WO2011111273A1 - 表示パネル及びその製造方法 - Google Patents

表示パネル及びその製造方法 Download PDF

Info

Publication number
WO2011111273A1
WO2011111273A1 PCT/JP2010/071697 JP2010071697W WO2011111273A1 WO 2011111273 A1 WO2011111273 A1 WO 2011111273A1 JP 2010071697 W JP2010071697 W JP 2010071697W WO 2011111273 A1 WO2011111273 A1 WO 2011111273A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
curable resin
ultraviolet
ultraviolet curable
glass substrate
Prior art date
Application number
PCT/JP2010/071697
Other languages
English (en)
French (fr)
Inventor
井上勝貴
小林和樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/583,131 priority Critical patent/US20120327345A1/en
Publication of WO2011111273A1 publication Critical patent/WO2011111273A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • G02F2202/023Materials and properties organic material polymeric curable

Definitions

  • the present invention relates to a display panel and a manufacturing method thereof. More specifically, the present invention relates to a display panel in which a recess defect formed on a glass substrate is repaired and a manufacturing method thereof.
  • Display panels such as a display panel sandwiched between a pair of glass substrates, are attracting attention as display panels that can achieve light weight, thinness, and low power consumption. It is indispensable for life and business.
  • a functional film for example, in a liquid crystal display panel, an alignment film for controlling the alignment of liquid crystal molecules is formed on a glass substrate, and electrodes and the like are formed.
  • quality control and process control of the components that make up the display panel are strictly performed, and even glass substrates are closely inspected for defects and repair processes when defects are found. Has been done.
  • the restoration process contributes to cost reduction and quality improvement by improving the yield, and the importance of the restoration process is increasing as the display panel is increased in size and quality.
  • Irradiation with light having a wavelength of less than 350 nm to cure the ultraviolet curable resin adversely affects the liquid crystal material inside the liquid crystal display, so when the raw material in the recess is polymerized to form a cured ultraviolet curable resin
  • the resin photoinitiator used for repair does not absorb light of 400 nm or more, it is preferable that the ultraviolet light used be 350 nm or more and 400 nm or less. That is, as described above, in this repairing method, there are problems in reducing the adverse effect on the liquid crystal material and optimizing the cured state of the ultraviolet curable resin.
  • one of the processes in manufacturing a display panel is a glass substrate repair process. If there is a defect in the glass substrate, even if it is a minute defect, the display quality of the display panel will be lowered. In order to effectively use a glass substrate in which such a defect is found without any defects, a repair process is indispensable. In particular, with the increase in the size of display panels, the importance of quality control for the purpose of improving yield and improving quality is increasing. By the way, in the repair process of the glass substrate, it is required not only to repair the defective portion of the glass substrate, but also to sufficiently suppress the occurrence of a defect accompanying the repair.
  • a defect portion such as a concave portion of a glass substrate is filled and smoothed, and the wavelength region of ultraviolet rays to be irradiated is optimized in order to cure the ultraviolet curable resin in the repairing process. This suppresses adverse effects on the liquid crystal material inside the liquid crystal display.
  • the challenge in optimizing the UV irradiation area is to suppress adverse effects on the liquid crystal material, but it is not only the liquid crystal material that is damaged, but also the various layers formed on the substrate.
  • the alignment film (functional film) is formed through an alignment film exposure process by a photo-alignment method, and it has been found that this is damaged by light irradiation in the repair process.
  • what is suitable as a photocurable resin composition with which the recessed part on a glass substrate is filled contains the photoinitiator which absorbs the light of a specific wavelength range.
  • the present invention has been made in view of the above situation, and defects such as recesses formed in the glass substrate are repaired, and further, damage to the functional film in the repair is sufficiently suppressed, thereby causing display defects.
  • An object of the present invention is to provide a prevented display panel.
  • the inventors of the present invention have studied various repair processes when defects such as recesses are found on a glass substrate and display panels manufactured through such processes, and are used to repair defects such as recesses.
  • Light such as ultraviolet rays 151 (see FIG. 6) irradiated to cure the photo-curable resin affects not only the liquid crystal material but also a functional film formed from a material having a functional group for photo-alignment. Focused on giving.
  • the functional film is damaged by light irradiation in a specific wavelength region, and particularly damaged by ultraviolet rays having a wavelength of 350 nm or more and less than 400 nm (hereinafter also referred to as 350 nm to 400 nm).
  • the present invention is a display panel including a pair of substrates, a display element provided between the substrates, and a functional film provided on the surface of at least one display element side of the substrate, the display panel including the functional film Is formed from a material having a photosensitive group, and at least one of the substrates is formed by forming a recess in the substrate surface and filling the recess with an ultraviolet curable resin cured product.
  • This is a display panel obtained by curing a cured product with ultraviolet rays having a wavelength of 400 nm or more.
  • a transparent substrate preferably a glass substrate is usually used
  • the recess formed on the substrate surface is a defect itself such as a scratch or a dent generated on the glass substrate, or the defect, bubble or foreign matter. It is a recess produced by repairing the contamination.
  • the concave portion is a defect originally generated in the glass substrate or a defect generated in the manufacturing process of the liquid crystal panel, and the size, the number, and the shape of the concave portion are not limited.
  • a repair process is performed on the sandwiched glass substrate.
  • the repairing process may be performed on the glass substrate itself on which the functional film is formed in the process before being sandwiched. In any form, the effects of the present invention can be exhibited.
  • the recessed part on a glass substrate when repairing the recessed part on a glass substrate, it aims at implementing a repair process, suppressing damaging the functional film formed on the glass substrate. Therefore, it is preferable to apply to the repair of the recess formed on the glass substrate other than the region where the functional film is formed. For example, since the functional film is formed on the display element side of the glass substrate, it is preferable to be applied to the repair of the recesses on the glass substrate on the side opposite to the display element side (outside).
  • the said ultraviolet curable resin has a form which is a resin composition containing the photoinitiator which absorbs the wavelength of 430 nm or less.
  • a photoinitiator is usually used, but as a photocurable resin for defect repair, a wavelength of 430 nm or less is used.
  • Photoinitiators that absorb ultraviolet light are preferred, especially in the optical resolution process. Therefore, in the present invention, a material that absorbs ultraviolet rays having a wavelength of 430 nm or less, preferably 400 nm or more and 430 nm or less, and functions as a photoinitiator is used.
  • the ultraviolet curable resin cured product (photo curable resin cured product)
  • a form obtained by curing with ultraviolet rays having a wavelength of 430 nm or less is preferable.
  • a (meth) acrylic resin is suitable as the resin, and by using it together with the photoinitiator, it can be photocured in the wavelength region of the present invention.
  • the photoinitiator is also preferably used for photocuring of a (meth) acrylic resin.
  • the present invention is also a method for manufacturing a display device including a pair of substrates, a display element provided between the substrates, and a functional film provided on a surface of at least one of the substrates on the display element side.
  • the film is formed of a material having a photosensitive group, and at least one of the substrates has a recess formed on the substrate surface, and the manufacturing method fills the recess with an ultraviolet curable resin.
  • It is also a method of manufacturing a display panel including a step and a photocuring step of irradiating the ultraviolet curable resin with ultraviolet rays having a wavelength of 400 nm or more to cure the resin.
  • the substrate transparent substrate, glass substrate
  • a defect repair step a step of filling an ultraviolet curable resin with respect to the recess defect
  • a photocuring step of irradiating ultraviolet rays in the specific wavelength region is included.
  • a step of forming a recess by scraping off a defective portion or the like may be performed prior to the step of filling the ultraviolet curable resin.
  • the ultraviolet rays in the wavelength region of 400 nm or more are irradiated, but the effect of the present invention is exhibited.
  • the maximum value of the specific intensity of ultraviolet rays in a wavelength region of 350 nm or more and less than 400 nm that causes damage to the alignment film is a ratio of ultraviolet rays in the wavelength region of wavelengths of 400 nm to 430 nm.
  • the maximum value of the specific intensity of ultraviolet light in the wavelength region of 350 nm or more and less than 400 nm is the maximum value of the specific intensity of ultraviolet light in the wavelength range of 400 nm to 430 nm.
  • the form made into 50% or less (preferably 30% or less, More preferably, 10% or less) is mentioned.
  • Examples of the ultraviolet irradiation method include a method using an ultraviolet irradiation device equipped with a filter that cuts ultraviolet rays below the lower limit value of the specific wavelength region.
  • the said photocuring process has a form which cuts i line
  • the i-line is 365 nm ultraviolet light.
  • wire is not limited to the form which cuts i line
  • the i-line is cut off (blocked) substantially completely.
