WO2015025722A1 - 炭素系負極材料、その製造方法及び該負極材料を含むリチウムイオン電池 - Google Patents

炭素系負極材料、その製造方法及び該負極材料を含むリチウムイオン電池 Download PDF

Info

Publication number
WO2015025722A1
WO2015025722A1 PCT/JP2014/070834 JP2014070834W WO2015025722A1 WO 2015025722 A1 WO2015025722 A1 WO 2015025722A1 JP 2014070834 W JP2014070834 W JP 2014070834W WO 2015025722 A1 WO2015025722 A1 WO 2015025722A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
negative electrode
low crystalline
electrode material
nanohorn
Prior art date
Application number
PCT/JP2014/070834
Other languages
English (en)
French (fr)
Inventor
亮太 弓削
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/910,049 priority Critical patent/US10038191B2/en
Priority to JP2015532803A priority patent/JP6414064B2/ja
Publication of WO2015025722A1 publication Critical patent/WO2015025722A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a carbon-based negative electrode material and a manufacturing method thereof, and further relates to a lithium ion battery including the negative electrode material.
  • lithium ion batteries that are lightweight and have a large charge capacity are widely used as secondary batteries used in these.
  • the lack of large current load characteristics is a major issue.
  • As countermeasures for the negative electrode it has been proposed to reduce the resistance in the electrode and to apply a material having excellent rate characteristics such as hard carbon and soft carbon as the active material.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-129169
  • carbon nanotubes and thermoplastics are used to suppress an increase in initial irreversible capacity.
  • a negative electrode material is disclosed in which carbon nanotubes are coated with carbon nanotubes by thermal decomposition by mixing a resin and heating in an inert gas.
  • Patent Document 2 Japanese Patent Laid-Open No. 2010-123437
  • carbon nanohorn aggregates are mixed as a conductive additive in the graphite material of the negative electrode, resulting in low reaction resistance, low volume expansion coefficient, and rapid capacity deterioration. It is described that a long-life lithium ion battery can be obtained.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2008-66053
  • a nanotube integrated with hard carbon (HC) and soft carbon (SC) is produced by mixing a precursor of a carbon particle serving as a core and a metal-containing compound and performing heat treatment.
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2006-117451 discloses a method for obtaining a composite carbonized material.
  • phenols and aldehydes are first subjected to an addition condensation reaction in the presence of a reaction catalyst while mixing with carbon nanofibers and a dispersant.
  • the carbon nanofibers are taken in, the phenol resin aggregates into a spherical shape, and a carbon nanofiber / phenolic resin composite material formed of spherical particles of the phenol resin in which the carbon nanofibers are uniformly dispersed is formed.
  • a carbon nanofiber / phenolic resin composite carbonized material obtained by carbonizing a phenolic resin by heat-treating the composite material is disclosed.
  • carbon nanofibers are uniformly dispersed in the carbide of phenol resin, and it is said that the effect of improving conductivity by combining the carbon nanofibers can be highly obtained. .
  • Patent Document 2 due to the high dispersibility of carbon nanohorns, the carbon nanohorn enters between the negative electrode active materials. As a result, the conductivity between the negative electrode active materials is increased, and the electrode components such as the active material and the binder The carbon nanohorn functions as a buffer material against expansion and swelling, and the battery can be extended in life.
  • An object of one embodiment of the present invention is to provide a negative electrode material that has low resistance and excellent rate characteristics, and that satisfies rapid charge / discharge characteristics and relaxation of volume expansion characteristic deterioration at a high level at the same time.
  • Another object of the present invention is to provide a method for producing a negative electrode active material that can provide such a negative electrode material simply and inexpensively.
  • a carbon-based negative electrode material comprising a low crystalline carbon and a composite of fibrous carbon having a diameter smaller than that of the low crystalline carbon and carbon nanohorn.
  • a step of dispersing fibrous carbon and carbon nanohorn in a solution containing a low crystalline carbon precursor to obtain a mixed solution A step of obtaining a sample in which the mixed crystal is subjected to a first heat treatment under pressure to carbonize the low crystalline carbon precursor, and the fibrous carbon and carbon nanohorn are coated with the carbide of the low crystalline carbon precursor.
  • a method for producing a carbon-based negative electrode material is provided that includes performing a second heat treatment on the sample to convert the carbide to low crystalline carbon.
  • a lithium ion battery using the above carbon-based negative electrode material or the carbon-based negative electrode material obtained by the above method as a negative electrode active material.
  • the conductivity of the low crystalline carbon excellent in rate characteristics is improved, and the fibrous carbon connects the plurality of particles, thereby allowing contact between the particles. Resistance can be reduced.
  • carbon nanohorns are integrated into the inside and surface of low crystalline carbon, lithium ions can be easily transferred, which is suitable for good rapid charge / discharge characteristics.
  • relaxation of characteristic deterioration due to volume expansion can be satisfied at a high level by the connection between the particles by fibrous carbon and the voids in the inside and the surface of the low crystalline carbon by the carbon nanohorn.
  • the carbon-based negative electrode material can be provided simply and inexpensively.
  • the negative electrode material according to the present invention comprises a composite of low crystalline carbon, fibrous carbon having a diameter smaller than that of the low crystalline carbon, and carbon nanohorn.
  • it is a composite that includes carbon nanohorns that are incorporated inside and near the surface of low crystalline carbon, and fibrous carbon that is incorporated into a plurality of low crystalline carbons and connects a plurality of particles. Different from the mixture.
  • the low crystalline carbon according to the present invention is a graphitizable carbon (soft carbon) particle or a non-graphitizable carbon (hard carbon) particle, which is more crystalline than a highly crystalline carbon (for example, graphite).
  • Low carbon material It is also different from amorphous carbon which has no crystallinity.
  • the low crystalline carbon has excellent rate characteristics as described in the background art. Low crystalline carbon is usually enlarged in the process of carbonizing its precursor, and takes in fibrous carbon and carbon nanohorns.
  • the fibrous carbon according to the present invention has a diameter smaller than that of the low crystalline carbon.
  • the length of the fibrous carbon is not particularly specified, but is preferably longer than the particle size of the low crystalline carbon, and is long enough to connect the plurality of particles while being incorporated into the plurality of low crystalline carbons.
  • it is a nanocarbon fiber having a diameter of 1 ⁇ m or less, and a carbon nanotube is particularly preferable.
  • a carbon nanotube is a tube-shaped substance formed from a graphite layer (called graphene sheet or the like) having a six-membered ring of carbon atoms as a basic skeleton.
  • Carbon nanotubes include, for example, single-walled carbon nanotubes made of one cylindrical sheet, double-walled carbon nanotubes in which two-layered cylindrical sheets are nested, multi-walled carbon nanotubes in which three or more cylindrical sheets are nested, etc. are categorized.
  • the length of the carbon nanotube is, for example, about several ⁇ m.
  • the diameter of the carbon nanotube is, for example, about 0.4 to 2 nm for a single-walled carbon nanotube, and is about several tens to several hundred nm for a multi-walled carbon nanotube, for example.
  • the carbon nanohorn in the present embodiment has a conical shape with the tip of the rolled graphene sheet closed, for example, a pointed horn having a tip angle of about 20 °.
  • the shape of each carbon nanohorn has a diameter of about 1 nm to 5 nm and a length of about 10 nm to 250 nm.
  • the carbon nanohorn can be manufactured by, for example, a laser ablation method in which a carbonaceous material (such as graphite) is irradiated with a carbon dioxide gas laser, an arc discharge method, or the like.
  • carbon nanohorns gather radially with a conical tip portion on the outside, and can form, for example, a carbon nanohorn aggregate having a spherical shape with a diameter of about 100 nm.
  • the carbon nanohorn aggregate includes an aggregate having an arbitrary shape with a diameter of 30 to 500 nm, preferably 30 to 200 nm.
  • Carbon nanohorns or carbon nanohorn aggregates include a dahlia type with a long horn structure, a short (BUD) type with a short horn structure, a seed (SEED) type, and a horn part in a plate shape (a graphene sheet structure is layered) Also included is a petal structure. Details of the carbon nanohorn and the aggregate thereof are described in, for example, Japanese Patent Application Laid-Open No. 2012-41250 by the present inventor.
  • the ratio between the fibrous carbon and the carbon nanohorn in the composite is not particularly limited, but the carbon nanohorn is preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass. Carbon is 0.1 to 20% by mass, more preferably 1 to 10% by mass. The balance is preferably the low crystalline carbon.
  • the carbon-based negative electrode material according to the present invention has a low crystalline carbon precursor 1, carbon nanotubes 2, and carbon nanohorn aggregates 3 dispersed in a dispersion medium 4 as shown in FIG. .
  • a nanohorn carrier 5 in which the carbon nanohorn aggregate 3 is supported on the precursor 1 and the carbon nanotube 2 is obtained (FIG. 1B).
  • the nanohorn carrier 5 is heat-treated in an atmosphere mainly containing an inert gas (a rare gas such as Ar or nitrogen gas) or in a vacuum at a temperature that does not change to graphite, for example, a temperature of 400 to 2000 ° C. (S2 ).
  • the nanotubes 2 and the nanohorn aggregates 3 are taken in and enlarged in the process in which the precursor 1 is carbonized and changed to the low crystalline carbon 6 to obtain a composite 7 (FIG. 1C).
