WO2015031573A1 - Electrically insulating and thermally conductive polymer compositions - Google Patents
Electrically insulating and thermally conductive polymer compositions Download PDFInfo
- Publication number
- WO2015031573A1 WO2015031573A1 PCT/US2014/053081 US2014053081W WO2015031573A1 WO 2015031573 A1 WO2015031573 A1 WO 2015031573A1 US 2014053081 W US2014053081 W US 2014053081W WO 2015031573 A1 WO2015031573 A1 WO 2015031573A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- volume percent
- polymer composition
- volume
- coated
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/06—Elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08L67/025—Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/90—Methods of manufacture
Definitions
- LED light emitting diodes
- Thermal management of high power electronic devices such as LEDs is crucial in order to further their efficiency and safety. Particularly for LEDs as electronic devices that are handled, the likelihood of electric shock must be minimized.
- Managing thermal output of LEDs can occur by dissipating heat through a heat sink.
- LED housings function as a heat sink with aluminum commonly used as the heat sink material.
- a metal housing is relatively heavy compared to one made of polymer
- the LED housing must be designed to be designed to be aluminum. Since aluminum is electrically conductive, the LED housing must be designed to be aluminum. Since aluminum is electrically conductive, the LED housing must be designed to be aluminum. Since aluminum is electrically conductive, the LED housing must be designed to be aluminum. Since aluminum is electrically conductive, the LED housing must be designed to be aluminum. Since aluminum is electrically conductive, the LED housing must be designed to be aluminum. Since aluminum is electrically conductive, the LED housing must be designed to
- thermally conductive filler and platy thermally conductive filler.
- thermoplastic polymer having two fillers, both electrically insulating and thermally conductive.
- U.S. Pat. App. Pub. No. 2012/0157600 discloses a molded
- thermoplastic article comprising one or more thermoplastic polymers, a filler with thermal
- composition having a thermal conductivity of at least about 3 W/mK and having thermally conductive liquid crystal polymers comprising graphite, talc having an average particle size within the range of 10 to 100 microns, and a fibrous filler having an aspect ratio within the range of 3 to 20.
- U.S. Pat. No. 6620497 discloses an electrically insulating and thermally
- polymer compositions comprising:
- each component (a) to (d) is based on the total volume percent of the polymer composition; and these polymer compositions, when molded, have a volume resistivity of greater than 1 ⁇ 10 14 ⁇ , when measured according to ASTM D-257 at 100 Volts; and a thermal conductivity of at least 2.0 W/mK, when measured according to ASTM E-1461.
- the at least one polymer is selected from the group consisting of thermoplastic polymers, thermosetting polymers, polyarylene sulfides, aramid polymers, polyesters, polyamides, polycarbonates, polyolefins, polyacetals, and mixtures of these.
- the at least one coated carbon particle is selected from the group consisting of coated graphite, coated carbon fiber, coated glass carbon, coated amorphous carbon, and mixtures of these.
- the least one electrically insulating, inorganic platy filler is selected from the group consisting of metal oxides, metal carbonates, carbonate minerals, metal hydroxides, metal nitrides, metal sulfides, phosphate minerals, clay minerals, silicate minerals, glass materials, and mixtures of these.
- the terms “light-emitting diode” or “LED” refer to a device comprising at least one light- emitting semiconductor diode, an electrical connection capable of connecting the diode to an electrical circuit, and a housing partially surrounding the diode
- the terms “LED housing” or “housing” refer to that structural element that admits the partial or complete insertion of the diode within it and thereby forms a partial or total containment around the diode.
- An LED housing may comprise at least a portion made of polymeric material, which may be the compositions described herein.
- polymer refers to thermoplastic polymers, thermoset polymers, aramid polymers, and mixtures of these.
- carbon particle refers to particles containing carbon that is in the form of flakes and fibers and having a carbon content of about 75 weight percent, preferably greater than 85 weight percent, more preferably greater than 95 weight percent carbon.
- Carbon particles that can be coated include carbon powders, carbon flakes, graphite powders, graphite flakes, carbon fiber, glass carbon, amorphous carbon, and mixtures of these and may be naturally occurring or synthetic.
- Flaky carbon particles have a length and width at least 2.5 times greater than its thickness and a length to width ratio of less than about 2 before coating. Fibrous carbon particles have a diameter of from 0.5 to 50 microns and an aspect ratio that is the ratio of length to width, of from 3 to 15 before coating.
- coated carbon particles refers to carbon particles in which at least a portion of or the entire exterior surface of the carbon particle has been coated with a coating material.
- electrically insulating inorganic platy filler refers to fillers that are both inorganic and platy as well as electrically insulating.
- a platy filler is flaky, flat, or disk shaped and has a length and width at least 2.5 times greater than its thickness and a length to width ratio of less than 2.
- maximum length of longest dimension refers to the greatest possible measurement of any aspect— length, breadth, width, depth, etc.— that can be measured of the electrically insulating, inorganic platy filler.
- copolyester elastomer refers to elastomeric polymers that are block copolymers containing a) hard polyester segments and b) soft and flexible polyester segments.
- volume resistivity refers to the electrical insulating capacity or electrical resistivity of a material. Volume resistivity of a molded test sample having dimensions of 16 mm X 16 mm X 16 mm is measured by a resistivity meter according to ASTM D-257 at 100 Volts ["100V"]. This voltage most closely represents the voltage at which an LED device operates. Volume resistivity is reported as ohms -centimeters (0 « cm).
- thermal conductivity refers to the ability of a material to conduct thermal energy. Thermal conductivity of a molded test sample is measured in the in- plane direction using a laser flash method as described in ASTM E- 1461. Thermal conductivity is reported as watts per meter kelvin (W/mK).
