CeO 2 , YSZ, Y 2 O 3 ) is formed on the substrates obtained in Example 1 and Comparative Example 1 by RF magnetron sputtering, and then by MOD (Metal Organic Deposition).
  • a superconducting wire (YBCO) having a thickness of 0.15 ⁇ m was formed on the intermediate layer to obtain a superconducting wire.
  • What was obtained from the substrate of Example 1 was designated as Example 3, and what was obtained from the substrate of Comparative Example 1 was designated as Comparative Example 2.
  • the critical current value Ic in the superconducting wire 10 mm width of the superconducting wire of Example 3 and Comparative Example 2 was measured.
  • the critical current value Ic was measured in a self magnetic field at a temperature of 77 K, and was defined as an energization current value when an electric field of 10 ⁇ 6 V / cm was generated. The results are shown in Table 2.
  • Example 4 and Comparative Example 3 An intermediate layer (CeO 2 , YSZ, CeO 2 ) is formed on the substrate obtained in Example 2 and Comparative Example 1 by RF magnetron sputtering, and intermediate by PLD (Pulse Laser Deposition) method.
  • Those obtained from the substrate of Example 1 are designated as Examples 4-1 to 4-4, and those obtained from the substrate of Comparative Example 1 are designated as Comparative Examples 3-1 to 3-4. Table 3 and FIG.
  • FIG. 3 show the results of measurement of the critical current value Ic of the superconducting wires of Examples 4-1 to 4-4 and Comparative Examples 3-1 to 3-4 at a width of 10 mm.
  • represents the critical current value Ic of the superconducting wires of Examples 4-1 to 4-4
  • represents the critical current value Ic of the superconducting wires of Comparative Examples 3-1 to 3-4.
  • the superconducting wires of Examples 4-1 to 4-4 and Comparative Examples 3-1 to 3-4 are improved in superconducting characteristics as the thickness of the superconducting layer increases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 優れた超電導特性を有する超電導線材を製造するための超電導線材用基板及びその製造方法を提供することを目的とする。 最表層の金属の結晶配向が、c軸配向率99%以上であり、ΔΦが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下である超電導線材用基板。

