WO2015025787A1 - 感光性ガラス基板の製造方法 - Google Patents

感光性ガラス基板の製造方法 Download PDF

Info

Publication number
WO2015025787A1
WO2015025787A1 PCT/JP2014/071390 JP2014071390W WO2015025787A1 WO 2015025787 A1 WO2015025787 A1 WO 2015025787A1 JP 2014071390 W JP2014071390 W JP 2014071390W WO 2015025787 A1 WO2015025787 A1 WO 2015025787A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive glass
glass substrate
heat treatment
dimensional change
hole
Prior art date
Application number
PCT/JP2014/071390
Other languages
English (en)
French (fr)
Inventor
隆 伏江
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to US14/911,456 priority Critical patent/US20160194240A1/en
Priority to DE112014003866.0T priority patent/DE112014003866T5/de
Publication of WO2015025787A1 publication Critical patent/WO2015025787A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/04Compositions for glass with special properties for photosensitive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/36Imagewise removal not covered by groups G03F7/30 - G03F7/34, e.g. using gas streams, using plasma
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products

Definitions

  • the present invention relates to a method for producing a photosensitive glass substrate.
  • Photosensitive glass is glass in which only an exposed portion is crystallized by exposing and heat-treating glass containing a photosensitive component and a sensitizing component.
  • the crystallized portion has a significantly different dissolution rate with respect to the acid than the non-crystallized portion. Therefore, by utilizing this property, selective etching can be performed on the photosensitive glass. As a result, fine processing can be performed on the photosensitive glass without using machining. Further, by heat-treating the photosensitive glass at a temperature higher than that at the time of exposure, crystallized photosensitive glass in which fine crystals are precipitated in the photosensitive glass can be obtained. This crystallized photosensitive glass is excellent in mechanical properties and chemical durability.
  • the exposure of the photosensitive glass is performed using a photomask as in the semiconductor element manufacturing process. Specifically, ultraviolet light as exposure light enters the photomask, and the ultraviolet light is exposed only from the opening where the light-shielding film is not formed, that is, from the portion provided to correspond to the portion to be finely processed. Invade inside.
  • the energy of the ultraviolet rays releases electrons from the sensitizing component (CeO 2 or the like), and the ions of the photosensitive component (Au, Ag, Cu, etc.) capture the electrons to cause a redox reaction.
  • the metal of the photosensitive component is generated inside the photosensitive glass, and a latent image is formed (see, for example, Patent Document 1).
  • the photosensitive glass is indirectly irradiated with ultraviolet rays through the photomask to form a latent image.
  • Photosensitive glass (including crystallized photosensitive glass) has good mechanical properties as glass and can be finely processed at low cost. For this reason, it has begun to be applied to an interposer in which an expensive Si wafer has been used conventionally, a gas electronic amplifier substrate in which a resin such as polyimide having low mechanical properties has been used.
  • the dimensions of photosensitive glass change due to heat treatment at high temperatures. Especially, when crystallized photosensitive glass in which fine crystals are precipitated in the photosensitive glass after fine processing such as formation of through-holes is performed, the photosensitive glass is crystallized. The dimensional change amount becomes relatively large. Specifically, the crystallized photosensitive glass shrinks by about 1.1% as compared to the photosensitive glass before microfabrication.
  • the photosensitive glass When forming a through-hole having a size of, for example, about several tens of ⁇ m in such a photosensitive glass using a photomask, the photosensitive glass is subjected to heat treatment after the pattern is formed by the photomask. Therefore, if patterning with a photomask is not performed in consideration of the dimensional change amount, the dimensional change amount due to the subsequent heat treatment is extremely larger than the diameter of the through hole. It will deviate greatly from. In particular, as the substrate size increases, the dimensional change amount of the substrate also increases, and this problem becomes significant.
  • step-and-repeat In the case of using a photomask, in order to improve patterning accuracy, a predetermined correction is performed on the photomask by a method called step-and-repeat.
  • step-and-repeat the entire pattern to be formed is not formed all at once, but the formation of a part of the pattern is repeated by using a photomask of a repeating unit that is a part of the formed pattern. Form. Therefore, the accuracy of the entire pattern can be improved only by performing a predetermined correction on the photomask.
  • the amount of dimensional change differs between the central portion and the outer peripheral portion of the photosensitive glass substrate. Therefore, when correcting the formation position of the through-hole in step and repeat, since the correction amount differs depending on the repeat position, many photomasks having different correction amounts are required, which is not practical.
  • the present invention is made in view of the above situation, and by directly correcting the irradiation position of the energy beam in consideration of the dimensional change amount of the photosensitive glass caused by the heat treatment, the fine processing such as the formation position of the through hole is performed.
  • An object is to provide a method capable of easily improving accuracy.
  • the present inventor found that the amount of dimensional change of the photosensitive glass due to heat treatment is large and varies depending on the location of the photosensitive glass, but the variation of the dimensional change amount for each photosensitive glass is small. It was found that the amount does not affect the position error. As a result, it was found that the setting of the correction amount can be simplified.
  • the aspect of the present invention is An irradiation process in which a latent image is formed by directly irradiating an energy beam to a plate-shaped substrate made of photosensitive glass; A crystallization step of crystallizing the latent image by a first heat treatment to obtain a crystallized portion; A fine processing step of dissolving and removing the crystallized portion to perform fine processing to obtain a photosensitive glass substrate; Have In the irradiation step, the photosensitive glass substrate manufacturing method corrects the irradiation position of the energy beam based on at least a dimensional change amount of the photosensitive glass caused by the heat treatment including the first heat treatment.
  • the heat treatment preferably includes a second heat treatment performed on the photosensitive glass substrate after the fine processing step.
  • the correction amount calculated based on the dimensional change amount at a predetermined point on the photosensitive glass substrate is a distance between the center point of the photosensitive glass substrate and the predetermined point before the heat treatment. Is preferably within the range of 0 to 0.3%. Alternatively, the correction amount is preferably in the range of 0 to ⁇ 2% with respect to the distance between the center point of the photosensitive glass substrate and a predetermined point before the heat treatment.
  • the center point of the photosensitive glass substrate is the center of gravity of the photosensitive glass substrate.
  • the microfabrication step is a through-hole forming step in which the crystallized portion is dissolved and removed to form a through-hole, the photosensitive glass substrate has a diameter of 100 mm or more, and the through-hole has a diameter of 100 ⁇ m or less. It is preferable that
  • the precision of fine processing such as the formation position of a through hole is easily improved by directly correcting the irradiation position of the energy beam in consideration of the dimensional change of the photosensitive glass caused by the heat treatment.
  • a method that can be provided can be provided.
  • FIG. 1 is a schematic view showing a manufacturing process of a photosensitive glass substrate in the manufacturing method according to the present embodiment.
  • FIG. 2 is a schematic diagram showing an example of a method for measuring a dimensional change amount of a photosensitive glass substrate by heat treatment in the manufacturing method according to the present embodiment.
  • FIG. 3 is an enlarged view of a portion III in FIG. 2, and includes a reference mark formed on the photosensitive glass substrate before the heat treatment and a reference mark formed on the photosensitive glass substrate after the heat treatment. It is a schematic diagram shown.
  • FIG. 4 is a schematic graph showing the relationship between the distance from the origin in the X direction and the dimensional change amount of the photosensitive glass substrate shown in FIG.
  • the photosensitive glass substrate is not particularly limited as long as it is made of photosensitive glass.
  • the photosensitive glass substrate has a plate shape, and may be a circular plate shape or a rectangular plate shape such as a rectangle or a square depending on the application.
  • the diameter of the photosensitive glass substrate is not particularly limited, but the effect of the present invention becomes more remarkable when the diameter of the photosensitive glass substrate is 100 mm or more.
  • the diameter of the photosensitive glass substrate indicates the diameter when the photosensitive glass substrate is a circular plate, and the side length when the photosensitive glass substrate is a rectangular plate. Show.
  • the thickness of the photosensitive glass substrate may be determined according to the application, but is about 0.1 to 1 mm, for example.
  • the photosensitive glass substrate is formed with a plurality of through holes regularly arranged on the main surface of the substrate.
  • the shape of the through hole is not particularly limited, but is usually circular in plan view.
  • the diameter of the through holes is about 10 to 100 ⁇ m, and the arrangement pitch of the through holes is about 20 to 300 ⁇ m.
  • the photosensitive glass substrate is a substrate on which a very large number (thousands to millions) of fine through holes are formed. A method of forming the through hole will be described later.
  • the photosensitive glass contains Au, Ag, and Cu as photosensitive components in SiO 2 —Li 2 O—Al 2 O 3 glass, and further contains CeO 2 as a sensitizing component. It is glass.
  • SiO 2 55 to 85% by mass
  • Al 2 O 3 2 to 20% by mass
  • SiO 2 , Al 2 O 3 and Li 2 O Is 85% by mass or more with respect to the entire photosensitive glass