- any range set forth herein expressly includes its endpoints unless explicitly stated otherwise. Setting forth an amount, concentration, or other value or parameter as a range specifically discloses all ranges formed from any pair of any upper range limit and any lower range limit, regardless of whether such pairs are separately disclosed herein. The processes and articles described herein are not limited to the specific values disclosed in defining a range in the description.
- compositions that, when molded, exhibit both a certain electrical resistivity in terms of volume resistivity as well as a minimum thermal conductivity. These compositions comprise:
- the volume percent of each component (a) to (d) is based on the total volume percent of the polymer composition; and these polymer compositions, when molded, have a volume resistivity of greater than 1 ⁇ 10 14 ⁇ , when measured according to ASTM D-257 at 100 Volts and a thermal conductivity of at least 2.0 W/mK, when measured according to ASTM E-1461.
- the at least one polymer is preferably selected from the group consisting of thermoplastic polymers, thermosetting polymers, polyarylene sulfides, aramid polymers, polyesters, polyamides, polycarbonates, polyolefins, polyacetals, and mixtures of these.
- the at least one coated carbon particle is selected from the group consisting of coated graphite, coated carbon fiber, coated glass carbon, coated amorphous carbon, and mixtures of these.
- the least one electrically insulating, inorganic platy filler is selected from the group consisting of metal oxides, metal carbonates, carbonate minerals, metal hydroxides, metal nitrides, metal sulfides, phosphate minerals, clay minerals, silicate minerals, glass materials, and mixtures of these.
- the polymer used in the polymer composition includes thermoplastic polymers, thermoset polymers, aramid polymers, and mixtures of these.
- thermoplastic polymers include polycarbonates, polyolefms such as polyethylene and
- polypropylene polypropylene, polyacetals, polyamides, polyesters, polysulfones, polyarylene sulfides, liquid crystal polymers such as aromatic polyesters, polyphenylene oxides, polyarylates,
- thermoplastic vulcanizates PEEK
- PEEK polyetheretherketones
- PEKK polyetherketoneketones
- TPV thermoplastic vulcanizates
- Preferred thermoplastic polymers include polycarbonates, polyolefms, polyarylene sulfide, polyacetals, polyamides, and polyesters, with polyesters most preferred.
- thermoset polymers include epoxy, polyurethane, vulcanized rubber, phenol- formaldehyde resins, unsaturated thermosetting polyester resins, and polyimide resins.
- the polyester is selected from the group consisting of polyesters derived from one or more dicarboxylic acids and one or more diols having two or more carbon atoms, copolyester thermoplastic elastomers, and mixtures of these.
- dicarboxylic acids include one or more of terephthalic acid, isophthalic acid, and 2,6-naphthalene dicarboxylic acid. Up to 20 mole percent of aliphatic dicarboxylic acids may be used to form the polyester including sebacic acid, adipic acid, azelaic acid, dodecanedioic acid, or 1 ,4-cyclohexanedicarboxylic acid.
- the diol component is selected from one or more of
- n is an integer of 3 to 10
- m on average is 1 to 4
- z is on average about 7 to about 40.
- diols include ethylene glycol; 1 ,3- trimethylene glycol; 1 ,4-tetramethylene glycol; 1 ,6-hexamethylene glycol; 1 ,8-octamethylene glycol; 1 , 10-decamethylene glycol; 1 ,3-propylene glycol; and 1 ,4-butylene glycol.
- the polyesters are selected from poly(trimethylene terephthalate) (PTT), poly(l ,4-butylene terephthalate) (PBT), poly(ethylene 2,6-naphthoate) (PEN), poly(l,4-butylene 2,6-naphthalate) (PBN), poly(l ,4-cyclohexyldimethylene terephthalate) (PCT), poly(ethylene terephthalate) (PET), and copolymers and mixtures of these.
- PTT poly(trimethylene terephthalate)
- PBT poly(l ,4-butylene terephthalate)
- PEN poly(ethylene 2,6-naphthoate)
- PBN poly(l,4-butylene 2,6-naphthalate)
- PCT poly(l ,4-cyclohexyldimethylene terephthalate)
- PET poly(ethylene terephthalate)
- Polyamides used as polymers in these compositions are condensation products of one or more dicarboxylic acids and one or more diamines, and/or one or more aminocarboxylic acids, and/or ring-opening polymerization products of one or more cyclic lactams.
- the polyamide resins are selected from aliphatic polyamide resins, semi-aromatic polyamide resins and mixtures of these.
- semi-aromatic describes polyamide resins that comprise at least some aromatic carboxylic acid monomer(s) and aliphatic diamine monomer(s), in comparison with "aliphatic” which describes polyamide resins comprising aliphatic carboxylic acid monomer(s) and aliphatic diamine monomer(s).
- Aliphatic polyamide resins are formed from aliphatic and alicyclic monomers such as diamines, dicarboxylic acids, lactams, aminocarboxylic acids, and their reactive equivalents. Suitable lactams include caprolactam and laurolactam.
- Carboxylic acid monomers useful in the preparation of fully aliphatic polyamide resins include, but are not limited to, aliphatic carboxylic acids, such as for example adipic acid (C6), pimelic acid (CI), suberic acid (C8), azelaic acid (C9), sebacic acid (CI O), dodecanedioic acid (C I 2) and tetradecanedioic acid (CI 4).
- Useful diamines include those having four or more carbon atoms, including, but not limited to tetramethylene diamine, hexamethylene diamine, octamethylene diamine, decamethylene diamine, 2- methylpentamethylene diamine, 2-ethyltetramethylene diamine, 2-methyloctamethylene diamine, trimethylhexamethylene diamine and mixtures of these.