  • the nanohorn aggregate 3 is taken into the low crystalline carbon 6 and a part thereof is exposed on the surface.
  • the nanotube 2 is also taken in the inside of the low crystalline carbon 6, a plurality of particles can be connected by being taken in across a plurality of particles. Since the low crystalline carbon 6 grows while capturing the fibrous carbon in the carbonization process of the precursor 1, the diameter of the low crystalline carbon 6 is larger than the diameter of the fibrous carbon.
  • the carbon-based negative electrode material according to the present invention can be manufactured by a method different from the method (1) shown in FIG.
  • the carbon nanotube 2 and the carbon nanohorn aggregate 3 are dispersed in a solution 8 in which a precursor of low crystalline carbon is dissolved to obtain a mixed solution 9.
  • the mixed solution 9 is heat-treated at 150 to 600 ° C. under a pressure of 0.5 to 15 MPa using an autoclave apparatus to carbonize the precursor (S1 ′), and the carbon nanotubes 2 and the carbon nanohorn aggregates 3 become the precursor carbides. 10 (FIG. 2B).
  • the obtained sample 11 is fired at 800 to 2000 ° C. in an inert gas or under vacuum (S2 ′), and the carbide 10 is further modified and grown to low crystalline carbon 6 ′, whereby the composite 7 ′ is obtained. Is obtained (FIG. 2 (c)).
  • the crystallinity can be increased by pressurizing and heat-treating at 150 to 3000 ° C. and 0.5 to 20 MPa in an inert gas atmosphere (S3).
  • any of an inorganic solvent and an organic solvent can be used as long as the precursor 1, the nanotube 2, and the nanohorn aggregate 3 can be dispersed.
  • alcohols such as ethanol, methanol, and isopropanol (IPA)
  • aromatic hydrocarbons such as toluene, benzene, benzoic acid, and aniline
  • halogenated hydrocarbons such as dichloroethane, which are preferably organic solvents
  • Other organic solvents such as N, N-dimethylformamide can be used.
  • the precursor solution 8 is prepared using a solvent capable of dissolving the precursor.
  • Examples of the solvent capable of dissolving the precursor include inorganic solvents such as water and the above organic solvents. Moreover, when processing under pressure using an autoclave etc., it is effective to use the mixed solvent of water and an organic solvent, especially an organic solvent compatible with water.
  • the soft carbon precursor includes oil-based raw materials such as petroleum-based pitch, coal-based pitch, and low molecular weight heavy oil, and mesophase pitch obtained by heat-treating these at about 400 ° C. Etc.
  • the hard carbon precursor include saccharides such as polyimide resin, furan resin, phenol resin, polyvinyl alcohol resin, cellulose resin, epoxy resin, polystyrene resin, and sucrose.
  • ultrasonic vibration or the like may be applied so that these precursors are subdivided into fine oil droplets or particles.
  • the addition order of the precursor 1, the nanotube 2 and the nanohorn aggregate 3 to the dispersion medium 4 in the method (1) is not particularly limited and can be arbitrarily performed.
  • a nanotube nanohorn complex in which a nanohorn aggregate is bonded to a nanotube may be used instead of the nanotube 2.
  • Nanotubes tend to be inferior in dispersibility in a dispersion compared to nanohorn aggregates, but dispersibility can be improved by using nanotube nanohorn composites.
  • the nanotube nanohorn composite can be produced by supporting iron on the surface of the carbon nanohorn 3 as a catalyst and growing carbon nanotubes from the iron catalyst by a chemical vapor deposition (Chemical Vapor Deposition) method.
  • both the nanotube 2 and the nanohorn aggregate 3 can be replaced with a nanotube nanohorn complex, but in order to increase the existence probability of the nanohorn aggregate 3 near the surface of the low crystalline carbon generated from the precursor 1.
  • the nanohorn aggregate 3 is preferably added separately from the nanotube nanohorn complex.
  • the nanotube 2 and the nanohorn aggregate 3 may be added to the dispersion medium 4 first and dispersed by ultrasonic vibration to form a nanotube nanohorn complex that is not joined.
  • the dispersion medium 4 does not need to be completely removed, and the dispersion medium 4 may remain within a range in which there is no problem in handling of the obtained nanohorn carrier 5.
  • the obtained mixed solution may be concentrated to reduce the amount of solvent, and then pressurization / heating treatment in an autoclave may be performed.
  • the viscosity of the precursor solution 8 is too high, the dispersibility of the nanotubes 2 and the nanohorn aggregates 3 is lowered. Therefore, after mixing and dispersing in the precursor solution 8 with a low viscosity, the handling property is not impaired.
  • the solvent may be distilled off and subjected to heat treatment.
  • the precursor may be added and thickened. As the precursor concentration in the precursor solution 8 is higher, the size of the obtained low crystalline carbon tends to increase.
  • the precursor is used at a high temperature under an inert gas such as a rare gas such as He, Ne, Ar, Kr, or Xe or a nitrogen gas (N 2 ).
  • an inert gas such as a rare gas such as He, Ne, Ar, Kr, or Xe or a nitrogen gas (N 2 ).
  • a rare gas such as He, Ne, Ar, Kr, or Xe
  • N 2 nitrogen gas
  • carbon dioxide when carbon dioxide is mixed in an inert gas, it reacts with the graphene sheet structure on the surface of the composite 7 after carbonization at a temperature of 600 ° C. or higher, and thus has nanopores. A complex can be obtained.
  • This graphene sheet structure is included in any of the nanotube 2, the nanohorn aggregate 3, and the low crystalline carbons 6 and 6 ', and is not particularly limited.
  • the mixing ratio of carbon dioxide into the inert gas is preferably 20 to 80% by volume.
  • step S2 carbon dioxide may be mixed from the beginning of step S2 in the method (1), but carbon dioxide may be added when carbonization (conversion to low crystalline carbon) has progressed to some extent.
  • the temperature profiles in the steps S2 and S2 ′ are not limited to trapezoidal profiles of temperature increase, constant temperature, and temperature decrease, and may be stepped profiles such as temperature increase, first annealing constant temperature, temperature decrease, second annealing constant temperature, and temperature decrease.
  • the first annealing can include, for example, a relatively high temperature carbonization process (800 to 2000 ° C.)
  • the second annealing can include an oxidation process by introducing carbon dioxide (600 to 1000 ° C.).
  • Steps S2 and S2 ′ can be performed under reduced pressure, normal pressure, or increased pressure, but are preferably performed under increased pressure.
  • As the pressurizing condition it is possible to pressurize at 0.5 to 20 MPa as in step S3.
  • step S3 an inert gas is sealed in a sealed container so as to have a predetermined pressure, and heat treatment is performed within the temperature range. By this heat treatment, gaps between the low crystalline carbons 6 are filled, and the number of layers and the orientation of the layered structure of the composite 7 can be improved. Note that the step S3 may be performed continuously or as part of the temperature lowering process when the steps S2 and S2 'are performed under pressure, or may be omitted.
  • the obtained composite 7 (7 ′) is formed to have a three-dimensional network structure in which low crystalline carbon 6 (6 ′) is interconnected in an arbitrary direction by fibrous carbon (nanotube 2). Obtained as a film.
  • it can be further pulverized to a predetermined particle size. This pulverization may be performed on the composite 7 (7 ') alone, but may be performed in the course of kneading in a state of being mixed with a binder used in manufacturing a negative electrode of a lithium ion battery.
  • a lithium ion battery according to an embodiment of the present invention includes a negative electrode including the carbon-based negative electrode material, a positive electrode, and an electrolyte.
  • the lithium ion battery according to the present invention can be used mainly as a secondary battery.
  • the carbon-based negative electrode material according to the present embodiment can be applied to a negative electrode active material of a lithium ion battery, and by using this negative electrode material as a negative electrode active material, particularly rapid charge / discharge is possible, and characteristics due to volume expansion of the active material.
  • a lithium ion battery in which deterioration is suppressed can be provided.
  • a negative electrode for a lithium ion battery can be produced, for example, by forming a negative electrode active material containing the negative electrode material and a negative electrode active material layer containing a binder on the negative electrode current collector. You may add well-known negative electrode active materials other than the negative electrode material which concerns on this invention to a negative electrode active material as needed.
  • This negative electrode active material layer can be formed by a general slurry coating method. Specifically, a negative electrode can be obtained by preparing a slurry containing a negative electrode active material, a binder, and a solvent, applying the slurry onto a negative electrode current collector, drying, and pressing as necessary. .
  • Examples of the method for applying the negative electrode slurry include a doctor blade method, a die coater method, and a dip coating method.
  • a negative electrode can also be obtained by forming a negative electrode active material layer in advance and then forming a metal thin film as a current collector by vapor deposition, sputtering, or the like.
  • the binder for the negative electrode is not particularly limited, but polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene.
  • PVdF polyvinylidene fluoride
  • vinylidene fluoride-hexafluoropropylene copolymer vinylidene fluoride-tetrafluoroethylene copolymer
  • styrene-butadiene styrene-butadiene.
  • Copolymer rubber polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, SBR (styrene-butadiene rubber), isoprene Examples thereof include rubber, butadiene rubber, and fluorine rubber.
  • NMP N-methyl-2-pyrrolidone
  • water carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, and polyvinyl alcohol can be used as a thickener.
  • the content of the binder for the negative electrode is preferably in the range of 0.1 to 30 parts by mass with respect to 100 parts by mass of the negative electrode active material, from the viewpoints of binding force and energy density that are in a trade-off relationship.