Description

超電導線材用基板及びその製造方法、並びに超電導線材
 本発明は、超電導線材用基板及びその製造方法に関する。また、超電導線材用基板を用いた超電導線材に関する。
 超電導線材は、金属基板の上に、又は金属基板上に単層又は複層の酸化セリウム(CeO)、ジルコニア添加酸化イットリウム(YSZ)、酸化イットリウム(Y)等の酸化物層などからなる中間層を積層した基材の上に、超電導層(RE123膜、RE:Y、Gd、Ho等)を積層することで製造する。
 結晶配向した超電導層を得るための技術として、ハステロイ等の無配向金属基板の上に配向中間層を成膜することで、超電導層に結晶配向を引き継がせるイオン・アシスト・ビーム成膜法(IBAD法)や、2軸結晶配向した金属基板を用いることで、中間層、超電導層と結晶配向を引き継がせて成膜する方法(RABiTS法等)が知られている。成膜速度等、将来の生産効率を考慮した場合、後者の方法が有利であるが、超電導特性を向上させるには、金属基板を高度に2軸結晶配向させることが必要となる。ここで、金属基板の結晶配向性は、例えば、基板の最表層のc軸配向率やΔφの値によって評価されている。
 このような金属基板(超電導線材用基板)として、ステンレス基板上に結晶配向した銅を積層させ、その上にさらにニッケルを積層させた基板が知られている。例えば、特許文献1には、金属層と、前記金属層の少なくとも一方の面に接合された銅層とからなり、前記銅層は、ΔφがΔφ≦6°である{100}<001>立方体集合組織を有する、エピタキシャル薄膜形成用のクラッド配向金属基板が開示されている。
 また、特許文献2には、非磁性の金属板と、高圧下率で冷間圧延されたCu若しくはCu合金からなる金属箔とを表面活性化接合にて積層し、積層後、熱処理により前記金属箔を2軸結晶配向させた後、前記金属箔側表面にNi若しくはNi合金のエピタキシャル成長膜を付与させる超電導線材用金属基板の製造方法が開示されており、この方法で得られる金属基板は、最表層のNiめっき層の結晶配向率やΔφが改善されたことが記載されている。
 また、特許文献3には、銅箔の表面をスパッタエッチングして表面の吸着物を除去する工程と、非磁性の金属板の表面をスパッタエッチングして表面の吸着物を除去する工程と、前記銅箔と前記金属板とを圧延ロールにより300MPa~1500MPaの加圧で接合する工程と、前記接合した積層体を銅の結晶配向温度以上の温度に加熱して前記銅を結晶配向させる工程と、前記積層体の銅側表面上に保護層をコーティングする工程とを有することを特徴とする超電導線材用金属基板の製造方法が記載されており、この方法で得られる金属基板は、銅箔及びNiめっき層のc軸配向率及びΔφが改善されたことが記載されている。
特開2008-266686号公報 特開2010-118246号公報 国際公開第2011/007527号
 前記のように、従来の超電導線材用基板は、2軸結晶配向した金属基板の最表層のc軸配向率やΔφの値を特定の値にして製造されており、c軸配向率が高ければ高いほど、また、Δφが小さければ小さいほど超電導特性が良い超電導線材が得られることが知られている。
 しかし、従来の超電導線材では、最表層の金属の結晶配向が十分なc軸配向率及びΔφを有している金属基板を用いた場合であっても、この基板を用いて得られる超電導線材の超電導特性がばらつくことがあった。
 そこで本発明は、優れた超電導特性を有する超電導線材を製造するための超電導線材用基板及びその製造方法を提供することを目的とする。
 本発明者らは、前記課題を解決するため鋭意検討を行った結果、超電導線材用基板の最表層の金属の結晶配向が特定のc軸配向率及びΔφを有し、且つ、最表層の結晶方位が(001)[100]から特定の角度以上ずれている面積の割合を所定の範囲内に制御することにより、超電導特性が向上した超電導線材を得ることが可能となることを見出し、発明を完成した。すなわち、本発明の要旨は以下の通りである。
(1)最表層の金属の結晶配向が、c軸配向率99%以上であり、Δφが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積(1mm)あたり6%以下である超電導線材用基板。
(2)最表層が銅、ニッケル又はそれらの合金からなる、(1)に記載の超電導線材用基板。
(3)(1)又は(2)に記載の超電導線材用基板の製造方法であって、熱処理により、c軸配向率が99%以上であり、Δφが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下である層を形成させる工程を含む前記製造方法。
(4)非磁性の金属板と、高圧延金属層とを表面活性化接合にて積層する工程と、c軸配向率が99%以上であり、Δφが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下となるように高圧延金属層の熱処理を行う工程とを含む超電導線材用基板の製造方法。
(5)積層前の高圧延金属層の光沢度が45以下である、(4)に記載の製造方法。
(6)(1)又は(2)に記載の超電導線材用基板と、基板上に積層された中間層と、中間層上に積層された超電導層とを有する超電導線材。
 本明細書は本願の優先権の基礎である日本国特許出願2013-183031号の明細書および/または図面に記載される内容を包含する。
 本発明によれば、超電導線材用基板の最表層の金属の結晶配向について、c軸配向率を99%以上、Δφを6°以下に規定し、さらに、結晶方位が(001)[100]から6°以上ずれている面積の割合を単位面積あたり6%以下に規定したことにより、優れた超電導特性を有する超電導線材を製造するための基板を得ることができる。
実施例2の基板のEBSD測定結果を示す図である。 比較例1の基板のEBSD測定結果を示す図である。 実施例4と比較例3の超電導線材の超電導特性を示す図である。
 以下、本発明を詳細に説明する。
1.超電導線材用基板
 本発明の超電導線材用基板は、最表層の金属の結晶配向が、c軸配向率99%以上であり、Δφ(面内配向度)が6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積(1mm)あたり6%以下であることを特徴とする。ここで、Δφは面内配向度を示す。Δφは平均値であり、1つ1つの結晶粒がどれくらいずれているかは不明であるため、結晶方位が(001)[100]から特定の角度以上ずれている面積の割合の指数とはならない。
 本発明において、「結晶方位が(001)[100]から○○°以上ずれている面積の割合」とは、EBSD法で観察した場合に、(001)[100]からの角度差が○○°以上である結晶の面積の割合をいう。ここで、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)とは、SEM(Scanning Electron Microscope:走査電子顕微鏡)内で試料に電子線を照射したときに生じる反射電子菊池線回折(菊池パターン)を利用して結晶方位を解析する技術である。通常、電子線は最表層表面に照射され、このとき得られる情報は電子線が侵入する数10nmの深さまでの方位情報、すなわち最表層の方位情報である。