- Suitable examples of fully aliphatic polyamide polymers include poly(s-caprolactam) PA6; poly(hexamethylene hexanediamide) (PA6,6); poly (2-methylpentamethylene hexanediamide (PAD,6); poly(pentamethylene decanediamide) (PA5, 10); poly(tetramethylene hexanediamide) (PA4,6); poly(hexamethylene decanediamide) (PA6, 10); poly(hexamethylene dodecanediamide) (PA6, 12); poly(hexamethylene tridecanediamide) (PA6, 13); PA6, 14; poly(hexamethylene pentadecanediamide) (PA6, 15);
- PA6, 16 poly(l 1 -aminoundecanamide) (PA1 1); poly(12-aminododecanamide) (PA12); and copolymers and mixtures of these.
- Preferred aliphatic polyamides include polyamide 6; polyamide 6,6; polyamide 4,6; polyamide 6, 10; polyamide 6, 12; polyamide 1 1 ; polyamide 12; polyamide 9, 10; polyamide 9, 12; polyamide 9, 13; polyamide 9, 14; polyamide 9, 15; polyamide 6, 16; polyamide 9,36; polyamide 10, 10; polyamide 10, 12; polyamide 10, 13; polyamide 10, 14; polyamide 12, 10; polyamide 12, 12; polyamide 12, 13; polyamide 12, 14; polyamide 6, 14; polyamide 6, 13; polyamide 6, 15; polyamide 6, 16; polyamide 6, 13; and copolymers and mixtures of these.
- Semi-aromatic polyamide resins are homopolymers, copolymers, terpolymers, or higher polymers in which at least a portion of the acid monomers are selected from one or more aromatic carboxylic acids.
- the one or more aromatic carboxylic acids can be terephthalic acid or mixtures of terephthalic acid and one or more other carboxylic acids, like isophthalic acid, substituted phthalic acid such as for example 2-methylterephthalic acid and unsubstituted or substituted isomers of naphthalenedicarboxylic acid.
- the one or more aromatic carboxylic acids are selected from terephthalic acid, isophthalic acid and mixtures of these.
- the one or more carboxylic acids are mixtures of terephthalic acid and isophthalic acid.
- the one or more carboxylic acids can be mixed with one or more aliphatic carboxylic acids, like adipic acid; pimelic acid; suberic acid; azelaic acid; sebacic acid and dodecanedioic acid, adipic acid being preferred.
- the mixture of terephthalic acid and adipic acid in the one or more carboxylic acids mixtures of the semi-aromatic polyamide resin contains at least 25 mole percent of terephthalic acid.
- Semi-aromatic polyamide resins comprise one or more diamines that may be chosen among diamines having four or more carbon atoms, including, but not limited to tetramethylene diamine, hexamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, 2-methylpentamethylene diamine, 2- ethyltetramethylene diamine, 2-methyloctamethylene diamine; trimethylhexamethylene diamine, bis(p-aminocyclohexyl)methane; m-xylylene diamine; p-xylylene diamine and mixtures of these.
- diamines that may be chosen among diamines having four or more carbon atoms, including, but not limited to tetramethylene diamine, hexamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, 2-methylpentamethylene diamine, 2- ethyltetramethylene diamine, 2-methylo
- Suitable semi-aromatic polyamide resins include poly(hexamethylene terephthalamide) (polyamide 6,T), poly(nonamethylene terephthalamide) (polyamide 9,T), poly(decamethylene terephthalamide) (polyamide 10,T), poly(dodecamethylene terephthalamide) (polyamide 12,T), hexamethylene adipamide/hexamethylene terephthalamide copolyamide (polyamide 6,176,6), hexamethylene terephthalamide/hexamethylene isophthalamide (6,T/6,I), poly(m-xylylene adipamide) (polyamide MXD,6), hexamethylene adipamide/hexamethylene terephthalamide copolyamide (polyamide 6,176,6), hexamethylene terephthalamide/2-methylpentamethylene terephthalamide copolyamide (polyamide 6,T/D,T), hexamethylene adipamide/hexamethylene a
- poly(capro lactam- hexamethylene terephthalamide) polyamide 6/6,T
- copolymers and blends of the same Preferred semi-aromatic polyamide resins comprised in the polyamide composition described herein include PA6,T; PA6,T/6,6; PA6,T/6,I; PAMXD,6; PA6,T/D,T and copolymers and mixtures of these.
- the at least one polymer present in the polymer composition ranges from about 20 to about 70 volume percent, preferably from about 30 to about 65 volume percent, and more preferably from about 40 to about 65 volume percent, based on the total volume of the polymer composition.
- the coated carbon particle(s) in the polymer compositions described herein may be made from almost any carbon particle so long as the particle is either flaky or fiber shaped and meets the specific, recited size and shape.
- the carbon particles used herein have a carbon content of greater than about 75 weight percent, preferably greater than 85 weight percent, and more preferably greater than 95 weight percent, based on the total weight of the carbon particle.
- Carbon particles include carbon powders, carbon flakes, graphite powders, graphite flakes, carbon fiber, glass carbon, amorphous carbon, and mixtures of these and may be naturally occurring or synthetic.
- the polymer compositions described herein may contain both coated flaky carbon particles and coated fibrous carbon particles.
- Carbon particles described herein that are flaky have a non- fibrous shape and an aspect ratio, that is, a length to width ratio, of less than 2. In addition to this aspect ratio, such particles are typically flat or plate-like in shape and have a length and width at least 2.5 times greater than their thickness.
- These flaky carbon particles have either a length or width that ranges from 5 to 300 microns, preferably from 15 to 200 microns, and more preferably from 35 to 100 microns.
- the aspect ratio of these flaky carbon particles is less than about 2; it is preferably 1.5 and more preferably about 1.0.
- the minimum thickness of these flaky carbon particles is 0.5 microns. The maximum thickness is determined by the length and width of the flaky particle.
- Fibrous carbon particles used in the compositions described herein have a diameter of from 0.5 to 50 microns and an aspect ratio that ranges from 3 to 15 and preferably from 4 to 10.
