WO2015033610A1 - 光学部材の製造方法及びそれに用いる紫外線硬化型樹脂組成物 - Google Patents

光学部材の製造方法及びそれに用いる紫外線硬化型樹脂組成物 Download PDF

Info

Publication number
WO2015033610A1
WO2015033610A1 PCT/JP2014/060467 JP2014060467W WO2015033610A1 WO 2015033610 A1 WO2015033610 A1 WO 2015033610A1 JP 2014060467 W JP2014060467 W JP 2014060467W WO 2015033610 A1 WO2015033610 A1 WO 2015033610A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
resin composition
curable resin
optical
Prior art date
Application number
PCT/JP2014/060467
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
隼 本橋
貴文 水口
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2015535337A priority Critical patent/JP6378184B2/ja
Priority to CN201480049650.3A priority patent/CN105518764B/zh
Priority to KR1020167004047A priority patent/KR102213491B1/ko
Publication of WO2015033610A1 publication Critical patent/WO2015033610A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F253/00Macromolecular compounds obtained by polymerising monomers on to natural rubbers or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6204Polymers of olefins
    • C08G18/6208Hydrogenated polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09J175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • C09J201/02Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1253Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0831Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a method for producing an optical member by laminating an optical substrate having a light shielding part and another optical substrate, and an ultraviolet curable resin composition therefor.
  • a touch panel In recent years, display devices that allow screen input by attaching a touch panel to a display screen of a display device such as a liquid crystal display, a plasma display, or an organic EL display have been widely used.
  • a glass plate or a resin film on which a transparent electrode is formed is bonded with a slight gap facing each other. If necessary, a transparent protection made of glass or resin is provided on the touch surface. It has a structure in which plates are bonded together.
  • a strip-shaped light shielding portion is formed on the outermost edge of the transparent protective plate in order to improve the contrast of the display image.
  • the transparent protective plate on which the light-shielding part is formed is bonded with the ultraviolet curable resin composition, sufficient ultraviolet light does not reach the light-shielding region that is a shadow of the light-shielding part of the ultraviolet curable resin by the light-shielding part, Insufficient curing of the resin. If the resin is not sufficiently cured, problems such as display unevenness in the vicinity of the light shielding portion occur.
  • Patent Document 1 discloses a technique in which an organic peroxide is contained in an ultraviolet curable resin and heated after ultraviolet irradiation to cure the resin in the light shielding portion. Yes. However, there is a concern that the heating process may damage the liquid crystal display device and the like. Furthermore, since a heating step of usually 60 minutes or more is required to make the resin sufficiently cured, there is a problem that productivity is poor.
  • Japanese Patent Application Laid-Open No. H10-228561 discloses a technique for curing the resin of the light shielding part by irradiating ultraviolet rays from the outer side surface of the light shielding part forming surface.
  • Patent Document 3 discloses a technique using the slow-acting property of a cationic polymerizable ultraviolet curable resin, but the flexibility of the cured resin is inferior.
  • Patent Document 4 proposes a technique for sufficiently curing the resin of the light shielding part only by the photopolymerization process.
  • an optical member obtained by applying an ultraviolet curable resin composition to an optical substrate, irradiating the coating layer with ultraviolet rays, bonding the optical substrate, and further irradiating with ultraviolet rays has poor adhesive strength. there were.
  • the present invention can obtain an optical member such as a display unit having little damage to the optical substrate, good productivity, good curability and adhesion, and the degree of curing of the resin is high. Even if it is a case where an ultraviolet curable resin composition is applied to an optical substrate, the optical layer is applied to the coating layer, the optical substrate is bonded, and further an ultraviolet ray is applied to obtain an optical member. It aims at providing the manufacturing method of the optical member which can obtain an optical member, and the ultraviolet curable resin composition used therefor.
  • the present invention relates to the following (1) to (9).
  • a method for producing an optical member in which at least two optical substrates having the following steps 1 to 3 are bonded together An optical member in which the ratio of the maximum illuminance (illuminance ratio) in the range of 200 nm to 320 nm is 30 or less, assuming that the maximum illuminance in the range of 320 nm to 450 nm of the ultraviolet rays applied to the coating layer in Step 1 below is 100
  • Step 2 A step of bonding another optical substrate or an uncured portion of another optical substrate obtained in Step 1 to an uncured portion of the optical substrate obtained in Step 1;
  • Step 3 A step of irradiating the cured product layer having an uncured portion of the optical substrate bonded in Step 2 with ultraviolet rays through the optical substrate to cure the cured product layer.
  • the maximum illuminance (illuminance ratio) in the range of 200 nm to 320 nm is 10 or less when the maximum illuminance in the range of 320 nm to 450 nm of the ultraviolet rays applied to the coating layer in Step 1 is 100 (1 ) Or (2).
  • the (meth) acrylate (A) is at least one (meth) acrylate selected from the group consisting of urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, and a (meth) acrylate monomer (5 ) UV curable resin composition.
  • the molar extinction coefficient of the photopolymerization initiator (B) measured in acetonitrile or methanol is 300 ml / (g ⁇ cm) or more at 302 nm or 313 nm, and is 100 ml / (g ⁇ cm) or less at 365 nm.
  • the ultraviolet curable resin composition as described in (5) or (6).
  • FIG. 6 is a process diagram showing manufacturing steps according to Example 1 and Example 2;
  • FIG. 10 is a process diagram showing a manufacturing process according to Example 3.
  • 10 is a process diagram showing a manufacturing process according to Comparative Example 1.
  • FIG. 10 is a process diagram illustrating a manufacturing process according to Comparative Example 2.
  • FIG. It is the schematic which shows the one aspect
  • the method for producing an optical member of the present invention is characterized in that at least two optical substrates are bonded together by the following [Step 1] to [Step 3].
  • An application layer is formed by applying an ultraviolet curable resin composition containing (meth) acrylate (A) and a photopolymerization initiator (B) to at least one optical substrate, By irradiating the coating layer with ultraviolet rays, a cured portion (hereinafter referred to as “cured portion of the cured product layer” or simply “cured portion”) present on the optical substrate side (lower side of the coated layer) of the coated layer.
  • uncured portion of the cured product layer (hereinafter referred to as “uncured portion of the cured product layer” or simply “uncured portion”) existing on the side opposite to the optical substrate side (the upper side of the coating layer, usually the air side).
  • Another optical substrate is bonded to the uncured portion of the cured product layer of the optical substrate obtained in Step 1, or the other optical substrate obtained in Step 1 is cured. The process of bonding the uncured part of the material layer.
  • Step 3 A step of curing the cured product layer by irradiating the cured product layer having an uncured portion of the optical substrate bonded in Step 2 with ultraviolet rays through the optical substrate.
  • FIG. 1 is a process diagram showing a first embodiment of a manufacturing process of an optical member of the present invention.
  • This method is a method of obtaining an optical member (a liquid crystal display unit having a light shielding part) by bonding the liquid crystal display unit 1 and a transparent substrate 2 having a light shielding part.
  • the liquid crystal display unit 1 is a liquid crystal display unit in which a liquid crystal material is sealed between a pair of substrates on which electrodes are formed, and a polarizing plate, a driving circuit, a signal input cable, and a backlight unit are provided.
  • the transparent substrate 2 having a light shielding portion is a transparent substrate such as a glass plate, a polymethyl methacrylate (PMMA) plate, a polycarbonate (PC) plate, an alicyclic polyolefin polymer (COP) plate.
  • the transparent substrate 2 having a black frame-shaped light-shielding portion 4 on the surface of the transparent substrate 3 can be suitably used, and the light-shielding portion 4 is formed by attaching a tape, applying a paint, printing, or the like.
  • the present invention can also be applied to a device that does not have the light shielding portion 4.
  • the case where the light shielding portion 4 is provided will be described as a specific example.
  • transparent substrate having a light-shielding portion can be read as “transparent substrate”, and can be considered as an example in which the light-shielding portion is not provided as it is.
  • the ultraviolet curable resin composition containing (meth) acrylate (A) and a photoinitiator (B) is made into the transparent which has the display surface of the liquid crystal display unit 1, and a light-shielding part. It is applied to the surface of the surface of the substrate 2 where the light shielding portion 4 is formed.