 本発明の超電導線材用基板は、最表層の金属の結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下であることを特徴とする。基板の最表層の金属の結晶方位をこのようにすることにより、この基板を用いて得られる超電導線材の超電導特性を向上させることができる。
 本発明の超電導線材用基板において、好ましくは、その最表層の金属の結晶方位が(001)[100]から10°以上ずれている面積の割合は単位面積あたり1%未満であり、15°以上ずれている面積の割合は単位面積あたり0.3%未満である。このようにすることで、得られる超電導線材において非常に優れた超電導特性を達成できる。
 本発明の超電導線材用基板の最表層は、面心立方格子金属であることが好ましく、例えばニッケル、銅、銀、アルミニウム、パラジウムよりなる群から選ばれる1種以上又はそれらの合金からなり、二軸結晶配向のしやすさ及び中間層との格子マッチングが良好であることから、好ましくは銅、ニッケル又はそれらの合金からなる。
 本発明の超電導線材用基板は、最表層が前記の金属の結晶配向及び結晶方位を有していればよく、その下層に無配向の別の金属層があってもよい。
 本発明の超電導線材用基板の厚さは特に限定されないが、50μm~200μmであることが好ましい。厚さが50μm未満であると基板の機械的強度が確保できず、厚さが200μmより大きいと超電導線材を加工する際の加工性が確保できないためである。
 本発明の一つの実施形態において、本発明の超電導線材用基板は、非磁性の金属板と、非磁性の金属板の上に積層された結晶配向した高圧延金属層(以下、結晶配向金属層とも呼ぶ。なお、高圧延金属層を熱処理することで結晶配向させたものを結晶配向金属層と呼ぶ。)とを含む。なお、高圧延金属層は、非磁性の金属板の片面のみに積層させても良く、あるいは金属板の両面に積層させても良い。
 本発明において、「非磁性」とは、77K以上で強磁性体ではない、すなわちキュリー点やネール点が77K以下に存在し、77K以上の温度では常磁性体又は反強磁性体となる状態をいう。非磁性の金属板としては、ニッケル合金やオーステナイト系ステンレス鋼板が、強度に優れた補強材としての役割を有することから好ましく用いられる。
 一般に、オーステナイト系ステンレス鋼は、常温では非磁性の状態、すなわち金属組織が100%オーステナイト(γ)相であるが、強磁性体であるマルテンサイト(α’)相変態点(Ms点)が77K以上に位置している場合、液体窒素温度で強磁性体であるα’相が発現する可能性がある。そのため、液体窒素温度(77K)下で使用される超電導線材用基板としては、Ms点が77K以下に設計されているものが好ましく用いられる。
 使用するγ系ステンレス鋼板としては、Ms点が77Kより十分に低く設計された安定なγ相を有し、且つ一般に普及し、比較的安価に入手できるという点から、SUS316やSUS316L、SUS310やSUS305等の板材が好ましく用いられる。これらの金属板の厚さは、通常20μm以上であれば適用可能であり、超電導線材の薄肉化及び強度を考慮すると、50μm~100μmであることが好ましいが、この範囲に限定されるものではない。
 本発明において、「高圧延金属層」とは、最終圧延時の圧下率が好ましくは90%以上、さらに好ましくは95%以上の高圧下率で冷間圧延され、かつ、その冷間圧延後再結晶のための熱処理を施されず、冷間圧延により発達した圧延集合組織を保持した金属層を意味する。圧下率が90%未満であると後に行う熱処理において金属が配向しないおそれがある。
 本発明の基板に用いられる高圧延金属層は、圧延後に熱処理を施すことにより結晶配向する金属、例えばニッケル、銅、銀、及びアルミニウムよりなる群から選ばれる1種以上又はそれらの合金から選択することができるが、二軸結晶配向のしやすさ及び中間層との格子マッチングが良好であることから、好ましくは銅又は銅合金からなる。
 高圧延金属層には、後記の熱処理による2軸結晶配向性をより向上させるため、1%以下程度の微量の元素を含有させても良い。このような添加元素としては、Ag、Sn、Zn、Zr、O及びN等から選択される一種以上の元素が挙げられる。これらの添加元素と高圧延金属層に含まれる金属とは固溶体を形成するが、添加量が1%を超えると固溶体以外の酸化物等の不純物が増加してしまい、結晶配向性に悪影響を及ぼす恐れがある。
 高圧延金属層としては、金属箔が好ましく用いられる。用いることができる金属箔は、一般的にも入手可能であり、例えば、銅箔として、JX日鉱日石金属(株)製の高圧延銅箔(HA箔(商品名))や、日立電線(株)製の高圧延銅箔(HX箔(商品名))等がある。
 高圧延金属層の厚さは、高圧延金属層自体の強度を確保するとともに、後に超電導線材を加工する際の加工性を良好にするため、通常7μm~70μmの範囲とすることが好ましい。
 本発明の超電導線材用基板において、基板の最表層の金属の結晶方位が(001)[100]から6°以上ずれている面積の割合を単位面積あたり6%以下にするための一つの方法として、光沢度が、例えば45以下、好ましくは20~45の範囲、より好ましくは20~43の範囲である銅箔等の高圧延金属層を用いることができる。ここで、光沢度は、後記の基板の製造方法において、非磁性の金属板上に積層される前であり、且つ圧延後の高圧延金属層について色差計でL、a、bを測定して得られるL値である。
 また、本発明の超電導線材用基板は、結晶配向金属層の上に形成された保護層を含んでいてもよい。
 本発明の超電導線材用基板に用いられる保護層は、面心立方格子金属が好ましく、例えば、ニッケル、パラジウム、銀又はそれらの合金からなり、好ましくはニッケル又はニッケル合金からなる。ニッケルを含む保護層は耐酸化性に優れ、また保護層が存在することによって、その上にCeO等の中間層を形成する際に、結晶配向金属層に含まれる金属の酸化膜が生成して結晶配向性が崩れることを防止することができるためである。ニッケル、パラジウム又は銀の合金の含有元素としては、磁性が低減されるものが好ましく、例としてCu、Sn、W、Cr等の元素が挙げられる。また、結晶配向性に悪影響を及ぼさない範囲であれば、不純物を含んでいても良い。
 保護層の厚さは、薄過ぎると、超電導線材の製造において、その上に中間層、超電導層を積層する際に結晶配向金属層中の金属が保護層表面まで拡散することにより表面が酸化する可能性があり、また厚過ぎると保護層の結晶配向性が崩れ、めっき歪も増大するため、これらを考慮して適宜設定される。具体的には、1μm~5μmの範囲であることが好ましい。
2.超電導線材用基板の製造方法
 本発明の超電導線材用基板は、熱処理により、c軸配向率が99%以上であり、Δφが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下である層を形成させる工程を含む方法によって製造できる。