  • the i-line can be cut by using a cut filter or the like.
  • the said photocuring process has the form which irradiates h rays to ultraviolet curable resin.
  • the h-ray is an ultraviolet ray of 405 nm, and in such a preferable form, a method using an ultraviolet irradiation device provided with a filter or the like that usually cuts ultraviolet rays below the lower limit value of the specific wavelength region, or a specific
  • the light irradiation step in the recess defect repairing step is performed using an ultraviolet irradiation device or the like that specifically and strongly emits ultraviolet rays in the wavelength region.
  • the display panel and the manufacturing method thereof it is particularly preferable that the display element is a liquid crystal layer and the functional film is an alignment film.
  • the display panel and the manufacturing method thereof of the present invention are preferably a liquid crystal display panel and a manufacturing method thereof.
  • the display panel and the manufacturing method thereof of the present invention defects such as recesses formed in the glass substrate are repaired, and the occurrence of display defects is prevented by sufficiently suppressing damage to the alignment film in the repair. Display panel.
  • FIG. 1 is a schematic cross-sectional view showing a liquid crystal display panel of Embodiment 1.
  • FIG. 3 is a graph showing a wavelength region of an Hg—Xe lamp used in Embodiment 1.
  • 3 is a graph showing a spectral spectrum of a cut filter used in Embodiment 1.
  • 6 is a graph showing a spectrum when a cut filter is used in combination with the Hg—Xe lamp in Embodiment 1 and a spectrum of an Hg—Xe lamp when no cut filter is used.
  • 6 is a graph showing a spectral spectrum of a cut filter of Comparative Example 1.
  • (meth) acrylic resin means both methacrylic resin and acrylic resin.
  • FIG. 1 is a diagram illustrating an ultraviolet irradiation process according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view illustrating the liquid crystal display panel of the first embodiment.
  • a liquid crystal material 31 is sandwiched between a pair of glass substrates 11 and 21.
  • Alignment films 12 and 22 are provided on the surfaces of the substrates 11 and 21 on the liquid crystal layer side, respectively.
  • the glass substrate used in Embodiment 1 is a glass substrate used for a liquid crystal display panel.
  • a polarizing film may be provided on the surface of each glass substrate 11, 21 opposite to the liquid crystal material 31. Note that a retardation film may be provided between the polarizing film and the glass substrates 11 and 21.
  • a transparent electrode and / or a force Luller filter are formed on the surfaces of the glass substrates 11 and 21 on the liquid crystal material 31 side.
  • a backlight (not shown) is usually provided on the back side of the polarizing film on the back side (the side opposite to the viewer side) of the glass substrate 21.
  • the liquid crystal layer (liquid crystal material) is configured to include liquid crystal molecules having negative dielectric anisotropy, and the alignment film 12 and the alignment film 22 are arranged so that the liquid crystal molecules are substantially perpendicular to the film surface and orthogonal to each other. It is a photo-alignment film to be aligned and formed from a material having a photosensitive group. The preferred form of the alignment film is as described later.
  • Examples of defects that can occur in the glass substrate include the generation of scratches or dents, or the incorporation of bubbles or foreign substances.
  • Examples of the scratches or dents include those generated on the surface of the glass substrate when the glass substrates come into contact with each other when the glass substrate is produced from the original plate from which the glass substrate is cut out.
  • the scratches or dents are formed on the glass substrate on the side opposite to the liquid crystal layer side (outside), and the concave portion is formed by scraping the defective portion of the glass substrate with respect to the liquid crystal display panel. Is formed.
  • the bubbles or foreign matters mixed in the glass substrate include, for example, those originating from the glass raw material and those originating from the external environment. Such bubbles or foreign matters are usually mixed when the glass substrate or the original plate for cutting the glass substrate is molded. Such bubbles and foreign substances are difficult to remove completely at the industrial level with the current technology.
  • the polarizing film (and retardation film) covers the glass substrate having the defect
  • the polarizing film (and retardation film) is glass substrate. And remove the defective glass substrate.
  • the glass material around the defect is removed. For example, when the defect which arose in the glass substrate 11 is a bubble, the glass material of the glass substrate 11 is removed until it reaches a bubble from the outer surface of the glass substrate 11.
  • the defect generated in the glass substrate 11 is a foreign substance, the foreign substance is further removed.
  • the glass material can be removed by, for example, grinding using a grindstone, lapping polishing using a tape, or the like. As a result of the removal process, a recess is formed on the outer surface of the glass substrate. If necessary, the glass material around the bubbles or scratches may be shaved to adjust the shape of the recess. Further, in the above-described glass substrate repair method, the glass material may not be removed.
  • the recess may be a scratch formed on the surface of the glass substrate, or a bubble itself having an opening on the surface of the glass substrate.
  • the liquid crystal display panel of Embodiment 1 has a recess in the display area on the outer surface thereof.
  • the concave portion on the surface of the glass substrate is filled with an ultraviolet curable resin.
  • Any ultraviolet curable resin may be used as long as it has sufficient transparency in the technical field and is cured by ultraviolet rays of 400 nm to 430 nm.
  • Such an ultraviolet curable resin can be obtained by appropriately adjusting the type and mixing ratio of the raw materials based on the common general knowledge in the technical field of the present invention.
  • a raw material material of a crosslinked (meth) acrylic resin is used as the ultraviolet curable resin.
  • ultraviolet curable resins include World Lock No. manufactured by Kyoritsu Chemical Industry Co., Ltd. Commercial products such as 8807LK can be used. World Rock No. 8807LK includes a photoinitiator that absorbs ultraviolet rays of 430 nm or less, and such a photoinitiator is suitable for curing an ultraviolet curable resin.
  • resins other than (meth) acrylic resins can be used, and among them, (meth) acrylic resins are preferred because of their excellent transparency and weather resistance.
  • a liquid crystal display panel is installed so that the opening of the concave portion of the glass substrate is vertically upward.
  • a photoinitiator photopolymerization start
  • an ultraviolet curable resin dissolved in an organic solvent or a raw material. Filling.
  • Each component may be filled after being mixed, or may be filled for each compound.
  • ultraviolet curable resin ((meth) acrylic resin) is demonstrated.
  • the ultraviolet curable resin has high light transmittance and low birefringence.
  • the ultraviolet curable resin is a crosslinked (meth) acrylic resin
  • the (meth) acrylic resin is obtained by copolymerizing two or more kinds of raw materials, for example, a monomer or oligomer of (meth) acrylic acid ester, etc. It is preferable that the raw material substance consisting of and a crosslinking agent are randomly copolymerized.
  • a crosslinked polymethyl methacrylate (PMMA) resin or the like can be used as a specific example of the crosslinked (meth) acrylic resin. Thereby, the optical anisotropy of the (meth) acrylic resin is suppressed, and the magnitude of birefringence can be reduced.
  • PMMA polymethyl methacrylate
  • a modified acrylate oligomer for example, an acrylate oligomer
  • an ultraviolet-reactive monomer for example, a diacrylate for crosslinking
  • a radical polymerizable (meth) acrylic resin obtained by random copolymerization of these raw materials can be obtained.
  • This (meth) acrylic resin has a crosslinked network structure.
  • the present invention may be in a form in which one kind of raw material is polymerized (a form in which a crosslinking agent is not used) or in a form in which two or more kinds of raw material are copolymerized.
  • the crosslinking agent may not be used.
  • a form obtained by randomly copolymerizing a raw material composed of an oligomer of (meth) acrylic acid ester and the like and a crosslinking agent is preferable.
  • the raw material of the (meth) acrylic resin does not have a benzene ring structure, and the crosslinked (meth) acrylic resin does not have a benzene ring structure.
  • (meth) acrylic acid esters examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t- (Meth) acrylic acid alkyl esters such as butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate; (meth) acrylic acid cycloalkyl esters such as cyclohexyl (meth) acrylate; dimethylaminoethyl (meth) And basic (meth) acrylic acid esters such as acrylate and diethylaminoethyl (meth) acrylate. These may be used alone, or two or more thereof may be appropriately mixed and used.
  • crosslinking agents such as a crosslinkable monomer
  • the cross-linking agent may be a compound having two or more functional groups that react with the functional group contained in the cross-linked compound such as an oligomer of (meth) acrylic acid ester.
  • photoinitiator examples include commercially available products such as World Lock No. Photoinitiators and the like included in 8807LK (trade name, manufactured by Kyoritsu Chemical Industry Co., Ltd.) can be used.
  • World Lock No. It is well recognized that there are materials that start on the visible light side (430 nm or less, preferably 400 nm or more and 430 nm or less) in addition to the photoinitiators included in 8807LK, and these can be used as appropriate. is there.
  • the above-mentioned crosslinked (meth) acrylic resin may be a polymer obtained by polymerizing one kind of raw material, or may be used for copolymerizing two or more kinds of raw materials. Good. Two or more kinds of raw materials are preferably copolymerized from the viewpoint of optical anisotropy.
  • additives such as a silane coupling agent and an antioxidant may be further added.
