WO2015029847A1 - ガラス基板生産管理システム及びガラス基板生産管理方法 - Google Patents

ガラス基板生産管理システム及びガラス基板生産管理方法 Download PDF

Info

Publication number
WO2015029847A1
WO2015029847A1 PCT/JP2014/071722 JP2014071722W WO2015029847A1 WO 2015029847 A1 WO2015029847 A1 WO 2015029847A1 JP 2014071722 W JP2014071722 W JP 2014071722W WO 2015029847 A1 WO2015029847 A1 WO 2015029847A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
defects
sided glass
sided
production management
Prior art date
Application number
PCT/JP2014/071722
Other languages
English (en)
French (fr)
Inventor
慎司 大東
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US14/914,058 priority Critical patent/US20160207822A1/en
Priority to KR1020157030959A priority patent/KR20160048030A/ko
Priority to CN201480038073.8A priority patent/CN105358495B/zh
Publication of WO2015029847A1 publication Critical patent/WO2015029847A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/037Controlling or regulating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8858Flaw counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32206Selection from a lot of workpieces to be inspected
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a glass substrate production management system and a glass substrate production management method. More specifically, a multi-sided glass substrate having a plurality of virtual single surfaces produced in an upstream process is subjected to product-related processing in a downstream process.
  • the present invention relates to a glass substrate production management system and a glass substrate production management method including a procedure for dividing the glass substrate into a plurality of single-sided glass plates.
  • glass substrates and organic ELs used in flat panel displays such as plasma displays, liquid crystal displays, field emission displays (including surface emission displays), electroluminescence displays, and organic EL displays.
  • FPDs flat panel displays
  • a glass substrate used for lighting, a glass substrate used for tempered glass that is a constituent element of a touch panel, a panel of a solar cell, or a glass substrate used for other electronic devices is a so-called multiple surface for the purpose of improving productivity. The actual situation is that the use as a glass substrate is promoted.
  • the mother glass is sequentially produced one by one as the most upstream process, and the mother glass is cut into a plurality of single-sided glass as the downstream process. It is divided into a plurality of single-sided glass plates after being divided into plates, or subjected to product-related processing such as formation of films and circuit patterns corresponding to a plurality of display screens on the surface of the mother glass.
  • Patent Document 1 a multi-sided glass substrate having a defect at a specific location is wasted in the process from the upstream process to the downstream process by handling it as a non-defective product. Is disclosed.
  • each multi-surface glass substrate is not wasteful so that all of the multi-surface glass substrates for four surfaces are not wasted due to a defect of one surface.
  • Defect information such as the position, type and size of the defect is transmitted from the upstream processer to the downstream processer. It is discarded as a glass plate.
  • Patent Document 1 needs to study and install a method for transmitting defect information from a processor in an upstream process to a processor in a downstream process, and to do so. Therefore, the complexity of inventory management and the complexity of product production planning become remarkable, and there is a problem that actual operation becomes difficult.
  • the technique disclosed in this document simply discards the single-sided glass plate that has been subjected to product-related processing in the downstream process, based on the defect information transmitted from the upstream process to the downstream process. Therefore, it is not clear whether or not the processor in the downstream process suffers a significant loss, and as a result, the processor in the downstream process suffers a very large loss. Yes.
  • the present invention has been made in view of the above circumstances, makes it unnecessary to transmit individual defect information of a multi-sided glass substrate from an upstream process to a downstream process, and simplifies the inspection of defects to improve work efficiency. It is an object of the present invention to provide a glass substrate production management system and a glass substrate production management method that take into account the total profit and loss of a processor in an upstream process and a processor in a downstream process.
  • the first aspect of the present invention created to solve the above problems is a procedure for dividing a multi-sided glass substrate produced in an upstream process into a plurality of single-sided glass plates by performing product-related processing in a downstream process.
  • a glass substrate production management system comprising 10 or more multi-surface glass substrates extracted from a single lot of 10 or more lots in the upstream process, and the multi-surface glass extracted based on the defect data of the defect inspection.
  • the benefits received by the processor of the upstream process by preliminarily considering the multi-sided glass substrate with defects as a non-defective product and sending it to the downstream side process, and the reserve
  • a processor in a downstream process due to the occurrence of a defective product due to the presence of the defect
  • the loss received, using the lot average defect density, the number of the defects present in a single multi-sided glass substrate was varied several times, based on the results of those trials, Trial calculation means for calculating an allowable number of defects, which is an appropriate number of the defects existing in one multi-sided glass substrate when the profit exceeds the loss, and the one lot of multi-sided glass in the
  • the “benefits received by the processor in the upstream process” in the above-mentioned calculation means are the profits that can be obtained in comparison with the conventional system in which the multi-sided glass substrate in which even one defect exists is discarded.
  • “loss received by the processor in the downstream process” means that in the conventional system, the multi-faced glass substrate sent from the upstream process to the downstream process is caused by the upstream process on the entire surface. This is a loss that occurs in comparison with the fact that all the single-sided glass plates obtained by performing product-related treatment and dividing them were non-defective.
  • the “product-related process” is a process for forming a film, a circuit pattern, or the like corresponding to a display screen on the surface of a multi-sided glass substrate.
  • a processor in the upstream process uses a molding apparatus or the like to sequentially produce a multi-faced glass substrate such as a rectangle, and the production of a multi-faced glass substrate of 10 or more lots is completed.
  • the first inspection means counts the number of defects present on the entire surface of each multi-faced glass based on the defect inspection defect data, A lot average defect density of a group of multi-surface glass substrates divided by the total area inspected is calculated.
  • the trial calculation means sequentially changes the number of the defects present in one multi-sided glass substrate, and the benefits received by the processor of the upstream process over a plurality of times, and the downstream process
  • an allowable number of defects which is an appropriate number of the defects present in one multi-sided glass substrate when the above-mentioned profit exceeds the above-mentioned loss
  • the permissible number of defects is calculated from the unit price per multi-surface glass substrate in the upstream process and the lot average defect density, and the number of the defects existing on the multi-surface glass substrate is one. From the yield (non-defective product rate) of the multi-sided glass substrate, the benefit received by the processor in the upstream process is revealed.
  • the defect is calculated from the unit price per single-surface glass plate and lot average defect density when product-related processing is performed on the multi-surface glass substrate in the downstream process and divided into a plurality of single-surface glass plates, and the defect
  • the multi-sided glass substrate including the virtual single side where the present exists being sent to the downstream process corresponding to the allowable number of defects
  • the single-sided glass plate after the division in the downstream process contains defects.
  • the loss experienced by the processor in the downstream process is determined from the failure rate.
  • the pass / fail judgment means actually In the case where the actual number of defects present in one multi-sided glass substrate is the allowable number of defects calculated by the trial calculation means, it is regarded as a good product together with the multi-sided glass substrate having no defects at all. It is sent to the downstream process, and other multi-sided glass substrates are discarded as defective products in the upstream process. As a result, the profit received by the processor in the upstream process and the loss received by the processor in the lower process become a total profit, so if this profit is distributed between the two, both can make a profit. .
  • the upstream process By performing the operation as described above, it is possible to judge the quality of the multi-sided glass substrate only in the upstream process in a state where the edge from the downstream process is cut, and accordingly, the upstream process Since it is no longer necessary to transmit defect information from the processor in the side process to the processor in the downstream process, it is advantageous in terms of equipment, inventory management, production planning, etc., and actual operations can be performed easily. It becomes. In addition, it is not necessary to carefully inspect defects in the upstream process, and the defect inspection work is greatly simplified, thereby improving work efficiency. In addition, considering the total profit and loss between the upstream processer and the downstream processer, it is determined whether the multi-sided glass substrate is a non-defective product or a defective product. No adverse effects occur such as only the person who is in the process or only the person who is in the downstream inversion process receives an undue loss.
  • the second aspect of the present invention which was created to solve the above-described problems, divides a multi-sided glass substrate produced in the upstream process into a plurality of single-sided glass plates by performing product-related processing in the downstream process.
  • a glass substrate production management system including a procedure for performing multiple sampling operations on the basis of defect data of defect inspection in which 10 or more substrates are extracted from one or more lots of multi-surface glass substrates in an upstream process.
  • the inspection means for inspecting the defect and counting the actual number of the defects present in the one-sided multi-sided glass substrate, and the one-lot multi-sided glass substrate in the upstream process,
  • the benefits received by the upstream processer by preliminarily considering the existing multi-sided glass substrate as a non-defective product and sending it to the downstream side process, and the product on the multi-sided glass substrate that was preliminarily regarded as a non-defective product
  • the lot average defect density the loss received by the processor in the downstream process due to the occurrence of a defective product due to the presence of the defect when the related process is performed and divided into a plurality of single-sided glass plates Then, the number of the defects present in a single multi-sided glass substrate is varied several times, and one sheet when the profit exceeds the loss based
  • a trial calculation means for calculating an allowable number of defects that is an appropriate number of the defects present in the multi-faced glass substrate, and an actual number of the defects present in one multi-faced glass substrate counted by the inspection means.
  • a multi-sided glass substrate that is within the range of the allowable number of defects calculated by the trial calculation means is a good product that is sent to a downstream process in addition to a multi-sided glass substrate that does not have any defects, and other multi-sided glass substrates are used.
  • a non-defective / non-defective determining means for rejecting in the upstream process.
  • This second aspect of the present invention differs from the above-mentioned first aspect of the present invention in that a single inspection means is used to calculate a lot average defect density, and there are defects in the total number of multi-sided glass substrates in one lot. This is the point that the actual number of defects existing on one multi-sided glass substrate is counted at the same time. Since the other configuration is the same, description of the operation or effect thereof is omitted here.
  • the surface of the multi-sided glass substrate on which product-related processing is performed in the downstream process a harmful area where defects are harmful to product-related processing, and defects are product-related processing.
  • the harmless area relief rate is determined by dividing the harmless area into harmless areas and dividing the area of the harmless area by the area of the glass substrate, and calculating the harmless area relief rate by the calculation means.
  • the processor in the upstream process is a manufacturer of mother glass as a multi-sided glass substrate for a flat panel display
  • the processor in the downstream process is a middle panel of a flat panel display. It may be the final manufacturer.
  • the processor of the upstream process sequentially manufactures the rectangular mother glass by the downdraw method or the float method, etc., and performs the above-described operation, the defect of the mother glass that is finally handled as a non-defective product will be obtained. The number can be estimated. Then, the panel manufacturer performs a normal inspection and eliminates defective products, so that the mother glass manufacturer and the panel manufacturer gain a profit when the profits and losses of both are totaled. .
  • the processor in the upstream process is a manufacturer of mother glass as a multi-sided glass substrate for a flat panel display, and the processor in the downstream process simply cuts from the mother glass of the flat panel display.
  • the manufacturer who processes into a surface glass plate may be sufficient.
  • the calculation by the trial calculation means and the determination by the quality determination means are preferably performed by a computer.
  • the third aspect of the present invention devised to solve the above problems is a procedure for dividing a multi-sided glass substrate produced in an upstream process into a plurality of single-sided glass plates by performing product-related processing in a downstream process.
  • Glass substrate production management method including, on the basis of defect data of defect inspection in which at least 10 sheets are extracted from one or more lots of multiple-surface glass substrates in an upstream process, A first inspection step of detecting a total number of defects present on the substrate and calculating a lot average defect density obtained by dividing the total number of defects by a total area to be inspected;
  • the benefits received by the processor of the upstream process by preliminarily considering the multi-sided glass substrate with defects as a good product and sending it to the downstream side process, and preliminarily
  • a processor in the downstream process receives a defective product due to
  • a second inspection step in which a defect inspection is performed to count the actual number of defects present in one multi-sided glass substrate, and the actual number of defects present in one multi-sided glass substrate is the trial calculation means.
  • a multi-sided glass substrate that is within the calculated allowable number of defects is a non-defective multi-sided glass substrate that is sent to the downstream process in addition to a non-defective multi-sided glass substrate, and the other multi-sided glass substrate is an upstream process.
  • the third aspect of the present invention relates to the glass substrate production management method, but the substantial operation or effect is the same as that of the glass substrate production management system according to the first aspect of the present invention. Then, the explanation is omitted.
  • the fourth aspect of the present invention devised to solve the above problems is a procedure for dividing a multi-sided glass substrate produced in the upstream process into a plurality of single-sided glass plates by performing product-related processing in the downstream process.
  • Glass substrate production management method including, on the basis of defect data of defect inspection in which at least 10 sheets are extracted from one or more lots of multiple-surface glass substrates in an upstream process, The total number of defects present on the substrate is detected, the average defect density is calculated by dividing the total number of defects by the total area to be inspected, and the total number of multi-sided glass substrates in the one lot is determined as a defect.
  • the trial calculation step of calculating the allowable number of defects of the defects present in the multi-faced glass substrate, and the actual number of the defects present in one multi-faced glass substrate counted in the inspection step are the trial calculation means.