 本発明の一つの実施形態において、熱処理により形成される、c軸配向率が99%以上であり、Δφが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下である層は結晶配向金属層である。
 熱処理は、例えば、温度150℃以上で施す。熱処理時間は温度によって異なるが、例えば400℃であれば1~10時間、700℃以上の高温であれば数秒~5分程度保持するとよい。熱処理温度をあまり高温にすると高圧延金属層が2次再結晶を起こしやすくなり、結晶配向性が悪くなるため、150℃以上1000℃以下で行う。後の中間層や超電導層を形成する工程で基板が600℃~900℃の高温雰囲気におかれることを考慮した場合、600℃~900℃での熱処理が好ましい。より好ましくは段階的に、低温での熱処理の後、高温での熱処理熱処理を行うことにより、結晶配向金属層及びその後形成する保護層の結晶配向及び表面粗度が良好となる。具体的には200~400℃での熱処理の後、800~900℃の熱処理を行うのが特に好ましい。
 本発明の一つの実施形態において、超電導線材用基板は、非磁性の金属板と、高圧延金属層とを表面活性化接合にて積層する工程と、c軸配向率が99%以上であり、Δφが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下となるように高圧延金属層の熱処理を行う工程とを含む方法によって製造する。
 本発明の超電導線材用基板の製造方法において、得られる超電導線材用基板の最表層の結晶方位が(001)[100]から6°以上ずれている面積の割合を単位面積あたり6%以下にするためには、例えば、用いられる銅箔等の高圧延金属層の光沢度を調整する方法が挙げられる。高圧延金属層の光沢度は、例えば45以下、好ましくは20~45の範囲、より好ましくは20~43の範囲である。ここで、光沢度は、非磁性の基板に積層される前の圧延後の高圧延金属層について色差計でL、a、bを測定して得られるL値である。また、前記の高圧延金属層の光沢度を調整する方法以外にも、特に限定されずに、例えば、高圧延金属層の圧延集合組織中のカッパー方位(Copper方位)の割合を高くすると共にブラス方位(Brass方位)の割合を低くすることによって、熱処理後の基板の最表層の結晶方位が(001)[100]から6°以上ずれている面積の割合を単位面積あたり6%以下にすることができる。
 本発明の超電導線材用基板の製造方法における、非磁性の金属板と高圧延金属層とを表面活性化接合にて積層する工程について、表面活性化接合では、非磁性の金属板及び高圧延金属層のそれぞれの表面にスパッタエッチング処理を行うことにより表面吸着層及び表面酸化膜を除去して活性化させ、その後、活性化した2つの面同士を冷間圧接することにより接合する。
 表面活性化接合は、具体的には、非磁性の金属板及び高圧延金属層を、幅150mm~600mmの長尺コイルとして用意し、接合する2つの面を予め活性化処理した後、冷間圧接する。
 表面活性化処理は、接合面を有する非磁性の金属板と高圧延金属層をそれぞれアース接地した一方の電極とし、絶縁支持された他の電極との間に1MHz~50MHzの交流を印加してグロー放電を発生させ、且つグロー放電によって生じたプラズマ中に露出される電極の面積が前記の他の電極の面積の1/3以下でスパッタエッチング処理することで行われる。不活性ガスとしては、アルゴン、ネオン、キセノン、クリプトンなどや、これらを少なくとも1種類含む混合気体を適用することができる。
 スパッタエッチング処理では、非磁性の金属板及び高圧延金属層の接合する面を不活性ガスによりスパッタすることにより、少なくとも表面吸着層を除去し、さらに表面酸化膜を除去してもよく、この処理により接合する面を活性化させる。このスパッタエッチング処理中は、前記のアース接地した電極が冷却ロールの形をとっており、各搬送材料の温度上昇を防いでいる。
 その後、連続的に圧接ロール工程に搬送し、活性化された面同士を圧接する。圧接下の雰囲気は、Oガスなどが存在すると、搬送中、活性化処理された面が再酸化され密着に影響を及ぼす。前記圧接工程を通って密着させた積層体は、巻き取り工程まで搬送され、そこで巻き取られる。
 なお、前記スパッタエッチング工程において、接合面の吸着物は完全に除去するものの、表面酸化層は完全に除去する必要はない。表面全体に酸化層が残留していても、接合工程で圧下率を上げ、接合面での摩擦により素地を露出させることで、非磁性の金属板と高圧延金属層との接合性を確保することができるからである。
 また、乾式エッチングで酸化層を完全に除去しようとすると、高プラズマ出力、又は長時間のエッチングが必要となり、材料の温度が上昇してしまう。スパッタエッチング処理において、温度が、高圧延金属層中の金属の再結晶開始温度以上に上昇すると高圧延金属層の再結晶が起こり、高圧延金属層は接合前に結晶配向してしまうこととなる。結晶配向した高圧延金属層を圧延すると、高圧延金属層に歪が導入され、高圧延金属層の2軸結晶配向性が劣化する。このような理由から、スパッタエッチング工程では、高圧延金属層の温度を、金属の再結晶開始温度未満に保持する必要がある。例えば、高圧延金属層として銅箔を用いる場合、銅箔の温度を150℃未満に保持する。好ましくは、100℃以下に保持し高圧延金属層の金属組織を圧延集合組織のまま保持する。
 また、非磁性の金属板をスパッタエッチングする処理においても、高プラズマ出力で処理したり、時間をかけ金属板温度を高圧延金属層中の金属の再結晶開示温度以上にしたりすると、圧接時に高圧延金属層との接触で高圧延金属層の温度が上昇し、圧延と同時に高圧延金属層の再結晶が起こり、2軸結晶配向性が劣化するおそれがある。
 このため、非磁性の金属板のスパッタエッチング工程においても、金属板の温度を高圧延金属層中の金属の再結晶開始温度未満に保つことが望ましい。例えば、高圧延金属層として銅箔を用いる場合、150℃未満に銅箔を保持する。好ましくは、高圧延金属層を常温~100℃に保つのがよい。
 このように非磁性の金属板及び高圧延金属層の表面を活性化処理した後、両者を真空中で圧延ロールにて接合する。この時の真空度は、表面への再吸着物を防止するため高い方が好ましいが、10-5Pa~10-2Paの範囲の真空度であればよい。
 また、非磁性の金属板表面や高圧延金属層表面への酸素の再吸着によって両者間の密着強度が低下するので、非酸化雰囲気中、例えばArなどの不活性ガス雰囲気中で前記圧延ロール接合をすることも好ましい。
 圧延ロールによる加圧は、接合界面の密着面積の確保、及び圧下時の接合界面で起こる摩擦により一部表面酸化膜層を剥離させ、素地を露出させるために行い、300MPa以上加えることが好ましく、特に、非磁性の金属板及び高圧延金属層は、共に硬い材料であるため、600MPa以上1.5GPa以下での加圧が好ましい。圧力はこれ以上かけてもよく、圧下率で30%までは後の熱処理後に結晶配向性が劣化しないことは確認しているが、好ましくは、5%未満の圧下率となるように加圧する。圧下率で30%を超えるような圧力を加えると、高圧延金属層表面にクラックが発生するとともに、圧延、熱処理後の結晶配向金属層の結晶配向性が悪くなる。