  • Au 0.001 to 0.05% by mass
  • Ag 0.001 to 0.5% by mass
  • Examples include a composition containing ⁇ 1% by mass as a photosensitive component and further containing CeO 2 : 0.001 ⁇ 0.2% by mass as a sensitizing component. What is necessary is just to determine the content of a photosensitive component and a sensitizing component according to the sensitivity with respect to the energy beam used at the irradiation process mentioned later.
  • photosensitive glass examples include PEG3 manufactured by HOYA Corporation and PEG3C manufactured by HOYA Corporation obtained by crystallization of PEG3.
  • a latent image is formed on a base material composed of photosensitive glass, and the latent image is crystallized and then dissolved and removed to form a through hole. Manufactured. A specific method will be described with reference to FIG.
  • a substrate 11 made of photosensitive glass is prepared.
  • the photosensitive glass the glass described above may be used.
  • a latent image 17 is formed on a portion of the base material 11 that is to become a through hole (hereinafter also referred to as a through hole formation scheduled portion 16).
  • the latent image 17 is formed by directly irradiating the substrate 11 with the energy beam 50 from the irradiation source 51 without using a photomask. That is, as shown in FIG. 1B, when the energy beam 50 is irradiated, the energy beam 50 is sequentially applied to the through-hole formation scheduled portion 16 while controlling the energy beam irradiation source 51 by a known moving mechanism (not shown).
  • the latent image 17 is formed by irradiation.
  • the energy beam 50 may be irradiated while position control (for example, XY direction control) of the stage (not shown) on which the substrate 11 is placed.
  • the irradiation position of the energy beam 50 is corrected based on the dimensional change amount of the photosensitive glass caused by the heat treatment described later. A specific correction method will be described later.
  • the energy beam 50 is not particularly limited, but the following energy beam 50 is preferable. That is, any beam having an energy sufficient to cause a redox reaction between the photosensitive component and the sensitizing component in the photosensitive glass and to sufficiently generate the metal of the photosensitive component may be used. Further, any beam that can narrow the beam diameter to such an extent that the latent image 17 corresponding to the diameter of the through-hole to be formed can be formed may be used.
  • laser light is used as the energy beam. This is because the laser light has high directivity and a high energy density can be realized by further reducing the beam diameter.
  • Specific examples of laser light include UV laser light and excimer laser light.
  • a first heat treatment is performed on the substrate on which the latent image is formed.
  • the first heat treatment is a process performed to make the latent image a crystallized portion.
  • the irradiation process in the latent image formed by irradiating the laser beam, there is a metal of the photosensitive component generated by the oxidation-reduction reaction between the photosensitive component (Au or the like) and the sensitizing component (Ce or the like). ing.
  • a silicate crystal is precipitated, and a crystallized portion 18 is formed. Accordingly, the crystallized portion 18 is formed at a position corresponding to the through-hole forming scheduled portion 16 as in the latent image 17.
  • the holding time is not particularly limited, and may be a time that allows lithium monosilicate crystals to sufficiently precipitate and the size of the crystals not to become too large. This is because if the crystal size becomes too large, the precision of microfabrication by etching, which will be described later, deteriorates.
  • the photosensitive glass softens at around 515 ° C.
  • the formed crystallized portion 18 is dissolved and removed by etching using HF (hydrogen fluoride) to form the through hole 15.
  • HF hydrogen fluoride
  • the crystallized portion 18, that is, lithium monosilicate, is more easily dissolved in hydrogen fluoride than the non-crystallized glass portion.
  • the difference in dissolution rate between the crystallized portion 18 and the glass portion other than the crystallized portion is about 50 times. Therefore, using this difference in dissolution rate, hydrogen fluoride is used as an etchant, and for example, by spraying hydrogen fluoride onto both surfaces of the substrate 11 by spray etching (not shown), the crystallized portion 18 is dissolved.
  • the through-holes 15 are formed by removing them. That is, the through hole 15 can be formed by selectively etching the base material 11.
  • the photosensitive glass substrate 10 in which the through holes 15 are formed is subjected to the second heat treatment to modify the photosensitive glass.
  • the second heat treatment is performed at a temperature higher than that of the first heat treatment, for example, in the range of 800 to 1200 ° C.
  • FIG. 1 (e) lithium disilicate crystals are precipitated on the entire photosensitive glass, and the photosensitive glass is modified to form a crystallized photosensitive glass substrate 10a.
  • Crystallized photosensitive glass is superior in mechanical properties, chemical durability, and the like to a photosensitive glass that has not been modified.
  • the crystallized photosensitive glass is also simply referred to as photosensitive glass.
  • the obtained photosensitive glass substrate is used for the above-described applications. At this time, the conductive metal is filled in the through holes as necessary.
  • the photosensitive glass substrate is often exposed through a photomask having a mask pattern corresponding to a pattern to be exposed (for example, a through-hole formation scheduled portion).
  • a photomask having a mask pattern corresponding to a pattern to be exposed (for example, a through-hole formation scheduled portion).
  • the accuracy of patterning for example, the displacement of the formation position of the through hole
  • a new problem becomes apparent. This problem is caused by the properties unique to the photosensitive glass.
  • the above-mentioned properties unique to the photosensitive glass are dimensional changes caused by the heat treatment of the photosensitive glass substrate.
  • the heat treatment as described above causes a change in volume in the photosensitive glass substrate due to new crystal precipitation, structural change from an amorphous state to a crystalline state, etc. Dimensional change of the photosensitive glass substrate occurs.
  • the first heat treatment and the second heat treatment described above cause a maximum shrinkage of about 1.1% with respect to the substrate size before the heat treatment. Therefore, for example, when the size of one side in the plane direction of the substrate, that is, the diameter of the substrate is about 300 mm, after the first heat treatment and the second heat treatment, the outer peripheral portion of the substrate contracts by about 3.3 mm in the plane direction.
  • shrinkage amount of dimensional change
  • the diameter of the through holes formed in the photosensitive glass substrate is about several tens ⁇ m and the arrangement pitch is about several tens to several hundreds ⁇ m.
  • the through holes need to be formed correctly at predetermined positions. Therefore, it is required that the accuracy of the formation position of the through-hole is high despite the above-described dimensional change amount being extremely large with respect to the diameter of the through-hole.
  • the error range (accuracy) of the through hole formation position is about 10 to 25 ⁇ m, although it depends on the diameter of the through hole.
  • Such displacement of the formation position is such that the size of the photosensitive glass substrate is large (that is, the dimensional change is large), and the diameter or arrangement of the through holes 15 is made fine (that is, the positional accuracy of the arrangement becomes severe). It can be easily understood that it becomes prominent.
  • the through-holes on the photosensitive glass substrate before the heat treatment so that the displacement (error) of the formation position of the through-hole is within the above range while taking into account the dimensional change amount of the photosensitive glass substrate after the heat treatment. It is necessary to correct the position of the portion to be formed.
  • the mask pattern of the photomask needs to be a mask pattern reflecting the dimensional change of the photosensitive glass substrate. In this case, it is conceivable to perform pattern exposure while performing correction in step-and-repeat.
  • step-and-repeat correction pattern formation is repeated by using a photomask having a mask pattern in which a predetermined correction is reflected on a part of the pattern (repeating unit) formed on the substrate. This is done by forming a pattern. That is, the exposure position is indirectly corrected by making a fine adjustment to the mask pattern of the photomask.
  • the dimension of the object to be patterned that is, the photosensitive glass substrate itself is changed, and the dimensional change amount is different between the outer peripheral portion and the central portion.
  • the dimensional change amount in step-and-repeat, when the repeat position changes, the dimensional change amount also changes. Therefore, in order to correct the formation position of the through hole, it is necessary to produce a large number of photomasks corresponding to the magnitude of the dimensional change, which is not practical from the viewpoint of cost and the like.
  • the present inventor found a very important fact regarding the dimensional change of the photosensitive glass substrate.
  • the fact is that the dimensional change of the photosensitive glass due to the heat treatment itself is so large that it affects the accuracy of the formation position of the fine through-hole, but the photosensitive glass substrate having the same composition is heat-treated under the same conditions.
  • the difference in the dimensional change amount generated for each photosensitive glass substrate is small, that is, the variation in the dimensional change amount is small. In other words, the same dimensional change occurs in any substrate by the heat treatment.
  • the variation in the amount of dimensional change that appears when a substrate having a diameter of 300 mm and a substrate having the same composition is subjected to heat treatment under the same conditions is, for example, after the first heat treatment and the second heat treatment are performed.
  • Has been found for the first time to be about ⁇ 10 ⁇ m, which is extremely small compared to the dimensional change amount itself.
  • the error range (patterning accuracy) required for the through hole formation position is about 10 to 25 ⁇ m