  • a multi-sided glass substrate that is within the calculated allowable number of defects is a non-defective multi-sided glass substrate that is sent to the downstream process in addition to a non-defective multi-sided glass substrate, and the other multi-sided glass substrate is an upstream process. And a pass / fail judgment step for making a defective product discarded.
  • the fourth aspect of the present invention relates to the glass substrate production management method, but the substantial operation or effect is the same as that of the glass substrate production management system according to the second aspect of the present invention. Then, the explanation is omitted.
  • the surface of the multi-sided glass substrate on which the product-related processing is performed in the downstream side process a harmful area where the defect is harmful to the product-related processing, Dividing the defect into harmless areas that are harmless to product-related processing, taking the area of the harmless area and dividing it by the area of the glass substrate as the harmless area relief rate.
  • the processor of the upstream process is a manufacturer of mother glass as a multi-sided glass substrate for a flat panel display, and the downstream process
  • the processor may be an intermediate or final manufacturer of a panel of a flat panel display, or the upstream processor may be a multi-sided glass substrate for a flat panel display.
  • the manufacturer of the mother glass, and the processor in the downstream process may cut the mother glass of the flat panel display and process it into a single-sided glass plate.
  • the process and the pass / fail determination process may be executed by a computer.
  • the present invention it becomes unnecessary to transmit the defect information of the multi-sided glass substrate from the upstream process to the downstream process, and the defect inspection is simplified and the work efficiency is improved.
  • a glass substrate production management system and a glass substrate production management method that take into account the total profit and loss of the processor of the upstream process and the processor of the downstream process are realized.
  • FIG. 1 is a schematic configuration diagram showing a main configuration of a glass substrate production management system (hereinafter simply referred to as a production management system) according to an embodiment of the present invention
  • FIG. 2 is a flowchart showing a procedure of the production management system.
  • FIGS. 3 to 7 are schematic diagrams showing the implementation status of the production management system.
  • the multi-sided glass substrate 1 has a rectangular shape, and an area excluding the edges of four sides is virtually divided into eight virtual single surfaces 2.
  • the multi-sided glass substrate 1 is formed by a downdraw method or a float method in an upstream process and cut into a predetermined size (for example, a horizontal dimension of 1400 to 2600 mm and a vertical dimension of 1600 to 2800 mm).
  • FIG. 3B shows a state in which processing such as formation of a film or a circuit pattern is performed on all virtual single surfaces 2 of the multi-faced glass substrate 1 in a downstream process, and FIG. In the downstream process, each processed virtual single surface 2 is divided from each single-sided glass plate 3.
  • This production management system S is based on the first inspection means A performed by extracting from the multi-sided glass substrate 1 of 10 or more lots in the upstream process, and the trial calculation performed based on the detection result by the first inspection means A.
  • the result of this quality determination means D is reflected in a downstream process. Therefore, all the processes for one lot of the multi-sided glass substrate 1 are performed in the upstream process.
  • the first inspection means A is based on the defect data of the defect inspection in which 10 or more sheets are extracted from one lot of the multi-surface glass substrate 1 and the total number of defects existing in the multi-surface glass substrate 1 extracted. The number of defects is detected, and the average defect density obtained by dividing the total number of defects by the total area to be inspected is calculated.
  • the defect here means a defect that causes a problem in the downstream process.
  • the trial calculation means B first treats a lot of multi-sided glass substrate 1 as an upstream side process by preliminarily considering the multi-sided glass substrate 1 having defects as a non-defective product and sending it to the downstream side process. Seeking the profits that will receive. This calculation is based on the unit price per multi-sided glass substrate in the upstream process and the lot average defect density, and the number of defects existing on one multi-sided glass substrate is the provisional defect allowable number. It is obtained from the yield (non-defective product rate) of a certain multi-sided glass substrate.
  • a product-related process (a process of forming a film, a circuit pattern, or the like corresponding to a display screen on the surface of the multi-sided glass substrate 1) is performed on the multi-sided glass substrate 1 that is preliminarily regarded as a non-defective product.
  • segments into the single-sided glass plate 3 of this is calculated
  • the trial calculation means B makes a trial calculation several times to obtain the above-mentioned profit and the above-mentioned loss by varying the number of the defects present in the single multi-sided glass substrate. Based on the trial calculation results, the above-mentioned profit exceeds the above-mentioned loss (more preferably, the profit is the maximum within the trial calculation range). Calculate the number.
  • the calculation by the trial calculation means B is performed by a computer.
  • the second inspection means C performs a defect inspection on the total number of the multi-sided glass substrates 1 of the one lot, and compares them with virtual lines defining each virtual single side 2 of the multi-sided glass substrate 1. The permissible number of defects present in the multi-surface glass substrate is counted by actual measurement.
  • the pass / fail judgment means D determines that the actual number of the defects present in one multi-faced glass substrate in which the defects actually measured by the second inspection means C are present from one lot of the multi-faced glass substrate 1.
  • the multi-sided glass substrate 1 which is the true allowable number of the defects present in one multi-sided glass substrate calculated by the trial calculation means B is added to the multi-sided glass substrate 1 having no defects at all. A non-defective product to be sent to the downstream process. And let other multi-sided glass substrate 1 be inferior goods discarded in an upstream process.
  • the determination by the quality determination means D is performed by a computer.
  • Step S1 corresponds to the first detection means A, and here, for a multi-sided glass substrate 1 of 10 or more lots formed by a downdraw method or a float method and subjected to a predetermined processing, About the multi-surface glass substrate 1 from which 10 or more are extracted, defects are inspected, the total number of defects is counted, and a lot average defect density is calculated by dividing it by the total inspection area.
  • an optical automatic defect detection device is used in the first inspection means A (the same applies to the second inspection means C).
  • each virtual single face 2 of the multi-sided glass substrate 1 is defined. The virtual line need not be known in advance.
  • step S2 when it is assumed that the inspected multi-sided glass substrate 1 is regarded as a non-defective product in the downstream process, the number i of the defects existing in the single multi-sided glass substrate 1 is changed from 0 to 1. We decide by moving up one by one in order.
  • step S3 the cumulative profit received by the processor in the upstream process and the cumulative loss received by the processor in the downstream process are respectively compared for all cases i that are sequentially raised.
  • the accumulation mentioned here represents the accumulated value of profit and the accumulated value of loss calculated by sequentially incrementing i from 0 to 1.
  • the calculation of profit is based on the unit price per multi-sided glass substrate in the upstream side process and the lot average defect density, and the number of defects present on one multi-sided glass substrate 1 is the allowable number of defects. It is calculated
  • FIG. The loss is calculated from the unit price per single-sided glass plate 3 and lot average defect density when product-related processing is performed on the multi-sided glass substrate in the downstream process and divided into multiple single-sided glass plates.
  • the defect corresponding to the allowable number of defects is sent to the downstream process and is obtained from the yield that is contained in the single-sided glass plate 3 and becomes defective. In each case, to obtain the yield from the lot average defect density, it may be obtained probabilistically by an equation using a binomial cumulative distribution function.
  • step S4 if the accumulated profit exceeds the accumulated loss, the process proceeds to step S5. If not, the process proceeds to step S7.
  • step S5 if i is the largest cumulative profit compared to the previous trial calculation results in a series of trial calculations in which i is incremented from 0 to one, the process proceeds to step S6, and compared with the previous trial calculation results. If it is not the maximum accumulated profit, the process proceeds to step S8.
  • step S6 the value of i at that time is set as a provisional allowable number of defects (appropriate number of defects present in one multi-sided glass substrate), and the process proceeds to step S7.
  • step S7 it is determined whether the yield of the upstream process is 100% or more (has reached 100%).
  • step S8 the provisional allowable number of faces at that time is set as the final allowable number of faces (true allowable number of faces), and the process proceeds to step S9.
  • Step S9 corresponds to the second inspection means C, but here the total number of the defects present in one multi-sided glass substrate 1 is counted for the total number of multi-sided glass substrates 1 in one lot, Proceed to step S10.
  • Step S10 corresponds to the pass / fail judgment means D, but here, the non-defective product and the defective product are selected from the actual number of the defects present in the single-sided multi-sided glass substrate 1 and the true allowable number of defects. .
  • the case where the actual number of the defects present in one multi-sided glass substrate 1 is only one is regarded as a non-defective product, or there are cases where the number is two or three. It is determined whether the product is regarded as a non-defective product, and 100% inspection is performed based on the result.
  • the above-mentioned profits and losses are obtained by performing product-related processing on the multi-sided glass substrate 1 having no defects as shown in FIGS. 3 (a), (b), and (c).
  • the benefits and losses in the present invention are zero.
  • the price equivalent of all the multi-sided glass substrates 1 considered as defective products will be lost.
  • this is regarded as a loss. Therefore, in the present invention for comparison with the conventional system, the profit is determined by assuming that the loss is zero in such a case.
  • one multi-faced glass substrate 1 shown in FIG. 4A has one defect 4 on one virtual single face 2, and one piece shown in FIG. 5A.
  • one defect 4 is present on each of the two virtual single sides 2, and in one multi-sided glass substrate 1 shown in FIG.
  • One defect 4 exists on each of the surfaces 2, and one single-sided glass substrate 1 shown in FIG. 7A has one defect 4 on each of the four virtual single surfaces 2.
  • the first inspection means A simply detects the total number of defects 4 (10 in this example), and divides this total number by the total area of the multi-faced glass substrate 1 for four sheets.
  • the lot average defect density is calculated.
  • the process of trial calculation by the trial calculation means B based on this lot average defect density, as shown in FIG.
  • the multi-sided glass substrate 1 is sent as a non-defective product from the upstream process to the downstream process.
  • the harmless area relief rate ( ⁇ ) used in this calculation means that there is a defect that becomes defective in the upstream process from design information such as a circuit pattern formed on the glass substrate in the downstream process, for example.
  • design information such as a circuit pattern formed on the glass substrate in the downstream process, for example.
  • the area ratio is replaced as a probability from the design information of the circuit pattern.
  • the cumulative profit is the maximum (96 yen) when the allowable number of virtual faces is 1 among 8 virtual single faces, so in one lot of multi-sided glass substrate 1, one multi-sided glass
  • the actual number of defects present on the substrate is sent from the upstream process to the downstream process together with the defect that does not exist at all.
  • is 0% and Cbs is 10,000 yen
  • the accumulated profit is all zero or less, so in the multi-surface glass substrate 1 of one lot, only the one having no defects is upstream. It is sent from the process to the downstream process.
  • the harmless area relief rate ( ⁇ ) will be described in detail.
  • the circuit pattern Pa when it is planned that a plurality of linear circuit patterns Pa (regions with rough cross-hatching) are arranged in parallel on the multi-sided glass substrate 1, the circuit pattern Pa If there is a defect or a defect exists in a region Ba (region with fine cross-hatching) where the circuit pattern Pa is close, a disconnection or a short circuit may occur. Therefore, the region composed of Pa and Ba is defined as a harmful region where the existence of defects is not allowed, and the other region Ca (region hatched with parallel diagonal lines) is defined as a harmless region.
  • a value obtained by dividing the area of Ca by the area of the entire area (effective area) of the multi-sided glass substrate 1 is defined as a harmless area relief rate ( ⁇ ).
  • the defect information is transmitted from the processor in the upstream process to the processor in the downstream process. This is advantageous in terms of equipment, inventory management, production planning, and the like, and allows actual operations to be easily performed. Further, in the defect inspection, it is only necessary to detect the total number of defects for obtaining the lot average defect density and the number of defects 4 existing on one multi-sided glass substrate 1, and careful defects in the upstream process. This eliminates the need to inspect the defect, greatly simplifies the defect inspection operation, and improves the work efficiency.
  • the multi-sided glass substrate 1 is configured to determine whether it is a non-defective product or a defective product. Defects such as only the processor or only the processor of the downstream process suffering an undue loss will not occur.
  • the processor in the upstream process is a manufacturer of mother glass as a multi-sided glass substrate for flat panel displays, and the processor in the downstream process is an intermediate or final manufacturer of flat panel display panels.
  • the processor of the upstream process is a manufacturer of mother glass as a multi-sided glass substrate for flat panel displays, and the processor of the downstream process cuts from the mother glass of the flat panel display. Or a manufacturer who processes the glass into a single-sided glass plate.
  • the first detection means A, the trial calculation means B, the second inspection means C, and the non-defective product determination means D in the above embodiment may be performed continuously almost simultaneously. That is, an optical automatic defect detection apparatus in which an inspection object flows continuously is used.
  • a single inspection means A1 inspects with both purposes.
  • the non-defective product determination means C1 is immediately performed based on the result, and finally the inspection object is selected.
  • the detection of the lot average defect density by the detection means A1 may use a moving average according to the input of 10 or more consecutive inspection objects.
  • the plurality of virtual single surfaces configured in one multi-sided glass substrate are basically the same size, but may be different sizes.
  • the present invention is applied as the glass substrate production management system S.
  • the first inspection step A2 the trial calculation step B2, 2 inspection process C2 and pass / fail judgment process D2 may be provided
  • FIG. 11 similarly as glass substrate production management method S3, single inspection process A3, trial calculation process B3, and pass / fail judgment You may make it provide the process C3.
  • the process substantially the same as the above-mentioned glass substrate production management system S is performed regardless of whether all processes are performed by a computer.
  • the binomial cumulative distribution function is used to calculate the allowance between the profit received by the processor in the upstream process and the loss received by the processor in the downstream process.
  • the distribution is adopted on the premise that the distribution is binomial, and other distribution functions corresponding to the premise may be used.
  • the present invention is not limited to such a calculation method, as long as it is a method capable of calculating the profit received by the processor of the upstream process and the loss received by the processor of the downstream process, Other calculation techniques may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Quality & Reliability (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • General Factory Administration (AREA)
  • Liquid Crystal (AREA)