  • the coating method include a slit coater, a roll coater, a spin coater, and a screen printing method.
  • the ultraviolet curable resin composition applied to the surface of the liquid crystal display unit 1 and the transparent substrate 2 having the light shielding portion may be the same, or different ultraviolet curable resin compositions may be used.
  • both are the same ultraviolet curable resin composition.
  • the film thickness of the cured product of each ultraviolet curable resin is adjusted so that the cured resin layer 7 after bonding is preferably 50 to 500 ⁇ m, more preferably 50 to 350 ⁇ m, and still more preferably 100 to 350 ⁇ m.
  • the film thickness of the cured layer of the ultraviolet curable resin existing on the surface of the transparent substrate 2 having the light-shielding portion depends on the film thickness, the ultraviolet curable resin usually existing on the surface of the liquid crystal display unit 1 is used. It is preferable that the thickness is equal to or thicker than the thickness of the cured product layer of the mold resin. This is to minimize the portion that remains uncured even after irradiation with ultraviolet rays in Step 3 described later, thereby eliminating the risk of curing failure.
  • the ultraviolet curable resin composition layer 5 after application is irradiated with ultraviolet rays 8 and a cured portion (in the drawing, the liquid crystal display unit side or the transparent substrate side as viewed from the ultraviolet curable resin composition) is present (in the figure). Curing with uncured parts (not shown in the figure) present on the upper side of the coating layer (on the opposite side of the liquid crystal display unit side or on the opposite side of the transparent substrate side) (on the atmospheric side when performed in the atmosphere) A physical layer 6 is obtained.
  • the irradiation amount is preferably 5 to 2000 mJ / cm 2 , particularly preferably 10 to 1000 mJ / cm 2 .
  • uncured refers to a fluid state in a 25 ° C. environment.
  • the resin composition layer is touched with a finger after ultraviolet irradiation and a liquid component adheres to the finger, it is determined to have an uncured portion.
  • any light source may be used as long as it is a lamp that irradiates ultraviolet to near ultraviolet rays.
  • a low-pressure, high-pressure or ultrahigh-pressure mercury lamp, metal halide lamp, (pulse) xenon lamp, or electrodeless lamp can be used.
  • the maximum illuminance ratio (illuminance ratio) at 200 to 320 nm is 30 when the maximum illuminance in the range of 320 nm to 450 nm is 100.
  • the illuminance at 200 to 320 nm is particularly preferably 10 or less.
  • the adhesive strength of the finally obtained optical member will be inferior. This is because if the illuminance at a low wavelength is high, the curing of the ultraviolet curable resin composition proceeds excessively at the time of curing in the step 1, and the contribution to the adhesion at the time of curing in the ultraviolet irradiation in the step 3 is reduced. This is thought to be due to this.
  • the illuminance is usually 30 to 1000 mW / cm 2 at each wavelength (for example, 365 nm).
  • the method of irradiating ultraviolet rays so as to achieve the above illuminance ratio includes, for example, a method of applying a lamp that satisfies the illuminance ratio as a lamp that irradiates ultraviolet to near ultraviolet rays, Even if the above condition is not satisfied, such illuminance can be obtained by using a base material (for example, a short wave ultraviolet cut filter, a glass plate, a film, etc.) that cuts short wavelength ultraviolet rays at the time of irradiation in step 1. Irradiation at a ratio is possible. Although it does not specifically limit as a base material which adjusts the illumination intensity ratio of an ultraviolet-ray, For example, the glass plate, soda-lime glass, PET film etc.
  • step 1 irradiation with ultraviolet rays is usually carried out in the air at the upper surface on the coating side (on the side opposite to the liquid crystal display unit side or the side opposite to the transparent substrate side when viewed from the ultraviolet curable resin composition layer) (normal air From the surface). Further, ultraviolet irradiation may be performed while spraying a curing-inhibiting gas on the upper surface of the coating layer after evacuation.
  • the side opposite to the liquid crystal display unit side or the side opposite to the transparent substrate side is the atmosphere side.
  • the state of the uncured portion and the film thickness of the uncured portion can be adjusted by spraying oxygen or ozone onto the surface of the ultraviolet curable resin layer (coating layer) during the ultraviolet irradiation. That is, when oxygen or ozone is sprayed on the surface of the coating layer, oxygen inhibition of curing of the ultraviolet curable resin composition occurs on the surface, so that the uncured portion of the surface can be ensured or the uncured portion
  • the film thickness can be increased.
  • Step 2 Next, as shown in FIG. 1B, the liquid crystal display unit 1 and the transparent substrate 2 having a light shielding portion are bonded together so that the uncured portions face each other. Bonding can be performed either in air or in vacuum. Here, in order to make it easy to prevent bubbles from being generated at the time of bonding, it is preferable to bond in a vacuum. As described above, when a cured product of an ultraviolet curable resin having a cured portion and an uncured portion is obtained on each of the liquid crystal display unit and the transparent substrate, the adhesion can be improved.
  • the optical member obtained by bonding the transparent substrate 2 and the liquid crystal display unit 1 is irradiated with the ultraviolet-ray 8 from the transparent substrate 2 side which has a light-shielding part, and ultraviolet curable type
  • the resin composition (coating layer) is cured.
  • the dose of ultraviolet rays is preferably about 100 ⁇ 4000mJ / cm 2 in accumulated light quantity, particularly preferably 200 ⁇ 3000mJ / cm 2 approximately.
  • the light source used for curing by irradiation with ultraviolet to near ultraviolet light may be any lamp as long as it is a lamp that emits ultraviolet to near ultraviolet light.
  • a low-pressure, high-pressure or ultrahigh-pressure mercury lamp, metal halide lamp, (pulse) xenon lamp, or electrodeless lamp can be used. In this way, the optical member shown in FIG. 8 can be obtained.
  • the optical member of the present invention may be manufactured by the second modified embodiment described below.
  • a light shielding part 4 on a transparent substrate 2 having a light shielding part is formed by using an ultraviolet curable resin containing (meth) acrylate (A) and a photopolymerization initiator (B).
  • the resulting coating layer (ultraviolet curable resin composition layer 5) is irradiated with ultraviolet rays 8 to the lower side of the coating layer (on the transparent substrate side as viewed from the ultraviolet curable resin composition).
  • a cured product layer 6 having an existing cured portion and an uncured portion existing on the upper side (the side opposite to the transparent substrate side) of the coating layer is obtained.
  • the ratio of the maximum illuminance at 200 to 320 nm is 30 or less, particularly preferably 200 to The illuminance at 320 nm is 10 or less.
  • the maximum illuminance in the range of 320 nm to 450 nm is 100, if the ratio of the maximum illuminance at 200 to 320 nm is higher than 30, the adhesive strength of the optical member finally obtained will be inferior.
  • Bonding can be performed either in air or in vacuum.
  • Step 3 Next, as shown in FIG. 2C, the optical member obtained by laminating the transparent substrate 2 and the liquid crystal display unit 1 is irradiated with ultraviolet rays 8 from the transparent substrate 2 side having a light-shielding portion, so that an ultraviolet curable type is obtained.
  • the cured product layer 6 having an uncured portion of the resin composition is cured. In this way, the optical member shown in FIG. 8 can be obtained.
  • FIG. 3 is a process diagram showing a third embodiment of a method for producing an optical member using the ultraviolet curable resin composition of the present invention.
  • symbol is attached
  • Step 1 First, as shown in FIG. 3A, an ultraviolet curable resin containing (meth) acrylate (A) and a photopolymerization initiator (B) was applied to the surface of the liquid crystal display unit 1. Thereafter, the ultraviolet curable resin composition layer 5 is irradiated with ultraviolet rays 8, and a cured portion existing on the lower side of the coating layer (on the transparent substrate side as viewed from the ultraviolet curable resin composition) and the upper side of the coating layer ( A cured product layer 6 having an uncured portion present on the side opposite to the transparent substrate side is obtained.
  • the maximum illuminance at 200 to 320 nm is 30 or less, particularly preferably at 200 to 320 nm.
  • the illuminance is 10 or less.
  • the liquid crystal display unit 1 is formed such that the uncured portion of the obtained cured product layer 6 and the surface on which the light shielding portion on the transparent substrate 2 having the light shielding portion is formed face each other. And a transparent substrate 2 having a light shielding portion are bonded together. Bonding can be performed either in air or in vacuum.
  • Step 3 the optical member obtained by laminating the transparent substrate 2 and the liquid crystal display unit 1 is irradiated with ultraviolet rays 8 from the transparent substrate 2 side having a light-shielding portion, thereby ultraviolet curing type.