  • the variation is required for the through hole formation position. It is considered that the position accuracy is not so affected. Therefore, it is not always necessary to set a correction amount based on the dimensional change amount for each substrate, and the correction amount set for one substrate can be applied to another substrate. That is, the setting of the correction amount can be simplified.
  • the correction of the irradiation position in the irradiation step is performed according to the dimensional change amount of the photosensitive glass caused by the first heat treatment in the crystallization step and the second heat treatment in the photosensitive glass modification step. Done.
  • an operation for forming a latent image on the photosensitive glass substrate is performed. This is performed by directly irradiating an energy beam such as a laser beam at a position corrected in advance by reflecting the amount of dimensional change.
  • an energy beam such as a laser beam
  • the corrected position a position different from the original formation position
  • the corrected position is corrected in consideration in advance, there is no deviation in fine patterning (for example, the formation position of the through hole) after the heat treatment.
  • the correction amount is calculated from the relationship between the distance from the origin and the dimensional change amount with the center of the substrate as the origin. Then, the calculated correction amount is added to the initial value of the coordinates of the through-hole formation scheduled portion set without considering the dimensional change, thereby correcting the irradiation position of the energy beam. This will be specifically described below.
  • the photosensitive glass substrate for measuring the dimensional change is subjected to heat treatment, the dimensional change of the substrate is measured, and the correction amount is set based on the obtained dimensional change.
  • the heat treatment may be only the first heat treatment or both the first heat treatment and the second heat treatment.
  • the set correction amount is added to the coordinates (position) of the through-hole formation scheduled portion in the photosensitive glass substrate on which the through-hole is formed.
  • the accuracy of the through-hole formation position can be further increased.
  • the correction amount can be set more appropriately, and the through hole formation position accuracy can be further increased.
  • detectable reference marks 31 to 38 are attached on a photosensitive glass substrate 10b for measuring a dimensional change before heat treatment.
  • the reference marks 31 to 38 are attached to detect the dimensional change amount of the photosensitive glass substrate 10b.
  • two virtual reference lines 40 and 41 passing through the center point O of the photosensitive glass substrate 10b are set, the virtual reference line 40 is set as the X direction, and the virtual reference line 41 is set as the Y direction.
  • Reference marks 31 to 34 are arranged in the X direction, and reference marks 35 to 38 are arranged in the Y direction. These reference marks 31 to 38 are arranged such that the distance from the center point O is a predetermined distance (X1, X2,..., Y1, Y2,).
  • the center point O of the photosensitive glass substrate 10b is the center of gravity of the photosensitive glass substrate 10b. That is, as shown in FIG. 2, when the shape of the photosensitive glass substrate 10b is a square, the center point O of the photosensitive glass substrate 10b is an intersection of diagonal lines. When the shape of the photosensitive glass substrate is circular, the center point O of the photosensitive glass substrate 10b is the center of the circle.
  • the reference marks 31 to 38 are not particularly limited as long as the reference marks 31 to 38 are arranged so as to detect the dimensional change amount.
  • alignment marks used for other purposes may be used.
  • the photosensitive glass substrate 10b (photosensitive glass substrate for measuring dimensional change) on which the reference marks 31 to 38 are formed is subjected to heat treatment, and then the positions of the reference marks 31 to 38 are detected to change the dimensions. Calculate the amount.
  • the method for detecting the reference marks 31 to 38 is not particularly limited as long as it can reliably detect the formed marks, and a known detection method may be used as appropriate.
  • the coordinates of each reference mark may be calculated using a known image processing technique.
  • the distance between the center point O and the reference mark 31a is X1 ′
  • the distance between the center point O and the reference mark 32a is X2 ′
  • the distance X3 ′ between the center point O and the reference mark 33a is the center point O and This is the distance X4 ′ from the reference mark 34a.
  • the obtained distances X1 ′, X2 ′, X3 ′, X4 ′ and the distances between the center point O on the photosensitive glass substrate 10b before the heat treatment and the respective reference marks, that is, X1, X2, X3, X4. are respectively compared with each other to calculate the amount of dimensional change in the X direction at each reference mark on the photosensitive glass substrate.
  • a function 70 indicating the relationship between the distance from the origin (X1 to X4) and the dimensional change amount (a1 to a4) is calculated.
  • a function calculation method a known method may be used, and for example, a least square method or the like may be used.
  • a function indicating the relationship between the distance from the origin and the dimensional change amount is calculated.
  • the correction amount is calculated by substituting the coordinates (position) of each through-hole formation scheduled portion into the obtained function. Then, the calculated correction amount is added to the coordinates of the through-hole formation scheduled portion that does not consider the dimensional change amount.
  • the coordinates of the center point of the through hole at the planned formation position in the photosensitive glass substrate before the heat treatment are (X1, Y1)
  • the calculated correction amount in the X direction is a1
  • the correction amount in the Y direction is b1.
  • the coordinates of the center point of the corrected through hole are (X1 + a1, Y1 + b1)
  • the energy beam is irradiated with the coordinates as the center position.
  • the diameter of the through hole is controlled so that a latent image having a diameter reflecting the dimensional change amount is formed.
  • the irradiation position of the energy beam in the irradiation process is corrected to become coordinates (X1 + a, Y1 + b), and the beam diameter at the time of irradiation reflects the correction amount based on the dimensional change amount with respect to the diameter of the through-hole to be formed. It is set so that it may become a diameter.
  • the energy beam is directly irradiated to the corrected irradiation position.
  • the dimensional change amount is canceled to the correction amount. Therefore, the through hole in the final photosensitive glass substrate obtained after the heat treatment is formed at a predetermined planned formation position, that is, at coordinates (X1, Y1), and effectively suppresses the deviation of the formation position of the through hole. be able to.
  • the correction amount at the predetermined through-hole formation scheduled position on the photosensitive glass substrate is based on the distance between the center point of the photosensitive glass substrate and the predetermined through-hole formation planned position before the heat treatment. Is in the range of 0 to -2%.
  • correction amount setting method is not limited to the above method, and the correction amount may be determined using another method.
  • the amount of dimensional change of the photosensitive glass substrate due to the heat treatment is large, and processing accuracy has been a problem when fine processing (for example, formation of fine through holes) is performed on the substrate. Specifically, when a through hole is formed in a substrate, a shift is likely to occur between the actual formation position of the through hole and a predetermined planned formation position.
  • the correction amount based on the dimensional change amount of the photosensitive glass substrate is reflected in the irradiation position of the energy beam without using a mask.
  • difference of the formation position of a through-hole can be suppressed effectively. Therefore, with the method according to the present embodiment, even when fine patterning is performed, the patterning can be performed with high accuracy.
  • the energy beam irradiation position itself is directly corrected, not the correction by the mask pattern. Therefore, as long as the correction amount can be determined, correction reflecting the correction amount can be easily performed. Also, the correction amount can be easily and accurately set because there is little variation in the dimensional variation of the photosensitive glass substrate, and it is not necessary to set it for each substrate.
  • the present embodiment it is possible to easily realize such high precision of fine patterning (suppression of displacement of the formation position).
  • the correction amount can be calculated easily and accurately, and the energy beam is directly applied to the photosensitive glass substrate. This is because it can be reflected in the position.
  • the first heat treatment that is, the heat treatment in the crystallization process
  • the first heat treatment expands by about 0.1% with respect to the substrate size before the heat treatment. That is, when the diameter of the substrate is about 300 mm, it expands by about 0.3 mm in the plane direction after the first heat treatment. Further, the variation in the amount of dimensional change is about ⁇ 5 ⁇ m.
  • the correction amount at the predetermined through-hole formation scheduled position on the photosensitive glass substrate is 0 to 0. 0 with respect to the distance between the center point of the photosensitive glass substrate and the predetermined through-hole formation planned position before the heat treatment. It is in the range of 3%.
  • the accuracy of the through hole formation position can be improved as in the above-described embodiment.
  • the correction amount is set based on the relationship between the distance from the center point O of the photosensitive glass substrate and the dimensional change amount.
  • the correction amount may be set by another method. For example, a plurality of dimensional change measurement substrates may be heat treated to calculate a deviation (dimensional change) at a predetermined coordinate on each substrate, and the average value may be set as a correction amount.
  • the through hole is formed as the fine processing for the base material made of the photosensitive glass.
  • other fine processing may be performed.
  • the bottomed hole may be formed by forming the latent image halfway through the base material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