Abstract

 上流側工程で10枚以上の一ロットの多面採りガラス基板1から10枚以上を抜き取られて検査された欠陥データに基づいて、ロット平均欠陥密度を算出する第1検査手段Aと、上流側工程の処理者が受ける利益と下流側工程の処理者が受ける損失とを、1枚の多面採りガラス基板に存在する欠陥4の個数を異ならせて複数回に宣って試算し、それらの試算結果に基づいて、利益が損失を上回っている場合における1枚の多面採りガラス基板1に存在する欠陥4の欠陥許容個数を算出する試算手段Bと、一ロットの多面採りガラス基板1の全数を検査して1枚の多面採りガラス基板1に存在する欠陥4の個数を計数する第2検査手段Cと、多面採りガラス基板1の良否を判定する良否判定手段Dとを備える。

Description

ガラス基板生産管理システム及びガラス基板生産管理方法
 本発明は、ガラス基板生産管理システム及びガラス基板生産管理方法に係り、詳しくは、上流側工程で作製された複数の仮想単面を有する多面採りガラス基板を、下流側工程で製品関連処理を施して複数の単面ガラス板に分割する手順を含むガラス基板生産管理システム及びガラス基板生産管理方法に関する。
 周知のように、プラズマディスプレイ、液晶ディスプレイ、フィールドエミッションディスプレイ(サーフェイスエミッションディスプレイを含む)、エレクトロルミネッセンスディスプレイ、及び有機ELディスプレイ等のフラットパネルディスプレイ(以下、FPDともいう)に用いられるガラス基板、有機EL照明に用いられるガラス基板、タッチパネルの構成要素である強化ガラス等に用いられるガラス基板、太陽電池のパネル、或いはその他の電子デバイスに用いられるガラス基板は、生産性の向上等を目的として、いわゆる多面採りガラス基板としての使用が推進されているのが実情である。
 この種の多面採りガラス基板においては、最も上流側の処理として、マザーガラスを一枚ずつ順次作製することが行われ、その下流側の処理としては、マザーガラスを切断して複数の単面ガラス板に分割したり、或いはマザーガラスの表面に例えば複数のディスプレイ画面に対応する膜や回路パターンの形成等の製品関連処理を施した後に複数の単面ガラス板に分割することが行われる。
 その場合、従来においては、多面採りガラス基板における複数の仮想単面の如何なる位置にも欠陥が存在しないことが要求されていたことから、多面採りガラス基板の大型化に伴って、製品歩留まりが大きく低下し、コストの高騰を余儀なくされるという問題を有していた。
 このような問題に対処するため、例えば特許文献1によれば、特定の箇所に欠陥を有する多面採りガラス基板については、良品として取り扱うことにより、上流側工程から下流側工程に至る過程での無駄を省略することが開示されている。
 具体的には、例えば仮想単面が4面存在する場合に、そのうちの1面の欠陥のために4面分の多面採りガラス基板全部が無駄にならないように、個々の多面採りガラス基板毎の欠陥の位置、種類及び大きさなどの欠陥情報を、上流側工程の処理者から下流側工程の処理者に伝達し、悪質な欠陥が存在している仮想単面を、切断後に不良の単面ガラス板として廃棄している。
特許第4347067号公報
 しかしながら、上述の特許文献1に開示された手法は、欠陥情報を上流側工程の処理者から下流側工程の処理者に伝達するための方法の検討や設備が必要になると共に、それを行うことによる在庫管理の複雑化や製品の生産計画立案の煩雑化が顕著となり、現実の運用が困難になるという問題を有している。
 加えて、同文献に開示された手法は、単に上流側工程から下流側工程に伝達された欠陥情報に基づいて、下流側工程で製品関連処理が施された単面ガラス板を廃棄しているに過ぎないため、下流側工程での処理者が著しい損失を受けているか否かが判明せず、結果的には、下流側工程の処理者が極めて大きな損失を受けるという問題をも有している。
 本発明は、上記事情に鑑みてなされたものであり、多面採りガラス基板の個々の欠陥情報を上流側工程から下流側工程に伝達することを不要とし、且つ欠陥の検査を簡略化して作業能率の向上を図ると共に、上流側工程の処理者と下流側工程の処理者とのトータル的な損益をも考慮したガラス基板生産管理システム及びガラス基板生産管理方法を提供することを課題とする。
 上記課題を解決するために創案された第1の本発明は、上流側工程で作製された多面採りガラス基板を、下流側工程で製品関連処理を施して複数の単面ガラス板に分割する手順を含むガラス基板生産管理システムであって、上流側工程で10枚以上の一ロットの多面採りガラス基板から10枚以上が抜き取られた欠陥検査の欠陥データに基づいて、その抜き取られた多面採りガラス基板に存在している欠陥の総個数を検出し、その欠陥の総個数を検査対象とした総面積で除したロット平均欠陥密度を算出する第1検査手段と、上流側工程における前記一ロットの多面採りガラス基板について、欠陥が存在している多面採りガラス基板を予備的に良品とみなして下流側工程に送ることによる上流側工程の処理者が受ける利益と、それらの予備的に良品とみなされた多面採りガラス基板に製品関連処理を施して複数の単面ガラス板に分割した場合に前記欠陥の存在に起因して不良品が発生したことによる下流側工程の処理者が受ける損失とを、前記ロット平均欠陥密度を使用して、1枚の前記多面採りガラス基板に存在する前記欠陥の個数を異ならせて複数回に亘って試算し、それらの試算結果に基づいて、前記利益が前記損失を上回っている場合における1枚の前記多面採りガラス基板に存在する前記欠陥の適切個数である欠陥許容個数を算出する試算手段と、上流側工程における前記一ロットの多面採りガラス基板の全数を欠陥検査して1枚の前記多面採りガラス基板に存在する前記欠陥の実個数を計数する第2検査手段と、1枚の前記多面採りガラス基板に存在する欠陥の実個数が前記試算手段で算出された欠陥許容個数の範囲内にある多面採りガラス基板を、欠陥が全く存在していない多面採りガラス基板に加えて下流側工程に送る良品とし、その他の多面採りガラス基板を、上流側工程で廃棄する不良品とする良否判定手段と、を備えたことに特徴づけられる。
 ここで、上記の試算手段における「上流側工程の処理者が受ける利益」とは、欠陥が一つでも存在する多面採りガラス基板を廃棄していた従来システムとの比較において取得できる利益である。また、上記の試算手段における「下流側工程の処理者が受ける損失」とは、従来システムであれば、上流側工程から下流側工程に送られる多面採りガラス基板は、全面に上流側工程に起因する欠陥が存在していなかったことから、それらに製品関連処理を施して分割して得られた全ての単面ガラス板が良品であった事との比較において生じる損失である。なお、「製品関連処理」とは、多面採りガラス基板の表面に例えばディスプレイ画面に対応する膜や回路パターン等を形成する処理のことである。
 このような構成によれば、上流側工程の処理者が成形装置等を使用して矩形等の多面採りガラス基板を順次製作し、10枚以上の一ロットの多面採りガラス基振の製作が完了した時点または製作していく過程において、第1の検査手段が、欠陥検査の欠陥データに基づいて、各多面採りガラスの全面に存在している欠陥の個数を計数し、それらの総個数を、検査した総面積で除した一群の多面採りガラス基板のロット平均欠陥密度を算出する。次に、試算手段が、1枚の多面採りガラス基板に存在する前記欠陥の個数を順次異ならせて予備的に複数回に亘って、上流側工程の処理者が受ける利益と、下流側工程の処理者が受ける損失とを試算して、上記の利益が上記の損失を上回っている場合の1枚の多面採りガラス基板に存在する前記欠陥の適切個数である欠陥許容個数を算出する。この算出に際しては、上流側工程での多面採りガラス基板の一枚あたりの単価と、ロット平均欠陥密度から計算され且つ1枚の多面採りガラス基板に存在する前記欠陥の個数が欠陥許容個数にある多面採りガラス基板の収率(良品率)とから、上流側工程の処理者が受ける利益が判明する。また、下流側工程で多面採りガラス基板に製品関連処理を施して複数の単面ガラス板に分割した場合の単面ガラス板の一枚あたりの単価と、ロット平均欠陥密度から計算され且つ前記欠陥が存在している仮想単面を含む多面採りガラス基板が欠陥許容個数に対応して下流側工程にまで送られた結果、下流側工程での分割後の単面ガラス板に欠陥が含まれて不良になる率とから、下流側工程の処理者が受ける損失が判明する。この後においては、第2の検査手段が、前記一ロットの多面採りガラス基板の全数について、1枚の多面採りガラス基板に存在する前記欠陥の実個数を計数した後、良否判定手段が、実際に1枚の多面採りガラス基板に存在する前記欠陥の実個数が、試算手段で算出された欠陥許容個数である場合には、全く欠陥が存在していない多面採りガラス基板と共に、良品とみなして下流側工程に送り、その他の多面採りガラス基板は不良品として上流側工程で廃棄する。この結果、上流側工程の処理者が受ける利益と下琉側工程の処理者が受ける損失とは、トータルで利益となるため、この利益を両者で分配すれば、両者共に利益をあげることができる。以上のような動作が行われることにより、下流側工程とは縁が切れた状態で、上流側工程でのみ、多面採りガラス基板の良否の判断を行うことが可能となり、これに伴って、上流側工程の処理者から下流側工程の処理者に欠陥情報を伝達する必要がなくなるため、設備面、在庫管理面、及び生産計画立案面等で有利となり、現実の運用を簡単に行うことが可能となる。しかも、上流側工程での入念な欠陥の検査を行う必要がなくなり、欠陥の検査作業が極めて簡素化されて、作業能率の向上が図られる。加えて、上流側工程の処理者と下流側工程の処理者とのトータル的な損益を考慮して、多面採りガラス基板が良品か不良品かを決定する構成であるため、上流側工程の処理者のみまたは下流倒工程の処理者のみが不当な損失を受ける等の弊害も生じなくなる。