  • the range of 0.5 to 25 parts by mass is more preferable, and the range of 1 to 20 parts by mass is more preferable.
  • the negative electrode current collector is not particularly limited, but copper, nickel, stainless steel, molybdenum, tungsten, tantalum and an alloy containing two or more of these are preferable from the viewpoint of electrochemical stability.
  • Examples of the shape include foil, flat plate, and mesh.
  • a positive electrode active material layer can be formed on the positive electrode current collector. After forming the positive electrode active material layer in the same manner as the negative electrode, a thin film for the current collector may be formed.
  • lithium complex oxide lithium iron phosphate, etc.
  • the lithium composite oxide include lithium manganate (LiMn 2 O 4 ); lithium cobaltate (LiCoO 2 ); lithium nickelate (LiNiO 2 ); and at least part of the manganese, cobalt, and nickel portions of these lithium compounds.
  • lithium composite oxides may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the average particle diameter of the positive electrode active material for example, a positive electrode active material having an average particle diameter in the range of 0.1 to 50 ⁇ m can be used from the viewpoint of reactivity with the electrolytic solution, rate characteristics, and the like.
  • a positive electrode active material having a particle diameter in the range of 1 to 30 ⁇ m, more preferably an average particle diameter in the range of 5 to 25 ⁇ m can be used.
  • the average particle diameter means the particle diameter (median diameter: D 50 ) at an integrated value of 50% in the particle size distribution (volume basis) by the laser diffraction scattering method.
  • the binder for the positive electrode is not particularly limited, but the same binder as that for the negative electrode can be used. Among these, polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost.
  • the content of the binder for the positive electrode is preferably in the range of 1 to 25 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoint of the binding force and energy density which are in a trade-off relationship. The range of 2 to 10 parts by mass is more preferable.
  • binders other than polyvinylidene fluoride include vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, and polyamideimide.
  • PVdF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode current collector is not particularly limited, but from the viewpoint of electrochemical stability, for example, aluminum, nickel, titanium, tantalum, stainless steel (SUS), other valve metals, or their Alloys can be used.
  • Examples of the shape include foil, flat plate, and mesh. In particular, an aluminum foil can be suitably used.
  • a conductive auxiliary material may be added for the purpose of reducing the impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • Electrolyte As the electrolyte, a non-aqueous electrolyte solution in which a lithium salt is dissolved in one or two or more non-aqueous solvents can be used.
  • the non-aqueous solvent is not particularly limited.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC) Chain carbonates such as diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC); aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; ⁇ - such as ⁇ -butyrolactone Lactones; chain ethers such as 1,2-ethoxyethane (DEE) and ethoxymethoxyethane (EME); and cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran.
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • aliphatic carboxylic acid esters such as methyl formate, methyl acetate and
  • non-aqueous solvents include dimethyl sulfoxide, 1,3-dioxolane, dioxolane derivatives, formamide, acetamide, dimethylformamide, acetonitrile, propionitrile, nitromethane, ethyl monoglyme, phosphate triester, trimethoxymethane, sulfolane, methyl Non-protons such as sulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone An organic solvent can also be used.
  • lithium salt dissolved in the nonaqueous solvent is not particularly limited, for example, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Examples thereof include Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , lithium bisoxalatoborate, and the like. These lithium salts can be used individually by 1 type or in combination of 2 or more types. Further, a polymer electrolyte may be used instead of the non-aqueous electrolyte solution.
  • the positive electrode and the negative electrode described above can constitute a battery by making each active material layer face each other and filling the electrolyte therebetween.
  • a separator can be provided between the positive electrode and the negative electrode.
  • a porous film, a woven fabric, or a nonwoven fabric made of a polyolefin such as polypropylene or polyethylene, a fluororesin such as polyvinylidene fluoride, polyimide, or the like can be used.
  • Examples of battery shapes include a cylindrical shape, a square shape, a coin shape, a button shape, and a laminate shape.
  • a laminate type it is preferable to use a laminate film as an exterior body that accommodates a positive electrode, a separator, a negative electrode, and an electrolyte.
  • the laminate film includes a resin base material, a metal foil layer, and a heat seal layer (sealant).
  • the resin base material include polyester and polyamide (nylon), and examples of the metal foil layer include aluminum, aluminum alloy, and titanium foil.
  • Examples of the material for the heat welding layer include thermoplastic polymer materials such as polyethylene, polypropylene, and polyethylene terephthalate.
  • the resin base material layer and the metal foil layer are not limited to one layer, and may be two or more layers. From the viewpoint of versatility and cost, an aluminum laminate film is preferable.
  • the positive electrode, the negative electrode, and the separator disposed between them are accommodated in an outer container made of a laminate film or the like, and when a non-aqueous electrolyte is used, the electrolyte is further injected and sealed.
  • a structure in which an electrode group in which a plurality of electrode pairs are stacked can be accommodated.
  • Example 1 100 mg of carbon nanohorn (untreated) and 100 mg of carbon nanotube (VGCF) are placed in an aqueous sucrose solution (0.2 mol / L: water / ethanol 360/40 mL), and ultrasonic dispersion is performed for 3 minutes to obtain a mixed solution.
  • the mixed solution was subjected to a heat treatment at 200 ° C. for 4 hours under a pressure of 10 MPa using an autoclave apparatus to carbonize the sucrose in the solution, and the obtained sample was calcined at 800 ° C. for 3 hours in an argon atmosphere to obtain a carbon composite 1 Got.
  • FIG. 3 is an SEM image of the sample after autoclaving.
  • FIG. 3A shows an SEM image at a magnification of 1000 times
  • FIG. 3B shows an SEM image at a magnification of 20,000 times.
  • the crystallinity of the carbide is low, and it looks particularly shining by charge-up as shown in FIG. 4 is an SEM image of the carbon composite 1
  • FIG. 4 (A) shows an SEM image at a magnification of 2000 times
  • FIG. 3 (B) shows an SEM image at a magnification of 40,000 times.
  • FIG. 3 shows an SEM image at a magnification of 40,000 times.
  • Example 2 Phenol resin (1 g), carbon nanohorn (untreated) 100 mg, and carbon nanotube (VGCF) 100 mg are placed in N, N-dimethylformamide (DMF) and dispersed with ultrasound for 5 minutes. Thereafter, the solvent is removed with a filter. The obtained sample was heat-treated at 1200 ° C. for 3 hours in an Ar atmosphere (carbon composite 2).
  • DMF N, N-dimethylformamide
  • Comparative Example 1 An aqueous sucrose solution (0.2 mol / L: water / ethanol 360/40 mL) was carbonized by heat treatment at 200 ° C. for 4 hours under 10 MPa pressure using an autoclave apparatus, and the obtained sample was carbonized at 800 ° C. under an argon atmosphere. Calcination was performed for 3 hours to obtain low crystalline carbon. The obtained sample was mixed with 100 mg of carbon nanohorn (untreated) and 100 mg of carbon nanotube (VGCF) (nanocarbon mixture 1).
  • VGCF carbon nanotube
  • Comparative Example 2 The phenol resin (1 g) was heat-treated at 1200 ° C. for 3 hours in an Ar atmosphere to obtain low crystalline carbon. The obtained sample was mixed with 100 mg of carbon nanohorn (untreated) and 100 mg of carbon nanotube (VGCF) (nanocarbon mixture 2).
  • the samples prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were mixed with 80% by mass and 20% by mass of polyvinylidene fluoride (PVDF), further mixed with N-methyl-2-pyrrolidinone, and sufficiently stirred.
  • a slurry was prepared.
  • the negative electrode slurry was applied to a copper foil having a thickness of 10 ⁇ m with a thickness of 100 ⁇ m. Then, after drying at 120 degreeC for 1 hour, the electrode was pressure-molded with the roller press. Further, this electrode was punched out to 2 cm 2 to produce a negative electrode.
  • a lithium ion secondary battery (test cell) was prepared using the obtained negative electrode, Li foil as a positive electrode, an electrolytic solution, and a separator.
  • the electrolytic solution was prepared by dissolving LiPF 6 in a mixed solvent of ethylene carbonate and methyl ethyl carbonate (volume ratio 3: 7) at a concentration of 1M.
  • a 30 ⁇ m polyethylene porous film was used as the separator.
  • the charge / discharge characteristics of the produced secondary battery were examined as follows. First, the secondary battery is set in a charge / discharge tester, charged at a constant current of 0.5 mA / cm 2 until the voltage reaches 0.02 V, and charged by reducing the current at a state of 0.02 V. It was. The charging was terminated when the current value reached 60 ⁇ A / cm 2 . Discharging was performed at a constant current of 0.5 mA / cm 2 and ended when the cell voltage reached 2.0 V, and the discharge capacity was determined. This operation was repeated 50 times to examine the cycle characteristics. Moreover, the rate characteristic was evaluated by discharging at 5, 20, 40, and 80 mA / g after charging. When compared at the same rate, it was found that both the discharge characteristics and the capacity retention rate of the secondary battery according to the present embodiment were improved. The results are summarized in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は、低抵抗かつレート特性に優れ、急速な充放電特性と、体積膨張の特性劣化の緩和とを同時に高いレベルで満足するリチウムイオン電池用負極材料を提供する。本発明では、分散媒(4)中で、低結晶性炭素前駆体(1)、繊維状炭素(2)及びカーボンナノホーン(3)を分散させ、カーボンナノホーン(3)が前駆体(1)び繊維状炭素(2)に担持された担持体(5)を形成し、担持体(5)を分散媒(4)と分離した後、前駆体(1)を低結晶性炭素(6)に変換する熱処理を行うことで、低結晶性炭素(6)と、低結晶性炭素(6)の粒径よりも小さい径の繊維状炭素(2)とカーボンナノホーン(3)との複合体(7)からなる炭素系負極材料を製造する。