 感光性ガラスから構成される板状基材に直接的にエネルギービームを照射して潜像を形成する照射工程と、第1熱処理により潜像を結晶化して結晶化部分を得る結晶化工程と、結晶化部分を溶解除去して微細加工を行い、感光性ガラス基板を得る微細加工工程と、を有し、照射工程において、少なくとも第1熱処理を含む熱処理に起因する感光性ガラスの寸法変化量に基づいて、エネルギービームの照射位置を補正することを特徴とする感光性ガラス基板の製造方法である。

Description

感光性ガラス基板の製造方法
 本発明は、感光性ガラス基板の製造方法に関する。
 感光性ガラスは、感光性成分および増感成分を含むガラスを露光、熱処理することにより露光した部分のみが結晶化するガラスである。結晶化した部分は、結晶化していない部分に比べて、酸に対する溶解速度が大きく異なる。したがって、この性質を利用することで、選択的エッチングを感光性ガラスに対して行うことができる。その結果、機械加工を用いることなく、感光性ガラスに微細な加工を行うことができる。また、感光性ガラスを、露光時の熱処理よりも高い温度で熱処理することにより、感光性ガラス中に微細な結晶を析出させた結晶化感光性ガラスを得ることができる。この結晶化感光性ガラスは機械的特性および化学的耐久性に優れる。
 感光性ガラスの露光は、半導体素子製造プロセスと同様にフォトマスクを用いて行われる。具体的には、フォトマスクに露出光としての紫外線が進入し、遮光膜が形成されていない開口部、すなわち、微細加工される部分に対応するように設けられた部分からのみ紫外線が感光性ガラス内部に侵入する。そして、この紫外線が有するエネルギーにより、増感成分(CeO等)から電子が放出され、感光性成分(Au,Ag,Cu等)のイオンが該電子を捕らえることで酸化還元反応が生じる。その結果、感光性成分の金属が感光性ガラスの内部に生じて潜像が形成される(たとえば、特許文献1を参照)。換言すれば、フォトマスクを介して、紫外線が間接的に感光性ガラスに照射され潜像が形成される。
国際公開第2005/034594号
 感光性ガラス(結晶化感光性ガラスも含む)は、ガラスとしての良好な機械的特性を有し、しかも安価に微細加工が可能である。そのため、従来は高価なSiウエハーが用いられてきたインターポーザ、従来は機械的特性の低いポリイミド等の樹脂が用いられてきたガス電子増幅器用基板等に適用され始めている。
 近年、上述した用途において、基板サイズの大型化、かつ貫通孔の径の微細化が求められており、これに伴い、必然的に貫通孔の形成位置等の微細加工の精度に対する要求もますます大きくなっている。
 ところが、感光性ガラスは高温での熱処理によりその寸法が変化する。特に、貫通孔の形成等の微細加工を行った後に、熱処理を行い感光性ガラス中に微細な結晶を析出させた結晶化感光性ガラスを得る場合には、感光性ガラスの結晶化を伴うため、寸法変化量が比較的大きくなってしまう。具体的には、微細加工前の感光性ガラスに比べて、結晶化感光性ガラスは、1.1%程度収縮する。
 このような感光性ガラスに、フォトマスクを用いて、たとえば数十μm程度の大きさの貫通孔を形成する場合、フォトマスクによるパターンの形成後に感光性ガラスに熱処理が行われる。したがって、フォトマスクによるパターン形成時に寸法変化量を考慮してパターニングしなければ、その後の熱処理に起因する寸法変化量が貫通孔の径よりも極めて大きいため、貫通孔の形成位置が所定の形成位置から大きくずれてしまう。特に、基板サイズが大きくなるにつれ基板の寸法変化量も大きくなるため、このような問題が顕著になる。
 フォトマスクを用いる場合、パターニングの精度を向上させるために、ステップアンドリピートと呼ばれる手法において、フォトマスクに所定の補正を行っている。ステップアンドリピートでは、形成されるパターンの全部を一度に形成するのではなく、形成されるパターンの一部である繰り返し単位のフォトマスクを用いて、一部のパターンの形成を繰り返し、全体のパターンを形成する。したがって、フォトマスクに所定の補正を行うだけでパターン全体の精度を向上させることができる。
 しかしながら、感光性ガラス基板の中心部と外周部とでは、寸法変化量は異なる。そのため、ステップアンドリピートにおいて貫通孔の形成位置を補正する場合、リピート位置が異なると補正量も異なるため、補正量が異なるフォトマスクが多数必要となり、現実的ではない。
 本発明は、上記の状況を鑑みてなされ、熱処理に起因する感光性ガラスの寸法変化量を考慮して、エネルギービームの照射位置を直接補正することにより、貫通孔の形成位置等の微細加工の精度を容易に向上させることができる方法を提供することを目的とする。
 本発明者は、熱処理による感光性ガラスの寸法変化量は大きく、しかも感光性ガラスの場所により異なるものの、感光性ガラスごとの寸法変化量のバラツキは小さく、さらにそのバラツキ量は、貫通孔の形成位置の誤差に対して影響を与えない程度の量であることを見出した。その結果、補正量の設定を簡略化できることを見出した。
 そして、本発明者は、感光性ガラス基板について、微細加工の位置精度を補正する場合には、フォトマスクによる補正ではなく、感光性ガラス基板上の微細加工が予定されている位置を直接補正することにより、上記の課題が解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明の態様は、
  感光性ガラスから構成される板状基材に直接的にエネルギービームを照射して潜像を形成する照射工程と、
  第1熱処理により潜像を結晶化して結晶化部分を得る結晶化工程と、
  結晶化部分を溶解除去して微細加工を行い、感光性ガラス基板を得る微細加工工程と、
を有し、
  照射工程において、少なくとも第1熱処理を含む熱処理に起因する感光性ガラスの寸法変化量に基づいて、エネルギービームの照射位置を補正する感光性ガラス基板の製造方法である。
 上記の態様において、熱処理が、微細加工工程後に、感光性ガラス基板に行われる第2熱処理を含むことが好ましい。
 上記の態様において、感光性ガラス基板上の所定の点において、寸法変化量に基づいて算出される補正量が、感光性ガラス基板の中心点と、熱処理前の所定の点と、の距離に対して0~0.3%の範囲内であることが好ましい。あるいは、該補正量が、感光性ガラス基板の中心点と、熱処理前の所定の点と、の距離に対して0~-2%の範囲内であることが好ましい。なお、感光性ガラス基板の中心点は、感光性ガラス基板の重心である。
 上記の態様において、微細加工工程が、結晶化部分を溶解除去して貫通孔を形成する貫通孔形成工程であり、感光性ガラス基板の径が100mm以上であり、かつ貫通孔の径が100μm以下であることが好ましい。
 本発明によれば、熱処理に起因する感光性ガラスの寸法変化量を考慮して、エネルギービームの照射位置を直接補正することにより、貫通孔の形成位置等の微細加工の精度を容易に向上させることができる方法を提供することができる。
図1は、本実施形態に係る製造方法における感光性ガラス基板の製造工程を示す模式図である。 図2は、本実施形態に係る製造方法において、熱処理による感光性ガラス基板の寸法変化量を測定する方法の一例を示す模式図である。 図3は、図2におけるIII部分を拡大した図であって、熱処理前の感光性ガラス基板に形成されている基準マークと、熱処理後の感光性ガラス基板に形成されている基準マークと、を示す模式図である。 図4は、図2に示す感光性ガラス基板のX方向における原点からの距離と寸法変化量との関係を示す模式的なグラフである。
  以下、本発明を、図面に示す実施形態に基づき、以下の順序で詳細に説明する。
  1.感光性ガラス基板
  2.感光性ガラス基板の製造方法
  3.本実施形態の効果
  4.変形例等