  • the cured product layer 6 having an uncured portion of the resin composition is cured. In this way, the optical member shown in FIG. 8 can be obtained.
  • some of the embodiments of the method for producing an optical member of the present invention are described with one specific optical substrate.
  • the liquid crystal display unit and the transparent substrate having the light-shielding portion have been described, but in the manufacturing method of the present invention, various members described later can be used as an optical substrate instead of the liquid crystal display unit.
  • the various members mentioned later as an optical base material can be used.
  • an optical substrate such as a liquid crystal display unit and a transparent substrate
  • these various members are further bonded to another optical substrate layer (for example, a film bonded with a cured layer of an ultraviolet curable resin composition). Or what laminated
  • any method for adjusting the film thickness of the uncured portion by spraying ozone is not applied only to the above-described embodiment, and can be applied to any manufacturing method included in the present invention.
  • the optical base material is an optical base material
  • the optical base material bonded thereto is at least one display field unit selected from the group consisting of a liquid crystal display unit, a plasma display unit, and an organic EL unit.
  • One optical base material is a protective base material having a light-shielding part, and another optical base material bonded to it is a touch panel or a display unit having a touch panel, and at least two optical base materials are bonded.
  • a mode in which the optical member is a touch panel having a protective base material having a light-shielding portion or a display unit having the same.
  • the ultraviolet curable resin composition is applied to either the surface of the protective base material having the light shielding portion, the touch surface of the touch panel, or both of them. It is preferable to apply.
  • One optical substrate is an optical substrate having a light-shielding portion, the other optical substrate bonded to it is a display unit, and an optical member having at least two optical substrates bonded thereto
  • the aspect which is a display body unit which has an optical base material which has a light-shielding part.
  • the ultraviolet curable resin is applied to either the surface of the optical substrate having the light shielding portion on the side where the light shielding portion is provided, the display surface of the display unit, or both of them. It is preferable to apply the composition.
  • the optical substrate having a light shielding part include a display screen protective plate having a light shielding part, or a touch panel provided with a protective substrate having a light shielding part.
  • the optical substrate having the light-shielding portion is a protective plate for a display screen having the light-shielding portion
  • the surface of the optical substrate having the light-shielding portion is provided on the side on which the light-shielding portion is provided. It is the surface on the side where the part is provided.
  • the optical substrate having the light shielding portion is a touch panel having a protective substrate having the light shielding portion
  • the surface having the light shielding portion of the protective substrate having the light shielding portion is bonded to the touch surface of the touch panel.
  • the surface of the optical substrate having the light shielding portion on the side where the light shielding portion is provided means the substrate surface of the touch panel opposite to the touch surface of the touch panel.
  • the light-shielding part of the optical base material having the light-shielding part may be provided on any of the optical base materials, but is usually formed in a frame shape around the optical base material in the form of a transparent plate or sheet, and the width is The thickness is preferably about 0.5 to 10 mm, more preferably about 1 to 8 mm, and still more preferably about 2 to 8 mm.
  • the ultraviolet curable resin composition of the present invention contains (meth) acrylate (A) and a photopolymerization initiator (B). Moreover, the other component which can be added to the ultraviolet curable resin composition used for optics as an arbitrary component can be contained.
  • the phrase “can be added to an ultraviolet curable resin composition used for optics” means that an additive that lowers the transparency of the cured product to an extent that it cannot be used for optics is not included.
  • a preferable average transmittance of the sheet with light having a wavelength of 400 to 800 nm is: It is preferably 90% or more.
  • a suitable composition ratio of the ultraviolet curable resin composition is such that (meth) acrylate (A) is 25 to 90% by weight and the photopolymerization initiator (B) is 0% with respect to the total amount of the ultraviolet curable resin composition. 2-5% by weight, other components are the balance.
  • any photopolymerization initiator that is usually used can be used as the photopolymerization initiator (B).
  • the (meth) acrylate (A) in the ultraviolet curable resin composition of the present invention is not particularly limited, but from the group consisting of urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, and (meth) acrylate monomer. It is preferred to use any selected. More preferably, it is an embodiment containing both (i) at least one of urethane (meth) acrylate or (meth) acrylate having a polyisoprene skeleton and (ii) (meth) acrylate monomer.
  • “(meth) acrylate” means either one or both of methacrylate and acrylate. The same applies to “(meth) acrylic acid” and the like.
  • the urethane (meth) acrylate is obtained by reacting polyhydric alcohol, polyisocyanate and hydroxyl group-containing (meth) acrylate.
  • polyhydric alcohol examples have 1 to 10 carbon atoms such as neopentyl glycol, 3-methyl-1,5-pentanediol, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, etc.
  • Triols such as alkylene glycol, trimethylolpropane, pentaerythritol, alcohols having a cyclic skeleton such as tricyclodecane dimethylol, bis- [hydroxymethyl] -cyclohexane, and the like; and these polyhydric alcohols and polybasic acids (for example, succinic acid) , Phthalic acid, hexahydrophthalic anhydride, terephthalic acid, adipic acid, azelaic acid, tetrahydrophthalic anhydride, etc.) polyester polyol obtained by reaction with polyhydric alcohol and ⁇ -caprolactone Alcohol, polycarbonate polyol (eg, polycarbonate diol obtained by reaction of 1,6-hexanediol and diphenyl carbonate), polyether polyol (eg, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide-modified bisphenol A, etc.) And polyo
  • the polyhydric alcohol is preferably polypropylene glycol or hydrogenated polybutadiene diol.
  • polypropylene glycol having a weight average molecular weight of 2000 or more and water.
  • An added polybutadiene diol is particularly preferred.
  • the upper limit of the weight average molecular weight at this time is not particularly limited, but is preferably 10,000 or less, and more preferably 5000 or less.
  • organic polyisocyanate examples include isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, xylene diisocyanate, diphenylmethane-4,4′-diisocyanate, and dicyclopentanyl isocyanate.
  • hydroxyl group-containing (meth) acrylates include hydroxy C2-C4 alkyl (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, dimethylol cyclohexyl mono ( A (meth) acrylate, a hydroxycaprolactone (meth) acrylate, a hydroxyl group terminal polyalkylene glycol (meth) acrylate, etc. can be used.
  • hydroxy C2-C4 alkyl (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, dimethylol cyclohexyl mono ( A (meth) acrylate, a hydroxycaprolactone (meth) acrylate, a hydroxyl group terminal polyalkylene glycol (meth) acryl
  • the reaction for obtaining the urethane (meth) acrylate is performed, for example, as follows. That is, the polyhydric alcohol is mixed with an organic polyisocyanate per equivalent of the hydroxyl group so that the isocyanate group is preferably 1.1 to 2.0 equivalent, more preferably 1.1 to 1.5 equivalent. Is preferably reacted at 70 to 90 ° C. to synthesize a urethane oligomer. Next, the hydroxy (meth) acrylate compound is mixed so that the hydroxyl group is preferably 1 to 1.5 equivalents per equivalent of the isocyanate group of the urethane oligomer, and reacted at 70 to 90 ° C. to react with the target urethane (meth). ) Acrylate can be obtained.
  • the weight average molecular weight of the urethane (meth) acrylate is preferably about 7000 to 25000, and more preferably 10,000 to 20000. When the weight average molecular weight is less than 7000, shrinkage tends to increase, and when the weight average molecular weight is greater than 25000, curability tends to be poor.
  • urethane (meth) acrylates can be used alone or in admixture of two or more.
  • the weight ratio of urethane (meth) acrylate in the photocurable transparent adhesive composition of the present invention is usually preferably 20 to 80% by weight, more preferably 30 to 70% by weight.
  • the (meth) acrylate having the polyisoprene skeleton has a (meth) acryloyl group at the terminal or side chain of the polyisoprene molecule.
  • a (meth) acrylate having a polyisoprene skeleton can be obtained as “UC-203” (manufactured by Kuraray Co., Ltd.).
  • the (meth) acrylate having a polyisoprene skeleton preferably has a polystyrene-equivalent number average molecular weight of 1,000 to 50,000, more preferably about 25,000 to 45,000.