- a preferred fibrous particle is carbon fiber or pitch based carbon fiber. Pitch based carbon fiber having a thermal conductivity of 500 W/mK or greater is most preferred.
- the coating material of the carbon particle creates a coating on the surface of the particle that is not removed during the manufacture of the polymer compositions described herein. Put differently, the coating of the carbon particles must withstand the temperatures to which the polymer compositions described herein are exposed by continuing to coat the particles throughout preparation of these compositions and their molding. Coating materials may be metallic or polymeric.
- a metallic coating it results in a metal oxide coating on the carbon particle.
- One kind of metallic coating may be any silica-containing material that can coat the particle surface.
- the resulting metal oxide coating is Si0 2 .
- the Si0 2 can be formed from Si0 2 precursors such as terra ethoxy silane (TEOS) and tetra methoxy silane (TMOS).
- a polymeric coating may be thermoset polymers or any polymer with a melting point higher than the preparation or molding temperatures of the polymer compositions described herein.
- Some polymeric coatings include, but are not limited to, polyimides, melamine resins and phenol based resins.
- the surface of the coated carbon particle(s) can further comprise a coupling agent to improving the interfacial bonding between the surface of the coated carbon particle and polymer (a).
- coupling agents include metal hydroxides and alkoxides of Group Ilia thru Villa, lb, lib, Illb, and IVb of the Periodic Table and the lanthanides.
- Specific examples of coupling agents include metal hydroxides and alkoxides of metals selected from the group consisting of Ti, Zr, Mn, Fe, Co, Ni, Cu, Zn, Al, and B.
- Preferred metal hydroxides and alkoxides are those of Ti and Zr.
- Specific metal alkoxide coupling agents are titanate and zirconate orthoesters and chelates includin compounds of the formula (I), (II) and (III):
- M is Ti or Zr
- R is a monovalent Q - C 8 linear or branched alkyl
- X is selected from OH, -N(R1) 2 , -C(0)OR 3 , -C(0)R 3 , -C0 2 " A + ;
- R 1 is a -CH 3 or C 2 - C 4 linear or branched alkyl, optionally substituted with a hydroxyl or an ether oxygen; provided that no more than one heteroatom is bonded to any one carbon atom;
- R 3 is Ci - C 4 linear or branched alkyl
- a + is selected from NH 4+ , Li + , Na + , or K + .
- the coupling agent can be added to the coated carbon particles before the coated carbon particles are mixed with polymer (a) or can be added during blending of the electrically insulating inorganic platy filler with polymer (a).
- the amount of coupling agent is preferably 0.1 to 5 wt%, preferably 0.5 to 2 wt% of the weight of coated carbon particles added to the composition.
- the coated carbon particle in the polymer compositions described herein ranges from 10 to 35 volume percent, preferably from 15 to 35 volume percent, and more preferably from 20 to 35 volume percent, based on the total volume of the polymer compositions.
- the at least one electrically insulating inorganic platy filler in the polymer compositions described herein should have a length and width at least 2.5 times greater than its thickness and an aspect (length to width) ratio of less than 2.
- the electrically insulating inorganic platy filler preferably has a length and width at least 5 times greater than its thickness, and more preferably a length and width at least 10 times greater than its thickness.
- the electrically insulating inorganic platy fillers have a maximum length of longest dimension of 20 microns, preferably 10 microns, and more preferably 5 microns.
- the at least one electrically insulating, inorganic platy filler used in the polymer composition described herein has an electrical resistivity (p) of at least 1 x 10 9 ( ⁇ *m) measured at 20 °C.
- electrically insulating inorganic platy filler used as long as it has an electrical resistivity of at least 1 x 10 9 ( ⁇ ⁇ ).
- Non- limiting examples of electrically insulating inorganic platy fillers include metal oxides, metal carbonates, carbonate minerals, metal hydroxides, metal nitrides, metal sulfides, phosphate minerals, clay minerals, silicate minerals, glass materials, and mixtures of these.
- metal oxides include aluminum oxide (A1 2 0 3 ), zinc oxide (ZnO), titanium oxide (Ti0 2 ), iron oxide (FeO), magnesium oxide (MgO), silicon oxide (Si0 2 ), boehmite (A1 2 0 3 ⁇ H 2 0) and mixtures of these.
- metal carbonates include calcium carbonate (CaC0 3 ), magnesium carbonate (MgC0 3 ), and mixtures of these.
- carbonate minerals examples include calcite (polymorph of CaC0 3 ), aragonite (crystal forms of CaC0 3 ), dolomite (CaMg(C0 3 ) 2 ), hydrotalcite (Mg 6 Al 2 C0 3 (OH) 16 -4(H 2 0)), pyroaurite (Mg 6 Fe 2 (C0 3 )(OH) 16 4(H20)), stichtite (Mg 6 Cr 2 C0 3 (OH) 16 « 4H 2 0), desautelsite (Mg 6 M n3+2 (C0 3 )(OH) 16 .4H 2 0), manasseite
- metal hydroxides include aluminum hydroxide (Al(OH) 3 ), magnesium hydroxide (Mg( OH) 2 ), and mixtures of these.
- metal nitrides include boron nitride (BN), aluminum nitride (A1N), silicon nitride (Si 3 N 4 ), and mixtures of these.
- metal sulfides include molybdenum sulfide (MoS 2 ), tungsten sulfide (WS 2 ), zinc sulfide (ZnS) and mixtures of these.
- phosphate minerals include apatite (Ca 5 (P0 4 ) 3 (F,Cl,OH)), hydroxyapatite (Ca 5 (P0 4 ) 3 (OH)), and mixtures of these.