(1.感光性ガラス基板)
  感光性ガラス基板としては、感光性ガラスから構成されていれば特に制限されない。本実施形態では、感光性ガラス基板は板状であり、用途に応じて、円形板状であってもよいし、長方形あるいは正方形等の矩形板状であってもよい。
 感光性ガラス基板の径は特に制限されないが、感光性ガラス基板の径が100mm以上である場合に本発明の効果がより顕著となる。なお、本発明において、感光性ガラス基板の径とは、感光性ガラス基板が円形板状である場合には直径を示し、感光性ガラス基板が矩形板状である場合には辺の長さを示す。感光性ガラス基板の厚みは用途に応じて決定すればよいが、たとえば0.1~1mm程度である。
 また、感光性ガラス基板には複数の貫通孔が基板の主面上に規則的に配置されて形成されている。貫通孔の形状は、特に制限されないが、通常、平面視で円形である。また、貫通孔の径は10~100μm程度であり、貫通孔の配列ピッチは20~300μm程度である。本実施形態では、感光性ガラス基板は、極めて多数(数千~数百万個)の微細な貫通孔が形成されている基板である。貫通孔を形成する方法は後述する。
 本実施形態では、感光性ガラスは、SiO-LiO-Al系ガラスに、感光性成分としてのAu,Ag,Cuが含まれ、さらに増感成分としてのCeOが含まれるガラスである。具体的な組成として、SiO:55~85質量%、Al:2~20質量%、LiO:5~15質量%であって、SiO、AlおよびLiOの合計が感光性ガラス全体に対して85質量%以上含有されており、Au:0.001~0.05質量%、Ag:0.001~0.5質量%、CuO:0.001~1質量%を感光性成分とし、さらにCeO:0.001~0.2質量%を増感成分として含有する組成が例示される。感光性成分および増感成分の含有量は、後述する照射工程で用いるエネルギービームに対する感度等に応じて決定すればよい。
 このような感光性ガラスとしては、たとえば、HOYA株式会社製PEG3と、PEG3を結晶化して得られるHOYA株式会社製PEG3Cと、が例示される。
(2.感光性ガラス基板の製造方法)
  本実施形態では、感光性ガラスから構成される基材に、潜像を形成し該潜像が結晶化された後に溶解除去されて貫通孔が形成されることにより、上記の感光性ガラス基板が製造される。具体的な方法は図1を用いて説明する。
 まず、図1(a)に示すように、感光性ガラスから構成される基材11を準備する。感光性ガラスとしては、上述したガラスを用いればよい。
 (照射工程)
  次に、図1(b)に示すように、照射工程では、基材11において、貫通孔となるべき部分(以下、貫通孔形成予定部分16ともいう)に潜像17を形成する。この潜像17は、フォトマスクを介することなく、照射源51からエネルギービーム50を基材11に直接的に照射することにより形成される。すなわち、図1(b)に示すように、エネルギービーム50の照射時には、エネルギービームの照射源51を、図示しない公知の移動機構により制御しながら、貫通孔形成予定部分16にエネルギービーム50を順次照射し潜像17を形成していく。
 なお、照射時におけるエネルギービーム50のビーム径、ショット数、アパーチャ径等の照射条件は形成する貫通孔に応じて適宜決定すればよい。また、照射源51を移動させる代わりに、基材11が載置されたステージ(図示省略)を位置制御(たとえば、XY方向制御)しながら、エネルギービーム50を照射してもよい。
 このとき、後述する熱処理に起因する感光性ガラスの寸法変化量に基づいてエネルギービーム50の照射位置を補正する。具体的な補正方法は後述する。
 エネルギービーム50としては、特に制限されないが、以下のようなエネルギービーム50が好ましい。すなわち、感光性ガラス内部で、感光性成分と増感成分との間で酸化還元反応を生じさせ、感光性成分の金属を十分に生じさせる程度のエネルギーを有するビームであればよい。また、形成されることとなる貫通孔の径に対応する潜像17を形成できる程度にビーム径を絞ることができるビームであればよい。
 本実施形態では、エネルギービームとしてレーザー光を用いる。レーザー光は、高い指向性を有しており、さらにビーム径を絞ることで高いエネルギー密度を実現できるからである。具体的なレーザー光としては、UVレーザー光、エキシマレーザー光等が例示される。
 (結晶化工程)
  続いて、潜像が形成された基材に対して第1熱処理を行う。第1熱処理は、潜像を結晶化部分とするために行われる処理である。照射工程において、レーザー光が照射されて形成された潜像では、感光性成分(Au等)と増感成分(Ce等)との間の酸化還元反応により生じた感光性成分の金属が存在している。
 第1熱処理を行うことにより、図1(c)に示すように、潜像17において該金属が凝集してコロイドを形成し、さらにこのコロイドを結晶核として、LiO-SiO(リチウムモノシリケート)の結晶が析出し、結晶化部分18が形成される。したがって、結晶化部分18は、潜像17と同様に貫通孔形成予定部分16に対応する位置に形成されている。
 第1熱処理では、まず400℃に加熱すると、上記のコロイドが形成され始め、結晶化が進行する最終的な到達温度の範囲は500~600℃の範囲である。また、その保持時間としては特に制限されず、リチウムモノシリケートの結晶が十分に析出し、その結晶のサイズが大きくなりすぎない程度の時間とすればよい。結晶のサイズが大きくなりすぎると、後述するエッチングによる微細加工の精度が悪化するからである。なお、第1熱処理において、515℃近傍で感光性ガラスが軟化する。
 (貫通孔形成工程)
  貫通孔形成工程では、図1(d)に示すように、形成された結晶化部分18を、HF(フッ化水素)を用いてエッチングにより溶解除去し、貫通孔15を形成する。結晶化部分18、すなわち、リチウムモノシリケートは、結晶化していないガラス部分に比べて、フッ化水素に溶解しやすい。具体的には、結晶化部分18と結晶化部分以外のガラス部分との溶解速度の差は約50倍である。したがって、この溶解速度の差を利用して、フッ化水素をエッチング液として用い、たとえば、図示しないスプレーエッチングにより、フッ化水素を基材11の両面に吹き付けることにより、結晶化部分18が溶解して除去され貫通孔15が形成される。すなわち、基材11に対して選択的エッチングを行うことにより貫通孔15を形成できる。
 (感光性ガラス改質工程)
  本実施形態では、貫通孔15を形成した感光性ガラス基板10に対して、第2熱処理を行い、感光性ガラスの改質を行う。具体的には、第2熱処理は、第1熱処理よりも高い温度、たとえば、800~1200℃の範囲で行われる。この第2熱処理により、図1(e)に示すように、感光性ガラス全体にリチウムダイシリケートの結晶が析出し、感光性ガラスが改質され、結晶化感光性ガラス基板10aとなる。結晶化感光性ガラスは、改質を行っていない感光性ガラスよりも、機械的特性、化学的耐久性等に優れている。以降、結晶化感光性ガラスを、単に感光性ガラスともいう。
 得られた感光性ガラス基板は上述した用途に用いられる。このとき、必要に応じて、貫通孔に導電性金属が充填される。
 (照射工程における照射位置の補正)
 上述したように、感光性ガラス基板に対する露光は、露光すべきパターン(たとえば、貫通孔形成予定部分)に対応するマスクパターンを有するフォトマスクを介して行うことが多い。しかしながら、フォトマスクを介した露光では、特に、基板サイズが大きくなり、パターニング(たとえば、貫通孔の形成)が微細化すると、パターニングの精度(たとえば、貫通孔の形成位置のずれ)が悪化するという新たな問題が顕在化してしまう。この問題は、感光性ガラス特有の性質に起因する問題である。