  • the weight ratio of the (meth) acrylate having a polyisoprene skeleton in the photocurable transparent adhesive composition of the present invention is usually preferably 20 to 80% by weight, more preferably 30 to 70% by weight.
  • the (meth) acrylate monomer a (meth) acrylate having one (meth) acryloyl group in the molecule can be preferably used.
  • the (meth) acrylate monomer indicates (meth) acrylate excluding the urethane (meth) acrylate, the following epoxy (meth) acrylate, and the (meth) acrylate having the polyisoprene skeleton.
  • the (meth) acrylate having one (meth) acryloyl group in the molecule include isooctyl (meth) acrylate, isoamyl (meth) acrylate, lauryl (meth) acrylate, isodecyl (meth) acrylate, stearyl ( Alkyl (meth) acrylates having 5 to 20 carbon atoms such as (meth) acrylate, isostearyl (meth) acrylate, cetyl (meth) acrylate, isomyristyl (meth) acrylate, tridecyl (meth) acrylate, benzyl (meth) acrylate, tetrahydro Furfuryl (meth) acrylate, acryloylmorpholine, phenylglycidyl (meth) acrylate, tricyclodecane (meth) acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyeth
  • Polyalkylene glycol (meth) acrylates such as nonylphenyl (meth) acrylate, ethylene oxide modified phenoxylated phosphoric acid (meth) acrylate, ethylene oxide modified butoxylated phosphoric acid (meth) acrylate and ethylene oxide modified octyloxylated phosphoric acid (meth) acrylate Etc.
  • alkyl (meth) acrylates having 10 to 20 carbon atoms, 2-ethylhexyl carbitol acrylate, acryloylmorpholine, 4-hydroxybutyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isostearyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate and polypropylene oxide-modified nonylphenyl (meth) acrylate are preferred.
  • an alkyl (meth) acrylate having 1 to 5 carbon atoms having a hydroxyl group and acryloylmorpholine are preferable, and acryloylmorpholine is particularly preferable.
  • the (meth) acrylate monomer refers to (meth) acrylate excluding urethane (meth) acrylate, epoxy (meth) acrylate, and (meth) acrylate having a polyisoprene skeleton.
  • composition of the present invention can contain (meth) acrylates other than (meth) acrylate having one (meth) acryloyl group as long as the characteristics of the present invention are not impaired.
  • Trimethylol C2-C10 alkanes such as caprolactone-modified hydroxypivalic acid neopentyl glycol di (meth) acrylate and ethylene oxide-modified phosphoric acid di (meth) acrylate
  • Tri (meth) acrylate trimethylolpropane polyethoxytri (me
  • these (meth) acrylate monomer components can be used 1 type or in mixture of 2 or more types by arbitrary ratios.
  • the weight ratio of the (meth) acrylate monomer in the photocurable transparent adhesive composition of the present invention is usually preferably 5 to 70% by weight, more preferably 10 to 50% by weight. If it is less than 5% by weight, the curability tends to be poor, and if it is more than 70% by weight, the shrinkage tends to increase.
  • both (i) urethane (meth) acrylate or (meth) acrylate having a polyisoprene skeleton and (ii) (meth) acrylate monomer in the ultraviolet curable resin composition The total content of both (i) and (ii) is usually preferably 25 to 90% by weight, more preferably 40 to 90% by weight, still more preferably 40 to 80% by weight, based on the total amount of the resin composition. %.
  • epoxy (meth) acrylate can be used as long as the characteristics of the present invention are not impaired.
  • Epoxy (meth) acrylate has a function of improving curability and improving the hardness and curing speed of a cured product. Any epoxy (meth) acrylate can be used as long as it is obtained by reacting a glycidyl ether type epoxy compound with (meth) acrylic acid, and preferably used epoxy (meth) acrylate.
  • Examples of the glycidyl ether type epoxy compound to be obtained include diglycidyl ether of bisphenol A or its alkylene oxide adduct, diglycidyl ether of bisphenol F or its alkylene oxide adduct, diglycidyl of hydrogenated bisphenol A or its alkylene oxide adduct.
  • Diglycidyl ether ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether of ether, hydrogenated bisphenol F or its alkylene oxide adduct Neopentyl glycol diglycidyl ether, butanediol diglycidyl ether hexanediol diglycidyl ether to, cyclohexanedimethanol diglycidyl ether, and polypropylene glycol diglycidyl ether.
  • Epoxy (meth) acrylate is obtained by reacting these glycidyl ether type epoxy compounds with (meth) acrylic acid under the following conditions.
  • (Meth) acrylic acid is reacted at a ratio of 0.9 to 1.5 mol, more preferably 0.95 to 1.1 mol, per 1 equivalent of epoxy group of the glycidyl ether type epoxy compound.
  • the reaction temperature is preferably 80 to 120 ° C., and the reaction time is about 10 to 35 hours.
  • a catalyst such as triphenylphosphine, TAP, triethanolamine, or tetraethylammonium chloride.
  • paramethoxyphenol, methylhydroquinone or the like can be used as a polymerization inhibitor.
  • An epoxy (meth) acrylate that can be suitably used in the present invention is a bisphenol A type epoxy (meth) acrylate obtained from a bisphenol A type epoxy compound.
  • the weight average molecular weight of the epoxy (meth) acrylate is preferably 500 to 10,000.
  • the weight ratio of the epoxy (meth) acrylate in the ultraviolet curable resin composition of the present invention is usually 1 to 80% by weight, preferably 5 to 30% by weight.
  • the content ratio of (meth) acrylate (A) in the ultraviolet curable resin composition of the present invention is preferably 25 to 90% by weight, more preferably 40 to 90% by weight, based on the total amount of the ultraviolet curable resin composition. %, More preferably 40 to 80% by weight.
  • the (meth) acrylate (A) is selected from the group consisting of the urethane (meth) acrylate, the (meth) acrylate having the polyisoprene skeleton, and the (meth) acrylate monomer. It is preferable to contain at least one of the above.
  • the content of the urethane (meth) acrylate is preferably 20 to 80% by weight, more preferably 30 to 70% by weight, and the content of the (meth) acrylate having a polyisoprene skeleton is preferably 20 to 80%.
  • the content ratio of the (meth) acrylate monomer is preferably 5 to 70% by weight, more preferably 10 to 50% by weight.
  • the (meth) acrylate (A) contains the urethane (meth) acrylate or the (meth) acrylate having a polyisoprene skeleton, and the content ratio is 20 to 80% by weight, More preferably, it is 30 to 70% by weight and contains a (meth) acrylate monomer, and its content is 5 to 70% by weight, preferably 10 to 50% by weight.
  • the photopolymerization initiator (B) contained in the composition of the present invention is not particularly limited, and examples thereof include 2,4,6-trimethylbenzoyldiphenylphosphine oxide and 2,4,6-trimethylbenzoylphenylethoxyphosphine.
  • Fin oxide bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, 1-hydroxycyclohexyl phenyl ketone ( Irgacure (trade name) 184; manufactured by BASF), 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenyl] propanol oligomer (Esacure (trade name) ONE; manufactured by Lambarti), 1- [4- (2-Hydroxyethoxy) -phenyl] -2 Hydroxy-2-methyl-1-propan-1-one (Irgacure 2959; manufactured by BASF), 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-Methyl-propan-1-one (Irgacure 127; manufactured by BASF
  • the photopolymerization initiator (B) has a molar extinction coefficient at 302 nm or 313 nm measured in acetonitrile or methanol of 300 ml / (g ⁇ cm) or more and a molar extinction coefficient at 365 nm of 100 ml. It is preferable to use a photopolymerization initiator that is not more than / (g ⁇ cm). By using such a photopolymerization initiator, it is possible to contribute to an improvement in adhesive strength. When the molar extinction coefficient at 302 nm or 313 nm is 300 ml / (g ⁇ cm) or more, curing at the time of curing in Step 3 becomes more sufficient.
  • a photopolymerization initiator (B) examples include 1-hydroxycyclohexyl phenyl ketone (Irgacure 184; manufactured by BASF), 2-hydroxy-2-methyl-1-phenyl-propan-1-one (Darocur 1173).
  • these photopolymerization initiators (B) can be used alone or in admixture of two or more at any ratio.
  • the weight ratio of the photopolymerization initiator (B) in the photocurable resin composition of the present invention is usually preferably 0.2 to 5% by weight, more preferably 0.3 to 3% by weight. When it is more than 5% by weight, when obtaining a cured product layer having a cured part and an uncured part on the side opposite to the optical substrate side, the uncured part cannot be formed or the transparency of the resin cured product layer is low. There is a risk of getting worse.
  • the ultraviolet curable resin composition of the present invention includes, as other components, a photopolymerization initiation assistant described below, a general formula (1 ), A softening component to be described later, an additive to be described later, and the like.
  • the content ratio of the other components with respect to the total amount of the ultraviolet curable resin composition of the present invention is a balance obtained by subtracting the total amount of the (meth) acrylate (A) and the photopolymerization initiator (B) from the total amount.
  • the total amount of other components is preferably 0 to 74% by weight, more preferably about 5 to 70% by weight, based on the total amount of the ultraviolet curable resin composition of the present invention.
  • amines that can serve as photopolymerization initiation assistants can be used in combination with the above photopolymerization initiator.
  • examples of amines that can be used include benzoic acid 2-dimethylaminoethyl ester, dimethylaminoacetophenone, p-dimethylaminobenzoic acid ethyl ester, and p-dimethylaminobenzoic acid isoamyl ester.