 以上のような表面活性化接合によって積層した非磁性の金属板と高圧延金属層との積層体を、c軸配向率が99%以上であり、Δφが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下となるように高圧延金属層の熱処理を行う。熱処理は、前記の通り、例えば、温度150℃以上で施す。熱処理時間は温度によって異なるが、例えば400℃であれば1~10時間、700℃以上の高温であれば数秒~5分程度保持するとよい。熱処理温度をあまり高温にすると高圧延金属層が2次再結晶を起こしやすくなり、結晶配向性が悪くなるため、150℃以上1000℃以下で行う。後の中間層や超電導層を形成する工程で基板が600℃~900℃の高温雰囲気におかれることを考慮した場合、600℃~900℃での熱処理が好ましい。より好ましくは段階的に、低温での熱処理の後、高温での熱処理を行うことにより、結晶配向金属層及びその後形成する保護層の結晶配向及び表面粗度が良好となる。具体的には200~400℃での熱処理の後、800~900℃の熱処理を行うのが特に好ましい。
 前記の通り、本発明の超電導線材用基板は、結晶配向金属層の上に形成された保護層を含むことができる。高圧延金属層を熱処理して得た2軸結晶配向した結晶配向金属層と非磁性の金属板との積層体をめっき処理することにより、結晶配向金属層の上に結晶配向金属層の結晶配向を引き継いだ保護層を形成することができる。
 めっき処理は、保護層のめっき歪が小さくなるような条件を適宜採用して行うことができる。ここで、めっき歪とは、金属板等の下地にめっき処理を施した場合に、めっき皮膜内に生ずる歪(ひずみ)の度合いをいう。例えば、保護層としてニッケルからなる層を形成する場合は、めっき浴として従来知られたワット浴やスルファミン酸浴を用いて行うことができる。特に、スルファミン酸浴は、保護層のめっき歪を小さくしやすいため好適に用いられる。めっき浴組成の好ましい範囲は以下の通りであるが、これに限定されるものではない。
ワット浴
 硫酸ニッケル 200g/l~300g/l
 塩化ニッケル 30g/l~60g/l
 ホウ酸    30g/l~40g/l
 pH     4~5
 浴温     40℃~60℃
スルファミン酸浴
 スルファミン酸ニッケル 200g/l~600g/l
 塩化ニッケル      0g/l~15g/l
 ホウ酸         30g/l~40g/l
 添加剤         適量
 pH          3.5~4.5
 浴温          40℃~70℃
 めっき処理を行う際の電流密度は、特に限定されるものではなく、めっき処理に要する時間とのバランスを考慮して適宜設定される。具体的には、例えば、保護層として2μm以上のめっき皮膜を形成する場合、低電流密度であるとめっき処理に要する時間が長くなり、その時間を確保するためにラインスピードが遅くなって、生産性が低下したり、めっきの制御が困難になる場合があるため、通常、電流密度を10A/dm以上とすることが好ましい。また、電流密度の上限は、めっき浴の種類によって異なり、特に限定されるものではないが、例えばワット浴であれば25A/dm以下、スルファミン酸浴であれば35A/dm以下とすることが好ましい。一般に、電流密度が35A/dmを超えると、所謂めっき焼けによって良好な結晶配向が得られない場合がある。
 形成した保護層は、めっき条件等によって表面にマイクロピットが発生する場合がある。その場合、必要に応じて、めっき後にさらに熱処理による平均化を行ない、表面を平滑にすることができる。その際の熱処理温度は、例えば700℃~1000℃とすることが好ましい。
 また、保護層の上にさらにエピタキシャル成長によって積層させる中間層及び超電導化合物層の結晶配向性を良好に維持するため、必要に応じて、非磁性の金属板と高圧延金属層とを接合させた後、高圧延金属層の表面粗度Raを低減するための処理を行っても良い。具体的には、圧延ロールによる圧下、バフ研磨、電解研磨、電解砥粒研磨等の方法を用いることができ、これらの方法により、表面粗度Raを例えば20nm以下、好ましくは10nm以下にすることが望ましい。
3.超電導線材
 以上のような超電導線材用基板の上に、従来の方法に従って中間層及び超電導層を順次積層することにより、超電導線材を製造することができる。具体的には、超電導線材用基板の最表層の上に、CeO、YSZ、SrTiO、MgO、Y等の中間層をスパッタリング法等の手段を用いてエピタキシャル成膜し、さらにその上にY123系等の超電導化合物層をPLD(パルスレーザー蒸着;Pulse Laser Deposition)法、MOD(有機金属成膜;Metal Organic Deposition)法、MOCVD(有機金属気相成長;Metal Organic Chemical Vapor Deposition)法などの方法により成膜することによって超電導線材を得ることができる。中間層は複数層であってもよい。必要に応じて、超電導化合物層の上にさらにAg、Cu等からなる保護膜を設けても良い。
 以下、実施例及び比較例に基づき本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
 非磁性の金属板としてSUS316L(厚さ100μm)を用い、高圧延金属層として、圧下率96%~99%で圧延され、色差計(日本電色工業株式会社NR-3000)で測定した圧延後の光沢度が42.8である銅箔(厚さ18μm)を用いた。SUS316Lと銅箔を表面活性化接合装置を用いて常温で表面活性化接合し、SUS316Lと銅箔の積層材を形成させた。
 表面活性化接合において、スパッタエッチングを、0.1Pa下で、プラズマ出力を200W、接合面へのスパッタ照射時間を20秒として実施し、SUS316L及び銅箔の吸着物層を完全に除去した。また圧延ロールでの加圧は600MPaとした。
 積層材の銅箔側表面を研磨により表面粗度Raを20nm以下とした後、積層材に温度250℃にて5分均熱保持の後、850℃にて5分均熱保持の条件にて連続熱処理炉にて熱処理を施して銅箔を2軸結晶配向させた。熱処理後の銅箔表面において後述するEBSDを用いて解析を行ったところ、結晶方位が(001)[100]から6°以上ずれている面積の割合は4.9%であった。
 次に、積層材をカソードとして、銅箔上にニッケルめっきを施してニッケル層を保護層として形成させて基板を得た。めっき浴の組成は以下の通りである。なお、ニッケルめっき厚は2.5μmとし、めっき浴温は60℃、めっき浴のpHはpH4に設定した。
(スルファミン酸浴)
 スルファミン酸ニッケル  450g/l
 塩化ニッケル         5g/l
 ホウ酸           30g/l
 添加剤           5ml/l
(実施例2)