  • the photoinitiator absorbs light having a wavelength of 430 nm or less, the transparency of the cured ultraviolet curable resin is improved, and a high-quality glass substrate can be obtained. More preferably, the photoinitiator does not substantially absorb light exceeding 430 nm.
  • the recesses in the display area on the outer surface of the liquid crystal display panel are filled with ultraviolet curable resin, and the ultraviolet curable resin is photocured by ultraviolet rays 51, resulting in an ultraviolet curable resin cured product. 41 is filled and repaired.
  • the ultraviolet rays may be 400 to 430 nm.
  • FIG. 3 is a graph showing the wavelength region of the Hg—Xe lamp used in the first embodiment.
  • LC-8 (trade name, light source: 200 W type LC8-01, reflector: 365 nm type, lamp: Hg-Xe lamp L8251, light guide: diameter 5 mm-1 mm type A10014-50-0110 , Manufactured by Hamamatsu Photonics).
  • LC8-06 trade name, manufactured by Hamamatsu Photonics Co., Ltd., also referred to as 06-type light source
  • a filter capable of cutting up to 365 nm light (i-line) also referred to as a 09-type filter
  • the wavelength range 61 used for curing is obtained by subtracting the wavelength range 65 in which the panel (alignment film formed from a material having a photosensitive group) is damaged from the wavelength range 63 absorbed by the resin photoinitiator. Curing can be performed using light.
  • FIG. 4 is a graph showing a spectral spectrum of the cut filter used in the first embodiment.
  • FIG. 5 is a graph showing the spectrum when the cut filter is used in combination with the Hg—Xe lamp in Embodiment 1 and the spectrum of the Hg—Xe lamp when the cut filter is not used. Since the alignment film formed from the material having the photosensitive group described above has high sensitivity to the i-line, it is preferable that the specific intensity of the i-line is 50% or less with respect to the specific intensity of the h-line. More preferably, it is 30% or less, More preferably, it is 10% or less. Further, it is preferable to substantially completely block the light (i-line). In FIG.
  • the light is blocked by the cut filter (09 type filter) used in the first embodiment to such an extent that the light can be substantially completely blocked.
  • 4 shows a case where a cut filter of A-7028-09 (trade name, manufactured by Hamamatsu Photonics) or A-9616-09 (trade name, manufactured by Hamamatsu Photonics) is used.
  • LC-8 trade name, light source: 200 W type LC8-06, reflector: 546 nm type, lamp: Hg-Xe lamp L8251, filter: A9616-09, light guide: diameter 5 mm is used as the irradiator.
  • -1 mm type A10014-50-0110, manufactured by Hamamatsu Photonics manufactured by Hamamatsu Photonics
  • the light including the i-line When the light including the i-line is irradiated, for example, when it exceeds 8000 mJ, an influence on the orientation appears. However, when the i-line is cut by the filter of the first embodiment, it is confirmed that the influence does not appear until 44000 mJ is irradiated. It was. As described above, in the first embodiment, it is possible to suitably correct the defect by appropriately using the ultraviolet wavelength. That is, in order not to affect the alignment film, the wavelength needs to be 400 nm or more. From the viewpoint of preventing the resin from being colored, it is desirable that the resin be cured with light having a wavelength of 430 nm or less.
  • the alignment films 12 and 22 are, for example, (1) a form in which a liquid crystal molecule in the vicinity of the alignment film is given a substantially uniform pretilt angle, and (2) a form in which the pretilt angle of the liquid crystal molecules in the vicinity of the alignment film is 89 degrees or less.
  • the alignment film is a photo-alignment film formed from a material having at least one photosensitive group selected from the group consisting of a 4-chalcone group, a 4′-chalcone group, a coumarin group, and a cinnamoyl group.
  • the alignment film is preferably any form having at least one structure selected from the group consisting of a photosensitive group bonding structure, a photoisomerization structure, and a photorealignment structure.
  • the mode (1) the variation in the pretilt angle can be effectively suppressed, and a stable transmittance can be easily obtained in the VATN mode liquid crystal display device.
  • “substantially uniform” does not need to be strictly uniform, and may be uniform to such an extent that the above-described effects are exhibited.
  • the mode (2) it is possible to provide a liquid crystal display device having a high transmittance equivalent to that of the VAECB mode even in the VATN mode.
  • the photosensitive group causes a crosslinking reaction (including a dimerization reaction), an isomerization reaction, a photoreorientation, and the like by light. According to this, the variation in the pretilt angle is effective.
  • a VATN mode liquid crystal display device having a stable transmittance can be provided.
  • the material having a photosensitive group is preferably a material that generates a photocoupled reaction (photocoupled material), and the alignment film of this embodiment is a photocoupled alignment film.
  • the mode (4) is also a mode suitable for providing a VATN mode liquid crystal display device that effectively suppresses variations in the pretilt angle and has a stable transmittance.
  • the photosensitive group bonding structure in the form (4) means a structure in which photosensitive functional groups contained in the constituent molecules of the photosensitive material are bonded to each other by light irradiation.
  • the bond structure of the photosensitive group in the above (4) is preferably formed by a crosslinking reaction, and in this case, for example, the bond structure can be formed by irradiating light with a wavelength of 250 to 400 nm. .
  • the said crosslinking reaction means forming a chemical bond between some specific atoms of a linear polymer, and a dimerization reaction is also included.
  • the photosensitive material usually has a molecular structure in which a plurality of side chains are bonded to a linear main chain, and the side chains further contain a photosensitive group (photoreactive group). Therefore, in the photosensitive material, when irradiated with light, a crosslinking reaction such as a dimerization reaction of a photosensitive group occurs between two side chains, and a crosslinked structure is formed. Has a bonding structure of photosensitive groups.
  • the said photocuring process performs light irradiation and heat processing as needed, and polymerizes the raw material in a recessed part.
  • the polymerization reaction is initiated and accelerated by light energy or the like, and a cured ultraviolet curable resin (also referred to as an ultraviolet curable resin cured product) is formed.
  • a cured ultraviolet curable resin also referred to as an ultraviolet curable resin cured product
  • the ultraviolet curable resin is sufficiently cured, the surface of the ultraviolet curable resin is usually polished to be flat.
  • the manufacturing method of the liquid crystal display panel of Embodiment 1 has a configuration in which the concave portion on the surface of the glass substrate 11 is filled with the ultraviolet curable resin made of the crosslinked (meth) acrylic resin. More specifically, the concave portion is filled with a raw material that is a constituent of the ultraviolet curable resin together with a photoinitiator that absorbs ultraviolet light having a wavelength of 430 nm or less, and the filled raw material and photoinitiator have a wavelength of 400 nm or more and 430 nm or less.
  • a polymerization reaction is caused in the recesses by irradiating the UV rays and heat treatment as necessary, and the recesses are filled with a cured UV curable resin obtained as a result of the polymerization.
  • the ultraviolet curable resin as the material for filling the recesses, the glass substrate 11 can be repaired at a temperature lower than that of the baking treatment while sufficiently preventing the alignment film from being damaged.
  • the temperature of the heat treatment necessary for the polymerization can be lowered, and in some cases, the heat treatment can be eliminated.
  • the volume change of the raw material due to thermal expansion can be suppressed, and the generation of bubbles in the ultraviolet curable resin can be suppressed.
  • the photocuring process in the manufacturing method of the glass substrate of Embodiment 1 can be implemented in various stages in the manufacturing method of a liquid crystal display panel.
  • the present invention can be applied in various stages such as a stage from assembling a glass substrate to a liquid crystal display panel and a stage from inspecting the assembled liquid crystal display panel to assembling into a liquid crystal display device.
  • the effect of the present invention is exhibited by performing photocuring when an alignment film is usually formed on a substrate.
  • the manufacturing method of the liquid crystal display panel according to the first embodiment is performed before the glass substrate is assembled to the liquid crystal display panel, and in the case where the alignment film is disposed on the glass substrate, for example, the opposite side on which the concave portion is formed.
  • the glass substrate can be repaired without removing the alignment film on the substrate surface. Further, even when a defective glass substrate is already assembled in the liquid crystal display panel, the glass substrate 11 can be repaired as it is without disassembling the display panel. By simplifying the manufacturing process in this way, an extremely excellent effect can be achieved industrially.
  • FIG. 6 is a diagram illustrating an ultraviolet irradiation process of Comparative Example 1.
  • FIG. 7 is a graph showing the spectral spectrum (transmission curve) of the cut filter of Comparative Example 1.
  • the alignment film was damaged, resulting in poor display.
  • FIG. 7 shows a case where a cut filter of A-7028-08 (trade name, manufactured by Hamamatsu Photonics) or A-9616-08 (trade name, manufactured by Hamamatsu Photonics) is used.
  • a liquid crystal display panel will be described, and a form in which the display panel is a liquid crystal display panel is a preferred form of the present invention.
  • the present invention is similarly formed from a material having a photosensitive group.
  • the present invention can also be applied to other display panels (eg, plasma display panels) having the functional film formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、ガラス基板に形成された凹部等の欠陥が修復され、しかも修復における配向膜へのダメージが充分に抑制されることによって表示不良の発生が防止された表示パネルを提供する。本発明の表示パネルは、一対の基板、基板間に設けられた表示素子及び基板の少なくとも一方の表示素子側の表面に設けられた機能膜を備える表示パネルであって、上記表示パネルは、機能膜が感光性基を有する材料から形成されたものであり、上記基板の少なくとも一方は、基板面に凹部が形成され、上記凹部に紫外線硬化樹脂硬化物が充填されたものであり、上記紫外線硬化樹脂硬化物が波長400nm以上の紫外線によって硬化してなる表示パネルである。