Description

炭素系負極材料、その製造方法及び該負極材料を含むリチウムイオン電池
 本発明は、炭素系の負極材料及びその製造方法に関し、さらにこの負極材料を含むリチウムイオン電池に関する。
 近年、携帯電話、ノートパソコン、及び電気自動車などの小型軽量化及び高性能化に伴って、これらに用いられる二次電池として、軽量かつ充電容量の大きいリチウムイオン電池が広く利用されている。そして電池自動車や電動工具などの応用では、大電流負荷特性の不足が大きな課題である。この対策として、負極においては特に電極内の低抵抗化や活物質をハードカーボン、ソフトカーボン等のレート特性の優れた材料の適用などが提案されている。
 例えば、特許文献1(特開2010-129169)では、黒鉛よりも大きな可逆容量を生じる可能性のあるカーボンナノチューブを負極材料として用いる際、初期不可逆容量の増大を抑制するため、カーボンナノチューブと熱可塑性樹脂を混合して不活性ガス中で加熱することで、熱分解により炭素をカーボンナノチューブに被覆する負極材料が開示されている。
 また、特許文献2(特開2010-123437)では、負極の黒鉛材に導電助剤としてカーボンナノホーン集合体を混合することで、反応抵抗が小さく、体積膨張率が小さく、急激な容量劣化を生じることのない、長寿命なリチウムイオン電池が得られると記載されている。
 特許文献3(特開2008-66053)では、コアとなる炭素粒子の前駆体と金属含有化合物を混ぜ、熱処理することでハードカーボン(HC)、ソフトカーボン(SC)と一体化したナノチューブを作製する方法とリチウムイオン電池特性を開示している。
 さらに、特許文献4(特開2006-117451)では、複合炭化材料を得る方法が開示されている。この方法は、まず、フェノール類とアルデヒド類とを、カーボンナノファイバ及び分散剤と混合しつつ、反応触媒の存在下で付加縮合反応させる。これによって、カーボンナノファイバを取り込みながらフェノール樹脂が球状に凝集して、カーボンナノファイバが均一に分散されたフェノール樹脂の球状粒子からなるカーボンナノファイバ・フェノール樹脂複合材料が形成される。さらに、この複合材料を熱処理してフェノール樹脂を炭化させたカーボンナノファイバ・フェノール樹脂複合炭化材料を得ることが開示されている。この複合炭化材料は、フェノール樹脂の炭化物中にカーボンナノファイバが均一に分散しているものであり、カーボンナノファイバを複合することによる導電性の向上の効果を高く得ることができるとされている。
特開2010-129169号公報 特開2010-123437号公報 特開2008-66053号公報 特開2006-117451号公報
 特許文献2では、カーボンナノホーンの高い分散性により、負極活物質の間に入り込むこと、その結果、負極活物質間の導電性を高めること、また、活物質及び結着剤などの電極構成部の膨張・膨潤に対して、カーボンナノホーンが緩衝材として機能するため、電池を長寿命化できるとしている。
 しかしながら、従来の負極材料は、急速な充放電特性と、体積膨張の特性劣化の緩和とを同時に高いレベルで満足するものではない。本発明の一実施形態では、低抵抗かつレート特性に優れ、急速な充放電特性と、体積膨張の特性劣化の緩和とを同時に高いレベルで満足する負極材料を提供することを目的とする。また、本発明の別の実施形態では、そのような負極材料を簡便で安価に提供できる負極活物質の製造方法を提供することを目的とする。
 すなわち、本発明の一実施形態によれば、
 低結晶性炭素と、該低結晶性炭素の粒径よりも小さい径の繊維状炭素とカーボンナノホーンとの複合体からなる炭素系負極材料、が提供される。
 また、本発明の別の実施形態によれば、
 分散媒中で、低結晶性炭素前駆体、繊維状炭素及びカーボンナノホーンを分散させ、前記カーボンナノホーンが前記低結晶性炭素前駆体及び前記繊維状炭素に担持された担持体を形成する工程、
 前記担持体を前記分散媒と分離した後、前記低結晶性炭素前駆体を低結晶性炭素に変換する熱処理工程、
とを含む炭素系負極材料の製造方法、が提供される。
 さらに、本発明の別の実施形態によれば、
 低結晶性炭素前駆体を含む溶液中に、繊維状炭素及びカーボンナノホーンを分散させ、混合液を得る工程、
 前記混合液を加圧下に第1の熱処理を実施して前記低結晶性炭素前駆体を炭化し、前記繊維状炭素及びカーボンナノホーンを前記低結晶性炭素前駆体の炭化物で被覆した試料を得る工程、
 前記試料に第2の熱処理を実施して、前記炭化物を低結晶性炭素に変換する工程、とを含む炭素系負極材料の製造方法、が提供される。
 加えて、本発明のさらに別の実施形態によれば、上記炭素系負極材料又は上記方法で得られた炭素系負極材料を負極活物質として用いたリチウムイオン電池が提供される。
 本発明の一実施形態に係る炭素系負極材料によれば、レート特性に優れた低結晶性炭素の導電性が向上し、繊維状炭素が複数の粒子間を接続することで、粒子間の接触抵抗が低減できる。また、カーボンナノホーンが低結晶性炭素の内部及び表面に一体に取り込まれていることで、リチウムイオンの移動が容易となり良好な急速充放電特性に適している。さらに、繊維状炭素による粒子間の接続とカーボンナノホーンによる低結晶性炭素内部及び表面の空隙により体積膨張による特性劣化の緩和を高いレベルで満足することができる。
 又、本発明の別の実施形態に係る製造方法によれば、上記の炭素系負極材料を簡便で安価に提供することが可能となる。
本発明の一実施形態に係る負極材料の製造方法を説明する概略工程図である。 本発明の別の実施形態に係る負極材料の製造方法を説明する概略工程図である。 実施例1で得られたオートクレーブ熱処理後の試料のSEM像であり、(A)は倍率1000倍,(B)は倍率2万倍のSEM像を示す。 実施例1で得られたカーボン複合体1のSEM像であり、(A)は倍率2000倍,(B)は倍率4万倍のSEM像を示す。
 以下、本発明の一実施形態例について図面を参照しつつ詳細に説明するが、本発明はこの実施形態例のみに限定されるものでは無い。
 〔1.炭素系負極材料〕
 本発明に係る負極材料は、低結晶性炭素とこの低結晶性炭素の粒径よりも小さい径の繊維状炭素とカーボンナノホーンとの複合体からなる。特に、低結晶性炭素の内部及び表面近傍に取り込まれたカーボンナノホーンと、低結晶性炭素の複数の内部に取り込まれ、複数の粒子間を接続する繊維状炭素とを含む複合体であり、単なる混合物とは異なる。
 本発明に係る低結晶性炭素は、易黒鉛化性炭素(ソフトカーボン)粒子または難黒鉛化性炭素(ハードカーボン)粒子であり、高結晶性炭素(例えば、黒鉛)に比較して結晶性の低い炭素材である。また、結晶性を全く有さないアモルファスカーボンとも異なる。低結晶性炭素は背景技術で説明したようにレート特性に優れるものである。低結晶性炭素は、通常、その前駆体を炭化する過程で肥大化して繊維状炭素とカーボンナノホーンを取り込む。
 本発明に係る繊維状炭素は、低結晶性炭素の粒径よりも小さい径を有する。繊維状炭素の長さは特に規定されないが、低結晶性炭素の粒径よりも長いものが好ましく、複数の低結晶性炭素に取り込まれつつ、複数の粒子間を接続することが可能である長さを有する。通常は、直径1μm以下のナノカーボンファイバであり、特に、カーボンナノチューブが好ましい。カーボンナノチューブは、炭素原子の六員環を基本骨格とするグラファイト層(グラフェンシートなどと呼ばれる)から形成されたチューブ形状の物質である。カーボンナノチューブは、例えば、一つの円筒状シートからなる単層カーボンナノチューブ、二層の円筒状シートが入れ子になった二層カーボンナノチューブ、三層以上の円筒状シートが入れ子になった多層カーボンナノチューブ等に分類される。カーボンナノチューブの長さは、例えば数μm程度である。カーボンナノチューブの直径は、単層カーボンナノチューブにおいては、例えば0.4~2nm程度であり、多層カーボンナノチューブにおいては、例えば数十~数百nm程度である。
 一方、本実施形態例におけるカーボンナノホーンは、巻かれたグラフェンシートの先端が閉じており、例えば、先端角約20°の角(ホーン)状に尖った、円錐型の形状である。カーボンナノホーン一本当たりの形状は、径が約1nm~5nm、長さは10nm~250nm程度である。カーボンナノホーンは、例えば、炭素質材料(グラファイトなど)に炭酸ガスレーザなどを照射するレーザーアブレーション法や、アーク放電法などで製造することができる。通常、カーボンナノホーンは、例えば、円錐形状の先端部を外側にして放射状に集合し、例えば、直径約100nm程度の球状であるカーボンナノホーン集合体を形成し得る。カーボンナノホーン集合体は、直径が30~500nm、好ましくは30~200nmの任意形状の集合体を含む。またカーボンナノホーンもしくはカーボンナノホーン集合体には、ホーン構造が長いダリア型、ホーン構造が短いバッド(BUD)型、シード(SEED)型、ホーン部分が板状(グラフェンシート構造が層状になったもの)になったペタル構造のものも含まれる。カーボンナノホーン及びその集合体の詳細については、例えば、本発明者による特開2012-41250号公報などに記載される。
 複合体中における繊維状炭素とカーボンナノホーンとの割合は、特に限定されるものでは無いが、カーボンナノホーンが好ましくは0.1~20質量%、より好ましくは1~10質量%であり、繊維状炭素が0.1~20質量%、より好ましくは1~10質量%である。残部が前記低結晶性炭素であることが好ましい。
 〔2.炭素系負極材料の製造方法〕
 (1)本発明に係る炭素系負極材料は、図1(a)に示すように低結晶性炭素の前駆体1と、カーボンナノチューブ2と、カーボンナノホーン集合体3を分散媒4中に分散させる。分散媒4を濾過等により分離後、乾燥する(S1)と、前駆体1及びカーボンナノチューブ2上にカーボンナノホーン集合体3が担持されたナノホーン担持体5が得られる(図1(b))。ナノホーン担持体5を不活性ガス(Ar等の希ガス又は窒素ガス)を主として含む雰囲気下、または真空下で、黒鉛まで変化しない温度、例えば、400~2000℃の温度にて熱処理を行う(S2)。この熱処理においては、前駆体1が炭化して低結晶性炭素6に変化する過程でナノチューブ2やナノホーン集合体3を取り込み肥大化し、複合体7が得られる(図1(c))。このとき、ナノホーン集合体3は、低結晶性炭素6の内部に取り込まれ、一部は表面に露出する。また、ナノチューブ2も低結晶性炭素6の内部に取り込まれるが、複数の粒子に跨がって取り込まれることで、複数の粒子間を接続することができる。低結晶性炭素6が前駆体1の炭化過程で繊維状炭素を取り込みつつ成長することから、低結晶性炭素6の径は繊維状炭素の径よりも大きくなる。