 高圧延金属層として、圧下率96%~99%で圧延された光沢度が43.2である銅箔(厚さ18μm)を用いる以外は実施例1と同様にした。なお、保護層形成前の、熱処理後の銅箔表面における結晶方位が(001)[100]から6°以上ずれている面積の割合は3.9%であった。
(比較例1)
 高圧延金属層として、圧下率96%~99%で圧延された光沢度が55.4である銅箔(厚さ18μm)を用いる以外は実施例1と同様にした。なお、保護層形成前の、熱処理後の銅箔表面における結晶方位が(001)[100]から6°以上ずれている面積の割合は10.9%であった。
 実施例1、2及び比較例1で得られた基板の最表層の結晶配向及び結晶方位を測定した。
(1)結晶方位が(001)[100]から6°以上ずれている面積の割合
 得られた基板をEBSD(日本電子株式会社SEM-840及び株式会社TSLソリューションズ DigiView)及び結晶方位解析ソフト(EDAX社OIM Data Collection及びOIM Analysis)を用いて解析し、1mmあたりの結晶方位が(001)[100]から6°以上ずれている面積の割合を求めた。具体的には、「Crystal Orientation」にてOrientationを(001)[100]に設定し、その方向からの傾きの範囲を指定して、それぞれの範囲での面積率を算出した。
 例として、実施例2の基板の解析結果を図1に示し、比較例1の基板の解析結果を図2に示す。図1及び図2において、濃灰色又は灰色の領域は結晶方位が(001)[100]から6°以上ずれている結晶を示す。図1に示される実施例2の基板は、図2に示される比較例1の基板と比較して、結晶方位が(001)[100]から6°以上ずれている面積が明らかに小さい。
(2)面内配向度(Δφ)
 得られた基板をEBSD及び結晶方位解析ソフトを用い、「Crystal Direction」の<111>∥NDを用いて以下の方法で解析することにより得た:
1. 結晶座標系において、<111>を試料座標系のND[001]とあわせるような軸の回転操作を行う。
2. その後、試料座標系のND[001]軸に対して、各測定点の結晶座標系の<111>軸がどれくらい傾いているかを測定点毎に算出する
3. 各点の傾きを積算グラフで表示し、縦軸:Number fractionが0.5のときの傾き:AlignmentをΔφの1/2とする。よって、Δφは得られた値の2倍とする。
(3)c軸配向率
 得られた基板について、X線回折装置(株式会社リガクRINT2000)にてθ/2θ測定を行い、(200)面のc軸配向を測定して得た。具体的には、c軸配向率(%)=I(200)/ΣI(hkl)×100(%)により求めた。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1及び2の基板と比較例1の基板とは、Δφはそれぞれ0.3°~0.6°程度の差であるが、基板の最表層の結晶方位が(001)[100]から6°以上ずれている面積の割合の差は8%以上と大きく異なることから、Δφと結晶方位が(001)[100]から6°以上ずれている面積の割合とは、比例関係等の直接対応する関係にはないことが分かる。つまり、単純にΔφが小さくなると、それに応じて結晶方位が(001)[100]から6°以上ずれている面積の割合が少なくなるものではなく、Δφとずれている面積の割合とは別のファクターである。
(実施例3及び比較例2)
 実施例1及び比較例1で得られた基板上に、RFマグネトロンスパッタリング法により中間層(CeO、YSZ、Y)を形成させ、MOD(有機金属成膜;Metal Organic Deposition)法により、中間層の上に0.15μmの厚さの超電導層(YBCO)を形成させて超電導線材を得た。実施例1の基板から得られたものを実施例3とし、比較例1の基板から得られたものを比較例2とする。実施例3及び比較例2の超電導線材の超電導線材10mm幅における臨界電流値Icを測定した。臨界電流値Icについては、温度が77Kで、自己磁場中において測定を行い、10-6V/cmの電界が発生したときの通電電流値とした。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 最表層の金属の結晶方位が(001)[100]から6°以上ずれている面積の割合が多い(13.8%)基板を用いた比較例2の超電導線材に対し、最表層の金属の結晶方位が(001)[100]から6°以上ずれている面積の割合が少ない(5.2%)基板を用いた実施例3の超電導線材では超電導特性の向上が認められた。
(実施例4及び比較例3)
 実施例2及び比較例1で得られた基板上に、RFマグネトロンスパッタリング法により、中間層(CeO、YSZ、CeO)を形成させ、PLD(パルスレーザー蒸着;Pulse Laser Deposition)法により、中間層の上に、それぞれ0.7μm、1.4μm、2.1μm及び2.8μmの厚さの超電導層(GdBCO)を形成させて超電導線材を得た。実施例1の基板から得られたものを実施例4-1~4-4とし、比較例1の基板から得られたものを比較例3-1~3-4とする。実施例4-1~4-4及び比較例3-1~3-4の超電導線材の超電導線材10mm幅における臨界電流値Icを測定した結果を表3及び図3に示す。図3中、○は実施例4-1~4-4の超電導線材の臨界電流値Icを表し、□は比較例3-1~3-4の超電導線材の臨界電流値Icを表す。
Figure JPOXMLDOC01-appb-T000003
 表3及び図3より、実施例4-1~4-4及び比較例3-1~3-4の超電導線材は、共に、超電導層の膜厚の増加に伴い超電導特性の向上がみられるが、最表層の金属の結晶方位が(001)[100]から6°以上ずれている面積の割合が多い(13.8%)基板を用いた比較例3-1~3-4に対し、最表層の金属の結晶方位が(001)[100]から6°以上ずれている面積の割合が少ない(5.7%)基板を用いた実施例4-1~4-4の電導線材は、いずれの膜厚においても超電導特性が向上しており、高い臨界電流密度を有することを示した。
(参考例)
 圧下率96~99%で圧延した様々な光沢度の銅箔を箱型熱処理炉850℃にて5分の条件にて熱処理を施して銅箔を2軸結晶配向させた。EBSD法で銅箔の面内配向度(Δφ)及び結晶方位が(001)[100]から6°以上ずれている面積の割合を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4より、光沢度が45以下の銅箔を用いることにより、銅箔の結晶方位が(001)[100]から6°以上ずれている面積の割合を6%以下にすることが可能となることが分かった。また、表4から、Δφと結晶方位が(001)[100]から6°以上ずれている面積の割合とは、比例関係等の直接対応する関係にはないことも分かる。特に、Δφの値が小さくなったにもかかわらず、6°以上ずれている面積の割合が逆に増加する場合が見られた。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (6)