Description

表示パネル及びその製造方法
本発明は、表示パネル及びその製造方法に関する。より詳しくは、ガラス基板に形成された凹部欠陥等が修復された表示パネル及びその製造方法に関するものである。
表示パネル、例えば一対のガラス基板等に表示素子を挟持した表示パネルは、軽量・薄型・低消費電力を実現することができる表示パネルとして注目され、モバイル用途や各種のモニター、大型テレビ等、日常生活やビジネスに欠かすことのできないものとなっている。
このような表示パネルにおいては、機能膜、例えば液晶表示パネルにおいてはガラス基板上に液晶分子の配向を制御するための配向膜が形成され、また電極等が形成されている。その製造工程においては、表示パネルを構成する部材の品質管理や工程管理が厳格に行われていて、ガラス基板においても、欠陥があるか否かの精密な検査、欠陥が見つかった場合の修復工程が行われている。修復工程は、歩留りの向上によるコスト低減、品質向上に資するものであり、表示パネルの大型化、高品位化に伴ってその重要性が増しているところである。
従来の表示パネルの製造においては、ガラス基板に何らかの理由で欠陥、欠損が生じた場合に、その修復方法が種々提案されている(例えば、特許文献1~4参照)。例えば、平滑なガラス基板上に凹部の欠陥がある場合に、それを修復するために、紫外線(UV)硬化樹脂を凹部に充填して硬化させる方法が開示されている(例えば、特許文献4参照)。
紫外線硬化樹脂を硬化させるために、波長が350nm未満の光を照射すると、液晶ディスプレイ内部の液晶材料に悪影響が及ぼされるため、凹部内の原料物質を重合させ、硬化した紫外線硬化樹脂を形成する際に、350nm未満の波長の光をカットするカットフィルタを介して、凹部内に光を照射することが開示されている。一方で、修復に使用する樹脂の光開始材は400nm以上の光を吸収しないものであるため、使用する紫外線は、350nm以上400nm以下であることが好ましいとされている。すなわち、このように、この修復方法においては、液晶材料への悪影響の低下と紫外線硬化樹脂の硬化状態の最適化が課題となっているものであった。
特開2002-196318号公報 特開2003-270661号公報 特開2006-206372号公報 国際公開第2009/004886号パンフレット
上述のように、表示パネルの製造における工程の一つにガラス基板の修復工程がある。ガラス基板に欠陥があると、それが微細な欠陥であっても表示パネルの表示品位の低下に繋がることになる。そのような欠陥が見つかったガラス基板を不具合なく有効に利用するために、修復工程はなくてはならないものとなっている。特に、表示パネルの大型化に伴って、歩留りの向上、高品位化を目的とする品質管理の重要性は増している。
ところで、ガラス基板の修復工程においては、単にガラス基板の欠陥部を修復するだけではなく、修復に伴って不具合が生じることを充分に抑制することが求められることになる。従来の液晶表示パネルの修復方法においては、ガラス基板の凹部等の欠陥部を充填して平滑化すると共に、修復工程において紫外線硬化樹脂を硬化させるために照射される紫外線の波長領域を最適化することによって、液晶ディスプレイ内部の液晶材料に悪影響が及ぶことを抑制するものである。
しかしながら、紫外線の照射領域の最適化における課題は、液晶材料に対する悪影響の抑制であるが、ダメージを受けるのは、液晶材料だけではなく、基板上に形成された各種の層も影響を受けることになる。中でも、配向膜(機能膜)は、光配向法による配向膜露光工程を経て形成されたものであるが、これが修復工程における光照射によってダメージを受けることが判明した。また一方で、ガラス基板上の凹部に充填される光硬化性樹脂組成物として好適なものは、特定波長領域の光を吸収する光開始剤が配合されたものである。そのため、修復工程の光照射においては、光開始剤の作用によって光硬化性樹脂組成物を硬化させて凹部欠陥を充填するために最適な波長領域があると共に、配向膜にダメージを与える波長領域があり、これらを考慮して波長領域を設定する必要がある。配向膜に不具合が生じると、液晶分子の配向制御に影響を与え、表示不良となり、優れた表示品位を保つことができなくなる。液晶表示パネルの視野角等の改善のため、1つの絵素内の配向膜を複数の配向方向に分割する配向分割が行われているが、特に、このような形態における配向膜へのダメージの影響は大きい。
従来技術においては、このような配向膜が形成されたガラス基板において、その修復の際における配向膜への影響については何ら開示されておらず、この点で工夫の余地があった。
本発明は、上記現状に鑑みてなされたものであり、ガラス基板に形成された凹部等の欠陥が修復され、しかも修復における機能膜へのダメージが充分に抑制されることによって表示不良の発生が防止された表示パネルを提供することを目的とするものである。
本発明者らは、ガラス基板上に凹部等の欠陥が見つかった場合の修復工程、そのような工程を経て製造される表示パネルについて種々検討したところ、凹部等の欠陥を修復するために使用される光硬化性樹脂を硬化するために照射する紫外線151(図6参照)等の光が液晶材料だけではなく、光配向するための官能性基を有する材料から形成された機能膜にも影響を与えていることに着目した。そして、当該機能膜においては、特定波長領域の光照射によってダメージを受け、特に350nm以上、400nm未満(以下、350nm~400nmともいう。)の波長の紫外線でダメージを受けるため、図1に示されるように400nm以上の波長を用いて凹部等の欠陥を修復するための光硬化性樹脂を硬化させることが必要であることを見いだした。特に、配向分割において用いられている配向膜においては、350nm~400nmの波長領域におけるダメージは大きい。また、使用する欠陥修復用光硬化性樹脂を硬化させるための光開始剤が、波長430nm以下の光を吸収して作用するものとすると、400nm以上、430nm以下の光を照射することにより欠陥修復用光硬化性樹脂を充分に硬化させることができる点で特に好ましいことを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、一対の基板、基板間に設けられた表示素子及び基板の少なくとも一方の表示素子側の表面に設けられた機能膜を備える表示パネルであって、上記表示パネルは、機能膜が感光性基を有する材料から形成されたものであり、上記基板の少なくとも一方は、基板面に凹部が形成され、上記凹部に紫外線硬化樹脂硬化物が充填されたものであり、上記紫外線硬化樹脂硬化物が波長400nm以上の紫外線によって硬化してなる表示パネルである。
上記基板としては、通常、透明基板、好ましくはガラス基板が用いられ、基板面に形成された凹部とは、ガラス基板上に生じた傷、へこみ等の欠陥そのもの、又は、当該欠陥、気泡若しくは異物混入等を補修したことによって生じた凹部である。当該凹部は、ガラス基板に元々生じていた欠陥、又は、液晶パネルの製造工程において生じた欠陥であり、当該凹部の大きさや個数、形状は限定されるものではない。
なお、一対のガラス基板によって表示素子が挟持され、少なくとも一方の基板の表示素子側に機能膜が形成された表示パネルにおいて、当該挟持された状態のガラス基板に対して修復工程を行う形態であってもよく、また、そのように挟持される前の工程において、機能膜が形成されたガラス基板そのものに対して修復工程を行う形態であってもよい。いずれの形態であっても、本発明の効果を発揮することが可能である。
また、本発明においては、ガラス基板上の凹部を修復するうえで、ガラス基板上に形成された機能膜にダメージを与えることを抑制しつつ修復工程を実施することを目的とする。したがって、ガラス基板上における、機能膜が形成された領域以外に形成された凹部に対する修復に適用することが好ましい。例えば、ガラス基板の表示素子側に機能膜が形成されることから、表示素子側とは反対側(外側)のガラス基板上における凹部の修復に適用されることが好適である。
本発明の表示パネルの好ましい形態の一つとしては、上記紫外線硬化樹脂は、波長430nm以下の紫外線を吸収する光開始剤を含有する樹脂組成物である形態が挙げられる。上記紫外線硬化性樹脂(光硬化性樹脂)を光硬化するためには、通常では光開始剤が用いられることになるが、欠陥修復用光硬化性樹脂に用いられるものとしては、波長430nm以下の紫外線を吸収する光開始剤が好適であり、特に、光学分割プロセスにおいて好適である。従って、本発明においては、波長430nm以下、好ましくは、波長400nm以上、430nm以下の紫外線を吸収し、光開始剤として作用するものを用いることになる。