 (2)本発明に係る炭素系負極材料は、図1に示す方法(1)とは異なる方法でも製造できる。例えば、図2(a)に示すように低結晶性炭素の前駆体を溶解させた溶液8中に、カーボンナノチューブ2と、カーボンナノホーン集合体3を分散させ、混合液9を得る。混合液9はオートクレーブ装置を用いて0.5~15MPa加圧下、150~600℃で熱処理を行い、前駆体を炭化させ(S1’)、カーボンナノチューブ2とカーボンナノホーン集合体3を前駆体の炭化物10で覆う(図2(b))。得られた試料11を不活性ガス下又は真空下において800~2000℃で焼成して(S2’)、炭化物10をさらに低結晶性炭素6’に改質、成長させることで複合体7’が得られる(図2(c))。
 上記(1)及び(2)方法では、その後、不活性ガス雰囲気下、150~3000℃、0.5~20MPaで加圧・熱処理することで結晶化度を上げることができる(S3)。
 方法(1)において、分散媒4としては、前駆体1、ナノチューブ2、ナノホーン集合体3を分散可能な液体であれば無機溶媒、有機溶媒のいずれも使用することができるが、乾燥性などを考慮すると、好ましくは有機溶媒である、エタノール、メタノール、イソプロパノール(Isopropyl Alcohol;IPA)等のアルコール類、トルエン、ベンゼン、安息香酸、アニリン等の芳香族炭化水素類、ジクロロエタン等のハロゲン化炭化水素類、N,N-ジメチルホルムアミド等のその他の有機溶媒などを用いることができる。方法(2)においては、前駆体を溶解可能な溶媒を用いて前駆体溶液8を調製する。前駆体を溶解可能な溶媒としては、水などの無機溶媒や、上記の有機溶媒等が挙げられる。また、オートクレーブなどを使用して加圧下で処理する場合は、水と有機溶媒、特に水と相溶性のある有機溶媒との混合溶媒を使用すると効果的である。
 前駆体1としては、ソフトカーボン前駆体には、石油系ピッチ、石炭系ピッチ、低分子量の重質油などのオイル系原料、さらには、これらを400℃程度で熱処理して得られるメゾフェーズピッチなどが挙げられる。ハードカーボン前駆体には、ポリイミド樹脂、フラン樹脂、フェノール樹脂、ポリビニルアルコール樹脂、セルロース樹脂、エポキシ樹脂、ポリスチレン樹脂、ショ糖などの糖類等が挙げられる。方法(1)における分散媒4中では、これら前駆体を微小な油滴状または粒子状に細分化するように、超音波振動などを付与してもよい。
 方法(1)における分散媒4への前駆体1、ナノチューブ2、ナノホーン集合体3の添加順序は特に制限されるもので無く、任意に行うことができる。また、方法(1)及び(2)ではナノチューブ2に代えて、ナノチューブにナノホーン集合体を接合したナノチューブナノホーン複合体を用いてもよい。ナノチューブは分散液中での分散性がナノホーン集合体に比較して劣る傾向があるが、ナノチューブナノホーン複合体として用いることで分散性を改善することができる。ナノチューブナノホーン複合体はカーボンナノホーン3の表面に鉄を触媒として担持し、化学気相成長(Chemical Vapor Deposition)法によって鉄触媒からカーボンナノチューブを成長させることによって作製することができる。場合によって、ナノチューブ2、ナノホーン集合体3の両方をナノチューブナノホーン複合体に置き換えることもできるが、前駆体1から生成される低結晶性炭素の表面近傍へのナノホーン集合体3の存在確率を高めるため、ナノホーン集合体3をナノチューブナノホーン複合体とは別に添加することが好ましい。また、方法(1)では、ナノチューブ2とナノホーン集合体3とを分散媒4中に先に添加し、超音波振動により分散することで、接合していないナノチューブナノホーン複合体となる場合がある。
 方法(1)における工程S1の乾燥では、分散媒4が完全に除去される必要はなく、得られるナノホーン担持体5の取り扱い性に問題のない範囲で分散媒4が残存していてもよい。方法(2)における工程S1’では、得られた混合液を濃縮して溶媒量を減らしてからオートクレーブでの加圧/加熱処理を行ってもよい。特に前駆体溶液8の粘度があまり高いと、ナノチューブ2及びナノホーン集合体3の分散性が低下することから、低粘度の前駆体溶液8中で混合・分散した後、取り扱い性が損なわれない範囲で溶媒を留去してから熱処理に供してもよい。さらに、前駆体溶液8中の前駆体濃度が低濃度の状態でナノチューブ2及びナノホーン集合体3を混合・分散した後、前駆体を追加して増粘してもよい。前駆体溶液8中の前駆体濃度が高いほど、得られる低結晶性炭素のサイズが大きくなる傾向がある。
 方法(1)における工程S2、方法(2)における工程S2’においては、He、Ne、Ar、Kr、Xe等の希ガスや窒素ガス(N)などの不活性ガス下にて高温で前駆体1の炭化を行う場合、不活性ガス中に二酸化炭素を混合すると、600℃以上の温度で炭化後の複合体7の表面上のグラフェンシート構造と酸化反応するため、ナノ空孔を伴った複合体を得ることができる。このグラフェンシート構造は、ナノチューブ2、ナノホーン集合体3、低結晶性炭素6、6’のいずれにも含まれるものであり、特に限定されない。不活性ガス中への二酸化炭素の混合比は、体積比で20~80%であることが好ましい。また、二酸化炭素の混合は、方法(1)において工程S2の開始初期から行ってもよいが、ある程度炭化処理(低結晶性炭素への変換)が進んだ段階で二酸化炭素を添加してもよい。工程S2、S2’における温度プロファイルは、昇温、定温、降温の台形プロファイルに限定されず、昇温、第1アニール定温、降温、第2アニール定温、降温のように、階段状プロファイルとしてもよい。ここでの第1アニールは、例えば、比較的高温の炭化処理工程(800~2000℃)を含み、第2アニールは、二酸化炭素導入による酸化処理工程(600~1000℃)を含むことができる。工程S2、S2’は、減圧下、常圧下、加圧下のいずれの状態でも実施することができるが、加圧下にて実施することが好ましい。加圧条件としては、工程S3と同様に0.5~20MPaで加圧することができる。
 工程S3では、密閉容器内に所定の圧力となるように不活性ガスを封入し、前記温度範囲内で熱処理を行う。この熱処理により、低結晶性炭素6間の隙間が詰まり、複合体7の層状構造の層数や配向性を向上させることができる。なお、工程S3は、工程S2、S2’を加圧下に実施する場合、連続して或いは降温過程の一部として行ってもよく、また省略してもよい。
 得られた複合体7(7’)は、繊維状炭素(ナノチューブ2)により低結晶性炭素6(6’)が任意の方向に相互に接続された3次元ネットワーク構造を有して形成され、膜状物として得られる。リチウムイオン電池の負極材料として使用する場合、さらに粉砕して所定の粒径とすることができる。この粉砕は、複合体7(7’)単独に対して行ってもよいが、リチウムイオン電池の負極を製造する際の結着剤と混合した状態で混練する過程で粉砕してもよい。
 〔3.リチウムイオン電池〕
 本発明の実施形態によるリチウムイオン電池は、上記炭素系負極材料を含む負極と正極と電解質を含む。本発明に係るリチウムイオン電池は主に二次電池として使用できる。
 (3A.負極)
 本実施形態例に係る炭素系負極材料は、リチウムイオン電池の負極活物質に適用でき、この負極材料を負極活物質として用いることにより、特に急速充放電が可能となり、活物質の体積膨張による特性劣化が抑制されたリチウムイオン電池を提供することができる。
 リチウムイオン電池用の負極は、例えば、負極集電体上に、上記の負極材料を含む負極活物質と結着剤を含む負極活物質層を形成することで作製することができる。負極活物質には、必要に応じて本発明に係る負極材料以外の公知の負極活物質を添加しても良い。この負極活物質層は、一般的なスラリー塗布法で形成することができる。具体的には、負極活物質、結着剤および溶媒を含むスラリーを調製し、これを負極集電体上に塗布し、乾燥し、必要に応じて加圧することで、負極を得ることができる。負極スラリーの塗布方法としては、ドクターブレード法、ダイコーター法、ディップコーティング法が挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法で金属薄膜を集電体として形成して、負極を得ることもできる。
 負極用の結着剤としては、特に制限されるものではないが、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴムが挙げられる。スラリー溶媒としては、N-メチル-2-ピロリドン(NMP)や水を用いることができる。水を溶媒として用いる場合、さらに増粘剤として、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコールを用いることができる。
 この負極用の結着剤の含有量は、トレードオフの関係にある結着力とエネルギー密度の観点から、負極活物質100質量部に対して0.1~30質量部の範囲にあることが好ましく、0.5~25質量部の範囲がより好ましく、1~20質量部の範囲がさらに好ましい。
 負極集電体としては、特に制限されるものではないが、電気化学的な安定性から、銅、ニッケル、ステンレス、モリブデン、タングステン、タンタルおよびこれらの2種以上を含む合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
 (3B.正極)
 正極は、例えば、正極活物質、結着剤及び溶媒(さらに必要により導電補助材)を含むスラリーを調製し、これを正極集電体上に塗布し、乾燥し、必要に応じて加圧することにより、正極集電体上に正極活物質層を形成することにより作製できる。負極と同様に正極活物質層を形成した後、集電体用の薄膜を形成してもよい。