 上記の感光性ガラス特有の性質とは、感光性ガラス基板の熱処理に伴って生じる寸法変化である。感光性ガラス基板を製造する際に、上記のような熱処理を経ることにより、新たな結晶の析出、非結晶状態から結晶状態への構造変化等に伴って感光性ガラス基板に体積変化が生じるため、感光性ガラス基板の寸法変化が生じる。
 具体的な寸法変化量を例示すると、上述した第1熱処理および第2熱処理により、熱処理前の基板サイズに対して最大1.1%程度収縮する。したがって、たとえば、基板の平面方向の一辺のサイズ、すなわち、基板の径が300mm程度である場合、第1熱処理および第2熱処理後には、基板の外周部では平面方向に3.3mm程度収縮する。このような収縮(寸法変化量)は、基板の場所によって異なり、基板の中心部では生じず外周部に近づくほど大きくなる傾向にある。
 一方、感光性ガラス基板に形成される貫通孔の径は数十μm程度であり、その配列ピッチも数十~数百μm程度であるが、該基板が所定の性能を発揮するには、熱処理(第1熱処理および第2熱処理)後の感光性ガラス基板において、貫通孔が所定の位置に正しく形成されている必要がある。したがって、貫通孔の径に対して上記の寸法変化量が極めて大きいにもかかわらず、貫通孔の形成位置の精度が高いことが求められる。具体的には、貫通孔の形成位置の誤差範囲(精度)は、貫通孔の径に依存するが、10~25μm程度である。
 このような形成位置のずれは、感光性ガラス基板のサイズが大きく(すなわち、寸法変化量が大きく)、貫通孔15の径あるいは配置を微細化する(すなわち、配置の位置精度が厳しくなる)ほど顕著になることが容易に理解できる。
 以上より、熱処理後の感光性ガラス基板の寸法変化量を考慮しつつ、貫通孔の形成位置のずれ(誤差)が上記の範囲内となるように、熱処理前の感光性ガラス基板上における貫通孔形成予定部分の位置を補正する必要がある。
 ところで、フォトマスクを用いて露光する場合、パターンを形成した後に、フォトマスクを取り除いてから熱処理が行われる。そのため、フォトマスクを用いて形成された貫通孔形成予定部分に形成された貫通孔は、熱処理に起因する感光性ガラス基板の寸法変化により、形成予定位置からずれてしまう。
 したがって、フォトマスクのマスクパターンを、感光性ガラス基板の寸法変化量を反映させたマスクパターンとする必要がある。この場合、ステップアンドリピートにおいて、補正を行いながらパターン露光を行うことが考えられる。
 ステップアンドリピートにおける補正は、基板上に形成されるパターンの一部(繰り返し単位)に対して、所定の補正が反映されたマスクパターンを有するフォトマスクを用いて、パターンの形成を繰り返して全体のパターンを形成することにより行われる。すなわち、フォトマスクのマスクパターンに微調整を加えることで間接的に露光位置を補正する。
 ところが、本実施形態では、パターニング対象物、すなわち、感光性ガラス基板自体の寸法が変化し、しかも、外周部と中心部とでは寸法変化量が異なっている。このことは、ステップアンドリピートにおいて、リピート位置が変化すると寸法変化量も変化してしまうことを意味している。そのため、貫通孔の形成位置を補正するには、寸法変化量の大きさに対応したフォトマスクを多数作製する必要があり、コスト等の面から現実的ではない。
 このような状況において、本発明者は、感光性ガラス基板の寸法変化に関して極めて重要な事実を見出した。その事実とは、熱処理に起因する感光性ガラスの寸法変化量そのものは微細な貫通孔の形成位置の精度に影響を与えるほど大きいが、同一組成の感光性ガラス基板に対し同一条件で熱処理を行うと、感光性ガラス基板ごとに生じる寸法変化量の差が小さい、すなわち、寸法変化量のバラツキが小さいことである。換言すれば、熱処理によりどの基板にも同じような寸法変化が生じるということである。
 具体的には、基板の径が300mmであり、同一組成を有する基板に対し同一条件で熱処理を行った場合に現れる寸法変化量のバラツキは、たとえば、第1熱処理および第2熱処理を行った後には、±10μm程度であり、寸法変化量そのものに比べて極めて小さいことを本発明者は初めて見出している。
 一方、貫通孔の形成位置に要求される誤差範囲(パターニング精度)が10~25μm程度であることを考慮すると、バラツキが上記の範囲内であれば、バラツキが、貫通孔の形成位置に要求される位置精度にそれほど影響を与えないと考えられる。そのため、基板ごとに、寸法変化量に基づく補正量を設定することは必ずしも必要ではなく、一方の基板について設定した補正量を他の基板に適用することができる。すなわち、補正量の設定を簡略化できる。
 そこで、本実施形態では、上記の照射工程における照射位置の補正は、結晶化工程における第1熱処理と感光性ガラス改質工程における第2熱処理とに起因する感光性ガラスの寸法変化量に応じて行われる。
 また、上述したように、フォトマスクを用いて補正を行うことは困難であるため、本実施形態では、上述の照射工程で説明したように、感光性ガラス基板に潜像を形成する操作を、予め寸法変化量が反映されて補正された位置にレーザー光等のエネルギービームを直接的に照射することによって行う。補正された位置(当初の形成位置とは異なる位置)にエネルギービームを直接的に照射することにより、その後の熱処理に起因して感光性ガラス基板に寸法変化を生じても、その寸法変化量を予め考慮してビーム照射位置の補正が行われているため、熱処理後において微細形状のパターニング(たとえば、貫通孔の形成位置)にずれが生じない。
 具体的な補正量の設定は、公知の方法を用いればよいが、本実施形態では、基板の中心を原点として、原点からの距離と寸法変化量との関係から、補正量を算出する。そして、算出された補正量を、寸法変化を考慮せずに設定される貫通孔形成予定部分の座標の初期値に加算して、エネルギービームの照射位置を補正する。以下、具体的に説明する。
 本実施形態では、寸法変化量測定用の感光性ガラス基板に熱処理を行い、該基板の寸法変化量を測定し、得られた寸法変化量に基づき補正量を設定する。熱処理としては、第1熱処理だけであってもよいし、第1熱処理および第2熱処理の両方であってもよい。設定された補正量は、貫通孔が形成される感光性ガラス基板における貫通孔形成予定部分の座標(位置)に加算される。なお、寸法変化量測定用基板として、所定の貫通孔形成予定部分を露光した基板、あるいは、所定の貫通孔が形成された基板を用いることにより、貫通孔の形成位置精度をより高めることができる。また、寸法変化量測定用基板を複数用いると、補正量をより適切に設定することができ、貫通孔の形成位置精度をより高めることができる。
 まず、図2に示すように、熱処理前の寸法変化量測定用の感光性ガラス基板10b上に検出可能な基準マーク31~38を付しておく。基準マーク31~38は、感光性ガラス基板10bの寸法変化量を検出するために付されるものである。さらに、図2に示すように、感光性ガラス基板10bの中心点Oを通る二本の仮想基準線40,41を設定し、仮想基準線40をX方向とし、仮想基準線41をY方向とする。X方向には基準マーク31~34が配置され、Y方向には基準マーク35~38が配置される。これらの基準マーク31~38は、中心点Oからの距離が所定の距離(X1、X2・・・、Y1、Y2・・・)となるように配置されている。
 なお、本実施形態では、感光性ガラス基板10bの中心点Oは、感光性ガラス基板10bの重心である。すなわち、図2に示すように、感光性ガラス基板10bの形状が正方形である場合には、感光性ガラス基板10bの中心点Oは対角線の交点となる。また、感光性ガラス基板の形状が円形である場合には、感光性ガラス基板10bの中心点Oは円の中心となる。
 基準マーク31~38は寸法変化量を検出できるように配置されていれば、特に制限されず、たとえば、他の用途に用いるアライメントマークを流用してもよい。