上記紫外線硬化性樹脂硬化物(光硬化性樹脂硬化物)としては、波長430nm以下の紫外線によって硬化してなる形態が好ましい。例えば、樹脂としては、(メタ)アクリル樹脂が好適であり、上記光開始剤と共に用いることによって、本発明の波長領域において光硬化させることが可能である。光開始剤としても、(メタ)アクリル樹脂の光硬化に用いられるものであることが好ましい。
本発明はまた、一対の基板、基板間に設けられた表示素子及び基板の少なくとも一方の表示素子側の表面に設けられた機能膜を備える表示装置を製造するための方法であって、該機能膜は、感光性基を有する材料から形成されたものであり、上記基板の少なくとも一方は、基板面に凹部が形成されたものであり、上記製造方法は、該凹部に紫外線硬化樹脂を充填する工程及び紫外線硬化樹脂に波長400nm以上の紫外線を照射して該樹脂を硬化させる光硬化工程を含む表示パネルの製造方法でもある。更に、上記紫外線硬化樹脂に波長430nm以下の紫外線を照射して該樹脂を硬化させることが好ましい。
本発明の好ましい形態においては、基板(透明基板、ガラス基板)の欠陥検査工程、欠陥修復工程を経ることになるが、欠陥修復工程においては、凹部欠陥に対して紫外線硬化樹脂を充填する工程、上記特定波長領域にある紫外線を照射する光硬化工程を含むことになる。また、紫外線硬化樹脂を充填する工程に先立って、欠陥部分を削り取る等によって凹部とする工程を経てもよい。
上記紫外線の照射に当たっては、波長400nm以上(好ましくは、400nm以上、430nm以下。以下、400nm~430nmともいう。)の波長領域内にある紫外線を照射することになるが、本発明の効果を奏する限り、それ以外の波長領域の紫外線を含んでいてもよい。例えば、好ましい形態としては、(1)配向膜に対してダメージを与えることになる350nm以上、400nm未満の波長領域における紫外線の比強度の最大値が、波長400nm~430nmの波長領域における紫外線の比強度の最大値よりも小さくなるようにした形態、(2)350nm以上、400nm未満の波長領域における紫外線の比強度の最大値が、波長400nm~430nmの波長領域における紫外線の比強度の最大値の50%以下(好ましくは30%以下、より好ましくは10%以下)となるようにした形態が挙げられる。
上記紫外線の照射方法としては、上記特定波長領域の下限値未満の紫外線をカットするフィルタなどを備えた紫外線照射装置を用いる方法等が挙げられる。
本発明の表示パネルの製造方法の好ましい形態の一つとしては、上記光硬化工程は、紫外線硬化樹脂に照射する紫外線からi線をカットする形態が挙げられる。i線とは、365nmの紫外線である。i線をカットする形態とは、i線を完全にカットする形態に限定されるものではなく、本発明の効果を発揮すると評価される程度にi線をカットするものであればよい。好ましくは、i線を実質的に完全にカット(遮断)する形態である。例えば、カットフィルタ等を用いることにより、i線をカットすることができる。
本発明の表示パネルの製造方法の好ましい形態の一つとしては、上記光硬化工程は、紫外線硬化樹脂にh線を照射する形態が挙げられる。
上記h線とは、405nmの紫外線であり、このような好ましい形態においては、通常は上記特定波長領域の下限値未満の紫外線をカットするフィルタなどを備えた紫外線照射装置を用いる方法、又は、特定波長領域の紫外線を特異的に強く発する紫外線照射装置等を用いて凹部欠陥修復工程における光照射工程を行うことになる。また、本発明においては、凹部欠陥修復工程の光照射において、凹部欠陥部分のみに光照射してもよく、基板全体に対して光照射してもよいが、配向膜へのダメージを最小とする観点からは、凹部欠陥部分のみに光照射することが好ましい。この場合、通常では、誤差範囲も含めて、凹部欠陥部分及びその周辺部のみに光照射することになる。
本発明の表示パネル及びその製造方法においては、上記表示素子は、液晶層であり、上記機能膜は、配向膜である形態が特に好ましい。本発明の表示パネル及びその製造方法は、好ましくは、液晶表示パネル及びその製造方法である。
上述した本発明の表示パネル及びその製造方法のその他の構成は適宜設定すればよく、本発明の効果を阻害しない限り特に限定されるものではない。また、上述した各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
本発明の表示パネル及びその製造方法によれば、ガラス基板に形成された凹部等の欠陥が修復され、しかも修復における配向膜へのダメージが充分に抑制されることによって表示不良の発生が防止された表示パネルとすることができる。
実施形態1の紫外線照射工程を示す図である。 実施形態1の液晶表示パネルを示す断面模式図である。 実施形態1で用いられるHg-Xeランプの波長領域を示すグラフである。 実施形態1で用いられるカットフィルタの分光スペクトルを示すグラフである。 実施形態1におけるHg-Xeランプにカットフィルタを併用した場合のスペクトル及びカットフィルタを使用しなかった場合のHg-Xeランプのスペクトルを示すグラフである。 比較例1の紫外線照射工程を示す図である。 比較例1のカットフィルタの分光スペクトルを示すグラフである。
以下に実施形態を掲げ、本発明を更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。なお、本明細書中、(メタ)アクリル樹脂は、メタクリル樹脂及びアクリル樹脂の両方を意味するものである。
実施形態1
図1は、実施形態1の紫外線照射工程を示す図である。
図2は、実施形態1の液晶表示パネルを示す断面模式図である。
実施形態1では、一対のガラス基板11、21に、液晶材31が挟持されている。基板11、21の液晶層側の表面には、それぞれ配向膜12、22が設けられている。実施形態1で用いられるガラス基板は、液晶表示パネルに用いられるガラス基板である。またそれぞれのガラス基板11、21の、液晶材31とは反対側の面には、偏光フィルムが設けられていてもよい。なお、偏光フィルムとガラス基板11、21との間には、位相差フィルムが設けられていてもよい。更に、それぞれのガラス基板11、21の、液晶材31側の面上には、透明電極及び/又は力ラーフイルタが形成されている(図示なし)。またガラス基板21の背面側(観者側と反対側)の偏光フィルムの背面側に、通常はバックライト(図示なし)が設けられている。液晶層(液晶材)は、負の誘電率異方性を有する液晶分子を含んで構成され、配向膜12及び配向膜22は、液晶分子を膜表面に対して略垂直かつ互いに直交する方位に配向させるものであり、感光性基を有する材料から形成された光配向膜である。好適な配向膜の形態については後述する通りである。
(凹部欠陥)
ガラス基板に生じうる欠陥としては、傷若しくはへこみの発生、又は、気泡若しくは異物等の混入等が挙げられる。傷又はへこみは、例えば、ガラス基板を切り出すもとの原板からガラス基板を作製する際にガラス基板同士が接触すること等によってガラス基板の表面に生じるもの等が挙げられる。実施形態1においては、傷又はへこみが、液晶層側とは反対側(外側)のガラス基板上に形成されていたところ、液晶表示パネルに対して、ガラス基板の欠陥部をけずりとることで凹部を形成したものである。また、ガラス基板に混入する気泡又は異物は、例えば、ガラス原料に起因するもの、外部環境に由来するもの等がある。このような気泡又は異物は、通常はガラス基板又はガラス基板を切り出すための原板の成型の際に混入する。このような気泡・異物は、現在の技術においては工業的なレベルで完全に除去することが困難なものである。
表示パネルのガラス基板にこのような欠陥が見つかった場合、まず、欠陥を有するガラス基板を偏光フィルム(及び位相差フィルム)が覆っている場合は、当該偏光フィルム(及び位相差フィルム)をガラス基板から取り外し、欠陥のあるガラス基板を露出させる。そして、欠陥の種類に応じて、上記欠陥周辺のガラス材料の除去加工を行う。例えば、ガラス基板11に生じた欠陥が気泡の場合は、ガラス基板11の外側表面から気泡に達するまで、ガラス基板11のガラス材料を除去する。ガラス基板11に生じた欠陥が異物の場合は、更に異物の除去も行う。