 正極活物質としては、特に制限されるものではないが、例えば、リチウム複合酸化物やリン酸鉄リチウムなどを用いることができる。リチウム複合酸化物としては、マンガン酸リチウム(LiMn);コバルト酸リチウム(LiCoO);ニッケル酸リチウム(LiNiO);これらのリチウム化合物のマンガン、コバルト、ニッケルの部分の少なくとも一部をアルミニウム、マグネシウム、チタン、亜鉛など他の金属元素で置換したもの;マンガン酸リチウムのマンガンの一部を少なくともニッケルで置換したニッケル置換マンガン酸リチウム;ニッケル酸リチウムのニッケルの一部を少なくともコバルトで置換したコバルト置換ニッケル酸リチウム;ニッケル置換マンガン酸リチウムのマンガンの一部を他の金属(例えばアルミニウム、マグネシウム、チタン、亜鉛の少なくとも一種)で置換したもの;コバルト置換ニッケル酸リチウムのニッケルの一部を他の金属元素(例えばアルミニウム、マグネシウム、チタン、亜鉛の少なくとも一種)で置換したものが挙げられる。これらのリチウム複合酸化物は一種を単独で使用してもよいし、二種以上を混合して用いてもよい。正極活物質の平均粒径については、電解液との反応性やレート特性等の観点から、例えば平均粒径が0.1~50μmの範囲にある正極活物質を用いることができ、好ましくは平均粒径が1~30μmの範囲にある正極活物質、より好ましくは平均粒径が5~25μmの範囲にあるものを用いることができる。ここで、平均粒径は、レーザー回折散乱法による粒度分布(体積基準)における積算値50%での粒径(メジアン径:D50)を意味する。
 正極用の結着剤としては、特に制限されるものではないが、負極用結着剤と同様のものを用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。正極用の結着剤の含有量は、トレードオフの関係にある結着力とエネルギー密度の観点から、正極活物質100質量部に対して1~25質量部の範囲が好ましく、2~20質量部の範囲がより好ましく、2~10質量部の範囲がさらに好ましい。ポリフッ化ビニリデン(PVdF)以外の結着剤としては、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミドが挙げられる。スラリー溶媒としては、N-メチル-2-ピロリドン(NMP)を用いることができる。
 正極集電体としては、特に制限されるものではないが、電気化学的な安定性の観点から、例えば、アルミニウム、ニッケル、チタン、タンタル、ステンレス鋼(SUS)、その他のバルブメタル、又はそれらの合金を用いることができる。その形状としては、箔、平板状、メッシュ状が挙げられる。特にアルミニウム箔を好適に用いることができる。
 正極の作製に際して、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。
 (3C.電解質)
 電解質としては、1種又は2種以上の非水溶媒に、リチウム塩を溶解させた非水系電解液を用いることができる。非水溶媒としては、特に制限されるものではないが、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などの環状カーボネート;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)などの鎖状カーボネート;ギ酸メチル、酢酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル;γ-ブチロラクトンなどのγ-ラクトン;1,2-エトキシエタン(DEE)、エトキシメトキシエタン(EME)などの鎖状エーテル;テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテルが挙げられる。その他、非水溶媒として、ジメチルスルホキシド、1,3-ジオキソラン、ジオキソラン誘導体、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピオニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンサルトン、アニソール、N-メチルピロリドンなどの非プロトン性有機溶媒を用いることもできる。
 非水溶媒に溶解させるリチウム塩としては、特に制限されるものではないが、例えば、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCFCO、Li(CFSO、LiN(CFSO、リチウムビスオキサラトボレートなどが挙げられる。これらのリチウム塩は、一種を単独で、または二種以上を組み合わせて使用することができる。また、非水系電解液の代わりにポリマー電解質を用いてもよい。
 (3D.電池構成)
 以上の正極及び負極はそれぞれの活物質層を対向させ、これらの間に上記電解質を充填することで電池を構成することができる。また、正極と負極との間にはセパレータを設けることができる。このセパレータとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、ポリフッ化ビニリデン等のフッ素樹脂、ポリイミド等からなる多孔性フィルムや織布、不織布を用いることができる。
 電池形状としては、円筒形、角形、コイン型、ボタン型、ラミネート型などが挙げられる。ラミネート型の場合、正極、セパレータ、負極および電解質を収容する外装体としてラミネートフィルムを用いることが好ましい。このラミネートフィルムは、樹脂基材と、金属箔層、熱融着層(シーラント)を含む。樹脂基材としては、ポリエステルやポリアミド(ナイロン)などが挙げられ、金属箔層としては、アルミニウム、アルミニウム合金、チタン箔などが挙げられる。熱溶着層の材質としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等の熱可塑性高分子材料が挙げられる。また、樹脂基材層や金属箔層はそれぞれ1層に限定されるものではなく2層以上であってもよい。汎用性やコストの観点から、アルミニウムラミネートフィルムが好ましい。
 正極と負極とこれらの間に配置されたセパレータは、ラミネートフィルム等からなる外装容器に収容され、非水系電解液を用いる場合にはさらに電解液が注入され、封止される。複数の電極対が積層された電極群が収容された構造とすることもできる。
 以下、実施例を挙げて、本発明の実施形態をさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものでは無い。
 実施例1
 ショ糖水溶液(0.2mol/L:水/エタノール360/40mL)にカーボンナノホーン(未処理)100mgとカーボンナノチューブ(VGCF)100mgを入れ、3分間超音波分散を行い、混合液を得る。混合液はオートクレーブ装置を用いて10MPa加圧下、200℃で4時間熱処理を行い液中のショ糖を炭化させ、得られた試料をアルゴン雰囲気下において800℃で3時間焼成してカーボン複合体1を得た。図3はオートクレーブ処理後の試料のSEM像であり、図3(A)は倍率1000倍、図3(B)は倍率2万倍のSEM像を示す。この段階では炭化物の結晶化度が低く、特に図3(B)に示すようにチャージアップにより光って見える。図4はカーボン複合体1のSEM像であり、図4(A)は倍率2000倍、図3(B)は倍率4万倍のSEM像を示す。図3と比較してチャージアップがほとんど生じず、低結晶性炭素への変換が達成されていることが分かる。また、ショ糖溶液の濃度(0.5mol/L:水/エタノール360/40mL)を増加させ、カーボンナノホーン(未処理)100mgとカーボンナノチューブ(VGCF)100mgにした場合、最終的なカーボン複合体1’は図4の場合と比べて低結晶性炭素のサイズが大きくなった。
 実施例2
 フェノール樹脂(1g)、カーボンナノホーン(未処理)100mg、カーボンナノチューブ(VGCF)100mgをN,N-ジメチルホルムアミド(DMF)に入れ、超音波で5分間分散させる。その後、フィルタで溶媒を除去する。得られた試料は、Ar雰囲気下において1200℃で3時間熱処理を行った(カーボン複合体2)。
 比較例1
 ショ糖水溶液(0.2mol/L:水/エタノール360/40mL)をオートクレーブ装置を用いて10MPa加圧下、200℃で4時間熱処理を行い炭化させ、得られた試料をアルゴン雰囲気下において800℃で3時間焼成して低結晶性炭素を得た。得られた試料にカーボンナノホーン(未処理)100mgとカーボンナノチューブ(VGCF)100mgを混合した(ナノカーボン混合体1)。
 比較例2
 フェノール樹脂(1g)をAr雰囲気下において1200℃で3時間熱処理を行い、低結晶性炭素を得た。得られた試料にカーボンナノホーン(未処理)100mg、カーボンナノチューブ(VGCF)100mgを混合した(ナノカーボン混合体2)。
 実施例1、2及び比較例1、2で作製した試料を80質量%とポリフッ化ビニリデン(PVDF)20質量%とを混合し、さらにNメチル-2-ピロリジノンを混ぜて十分に撹拌し、負極スラリーを調製した。該負極スラリーを厚み10μmの銅箔に厚さ100μmで塗布した。その後、120℃で1時間乾燥させた後、ローラプレスにより電極を加圧成形した。さらに、この電極を2cmに打ち抜いて、負極を作製した。得られた負極と、正極としてのLi箔と、電解液と、セパレータとを用いてリチウムイオン二次電池(試験セル)を作製した。電解液は、LiPFをエチレンカーボネートとメチルエチルカーボネート(体積比3:7)の混合溶媒に1Mの濃度で溶解させて調製した。セパレータとしては、30μmのポリエチレン製多孔質フィルムを用いた。
 作製した二次電池について以下のようにして充放電特性を調べた。まず、二次電池を充放電試験機にセットし、電圧が0.02Vに達するまで0.5mA/cmの定電流で充電を行い、0.02Vの状態で電流を減少させて充電を行った。そして、電流値が60μA/cmになった時点で充電を終了した。放電は、0.5mA/cmの定電流で行い、セル電圧が2.0Vに達した時点で終了し、放電容量を求めた。この操作を50回繰り返してサイクル特性を調べた。また、充電後、5、20、40、80mA/gで放電することでレート特性を評価した。同じレートで比較した場合、本実施形態に係る二次電池の方が放電特性及び容量維持率が共に向上されることが分かった。結果を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 以上、実施形態及び実施例を参照して本発明を説明したが、本発明は上記実施形態及び実施例に限定されものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2013年8月23日に出願された日本出願特願2013-173621を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1 低結晶性炭素前駆体
 2 カーボンナノチューブ
 3 カーボンナノホーン集合体
 4 分散媒
 5 ナノホーン担持体
 6、6’ 低結晶性炭素
 7、7’ 複合体
 8 前駆体溶液
 9 混合液
10 炭化物