 続いて、基準マーク31~38が形成された感光性ガラス基板10b(寸法変化量測定用感光性ガラス基板)に対して熱処理を行った後、基準マーク31~38の位置を検出して寸法変化量を算出する。
 以降の説明では、X方向に配置された基準マーク31~34に着目して、X方向における補正量を設定する場合について述べるが、Y方向についても同様である。
 図3に示すように、基準マーク31~34については、中心点Oからの距離、すなわち、座標は既知なので、熱処理後の感光性ガラス基板10b上におけるこれらの基準マーク31a~34aの位置を公知の手段により検出して、中心点Oと各基準マークとの距離(座標)を算出する。
 なお、基準マーク31~38を検出する手法は、形成されたマークを確実に検出できる手法であれば、特に制限されず、公知の検出手法を適宜用いればよい。また、各基準マークの座標の算出は、公知の画像処理技術を用いて算出すればよい。
 図3においては、中心点Oと基準マーク31aとの距離がX1’、中心点Oと基準マーク32aとの距離がX2’、中心点Oと基準マーク33aとの距離X3’、中心点Oと基準マーク34aとの距離X4’である。
 続いて、得られた距離X1’、X2’、X3’、X4’と、熱処理前の感光性ガラス基板10b上における中心点Oと各基準マークとの距離、すなわち、X1、X2、X3、X4と、をそれぞれ比較することで、感光性ガラス基板上の各基準マークにおけるX方向の寸法変化量を算出する。
 すなわち、図3に示すように、中心点Oを仮想基準線から構成される直交座標の原点とした場合に、X方向では、X1における寸法変化量が(X1’-X1)(=a1)、X2における寸法変化量が(X2’-X2)(=a2)、X3における寸法変化量が(X3’-X3)(=a3)、X4における寸法変化量が(X4’-X4)(=a4)である。
 そして、算出された寸法変化量に基づき、図4に示すように、原点からの距離(X1~X4)と、寸法変化量(a1~a4)と、の関係を示す関数70を算出する。関数の算出方法としては、公知の手法を用いればよく、たとえば、最小二乗法等を用いてもよい。Y方向についても同様にして、原点からの距離と寸法変化量との関係を示す関数を算出する。
 次に、得られた関数に、各貫通孔形成予定部分の座標(位置)を代入して、補正量を算出する。そして、算出された補正量を、寸法変化量を考慮していない貫通孔形成予定部分の座標に加算する。たとえば、熱処理前の感光性ガラス基板における形成予定位置の貫通孔の中心点の座標が(X1,Y1)であり、算出されたX方向の補正量がa1、Y方向の補正量がb1である場合には、補正後の貫通孔の中心点の座標は、(X1+a1,Y1+b1)となり、この座標を中心位置としてエネルギービームが照射される。また、貫通孔の径についても、寸法変化量を反映した径を有する潜像が形成されるように、照射時におけるビーム径を制御する。
 すなわち、照射工程におけるエネルギービームの照射位置が補正されて、座標(X1+a,Y1+b)となり、照射時のビーム径も、形成予定の貫通孔の径に対し、寸法変化量に基づく補正量が反映された径となるように設定される。
 そして、補正された照射位置に対してエネルギービームを直接的に照射する。その結果、感光性ガラスに熱処理に起因する寸法変化が生じていても、その寸法変化量は補正量にキャンセルされることになる。したがって、熱処理後に得られる最終の感光性ガラス基板における貫通孔は、所定の形成予定位置、すなわち、座標(X1,Y1)に形成されており、貫通孔の形成位置のずれを効果的に抑制することができる。
 本実施形態では、感光性ガラス基板上の所定の貫通孔形成予定位置における上記の補正量は、感光性ガラス基板の中心点と、熱処理前の所定の貫通孔形成予定位置と、の距離に対して0~-2%の範囲内にある。
 なお、補正量の設定手法は、上記の手法に制限されず、他の手法を用いて補正量を決定してもよい。
(3.本実施形態の効果)
  熱処理に起因する感光性ガラス基板の寸法変化量は大きく、該基板に微細な加工(たとえば、微細な貫通孔の形成)を行う場合には、加工精度が問題となっていた。具体的には、基板に貫通孔を形成する場合、貫通孔の実際の形成位置と所定の形成予定位置とにずれが生じ易くなってしまう。
 そこで、本実施形態では、マスクを用いることなく、感光性ガラス基板の寸法変化量に基づく補正量をエネルギービームの照射位置に反映させている。このようにすることにより、貫通孔の形成位置のずれを効果的に抑制することができる。したがって、本実施形態に係る方法であれば、微細なパターニングを行う場合であっても、そのパターニングを高精度に行うことができる。
 しかも、マスクパターンによる補正ではなく、エネルギービームの照射位置自体を直接補正している。そのため、補正量さえ決定できれば、その補正量を反映させた補正を容易に行うことができる。また、その補正量も、感光性ガラス基板の寸法変化量のバラツキが小さいため、基板ごとに設定する必要がなく、容易かつ正確に設定することができる。
 このような効果は、特に、基板の径が100mm以上であり、かつ貫通孔の径が100μm以下である場合に顕著となる。貫通孔の形成位置精度に対する感光性ガラス基板の寸法変化量が極めて大きいからである。
 また、基板の中心点と当初の貫通孔の形成位置との距離に対して、補正量を上述した範囲とすることにより、貫通孔の形成位置の精度を容易に高めることができる。
 したがって、本実施形態によれば、このような微細なパターニングの高精度化(形成位置のずれの抑制)を容易に実現できる。すなわち、感光性ガラス基板の寸法変化量のバラツキが小さいため、補正量を容易かつ正確に算出できることに加え、エネルギービームを感光性ガラス基板に直接的に照射するため、その補正量を実際の照射位置に反映させることができるからである。
(4.変形例等)
  上述した実施形態では、貫通孔が形成された感光性ガラス基板を第2熱処理により改質して得られる結晶化感光性ガラス基板について説明したが、第2熱処理を行わない感光性ガラス基板についても、同様に照射位置の補正を行うことができる。
 感光性ガラス基板に第1熱処理、すなわち、結晶化工程における熱処理のみを行う場合、熱処理前の基板サイズに対して0.1%程度膨張する。すなわち、基板の径が300mm程度である場合、第1熱処理後には、平面方向に0.3mm程度膨張する。また、寸法変化量のバラツキは±5μm程度である。
 なお、感光性ガラス基板上の所定の貫通孔形成予定位置における補正量は、感光性ガラス基板の中心点と、熱処理前の所定の貫通孔形成予定位置と、の距離に対して0~0.3%の範囲内にある。
 したがって、上記の寸法変化量に基づき補正量を設定して、照射位置を補正することにより、上述した実施形態と同様に貫通孔の形成位置の精度を向上させることができる。
 また、上述した実施形態では、感光性ガラス基板の中心点Oからの距離と寸法変化量との関係から補正量を設定しているが、他の手法により補正量を設定してもよい。たとえば、複数の寸法変化量測定用基板を熱処理して、各基板上の所定の座標におけるずれ(寸法変化量)を算出し、その平均値を補正量として設定してもよい。
 また、上述した実施形態では、感光性ガラスから構成される基材に対する微細加工として、貫通孔の形成を行っているが、その他の微細加工を行ってもよい。たとえば、潜像の形成を基材の途中までとし、有底孔を形成してもよい。
 以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。
10、10a、10b…感光性ガラス基板
 11…基材
 15…貫通孔
 16…貫通孔形成予定部分
 17…潜像
 18…結晶化部分
31~38…基準マーク
50…エネルギービーム