このガラス材料の除去は、例えば砥石を用いた研削加工、テープを用いたラッピング研磨等によって行うことができる。除去加工の結果、ガラス基板の外側表面に凹部が形成される。なお、必要に応じて気泡又は傷の周囲のガラス材料を削って凹部の形状を整えてもよい。
また上述したガラス基板の修復方法において、ガラス材料の除去を行わない形態であってもよい。例えば、凹部がガラス基板の表面に形成された傷、又は、ガラス基板の表面に開口を有する気泡自体であってもよい。
(紫外線硬化樹脂充填工程)
図1に示すように、実施形態1の液晶表示パネルはその外側表面の表示領域内に凹部を有している。ガラス基板の表面の凹部を紫外線硬化樹脂で充填する。
上記紫外線硬化樹脂としては、当該技術分野において充分な透明性を有し、400nm~430nmの紫外線により硬化するものであればよい。このような紫外線硬化樹脂は、本発明の技術分野の技術常識にもとづいて適宜原料の種類・配合割合を調整することにより得ることができる。
実施形態1では、紫外線硬化樹脂として、架橋された(メタ)アクリル樹脂の原料物質を用いる。なお、このような紫外線硬化樹脂としては、例えば、協立化学産業社製のワールドロックNo.8807LK等の市販品を用いることができる。ワールドロックNo.8807LKは、430nm以下の紫外線を吸収する光開始材を含むものであり、このような光開始材が紫外線硬化樹脂の硬化において好適である。これら紫外線硬化樹脂としては、(メタ)アクリル樹脂以外の樹脂を使用することもできるが、中でも、(メタ)アクリル樹脂が、透明性、耐候性等に優れることから好ましい。
ガラス基板の凹部の開口が鉛直上向きになるように液晶表示パネルを設置し、凹部に、紫外線硬化樹脂を、有機溶媒又は原料物質に溶解した430nm以下の紫外線を吸収する光開始剤(光重合開始剤)とともに充填する。各成分は、混合された後に充填されるものであってもよいし、各化合物毎に充填されるものであってもよい。
以下では、紫外線硬化樹脂((メタ)アクリル樹脂)の具体例について説明する。なお、液晶表示パネル用のガラス基板においては、紫外線硬化樹脂は、高い光透過性を有するとともに、複屈折が小さいことが好ましい。
紫外線硬化樹脂が架橋された(メタ)アクリル樹脂である場合、(メタ)アクリル樹脂は、2種類以上の原料物質を共重合させてなるもの、例えば、(メタ)アクリル酸エステルのモノマー又はオリゴマー等からなる原料物質と、架橋剤とをランダムに共重合させてなるものであることが好ましい。架橋された(メタ)アクリル樹脂の具体例を挙げると、架橋されたポリメチルメタクリレート(PMMA)系樹脂等を用いることができる。なお、これにより、(メタ)アクリル樹脂の光学異方性が抑制され、複屈折の大きさを小さくすることもできる。
例えば、(メタ)アクリル樹脂の原料物質として変性アクリレートオリゴマー(例えば、アクリル酸エステルのオリゴマー)と、紫外線反応性モノマー(例えば、架橋用のジアクリレート)とを使用することが好ましい。そして、これら原料物質を混合し、光開始剤の存在下でラジカル重合させることにより、これら原料物質がランダムに共重合してなるラジカル重合性(メタ)アクリル樹脂を得ることができる。この(メタ)アクリル樹脂は、架橋された網状構造となる。本発明は、1種類の原料物質を重合させる形態(架橋剤を用いない形態)であってもよく、2種類以上の原料物質を共重合させる形態であってもよい。例えば、自己架橋型の(メタ)アクリル系モノマーやオリゴマーを使用した場合には架橋剤を用いなくてもよい。ただし、上述したように2種以上の原料物質を共重合させる方が、1種類の原料物質を共重合させる場合よりも、得られる(メタ)アクリル樹脂の光学異方性を抑制することができる点で好ましい。中でも、(メタ)アクリル酸エステルのオリゴマー等からなる原料物質と、架橋剤とをランダムに共重合させてなる形態が好適である。
なお、上記(メタ)アクリル樹脂の原料物質は、ベンゼン環構造を有さず、架橋された(メタ)アクリル樹脂がベンゼン環構造を有していないことが好ましい。
このような(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル;シクロヘキシル(メタ)アクリレート等の(メタ)アクリル酸シクロアルキルエステル;ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等の塩基性(メタ)アクリル酸エステル等が挙げられる。これらは、単独で用いてもよく、2種以上を適宜混合して用いてもよい。
また、架橋剤としては、架橋性モノマー等の架橋剤が使用される。架橋剤は、(メタ)アクリル酸エステルのオリゴマー等の被架橋化合物に含まれる官能基と反応する官能基を2つ以上有する化合物であればよく、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の多官能(メタ)アクリレート;エポキシ(メタ)アクリレート類;ジビニルベンゼン、ジアリルフタレート、ジアリルイソフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート等が挙げられる。
上記光開始剤としては、例えば、市販品であるワールドロックNo.8807LK(商品名、協立化学産業社製)に含まれる光開始材等を用いることができる。なお、本発明の技術分野においては、ワールドロックNo.8807LKに含まれる光開始材以外にも可視光側(430nm以下、好ましくは、400nm以上、430nm以下)で開始する材料は存在することが充分に認識されており、これらを適宜用いることが可能である。
なお、上述した架橋された(メタ)アクリル樹脂は、1種類の原料物質を重合させてなる重合体であってもよいし、2種類以上の原料物質を共重合させるためのものであってもよい。2種類以上の原料物質を共重合させる方が、光学異方性の点から好適である。
上述した原料物質を重合させて架橋された(メタ)アクリル樹脂からなる紫外線硬化樹脂を合成する際には、更にシランカップリング剤、酸化防止剤等の添加剤を加えてもよい。また、光開始剤が、波長が430nm以下の光を吸収するものとすることにより、硬化後の紫外線硬化樹脂の透明度が向上し、高品質のガラス基板を得ることができる。より好ましくは、光開始剤が430nmを超える光を実質的に吸収しない形態である。
(光硬化工程)
図1及び図2に示すように、液晶表示パネルの外側表面の表示領域内にある凹部は、紫外線硬化樹脂が充填され、紫外線硬化樹脂が紫外線51によって光硬化される結果、紫外線硬化樹脂硬化物41で充填されて修復される。紫外線としては、400~430nmの紫外線であればよい。
図3は、実施形態1で用いられるHg-Xeランプの波長領域を示すグラフである。
図3においては、照射機としてLC-8(商品名、光源:200WタイプLC8-01、リフレクター:365nmタイプ、ランプ:Hg-XeランプL8251、導光体:直径5mm-1mmタイプA10014-50-0110、浜松ホトニクス社製)を用いている。
実施形態1においては、Hg-XeランプであるLC8-06(商品名、200Wタイプ浜松ホトニクス社製。06型光源ともいう。)とともに400nm未満の波長の光をカットするカットフィルタ(従来のように365nmの波長の光(i線)までカットできるフィルタ。09型フィルタともいう。)を介して、凹部内に光を照射するものである。これにより、樹脂の光開始剤が吸収する波長範囲63から、パネル(感光性基を有する材料から形成された配向膜)がダメージを受ける波長範囲65を差し引いた、硬化に使用する波長範囲61の光を用いて硬化を行うことができる。