 また、上記課題を解決するために創案された第2の本発明は、上流側工程で作製された多面採りガラス基板を、下流側工程で製品関連処理を施して複数の単面ガラス板に分割する手順を含むガラス基板生産管理システムであって、上流側工程で10枚以上の一ロットの多面採りガラス基板から10枚以上が抜き取られた欠陥検査の欠陥データに基づいて、その抜き取られた多面採りガラス基板に存在している欠陥の総個数を検出し、その欠陥の総個数を検査対象とした総面積で除したロット平均欠陥密度を算出すると共に、前記一ロットの多面採りガラス基板の全数を欠陥検査して1面の前記多面採りガラス基板に存在する前記欠陥の実個数を計数する検査手段と、上流側工程における前記一ロットの多面採りガラス基板について、欠陥が存在している多面採りガラス基板を予備的に良品とみなして下流側工程に送ることによる上流側工程の処理者が受ける利益と、それらの予備的に良品とみなされた多面採りガラス基板に製品関連処理を施して複数の単面ガラス板に分割した場合に前記欠陥の存在に起因して不良品が発生したことによる下流側工程の処理者が受ける損失とを、前記ロット平均欠陥密度を使用して、1枚の多面採りガラス基板に存在する前記欠陥の個数を異ならせて複数回に亘って試算し、それらの試算結果に基づいて、前記利益が前記損失を上回っている場合における1枚の多面採りガラス基板に存在する前記欠陥の適切個数である欠陥許容個数を算出する試算手段と、前記検査手段により計数された1枚の多面採りガラス基板に存在する前記欠陥の実個数が、前記試算手段で算出された欠陥許容個数の範囲内にある多面採りガラス基板を、欠陥が全く存在していない多面採りガラス基板に加えて下流側工程に送る良品とし、その他の多面採りガラス基板を、上流側工程で廃棄する不良品とする良否判定手段と、を備えたことに特徴づけられる。
 この第2の本発明が、上述の第1の本発明と相違するところは、単一の検査手段で、ロット平均欠陥密度の算出と、一ロットの多面採りガラス基板の全数についての欠陥が存在している1枚の多面採りガラス基板に存在する欠陥の実個数の計数とを同時期に行うようにした点である。その他の構成は同一であるので、その動作或いは作用効果の説明は、ここでは省略する。
 上記第1及び第2の本発明において、下流側工程で製品関連処理が施される多面採りガラス基板の面を、欠陥が製品関連処理に対して有害となる有害領域と、欠陥が製品関連処理に対して無害となる無害領域とに区分して、無害領域の面積を多面採りガラス基板の面積で除した値を無害領域救済率とし、この無害領域救済率を、前記試算手段で行われる計算に使用することができる。
 このようにすれば、仮想単面に欠陥が存在していても、その欠陥が無害領域にあれば、下流側工程で不良とならないため、実情に合致することになって、試算手段での計算精度が高くなる。
 以上の構成において、前記上流側工程の処理者が、フラットパネルディスプレイ用の多面採りガラス基板としてのマザーガラスの製造者であり、前記下流側工程の処理者が、フラットパネルディスプレイのパネルの中間や最終の製造者であってもよい。
 このようにすれば、上流側工程の処理者がダウンドロー法やフロート法等により矩形のマザーガラスを順次製作し、既述の動作を行えば、最終的に良品として取り扱うマザーガラスについての欠陥の個数を推定できることになる。そして、パネルの製造者は、通常の検査を行って不良品を排除することにより、マザーガラスの製造者とパネルの製造者とについては、両者の損益をトータルした場合に利得が出ることになる。
 また、前記上流側工程の処理者が、フラットパネルディスプレイ用の多面採りガラス基板としてのマザーガラスの製造者であり、前記下流側工程の処理者が、フラットパネルディスプレイのマザーガラスから切断して単面ガラス板に加工する製造者であってもよい。
 このようにした場合であっても、直上述の場合と同様の利点を得ることができる。
 そして、前記試算手段での算出と、前記良否判定手段での判定とは、コンピュータで行うことが好ましい。
 このようにすれば、複雑且つ必要な計算などの自動化が図られ、迅速な処理を行うことが可能なシステムが実現する。
 上記課題を解決するために創案された第3の本発明は、上流側工程で作製された多面採りガラス基板を、下流側工程で製品関連処理を施して複数の単面ガラス板に分割する手順を含むガラス基板生産管理方法であって、上流側工程で10枚以上の一ロットの多面採りガラス基板から10枚以上が抜き取られた欠陥検査の欠陥データに基づいて、その抜き取られた多面採りガラス基板に存在している欠陥の総個数を検出し、その欠陥の総個数を検査対象とした総面積で除したロット平均欠陥密度を算出する第1検査工程と、上流側工程における前記一ロットの多面採りガラス基板について、欠陥が存在している多面採りガラス基板を予備的に良品とみなして下流側工程に送ることによる上流側工程の処理者が受ける利益と、それらの予備的に良品とみなされた多面採りガラス基板に製品関連処理を施して複数の単面ガラス板に分割した場合に前記欠陥の存在に起因して不良品が発生したことによる下流側工程の処理者が受ける損失とを、前記ロット平均欠陥密度を使用して、1枚の多面採りガラス基板に存在する前記欠陥の個数を異ならせて複数回に亘って試算し、それらの試算結果に基づいて、前記利益が前記損失を上回っている場合における1枚の多面採りガラス基板に存在する前記欠陥の適切個数である欠陥許容個数を算出する試算工程と、上流側工程における前記一ロットの多面採りガラス基板の全数を欠陥検査して1枚の多面採りガラス基板に存在する前記欠陥の実個数を計数する第2検査工程と、1枚の多面採りガラス基板に存在する前記欠陥の実個数が前記試算手段で算出された欠陥許容個数の範囲内にある多面採りガラス基板を、欠陥が全く存在していない多面採りガラス基板に加えて下流側工程に送る良品とし、その他の多面採りガラス基板を、上流側工程で廃棄する不良品とする良否判定工程と、を備えたことに特徴づけられる。
 この第3の本発明は、ガラス基板生産管理方法に係るものであるが、実質的な動作或いは作用効果は、上述の第1の本発明に係るガラス基板生産管理システムと同一であるので、ここではその説明を省略する。
 上記課題を解決するために創案された第4の本発明は、上流側工程で作製された多面採りガラス基板を、下流側工程で製品関連処理を施して複数の単面ガラス板に分割する手順を含むガラス基板生産管理方法であって、上流側工程で10枚以上の一ロットの多面採りガラス基板から10枚以上が抜き取られた欠陥検査の欠陥データに基づいて、その抜き取られた多面採りガラス基板に存在している欠陥の総個数を検出し、その欠陥の総個数を検査対象とした総面積で除したロット平均欠陥密度を算出すると共に、前記一ロットの多面採りガラス基板の全数を欠陥検査して1枚の前記多面採りガラス基板に存在する前記欠陥の実個数を計数する検査工程と、上流側工程における前記一ロットの多面採りガラス基板について、欠陥が存在している多面採りガラス基板を予備的に良品とみなして下流側工程に送ることによる上流側工程の処理者が受ける利益と、それらの予備的に良品とみなされた多面採りガラス基板に製品関連処理を施して複数の単面ガラス板に分割した場合に前記欠陥の存在に起因して不良品が発生したことによる下流側工程の処理者が受ける損失とを、前記ロット平均欠陥密度を使用して、1枚の前記多面採りガラス基板に存在する前記欠陥の実個数を異ならせて複数回に亘って試算し、それらの試算結果に基づいて、前記利益が前記損失を上回っている場合における1枚の前記多面採りガラス基板に存在する前記欠陥の欠陥許容個数を算出する試算工程と、前記検査工程で計数された1枚の前記多面採りガラス基板に存在する前記欠陥の実個数が、前記試算手段で算出された欠陥許容個数の範囲内にある多面採りガラス基板を、欠陥が全く存在していない多面採りガラス基板に加えて下流側工程に送る良品とし、その他の多面採りガラス基板を、上流側工程で廃棄する不良品とする良否判定工程と、を備えたことに特徴づけられる。
 この第4の本発明は、ガラス基板生産管理方法に係るものであるが、実質的な動作或いは作用効果は、上述の第2の本発明に係るガラス基板生産管理システムと同一であるので、ここではその説明を省略する。
 この場合、上述の第3及び第4の本発明においても、下流側工程で製品関連処理が施される多面採りガラス基板の面を、欠陥が製品関連処理に対して有害となる有害領域と、欠陥が製品関連処理に対して無害となる無害領域とに区分して、無害領域の面積を多面採りガラス基板の面積で除した値を無害領域救済率とし、この無害領域救済率を、前記試算手段(試算工程)で行われる計算に使用することができ、また、前記上流側工程の処理者が、フラットパネルディスプレイ用の多面採りガラス基板としてのマザーガラスの製造者であり、前記下流側工程の処理者が、フラットパネルディスプレイのパネルの中間や最終の製造者であってもよく、もしくは、前記上流側工程の処理者が、フラットパネルディスプレイ用の多面採りガラス基板としてのマザーガラスの製造者であり、前記下流側工程の処理者が、フラットパネルディスプレイのマザーガラスから切断して単面ガラス板に加工する製造者であってもよく、さらには、前記試算工程と良否判定工程とがコンピュータにより実行されるものであってもよい。
 以上のように本発明によれば、多面採りガラス基板の欠陥情報を上流側工程から下流側工程に伝達することが不要となり、且つ欠陥の検査が簡略化されて作業能率の向上が図られると共に、上流側工程の処理者と下流側工程の処理者のトータル的な損益をも考慮したガラス基板生産管理システム及びガラス基板生産管理方法が実現する。