  1.  最表層の金属の結晶配向が、c軸配向率99%以上であり、Δφが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下である超電導線材用基板。
  2.  最表層が銅、ニッケル又はそれらの合金からなる、請求項1に記載の超電導線材用基板。
  3.  請求項1又は2に記載の超電導線材用基板の製造方法であって、熱処理により、c軸配向率が99%以上であり、Δφが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下である層を形成させる工程を含む前記製造方法。
  4.  非磁性の金属板と、高圧延金属層とを表面活性化接合にて積層する工程と、c軸配向率が99%以上であり、Δφが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下となるように高圧延金属層の熱処理を行う工程とを含む超電導線材用基板の製造方法。
  5.  積層前の高圧延金属層の光沢度が45以下である、請求項4に記載の製造方法。
  6.  請求項1又は2に記載の超電導線材用基板と、基板上に積層した中間層と、中間層上に積層した超電導層とを有する超電導線材。
PCT/JP2014/070685 2013-09-04 2014-08-06 超電導線材用基板及びその製造方法、並びに超電導線材 WO2015033727A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/916,305 US10115501B2 (en) 2013-09-04 2014-08-06 Substrate for superconducting wire, method for manufacturing the same, and superconducting wire
EP14842998.8A EP3043359B1 (en) 2013-09-04 2014-08-06 Substrate for superconducting wire, method for manufacturing the same, and superconducting wire
KR1020167002576A KR102188566B1 (ko) 2013-09-04 2014-08-06 초전도 선재용 기판 및 그 제조 방법과 초전도 선재
CN201480048657.3A CN105518808B (zh) 2013-09-04 2014-08-06 超导线材用基板及其制造方法、以及超导线材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013183031A JP6244142B2 (ja) 2013-09-04 2013-09-04 超電導線材用基板及びその製造方法、並びに超電導線材
JP2013-183031 2013-09-04