- silicate minerals include serpentine ((Mg,Fe) 3 Si 2 0 5 (OH) 4 ), pyrophyllite (Al 2 Si 4 O 10 (OH) 2 ), kaolin clay, sericite (KAl 2 AlSi 3 O 10 (OH) 2 ), montmorillonite
- the electrically insulating, inorganic platy filler(s) used in the polymer composition can be naturally mined or synthesized.
- the polymer composition may comprise one or more of these electrically insulating inorganic platy fillers.
- Suitable electrically insulating inorganic platy include aluminum oxide (alumina), zinc oxide, talc, magnesium oxide, silicon dioxide, boehmite, boron nitride, mica, aluminum nitride, silicon nitride, zinc sulfide, and mixtures of these.
- Preferred electrically insulating inorganic platy fillers include boehmite, talc, and mica.
- the surface of the electrically insulating, inorganic platy filler can comprise at least one coupling agent for the purpose of improving the interfacial bonding between the electrically insulating, inorganic platy filler surface and the polymer as well as the coated carbon particle.
- the coupling agent can be added to the electrically insulating inorganic platy filler before mixing the electrically insulating inorganic platy filler with the polymer or can be added while blending the electrically insulating inorganic platy filler with the polymer.
- the coupling agent is preferably 0.1 to 5 weight percent, more preferably 0.5 to 2 weight percent of the weight of the volume of electrically insulating inorganic platy filler added to the polymer composition.
- the volume percent of electrically insulating inorganic platy filler if weighed, has a specific weight.
- the amount of coupling agent used to coat the surface of the electrically insulating inorganic platy filler is preferably 0.1 to 5 weight percent of the weight of electrically insulating, inorganic platy filler used in the polymer composition.
- the total volume of the electrically insulating, inorganic platy filler in these compositions ranges from about 7 to about 35 volume percent, preferably from about 10 to 35 volume percent and more preferably from 20 to 35 volume percent, based on the total volume of the polymer composition.
- either the coated carbon particle may preferably range from 20 to 35 volume percent of the total volume of the polymer composition or the electrically insulating inorganic platy filler may preferably range from 20 to 35 volume percent of the total volume of the polymer composition or both the coated carbon particle and the electrically insulating inorganic platy filler may each range from 20 to 35 volume percent of the total volume of the polymer composition.
- the optional copolyester elastomers which can be used in the polymer compositions are block copolymers containing a) hard polyester segments and b) soft and flexible polyester segments.
- hard polyester segments are polyalkylene terephthalates,
- polyester segments are aliphatic polyesters, including polybutylene adipate, polytetramethyladipate and
- copolyesterester elastomers contain blocks of ester units of a high melting polyester and blocks of ester units of a low melting polyester which are linked together through ester groups and/or urethane groups.
- copolyester elastomers are HYTREL ® thermoplastic polyester elastomers available from E.I. DuPont de Nemours and Company, Wilmington, DE.
- concentration of copolyester elastomer in the polymer composition ranges from about 0.5 to about 25 volume percent, preferably from about 2 to about 20 volume percent of the total volume of the polymer composition.
- the polymer compositions described herein may optionally include one or more nucleating agents, which include talc and boron nitride.
- the polymer compositions may also comprise one or more flame retardants, flame retardant synergists, heat stabilizers, antioxidants, dyes, mold release agents, lubricants, and UV stabilizers.
- the total of the additional ingredients will preferably range from about 0.1 to about 10 weight percent, based on the total weight of the polymer composition.
- the polymer compositions described herein may be made using methods known to those skilled in the art, such as, for example, injection molding, blow molding, or extrusion. Molding these compositions facilitates the making of articles comprising the compositions. In addition, articles may be made by extruding these compositions. Such articles include motor housings, lamp housings, lamp housings in automobiles and other vehicles, and electrical and electronic housings. Examples of lamp housings in automobiles and other vehicles are front and rear lights, including headlights, tail lights, and brake lights, particularly those that use light- emitting diode (LED) lamps. The articles may serve as replacements for articles made from aluminum or other metals in many applications.
- LED light- emitting diode
- the present invention is illustrated by, but not limited to, the following examples (E) and comparative examples (C).
- PBT Polybutylene terephthalate polyester with an intrinsic viscosity of about 0.68 dl/g.
- PTT Polytrimethylene terephthalate polyester with an intrinsic viscosity of about 1.02 dl/g.
- PEE A thermoplastic copolyester elastomer available as HYTREL ® 4068 from E.I. DuPont de Nemours and Company, Wilmington, DE.
- Boehmite A An inorganic platy filler having an average particle size of 15 microns available as Celasule BMF from Kawai Lime Industry Co., Ltd.
- Boehmite B - A spherical particle having an average particle size of 4 microns available as Celasule BMT from Kawai Lime Industry Co., Ltd.
- Talc A - A platy talc having an average particle size of 5 microns available as LMS 200 from Fuji Talc Industrial Co., Ltd..
- Talc B - A platy talc having an average particle size of 19 microns available as NK48 from Fuji Talc Industrial Co., Ltd.
- Talc C - A platy talc having an average particle size of 26 microns available from Fuji Talc Industrial Co., Ltd..
- Mica B An inorganic platy filler having an average particle size of 10 microns available from Yamaguchi Mica Co., Ltd.
- Mica D An inorganic platy filler having an average particle size of 180 microns available as Mica B-82 from Yamaguchi Mica Co., Ltd.
- Boron Nitride - An inorganic platy filler having an average particle size of 5 microns available as Boron Nitride GP from Yamaguchi Mica Co., Ltd.
- FR- 1 - a granular, brominated epoxy flame retardant having a mean molecular weight of 10,000 available as SR-T 5000 from Sakamoto Yakuhin Kogyo.
- FR-2 - antimony trioxide/Polyethylene(80/20 by weight) master batch available as PE/FR-80 from Kawasaki Sanko Kasei.