Claims (5)

  1.  感光性ガラスから構成される板状基材に直接的にエネルギービームを照射して潜像を形成する照射工程と、
     第1熱処理により前記潜像を結晶化して結晶化部分を得る結晶化工程と、
     前記結晶化部分を溶解除去して微細加工を行い、感光性ガラス基板を得る微細加工工程と、を有し、
     前記照射工程において、少なくとも前記第1熱処理を含む熱処理に起因する前記感光性ガラスの寸法変化量に基づいて、前記エネルギービームの照射位置を補正することを特徴とする感光性ガラス基板の製造方法。
  2.  前記熱処理が、前記微細加工工程後に、前記感光性ガラス基板に行われる第2熱処理を含むことを特徴とする請求項1に記載の感光性ガラス基板の製造方法。
  3.  前記感光性ガラス基板上の所定の点において、前記寸法変化量に基づいて算出される補正量が、前記感光性ガラス基板の中心点と、前記熱処理前の前記所定の点と、の距離に対して0~0.3%の範囲内であり、
     前記感光性ガラス基板の前記中心点は、前記感光性ガラス基板の重心であることを特徴とする請求項1に記載の感光性ガラス基板の製造方法。
  4.  前記感光性ガラス基板上の所定の点において、前記寸法変化量に基づいて算出される補正量が、前記感光性ガラス基板の中心点と、前記熱処理前の前記所定の点と、の距離に対して0~-2%の範囲内であり、
     前記感光性ガラス基板の前記中心点は、前記感光性ガラス基板の重心であることを特徴とする請求項2に記載の感光性ガラス基板の製造方法。
  5.  前記微細加工工程が、前記結晶化部分を溶解除去して貫通孔を形成する貫通孔形成工程であり、
     前記感光性ガラス基板の径が100mm以上であり、かつ前記貫通孔の径が100μm以下であることを特徴とする請求項1から4のいずれかに記載の感光性ガラス基板の製造方法。 
PCT/JP2014/071390 2013-08-23 2014-08-13 感光性ガラス基板の製造方法 WO2015025787A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/911,456 US20160194240A1 (en) 2013-08-23 2014-08-13 Method of manufacturing photosensitive glass substrate
DE112014003866.0T DE112014003866T5 (de) 2013-08-23 2014-08-13 Verfahren zum Herstellen eines photoempfindlichen Glassubstrats

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013173872A JP2015040168A (ja) 2013-08-23 2013-08-23 感光性ガラス基板の製造方法
JP2013-173872 2013-08-23

Publications (1)

Publication Number Publication Date
WO2015025787A1 true WO2015025787A1 (ja) 2015-02-26

Family

ID=52483563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071390 WO2015025787A1 (ja) 2013-08-23 2014-08-13 感光性ガラス基板の製造方法

Country Status (5)

Country Link
US (1) US20160194240A1 (ja)
JP (1) JP2015040168A (ja)
DE (1) DE112014003866T5 (ja)
TW (1) TW201507989A (ja)
WO (1) WO2015025787A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10093575B2 (en) * 2015-05-18 2018-10-09 Schott Ag Continuous production of photo-sensitive glass bodies
CN108777910B (zh) * 2018-06-15 2020-05-12 武汉华星光电半导体显示技术有限公司 柔性电路板、显示面板以及显示模组

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255542A (ja) * 1989-03-29 1990-10-16 Hoya Corp 感光性ガラスのパターン形成方法
WO2005033033A1 (ja) * 2003-10-06 2005-04-14 Hoya Corporation 貫通孔を有するガラス部品およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255542A (ja) * 1989-03-29 1990-10-16 Hoya Corp 感光性ガラスのパターン形成方法
WO2005033033A1 (ja) * 2003-10-06 2005-04-14 Hoya Corporation 貫通孔を有するガラス部品およびその製造方法

Also Published As

Publication number Publication date
US20160194240A1 (en) 2016-07-07
TW201507989A (zh) 2015-03-01
DE112014003866T5 (de) 2016-06-02
JP2015040168A (ja) 2015-03-02

Similar Documents

Publication Publication Date Title
US20080032206A1 (en) Photomask registration errors of which have been corrected and method of correcting registration errors of photomask
JP4488822B2 (ja) 露光用マスクの製造方法、露光装置、半導体装置の製造方法およびマスクブランクス製品
US8785112B2 (en) Reticle defect correction by second exposure
JP2008026822A (ja) フォトマスクの製造方法及び半導体装置の製造方法
US7906257B2 (en) Photomask manufacturing method and semiconductor device manufacturing method
JP5813607B2 (ja) パターン形成方法及びリソグラフィ原版の製造方法
WO2015025787A1 (ja) 感光性ガラス基板の製造方法
TWI719242B (zh) 半導體製造程序中的疊對量測及補償
CN106483773B (zh) 投影曝光装置、投影曝光方法以及掩模版
JP5193700B2 (ja) マスクパターンデータの生成方法およびマスクの製造方法
JP5123059B2 (ja) 半導体装置の製造方法
CN113050368A (zh) 光学邻近修正方法及掩膜版制作方法
KR100968154B1 (ko) 포토마스크의 패턴 선폭 보정 방법
JP2002190442A (ja) 校正用プレート、校正用プレート生成方法、及び半導体装置の製造方法
JP7126925B2 (ja) パターン描画方法、フォトマスクの製造方法、及び表示装置の製造方法
JP2010191403A (ja) フォトマスク
JP2004264102A (ja) Semシュリンク量測定方法および測長sem装置
JP2010225900A (ja) 露光装置および電子デバイスの製造方法
KR101211735B1 (ko) 액정표시장치용 고정세 인쇄판 및 그의 제조 방법
US20130252428A1 (en) Photo-etching and Exposing System
JP2007287989A (ja) 半導体装置の製造方法
JP2011171497A (ja) マスクの製造方法
JP5223197B2 (ja) パターン測定方法及び、フォトマスクの検査方法
JP2008000936A (ja) マイクロレンズの製造方法
JP2000275816A (ja) フォトマスク基板およびフォトマスクの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837998

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14911456

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140038660

Country of ref document: DE

Ref document number: 112014003866

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837998

Country of ref document: EP

Kind code of ref document: A1