Claims (20)

  1.  低結晶性炭素と、該低結晶性炭素の粒径よりも小さい径の繊維状炭素とカーボンナノホーンとの複合体からなる炭素系負極材料。
  2.  前記複合体は、前記低結晶性炭素の内部及び表面近傍に取り込まれた前記カーボンナノホーンと、前記低結晶性炭素の複数の内部に取り込まれ、前記低結晶性炭素の複数の粒子間を接続する前記繊維状炭素とを含む請求項1に記載の炭素系負極材料。
  3.  前記複合体中のグラフェンシート構造の一部に空孔を有する請求項1又は2に記載の炭素系負極材料。
  4.  前記繊維状炭素は、カーボンナノチューブである請求項1~3のいずれか1項に記載の炭素系負極材料。
  5.  前記低結晶性炭素は、低結晶性炭素前駆体と前記繊維状炭素に前記カーボンナノホーンを担持させた担持体を製造後、前記低結晶性炭素前駆体の炭化工程で肥大化したものであって、前記肥大化と共に前記前記繊維状炭素と前記カーボンナノホーンとを一体化したことを特徴とする請求項1~4のいずれか1項に記載の炭素系負極材料。
  6.  前記低結晶性炭素は、低結晶性炭素前駆体溶液に前記繊維状炭素と前記カーボンナノホーンを分散させた混合液を調製後、加圧下で前記混合液を熱処理し、その後、前記低結晶性炭素へ変換工程で肥大化したものであって、前記肥大化と共に前記前記繊維状炭素と前記カーボンナノホーンとを一体化したことを特徴とする請求項1~4のいずれか1項に記載の炭素系負極材料。
  7.  前記複合体において、前記カーボンナノホーンが0.1~20質量%、前記繊維状炭素が0.1~20質量%、残部が前記低結晶性炭素である請求項1~6のいずれか1項に記載の炭素系負極材料。
  8.  分散媒中で、低結晶性炭素前駆体、繊維状炭素及びカーボンナノホーンを分散させ、前記カーボンナノホーンが前記低結晶性炭素前駆体及び前記繊維状炭素に担持された担持体を形成する工程、
     前記担持体を前記分散媒と分離した後、前記低結晶性炭素前駆体を低結晶性炭素に変換する工程、
    とを含む炭素系負極材料の製造方法。
  9.  前記分散媒は有機溶媒である請求項8に記載の炭素系負極材料の製造方法。
  10.  前記低結晶性炭素に変換する工程は、不活性ガスを主として含む雰囲気下又は真空下に、150~2000℃の温度範囲で行う請求項8又は9に記載の炭素系負極材料の製造方法。
  11.  低結晶性炭素前駆体を含む溶液中に、繊維状炭素及びカーボンナノホーンを分散させ、混合液を得る工程、
     前記混合液を加圧下に第1の熱処理を実施して前記低結晶性炭素前駆体を炭化し、前記繊維状炭素及びカーボンナノホーンを前記低結晶性炭素前駆体の炭化物で被覆した試料を得る工程、
     前記試料に第2の熱処理を実施して、前記炭化物を低結晶性炭素に変換する工程、
    とを含む炭素系負極材料の製造方法。
  12.  前記低結晶性炭素前駆体を含む溶液は、水と有機溶媒との混合溶媒を含む請求項11に記載の炭素系負極材料の製造方法。
  13.  前記低結晶性炭素前駆体は水溶性の化合物である請求項12に記載の炭素系負極材料の製造方法。
  14.  前記混合液の加圧下での熱処理が、150~600℃の温度範囲で、0.5~15MPaの加圧下で実施される請求項11~13のいずれか1項に記載の炭素系負極材料の製造方法。
  15.  前記低結晶性炭素に変換する工程は、不活性ガスを主として含む雰囲気下又は真空下に、800~2000℃の温度範囲で行う請求項11~14のいずれか1項に記載の炭素系負極材料の製造方法。
  16.  前記低結晶性炭素に変換する工程における前記不活性ガスを主として含む雰囲気は、不活性ガスと二酸化炭素とを含む請求項10又は15に記載の炭素系負極材料の製造方法。
  17.  前記低結晶性炭素に変換する工程に続いて、不活性ガス雰囲気下、150~3000℃の温度範囲で0.5~20MPaの圧力で加圧する工程をさらに有する請求項8~16のいずれか1項に記載の炭素系負極材料の製造方法。
  18.  前記繊維状炭素は、カーボンナノチューブである請求項8~17のいずれか1項に記載の炭素系負極材料の製造方法。
  19.  前記繊維状炭素及びカーボンナノホーンがそれぞれ複合体中で、0.1~20質量%、0.1~20質量%となる量を使用する請求項8~18のいずれか1項に記載の炭素系負極材料の製造方法。
  20.  請求項1~7のいずれか1項に記載の炭素系負極材料又は請求項8~19のいずれか1項に記載の製造方法により得られた炭素系負極材料を負極活物質として含むリチウムイオン電池。
PCT/JP2014/070834 2013-08-23 2014-08-07 炭素系負極材料、その製造方法及び該負極材料を含むリチウムイオン電池 WO2015025722A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/910,049 US10038191B2 (en) 2013-08-23 2014-08-07 Carbonous anode material, method for producing the same, and lithium-ion battery containing the anode material
JP2015532803A JP6414064B2 (ja) 2013-08-23 2014-08-07 炭素系負極材料、その製造方法及び該負極材料を含むリチウムイオン電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-173621 2013-08-23
JP2013173621 2013-08-23