Publications (1)

Publication Number Publication Date
WO2015033727A1 true WO2015033727A1 (ja) 2015-03-12

Family

ID=52628210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070685 WO2015033727A1 (ja) 2013-09-04 2014-08-06 超電導線材用基板及びその製造方法、並びに超電導線材

Country Status (5)

Country Link
US (1) US10115501B2 (ja)
EP (1) EP3043359B1 (ja)
JP (1) JP6244142B2 (ja)
KR (1) KR102188566B1 (ja)
WO (1) WO2015033727A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051546A (zh) * 2018-03-29 2020-04-21 古河电气工业株式会社 绝缘基板及其制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6442020B1 (ja) * 2017-10-12 2018-12-19 福田金属箔粉工業株式会社 硬質圧延銅箔及び該硬質圧延銅箔の製造方法
WO2020087069A2 (en) * 2018-10-26 2020-04-30 University Of Houston System Round superconductor wires
JP6707164B1 (ja) * 2019-03-29 2020-06-10 株式会社フジクラ 超電導線材の接続構造体及び超電導線材

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275504A (ja) * 1990-03-23 1991-12-06 Nippon Telegr & Teleph Corp <Ntt> 酸化物超伝導体薄膜およびその製造方法
JP2008266686A (ja) 2007-04-17 2008-11-06 Chubu Electric Power Co Inc エピタキシャル薄膜形成用のクラッド配向金属基板及びその製造方法
JP2010118246A (ja) 2008-11-12 2010-05-27 Toyo Kohan Co Ltd 酸化物超電導線材用金属積層基板の製造方法及び該基板を用いた酸化物超電導線材
WO2011007527A1 (ja) 2009-07-17 2011-01-20 東洋鋼鈑株式会社 酸化物超電導線材用金属積層基板の製造方法及び酸化物超電導線材用金属積層基板
JP2013136807A (ja) * 2011-12-28 2013-07-11 Jx Nippon Mining & Metals Corp 超電導膜形成用圧延銅箔
US20130210635A1 (en) * 2010-07-29 2013-08-15 Theva Dunnschichttechnik Gmbh High temperature superconducting tape conductor having high critical ampacity
JP2013183031A (ja) 2012-03-02 2013-09-12 Toshiba Corp インダクタ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6451450B1 (en) * 1995-04-10 2002-09-17 Ut-Battelle, Llc Method of depositing a protective layer over a biaxially textured alloy substrate and composition therefrom
US6428635B1 (en) * 1997-10-01 2002-08-06 American Superconductor Corporation Substrates for superconductors
KR100691061B1 (ko) * 2005-08-30 2007-03-09 엘에스전선 주식회사 초전도 선재용 기판 및 그 제조방법과 초전도 선재
JP4690246B2 (ja) * 2006-05-19 2011-06-01 住友電気工業株式会社 超電導薄膜材料およびその製造方法
JP5400416B2 (ja) * 2009-02-20 2014-01-29 中部電力株式会社 超電導線材
JP5362459B2 (ja) 2009-06-23 2013-12-11 公益財団法人鉄道総合技術研究所 氷結層生成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275504A (ja) * 1990-03-23 1991-12-06 Nippon Telegr & Teleph Corp <Ntt> 酸化物超伝導体薄膜およびその製造方法
JP2008266686A (ja) 2007-04-17 2008-11-06 Chubu Electric Power Co Inc エピタキシャル薄膜形成用のクラッド配向金属基板及びその製造方法
JP2010118246A (ja) 2008-11-12 2010-05-27 Toyo Kohan Co Ltd 酸化物超電導線材用金属積層基板の製造方法及び該基板を用いた酸化物超電導線材
WO2011007527A1 (ja) 2009-07-17 2011-01-20 東洋鋼鈑株式会社 酸化物超電導線材用金属積層基板の製造方法及び酸化物超電導線材用金属積層基板
US20130210635A1 (en) * 2010-07-29 2013-08-15 Theva Dunnschichttechnik Gmbh High temperature superconducting tape conductor having high critical ampacity
JP2013136807A (ja) * 2011-12-28 2013-07-11 Jx Nippon Mining & Metals Corp 超電導膜形成用圧延銅箔
JP2013183031A (ja) 2012-03-02 2013-09-12 Toshiba Corp インダクタ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3043359A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051546A (zh) * 2018-03-29 2020-04-21 古河电气工业株式会社 绝缘基板及其制造方法

Also Published As

Publication number Publication date
US10115501B2 (en) 2018-10-30
JP6244142B2 (ja) 2017-12-06
KR20160051728A (ko) 2016-05-11
US20160217890A1 (en) 2016-07-28
KR102188566B1 (ko) 2020-12-08
EP3043359A1 (en) 2016-07-13
EP3043359A4 (en) 2017-04-26
JP2015050147A (ja) 2015-03-16
EP3043359B1 (en) 2019-12-04
CN105518808A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
JP5723773B2 (ja) 酸化物超電導線材用金属積層基板の製造方法
JP5382911B2 (ja) 酸化物超電導線材用金属積層基板の製造方法及び該基板を用いた酸化物超電導線材
WO2016068046A1 (ja) 超電導線材用基板及びその製造方法、並びに超電導線材
JP5517196B2 (ja) 超電導化合物用基板及びその製造方法
JP6244142B2 (ja) 超電導線材用基板及びその製造方法、並びに超電導線材
JP6530713B2 (ja) 酸化物層の成膜方法、並びにエピタキシャル成長用積層基材及びその製造方法
JP6666656B2 (ja) Rfマグネトロンスパッタリング装置
JP6250546B2 (ja) エピタキシャル成長用基板及びその製造方法、並びに超電導線材用基板
JP6666655B2 (ja) エピタキシャル成長用積層基材の製造方法
JP6074527B2 (ja) エピタキシャル成長用基板及びその製造方法、並びに超電導線材用基板
JP6948621B2 (ja) エピタキシャル成長用基板及びその製造方法
JP5918920B2 (ja) 超電導化合物用基板及びその製造方法
JP2013101832A (ja) エピタキシャル成長用基板及びその製造方法、並びに超電導線材用基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167002576

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14916305

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014842998

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842998

Country of ref document: EP