本発明の実施形態に係るガラス基板生産管理システムの主たる構成を示す概略構成図である。 本発明の実施形態に係るガラス基板生産管理システムの手順を示すフローチャートである。 本発明の実施形態に係るガラス基板生産管理システムを使用して、現実に単面ガラス板を製作する過程を示す概略図である。 本発明の実施形態に係るガラス基板生産管理システムを使用して、現実に単面ガラス板を製作する過程を示す概略図である。 本発明の実施形態に係るガラス基板生産管理システムを使用して、現実に単面ガラス板を製作する過程を示す概略図である。 本発明の実施形態に係るガラス基板生産管理システムを使用して、現実に単面ガラス板を製作する過程を示す概略図である。 本発明の実施形態に係るガラス基板生産管理システムを使用して、現実に単面ガラス板を製作する過程を示す概略図である。 本発明の実施形態に係るガラス基板生産管理システムを使用して、現実に単面ガラス板を製作する過程を示す概略図である。 本発明の実施形態に係るガラス基板生産管理システムを使用して、現実に単面ガラス板を製作する過程を示す概略図である。 本発明の実施形態に係るガラス基板生産管理システムを使用して、現実に単面ガラス板を製作する過程を示す概略図である。 本発明の実施形態に係るガラス基板生産管理システムを使用して、現実に単面ガラス板を製作する過程を示す概略図である。 本発明の実施形態に係るガラス基板生産管理システムを使用して、現実に単面ガラス板を製作する過程を示す概略図である。 本発明の実施形態に係るガラス基板生産管理システムを使用して、現実に単面ガラス板を製作する過程を示す概略図である。 本発明の実施形態に係るガラス基板生産管理システムを使用して、現実に単面ガラス板を製作する過程を示す概略図である。 本発明の実施形態に係るガラス基板生産管理システムを使用して、現実に単面ガラス板を製作する過程を示す概略図である。 本発明の実施形態に係るガラス基板生産管理システムを使用して、現実に単面ガラス板を製作する過程を示す概略図である。 本発明の実施形態に係るガラス基板生産管理システムを使用して、現実に単面ガラス板を製作する過程を示す概略図である。 本発明の実施形態に係るガラス基板生産管理システムで使用する無害領域救済率を説明するための概略平面図である。 本発明の他の実施形態に係るガラス基板生産管理システムの主たる構成を示す概略構成図である。 本発明の実施形態に係るガラス基板生産管理方法の主たる構成を示す概略構成図である。 本発明の他の実施形態に係るガラス基板生産管理方法の主たる構成を示す概略構成図である。
 以下、本発明の実施形態に係るガラス基板の製造方法について図面を参照しつつ説明する。
 図1は、本発明の実施形態に係るガラス基板生産管理システム(以下、単に生産管理システムという)の主たる構成を示す概略構成図であり、図2は、その生産管理システムの手順を示すフローチャートであって、図3~図7は、その生産管理システムの実施状況を示す概略図である。
 先ず、便宜上、図3に基づいて、当該生産管理システムの初期状態における主要部の構成を説明する。図3(a)に示すように、多面採りガラス基板1は矩形状をなし、4辺の縁部を除外した領域が、8個の仮想単面2に仮想区画されている。この多面採りガラス基板1は、上流側工程で、ダウンドロー法やフロート法で成形されて、所定の大きさ(例えば横寸法が1400~2600mm、縦寸法が1600~2800mm)に切断されている。図3(b)は、下流側工程で、多面採りガラス基板1の全ての仮想単面2に、膜や回路パターンの形成等の処理が施された状態を示し、図3(c)は、当該下流側工程で、処理済みの各仮想単面2が、各単面ガラス板3と分割された状態を示している。
 次に、本実施形態に係る生産管理システムの構成を図1を参照しつつ説明する。この生産管理システムSは、上流側工程で10枚以上の一ロットの多面採りガラス基板1から抜き取りにより行われる第1検査手段Aと、この第1検査手段Aによる検出結果に基づいて行われる試算手段Bと、一のロットの全数に対して行われる第2検査手段Cと、試算手段Bの算出結果と第2検査手段の検出結果とに基づいて行われる良否判定手段Dとを有する。そして、この良否判定手段Dの結果は、下流側工程に反映される。従って、一ロットの多面採りガラス基板1についての各処理は、全てが上流側工程で行われる。
 上記第1検査手段Aは、一ロットの多面採りガラス基板1から10枚以上が抜き取られた欠陥検査の欠陥データに基づいて、その抜き取られた多面採りガラス基板1に存在している欠陥の総個数を検出し、その欠陥の総個数を、検査対象となった総面積で除したロット平均欠陥密度を算出するものである。ここでいう欠陥とは、下流側工程において問題となる程度の欠陥を意味している。
 上記試算手段Bは、先ず、一ロットの多面採りガラス基板1について、欠陥が存在している多面採りガラス基板1を予備的に良品とみなして下流側工程に送ることによる上流側工程の処理者が受ける利益を求める。この算出は、上流側工程での多面採りガラス基板の一枚あたりの単価と、ロット平均欠陥密度から計算され且つ1枚の多面採りガラス基板に存在する前記欠陥の個数が仮の欠陥許容個数にある多面採りガラス基板の収率(良品率)とから求められる。次いで、それらの予備的に良品とみなされた多面採りガラス基板1に製品関連処理(多面採りガラス基板1の表面に例えばディスプレイ画面に対応する膜や回路パターン等を形成する処理)を施して複数の単面ガラス板3に分割した場合に下流側工程の処理者が受ける損失を求める。この算出は、下流側工程で多面採りガラス基板1に製品関連処理を施して複数の単面ガラス板3に分割した場合の単面ガラス板の一枚あたりの単価と、ロット平均欠陥密度から計算され且つ上記の仮の欠陥許容個数に対応する欠陥が下流側工程にまで送られて単面ガラス板3に含まれて不良になる収率とから求められる。さらに、試算手段Bは、上記の1枚の多面採りガラス基板に存在する前記欠陥の個数を異ならせて、上述の利益と上述の損失とを求めることを複数回に亘って試算し、それらの試算結果に基づいて、上述の利益が上述の損失を上回っている場合(より好ましくはその利益が試算範囲内で最大である場合)における1枚の多面採りガラス基板に存在する前記欠陥の欠陥許容個数を算出する。なお、この試算手段Bによる算出は、コンピュータで行われる。
 上記第2検査手段Cは、上記一ロットの多面採りガラス基板1の全数を欠陥検査して、多面採りガラス基板1の各仮想単面2を区画している仮想線と照合しながら、1枚の多面採りガラス基板に存在する前記欠陥の欠陥許容個数を実測により計数する。
 上記良否判定手段Dは、一ロットの多面採りガラス基板1の中から、第2検査手段Cで実測された欠陥が存在している1枚の多面採りガラス基板に存在する前記欠陥の実個数が、上記試算手段Bで算出された1枚の多面採りガラス基板に存在する前記欠陥の真の許容個数である多面採りガラス基板1を、欠陥が全く存在していない多面採りガラス基板1に加えて下流側工程に送る良品とする。そして、その他の多面採りガラス基板1を、上流側工程で廃棄する不良品とする。なお、この良否判定手段Dによる判定は、コンピュータで行われる。
 以上の手順を、図2に示すフローチャートのステップS1~S7を参照して、詳しく説明する。このフローチャートは、上流側工程での処理の手順のみを示している。
 ステップS1は、第1検出手段Aに相当し、ここでは、ダウンドロー法やフロート法等で成形されて所定の加工が施された10枚以上の一ロットの多面採りガラス基板1を対象として、その中から10枚以上を抜き取った多面採りガラス基板1について、欠陥の検査を行い欠陥の総個数を計数し、それを検査総面積で除したロット平均欠陥密度を算出する。第1検査手段A(第2検査手段Cも同様)では、光学式の自動欠陥検出装置が使用されるが、本発明においては、多面採りガラス基板1の各仮想単面2を区画している仮想線が予め判明している必要は無い。
 ステップS2では、検査が行われた多面採りガラス基板1を、下流側工程で良品としてみなすと仮定した場合における当該1枚の多面採りガラス基板1に存在する前記欠陥の個数iを0個から1個ずつ順に繰り上げて決定していく。そして、ステップS3では、順次繰り上がっていくiの全ての場合について、それぞれ、上流側工程の処理者が受ける累積利益と、下流側工程の処理者が受ける累積損失とを比較する。ここで言う累積とは、iが0個から1個ずつ順に繰り上がることによって算出される利益の累積値及び損失の累積値を表す。利益の算出は、上流側工程での多面採りガラス基板の一枚あたりの単価と、ロット平均欠陥密度から計算され且つ1枚の多面採りガラス基板1に存在する前記欠陥の個数が欠陥許容個数にある多面採りガラス基板1の収率とから求められる。損失の算出は、下流側工程で多面採りガラス基板に製品関連処理を施して複数の単面ガラス板に分割した場合の単面ガラス板3の一枚あたりの単価と、ロット平均欠陥密度から計算され且つ上記の欠陥許容個数に対応する欠陥が下流側工程にまで送られて単面ガラス板3に含まれて不良になる収率とから求められる。それぞれにおいて、ロット平均欠陥密度から収率を求めるには二項累積分布関数を用いた式で確率的に求めるとよい。
 ステップS4では、累積利益が累積損失を上回っている場合に、ステップS5に進み、上回っていない場合にはステップS7に進む。ステップS5では、iが0個から1個ずつ順に繰り上がる一連の試算の中で今までの試算結果に比べて最大の累積利益である場合にはステップS6へ進み、今までの試算結果に比べて最大の累積利益でない場合はステップS8に進む。ステップS6では、その時のiの値を仮の欠陥許容個数(1枚の多面採りガラス基板に存在する欠陥の適切個数)としてステップS7に進む。ステップS7で上流側工程の歩留まりが100%以上(100%に到達している)かを判断して、100%以上ならステップS8に進み、100%未満ならばステップS2に戻る。ステップS8では、その時の仮の許容面数を最終的な許容面数(真の許容面数)としステップS9に移る。
 ステップS9は、第2検査手段Cに相当するが、ここでは、一ロットの多面採りガラス基板1の全数について、1枚の多面採りガラス基板1に存在する前記欠陥の実個数を計数して、ステップS10へ進む。ステップS10は、良否判定手段Dに相当するが、ここでは、1枚の多面採りガラス基板1に存在する前記欠陥の実個数と真の欠陥許容個数とから、良品と不良品との選別を行う。