  • the content in the adhesive resin composition of the present invention is usually preferably 0.005 to 5% by weight, more preferably 0.01 to 3% by weight. is there.
  • the ultraviolet curable resin composition of the present invention can contain a compound having a structure represented by the general formula (1) as necessary.
  • n represents an integer of 0 to 40
  • m represents an integer of 10 to 50.
  • R 1 and R 2 may be the same or different.
  • R 1 and R 2 have 1 to 18 carbon atoms.
  • the compound having the structure represented by the general formula (1) can be obtained, for example, as Unisafe (trade name) PKA-5017 (polyethylene glycol-polypropylene glycol allyl butyl ether) manufactured by NOF Corporation.
  • the weight ratio in the ultraviolet curable resin composition when using the compound having the structure represented by the general formula (1) is usually preferably 10 to 80% by weight, more preferably 10 to 70% by weight.
  • a softening component can be used in the ultraviolet curable resin composition of the present invention as necessary.
  • Specific examples of the softening component that can be used include the polymer or oligomer excluding the (meth) acrylate and the compound having the structure represented by the general formula (1), phthalates, phosphates, glycol esters, Examples thereof include acid esters, aliphatic dibasic acid esters, fatty acid esters, epoxy plasticizers, castor oils, and terpene hydrogenated resins.
  • oligomer and polymer examples include an oligomer or a polymer having a polyisoprene skeleton, a polybutadiene skeleton, a polybutene skeleton or a xylene skeleton and an esterified product thereof. In some cases, a polymer or an oligomer having a polybutadiene skeleton and an ester thereof are used. It is preferred to use a compound.
  • polystyrene resin composition examples include butadiene homopolymer, epoxy-modified polybutadiene, butadiene-styrene random copolymer, maleic acid-modified polybutadiene, and terminal hydroxyl group-modified liquid polybutadiene or liquid hydrogenated polybutadiene. It is done.
  • the weight ratio of the softening component in the ultraviolet curable resin composition is usually preferably 10 to 80% by weight, more preferably 10 to 70% by weight.
  • an antioxidant In the ultraviolet curable resin composition of the present invention, an antioxidant, an organic solvent, a silane coupling agent, a polymerization inhibitor, a leveling agent, an antistatic agent, a surface lubricant, a fluorescent whitening agent, and a light stabilizer are optionally added. You may add additives, such as an agent (for example, hindered amine compound etc.) and a filler.
  • an agent for example, hindered amine compound etc.
  • antioxidants include, for example, BHT, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine Pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di-t-butyl- 4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3-t -Butyl-5-methyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, , N-hexamethylenebis (3,5-di-di
  • organic solvent examples include alcohols such as methanol, ethanol and isopropyl alcohol, dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran, dioxane, toluene, xylene and the like.
  • silane coupling agent examples include, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxy) (Cyclohexyl) ethyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, ⁇ -mercapropropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3 -Aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltri
  • polymerization inhibitor examples include paramethoxyphenol and methylhydroquinone.
  • the light stabilizer include, for example, 1,2,2,6,6-pentamethyl-4-piperidyl alcohol, 2,2,6,6-tetramethyl-4-piperidyl alcohol, 1,2,2, 6,6-pentamethyl-4-piperidyl (meth) acrylate (LA-82, manufactured by ADEKA Corporation), tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3 4-butanetetracarboxylate, tetrakis (2,2,6,6-totramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid 1,2,2,6,6-pentamethyl-4-piperidinol and 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5 Mixed esterified product with undecane, bis (2,2,6,6-tetramethyl-4-piperidy
  • Benzotriazole compounds such as 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate, 2- (4,6-diphenyl-1,3,5 Triazine compounds such as -triazin-2-yl) -5-[(hexyl) oxy] phenol and the like are mentioned, and hindered amine compounds are particularly preferable.
  • the filler include, for example, crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc and the like.
  • examples thereof include powder or beads obtained by spheroidizing these.
  • the weight ratio of the various additives in the photocurable transparent adhesive composition is preferably 0.01 to 3% by weight, more preferably 0.01 to 1% by weight. More preferably, it is 0.02 to 0.5% by weight.
  • the ultraviolet curable resin composition of the present invention can be obtained by mixing and dissolving the aforementioned components at room temperature to 80 ° C., and if necessary, impurities may be removed by an operation such as filtration.
  • impurities may be removed by an operation such as filtration.
  • the ultraviolet curable resin composition of the present invention is produced by bonding at least two optical substrates, at least one of which is an optical substrate having a light-shielding part, by the above [Step 1] to [Step 3]. Used in the way.
  • the cure shrinkage of the cured product of the ultraviolet curable resin composition of the present invention is preferably 3.0% or less, and particularly preferably 2.0% or less.
  • the transmittance at 400 nm to 800 nm of the cured product of the ultraviolet curable resin composition of the present invention is preferably 90% or more.
  • the transmittance at 400 to 450 nm is preferably 90% or more.
  • UV curable resin composition containing (meth) acrylate (A) and photopolymerization initiator (B) used in the production method of the present invention are described below.
  • Wt% in the content of each component indicates a content ratio with respect to the total amount of the ultraviolet curable resin composition of the present invention.
  • the (meth) acrylate (A) is at least one (meth) acrylate selected from the group consisting of urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, and a (meth) acrylate monomer.
  • the ultraviolet curable resin composition as described.
  • A2) As the (meth) acrylate (A), (I) at least one of urethane (meth) acrylate or (meth) acrylate having a polyisoprene skeleton, and (Ii) (meth) acrylate monomers, The ultraviolet curable resin composition as described in said (5) or said (A1) containing both of these.
  • (A3) As the (meth) acrylate (A), (I) urethane (meth) acrylate obtained by reaction of poly C2-C4 alkylene glycol, diisocyanate and hydroxy C2-C4 alkyl (meth) acrylate, and (Ii) (meth) acrylate monomers, The ultraviolet curable resin composition as described in said (5) or said (A1) containing both of these.
  • (A4) The ultraviolet curable resin composition according to any one of (A1) to (A3) above, wherein the urethane (meth) acrylate has a weight average molecular weight of 7000 to 25000.
  • (A5) In the ultraviolet curable resin composition containing the (meth) acrylate (A) and the photopolymerization initiator (B), as the photopolymerization initiator (B), an ultraviolet curable resin composition containing an acylphosphine oxide compound, Alternatively, the ultraviolet curable resin composition according to any one of the above (A1) to (A4), which contains an acylphosphine oxide compound as the photopolymerization initiator (B).
  • Acylphosphine oxide compounds are 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
  • the ultraviolet curable resin composition according to (A5) above which is at least one compound selected from the group consisting of bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide.
  • the ultraviolet curable resin composition containing the (meth) acrylate (A) and the photopolymerization initiator (B) further contains other components in addition to the component (A) and the component (B).
  • (A9) (Meth) acrylate (A) includes (i) at least one of urethane (meth) acrylate or polyisoprene (meth) acrylate in an amount of 20 to 80% by weight and (ii) (meth) acrylate monomer in an amount of 5 to 70% by weight,
  • (A10) The ultraviolet curable resin composition according to any one of the above (A7) to (A9), which contains 10 to 80% by weight of the compound represented by the general formula (1) as another component.
  • (A11) An ultraviolet curable resin composition containing (meth) acrylate (A) and a photopolymerization initiator (B) having a cured shrinkage of 3% or less of the cured product of the ultraviolet curable resin composition, or (A1) above The ultraviolet curable resin composition according to any one of (A10) to (A10).
  • the cured sheet of the ultraviolet curable resin composition having a thickness of 200 ⁇ m has an average transmittance of at least 90% in the wavelength region of 400 to 450 nm and an average transmittance in the wavelength region of 400 to 800 nm.
  • the ultraviolet curable resin composition of the present invention can be suitably used as an adhesive for producing an optical member by laminating a plurality of optical substrates by the [Step 1] to [Step 3].
  • the optical substrate used in the method for producing an optical member of the present invention include a transparent plate, a sheet, a touch panel, and a display unit.
  • the “optical substrate” means both an optical substrate having no light shielding part on the surface and an optical substrate having a light shielding part on the surface.
  • at least one of a plurality of optical base materials used is an optical base material having a light shielding portion. The position of the light shielding part in the optical substrate having the light shielding part is not particularly limited.