図4は、実施形態1で用いられるカットフィルタの分光スペクトルを示すグラフである。図5は、実施形態1におけるHg-Xeランプにカットフィルタを併用した場合のスペクトル及びカットフィルタを使用しなかった場合のHg-Xeランプのスペクトルを示すグラフである。上述した感光性基を有する材料から形成された配向膜は、上記i線に対する感度が高いため、上記i線の比強度を、h線の比強度に対して50%以下にすることが好ましい。より好ましくは30%以下であり、更に好ましくは10%以下である。また、当該光(i線)を実質的に完全に遮断することが好適である。図5においては、実施形態1で用いられるカットフィルタ(09型フィルタ)により、当該光が実質的に完全に遮断されているといえる程度に遮断されている。なお、図4においては、A-7028-09(商品名、浜松ホトニクス社製)又はA-9616-09(商品名、浜松ホトニクス社製)のカットフィルタを用いた場合を示す。また、図5においては、照射機としてLC-8(商品名、光源:200WタイプLC8-06、リフレクター:546nmタイプ、ランプ:Hg-XeランプL8251、フィルタ:A9616-09、導光体:直径5mm-1mmタイプA10014-50-0110、浜松ホトニクス社製)を用いている。
上記i線を含む光を照射した場合、例えば8000mJを超えると配向への影響が現れるが、i線を実施形態1のフィルタによってカットした場合は、44000mJ照射するまで影響は出ないことが確認された。このように、実施形態1においては、紫外線の波長を最適に使い分けることによって、好適に欠陥の修正を行うことができる。すなわち、配向膜への影響を与えることないためには波長が400nm以上である必要があり、樹脂の着色を防ぐ観点からは波長が430nm以下の光で硬化する樹脂であることが望ましい。なお、光硬化工程において波長が430nm以下の光を照射すること自体には問題はなく、当該照射は可能である。なお、特定波長領域の紫外線を特異的に強く発する紫外線照射装置を用いるものであってもよく、同様の作用効果を発揮することができる。
上述した配向膜の好適な形態について説明する。配向膜12、22は、例えば(1)配向膜近傍の液晶分子に略均一なプレチルト角を付与するものである形態、(2)配向膜近傍の液晶分子のプレチルト角が89度以下である形態、(3)配向膜は、4-カルコン基、4’-カルコン基、クマリン基、及び、シンナモイル基からなる群より選ばれる少なくとも一つの感光性基を有する材料から形成された光配向膜である形態、(4)配向膜は、感光性基の結合構造、光異性化構造及び光再配向構造からなる群より選ばれる少なくとも一つの構造を有する形態のいずれもが好適である。
上記(1)の形態によれば、プレチルト角のばらつきを効果的に抑制することができ、VATNモードの液晶表示装置において安定した透過率を容易に得ることができる。上記(1)の形態において、略均一とは、厳密に均一である必要はなく、上記効果を奏する程度に均一であればよい。上記(2)の形態によれば、VATNモードにおいても、VAECBモードと同等の高い透過率を有する液晶表示装置を提供することができる。上記(3)の形態において、感光性基は、光により架橋反応(二量化反応を含む)、異性化反応、光再配向等を生じるものであり、これによれば、プレチルト角のばらつきを効果的に抑制することができ、安定した透過率を有するVATNモードの液晶表示装置を提供できる。上記感光性基を有する材料(感光性材料)は、光結合反応を生じる材料(光結合型の材料)であることが好ましく、また、本実施形態の配向膜は、光結合型の配向膜であることが好ましい。上記(4)の形態もまた、プレチルト角のばらつきを効果的に抑制し、かつ安定した透過率を有するVATNモードの液晶表示装置を提供するのに好適な形態である。上記(4)の形態における感光性基の結合構造とは、感光性材料の構成分子に含まれる感光性の官能基同士が光の照射によって結合した構造を意味する。上記(4)における感光性基の結合構造としては、架橋反応により形成されたものであることが好ましく、この場合、例えば波長250~400nmの光を照射することで結合構造を形成させることができる。なお、上記架橋反応とは、線状高分子のいくつかの特定原子間に、化学結合を形成せしめることを意味し、二量化反応も含まれる。上記感光性材料は、通常、線状の主鎖に複数の側鎖が結合し、更に側鎖が感光性基(光反応基)を含む分子構造を有する。したがって、上記感光性材料は、光が照射されることにより、2つの側鎖間で、感光性基の二量化反応等の架橋反応が生じ、架橋構造が形成されるので、本発明の配向膜は、感光性基の結合構造を有することになる。
上記光硬化工程は、光照射及び必要に応じて熱処理を行い、凹部内の原料物質を重合させる。このとき、光エネルギー等により重合反応が開始・促進され、硬化した紫外線硬化樹脂(紫外線硬化樹脂硬化物ともいう。)が形成される。なお、硬化工程の条件(光照射の強度・時間等)は、合成する紫外線硬化樹脂や光開始剤の種類に応じて通宜設定することが好ましい。
紫外線硬化樹脂が十分に硬化したら、通常、紫外線硬化樹脂表面を平坦になるように研磨することになる。
以上のように、実施形態1の液晶表示パネルの製造方法は、ガラス基板11の表面の凹部を、架橋された(メタ)アクリル樹脂からなる紫外線硬化樹脂で充填する構成となっている。より具体的には、凹部に、紫外線硬化樹脂の構成要素となる原料物質を波長430nm以下の紫外線を吸収する光開始剤とともに充填し、充填した原料物質及び光開始剤に波長400nm以上、430nm以下の紫外線を照射するとともに必要に応じて熱処理を行うことによって、凹部内にて重合反応を生じさせ、重合の結果得られた紫外線硬化樹脂硬化物で凹部を充填する構成となっている。このように、凹部を充填する材料として紫外線硬化樹脂を用いることで、配向膜にダメージを与えることを充分に防止しつつ、焼成処理よりも低い温度でガラス基板11の修復を行うことができる。
上記構成によれば、原料物質の重合に光重合が用いられるため、重合に必要な熱処理の温度を下げることができ、場合によっては熱処理をなくすことも可能である。これにより、熱膨張による原料物質の体積変化を抑制したり、紫外線硬化樹脂中に気泡が発生するのを抑制したりすることができる。
実施形態1のガラス基板の製造方法における光硬化工程は、液晶表示パネルの製造方法における種々の段階において実施することができる。例えば、ガラス基板を液晶表示パネルに組み立てるまでの段階、組み立てた液晶表示パネルを検査してから液晶表示装置へ組み立てるまでの段階等の種々の段階において本発明を適用することができる。なお、本発明の課題との関係上、通常は基板上に配向膜が形成されている場合に光硬化を行うことによって本発明の効果が発揮されることになる。
実施形態1に係る液晶表示パネルの製造方法は、ガラス基板が液晶表示パネルに組み立てられる前であって、ガラス基板上に配向膜が配置されている場合においては、例えば凹部が形成された反対側の基板面上の配向膜を除去することなくガラス基板を修復することができる。また、欠陥のあるガラス基板が既に液晶表示パネルに組み立てられた場合であっても、表示パネルを分解することなく、そのままの状態でガラス基板11を修復することができる。このように製造工程が簡略化されることにより、工業的に極めて優れた効果を奏することができる。
比較例1
図6は、比較例1の紫外線照射工程を示す図である。
図7は、比較例1のカットフィルタの分光スペクトル(透過曲線)を示すグラフである。
上述したHg-Xeランプに比較例1のカットフィルタ(h線までカットできるフィルタ。08フィルタともいう。)を併用した場合は、配向膜へのダメージが生じ、表示不良が生じることとなった。なお、図7においては、A-7028-08(商品名、浜松ホトニクス社製)又はA-9616-08(商品名、浜松ホトニクス社製)のカットフィルタを用いた場合を示している。
上述した実施例においては液晶表示パネルについて説明し、このように表示パネルが液晶表示パネルである形態が本発明の好ましい形態であるが、本発明は、同様に、感光性基を有する材料から形成された機能膜を有するその他の表示パネル(例えば、プラズマディスプレイパネル等)についても適用することが可能である。
上述した実施形態における各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
なお、本願は、2010年3月12日に出願された日本国特許出願2010-056579号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
11、21:ガラス基板
12、22:配向膜
31:液晶材
41:紫外線硬化樹脂硬化物
51:紫外線(405nm)
61:硬化に使用する波長範囲
63:樹脂の光開始剤が吸収する波長範囲
65:パネルがダメージを受ける波長範囲