 以上の動作が完了することにより、1枚の多面採りガラス基板1に存在する前記欠陥の実個数が1個のみの場合を良品としてみなすか、あるいはそれが2個または3個などの場合をも良品としてみなすかが判明して、その結果に基づいて全数検査選別される。
 更に詳述すると、上述の利益と損失は、図3(a)、(b)、(c)に示すように、欠陥が全く存在しない多面採りガラス基板1に、製品関連処理を施した後、8個の単面ガラス板3に分割した場合には、上流側及び下流側共に欠陥に起因する利益及び損失が存在しないから、本発明における利益及び損失は零である。一方、1枚の多面採りガラス基板1に存在する欠陥が1個でもあれば不良品として廃棄する場合には、その不良品とされた全ての多面採りガラス基板1の価格相当分が損失となるが、従来システムでは、それを損失としていたため、従来システムとの比較を行う本発明では、このような場合を損失が零であるとして利益が決まる。
 そして、一例として、図4(a)に示す1枚の多面採りガラス基板1には、1個の仮想単面2に1個の欠陥4が存在し、図5(a)に示す1枚の多面採りガラス基板1には、2個の仮想単面2にそれぞれ1個ずつの欠陥4が存在し、図6(a)に示す1枚の多面採りガラス基板1には、3個の仮想単面2にそれぞれ1個ずつの欠陥4が存在し、図7(a)に示す1枚の多面採りガラス基板1には、4個の仮想単面2にそれぞれ1個ずつの欠陥4が存在しているとする。
 この場合に、第1検査手段Aでは、単に欠陥4の総個数(本例では10個)だけを検出し、この総個数を、4枚分の多面採りガラス基板1の総面積で除算して、ロット平均欠陥密度を算出する。そして、このロット平均欠陥密度に基づいて、試算手段Bで試算をしていく過程においては、図4(a)で示すように、製品関連処理が施される前段階で、その多面採りガラス基板1を良品とみなすことにより得られる利益と、図4(b)に示すように、製品関連処理を施した後に、図4(c)に示すように、1個の単面ガラス板3を廃棄することにより発生する損失とを比較し、利益が損失を上回っている場合には、この多面採りガラス基板1は良品として上流側工程から下流側工程に送られる。同様に、図5、図6、図7についても、製品関連処理が施される前段階の多面採りガラス基板1を良品とみなすことにより得られる利益と、製造関連処理を施した後に該当個数の単面ガラス板3を廃棄することにより発生する損失とを比較し、利益が損失を上回っているか否かを判定する。そして、図4、図5、図6に示すものについては、利益が損失を上回っているが、図7に示すものについては、利益が損失を上回っていなかったとすると、1枚の多面採りガラス基板1に存在する欠陥の個数が、1個、2個、3個の場合には、製品関連処理が施される前段階の多面採りガラス基板1が、上流側工程から下流側工程に送られるが、当該個数が4個以上の場合には、製品関連処理が施される前段階の多面採りガラス基板1が、上流側工程で廃棄処分される。
 上述のロット平均欠陥密度から収率を求めるには二項累積分布関数を用いた式で確率的に求めるとよい。それを含む実施形態の計算について以下説明をする。計算には二項累積分布関数を含む下記の[数1]~[数5]の数式を用いる。その数式に使用されるパラメータの定義は下記の表1に掲載されている。また、ここでの実施形態において、これらのパラメータのうち前提条件になるパラメータについては下記の表2に掲載する。そして、それらの入力による計算結果を下記の表3に示す。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 なお、この計算の中で用いられている無害領域救済率(α)とは、例えば下流工程でガラス基板に形成される回路パターン等の設計情報から前記上流工程で不良となる欠陥が存在しても回路パターンの検査上では不良にならないような複雑に入り組んだ回路パターンに沿った無害領域に対して、回路パターンの設計情報から面積的な割合を確率として置き換えたものである。
 上記の表3によれば、αが0%で且つCbsが3000円の場合には、8面採りのガラス基板であって、欠陥許容個数が2個である時に、累積利益が最大(270円)となっているので、一ロットの多面採りガラス基板1においては、1枚の多面採りガラス基板に存在する欠陥の実個数が1個と2個のものが、欠陥の全く存在していないものと共に上流側工程から下流側工程に送られる。また、αが0%で且つCbsが6000円の場合と、αが40%で且つCbsが10000円の場合とは、両者共に、8面採りのガラス基板であって、欠陥許容個数が1個仮想単面が8個の中で許容面数が1個である時に、累積利益が最大(96円)となっているので、一ロットの多面採りガラス基板1においては、1枚の多面採りガラス基板に存在する欠陥の実個数が1個のものが、欠陥の全く存在していないものと共に上流側工程から下流側工程に送られる。なお、αが0%で且つCbsが10000円の場合には、累積利益が全て零以下であるため、一ロットの多面採りガラス基板1においては、欠陥の全く存在していないもののみが上流側工程から下流側工程に送られる。
 ここで、無害領域救済率(α)について詳述する。図8に示すように、多面採りガラス基板1に、直線状の回路パターンPa(粗いクロスハッチングが付されている領域)が複数並列に配列されることが予定されている場合に、回路パターンPaに欠陥が存在したり、回路パターンPaが近接している領域Ba(細かいクロスハッチングが付されている領域)に欠陥が存在したりすると、断線や短絡などが生じ得る。そこで、このPaとBaとからなる領域を、欠陥の存在が許されない有害領域とし、その他の領域Ca(平行斜線からなるハッチングが付された領域)を無害領域とする。そして、Caの面積を、多面採りガラス基板1の全領域(有効面領域)の面積で除算した値を、無害領域救済率(α)とする。ここでの実施形態の計算には、この概念を用いることが好ましい。しかしながら、αを特定できない場合はα=0を数式に代入して計算すればよい。
 以上の実施形態に係る生産管理システムSは、上流側工程でのみ、多面採りガラス基板1の良否の判断を行うことができるため、上流側工程の処理者から下流側工程の処理者に欠陥情報を伝達する必要がなくなり、設備面、在庫管理面、及び生産計画立案面等で有利となって、現実の運用を簡単に行うことが可能となる。さらに、欠陥検査では、ロット平均欠陥密度を求めるための欠陥の総個数と、1枚の多面採りガラス基板1に存在する欠陥4の個数を検出するだけで良く、上流側工程での入念な欠陥の検査を行う必要がなくなり、欠陥の検査作業が極めて簡素化されて、作業能率の向上が図られる。加えて、上流側工程の処理者と下流側工程の処理者とのトータル的な損益を考慮して、多面採りガラス基板1が良品か不良品かを決定する構成であるため、上流側工程の処理者のみまたは下流側工程の処理者のみが不当な損失を受ける等の弊害も生じなくなる。
 なお、上流側工程の処理者は、フラットパネルディスプレイ用の多面採りガラス基板としてのマザーガラスの製造者であり、下流側工程の処理者は、フラットパネルディスプレイのパネルの中間又は最終製造者であってもよく、或いは、上流側工程の処理者が、フラットパネルディスプレイ用の多面採りガラス基板としてのマザーガラスの製造者であり、下流側工程の処理者が、フラットパネルディスプレイのマザーガラスから切断して単面ガラス板に加工する製造者であってもよい。
 なお、以上の実施形態における第1検出手段A、試算手段B,第2検査手段C、及び良品判定手段Dについては、ほぼ同時に連続的に行ってもよい。すなわち、連続式に被検査物が流れる光学式の自動欠陥検出装置が使用され、その検査処理においては、図9に示すように単一の検査手段A1で両方の目的がかなうような仕様で検査をしながら、その結果をすぐにコンピュータにて試算手段B1の処理をして、その結果による良品判定手段C1をすぐに行って、最後に被検査物を選別するような工程を組み上げてもよい。この場合には、検出手段A1でのロット平均欠陥密度の検出は、被検査物の連続する10枚以上の投入に応じた移動平均を使用すればよい。
 また、1枚の多面採りガラス基板内に構成される複数の仮想単面は、原則は同一サイズであるが、それぞれが異なるサイズであってもよい。
 なお、以上の実施形態では、ガラス基板生産管理システムSとして本発明を適用したが、図10に示すように、ガラス基板生産管理方法S2として、第1検査工程A2と、試算工程B2と、第2検査工程C2と、良否判定工程D2とを備えるようにしてもよく、図11に示すように、同じくガラス基板生産管理方法S3として、単一の検査工程A3と、試算工程B3と、良否判定工程C3とを備えるようにしてもよい。これらのガラス基板生産管理方法S2、S3によるにしても、全ての処理をコンピュータで行うか否かはともかくとして、上述のガラス基板生産管理システムSと実質的に同一の処理が行われる。
 ここで、以上の実施形態では、上流側工程の処理者が受ける利益と、下流側工程の処理者が受ける損失との許算を、二項累積分布関数を用いたが、これは欠陥の確率分布が二項分布をするという前提で採用しているものであり、前提に見合った他の分布関数を用いてもよい。本発明は、このような計算手法に限定されるものではなく、上流側工程の処理者が受ける利益と、下流側工程の処理者が受ける損失との計算を行うことができる手法であれば、他の計算手法を使用してもよい。
1 多面採りガラス基桓(マザーガラス)
2 仮想単面
3 単面ガラス板
4 欠陥
A 第1検査手段
B 試算手段
C 第2検査手段
S ガラス基板生産管理システム
A1 検査手段
B1 試算手段
C1 良否判定手段
A2 第1検査工程
B2 試算工程
C2 第2検査工程
D2 良否判定工程
S2 ガラス基板生産管理方法
A3 検査工程
B3 試算工程
C3 良否判定工程
S3 ガラス基板生産管理方法

 
 
 
 

Claims (12)

  1.  上流側工程で作製された多面採りガラス基板を、下流側工程で製品関連処理を施して複数の単面ガラス板に分割する手順を含むガラス基板生産管理システムであって、
     上流側工程で10枚以上の一ロットの多面採りガラス基板から10枚以上が抜き取られた欠陥検査の欠陥データに基づいて、その抜き取られた多面採りガラス基板に存在している欠陥の総個数を検出し、その欠陥の総個数を検査対象とした総面積で除したロット平均欠陥密度を算出する第1検査手段と、
     上流側工程における前記一ロットの多面採りガラス基板について、欠陥が存在している多面採りガラス基板を予備的に良品とみなして下流側工程に送ることによる上流側工程の処理者が受ける利益と、それらの予備的に良品とみなされた多面採りガラス基板に製品関連処理を施して複数の単面ガラス板に分割した場合に前記欠陥の存在に起因して不良品が発生したことによる下流側工程の処理者が受ける損失とを、前記ロット平均欠陥密度を使用して、1枚の前記多面採りガラス基板に存在する前記欠陥の個数を異ならせて複数回に亘って試算し、それらの試算結果に基づいて、前記利益が前記損失を上回っている場合における1枚の前記多面採りガラス基板に存在する前記欠陥の適切個数である欠陥許容個数を算出する試算手段と、
     上流側工程における前記一ロットの多面採りガラス基板の全数を欠陥検査して前記1枚の前記多面採りガラス基板に存在する前記欠陥の実個数を計数する第2検査手段と、
     1枚の前記多面採りガラス基板に存在する前記欠陥の実個数が前記試算手段で算出された前記欠陥許容個数の範囲内にある前記多面採りガラス基板を、欠陥が全く存在していない多面採りガラス基板に加えて下流側工程に送る良品とし、その他の多面採りガラス基板を、上流側工程で廃棄する不良品とする良否判定手段と、
     を備えたことを特徴とするガラス基板生産管理システム。
  2.  上流側工程で作製された多面採りガラス基板を、下流側工程で製品関連処理を施して複数の単面ガラス板に分割する手順を含むガラス基板生産管理システムであって、
     上流側工程で10枚以上の一ロットの多面採りガラス基板から10枚以上が抜き取られた欠陥検査の欠陥データに基づいて、その抜き取られた多面採りガラス基板に存在している欠陥の総個数を検出し、その欠陥の総個数を検査対象とした総面積で除したロット平均欠陥密度を算出すると共に、前記一ロットの多面採りガラス基板の全数を欠陥検査して1枚の前記多面採りガラス基板に存在する前記欠陥の実個数を計数する検査手段と、
     上流側工程における前記一ロットの多面採りガラス基板について、欠陥が存在している多面採りガラス基板を予備的に良品とみなして下流側工程に送ることによる上流側工程の処理者が受ける利益と、それらの予備的に良品とみなされた多面採りガラス基板に製品関連処理を施して複数の単面ガラス板に分割した場合に前記欠陥の存在に起因して不良品が発生したことによる下流側工程の処理者が受ける損失とを、前記ロット平均欠陥密度を使用して、1枚の前記多面採りガラス基板に存在する前記欠陥の個数を異ならせて複数回に亘って試算し、それらの試算結果に基づいて、前記利益が前記損失を上回っている場合における1枚の前記多面採りガラス基板に存在する前記欠陥の適切個数である欠陥許容個数を算出する試算手段と、
     1枚の多面採りガラス基板に存在する前記欠陥の実個数が、前記試算手段で算出された欠陥許容個数の範囲内にある多面採りガラス基板を、欠陥が全く存在していない多面採りガラス基板に加えて下流側工程に送る良品とし、その他の多面採りガラス基板を、上流側工程で廃棄する不良品とする良否判定手段と、
     を備えたことを特徴とするガラス基板生産管理システム。
  3.  下流側工程で製品関連処理が施される多面採りガラス基板の面を、欠陥が製品関連処理に対して有害となる有害領域と、欠陥が製品関連処理に対して無害となる無害領域とに区分して、無害領域の面積を多面採りガラス基板の面積で除した値を無害領域救済率とし、この無害領域救済率を、前記試算手段で行われる計算に使用することを特徴とする請求項1または2に記載のガラス基板生産管理システム。
  4.  前記上流側工程の処理者が、フラットパネルディスプレイ用の多面採りガラス基板としてのマザーガラスの製造者であり、前記下流側工程の処理者が、フラットパネルディスプレイのパネルの中間または最終製造者であることを特徴とする請求項1または2に記載のガラス基板生産管理システム。
  5.  前記上流側工程の処理者が、フラットパネルディスプレイ用の多面採りガラス基板としてのマザーガラスの製造者であり、前記下流側工程の処理者が、フラットパネルディスプレイのマザーガラスから切断して単面ガラス板に加工する製造者であることを特徴とする請求項1または2に記載のガラス基板生産管理システム。
  6.  前記試算手段での算出と、前記良否判定手段での判定とを、コンピュータで行うことを特徴とする請求項1または2に記載のガラス基板生産管理システム。
  7.  上流側工程で作製された多面採りガラス基板を、下流側工程で製品関連処理を施して複数の単面ガラス板に分割する手順を含むガラス基板生産管理方法であって、
     上流側工程で10枚以上の一ロットの多面採りガラス基板から10枚以上が抜き取られた欠陥検査の欠陥データに基づいて、その抜き取られた多面採りガラス基板に存在している欠陥の総個数を検出し、その欠陥の総個数を検査対象とした総面積で除したロット平均欠陥密度を算出する第1検査工程と、
     上流側工程における前記一ロットの多面採りガラス基板について、欠陥が存在している多面採りガラス基板を予備的に良品とみなして下流側工程に送ることによる上流側工程の処理者が受ける利益と、それらの予備的に良品とみなされた多面採りガラス基板に製品関連処理を施して複数の単面ガラス板に分割した場合に前記欠陥の存在に起因して不良品が発生したことによる下流側工程の処理者が受ける損失とを、前記ロット平均欠陥密度を使用して、1枚の前記多面採りガラス基板に存在する前記欠陥の個数を異ならせて複数回に亘って試算し、それらの試算結果に基づいて、前記利益が前記損失を上回っている場合における1枚の前記多面採りガラス基板に存在する前記欠陥の適切個数である欠陥許容個数を算出する試算工程と、
     上流側工程における前記一ロットの多面採りガラス基板の全数を欠陥検査して前記欠陥が存在している1枚の前記多面採りガラス基板に存在する前記欠陥の実個数を計数する第2検査工程と、
     1枚の前記多面採りガラス基板に存在する前記欠陥の実個数が前記試算手段で算出された欠陥許容個数の範囲内にある多面採りガラス基板を、欠陥が全く存在していない多面採りガラス基板に加えて下流側工程に送る良品とし、その他の多面採りガラス基板を、上流側工程で廃棄する不良品とする良否判定工程と、
     を備えたことを特徴とするガラス基板生産管理方法。
  8.  上流側工程で作製された多面採りガラス基板を、下流側工程で製品関連処理を施して複数の単面ガラス板に分割する手順を含むガラス基板生産管理方法であって、
     上流側工程で10枚以上の一ロットの多面採りガラス基板から10枚以上が抜き取られた欠陥検査の欠陥データに基づいて、その抜き取られた多面採りガラス基板に存在している欠陥の総個数を検出し、その欠陥の総個数を検査対象とした総面積で除したロット平均欠陥密度を算出すると共に、前記一ロットの多面採りガラス基板の全数を欠陥検査して1枚の前記多面採りガラス基板に存在する前記欠陥の実個数を計数する検査工程と、
     上流側工程における前記一ロットの多面採りガラス基板について、欠陥が存在している多面採りガラス基板を予備的に良品とみなして下流側工程に送ることによる上流側工程の処理者が受ける利益と、それらの予備的に良品とみなされた多面採りガラス基板に製品関連処理を施して複数の単面ガラス板に分割した場合に前記欠陥の存在に起因して不良品が発生したことによる下流側工程の処理者が受ける損失とを、前記ロット平均欠陥密度を使用して、1枚の前記多面採りガラス基板に存在する前記欠陥の個数を異ならせて複数回に亘って試算し、それらの試算結果に基づいて、前記利益が前記損失を上回っている場合における1枚の前記多面採りガラス基板に存在する前記欠陥の適切個数である欠陥許容個数を算出する試算工程と、
     1枚の前記多面採りガラス基板に存在する前記欠陥の実個数が、前記試算手段で算出された欠陥許容個数の範囲内にある多面採りガラス基板を、欠陥が全く存在していない多面採りガラス基板に加えて下流側工程に送る良品とし、その他の多面採りガラス基板を、上流側工程で廃棄する不良品とする良否判定工程と、
     を備えたことを特徴とするガラス基板生産管理方法。
  9.  下流側工程で製品関連処理が施される多面採りガラス基板の面を、欠陥が製品関連処理に対して有害となる有害領域と、欠陥が製品関連処理に対して無害となる無害領域とに区分して、無害領域の面積を多面採りガラス基板の面積で除した値を無害領域救済率とし、この無害領域救済率を、前記試算工程で行われる計算に使用することを特徴とする請求項7または8に記載のガラス基板生産管理方法。
  10.  前記上流側工程の処理者が、フラットパネルディスプレイ用の多面採りガラス基板としてのマザーガラスの製造者であり、前記下流側工程の処理者が、フラットパネルディスプレイのパネルの中間または最終製造者であることを特徴とする請求項7または8に記載のガラス基板生産管理方法。
  11.  前記上流側工程の処理者が、フラットパネルディスプレイ用の多面採りガラス基板としてのマザーガラスの製造者であり、前記下流側工程の処理者が、フラットパネルディスプレイのマザーガラスから切断して単面ガラス板に加工する製造者であることを特徴とする請求項7または8に記載のガラス基板生産管理方法。
  12.  前記試算工程と、前記良否判定工程とを、コンピュータで行うことを特徴とする請求項7または8に記載のガラス基板生産管理システム。
PCT/JP2014/071722 2013-08-27 2014-08-20 ガラス基板生産管理システム及びガラス基板生産管理方法 WO2015029847A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/914,058 US20160207822A1 (en) 2013-08-27 2014-08-20 Glass substrate production management system and glass substrate production management method
KR1020157030959A KR20160048030A (ko) 2013-08-27 2014-08-20 유리 기판 생산 관리 시스템 및 유리 기판 생산 관리 방법
CN201480038073.8A CN105358495B (zh) 2013-08-27 2014-08-20 玻璃基板生产管理系统及玻璃基板生产管理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013175391A JP6094891B2 (ja) 2013-08-27 2013-08-27 ガラス基板生産管理システム及びガラス基板生産管理方法
JP2013-175391 2013-08-27