Publications (1)

Publication Number Publication Date
WO2015025722A1 true WO2015025722A1 (ja) 2015-02-26

Family

ID=52483502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070834 WO2015025722A1 (ja) 2013-08-23 2014-08-07 炭素系負極材料、その製造方法及び該負極材料を含むリチウムイオン電池

Country Status (3)

Country Link
US (1) US10038191B2 (ja)
JP (1) JP6414064B2 (ja)
WO (1) WO2015025722A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147909A1 (ja) * 2015-03-16 2016-09-22 日本電気株式会社 繊維状のカーボンナノホーン集合体及びその製造方法
KR20190132932A (ko) * 2018-05-21 2019-11-29 아우오 크리스탈 코포레이션 리튬 전지 애노드 재료 및 그 제조 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015061370A1 (en) 2013-10-21 2015-04-30 Milwaukee Electric Tool Corporation Adapter for power tool devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046157A1 (ja) * 2009-10-16 2011-04-21 日本電気株式会社 ナノチューブ・ナノホーン複合体、およびその製造方法
JP2013084601A (ja) * 2011-10-05 2013-05-09 Samsung Sdi Co Ltd 負極活物質及び該物質を採用したリチウム電池
WO2013183187A1 (ja) * 2012-06-06 2013-12-12 日本電気株式会社 負極活物質及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523829B2 (ja) 2004-10-20 2010-08-11 リグナイト株式会社 カーボンナノファイバ・フェノール樹脂複合炭化材料、導電性樹脂組成物、二次電池用電極、電気二重層キャパシタ分極性電極用炭素材料、電気二重層キャパシタ分極性電極
JP4988169B2 (ja) 2005-05-16 2012-08-01 日立マクセルエナジー株式会社 リチウム二次電池
JP2008066053A (ja) * 2006-09-06 2008-03-21 Fuji Heavy Ind Ltd 蓄電デバイス用負極活物質およびその製造方法
KR100818263B1 (ko) * 2006-12-19 2008-03-31 삼성에스디아이 주식회사 다공성 음극 활물질, 그 제조 방법 및 이를 채용한 음극과리튬 전지
JP4364253B2 (ja) * 2007-04-05 2009-11-11 株式会社東芝 配線、電子装置及び電子装置の製造方法
US8404613B2 (en) * 2008-10-21 2013-03-26 Brookhaven Science Associates, Llc Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures
JP5384917B2 (ja) 2008-11-20 2014-01-08 オートモーティブエナジーサプライ株式会社 リチウムイオン電池
JP5516929B2 (ja) 2008-11-25 2014-06-11 独立行政法人産業技術総合研究所 負極用カーボンナノチューブ材料およびこれを負極とするリチウムイオン二次電池
JP2012094503A (ja) 2010-09-28 2012-05-17 Daikin Ind Ltd リチウム一次電池の正極活物質
JP2012214342A (ja) 2011-03-31 2012-11-08 Nec Corp カーボンナノチューブナノホーン結合体、カーボンナノチューブナノホーン結合体の製造方法および用途
US8551650B2 (en) * 2011-05-12 2013-10-08 Northwestern University Graphene materials having randomly distributed two-dimensional structural defects

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046157A1 (ja) * 2009-10-16 2011-04-21 日本電気株式会社 ナノチューブ・ナノホーン複合体、およびその製造方法
JP2013084601A (ja) * 2011-10-05 2013-05-09 Samsung Sdi Co Ltd 負極活物質及び該物質を採用したリチウム電池
WO2013183187A1 (ja) * 2012-06-06 2013-12-12 日本電気株式会社 負極活物質及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147909A1 (ja) * 2015-03-16 2016-09-22 日本電気株式会社 繊維状のカーボンナノホーン集合体及びその製造方法
JP2017061405A (ja) * 2015-03-16 2017-03-30 日本電気株式会社 繊維状のカーボンナノホーン集合体及びその製造方法
JPWO2016147909A1 (ja) * 2015-03-16 2017-04-27 日本電気株式会社 繊維状のカーボンナノホーン集合体及びその製造方法
US10793439B2 (en) 2015-03-16 2020-10-06 Nec Corporation Fibrous carbon nanohorn aggregate and method for producing the same
KR20190132932A (ko) * 2018-05-21 2019-11-29 아우오 크리스탈 코포레이션 리튬 전지 애노드 재료 및 그 제조 방법
US10971721B2 (en) 2018-05-21 2021-04-06 Auo Crystal Corporation Lithium battery anode material and method of manufacturing the same
KR102265546B1 (ko) * 2018-05-21 2021-06-17 아우오 크리스탈 코포레이션 리튬 전지 애노드 재료 및 그 제조 방법

Also Published As

Publication number Publication date
JP6414064B2 (ja) 2018-10-31
US20160181613A1 (en) 2016-06-23
JPWO2015025722A1 (ja) 2017-03-02
US10038191B2 (en) 2018-07-31

Similar Documents

Publication Publication Date Title
JP6593330B2 (ja) ナノカーボン複合体及びその製造方法
US8936876B2 (en) Carbon material for nonaqueous secondary battery, negative electrode using carbon material and nonaqueous secondary battery
TWI344714B (en) High density electrode and battery using the electrode
JP6747294B2 (ja) リチウムイオン二次電池用負極活物質材料及びその製造方法、並びに負極及びリチウムイオン二次電池
WO2013183187A1 (ja) 負極活物質及びその製造方法
WO2012133788A1 (ja) 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池
CN111213262A (zh) 负极和包含所述负极的二次电池
JP6188158B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池用負極スラリー、およびリチウムイオン二次電池
WO2012147766A1 (ja) リチウム二次電池用正極材料及びその製造方法
WO2017217408A1 (ja) リチウムイオン二次電池
JP6615785B2 (ja) 負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池
WO2014141552A1 (ja) 負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2022060554A (ja) 非水電解液二次電池およびその製造方法
JP5811999B2 (ja) リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2014067680A (ja) 非水系二次電池用黒鉛粒子及び、それを用いた非水系二次電池用負極並びに非水系二次電池
JP6414064B2 (ja) 炭素系負極材料、その製造方法及び該負極材料を含むリチウムイオン電池
JP4579892B2 (ja) リチウムイオン二次電池用負極材料およびその製造方法
JP7301995B2 (ja) 非水系リチウム蓄電素子
WO2023139662A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
CN115917795A (zh) 正极活性材料、包括该正极活性材料的正极、包括该正极的二次电池
JP2012059708A (ja) リチウム二次電池
JP6070016B2 (ja) 非水系二次電池用複合炭素材及びその製造方法、負極並びに非水系二次電池
WO2021177291A1 (ja) 二次電池電極用添加剤
US20230050935A1 (en) Positive electrode slurry, positive electrode manufactured using same, and lithium-sulfur battery comprising same
JP2023049808A (ja) 非水系アルカリ金属蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838623

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14910049

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015532803

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838623

Country of ref document: EP

Kind code of ref document: A1