- CF2 - Pitch based carbon fiber with average fiber length of 200 microns, fiber diameter of 1 1 microns, and aspect ratio (L:W) of 18 available as DIALEAD® K223HM from Mitsubishi Plastics.
- CTAB Hexadecyl trimethyl ammonium bromide
- the thermal conductivity of the molding obtained above was measured by a xenon flash apparatus (LFA 447 NanoFlash®, NETZSCH company) according to ASTM E-1461.
- the volume resistivity of the molding obtained above was measured by a resistivity meter (Hiresta UP: Model MCP-HT450, Mitsubishi Chemical Analytech Co., Ltd.) according to ASTM D-257.
- the maximum volume resistivity that can be measured by this method is 1.0 xl 0 14 D*cm Particle Size Measurement
- the average particle size D50 was measured by laser diffraction according to JIS R1629. Preparation of Coated Graphite Particles
- IP A Isopropyl alcohol
- deionized water a 25% concentration of ammonia in water mixture was added to the solvent as the catalyst, hexadecyl trimethyl ammonium bromide (CTAB, CAS# 57-09-0) added as a surfactant, and graphite particles having an average particle size of 42 microns were added to the solvent. While this mixture was being stirred, tetraethyl orthosilicate (TEOS, CAS. 78-10-4) was added to the mixture. The mixture was stirred at 60 °C for 2 hours by a magnetic stirrer and filtered to collect the silica coated graphite particles. The silica coated graphite articles were dried for 24 hours at room temperature.
- TEOS tetraethyl orthosilicate
- Tables 3 - 5 exhibits the volume concentration of each ingredient used in preparing the polymer compositions described herein.
- C 1 and C2 in Table 3 have a coated graphite particle but no inorganic platy filler.
- the maximum volume resistivity of CI or C2 is only 7xl0 6 D*cm and the thermal conductivity is 2.2 and 2.4 W/mK, respectively.
- C3 has a coated graphite particle as well as an electrically insulating inorganic platy filler having a maximum length of longest dimension of 20 ⁇ .
- C3 has a volume resistivity of greater than lxlO 14 D*cm but a thermal conductivity of only 1.5 W/mK, below the recited thermal conductivity of 2.0 W/mK.
- C4 has a filler that is not platy but relatively spherical. Although C3 exhibits the recited thermal conductivity, its volume resistivity is less than lxl 0 5 D'crn.
- El and E2 comprise both an electrically insulating inorganic platy filler (Boehmite) having a maximum length of longest dimension of 20 ⁇ and a coated graphite particle at a concentration greater than 10 volume percent. Both El and E2 have a volume resistivity of greater than 1 ⁇ 10 14 ⁇ and thermal conductivity of 2.3 and 2.9 W/mK, respectively. This combination of properties is obtained only when the electrically insulating inorganic platy filler has a maximum length of longest dimension of 20 ⁇ and the coated graphite particle is present in the polymer compositions described herein at a concentration greater than 10 volume percent. Table 3
- Table 4 shows E3 to E5 that have a coated graphite particle and an electrically insulating inorganic platy filler having a maximum length of longest dimension of 20 um at concentrations greater than 10 volume percent.
- Each of E3 to E5 have a thermal conductivity greater than 2.0 W/mK and a volume resistivity greater than l .Oxl O 14 ⁇ .
- C6 exhibits the recited thermal conductivity but the volume resistivity is only lxl 0 7 D*cm because the particle size of the electrically insulating inorganic platy filler is greater than 20 um.
- both E6 and E7 have a coated graphite particle and a mica inorganic platy filler of a particle size of less than 20 ⁇ and at volume concentrations of greater than 10 percent.
- E6 and E7 have volume resistivities greater than 1 x 10 14 D*cm and thermal conductivities greater than 2.0 W/mK.
- the polymer composition comprises a coated graphite particle
- the particle size of the mica when the particle size of the mica is greater than 20 ⁇ , the volume resistivity of the resultant polymer compositions is less than 1 x 10 5 D « cm.
- C7 and C8 show this principle, inasmuch as the maximum length of longest dimension of the mica particle in these compositions was 26 and 180 microns, respectively.
- C7 and C8 show that it is ONLY the combination of a coated graphite particle and an inorganic platy filler having a maximum length of longest dimension of 20 ⁇ that achieves a molded polymer composition having both a volume resistivity of greater than 1 ⁇ 10 14 ⁇ •cm and a thermal conductivity of at least 2.0 W/mK.
- the inorganic platy filler has a maximum length of longest dimension of greater than 20 ⁇ , even when a coated graphite particle is present, the polymer composition does not exhibit this combined property.
- the coated carbon particle may be either flaky or fibrous in shape as well as include coated carbon particles that are both flaky and fibrous.
- E8 exhibits the use of both a coated flaky graphite and a coated fibrous carbon particle in one composition. Specifically, E8 has an electrically insulating inorganic platy filler and both a coated graphite particle having a flaky shape and a coated carbon fiber that has a fibrous shape and an aspect ratio of 4.5.
- the fibrous coated carbon fiber helps improve thermal conductivity of the polymer compositions described herein while simultaneously providing a volume resistivity of greater than lxl 0 14 D'crn.
- C9 also uses both a coated graphite particle having a flaky shape and a coated carbon fiber that is fibrous but with an aspect ratio of 18, its volume resistivity is only 5xl0 8 O'cm. C9 shows that when a coated carbon fiber is used, the aspect ratio must be less than 15 in order to obtain the polymer compositions described herein that simultaneously exhibit a volume resistivity of greater than 1 ⁇ 10 14 ⁇ and a thermal conductivity of at least 2.0 W/mK. Table 5
- example E9 comprises 34 volume percent of polyester, a coated graphite particle, a talc having a particle size of 5 microns.