Claims (9)

  1. 一対の基板、基板間に設けられた表示素子及び基板の少なくとも一方の表示素子側の表面に設けられた機能膜を備える表示パネルであって、
    該表示パネルは、機能膜が感光性基を有する材料から形成されたものであり、
    該基板の少なくとも一方は、基板面に凹部が形成され、該凹部に紫外線硬化樹脂硬化物が充填されたものであり、該紫外線硬化樹脂硬化物が波長400nm以上の紫外線によって硬化してなることを特徴とする表示パネル。
  2. 前記紫外線硬化樹脂硬化物は、波長430nm以下の紫外線によって硬化してなることを特徴とする請求項1に記載の表示パネル。
  3. 前記紫外線硬化樹脂は、波長430nm以下の紫外線を吸収する光開始剤を含有する樹脂組成物であることを特徴とする請求項1又は2に記載の表示パネル。
  4. 前記表示素子は、液晶層であり、前記機能膜は、配向膜であることを特徴とする請求項1~3のいずれかに記載の表示パネル。
  5. 一対の基板、基板間に設けられた表示素子及び基板の少なくとも一方の表示素子側の表面に設けられた機能膜を備える表示装置を製造するための方法であって、
    該機能膜は、感光性基を有する材料から形成されたものであり、
    該基板の少なくとも一方は、基板面に凹部が形成されたものであり、
    該製造方法は、該凹部に紫外線硬化樹脂を充填する工程及び紫外線硬化樹脂に波長400nm以上の紫外線を照射して該樹脂を硬化させる光硬化工程を含むことを特徴とする表示パネルの製造方法。
  6. 前記光硬化工程は、前記紫外線硬化樹脂に波長430nm以下の紫外線を照射して該樹脂を硬化させることを特徴とする請求項5に記載の表示パネルの製造方法。
  7. 前記光硬化工程は、紫外線硬化樹脂に照射する紫外線からi線をカットすることを特徴とする請求項5又は6に記載の表示パネルの製造方法。
  8. 前記光硬化工程は、紫外線硬化樹脂にh線を照射することを特徴とする請求項5~7のいずれかに記載の表示パネルの製造方法。
  9. 前記表示素子は、液晶層であり、前記機能膜は、配向膜であることを特徴とする請求項5~8のいずれかに記載の表示パネルの製造方法。
PCT/JP2010/071697 2010-03-12 2010-12-03 表示パネル及びその製造方法 WO2011111273A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/583,131 US20120327345A1 (en) 2010-03-12 2010-12-03 Display panel and process for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010056579 2010-03-12
JP2010-056579 2010-03-12

Publications (1)

Publication Number Publication Date
WO2011111273A1 true WO2011111273A1 (ja) 2011-09-15

Family

ID=44563111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071697 WO2011111273A1 (ja) 2010-03-12 2010-12-03 表示パネル及びその製造方法

Country Status (2)

Country Link
US (1) US20120327345A1 (ja)
WO (1) WO2011111273A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106305A (ja) * 2012-11-26 2014-06-09 Hitachi High-Technologies Corp 表示装置、及び表示装置の製造方法
WO2015033610A1 (ja) * 2013-09-09 2015-03-12 日本化薬株式会社 光学部材の製造方法及びそれに用いる紫外線硬化型樹脂組成物
JP2015223756A (ja) * 2014-05-27 2015-12-14 協立化学産業株式会社 積層体の製造方法
US10991898B2 (en) 2017-09-13 2021-04-27 Sakai Display Products Corporation Flexible display, method for manufacturing same, and support substrate for flexible display

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156443B1 (ko) * 2010-04-23 2012-06-18 삼성모바일디스플레이주식회사 액정 디스플레이 장치와, 이의 제조 방법
US9657904B1 (en) * 2014-11-14 2017-05-23 Amazon Technologies, Inc. Photobleaching displays to mitigate color gradients
DE102015106050A1 (de) * 2015-04-21 2016-10-27 Schott Ag Glasrolle, Erzeugnis mit einer Glasrolle, Vorrichtung und Verfahren zu deren Herstellung
GB201715588D0 (en) * 2017-09-26 2017-11-08 Belron Int Ltd Curing repair resin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235351A (ja) * 1998-12-18 2000-08-29 Hitachi Ltd 画像表示装置及びその修正方法並びに修正装置
JP2002122872A (ja) * 2000-10-12 2002-04-26 Hitachi Ltd 液晶表示装置およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010041231A1 (en) * 1998-05-29 2001-11-15 Hiroyuki Kagawa Liquid crystal display device
EP1223604A1 (en) * 1999-10-12 2002-07-17 Matsushita Electric Industrial Co., Ltd. Liquid crystal display element, optically anisotropic film, and methods for manufacturing them

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235351A (ja) * 1998-12-18 2000-08-29 Hitachi Ltd 画像表示装置及びその修正方法並びに修正装置
JP2002122872A (ja) * 2000-10-12 2002-04-26 Hitachi Ltd 液晶表示装置およびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106305A (ja) * 2012-11-26 2014-06-09 Hitachi High-Technologies Corp 表示装置、及び表示装置の製造方法
WO2015033610A1 (ja) * 2013-09-09 2015-03-12 日本化薬株式会社 光学部材の製造方法及びそれに用いる紫外線硬化型樹脂組成物
CN105518764A (zh) * 2013-09-09 2016-04-20 日本化药株式会社 光学构件的制造方法及用于该制造方法的紫外线固化型树脂组合物
KR20160055134A (ko) * 2013-09-09 2016-05-17 닛뽄 가야쿠 가부시키가이샤 광학 부재의 제조 방법 및 그것에 이용하는 자외선 경화형 수지 조성물
JPWO2015033610A1 (ja) * 2013-09-09 2017-03-02 日本化薬株式会社 光学部材の製造方法及びそれに用いる紫外線硬化型樹脂組成物
KR102213491B1 (ko) * 2013-09-09 2021-02-08 닛뽄 가야쿠 가부시키가이샤 광학 부재의 제조 방법 및 그것에 이용하는 자외선 경화형 수지 조성물
JP2015223756A (ja) * 2014-05-27 2015-12-14 協立化学産業株式会社 積層体の製造方法
US10991898B2 (en) 2017-09-13 2021-04-27 Sakai Display Products Corporation Flexible display, method for manufacturing same, and support substrate for flexible display

Also Published As

Publication number Publication date
US20120327345A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
WO2011111273A1 (ja) 表示パネル及びその製造方法
US8395747B2 (en) Method for repairing glass substrate, process for producing glass substrate, glass substrate, and flat panel display
JP5299544B2 (ja) 画像表示装置の製造方法
TWI381199B (zh) Resin composition and display device
JP4711354B2 (ja) 画像表示装置の製造方法
US7910033B2 (en) Method for manufacturing image display device
KR101286829B1 (ko) 광학투명접착필름 및 이를 이용한 전자기기
CN110546227A (zh) 用于玻璃和聚碳酸酯的光学粘合剂
JPWO2019111763A1 (ja) ルーバーフィルム、面光源装置および液晶表示装置
KR20160137435A (ko) 적층체 및 액정 표시 장치
KR20180004241A (ko) 광학 부재의 제조 방법
JP6643574B2 (ja) 光硬化性樹脂組成物
KR20190080661A (ko) 편광판 및 이를 포함하는 광학표시장치
KR101435139B1 (ko) 도광판 무늬형용 활성에너지선경화형 수지 조성물
KR20160062305A (ko) 점착제 조성물 및 표시장치
KR101971049B1 (ko) 디스플레이 장치
US9557609B2 (en) Method for manufacturing polymer dispersed liquid crystal (PDLC) panel
JP5545239B2 (ja) 接着した部材からの光硬化性接着剤の除去方法、及び二部材の接着方法
JP2010243812A (ja) カラーフィルタ用樹脂組成物、カラーフィルタ基板及び液晶表示装置
JP2010204472A (ja) 偏光板の輝点欠陥修正用インク及びこれを用いた偏光板修正方法
JPH11125808A (ja) 液晶光学素子とその製造方法
JP2004310135A (ja) 光学機能性フィルムの製造方法
JP4617146B2 (ja) 拡散反射板の製造方法
JP2005173422A (ja) 電気光学表示装置及びその製造方法
JP2019117381A (ja) 偏光フィルムおよびその製造方法、光学フィルムおよび画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847500

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13583131

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP