WO2015029385A1 - 熱伝導シートの製造方法及び熱伝導シート - Google Patents

熱伝導シートの製造方法及び熱伝導シート Download PDF

Info

Publication number
WO2015029385A1
WO2015029385A1 PCT/JP2014/004271 JP2014004271W WO2015029385A1 WO 2015029385 A1 WO2015029385 A1 WO 2015029385A1 JP 2014004271 W JP2014004271 W JP 2014004271W WO 2015029385 A1 WO2015029385 A1 WO 2015029385A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
heat conductive
conductive sheet
inorganic particles
thermally conductive
Prior art date
Application number
PCT/JP2014/004271
Other languages
English (en)
French (fr)
Inventor
大輔 北川
陽三 長井
希望 手島
嘉也 高山
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015029385A1 publication Critical patent/WO2015029385A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/006Pressing and sintering powders, granules or fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present invention relates to a method for manufacturing a heat conductive sheet and a heat conductive sheet.
  • heat dissipation has become a major issue due to the heat generation of the members themselves due to the improvement of the processing capability and the high-density mounting accompanying the downsizing. Therefore, as a heat radiating member that has high heat dissipation performance and mechanical strength, and has excellent handling properties without adverse effects when applied to electronic devices, insulation with thermally conductive inorganic particles dispersed in a fluororesin matrix A heat conductive sheet has been proposed (Patent Document 1).
  • a motor is used for such a vehicle drive system, and the motor is required to have a high output.
  • the motor output is increased, the amount of heat generated increases. Therefore, as a means for cooling the vehicle motor, a heat radiating member using an insulating heat conductive sheet in which heat conductive inorganic particles are dispersed in a fluororesin matrix has been proposed (Patent Document 2).
  • Patent Document 2 a heat radiating member using an insulating heat conductive sheet in which heat conductive inorganic particles are dispersed in a fluororesin matrix has been proposed.
  • the insulating heat conductive sheet can also be used for cooling the vehicle motor.
  • the present invention (I) Aggregation obtained by co-aggregating the PTFE fine particles and the thermally conductive inorganic particles in an aqueous dispersion containing polytetrafluoroethylene (hereinafter referred to as PTFE) particles and thermally conductive inorganic particles.
  • PTFE polytetrafluoroethylene
  • Preparing a mixed powder containing the PTFE fine particles and the thermally conductive inorganic particles which is prepared by separating an object from a liquid component and drying; (II) a step of preparing a plurality of sheet-like molded bodies containing polytetrafluoroethylene, the thermally conductive inorganic particles, and the molding aid, prepared using the mixed powder and the molding aid; (III) a step of superposing and rolling a plurality of the sheet-like molded bodies, (IV) removing the molding aid;
  • the manufacturing method of the heat conductive sheet containing is provided.
  • a heat conductive sheet obtained by preparing a plurality of sheet-like molded bodies using such a mixed powder and then rolling and laminating a plurality of sheet-like molded bodies in a subsequent process, and removing the molding aid is Further, it is possible to achieve higher heat dissipation than conventional heat conductive sheets in which the amount of heat conductive inorganic particles is comparable.
  • FIG. 1A is a front view of the thermal characteristic evaluation apparatus used in the example
  • FIG. 1B is a side view of the thermal characteristic evaluation apparatus used in the example.
  • 2 is a SEM (Scanning Electron Microscope) photograph of a cross section of the heat conductive sheet of Example 1.
  • FIG. 4 is a SEM photograph of a cross section of a heat conductive sheet of Example 2.
  • 4 is a SEM photograph of a cross section of a heat conductive sheet of Example 3.
  • 4 is a SEM photograph of a cross section of a heat conductive sheet of Comparative Example 1.
  • 4 is a SEM photograph of a cross section of a heat conductive sheet of Comparative Example 2.
  • 6 is a SEM photograph of a cross section of a heat conductive sheet of Comparative Example 3.
  • the manufacturing method of the heat conductive sheet of this embodiment is (I) By coaggregating the PTFE fine particles and the thermally conductive inorganic particles in an aqueous dispersion containing the PTFE fine particles and the thermally conductive inorganic particles, and separating and drying the obtained aggregate from the liquid component.
  • Preparing a prepared mixed powder containing the PTFE fine particles and the thermally conductive inorganic particles Preparing a prepared mixed powder containing the PTFE fine particles and the thermally conductive inorganic particles; (II) a step of preparing a plurality of sheet-like molded bodies containing polytetrafluoroethylene, the thermally conductive inorganic particles, and the molding aid, prepared using the mixed powder and the molding aid; (III) a step of superposing and rolling a plurality of the sheet-like molded bodies, (IV) removing the molding aid; including.
  • the manufacturing method of the heat conductive sheet of this Embodiment may further include the process (process (V)) of pressure-molding the sheet-like material obtained by the said process (IV).
  • step (V) it is desirable to perform pressure molding at a temperature within the PTFE firing temperature range.
  • the heat conductive sheet obtained through the above steps (I) to (IV) usually has a porous structure. Therefore, for the purpose of increasing the thermal conductivity, increasing the insulating property and / or imparting adhesiveness, etc., the impregnating material selected appropriately is impregnated in the thermal conductive sheet, and the pores contained in the thermal conductive sheet May be filled with an impregnating material.
  • the impregnating material can be appropriately selected from known impregnating materials according to the purpose. When a heat conductive sheet impregnated with an impregnating material is manufactured, the heat conductive sheet is impregnated with the impregnating material after step (IV) (after step (V) when step (V) is performed). Step (Step (VI)) is performed.
  • step (I) a mixed powder containing PTFE fine particles and thermally conductive inorganic particles is prepared.
  • This mixed powder is obtained by co-aggregating the PTFE fine particles and the heat conductive inorganic particles in an aqueous dispersion containing PTFE fine particles and heat conductive inorganic particles, and separating the obtained agglomerates from the liquid components and drying. It is produced by making it.
  • the mixed powder may be composed of only PTFE fine particles and thermally conductive inorganic particles, or may contain other fluororesin other than PTFE.
  • fluororesins include, for example, a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (hereinafter referred to as PFA), a tetrafluoroethylene / hexafluoropropylene copolymer (hereinafter referred to as FEP), and the like. It is preferable to use a molten fluororesin having good compatibility with PTFE.
  • the porosity can be efficiently reduced in the subsequent hot pressing step (step (V)), and thus the thermal conductivity of the thermal conductive sheet can be further improved.
  • the fluororesin component contained in the mixed powder for example, (A) PTFE only, (B) PTFE and PFA, or (C) PTFE and FEP, Is preferred.
  • the mixed powder contains PTFE and another fluororesin as a fluororesin component, the content of PTFE with respect to the entire fluororesin component is preferably 5% by weight or more, and more preferably 10% by weight or more. .
  • an aqueous dispersion containing PTFE fine particles and thermally conductive inorganic particles is prepared.
  • the dispersion medium include water or water containing a surfactant.
  • the solid content concentration in this aqueous dispersion is, for example, 3 to 50% by mass.
  • the content of PTFE fine particles is, for example, 0.5 to 20% by mass
  • the content of thermally conductive inorganic particles is, for example, 10 to 30% by mass.
  • This aqueous dispersion is prepared, for example, by preparing an aqueous dispersion of PTFE fine particles (for example, PTFE aqueous dispersion), diluting it with water, and then adding thermally conductive inorganic particles to the obtained dispersion. Can be made.
  • the aqueous dispersion of PTFE fine particles used here is not particularly limited, and a commercially available product may be used.
  • the particle size of the PTFE fine particles in the aqueous dispersion is, for example, 0.2 to 0.5 ⁇ m.
  • an aqueous dispersion containing PTFE fine particles and other fluororesin particles is prepared.
  • the heat conductive inorganic particle added is as follows.
  • thermally conductive inorganic particles substantially composed of boron nitride means that the thermally conductive inorganic particles contain no substances other than boron nitride or contain other substances. However, it means that it is a very small amount (for example, 10% by weight or less) that does not significantly reduce the characteristics (thermal conductivity characteristics) when using thermally conductive inorganic particles (boron nitride particles) that do not contain other substances. .
  • the shape of the thermally conductive inorganic particles is not particularly limited, but in order to obtain a thermally conductive sheet having thermal conductivity anisotropy, it is preferable that the shape is flat or scale-like that can be easily aligned in the in-plane direction by rolling. For the same reason, it is preferable that the thermally conductive inorganic particles themselves have thermal conductivity anisotropy. Moreover, when improving the heat conductivity of the thickness direction, you may use the heat conductive inorganic particle of the aggregation shape currently sold from each company.
  • the PTFE fine particles and the heat conductive inorganic particles are co-aggregated in an aqueous dispersion containing the PTFE fine particles and the heat conductive inorganic particles.
  • the method for causing co-aggregation is not particularly limited.
  • a method of adding a flocculant to the aqueous dispersion and raising the temperature to deactivate the surfactant contained in the aqueous dispersion. Can be used.
  • the flocculant for example, a solvent having a low solubility with respect to the heat conductive inorganic particles (poor solvent) and a material having a large specific surface area such as activated carbon can be used.
  • step (II) Next, an example of step (II) will be described.
  • the mixed powder prepared in step (I) and the molding aid are mixed to prepare a paste-like mixture. It is desirable that this mixing be performed under conditions that suppress fiber formation of PTFE as much as possible. Specifically, it is desirable to reduce the number of rotations, shorten the mixing time, and mix without kneading so as not to apply a shearing force to PTFE. If fiber formation of PTFE occurs at the stage of mixing the materials, there is a possibility that the PTFE fiber already formed is cut and the PTFE network structure is destroyed when rolling in the step (III). It may be difficult to maintain the sheet shape. Therefore, by mixing so as to suppress the fiberization of PTFE as in the present embodiment, processing of a sheet-like material using PTFE as a matrix in a later step becomes easy.
  • saturated hydrocarbons such as dodecane and decane can be used as the molding aid.
  • the molding aid may be added so as to be 20 to 55% by weight based on the total weight.
  • a mother sheet obtained by forming such a mixture into a sheet by extrusion and rolling can be used as the sheet-like molded article of the present invention (first example of a sheet-like molded article).
  • the thickness of the sheet-like molded body thus obtained is, for example, 0.5 to 5 mm.
  • a laminated sheet (second example of the sheet-like molded body) obtained by rolling a plurality of the mother sheets stacked together is also given. It is done.
  • the number of laminated sheets is not particularly limited, and can be appropriately determined in consideration of the number of constituent layers of the heat conductive sheet to be manufactured (the number of layers constituting the heat conductive sheet).
  • the sheet-like molded body may contain a material other than the fluororesin component, the thermally conductive inorganic particles and the molding aid, or is formed only by the fluororesin component, the thermally conductive inorganic particles and the molding aid. May be.
  • a sheet-like molded body can be prepared.
  • step (III) a plurality of sheet-like molded bodies prepared in step (II) are overlapped and rolled. Specifically, a plurality of sheet-like molded bodies prepared in step (II) are laminated, and the laminate is rolled to obtain a laminated sheet.
  • the sheet-like molded body may be the mother sheet (sheet-like molded body of the first example) or a laminated sheet (first sheet) obtained by rolling a plurality of mother sheets.
  • the sheet-like molded body of the example of 2) may be used.
  • the number of sheet-like molded bodies to be overlaid in step (II) is not particularly limited, and can be, for example, about 2 to 10 sheets. In order to achieve high strength, it is desirable to roll the sheet-like molded bodies on top of each other.
  • step (II) and step (III) may be alternately repeated.
  • step (II) and step (III) may be alternately repeated.
  • step (II) a plurality of (for example, 2 to 10) mother sheets are prepared (step (II)).
  • a plurality of mother sheets are laminated, and the laminate is rolled to obtain a laminated sheet (first laminated sheet) (step (III)).
  • a plurality of (for example, 2 to 10) first laminated sheets obtained here are prepared, and the first laminated sheet is used as a sheet-like molded body in the step (II).
  • step (III) a plurality of (for example, 2 to 10) first laminated sheets are laminated, and the laminated product is rolled to obtain a laminated sheet (second laminated sheet) (step (III)).
  • step (II) a plurality of (for example, 2 to 10) second laminated sheets obtained are prepared, and the second laminated sheet is used as a sheet-like formed body in the step (II).
  • step (III) a plurality of (for example, 2 to 10) second laminated sheets are laminated, and the laminated product is rolled to obtain a laminated sheet (third laminated sheet) (step (III)).
  • the step (II) and the step (III) can be alternately repeated until the desired number of layers of the heat conductive sheet is reached.
  • the lamination sheets having the same number of laminations first lamination sheets, second lamination sheets, etc.
  • the lamination numbers are different from each other. It is also possible to roll the sheets by overlapping them.
  • the number of constituent layers of the heat conductive sheet is represented by the total number of mother sheets included in the heat conductive sheet
  • the number of constituent layers can be, for example, 2 to 5000 layers.
  • the number of layers is preferably 200 or more.
  • the number of layers is preferably 1500 layers or less. The greater the number of constituent layers, the higher the strength of the resulting sheet.
  • the laminated structure (number of constituent layers) is also related to the thermal conductivity and insulating properties of the obtained sheet. Therefore, in order to obtain a sheet having sufficient thermal conductivity and insulation, the number of constituent layers is preferably 10 to 1000.
  • the sheet-like material obtained in step (IV) may be pressure-molded (step (V)).
  • a pressure forming step pores can be reduced, which contributes to improvement in thermal conductivity. That is, in order to further improve the thermal conductivity of the obtained heat conductive sheet, it is desirable to reduce the porosity, for example, the porosity is preferably 40% or less.
  • the porosity here is a value calculated
  • step (VI) When impregnating the heat conductive sheet with the impregnating material, impregnating the sheet-like material obtained by the step (IV) (or the sheet-like material obtained by the step (V) when the step (V) is carried out) The material is impregnated (step (VI)).
  • the sheet-like material obtained in the step (IV) is preferably immersed in an impregnating material and pressurized. Such an operation can be performed using a pressurized container.
  • the electrical insulation and thermal conductivity of the impregnating material are not particularly limited, but the higher the better.
  • impregnating material for example, acrylic and silicone oils
  • adhesives such as thermosetting adhesives (for example, epoxy resins) and hot melt adhesives, grease, and resins can be used.
  • thermosetting adhesives for example, epoxy resins
  • hot melt adhesives for example, grease, and resins
  • grease, and resins can be used as the impregnating material.
  • oils and adhesives are publicly known and are also commercially available. What is necessary is just to select the kind of impregnation material suitably according to the use of a heat conductive sheet, and also the insulation and heat dissipation which desire.
  • a sheet-like molded body is produced using a mixed powder obtained by wet-mixing PTFE fine particles and thermally conductive inorganic particles in advance, and the sheet-like molded body is stacked.
  • a heat conductive sheet is manufactured through processes such as bonding and rolling.
  • the heat conductive sheet manufactured by this method is manufactured by a method in which a PTFE powder and a heat conductive inorganic particle are mixed with a molding aid without using a mixed powder to produce a sheet-like molded body. Compared with the sheet, it has higher heat dissipation.
  • step (II) when a mixed powder containing PTFE fine particles and thermally conductive inorganic particles and a molding aid are mixed to produce a paste-like mixture, PTFE fibers Mixing is performed under the condition that suppresses the conversion as much as possible.
  • PTFE fibers Mixing is performed under the condition that suppresses the conversion as much as possible.
  • the particles are oriented in the flow direction during rolling, and therefore the thermal conductivity in the in-plane direction becomes higher.
  • the thermal conductivity in the in-plane direction can be further increased by using particles having thermal conductivity anisotropy such as boron nitride particles.
  • anisotropy appears in heat conduction in the obtained heat conductive sheet. That is, according to the manufacturing method of the present embodiment, it is possible to obtain a heat conductive sheet whose thermal conductivity in the in-plane direction of the sheet is higher than the thermal conductivity in the thickness direction.
  • the fluororesin component is used as a matrix, and it is preferable that other organic materials, rubber components, vulcanizing agents, and the like are not included.
  • the thermal conductivity in the in-plane direction is high, and it is optimal for heat diffusion and heat dissipation. Therefore, a sheet having both high heat diffusion functions can be realized.
  • this heat conductive sheet has high mechanical strength, and even when heat conductive inorganic particles are blended at a high ratio, sufficient mechanical strength can be realized.
  • a heat conductive sheet having a low Young's modulus (for example, Young's modulus of 0.5 GPa or less) can be produced. That is, the heat conductive sheet obtained by the manufacturing method of the present embodiment is flexible and has high unevenness followability. Therefore, when this heat conductive sheet is installed in an electronic device or a vehicle as a heat radiating member, it can be arranged at a desired location without twisting the shape of the installation location.
  • the heat radiating member may be a heat radiating sheet made of a heat conductive sheet, or may be constituted by another component such as a heat conductive sheet and a metal plate.
  • Example 1 After diluting a PTFE aqueous dispersion (Asahi Glass Co., Ltd., product number “AD938E”) 20 times with water, boron nitride (BN) particles (made by Mizushima Alloy Iron Co., Ltd.) as thermally conductive inorganic particles were added to the obtained dispersion. , Product number “HP-40”) was added so that the mass ratio of boron nitride particles to PTFE fine particles was 80:20 (boron nitride particles: PTFE fine particles). As a result, an aqueous dispersion containing PTFE fine particles and boron nitride particles was obtained.
  • boron nitride (BN) particles made by Mizushima Alloy Iron Co., Ltd.
  • Product number “HP-40” was added so that the mass ratio of boron nitride particles to PTFE fine particles was 80:20 (boron nitride particles: PTFE
  • Isopropyl alcohol was added to the aqueous dispersion to coaggregate the PTFE fine particles and the boron nitride particles in the aqueous dispersion.
  • the obtained aggregate was filtered and separated from the liquid component, and dried at 150 ° C. for 24 hours to obtain a mixed powder containing PTFE fine particles and boron nitride particles.
  • This mixed powder was mixed with “Isopar M” (manufactured by ExxonMobil Co., Ltd.) used as a molding aid so that the mass ratio was 5: 2 (mixed powder: molding aid).
  • the mixture was mixed in a rotary mill for 10 minutes under the condition that the conversion did not occur as much as possible.
  • the obtained mixture was preformed and pelletized.
  • the pellets were extruded using an extruder to obtain a sheet-like product having a width of 45 mm and a thickness of 2 mm.
  • This sheet material was rolled in the MD direction (extrusion direction (longitudinal direction)) with a pair of rolling rolls to obtain a sheet material having a thickness of 1 mm.
  • This sheet material having a thickness of 1 mm was cut to prepare 16 sheet-like molded bodies having a length of 250 mm and a width of 45 mm. These 16 sheet-like molded bodies were laminated with each other in the MD direction and the TD direction (direction perpendicular to the MD direction) and rolled in the TD direction. Rolling in the TD direction was repeatedly performed until the thickness of the laminated sheet-like formed body became 0.25 mm.
  • Example 1 which has thickness 0.172mm.
  • Example 1 About the heat conductive sheet of Example 1 produced as described above, the thermal resistance, the effective heat conductivity, the porosity, and the degree of orientation were measured by the following methods. The measurement results are as shown in Table 1. Moreover, the SEM photograph of the cross section of a heat conductive sheet is shown in FIG.
  • Example 2 A thickness of 0.22 mm was obtained in the same manner as in Example 1 except that the mixed powder was prepared so that the mass ratio of boron nitride particles to PTFE fine particles was 85:15 (boron nitride particles: PTFE fine particles).
  • a heat conductive sheet of Example 2 was prepared. About the obtained heat conductive sheet, thickness, thermal resistance, effective thermal conductivity, porosity, and orientation were measured by the following methods. The measurement results are as shown in Table 1. Moreover, the SEM photograph of the cross section of a heat conductive sheet is shown in FIG.
  • the mixing conditions were a V-type mixer with a rotation speed of 10 rpm, a temperature of 25 ° C., and a mixing time of 5 minutes. This mixture was extruded to obtain a sheet-like molded body having a thickness of 2 mm, a width of 50 mm, and a length of 2500 mm. Except for using the sheet-like molded body thus prepared, rolling, removal of the molding aid, and pressure molding were performed in the same manner as in Example 1. This produced the heat conductive sheet of the comparative example 1 which has thickness 0.21mm. About the obtained heat conductive sheet, thermal resistance, effective thermal conductivity, porosity, and orientation were measured by the following methods. The measurement results are as shown in Table 1. Moreover, the SEM photograph of the cross section of a heat conductive sheet is shown in FIG.
  • Comparative Example 2 Comparative method 1 except that boron nitride particles and PTFE fine powder were mixed so that the mass ratio of boron nitride particles and PTFE fine powder was 85:15 (boron nitride particles: PTFE fine particles). And the heat conductive sheet of the comparative example 2 which has thickness 0.2mm was produced. About the obtained heat conductive sheet, thermal resistance, effective thermal conductivity, porosity, and orientation were measured by the following methods. The measurement results are as shown in Table 1. Moreover, the SEM photograph of the cross section of a heat conductive sheet is shown in FIG.
  • the thermal characteristic evaluation apparatus 10 has a heating element (heater block) 11 in the upper part and a radiator (cooling base plate configured to circulate cooling water) 12 in the lower part.
  • the heat generating body 11 and the heat radiating body 12 each have a rod 13 made of brass (A5052, thermal conductivity: 108 W / m ⁇ K) formed to be a cylinder (diameter: 22.5 mm).
  • a temperature sensor 14 of a thermometer 15 is attached to the back side of the heating element 11 and the upper and lower rods 13. Specifically, the temperature sensors 14 are attached to one place of the heating element 11 and three places at equal intervals in the vertical direction of each rod 13.
  • the sample 20 was sandwiched between the pair of rods 13 from above and below.
  • Sample 20 was obtained by cutting out the heat conduction sheets of each of the examples and comparative examples into a square of 25 mm ⁇ 25 mm and cutting the four corners protruding from the outside of the rod 13 after setting it on the rod 13. That is, the sample 20 had an octagonal shape.
  • the thermal measurement evaluation apparatus 10 is incorporated in a tensilon apparatus (not shown), and the tensilon apparatus applies pressure to the sample 20 in a direction in which the sample 20 is compressed in the thickness direction from the outside of the heating element 11 and the radiator 12. added. While the pressure was applied to the sample 20, the temperature of the heating element 11 was set to 120 ° C., and 15 ° C.
  • the cooling water was circulated through the radiator 12. Then, after the temperatures of the heating element 11 and the upper and lower rods 13 were stabilized, the temperature of the upper and lower rods 13 was measured by each temperature sensor 14. After the measurement, the thickness of the sample 20 was measured with a dial gauge. The heat flux passing through the sample 20 was calculated from the thermal conductivity (W / m ⁇ K) of the upper and lower rods 13 and the temperature gradient, and the temperature at the interface between the upper and lower rods 13 and the sample 20 was calculated. And using these, the thermal resistance (K / W) in the said pressure was computed using the thermal conductivity equation (Fourier's law).
  • the effective thermal conductivity (W / m ⁇ K) (apparent thermal conductivity of the sample including the interface) was calculated using the calculated thermal resistance.
  • the thermal resistance was calculated
  • Q Heat flow rate per unit area
  • gradT Temperature gradient
  • L Sample (heat conduction sheet) thickness
  • Thermal conductivity
  • ⁇ ′ Effective thermal conductivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 本発明の熱伝導シートの製造方法は、(I)ポリテトラフルオロエチレン微粒子及び熱伝導性無機粒子を含む水性分散液中で、前記ポリテトラフルオロエチレン微粒子及び前記熱伝導性無機粒子を共凝集させ、得られた凝集物を液体成分と分離して乾燥させることによって作製された、前記ポリテトラフルオロエチレン微粒子及び前記熱伝導性無機粒子を含む混合粉体を準備する工程と、(II)前記混合粉体及び成形助剤を用いて作製された、ポリテトラフルオロエチレン、前記熱伝導性無機粒子及び前記成形助剤を含むシート状成形体を複数準備する工程と、(III)複数の前記シート状成形体を重ね合わせて圧延する工程と、(IV)前記成形助剤を除去する工程と、を含む。

Description

熱伝導シートの製造方法及び熱伝導シート
 本発明は、熱伝導シートの製造方法と、熱伝導シートとに関する。
 モバイルコンピュータ及び携帯電話に代表される電子機器では、処理能力向上による部材自体の発熱、さらには小型化にともなう高密度実装により、「放熱」が大きな課題となっている。そこで、電子機器へ適用した際に悪影響を及ぼさず、高い放熱性能と機械的強度とを有し、さらにハンドリング性に優れた放熱部材として、フッ素樹脂マトリックスに熱伝導性無機粒子を分散させた絶縁性熱伝導シートが提案されている(特許文献1)。
 また、近年、環境対応の観点から、ハイブリッド自動車及び電気自動車の開発が進んでいる。このような車両の駆動系にはモータが用いられており、当該モータには高出力化が要求されている。モータを高出力化すると発熱量が増加してしまう。そこで、車両用モータを冷却する手段として、フッ素樹脂マトリックスに熱伝導性無機粒子を分散させた絶縁性熱伝導シートを利用した放熱部材が提案されている(特許文献2)。このように、絶縁性熱伝導シートは、車両用モータの冷却にも利用可能である。
特開2010-137562号公報 特開2013-82767号公報
 近年、電子機器及び車両用に用いられる放熱部材に対し、さらなる放熱性の向上が求められている。特許文献1及び2に記載されている熱伝導シートにおいては、より高い放熱性を得るための手段の一つとして、熱伝導シートに含まれる熱伝導性無機粒子の量を増加させて熱伝導率を上げることが考えられる。しかし、特許文献1及び2に記載されている熱伝導シートには、既に、95質量%まで熱伝導性無機粒子を含有させることが許容されている。したがって、熱伝導性無機粒子をさらに多く含有させて熱伝導シートの放熱性を向上させようとしても、フッ素樹脂マトリックスが少なくなりすぎて熱伝導シートの強度を維持できなくなる。
 そこで、本発明は、含まれる熱伝導性無機粒子の量が従来の熱伝導シートと同程度であっても、従来の熱伝導シートよりも高い放熱性を実現できる熱伝導シートを提供することを目的とする。
 本発明は、
 (I)ポリテトラフルオロエチレン(以下、PTFEと記載する。)粒子及び熱伝導性無機粒子を含む水性分散液中で、前記PTFE微粒子及び前記熱伝導性無機粒子を共凝集させ、得られた凝集物を液体成分と分離して乾燥させることによって作製された、前記PTFE微粒子及び前記熱伝導性無機粒子を含む混合粉体を準備する工程と、
 (II)前記混合粉体及び成形助剤を用いて作製された、ポリテトラフルオロエチレン、前記熱伝導性無機粒子及び前記成形助剤を含むシート状成形体を複数準備する工程と、
 (III)複数の前記シート状成形体を重ね合わせて圧延する工程と、
 (IV)前記成形助剤を除去する工程と、
を含む、熱伝導シートの製造方法を提供する。
 本発明は、上記本発明の熱伝導シートの製造方法によって得られる熱伝導シートをさらに提供する。
 本発明の熱伝導シートの製造方法では、PTFE、熱伝導性無機粒子及び成形助剤を含むシート状成形体を準備するための材料に、PTFE微粒子及び熱伝導性無機粒子を含む混合粉体が用いられている。この混合粉体は、PTFE微粒子及び熱伝導性無機粒子を含む水性分散液中でPTFE微粒子及び熱伝導性無機粒子を共凝集させ、得られた凝集物を液体成分と分離して乾燥させることによって作製されたものである。このような混合粉体を用いてシート状成形体を複数準備し、その後の工程で、複数のシート状成形体を重ね合わせて圧延し、成形助剤を除去することによって得られる熱伝導シートは、熱伝導性無機粒子の量が同程度である従来の熱伝導シートよりも高い放熱性を実現できる。
図1Aは実施例で用いた熱特性評価装置の正面図であり、図1Bは実施例で用いた熱特性評価装置の側面図である。 実施例1の熱伝導シートの断面のSEM(Scanning Electron Microscope)写真である。 実施例2の熱伝導シートの断面のSEM写真である。 実施例3の熱伝導シートの断面のSEM写真である。 比較例1の熱伝導シートの断面のSEM写真である。 比較例2の熱伝導シートの断面のSEM写真である。 比較例3の熱伝導シートの断面のSEM写真である。
 以下、本発明の実施の形態について説明する。なお、以下の記載は本発明を限定するものではない。
 本実施の形態の熱伝導シートの製造方法は、
 (I)PTFE微粒子及び熱伝導性無機粒子を含む水性分散液中で、前記PTFE微粒子及び前記熱伝導性無機粒子を共凝集させ、得られた凝集物を液体成分と分離して乾燥させることによって作製された、前記PTFE微粒子及び前記熱伝導性無機粒子を含む混合粉体を準備する工程と、
 (II)前記混合粉体及び成形助剤を用いて作製された、ポリテトラフルオロエチレン、前記熱伝導性無機粒子及び前記成形助剤を含むシート状成形体を複数準備する工程と、
 (III)複数の前記シート状成形体を重ね合わせて圧延する工程と、
 (IV)前記成形助剤を除去する工程と、
を含む。
 また、本実施の形態の熱伝導シートの製造方法は、前記工程(IV)によって得られたシート状物を加圧成形する工程(工程(V))をさらに含んでもよい。工程(V)では、PTFEの焼成温度範囲内の温度で加圧成形を行うことが望ましい。
 上記工程(I)~(IV)を経て得られる熱伝導シートは、通常、多孔質構造を有する。そこで、熱伝導性を高める、絶縁性を高める及び/又は接着性を付与する等の目的のために、適宜選択された含浸材を熱伝導シートに含浸させて、熱伝導シートに含まれる孔内を含浸材で満たしてもよい。含浸材は、目的に応じて、公知の含浸材の中から適宜選択することが可能である。含浸材が含浸された熱伝導シートを製造する場合は、工程(IV)よりも後(工程(V)を実施する場合は工程(V)の後)に、熱伝導シートに含浸材を含浸させる工程(工程(VI))を実施する。
 以下、各工程について具体的に説明する。
 工程(I)の例について説明する。
 工程(I)では、PTFE微粒子及び熱伝導性無機粒子を含む混合粉体を準備する。この混合粉体は、PTFE微粒子及び熱伝導性無機粒子を含む水性分散液中で、前記PTFE微粒子及び前記熱伝導性無機粒子を共凝集させ、得られた凝集物を液体成分と分離して乾燥させることによって作製されたものである。
 混合粉体は、PTFE微粒子及び熱伝導性無機粒子のみによって構成されていてもよいし、PTFE以外の他のフッ素樹脂等を含んでいてもよい。他のフッ素樹脂には、例えばテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(以下、PFAと記載する。)や、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(以下、FEPと記載する。)等の、PTFEと相溶性の良い溶融系フッ素樹脂を用いることが好ましい。このような溶融系フッ素樹脂を用いると、後の熱プレス工程(工程(V))において効率良く気孔率を低下させることができるので、熱伝導シートの熱伝導性をより向上させることが可能となる。そこで、混合粉体に含まれるフッ素樹脂成分としては、例えば、
(A)PTFEのみ、
(B)PTFE及びPFA、又は、
(C)PTFE及びFEP、
が好適である。混合粉体がPTFEと他のフッ素樹脂とをフッ素樹脂成分として含む場合は、フッ素樹脂成分全体に対するPTFEの含有量が5重量%以上であることが好ましく、10重量%以上であることがより好ましい。
 混合粉体を作製する方法の一例について説明する。まず、PTFE微粒子及び熱伝導性無機粒子を含む水性分散液を準備する。分散媒としては、水又は界面活性剤を含む水が挙げられる。この水性分散液における固形分濃度は、例えば3~50質量%である。また、水性分散液において、PTFE微粒子の含有量は例えば0.5~20質量%であり、熱伝導性無機粒子の含有量は例えば10~30質量%である。この水性分散液は、例えば、PTFE微粒子の水性分散液(例えば、PTFE水分散液)を準備し、これを水で希釈した後、得られた分散液に熱伝導性無機粒子を添加することによって作製できる。なお、ここで用いられるPTFE微粒子の水性分散液は、特に限定されず、市販品を用いてもよい。水性分散液におけるPTFE微粒子の粒径は、例えば0.2~0.5μmである。PTFE以外の他のフッ素樹脂も含む混合粉体を作製する場合は、PTFE微粒子と他のフッ素樹脂の粒子とを含む水性分散液を準備する。また、添加される熱伝導性無機粒子は、以下のとおりである。
 熱伝導性無機粒子は、熱伝導シートに十分な熱伝導性を付与するために、熱伝導率が1~200W/mKの無機材料によって形成されていることが好ましい。また、熱伝導シートに高い電気絶縁性を付与する必要がある場合は、熱伝導性無機粒子は、電気抵抗率が1010~1017Ω・mの無機材料によって形成されていることが好ましい。本実施の形態における熱伝導性無機粒子には、熱伝導率が高いことから、窒化ホウ素が好適に用いられる。したがって、本実施の形態における熱伝導性無機粒子は、実質的に窒化ホウ素からなることが好ましい。なお、「実質的に窒化ホウ素からなる熱伝導性無機粒子」とは、熱伝導性無機粒子に窒化ホウ素以外の物質が含まれないか、又は、他の物質が含まれる場合でも、その含有量が、他の物質を含まない熱伝導性無機粒子(窒化ホウ素粒子)を用いた際の特性(熱伝導特性)を大きく低下させない程度のごく少量(例えば10重量%以下)であることを意味する。
 熱伝導性無機粒子の形状は、特には限定されないが、熱伝導異方性を有する熱伝導シートを得るために、圧延により面内方向に整列しやすい平板状や鱗片状であることが好ましい。また、同様の理由から、熱伝導性無機粒子自体が熱伝導異方性を有している方が好ましい。また、厚さ方向の熱伝導率を向上させる場合には、各社から販売されている凝集形状の熱伝導性無機粒子を用いてもよい。
 熱伝導性無機粒子は、熱伝導シートの状態でその含有率が40~95重量%となるように配合されることが好ましく、60重量%以上配合されることがより好ましい。熱伝導性無機粒子の配合量をこのような範囲とすることにより、シートの熱伝導率を十分高くできるので、より良好な放熱性能を実現できる。
 熱伝導性無機粒子は、脱落することなくPTFEマトリックスに担持され、且つ、得られる熱伝導シートに十分な熱伝導性を付与することができればよいため、その粒径は特には限定されないが、例えば粒径0.3~500μmのものが望ましい。ただし、熱伝導性無機粒子は、高熱伝導化においては、粒径が大きい方が好ましい。これは、熱伝導性無機粒子の含有量が同じであっても、粒径が大きい方が界面の数が少なくなり、熱抵抗を低くできるためである。なお、ここでの粒径とは、レーザ回折・散乱式粒子径・粒度分布測定装置(マイクロトラック)によって測定される値のことである。
 次に、PTFE微粒子及び熱伝導性無機粒子を含む水性分散液中で、PTFE微粒子及び熱伝導性無機粒子を共凝集させる。共凝集を生じさせる方法は、特には限定されないが、例えば、水性分散液に凝集剤を添加する、及び、水性分散液に含まれる界面活性剤を失活させるために温度を上昇させる等の方法を用いることができる。凝集剤としては、例えば、熱伝導性無機粒子に対して溶解度が小さい溶媒(貧溶媒)、及び、活性炭のような比表面積の大きい材料を用いることができる。
 共凝集によって得られた凝集物を液体成分から分離し、さらに乾燥させることによって、混合粉体が作製できる。凝集物の分離方法は、特には限定されず、ろ過等の公知の方法を利用できる。乾燥方法も、特には限定されず、公知の方法を利用できる。
 なお、本実施形態の製造方法は、工程(I)の前に、前記混合粉体を作製する工程、すなわち、PTFE微粒子及び熱伝導性無機粒子を含む水性分散液中で、前記PTFE微粒子及び前記熱伝導性無機粒子を共凝集させ、得られた凝集物を液体成分と分離して乾燥させて、前記PTFE微粒子及び前記熱伝導性無機粒子を含む混合粉体を作製する工程、をさらに含むことも可能である。
 次に、工程(II)の例について説明する。
 工程(I)で準備された混合粉体と、成形助剤とを混合して、ペースト状の混合物を作製する。この混合は、PTFEの繊維化を極力抑制する条件で行うことが望ましい。具体的には、PTFEにせん断力を加えないように、回転数を小さくし、混合時間を短くして、混練せずに混合することが望ましい。材料を混合する段階でPTFEの繊維化が起こると、工程(III)において圧延する際に、既に形成されているPTFEの繊維が切断されてPTFEの網目構造が破壊されてしまう可能性があり、シート形状を保つことが困難となる場合がある。したがって、本実施の形態のように、PTFEの繊維化を抑制するように混合することによって、後の工程でのPTFEをマトリックスとするシート状物の加工が容易となる。
 成形助剤には、例えばドデカンやデカン等の飽和炭化水素を使用できる。成形助剤は、全重量に対して20~55重量%となるように添加すればよい。このような混合物を押出し及び圧延によってシート状に成形して得られる母シートを、本発明のシート状成形体(シート状成形体の第1の例)として用いることができる。このようにして得られるシート状成形体の厚さは、例えば0.5~5mmである。
 また、工程(II)において準備するシート状成形体の別の例として、上記母シートが複数重ね合わされて圧延されることによって得られた積層シート(シート状成形体の第2の例)も挙げられる。積層シートの積層数は、特には限定されず、製造しようとする熱伝導シートの構成層数(熱伝導シートを構成する層の数)を考慮して、適宜決定することができる。
 なお、シート状成形体は、フッ素樹脂成分、熱伝導性無機粒子及び成形助剤以外の他の材料を含んでいてもよいし、フッ素樹脂成分、熱伝導性無機粒子及び成形助剤のみによって形成されていてもよい。
 以上のようにして、シート状成形体を準備できる。
 次に、工程(III)の例について説明する。
 工程(III)では、工程(II)で準備した複数のシート状成形体を重ね合わせて圧延する。具体的には、工程(II)で準備した複数のシート状成形体を積層し、この積層物を圧延して積層シートを得る。上述したように、シート状成形体は、上記母シート(第1の例のシート状成形体)であってもよいし、母シートを複数重ね合わせて圧延することによって得られた積層シート(第2の例のシート状成形体)であってもよい。工程(II)において重ね合わせるシート状成形体の数は、特には限定されず、例えば2~10枚程度が可能である。高い強度を実現するために、シート状成形体を1つずつ重ね合わせて圧延することが望ましい。
 複数のシート状成形体を重ね合わせる方法の他の例として、シート状成形体を折り重ねる方法も挙げられる。折り重ねるシート状成形体の枚数(重ね合わせるシート状成形体の枚数)は、特に限定されず、例えば2~10枚程度とする。シート状成形体を折り重ねて圧延することで、シート強度を向上させるとともに、熱伝導性無機粒子をPTFEマトリックスへ強固に固定することができる。その結果、熱伝導性無機粒子の配合率が高く、かつ可撓性のあるシートを作製することができる。
 本実施の形態の熱伝導シートの製造方法では、工程(II)と工程(III)とが交互に繰り返されてもよい。この場合の具体例を、以下に説明する。
 まず、複数(例えば2~10枚)の母シートを準備する(工程(II))。次に、複数の母シートを積層し、この積層物を圧延して積層シート(第1の積層シート)を得る(工程(III))。ここで得られた第1の積層シートをさらに複数(例えば2~10枚)準備し、当該第1の積層シートを工程(II)におけるシート状成形体として用いる。次に、複数(例えば2~10枚)の第1の積層シートを積層し、この積層物を圧延して積層シート(第2の積層シート)を得る(工程(III))。さらに、得られた第2の積層シートを複数(例えば2~10枚)準備し、当該第2の積層シートを工程(II)におけるシート状成形体として用いる。次に、複数(例えば2~10枚)の第2の積層シートを積層し、この積層物を圧延して積層シート(第3の積層シート)を得る(工程(III))。このように、目的とする熱伝導シートの構成層数になるまで、工程(II)と工程(III)とを交互に繰り返すことができる。なお、ここで説明した例では、積層数が同じである積層シート同士(第1の積層シート同士、第2の積層シート同士等)を重ね合わせて圧延しているが、積層数が互いに異なる積層シート同士を重ね合わせて圧延することも可能である。
 工程(III)を繰り返す際に、圧延方向を変更することが望ましい。例えば、第2の積層シートを得るために行う圧延では、その圧延方向を、第1の積層シートを得るために行った圧延の方向から90度変更するとよい。このように方向を変えながら圧延することによって、PTFEのネットワークが縦横に延び、シート強度の向上及び熱伝導性無機粒子のPTFEマトリックスへの強固な固定が可能になる。
 熱伝導シートの構成層数を、当該熱伝導シートに含まれる母シートの総数で表すとき、構成層数は、例えば2~5000層とできる。シート強度を上げるためには、層数は200層以上が望ましい。また、薄膜化(例えば1mm以下のシートとする)ためには、層数は1500層以下が望ましい。構成層数を多くするほど、得られるシートの強度を高くできる。
 圧延初期(含まれる母シートの総数が少ない段階)は、強度が低く高倍率の圧延に耐えることが困難であるが、シート状成形体の積層及び圧延を繰り返すにしたがって圧延倍率が上がり、シート強度の向上及び熱伝導性無機粒子のPTFEマトリックスへの強固な固定が可能になる。また、積層構造(構成層数)は、得られるシートの熱伝導性や絶縁性にも関係する。したがって、十分な熱伝導性と絶縁性とを備えたシートを得るために、構成層数は10~1000層が好ましい。
 最終的に、厚さ0.1~3mm程度のシートを作製し、その後、工程(IV)として、加熱して成形助剤を除去することによって、熱伝導シートを得ることができる。
 次に、必要に応じて実施される工程(V)及び(VI)の例について説明する。
 成形助剤を除去した後に、工程(IV)によって得られたシート状物を加圧成形してもよい(工程(V))。このような加圧成形の工程を含むことにより、気孔を減らすことができ、熱伝導性の向上に寄与する。すなわち、得られる熱伝導シートの熱伝導性をさらに向上させるためには、気孔率を小さくすることが望ましく、例えば気孔率を40%以下とすることが望ましい。なお、ここでいう気孔率とは、後述の実施例で行った測定方法によって求められる値である。また、工程(IV)では、PTFEの焼成温度範囲内の温度で加圧成形を行うことが望ましい。このような焼成温度で加圧成形することにより、効率よく気孔率を低下させることができる。
 熱伝導シートに含浸材を含浸させる場合は、工程(IV)によって得られたシート状物(工程(V)が実施された場合は、工程(V)によって得られたシート状物)に、含浸材を含浸させる(工程(VI))。
 工程(VI)は、含浸材を短時間で高い含浸率で含浸させることが容易であるという理由から、工程(IV)によって得られたシート状物(工程(V)が実施された場合は、工程(V)によって得られたシート状物)を含浸材中に浸漬し、加圧することによって行うことが好ましい。このような操作は、加圧容器を用いて行うことができる。
 上記に説明したとおり、含浸材は、熱伝導性を高める、絶縁性を高める及び/又は接着性を付与する等の目的に応じて適宜選択することができるので、特には限定されない。しかし、含浸材には、例えば、揮発性を有さず、かつ絶縁性を有する材料が好ましく用いられる。含浸材は、熱伝導シートの孔内に含ませる必要があることから、1~100000mPa・sの粘度を有することが好ましく、1~1000mPa・sの粘度を有することがより好ましい。粘度が低いほど、孔内に含浸材を容易に含ませることができる。
 含浸材の電気絶縁性及び熱伝導性は、特には制限されないが、より高いほど好ましい。
 含浸材としては、例えば、アクリル系及びシリコーン系のオイル、熱硬化系接着剤(例えば、エポキシ樹脂等)及びホットメルト接着剤等の接着剤、グリス、並びに、レジンを用いることができる。これらのオイル及び接着剤は公知であり、市販品としても入手可能である。熱伝導シートの用途、さらに所望する絶縁性及び放熱性に応じて、含浸材の種類を適宜選択すればよい。
 本実施の形態の製造方法では、PTFE微粒子と熱伝導性無機粒子とが予め湿式混合されることによって得られた混合粉体を用いてシート状成形体が作製され、当該シート状成形体の重ね合わせ及び圧延等の工程を経て、熱伝導シートが製造される。この方法で製造された熱伝導シートは、混合粉体を用いずに、PTFE粉末及び熱伝導性無機粒子を成形助剤と混合してシート状成形体が作製される方法で製造される熱伝導シートと比較して、より高い放熱性を有する。
 本実施の形態の製造方法では、工程(II)において、PTFE微粒子及び熱伝導性無機粒子を含む混合粉体と成形助剤とを混合してペースト状の混合物を作製する際に、PTFEの繊維化を極力抑制する条件で混合を行っている。これにより、後に続く工程(III)の圧延において、シート形状への変化とPTFEの繊維化が同時に進行する。したがって、工程(III)の圧延では、熱伝導性無機粒子はPTFEの繊維に拘束されていない状態で圧延の押圧にさらされて、シートに対してほぼ平行な状態に配置されることとなる。また、熱伝導性無機粒子として鱗片状粒子を用いる場合は、圧延の際に当該粒子が流れ方向に向くので、面内方向の熱伝導率がより高くなる。さらに、例えば窒化ホウ素粒子のように粒子自体が熱伝導異方性を有する粒子を用いることにより、面内方向の熱伝導率をより高くできる。熱伝導性無機粒子がこのような状態で配置されることにより、得られる熱伝導シートには熱伝導に異方性が現れる。すなわち、本実施の形態の製造方法によれば、シートの面内方向における熱伝導率が厚さ方向における熱伝導率よりも高い熱伝導シートを得ることができる。
 本実施の形態の製造方法によって作製された熱伝導シートには、マトリックスとしてフッ素樹脂成分のみが用いられており、他の有機材料、ゴム成分及び加硫剤等が含まれないことが好ましい。マトリックスとしてフッ素樹脂成分のみが用いられることにより、電子機器へ適用した際に当該機器に及ぼす影響を考慮する必要がなくなる。また、面内方向の熱伝導率が高く、熱の拡散や放熱に最適である。したがって、高い熱拡散機能を共に備えたシートを実現できる。さらに、この熱伝導シートは機械的強度も高く、たとえ熱伝導性無機粒子を高い割合で配合した場合であっても、十分な機械的強度を実現できる。
 本実施の形態の製造方法によれば、ヤング率が低い(例えば、ヤング率0.5GPa以下)熱伝導シートを作製できる。すなわち、本実施の形態の製造方法によって得られる熱伝導シートは、柔軟で凹凸追従性が高い。したがって、この熱伝導シートを放熱部材として電子機器又は車両内に設置する場合に、設置箇所の形状に撚らずに所望の箇所に配置することが可能となる。
 なお、本実施の形態の製造方法では、材料の混合時にPTFEの繊維化がそれほど起こらないため、工程(III)の圧延工程が繰り返されても、PTFEの繊維が切断されて形状を保てなくなるという問題が生じず、シート形状の維持が容易である。また、本実施の形態では、複数のシート状成形体を積層して圧延するので、圧延によってある層に欠陥が生じた場合でも、他の層によってその欠陥を補うことができる。したがって、シート形状が保てなくなるという問題が生じない。さらに、工程(III)を繰り返す際に圧延方向を変更すると、PTFEが等方的に結着して綺麗なシートが得られる。これらの理由により、本実施の形態の製造方法によれば、長尺シートや連続シートを得ることも可能である。
 また、上記のとおり、本実施の形態の製造方法で作製された熱伝導シートを備えた放熱部材を提供することも可能である。この放熱部材は、熱伝導シートからなる放熱シートとしてもよいし、熱伝導シートと金属板等の他の構成要素とによって構成されていてもよい。
 次に、本発明の熱伝導シートの製造方法及び熱伝導シートについて、実施例を用いて具体的に説明する。
 (実施例1)
 PTFE水分散液(旭硝子社製、品番「AD938E」)を水で20倍に希釈した後、得られた分散液に熱伝導性無機粒子としての窒化ホウ素(BN)粒子(水島合金鉄株式会社製、品番「HP-40」)を、窒化ホウ素粒子とPTFE微粒子との質量比が80:20(窒化ホウ素粒子:PTFE微粒子)となるように添加した。これにより、PTFE微粒子及び窒化ホウ素粒子を含む水分散液が得られた。この水分散液にイソプロピルアルコールを添加して、水分散液中でPTFE微粒子及び窒化ホウ素粒子を共凝集させた。得られた凝集物をろ過して液体成分から分離し、150℃で24時間乾燥させることによって、PTFE微粒子及び窒化ホウ素粒子を含む混合粉体を得た。
 この混合粉体と、成形助剤として用いた「アイソパーM」(エクソンモービル社製)とを、質量比が5:2(混合粉体:成形助剤)となるように混合し、PTFEの繊維化が極力起こらないような条件で、回転ミルにて10分間混合した。
 得られた混合物を予備成形してペレット化した。このペレットを押出機にて押出し、幅45mm、厚さ2mmのシート状物を得た。このシート状物を、一対の圧延ロールにて、MD方向(押出方向(長手方向))に圧延し、厚さ1mmのシート状物を得た。この厚さ1mmのシート状物を切断して、長さ250mm及び幅45mmのシート状成形体を16枚準備した。これら16枚のシート状成形体を、MD方向及びTD方向(MD方向に垂直な方向)を一致させて互いに積層し、TD方向に圧延した。TD方向への圧延を、積層されたシート状成形体の厚さが0.25mmとなるまで繰り返し実施した。
 次に、得られたシート状物を150℃で1時間加熱して、成形助剤を除去した。次に、このシート状物に対し、7MPaの加圧成形を、380℃で1分間、その後5分かけて170℃まで冷却しながら行った。これにより、厚さ0.172mmを有する実施例1の熱伝導シートを得た。
 以上のように作製された実施例1の熱伝導シートについて、熱抵抗、有効熱伝導率、気孔率及び配向度を以下の方法で測定した。測定結果は、表1に示すとおりである。また、熱伝導シートの断面のSEM写真を図2に示す。
 (実施例2)
 窒化ホウ素粒子とPTFE微粒子との質量比が85:15(窒化ホウ素粒子:PTFE微粒子)となるように混合粉末を作製した点以外は、実施例1と同様の方法で、厚さ0.22mmを有する実施例2の熱伝導シートを作製した。得られた熱伝導シートについて、厚さ、熱抵抗、有効熱伝導率、気孔率及び配向度を以下の方法で測定した。測定結果は、表1に示すとおりである。また、熱伝導シートの断面のSEM写真を図3に示す。
 (実施例3)
 窒化ホウ素粒子とPTFE微粒子との質量比が90:10(窒化ホウ素粒子:PTFE微粒子)となるように混合粉末を作製した点以外は、実施例1と同様の方法で、厚さ0.192mmを有する実施例3の熱伝導シートを作製した。得られた熱伝導シートについて、熱抵抗、有効熱伝導率、気孔率及び配向度を以下の方法で測定した。測定結果は、表1に示すとおりである。また、熱伝導シートの断面のSEM写真を図4に示す。
 (比較例1)
 熱伝導性無機粒子としての窒化ホウ素粒子(水島合金鉄株式会社製、品番「HP-40」)と、PTFEファインパウダー(ダイキン工業株式会社製、品番「F104U」)とを、質量比で80:20(窒化ホウ素粒子:PTFEファインパウダー)となるように混合した。これに、成形助剤として「アイソパーM」(エクソンモービル社製)を28.5質量%となるように添加し、PTFEの繊維化が極力起こらないような条件で混合した。混合条件は、V型ミキサーで、回転数10rpm、温度25℃、混合時間5分間とした。この混合物を押出して、厚さ2mm、幅50mm、長さ2500mmのシート状成形体を得た。このように準備されたシート状成形体を用いた点以外は、実施例1と同様の方法で、圧延、成形助剤の除去及び加圧成形を行った。これにより、厚さ0.21mmを有する比較例1の熱伝導シートを作製した。得られた熱伝導シートについて、熱抵抗、有効熱伝導率、気孔率及び配向度を以下の方法で測定した。測定結果は、表1に示すとおりである。また、熱伝導シートの断面のSEM写真を図5に示す。
 (比較例2)
 窒化ホウ素粒子とPTFEファインパウダーとの質量比が85:15(窒化ホウ素粒子:PTFE微粒子)となるように、窒化ホウ素粒子とPTFEファインパウダーとを混合した点以外は、比較例1と同様の方法で、厚さ0.2mmを有する比較例2の熱伝導シートを作製した。得られた熱伝導シートについて、熱抵抗、有効熱伝導率、気孔率及び配向度を以下の方法で測定した。測定結果は、表1に示すとおりである。また、熱伝導シートの断面のSEM写真を図6に示す。
 (比較例3)
 窒化ホウ素粒子とPTFEファインパウダーとの質量比が90:10(窒化ホウ素粒子:PTFE微粒子)となるように、窒化ホウ素粒子とPTFEファインパウダーとを混合した点以外は、比較例1と同様の方法で、厚さ0.23mmを有する比較例3の熱伝導シートを作製した。得られた熱伝導シートについて、厚さ、熱抵抗、有効熱伝導率、気孔率及び配向度を以下の方法で測定した。測定結果は、表1に示すとおりである。また、熱伝導シートの断面のSEM写真を図7に示す。
 <熱抵抗及び有効熱伝導率の測定>
 実施例及び比較例の熱伝導シートの放熱性を、それらの熱抵抗によって評価した。熱抵抗の測定は、図1A及び図1Bに示す熱特性評価装置10を用いて行った。熱特性評価装置10は、上部に発熱体(ヒータブロック)11を有し、下部に放熱体(冷却水が内部を循環するように構成された冷却ベース板)12を有している。発熱体11及び放熱体12は、それぞれ円柱(直径22.5mm)となるように形成された真鍮製(A5052、熱伝導率:108W/m・K)のロッド13を有している。発熱体11及び上下のロッド13の背面側には、温度計15の温度センサ14が取り付けられている。具体的には、発熱体11の1箇所と、各ロッド13の上下方向に等間隔で3箇所に、温度センサ14が取り付けられている。
 まず、一対のロッド13で、上下から試料20を挟み込んだ。試料20は、各実施例及び比較例の熱伝導シートを25mm×25mmの正方形に切り出し、それをロッド13に設置した後に、ロッド13の外側にはみ出している四隅をカットしたものであった。すなわち、試料20は八角形の形状を有していた。熱測定評価装置10をテンシロン装置(図示せず)に組み込んで、このテンシロン装置によって、試料20に対し、発熱体11及び放熱体12の外側から試料20を厚さ方向に圧縮する向きに圧力を加えた。試料20に圧力を加えた状態で、発熱体11の温度を120℃に設定するともに、放熱体12に15℃の冷却水を循環させた。そして、発熱体11及び上下のロッド13の温度が安定した後、上下のロッド13の温度を各温度センサ14で測定した。測定後、試料20の厚さをダイヤルゲージで測定した。上下のロッド13の熱伝導率(W/m・K)と温度勾配から、試料20を通過する熱流束を算出するとともに、上下のロッド13と試料20との界面の温度を算出した。そして、これらを用いて当該圧力における熱抵抗(K/W)を、熱伝導率方程式(フーリエの法則)を用いて算出した。さらに、算出された熱抵抗を用いて、有効熱伝導率(W/m・K)(界面を含む試料の見かけの熱伝導率)を算出した。なお、試料20に400Nの圧力を加えた場合について熱抵抗を求めた。
   Q=-λgradT
   R=1/λ(L/A)
   λ´=L/R・A
Q:単位面積あたりの熱流速
gradT:温度勾配
L:試料(熱伝導シート)の厚さ
A:ロッド面積
λ:熱伝導率
R:熱抵抗
λ´:有効熱伝導率
 <気孔率の測定>
 熱伝導シートの重量と体積とを測定し、その結果から実測密度を求めた。この実測密度と真密度とを用いて、以下の式により気孔率を求めた。
 気孔率(%)=(1-実測密度/真密度)×100
 <配向度>
 Brucker AXS社製、2次元検出器搭載X線回折装置「D8 DISCOVER with GADDS」を用いて、透過及び反射の配向度を測定した。
Figure JPOXMLDOC01-appb-T000001
 表1に示された結果から、窒化ホウ素とPTFEの質量比が同じもの同士を比較すると、実施例の熱伝導シートは、比較例の熱伝導シートよりも熱抵抗が低く、有効熱伝導率が高かった。すなわち、本発明の製造方法で作製された熱伝導シートは、従来の方法で作製された熱伝導シートよりも、高い放熱性を備えていた。
 実施例1~3及び比較例1~3の熱伝導シートのSEM写真を比較すると、実施例1~3の熱伝導シートではPTFEマトリックスに窒化ホウ素粒子がばらばらに分散して存在しており、比較例1~3の熱伝導シートでは、断面においてPTFEマトリックス及び窒化ホウ素粒子が層状に存在しているように確認できる。
 本発明によって得られる熱伝導シートは、高い放熱性を有するので、電子機器及び車両用の放熱部材として好適に利用できる。

Claims (9)

  1.  (I)ポリテトラフルオロエチレン微粒子及び熱伝導性無機粒子を含む水性分散液中で、前記ポリテトラフルオロエチレン微粒子及び前記熱伝導性無機粒子を共凝集させ、得られた凝集物を液体成分と分離して乾燥させることによって作製された、前記ポリテトラフルオロエチレン微粒子及び前記熱伝導性無機粒子を含む混合粉体を準備する工程と、
     (II)前記混合粉体及び成形助剤を用いて作製された、ポリテトラフルオロエチレン、前記熱伝導性無機粒子及び前記成形助剤を含むシート状成形体を複数準備する工程と、
     (III)複数の前記シート状成形体を重ね合わせて圧延する工程と、
     (IV)前記成形助剤を除去する工程と、
    を含む、熱伝導シートの製造方法。
  2.  前記工程(I)において準備される前記混合粉体は、ポリテトラフルオロエチレン微粒子の水性分散液を水で希釈した後、得られた分散液に前記熱伝導性無機粒子を添加して、前記ポリテトラフルオロエチレン微粒子及び前記熱伝導性無機粒子を含む前記水性分散液を準備し、前記水性分散液中で、前記ポリテトラフルオロエチレン微粒子及び前記熱伝導性無機粒子を共凝集させ、得られた前記凝集物を前記液体成分から分離して乾燥させることによって作製されたものである、
    請求項1に記載の熱伝導シートの製造方法。
  3.  前記熱伝導性無機粒子が窒化ホウ素粒子である、
    請求項1に記載の熱伝導シートの製造方法。
  4.  (V)前記工程(IV)によって得られたシート状物を加圧成形する工程、
    をさらに含む、
    請求項1に記載の熱伝導シートの製造方法。
  5.  前記工程(V)において、ポリテトラフルオロエチレンの焼成温度範囲内の温度で加圧成形を行う、
    請求項4に記載の熱伝導シートの製造方法。
  6.  (VI)前記工程(IV)によって得られたシート状物に含浸材を含浸させる工程、
    をさらに含む、
    請求項1に記載の熱伝導シートの製造方法。
  7.  前記工程(II)と前記工程(III)とが交互に繰り返される、
    請求項1に記載の熱伝導シートの製造方法。
  8.  前記工程(III)を繰り返す際に、圧延方向を変更する、請求項7に記載の熱伝導シートの製造方法。
  9.  請求項1に記載の方法によって得られる、ポリテトラフルオロエチレン及び熱伝導性無機粒子を含む熱伝導シート。
     
PCT/JP2014/004271 2013-08-27 2014-08-20 熱伝導シートの製造方法及び熱伝導シート WO2015029385A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013175180A JP2015044288A (ja) 2013-08-27 2013-08-27 熱伝導シートの製造方法及び熱伝導シート
JP2013-175180 2013-08-27

Publications (1)

Publication Number Publication Date
WO2015029385A1 true WO2015029385A1 (ja) 2015-03-05

Family

ID=52585977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004271 WO2015029385A1 (ja) 2013-08-27 2014-08-20 熱伝導シートの製造方法及び熱伝導シート

Country Status (2)

Country Link
JP (1) JP2015044288A (ja)
WO (1) WO2015029385A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3436519A4 (en) * 2016-03-28 2019-08-14 Dow Global Technologies, LLC PROCESS FOR THE FOAMING OF POLYOLEFIN COMPOSITIONS WITH A FLUORIDE RESIN / BORN NITRIDE MIXTURE AS NUCLEARING AGENT
EP3733753A1 (en) 2019-05-03 2020-11-04 3M Innovative Properties Company Film usable for roll-to-roll processing of flexible electronic devices comprising a composite material of a polymer and boron nitride
CN114026170A (zh) * 2019-07-16 2022-02-08 大金工业株式会社 电路基板用树脂组合物、电路基板用成型体、电路基板用层积体和电路基板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7119440B2 (ja) * 2018-03-12 2022-08-17 日本ゼオン株式会社 複合材料シートの製造方法
TW202317697A (zh) 2021-08-04 2023-05-01 日商Agc股份有限公司 片材之製造方法、積層片材之製造方法及片材

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03212987A (ja) * 1990-01-17 1991-09-18 Matsushita Electric Works Ltd 電気用複合材料、積層板およびプリント配線板
JP2007119769A (ja) * 2005-09-30 2007-05-17 Du Pont Mitsui Fluorochem Co Ltd 樹脂複合体組成物およびその製造方法
JP2012211301A (ja) * 2011-03-23 2012-11-01 Nitto Denko Corp 放熱部材およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03212987A (ja) * 1990-01-17 1991-09-18 Matsushita Electric Works Ltd 電気用複合材料、積層板およびプリント配線板
JP2007119769A (ja) * 2005-09-30 2007-05-17 Du Pont Mitsui Fluorochem Co Ltd 樹脂複合体組成物およびその製造方法
JP2012211301A (ja) * 2011-03-23 2012-11-01 Nitto Denko Corp 放熱部材およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3436519A4 (en) * 2016-03-28 2019-08-14 Dow Global Technologies, LLC PROCESS FOR THE FOAMING OF POLYOLEFIN COMPOSITIONS WITH A FLUORIDE RESIN / BORN NITRIDE MIXTURE AS NUCLEARING AGENT
EP3733753A1 (en) 2019-05-03 2020-11-04 3M Innovative Properties Company Film usable for roll-to-roll processing of flexible electronic devices comprising a composite material of a polymer and boron nitride
WO2020225678A1 (en) 2019-05-03 2020-11-12 3M Innovative Properties Company Film usable for roll-to-roll processing of flexible electronic devices comprising a composite material of a polymer and boron nitride
CN114026170A (zh) * 2019-07-16 2022-02-08 大金工业株式会社 电路基板用树脂组合物、电路基板用成型体、电路基板用层积体和电路基板

Also Published As

Publication number Publication date
JP2015044288A (ja) 2015-03-12

Similar Documents

Publication Publication Date Title
JP5753058B2 (ja) 放熱部材およびその製造方法
WO2015029385A1 (ja) 熱伝導シートの製造方法及び熱伝導シート
JP5322894B2 (ja) 絶縁性熱伝導シートの製造方法、絶縁性熱伝導シート及び放熱部材
Mateti et al. Bulk hexagonal boron nitride with a quasi‐isotropic thermal conductivity
JP5541400B2 (ja) 熱伝導性シートの製造方法
KR101193991B1 (ko) 높은 열전도성을 갖는 금속-그라파이트 복합재료 및 그 제조방법
Ahn et al. Thermal conductivity of polymer composites with oriented boron nitride
WO2015118858A1 (ja) 熱伝導性シートの製造方法及び熱伝導性シート
WO2015029407A1 (ja) 絶縁性熱伝導シート
JP2013082767A (ja) 放熱部材およびその製造方法
JP2021061406A (ja) 絶縁樹脂材料、それを用いた金属層付絶縁樹脂材料および配線基板
Liu et al. Three-dimensional network of hexagonal boron nitride filled with polydimethylsiloxane with high thermal conductivity and good insulating properties for thermal management applications
Han et al. Tetris-style stacking process to tailor the orientation of carbon fiber scaffolds for efficient heat dissipation
Wang et al. Facile fabrication of three-dimensional thermal conductive composites with synergistic effect of multidimensional fillers
JP7107530B2 (ja) 熱伝導シート
JP2017061714A (ja) 高熱伝導性複合材料
JP2016050662A (ja) 制振材
JP2013209542A (ja) 熱伝導フッ素樹脂フィルム
JP2016164916A (ja) 放熱部材、およびそれを備えた放熱装置
JP2015225891A (ja) 絶縁性熱伝導シートの製造方法および絶縁性熱伝導シート
RU2786676C1 (ru) Способ получения материала теплопроводящего композиционного листового анизотропного и материал теплопроводящий композиционный листовой анизотропный
JP2010248064A (ja) 鱗状黒鉛粉末成形体の製造方法および焼結成形体
WO2014103328A1 (ja) 熱伝導性粘着シートの製造方法及び熱伝導性粘着シート
US20170028675A1 (en) Heat radiating material comprising mixed graphite
CN116000581A (zh) 一种各向异性导热和热膨胀的铜-金刚石复合材料的制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840620

Country of ref document: EP

Kind code of ref document: A1