- Example E9 exhibits a volume resistivity greater than 1.0 ⁇ 10 14 ⁇ •cm and a thermal conductivity greater than 2.0 W/mK.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201480059617.9A CN105683272B (zh) | 2013-08-29 | 2014-08-28 | 电绝缘且导热的聚合物组合物 |
| EP14840283.7A EP3039066B1 (en) | 2013-08-29 | 2014-08-28 | Electrically insulating and thermally conductive polymer compositions |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013177724A JP6316556B2 (ja) | 2013-08-29 | 2013-08-29 | 電気絶縁性および熱伝導性のポリマー組成物 |
| JP2013-177724 | 2013-08-29 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2015031573A1 true WO2015031573A1 (en) | 2015-03-05 |
Family
ID=52587319
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/053081 Ceased WO2015031573A1 (en) | 2013-08-29 | 2014-08-28 | Electrically insulating and thermally conductive polymer compositions |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP3039066B1 (enExample) |
| JP (1) | JP6316556B2 (enExample) |
| CN (1) | CN105683272B (enExample) |
| WO (1) | WO2015031573A1 (enExample) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018146223A1 (en) * | 2017-02-13 | 2018-08-16 | Dsm Ip Assets B.V. | Method for preparing composition suitable for electrostatic painting |
| WO2019155419A1 (en) * | 2018-02-08 | 2019-08-15 | Celanese Sales Germany Gmbh | Polymer composite containing recycled carbon fibers |
| US10633535B2 (en) | 2017-02-06 | 2020-04-28 | Ticona Llc | Polyester polymer compositions |
| WO2020146747A1 (en) | 2019-01-11 | 2020-07-16 | Dupont Polymers, Inc. | Electrically insulating and thermally conductive polymer compositions |
| CN113614163A (zh) * | 2018-12-17 | 2021-11-05 | 杜邦聚合物公司 | 具有高介电常数和低介电损耗的聚合物组合物 |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6580851B2 (ja) * | 2015-03-31 | 2019-10-02 | 国立大学法人広島大学 | 高熱伝導性電気絶縁組成物 |
| WO2018194418A1 (ko) * | 2017-04-20 | 2018-10-25 | 주식회사 아모그린텍 | 그라파이트 조성물, 이를 포함하는 마스터배치 및 이를 통해 구현된 그라파이트 복합재 |
| CN109294173A (zh) * | 2018-09-10 | 2019-02-01 | 东莞市松研智达工业设计有限公司 | 一种导热绝缘pet复合材料及其制备方法 |
| FR3098817A1 (fr) * | 2019-07-16 | 2021-01-22 | Ppg Industries Ohio, Inc. | Compositions contenant des charges thermiquement conductrices |
| WO2022230970A1 (ja) * | 2021-04-28 | 2022-11-03 | パナソニックIpマネジメント株式会社 | 熱伝導性組成物及び熱伝導性材料 |
| JPWO2023182395A1 (enExample) * | 2022-03-25 | 2023-09-28 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6284817B1 (en) * | 1997-02-07 | 2001-09-04 | Loctite Corporation | Conductive, resin-based compositions |
| US20010048172A1 (en) * | 2000-01-11 | 2001-12-06 | Smith Lyle James | Polymer composition with boron nitride coated carbon flakes |
| US6503964B2 (en) * | 2000-01-11 | 2003-01-07 | Cool Options, Inc. | Polymer composition with metal coated carbon flakes |
| US20090152491A1 (en) * | 2007-11-16 | 2009-06-18 | E. I. Du Pont De Nemours And Company | Thermally conductive resin compositions |
| US20120157600A1 (en) * | 2010-12-20 | 2012-06-21 | E.I.Du Pont De Nemours And Company | Molded thermoplastic articles comprising thermally conductive polymers |
| US20120263940A1 (en) * | 2011-04-14 | 2012-10-18 | Ada Technologies, Inc. | Thermal interface materials and systems and devices containing the same |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5166689B2 (ja) * | 2005-10-17 | 2013-03-21 | 昭和電工株式会社 | シリカ被覆炭素繊維の製造方法 |
| JP5229462B2 (ja) * | 2008-07-24 | 2013-07-03 | 三菱瓦斯化学株式会社 | 絶縁性高熱伝導率樹脂複合材料 |
| JP2011016936A (ja) * | 2009-07-09 | 2011-01-27 | Mitsubishi Engineering Plastics Corp | 高熱伝導絶縁性樹脂組成物及び成形体 |
| US20130202882A1 (en) * | 2010-10-13 | 2013-08-08 | Kaneka Corporation | Highly thermally conductive resin molded article, and manufacturing method for same |
| US8741998B2 (en) * | 2011-02-25 | 2014-06-03 | Sabic Innovative Plastics Ip B.V. | Thermally conductive and electrically insulative polymer compositions containing a thermally insulative filler and uses thereof |
| CN102604371B (zh) * | 2012-02-17 | 2014-04-16 | 南京聚隆科技股份有限公司 | 一种高性价比绝缘导热聚酰胺复合材料及其制备方法 |
| CN103044904B (zh) * | 2012-12-27 | 2015-01-21 | 安徽科聚新材料有限公司 | 一种led灯座专用导热绝缘材料及其制备方法 |
-
2013
- 2013-08-29 JP JP2013177724A patent/JP6316556B2/ja active Active
-
2014
- 2014-08-28 WO PCT/US2014/053081 patent/WO2015031573A1/en not_active Ceased
- 2014-08-28 EP EP14840283.7A patent/EP3039066B1/en not_active Not-in-force
- 2014-08-28 CN CN201480059617.9A patent/CN105683272B/zh not_active Expired - Fee Related
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6284817B1 (en) * | 1997-02-07 | 2001-09-04 | Loctite Corporation | Conductive, resin-based compositions |