Publications (1)

Publication Number Publication Date
WO2015029847A1 true WO2015029847A1 (ja) 2015-03-05

Family

ID=52586409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071722 WO2015029847A1 (ja) 2013-08-27 2014-08-20 ガラス基板生産管理システム及びガラス基板生産管理方法

Country Status (6)

Country Link
US (1) US20160207822A1 (ja)
JP (1) JP6094891B2 (ja)
KR (1) KR20160048030A (ja)
CN (1) CN105358495B (ja)
TW (1) TW201518227A (ja)
WO (1) WO2015029847A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3024137B1 (fr) * 2014-07-24 2016-07-29 Saint Gobain Procede de fabrication de feuilles de verre de forme complexe
CN105080855B (zh) * 2015-06-03 2017-08-25 合肥京东方光电科技有限公司 基板标记检测装置和基板标记检测方法
CN106018437B (zh) * 2016-07-01 2020-09-11 沧州四星玻璃股份有限公司 一种玻璃管气线缺陷的检测方法
JP6919779B2 (ja) * 2016-12-20 2021-08-18 日本電気硝子株式会社 ガラス基板の製造方法
CN108447800B (zh) * 2018-01-31 2019-12-10 北京铂阳顶荣光伏科技有限公司 薄膜电池的制造方法
USD909334S1 (en) * 2019-08-14 2021-02-02 Minglong YANG Speaker

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264724A (ja) * 2000-03-22 2001-09-26 Nec Corp 生産管理方法、表示デバイス及びプラズマディスプレイパネル
JP2002277412A (ja) * 2001-03-21 2002-09-25 Olympus Optical Co Ltd 検査画面の表示方法及び基板検査システム
WO2003087923A1 (fr) * 2002-04-03 2003-10-23 Nh Techno Glass Corporation Substrat de verre pour unite d'affichage a cristaux liquides, procede de production d'un verre de base et dispositif d'inspection de verre de base
JP2005346510A (ja) * 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd 製造工程の管理方法及びそのデータ処理装置
JP2011118618A (ja) * 2009-12-02 2011-06-16 Kobe Steel Ltd 損失コスト計算方法及び損失コスト計算プログラム、並びに損失コスト計算装置
WO2014148604A1 (ja) * 2013-03-21 2014-09-25 日本電気硝子株式会社 ガラス基板生産管理システム及びガラス基板生産管理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311924A (ja) * 1999-04-26 2000-11-07 Hitachi Ltd 外観検査方法および装置
CN102446291A (zh) * 2010-09-30 2012-05-09 旭硝子株式会社 板状体的分类管理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264724A (ja) * 2000-03-22 2001-09-26 Nec Corp 生産管理方法、表示デバイス及びプラズマディスプレイパネル
JP2002277412A (ja) * 2001-03-21 2002-09-25 Olympus Optical Co Ltd 検査画面の表示方法及び基板検査システム
WO2003087923A1 (fr) * 2002-04-03 2003-10-23 Nh Techno Glass Corporation Substrat de verre pour unite d'affichage a cristaux liquides, procede de production d'un verre de base et dispositif d'inspection de verre de base
JP2005346510A (ja) * 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd 製造工程の管理方法及びそのデータ処理装置
JP2011118618A (ja) * 2009-12-02 2011-06-16 Kobe Steel Ltd 損失コスト計算方法及び損失コスト計算プログラム、並びに損失コスト計算装置
WO2014148604A1 (ja) * 2013-03-21 2014-09-25 日本電気硝子株式会社 ガラス基板生産管理システム及びガラス基板生産管理方法

Also Published As

Publication number Publication date
CN105358495B (zh) 2017-08-08
KR20160048030A (ko) 2016-05-03
US20160207822A1 (en) 2016-07-21
JP6094891B2 (ja) 2017-03-15
CN105358495A (zh) 2016-02-24
JP2015044697A (ja) 2015-03-12
TW201518227A (zh) 2015-05-16

Similar Documents

Publication Publication Date Title
JP6191599B2 (ja) ガラス基板生産管理システム及びガラス基板生産管理方法
WO2015029847A1 (ja) ガラス基板生産管理システム及びガラス基板生産管理方法
CN104570421B (zh) 一种显示面板及显示装置
TW201903925A (zh) 用於線上部分平均測試及潛在可靠性缺陷偵測之方法及系統
TW200305545A (en) Manufacturing methods of glass substrate for liquid crystal display device and mother glass thereof, and mother glass inspection apparatus
CN103311146B (zh) 缺陷检查方法
CN108319052B (zh) 一种显示面板制作与检测方法
TWI743265B (zh) 玻璃板的製造方法
CN108445020B (zh) 一种玻璃基板缺陷聚集识别方法
CN104952766A (zh) 缺陷判断装置和缺陷判断方法
WO2018105489A1 (ja) 帯状ガラスフィルムの品質検査方法、及び、ガラスロール
US8421585B2 (en) Alarm apparatus and manufacturing method
JP6919779B2 (ja) ガラス基板の製造方法
CN102865841B (zh) 晶圆边缘度量与检测工具的厚度检测稳定性检测方法
CN103560098A (zh) 晶圆边缘厚度量测稳定性监控方法
CN105979707B (zh) 一种线路层无铜区域识别方法及系统
CN104345023B (zh) 污染物测量基底、设备及使用该设备制造基底的方法
JP7171535B2 (ja) 表面形状測定装置
TW201903686A (zh) 晶圓製造管理方法以及晶圓製造管理系統
CN111091523B (zh) 用于基板缺陷分析的计算装置及方法
Krishnamoorthy et al. A simple computational framework for defect detection system with orthogonal polynomials transcoded coefficients
JP2009016758A (ja) 不良製品解析方法およびこれを用いた警告システム
JP2012073459A (ja) 共通形状欠陥の検査方法
CN106154740A (zh) 光掩膜的缺陷检测系统及光掩膜的缺陷检测方法
JP2009115884A (ja) カラーフィルタパターン検査機における共通欠陥処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480038073.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157030959

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14914058

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841274

Country of ref document: EP

Kind code of ref document: A1