  • a band-shaped light shielding portion having a width of 0.05 to 20 mm, preferably about 0.05 to 10 mm, more preferably about 0.1 to 6 mm is formed in the peripheral portion of the optical substrate.
  • the light-shielding portion on the optical substrate can be formed by attaching a tape, applying a coating or printing.
  • Various materials can be used as the material of the optical substrate used in the present invention. Specifically, resins such as PET, PC, PMMA, a composite of PC and PMMA, glass, COC, COP, plastic (such as acrylic resin), and the like can be given.
  • an optical substrate used in the present invention for example, a transparent plate or sheet, a sheet or transparent plate obtained by laminating a plurality of films or sheets such as polarizing plates, a non-laminated sheet or transparent plate, and a transparent made from inorganic glass Plates (inorganic glass plates and processed products thereof, such as lenses, prisms, ITO glass) and the like can be used.
  • the optical substrate used in the present invention is a laminate composed of a plurality of functional plates or sheets (hereinafter referred to as “functional laminate”) such as a touch panel (touch panel input sensor) or the following display unit in addition to the polarizing plate described above. Also called “body”).
  • Examples of the sheet that can be used as the optical substrate used in the present invention include an icon sheet, a decorative sheet, and a protective sheet.
  • Examples of the plate (transparent plate) that can be used in the method for producing an optical member of the present invention include a decorative plate and a protective plate.
  • materials for these sheets or plates those listed as materials for transparent plates can be applied.
  • Examples of the material of the touch panel surface that can be used as the optical substrate used in the present invention include glass, PET, PC, PMMA, a composite of PC and PMMA, COC, and COP.
  • the thickness of a plate-like or sheet-like optical substrate such as a transparent plate or a sheet is not particularly limited, and is usually about 5 ⁇ m to 5 cm, preferably about 10 ⁇ m to 10 mm, more preferably about 50 ⁇ m to 3 mm. Is the thickness.
  • a plate-shaped or sheet-shaped transparent optical base material having a light-shielding portion and the functional laminate are cured products of the ultraviolet curable resin composition of the present invention.
  • the optical member bonded together can be mentioned.
  • a display unit with an optical functional material by using a display unit such as a liquid crystal display device as one of optical substrates and an optical functional material as another optical substrate ( Hereinafter, it is also referred to as a display panel).
  • the display unit include display devices such as LCD, EL display, EL illumination, electronic paper, and plasma display in which a polarizing plate is attached to glass.
  • the optical functional material include transparent plastic plates such as acrylic plates, PC plates, PET plates, and PEN plates, tempered glass, and touch panel input sensors.
  • the cured product When used as an adhesive for laminating an optical substrate, it is preferable that the cured product has a refractive index of 1.45 to 1.55 in order to improve the visibility because the visibility of the display image is further improved.
  • the difference in refractive index from the base material used as the optical base material can be reduced, and the light loss can be reduced by suppressing the irregular reflection of light.
  • Preferred embodiments of the optical member obtained by the production method of the present invention include the following (i) to (vii).
  • An optical base selected from the group consisting of a transparent glass substrate having a light shielding part, a transparent resin substrate having a light shielding part, and a glass substrate on which a light shielding material and a transparent electrode are formed, as the optical base material having the light shielding part.
  • the optical member according to (i), which is a material and the functional laminate is a display unit or a touch panel.
  • a touch panel or touch panel input sensor in which a plate-shaped or sheet-shaped optical substrate having a light-shielding portion is bonded to the surface on the touch surface side of the touch panel using the cured product of the ultraviolet curable resin composition of the present invention.
  • a display panel in which a plate-like or sheet-like optical substrate having a light-shielding part is bonded to the display screen of the display unit using the cured product of the ultraviolet curable resin composition of the present invention.
  • the ultraviolet curable resin composition of the present invention By using the ultraviolet curable resin composition of the present invention and bonding a plurality of optical substrates selected from the above optical substrates by the method described in Steps 1 to 3, the optical member of the present invention is bonded. can get.
  • the ultraviolet curable resin composition may be applied to only one of the surfaces facing each other through the cured product layer in the two optical substrates to be bonded, or may be applied to both surfaces. good.
  • the functional laminate is a touch panel or a display unit
  • any one surface of the protective base material having a light shielding part, preferably the light shielding part is provided.
  • the resin composition may be applied to only one of the provided surface and the touch surface of the touch panel or the display surface of the display unit, or may be applied to both of them.
  • a light shielding portion of the protective base material is provided in Step 1, in which a protective base material or a touch panel for protecting the display screen of the display body unit is bonded to the display body unit.
  • the resin composition may be applied to only one of the substrate surface opposite to the surface or the touch surface of the touch panel and the display surface of the display unit, or to both of them.
  • the optical member including the display unit obtained by the manufacturing method of the present invention and the optical base material having the light shielding portion can be incorporated into an electronic device such as a television, a small game machine, a mobile phone, and a personal computer.
  • UV-curable resin composition Urethane acrylate (reaction product of 3 components (molar ratio 1: 1.2: 2) of hydrogenated polybutadienediol (molecular weight 3000), isophorone diisocyanate, 2-hydroxyethyl acrylate) 16 parts by weight , GI-2000 (both end hydroxylated polybutadiene, manufactured by Nippon Soda Co., Ltd.) 18 parts by weight, Nisseki Polybutene LV-100 (liquid polybutene, manufactured by JX Nippon Steel & Nisseki Energy Co., Ltd.), Clearon (Product Name) M105 (aromatically modified hydrogenated terpene resin, manufactured by Yashara Chemical Co., Ltd.) 16 parts, LA (lauryl acrylate, Osaka Organic Chemical Industry Co., Ltd.) 11 parts by weight, S-1800A (isostearyl acrylate) , Shin-Nakamura Chemical Co., Ltd.) 25 parts, Speed Cure (trade
  • Example 1 As shown in FIG. 4 (a), the UV curable resin composition A is 2 cm wide and 15 cm long on the transparent substrate 10 which is a PET film that has been subjected to easy adhesion treatment on both sides having a width of 3 cm and a length of 15 cm. The coating was applied so that the film thickness was 250 ⁇ m. Thereafter, the obtained coating layer 5 is integrated from the atmosphere side through an ultraviolet cut filter 9 that blocks a wavelength of 320 nm or less using an electrodeless ultraviolet lamp (D bulb, manufactured by Heraeus Noblelight Fusion Ubuy).
  • D bulb manufactured by Heraeus Noblelight Fusion Ubuy
  • a cured product layer 6 having a cured portion existing on the lower side (transparent substrate side) of the coating layer and an uncured portion existing on the upper side (atmosphere side) of the coating layer is irradiated with ultraviolet rays 8 having a light amount of 100 mJ / cm 2. Formed. At this time, the ratio of the maximum illuminance in the range of 200 to 320 nm was 3 when the maximum illuminance in the range of 320 to 450 nm was 100. Further, as shown in FIG. 4 (b), the uncured portion present on the upper side (atmosphere side) of the coating layer on the PET film is opposed to one surface of the 10 inch liquid crystal display unit.
  • the transparent base material 10 and the liquid crystal display unit 1 were bonded together as shown in FIG. Finally, as shown in FIG. 4 (c), with an ultra-high pressure mercury lamp (TOSCURE (trade name) 752, manufactured by Harrison Toshiba Lighting Co., Ltd.), the accumulated light amount is 2000 mJ / cm 2 from the PET film side (transparent substrate 10 side).
  • the cured resin layer was cured by irradiating with ultraviolet rays 8 to obtain a joined body of a PET film and a liquid crystal display unit.
  • Example 2 A curing present on the lower side (transparent substrate side) of the coating layer on the PET film in the same manner as in Example 1 except that the ultraviolet cut filter that blocks the wavelength of 320 nm or less is changed to a glass plate having a thickness of 0.5 mm.
  • cured material layer 6 which has a non-hardened part which exists in the upper part (atmosphere side) of a part and an application layer was formed.
  • the ratio of the maximum illuminance in the range of 200 to 320 nm was 21 when the maximum illuminance in the range of 320 to 450 nm was 100. Further, as shown in FIG.
  • the uncured portion present on the upper side (atmosphere side) of the coating layer on the PET film is opposed to one surface of the 10 inch liquid crystal display unit.
  • the transparent base material 10 and the liquid crystal display unit 1 were bonded together as shown in FIG.
  • an ultra-high pressure mercury lamp (TOSCURE752, manufactured by Harrison Toshiba Lighting Co., Ltd.) is used to irradiate ultraviolet rays 8 with an integrated light amount of 2000 mJ / cm 2 from the PET film side (transparent substrate 3 side).
  • TOSCURE752 manufactured by Harrison Toshiba Lighting Co., Ltd.
  • Example 3 As shown in FIG. 5A, on the display surface of the 10-inch liquid crystal display unit 1 and on the surface of a PET film (transparent substrate 10) that has been subjected to an easy adhesion treatment on both sides of a width of 3 cm and a length of 15 cm.
  • the prepared ultraviolet curable resin composition A was applied on each substrate so that the width was 2 cm, the length was 15 cm, and the film thickness was 125 ⁇ m.
  • an electrodeless ultraviolet lamp (D-bulb manufactured by Heraeus Noblelight Fusion Ubuy Co., Ltd.) is used for each coating layer 5 obtained from the atmosphere side through an ultraviolet cut filter that blocks a wavelength of 320 nm or less.
  • Irradiate ultraviolet rays 8 with an integrated light amount of 100 mJ / cm 2 and cure the cured portion present on the lower side (display unit side or transparent substrate side) of the coating layer and the uncured portion present on the atmosphere side (upper side of the coating layer).
  • a cured product layer 6 was formed.
  • the ratio of the maximum illuminance in the range of 200 to 320 nm was 3 when the maximum illuminance in the range of 320 to 450 nm was 100.
  • the liquid crystal display unit and PET film 10 transparent base material
  • the resin is cured by ultra-high pressure mercury lamp (TOSCURE752, manufactured by Harrison Toshiba Lighting Co., Ltd.) by irradiating the PET film 10 side (transparent substrate side) with ultraviolet rays with an integrated light quantity of 2000 mJ / cm 2.
  • the physical layer was cured to obtain a joined body of a PET film and a liquid crystal display unit.
  • Comparative Example 1 As shown in FIG. 6 (a), it exists on the lower side (transparent substrate side) of the coating layer on the PET film in the same manner as in Example 1 except that the ultraviolet cut filter that blocks the wavelength of 320 nm or less was not used. A cured product layer 6 having a cured portion and an uncured portion existing on the upper side (atmosphere side) of the coating layer was formed. The ratio of the maximum illuminance in the range of 200 to 320 nm was 45 when the maximum illuminance in the range of 320 to 450 nm was 100. Further, as shown in FIG.
  • the uncured portion existing on the upper side (atmosphere side) of the coating layer on the PET film and the one surface of the 10 inch liquid crystal display unit are opposed to each other in FIG.
  • the transparent base material 10 and the liquid crystal display unit 1 were bonded together as shown in FIG.
  • an ultra-high pressure mercury lamp (TOSCURE752, manufactured by Harrison Toshiba Lighting Co., Ltd.) is used to irradiate ultraviolet rays 8 with an integrated light amount of 2000 mJ / cm 2 from the PET film side (transparent substrate 10 side).
  • TOSCURE752 manufactured by Harrison Toshiba Lighting Co., Ltd.
  • Comparative Example 2 As shown in FIG. 7A, the display surface of the liquid crystal display unit 1 and the PET film 10 (transparent substrate) were used in the same manner as in Example 3 except that an ultraviolet cut filter that blocks wavelengths of 320 nm or less was not used.
  • the cured product layer having a cured portion and an uncured portion existing on the atmosphere side was formed on the surface of The ratio of the maximum illuminance in the range of 200 to 320 nm was 45 when the maximum illuminance in the range of 320 to 450 nm was 100.
  • FIG.7 (b) the liquid crystal display unit and PET film 10 (transparent base material) were bonded together in the form where the hardening part opposes.
  • FIG. 7A the display surface of the liquid crystal display unit 1 and the PET film 10 (transparent substrate) were used in the same manner as in Example 3 except that an ultraviolet cut filter that blocks wavelengths of 320 nm or less was not used.
  • an ultra-high pressure mercury lamp (TOSCURE752, manufactured by Harrison Toshiba Lighting Co., Ltd.) is used to irradiate ultraviolet rays 8 with an integrated light amount of 2000 mJ / cm 2 from the PET film 10 side (transparent substrate side).
  • TOSCURE752 manufactured by Harrison Toshiba Lighting Co., Ltd.
  • the cured resin layer was cured to obtain a joined body of the PET film and the liquid crystal display unit.
  • Adhesive strength The adhesion of the joined body of the PET film and the liquid crystal display unit obtained in Examples 1 to 3 and Comparative Examples 1 and 2 was measured by a method based on JISZ0237. Necessary for horizontally fixing the joined body of the PET film and the liquid crystal display unit, that is, with the liquid crystal display unit horizontally so that the PET film is on the upper surface, and peeling it off from the end of the PET film in the vertical direction (90 ° upward). The force was measured. The results are shown in Table 1 below.
  • the optical member produced by the production method of the present invention is cured by irradiating the ultraviolet curable resin composition with ultraviolet rays before laminating the substrates, and then irradiating with ultraviolet rays again after laminating. Although it was manufactured, it had high adhesive strength.
  • the obtained ultraviolet curable resin composition was sufficiently cured, and the durometer E hardness was measured using a durometer hardness meter (type E) by a method based on JIS K7215, and the flexibility was evaluated. More specifically, the ultraviolet curable resin composition was poured into a cylindrical mold so that the film thickness was 1 cm, and the resin composition was sufficiently cured by irradiation with ultraviolet rays. The hardness of the obtained cured product was measured with a durometer hardness meter (type E). As a result, the measured value was less than 10, and the flexibility was excellent.
  • the transmittance in the wavelength region of 400 to 800 nm and 400 to 450 nm was measured using a spectrophotometer (U-3310, Hitachi High-Technologies Corporation). As a result, the transmittance at 400 to 800 nm was 90% or more, and the transmittance at 400 to 450 nm was 90% or more.
  • An ultraviolet curable resin composition A is applied to each of the display surface of the liquid crystal display unit having an area of 3.5 inches and the surface on which the light shielding portion on the transparent substrate having the light shielding portion (width 5 mm) is formed on the outer peripheral portion.
  • the film was applied to a film thickness of 125 ⁇ m.
  • an electrodeless UV lamp (D bulb manufactured by Heraeus Noble Light Fusion Ubuy Co., Ltd.) was used for the coating layer thus obtained, through an UV cut filter that blocks wavelengths of 320 nm or less, and an integrated light quantity of 100 mJ / A cured product layer having a cured portion and an uncured portion existing on the atmosphere side was formed by performing ultraviolet irradiation of cm 2 .
  • the ultraviolet ray irradiated to the ultraviolet curable resin composition A had a maximum illuminance ratio of 3 when the maximum illuminance in the range of 320 nm to 450 nm was 100.
  • the liquid crystal display unit 1 and the transparent substrate 3 having a light shielding portion were bonded together so that the uncured portions faced each other.
  • the resin cured product layer is cured by irradiating ultraviolet rays 8 with an integrated light amount of 2000 mJ / cm 2 from the glass substrate side having a light shielding portion with an ultra-high pressure mercury lamp (TOSCURE 752, manufactured by Harrison Toshiba Lighting Co., Ltd.).
  • TOSCURE 752 manufactured by Harrison Toshiba Lighting Co., Ltd.
  • the transparent substrate was removed from the obtained optical member, and the cured resin layer of the light shielding part was washed away with heptane, and then the cured state was confirmed. There was no evidence that the uncured resin composition was removed, and the resin in the light shielding portion was sufficiently cured.
  • the method for producing an optical member of the present invention is capable of obtaining an optical member such as a display unit having little damage to the optical substrate, good productivity, and good curability and adhesion.
  • the optical member obtained by the present invention can be suitably incorporated in a display device such as a liquid crystal display, a plasma display, or an organic EL display.
  • 1 liquid crystal display unit 2 transparent substrate with light shielding part, 3 transparent substrate, 4 light shielding part, 5 ultraviolet curable resin composition layer, 6 cured product layer with uncured part, 7 resin cured product layer, 8 ultraviolet light, 9 Short wavelength UV cut filter or glass plate, 10 PET film with easy adhesion treatment on both sides (transparent substrate)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Human Computer Interaction (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
PCT/JP2014/060467 2013-09-09 2014-04-11 光学部材の製造方法及びそれに用いる紫外線硬化型樹脂組成物 WO2015033610A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015535337A JP6378184B2 (ja) 2013-09-09 2014-04-11 光学部材の製造方法及びそれに用いる紫外線硬化型樹脂組成物
CN201480049650.3A CN105518764B (zh) 2013-09-09 2014-04-11 光学构件的制造方法及用于该制造方法的紫外线固化型树脂组合物
KR1020167004047A KR102213491B1 (ko) 2013-09-09 2014-04-11 광학 부재의 제조 방법 및 그것에 이용하는 자외선 경화형 수지 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013186259 2013-09-09
JP2013-186259 2013-09-09

Publications (1)

Publication Number Publication Date
WO2015033610A1 true WO2015033610A1 (ja) 2015-03-12

Family

ID=52628102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060467 WO2015033610A1 (ja) 2013-09-09 2014-04-11 光学部材の製造方法及びそれに用いる紫外線硬化型樹脂組成物

Country Status (5)

Country Link
JP (1) JP6378184B2 (zh)
KR (1) KR102213491B1 (zh)
CN (1) CN105518764B (zh)
TW (1) TW201509674A (zh)
WO (1) WO2015033610A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165014A (ja) * 2014-02-06 2015-09-17 荒川化学工業株式会社 光学用紫外線硬化型接着剤組成物、該硬化層および光学部材
WO2015190561A1 (ja) * 2014-06-11 2015-12-17 日本化薬株式会社 タッチパネル用紫外線硬化型樹脂組成物、それを用いた貼り合せ方法及び物品
WO2018159110A1 (ja) * 2017-02-28 2018-09-07 デクセリアルズ株式会社 積層体の製造方法、及び光硬化性樹脂組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6710125B2 (ja) * 2016-08-04 2020-06-17 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル
KR102568774B1 (ko) * 2018-03-14 2023-08-21 모멘티브퍼포먼스머티리얼스코리아 주식회사 디스플레이 패널 및 이의 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005099465A (ja) * 2003-09-25 2005-04-14 Seiko Epson Corp 紫外線照射装置および電気光学装置の製造方法
JP2007000794A (ja) * 2005-06-24 2007-01-11 Nippon Oil Corp 紫外線硬化型接着剤の硬化方法
JP2009186954A (ja) * 2007-04-04 2009-08-20 Sony Chemical & Information Device Corp 画像表示装置の製造方法
WO2011111273A1 (ja) * 2010-03-12 2011-09-15 シャープ株式会社 表示パネル及びその製造方法
JP2012073533A (ja) * 2010-09-29 2012-04-12 Shibaura Mechatronics Corp 貼合装置及び貼合方法
WO2013057959A1 (ja) * 2011-10-21 2013-04-25 日本化薬株式会社 光学部材の製造方法及びそのための紫外線硬化型樹脂組成物の使用
WO2013057958A1 (ja) * 2011-10-21 2013-04-25 日本化薬株式会社 光学部材の製造方法及びそのための紫外線硬化型樹脂組成物の使用
WO2013105163A1 (ja) * 2012-01-13 2013-07-18 日本化薬株式会社 光学部材及びその製造に用いる紫外線硬化型接着剤

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4711354Y1 (zh) 1968-09-25 1972-04-26
JPS5138820B2 (zh) 1972-11-10 1976-10-23
JP3852889B2 (ja) * 1998-09-24 2006-12-06 富士写真フイルム株式会社 フォトレジスト用反射防止膜材料組成物
JP2005099456A (ja) * 2003-09-25 2005-04-14 Fuji Photo Film Co Ltd ポジ型レジスト組成物及びそれを用いたパターン形成方法
US7535462B2 (en) * 2005-06-02 2009-05-19 Eastman Kodak Company Touchscreen with one carbon nanotube conductive layer
JP4650812B2 (ja) * 2006-09-06 2011-03-16 東レフィルム加工株式会社 ディスプレイ用フィルター及びその製造方法並びにディスプレイの製造方法
CN101149505B (zh) * 2006-09-22 2010-04-07 株式会社日立显示器 液晶显示装置及其制造方法
KR101189925B1 (ko) * 2006-10-31 2012-10-10 히다치 가세고교 가부시끼가이샤 광학용 수지 조성물 및 그것을 이용한 광학용 수지 재료, 화상표시용 장치를 위한 광학 필터, 및 화상표시용 장치
JP5125345B2 (ja) * 2007-09-19 2013-01-23 日立化成工業株式会社 液晶表示装置
JP5033740B2 (ja) * 2007-10-26 2012-09-26 帝人株式会社 透明導電性積層体およびタッチパネル
JPWO2009119674A1 (ja) * 2008-03-27 2011-07-28 株式会社ブリヂストン ディスプレイ用光学フィルタ、その製造方法、及びディスプレイ用光学フィルタを備えたディスプレイ並びにプラズマディスプレイパネル
KR101006182B1 (ko) * 2009-01-09 2011-01-07 주식회사 나래나노텍 자외선 및 자연 경화제를 포함한 자외선 경화제를 이용한 패턴 전극의 본딩 구조 및 그 본딩 방법
JP2010248387A (ja) 2009-04-16 2010-11-04 Sekisui Chem Co Ltd 光学部材用光硬化性樹脂組成物、接着剤、及び、タッチパネル
JP2013020130A (ja) * 2011-07-12 2013-01-31 Keiwa Inc ハードコートフィルム及びこれを用いたタッチパネル
JP2013061447A (ja) * 2011-09-13 2013-04-04 Seiko Epson Corp 光学素子
CN102999200A (zh) * 2011-09-18 2013-03-27 宸鸿科技(厦门)有限公司 触控显示装置及其制造方法
KR101811913B1 (ko) * 2012-01-11 2017-12-22 다이니폰 인사츠 가부시키가이샤 광학 적층체의 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005099465A (ja) * 2003-09-25 2005-04-14 Seiko Epson Corp 紫外線照射装置および電気光学装置の製造方法
JP2007000794A (ja) * 2005-06-24 2007-01-11 Nippon Oil Corp 紫外線硬化型接着剤の硬化方法
JP2009186954A (ja) * 2007-04-04 2009-08-20 Sony Chemical & Information Device Corp 画像表示装置の製造方法
WO2011111273A1 (ja) * 2010-03-12 2011-09-15 シャープ株式会社 表示パネル及びその製造方法
JP2012073533A (ja) * 2010-09-29 2012-04-12 Shibaura Mechatronics Corp 貼合装置及び貼合方法
WO2013057959A1 (ja) * 2011-10-21 2013-04-25 日本化薬株式会社 光学部材の製造方法及びそのための紫外線硬化型樹脂組成物の使用
WO2013057958A1 (ja) * 2011-10-21 2013-04-25 日本化薬株式会社 光学部材の製造方法及びそのための紫外線硬化型樹脂組成物の使用
WO2013105163A1 (ja) * 2012-01-13 2013-07-18 日本化薬株式会社 光学部材及びその製造に用いる紫外線硬化型接着剤

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165014A (ja) * 2014-02-06 2015-09-17 荒川化学工業株式会社 光学用紫外線硬化型接着剤組成物、該硬化層および光学部材
WO2015190561A1 (ja) * 2014-06-11 2015-12-17 日本化薬株式会社 タッチパネル用紫外線硬化型樹脂組成物、それを用いた貼り合せ方法及び物品
JPWO2015190561A1 (ja) * 2014-06-11 2017-04-20 日本化薬株式会社 タッチパネル用紫外線硬化型樹脂組成物、それを用いた貼り合せ方法及び物品
WO2018159110A1 (ja) * 2017-02-28 2018-09-07 デクセリアルズ株式会社 積層体の製造方法、及び光硬化性樹脂組成物
JP2018140601A (ja) * 2017-02-28 2018-09-13 デクセリアルズ株式会社 積層体の製造方法、及び光硬化性樹脂組成物
CN110234506A (zh) * 2017-02-28 2019-09-13 迪睿合株式会社 层合体的制备方法及光固化性树脂组合物
CN110234506B (zh) * 2017-02-28 2021-05-11 迪睿合株式会社 层合体的制备方法及光固化性树脂组合物

Also Published As

Publication number Publication date
TW201509674A (zh) 2015-03-16
CN105518764B (zh) 2019-11-08
CN105518764A (zh) 2016-04-20
KR20160055134A (ko) 2016-05-17
JP6378184B2 (ja) 2018-08-22
JPWO2015033610A1 (ja) 2017-03-02
KR102213491B1 (ko) 2021-02-08

Similar Documents

Publication Publication Date Title
JP6568567B2 (ja) 紫外線硬化型樹脂組成物
JP5331271B1 (ja) 光学部材の製造方法及びそのための紫外線硬化型樹脂組成物の使用
WO2015119245A1 (ja) タッチパネル用紫外線硬化型接着剤組成物、それを用いた光学部材の製造方法、硬化物及びタッチパネル
JP6620092B2 (ja) タッチパネル用紫外線硬化型樹脂組成物、それを用いた貼り合せ方法及び物品
WO2015199156A1 (ja) 光学部材の製造方法及びそれに用いる紫外線硬化型樹脂組成物
WO2015190561A1 (ja) タッチパネル用紫外線硬化型樹脂組成物、それを用いた貼り合せ方法及び物品
WO2015190552A1 (ja) タッチパネル用紫外線硬化型樹脂組成物、それを用いた貼り合せ方法及び物品
JP6378184B2 (ja) 光学部材の製造方法及びそれに用いる紫外線硬化型樹脂組成物
WO2016117526A1 (ja) 画像表示装置の製造方法、それに用いる硬化性樹脂組成物、タッチパネル及び画像表示装置
WO2016021517A1 (ja) 光学部材の製造方法及びそれに用いる硬化性樹脂組成物
WO2015190571A1 (ja) タッチパネル用紫外線硬化型樹脂組成物、それを用いた貼り合せ方法及び物品
WO2017073584A1 (ja) タッチパネル用紫外線硬化型樹脂組成物、それを用いた硬化物及びタッチパネル
WO2019016963A1 (ja) 紫外線硬化型接着剤、それを用いた貼り合せ方法及び物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535337

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167004047

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842076

Country of ref document: EP

Kind code of ref document: A1