| US20010048172A1 (en) * | 2000-01-11 | 2001-12-06 | Smith Lyle James | Polymer composition with boron nitride coated carbon flakes |
| US6503964B2 (en) * | 2000-01-11 | 2003-01-07 | Cool Options, Inc. | Polymer composition with metal coated carbon flakes |
| US20090152491A1 (en) * | 2007-11-16 | 2009-06-18 | E. I. Du Pont De Nemours And Company | Thermally conductive resin compositions |
| US20120157600A1 (en) * | 2010-12-20 | 2012-06-21 | E.I.Du Pont De Nemours And Company | Molded thermoplastic articles comprising thermally conductive polymers |
| US20120263940A1 (en) * | 2011-04-14 | 2012-10-18 | Ada Technologies, Inc. | Thermal interface materials and systems and devices containing the same |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10633535B2 (en) | 2017-02-06 | 2020-04-28 | Ticona Llc | Polyester polymer compositions |
| WO2018146223A1 (en) * | 2017-02-13 | 2018-08-16 | Dsm Ip Assets B.V. | Method for preparing composition suitable for electrostatic painting |
| US11174383B2 (en) | 2017-02-13 | 2021-11-16 | Dsm Ip Assets B.V. | Method for preparing composition suitable for electrostatic painting |
| WO2019155419A1 (en) * | 2018-02-08 | 2019-08-15 | Celanese Sales Germany Gmbh | Polymer composite containing recycled carbon fibers |
| US11384238B2 (en) | 2018-02-08 | 2022-07-12 | Celanese Sales Germany Gmbh | Polymer composite containing recycled carbon fibers |
| US11993707B2 (en) | 2018-02-08 | 2024-05-28 | Celanese Sales Germany Gmbh | Polymer composite containing recycled carbon fibers |
| CN113614163A (zh) * | 2018-12-17 | 2021-11-05 | 杜邦聚合物公司 | 具有高介电常数和低介电损耗的聚合物组合物 |
| CN113614163B (zh) * | 2018-12-17 | 2023-06-16 | 杜邦聚合物公司 | 具有高介电常数和低介电损耗的聚合物组合物 |
| WO2020146747A1 (en) | 2019-01-11 | 2020-07-16 | Dupont Polymers, Inc. | Electrically insulating and thermally conductive polymer compositions |
| EP3908626A1 (en) * | 2019-01-11 | 2021-11-17 | Dupont Polymers, Inc. | Electrically insulating and thermally conductive polymer compositions |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6316556B2 (ja) | 2018-04-25 |
| JP2015044953A (ja) | 2015-03-12 |
| EP3039066A1 (en) | 2016-07-06 |
| CN105683272A (zh) | 2016-06-15 |
| CN105683272B (zh) | 2019-02-12 |
| EP3039066B1 (en) | 2019-02-27 |
| EP3039066A4 (en) | 2017-05-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3039066B1 (en) | Electrically insulating and thermally conductive polymer compositions | |
| JP4523004B2 (ja) | 耐燃焼性芳香族ポリアミド樹脂組成物、およびそれから形成された物品 | |
| KR101737592B1 (ko) | Led조명 하우징용 방열성 수지 조성물 및 그 led조명용 방열성 하우징 | |
| KR101333579B1 (ko) | 반사성, 내열성 및 내습성이 우수한 폴리아마이드 수지 조성물. | |
| KR102056808B1 (ko) | 레이저 직접 구조화 기능을 갖는 열 전도성 폴리머 조성물 | |
| US8324297B2 (en) | Partially aromatic moulding compositions and their uses | |
| KR101457016B1 (ko) | 내습성 및 열전도성이 우수한 열가소성 수지 조성물 및 성형품 | |
| US7989538B2 (en) | Flame resistant semiaromatic polyamide resin compositions and processes for the preparation of the compositions exhibiting increased melt flow and articles therefrom | |
| JP2014503658A (ja) | 熱伝導性ポリマーを含んでなる成形熱可塑性物品 | |
| EP2456815B1 (en) | Thermally conductive polymer compositions and articles made therefrom | |
| WO2007052727A1 (ja) | ポリアリーレンスルフィド組成物 | |
| CN106605310A (zh) | 汽车用led灯散热器 | |
| CN103965621A (zh) | 聚酰胺树脂组合物和由聚酰胺树脂组合物制备的模制品 | |
| WO2009061989A2 (en) | Nanocomposite compositions of polyamides, sepiolite-type clays and copper species and articles thereof | |
| KR102421217B1 (ko) | Led 반사판용 폴리아미드 조성물, led 반사판, 그 반사판을 구비한 발광 장치 | |
| JP2011526940A (ja) | スズ酸亜鉛を含む耐燃性半芳香族ポリアミド樹脂組成物、およびそれからの物品 | |
| KR102430122B1 (ko) | Led 반사판용 폴리아미드 조성물, led 반사판, 그 반사판을 구비한 발광 장치 | |
| JP6531414B2 (ja) | ポリアミド樹脂組成物およびそれを成形してなる成形品 | |
| KR20140095504A (ko) | 반사판용 수지 조성물 및 반사판 | |
| CN113906105A (zh) | 聚芳硫醚树脂组合物、将其成型而成的成型品、层叠体和它们的制造方法 | |
| JP7561130B2 (ja) | 電気絶縁及び熱伝導性ポリマー組成物 | |
| JP2007297568A (ja) | 難燃性ポリアミド系樹脂組成物 | |
| KR101231020B1 (ko) | 반사성, 내충격성, 내열성 및 내습성이 우수한 폴리아마이드 수지 조성물 및 그 제조방법 | |
| WO2022180221A1 (en) | Polymers having improved thermal conductivity | |
| JP7769914B2 (ja) | ポリアミド組成物および成形品 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14840283 Country of ref document: EP Kind code of ref document: A1 |
|
| REEP | Request for entry into the european phase |
Ref document number: 2014840283 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2014840283 Country of ref document: EP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |