WO2015022981A1 - コーティング織物 - Google Patents

コーティング織物 Download PDF

Info

Publication number
WO2015022981A1
WO2015022981A1 PCT/JP2014/071405 JP2014071405W WO2015022981A1 WO 2015022981 A1 WO2015022981 A1 WO 2015022981A1 JP 2014071405 W JP2014071405 W JP 2014071405W WO 2015022981 A1 WO2015022981 A1 WO 2015022981A1
Authority
WO
WIPO (PCT)
Prior art keywords
woven fabric
resin
fabric
woven
yarn
Prior art date
Application number
PCT/JP2014/071405
Other languages
English (en)
French (fr)
Inventor
史章 伊勢
Original Assignee
旭化成せんい株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52468366&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015022981(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 旭化成せんい株式会社 filed Critical 旭化成せんい株式会社
Priority to US14/911,930 priority Critical patent/US20160193979A1/en
Priority to MX2016001968A priority patent/MX368062B/es
Priority to CN201480044088.5A priority patent/CN105452558B/zh
Priority to JP2015518670A priority patent/JP5848856B2/ja
Priority to EP14836027.4A priority patent/EP3034686B1/en
Priority to KR1020167002611A priority patent/KR101843663B1/ko
Publication of WO2015022981A1 publication Critical patent/WO2015022981A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/02Inflatable articles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/51Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
    • D06M13/513Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • B60R2021/23504Inflatable members characterised by their material characterised by material
    • B60R2021/23509Fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • B60R2021/23504Inflatable members characterised by their material characterised by material
    • B60R2021/23509Fabric
    • B60R2021/23514Fabric coated fabric
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles
    • D10B2505/124Air bags

Definitions

  • the present invention relates to a fabric suitable for use as an airbag used as a bag body of an airbag device that is an occupant protection device when a vehicle collides.
  • the present invention relates to a woven fabric excellent in air bag use and the like excellent in characteristic stability by sewing processing.
  • airbags on vehicles are advancing as a device for mitigating the impact on human bodies in the event of a vehicle or other vehicle collision.
  • curtain airbags, side airbags, knee airbags, rear airbags, etc. are airbags that inflate and absorb and reduce the impact of the human body in the event of a collision.
  • Installation in vehicles is being put into practical use for occupant protection.
  • an airbag that is installed so as to be inflated outside the passenger compartment of a vehicle has been proposed for pedestrian protection.
  • Patent Document 1 in an airbag fabric having a resin coating, the melting point by a differential scanning calorimeter is increased by applying a specific resin composition, so that damage at the time of high-temperature deployment of the airbag is avoided. It is shown. However, it has not been solved for suppressing high-pressure air permeability after elapse of time and suppressing gas leakage at the sewing portion.
  • Patent Document 2 discloses a technique for improving film adhesion by a coating method in which a coating resin is permeated to some extent in a fabric. However, it has not been solved for suppressing high-pressure air permeability after elapse of time and suppressing gas leakage at the sewing portion.
  • the present invention is a lightweight fabric with a small amount of resin coating as a fabric for an airbag, which suppresses high-pressure air permeability after aging, has excellent characteristic stability after sewing processing, and has excellent gas leakage suppression at a sewing portion.
  • the object is to provide a woven fabric.
  • the present inventors once relaxed the mutual restraining force between the woven yarns of the woven fabric, applied a coating that promotes the penetration of the resin, and then increased the mutual restraining force between the woven yarns again by thermal shrinkage, thereby performing differential scanning calorific value.
  • the present inventors have found that high-pressure aeration suppression and suppression of aeration of a sewing part can be obtained by using a woven fabric structure in which the melting behavior by the meter becomes higher. That is, the present invention provides the following inventions.
  • a woven fabric made of synthetic fibers to which a resin is arranged, and in the temperature rising DSC endothermic curve of the woven fabric, the endothermic amount on the high temperature side with respect to the melting endothermic maximum temperature of the temperature rising DSC endothermic curve of the fabric constituent yarn A woven fabric characterized in that the ratio of the total endothermic amount exceeds 45%.
  • the ratio of the endothermic amount on the high temperature side to the total endothermic amount with respect to the melting endothermic maximum temperature of the temperature rising DSC endothermic curve of the fabric constituent yarn is more than 50%, as described in (1) above Textiles.
  • the woven fabric of the present invention is a lightweight woven fabric in which a resin is arranged, and is a woven fabric that can constitute an excellent airbag that can suppress an increase in high-pressure air permeability after wet heat aging in the woven fabric portion and the sewing portion thereof. .
  • DSC endothermic curve of the textile fabric of the present invention It is a figure of the DSC endothermic curve of the constituent yarn (warp) of the fabric of the present invention. It is a figure of the DSC endothermic curve of the constituent yarn (weft) of the fabric of the present invention. It is a figure of the DSC endothermic curve after scouring of the fabric of the present invention.
  • the woven fabric of the present invention is made of synthetic fibers, and the synthetic fibers constituting the woven fabric are fibers made of a thermoplastic resin, and can be selected from, for example, polyamide fibers and polyester fibers.
  • Polyamide fibers constituting the woven fabric include polyamide 6, polyamide 6 ⁇ 6, polyamide 11, polyamide 12, polyamide 6 ⁇ 10, polyamide 6 ⁇ 12, polyamide 4 ⁇ 6, copolymers thereof, and mixtures thereof.
  • the polyamide 6/6 fibers are preferably fibers mainly composed of polyhexamethylene adipamide resin.
  • the polyhexamethylene adipamide resin refers to a polyamide resin having a melting point of 250 ° C.
  • the resin may be a fiber made of a resin obtained by copolymerizing or blending polyhexamethylene adipamide with polyamide 6, polyamide 6 ⁇ I, polyamide 6 ⁇ 10, polyamide 6 ⁇ T or the like. .
  • such synthetic fibers may contain various additives that are usually used for improving productivity or properties in the production process and processing process of the raw yarn.
  • a heat stabilizer an antioxidant, a light stabilizer, a smoothing agent, an antistatic agent, a plasticizer, a flame retardant, and the like can be contained.
  • the fineness of the synthetic fiber constituting the woven fabric is preferably 200 to 800 dtex.
  • the synthetic fiber constituting the woven fabric is a multifilament fiber composed of a large number of single yarns, and the fineness of the single yarn is preferably 1 to 8 dtex.
  • the single yarn fineness is 8 dtex or less, and the smaller the yarn, the easier it is to take a woven form in which the woven yarns bite each other. If the single yarn fineness is 1 dtex or more, the filament will not be damaged during the processing step, and the mechanical properties of the fabric will not be impaired.
  • the cross-sectional shape of the single yarn is preferably a substantially round cross section. As the cross-sectional shape of the single yarn becomes flatter, the dynamic high-pressure air permeability of the fabric is more difficult to suppress.
  • the synthetic fiber preferably has 100 or less fluffs per 10 8 m so that high-density weaving is possible without sizing during aging.
  • the air entanglement is preferably 5 to 30 times / m.
  • the air entanglement is 30 times / m or less, the single yarn group is moderately focused in the woven fabric and contributes to the adhesion and strength of the resin film without excessively suppressing the penetration of the coated resin into the woven fabric. If the air entanglement is 5 times / m or more, it is possible to avoid the breakage of the single yarn in the high-density weaving process or the stop of the loom due to the single yarn breakage.
  • the woven yarn made of synthetic fiber is preferably sent to the warping process without gluing, and after being subjected to rough winding, it is turned back into a warp beam for warp. Moreover, a part is supplied as weft and weaving is performed.
  • the ratio of the high temperature side endotherm to the total endotherm exceeds 45% in the melt endotherm measured by the temperature rising DSC (differential scanning calorimeter). More preferably, it exceeds 50%, and further preferably exceeds 55%. More preferably, it exceeds 60%.
  • the temperature of the fabric sample is raised from room temperature at 5 ° C / min, and the endothermic curve due to melting is observed. Ask for.
  • the reference temperature is the melting endothermic maximum temperature when the component yarn obtained by disassembling the fabric is subjected to DSC observation under the same temperature rise conditions. This maximum endothermic temperature is usually observed as the melting point of the constituent yarn.
  • the woven fabric melts at a temperature higher than the melting point of the constituent yarn is highly constrained between the woven yarns, and furthermore, the resin in which the woven yarns or single yarns in the woven yarn penetrated between them. This indicates that the structure is fixed. It is considered that the high-temperature melting peak due to weaving yarn restraint or resin fixing is observed because the polymer chain of the weaving yarn melts without undergoing endothermic heat due to orientation relaxation due to the fixing structure of both.
  • the low-temperature endothermic part often shows a fine peak at a lower temperature side than the melting point of the constituent yarn, and the unconstrained woven yarn crimp structure of the fabric relaxes its thermal orientation and absorbs heat. It is thought to be going. If the structure has few unconstrained endothermic components, it can be considered that the fixing structure is sufficiently developed.
  • the ratio of the high temperature side endothermic amount is high, there is a limit to the yarn binding by the woven structure, and it is up to about 80%. If it is a structure with a high ratio of the high-temperature side endothermic amount, the permeation fixing structure by the resin disposed on the fabric is strong, and the air permeability after stress load is suppressed. Furthermore, in the needle hole at the time of sewing, the single yarn breakage is suppressed by fixing the fiber with the resin arranged in the fabric, and the air permeability is suppressed by the tightening by the weaving yarn restraint.
  • the resin disposed in the woven fabric sufficiently penetrates the woven fabric and keeps the air permeability in a minimum amount.
  • the scouring process of the fabric organizes the high-density weaving structure and creates a restraining structure between the yarns. It is preferable to loosen it once. At this time, it is observed that the melt endothermic curve by the temperature rise DSC of the woven fabric approximates as much as the melt endothermic curve by the temperature rise DSC of the constituent yarn, and the mutual restraint between the woven yarns is loosened.
  • the resin is arranged in the woven fabric with this structure, a woven fabric in which the resin is satisfactorily penetrated can be obtained. At this time, it is preferable not to overtighten the fabric structure by heat setting or the like before the resin is disposed on the fabric. With such a resin-impregnated fabric, a high-temperature melting structure can be obtained by fixing the resin.
  • a water jet loom for the weaving, a water jet loom, an air jet loom, a rapier loom, or the like can be used.
  • the use of a water jet loom is preferable because the amount of oil adhesion can be controlled to be small without strengthening the subsequent scouring process.
  • the woven structure of the woven fabric is preferably a plain woven fabric having basically the same fiber and a single fiber. Further, in order to obtain a high-density plain woven fabric, the plain woven fabric may be obtained by weaving the two backgrounds using a two-angle weave method.
  • the cover factor of the fabric is preferably 1900 to 2600.
  • the cover factor is the degree of fiber filling in the fabric plane direction, and if it is 1900 or more, the mechanical strength required for the airbag can be satisfied. If the cover factor is 2600 or less, difficulties in the weaving process can be avoided.
  • the woven yarn is subjected to weaving without twisting and without glue. If weaving without glue, it is not necessary to reinforce the temperature conditions of the scouring process. When weaving by twisting the woven yarn, the converging property of the single yarn group becomes too good, such as the flatness of the woven yarn being less than 2.5, and the mutual restraint of the warp and weft in the woven fabric does not become strong. Further, resin penetration in the woven yarn is reduced. In the scouring process after weaving, the bent form in which the woven yarn formed in the weaving process is sufficiently meshed is eliminated by the shrinking action of the synthetic fiber in warm water.
  • a scouring method that does not give a stimulus of mechanical deformation such as stagnation in a widened state, preferably at a temperature of 70 ° C. or lower, more preferably 60 ° C. or lower, more preferably 50 ° C. or lower.
  • the oil content (oil-attached ratio) extracted with cyclohexane is preferably 0.005 wt% to 0.2 wt% with respect to the woven fabric weight. More preferably, it is 0.005 to 0.15% by weight. More preferably, it is 0.005 to 0.1% by weight. If the cyclohexane extraction oil content is 0.005% by weight or more, the surface of the woven fiber can be made low in friction and the tear strength of the woven fabric can be prevented from being lowered. Therefore, the bag resistance of the airbag can be improved. On the other hand, by setting the content to 0.2% by weight or less, it is possible to increase the adhesion of the resin and maintain the ventilation resistance even after a load is applied to the fabric.
  • the spinning oil derived from the production process of the weaving yarn and the warping oil content in the warp warping process of the weaving yarn In the water jet loom process for producing the stencil, the conditions in the scouring process after weaving can be selected as appropriate. Even in the drying process, it is necessary to maintain a state in which the mutual restraint between the weaving yarns has been relaxed in the scouring process after weaving until the coating process in which the resin is disposed on the woven fabric.
  • the drying treatment is preferably performed at 120 ° C. or lower, more preferably 80 ° C. or lower.
  • the amount of resin attached to the fabric of the present invention is preferably 10 to 50 g / m 2 . More preferably, it is 15 to 45 g / m 2 . In the case of 10 g / m 2 or more, the fabric air permeability is suppressed and the internal pressure retention is better as the coating amount is larger. At 50 g / m 2 or less, the smaller the coating amount, the lighter the airbag and the shorter the deployment time (early deployment).
  • the coating resin disposed on the fabric is for making the fabric surface non-ventilated, and silicone, polyurethane, polyamide and the like can be used. Silicone is particularly preferred, and it is flexible and free from cracking of the coating even under cold conditions, and is relatively difficult to burn and can be expected to contribute to the flame retardancy of the fabric.
  • silicone a resin composition that is thermally crosslinked by addition reaction type is preferable, and a composition in which hydrogen silicone is used as a crosslinking agent to terminal alkenyl polyorganosiloxane and an addition reaction catalyst is added can be used.
  • the coating liquid used for distributing the resin to the fabric is preferably a substantially solvent-free coating liquid, and the viscosity is preferably more than 20,000 cP and less than 500,000 cP. More preferably, it is 30,000 cP or more and less than 300,000 cP.
  • by increasing the contact pressure of the coating knife it becomes possible to perform coating at a low coating amount. If the coating liquid soaks into the woven fabric, it cannot be controlled to a low coating amount or it is difficult to ensure low air permeability uniformly.
  • Resin permeation can promote the weaving of the yarn by the resin.
  • Resin permeation can promote the weaving of the yarn by the resin.
  • a low molecular weight resin is used in order to reduce the viscosity of the coating liquid.
  • the stress followability of the cross-linked resin is poor, leading to stress gas leakage during airbag deployment.
  • a high molecular weight resin having a high viscosity resin can prevent excessive penetration due to light weight coating, but the density of the adhesion site of the resin to the fabric fiber is low, and the wet heat aging between the fabric fiber and the resin coating is There is a problem of poor adhesion.
  • Low molecular weight alkoxysilane is a silane compound consisting essentially of a single molecule having a molecular weight of 500 or less and 120 or more, or a molecule containing a low polymerization degree skeleton, wherein two or more alkoxyl groups are substituted for silicon. Is preferred. Examples thereof include methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, and tetraethoxysilane.
  • the low molecular weight alkoxysilane is preferably added to the coating solution in an amount of 1 to 10% by weight.
  • Addition of 1% by weight or more of low molecular weight alkoxysilane promotes penetration due to the dilution effect.
  • the low molecular weight alkoxysilane promotes the adhesion reaction between the resin and the textile fiber until the completion of the thermal crosslinking of the silicone resin, so that the adhesiveness can be strengthened, and the high-pressure load can be achieved despite the low coating amount. There is no local peeling and internal pressure retention can be improved.
  • the addition amount is 10% by weight or less, it is possible to prevent the occurrence of bubble defects in the resin layer by the decomposition gas accompanying the reaction.
  • the viscosity is adjusted by adding the same kind of a low-viscosity resin main agent that crosslinks and cures to the main resin that crosslinks and cures.
  • the resin main agent can be a mixture of a high viscosity, that is, a high degree of polymerization, and a low viscosity, that is, a low degree of polymerization, so that the coating liquid viscosity can be set to the above-described viscosity suitable for bringing the coating amount to a desired value as a whole.
  • the single yarn exposure of the woven yarn can be promoted by the effect of the low viscosity resin main ingredient.
  • the viscosity of the low-viscosity resin main ingredient is preferably 10,000 cP or less in order to promote the single yarn exposure by resin penetration. Further, the viscosity of the low-viscosity resin main component is preferably 500 cP or more, and can be made a composition that does not contain a silicone volatile component harmful to electronic components. Furthermore, the low-viscosity resin main component itself can contribute to the internal pressure retention by being subjected to the curing vulcanization reaction.
  • the low-viscosity resin main component is preferably 45% by weight or less of the total resin amount. More preferably, it is 35% by weight or less.
  • a balance can be achieved without greatly impairing the cross-linking properties of the resin with the high-viscosity resin main component. Moreover, it is preferable that a low-viscosity resin main ingredient is 5 weight% or more of the total resin amount.
  • the resin coating method is not particularly limited, but coating with a knife coater is preferred.
  • a state in which the fabric fibers are restrained by the resin can be controlled by forming a resin film on the fabric surface to create a non-vented state and partially infiltrating the resin into the fabric.
  • the contact pressure between the knife and the fabric when coating the fabric is preferably 0.5 to 20 N / cm. More preferably, it is 1.0 N / cm or more and 10 N / cm or less. In the case of 0.5 N / cm or more, the higher the contact pressure, the smaller the coating amount and the lower the coating amount. At 20 N / cm or less, the fabric is not damaged, and the physical properties of the fabric and the processing quality are not deteriorated.
  • a high-temperature melting structure by restraining the weaving yarn is obtained by sufficiently generating a heat shrinkage force on the weaving yarn made of synthetic fibers.
  • the amount of shrinkage in the vulcanization step is preferably 1.5% or more in terms of the total shrinkage in the direction of the weft. More preferably, it is 2% or more.
  • Mutual constraints between the woven yarns are formed by making the shrinkage appear as large as possible in the vulcanization process.
  • the shrinkage rate in the vulcanization process can be increased.
  • the shrinkage rate in the vulcanization process is 4% or less depending on the shrinkage property of the synthetic fiber used as the woven yarn raw yarn.
  • the vulcanization temperature depends on the design of the crosslinking reaction of the coating resin, it can be vulcanized at 150 ° C. or higher. However, in order to sufficiently develop the shrinkage of the synthetic fiber, it is preferably 190 ° C. or higher.
  • the vulcanization process can be performed in multiple stages. For example, the primary vulcanization step is performed at 150 to 180 ° C., the secondary vulcanization step is performed at 180 to 200 ° C., and the tertiary vulcanization step is performed at 200 to 220 ° C.
  • the final temperature reached is preferably 190 ° C to 220 ° C.
  • the vulcanization time can be suitably carried out between 30 seconds and 3 minutes as the residence time of the vulcanization process. What is necessary is just to take time to develop the reaction of cross-linking of the resin and adhesion to the fiber and make it uniform.
  • the processes of the woven yarn constituting each other are constrained to each other.
  • the flatness of the woven yarn is defined as the ratio of the single yarn spread in the fabric plane direction to the spread of the single yarn in the fabric thickness direction (plane direction / thickness direction)
  • the warp The flatness and the weft flatness are similar, and the difference between them is preferably 1.8 or less. More preferably, it is 1.5 or less. If the difference between the warp flatness and the weft flatness is 1.8 or less, the structure in which the resin penetrates the woven fabric tends to be a firm fixed structure. Furthermore, the adhesive strength of the coating resin is easily maintained in the gap between the warp and weft that is spread by the sewing needle.
  • the warp flatness and the weft flatness of the woven fabric of the present invention are in a form in which the width is 2.5 or more. If the flatness of the weaving yarn is 2.5 or more, the structure in which the weaving yarns restrain each other tends to be strong.
  • the air permeability is preferably 0.3 cc / cm 2 / sec or less by the FRAZIER method with a differential pressure of 125 Pa, and it is preferable that the airflow is not detected as much as possible.
  • the woven fabric of the present invention has a stitch air permeability at 50 kPa applied pressure by dynamic air permeability evaluation when a stitch line is provided by sewing machine (sewing needle # 21, number of moving needles 50 times / 10 cm, no sewing thread).
  • a stitch air permeability at 50 kPa applied pressure by dynamic air permeability evaluation when a stitch line is provided by sewing machine is preferably 8,000 mm 3 / mm / sec or less. More preferably, it is 5,000 mm ⁇ 3 > / mm / sec or less, More preferably, it is 3,500 mm ⁇ 3 > / mm / sec or less.
  • the number of times of no peeling in the stagnation test is 200 times or more. Furthermore, it is preferable that the number of times of no peeling in the stagnation test after wet heat aging is 200 times or more.
  • the woven fabric of the present invention preferably has a stitch air permeability increment of 1,000 mm 3 / mm / sec or less after being exposed to 85% at 95% RH for 100 hours. More preferably, it is 800 mm 3 / mm / sec or less. Since the increase in stitch air permeability after the wet heat aging is small, the environment resistance of the airbag is improved and the reliability of the deployment operation is increased. It is preferable that there is no increment.
  • the fabric of the present invention is suitable for sewing and use in an airbag.
  • the sewing airbag made of the woven fabric of the present invention can be incorporated and used as an airbag module and an airbag device.
  • the number of entanglements is a value obtained by a water immersion method.
  • the bathing bath for measuring the number of entanglements has a length of 1.0m between the marked lines, a width of 10cm, and a height (water depth) of 5cm, and the water supplied from the supply port to the outside of the marked line of the bath overflows. Drained. That is, the water in the measurement bath is renewed by always supplying new water at a flow rate of about 500 cc / min.
  • the oil film spread in the measurement bath can be removed by always supplying new water.
  • the inside of the bath is preferably black. The yarn is immersed in a relaxed state in the measurement bath, the entangled state is observed, and the number of entanglements per 1 m length is visually read. These measurements are repeated 10 times and the average value is evaluated.
  • Preparation of fabric sample The sample was adjusted to the standard state of JIS L0105 (2006) and subjected to various measurements and evaluations.
  • Application amount The increase in the fabric weight per unit area in the resin application step is defined as the application amount.
  • the coating amount can be known from the analysis of the fabric as follows. A 10 cm square test piece is accurately taken from the woven fabric, cut into approximately 5 mm squares or less, washed with cyclohexane twice at 25 ° C. for 5 minutes, air dried and then dried at 105 ° C. for 12 hours with a hot air dryer. The synthetic fiber is dissolved with a solvent.
  • the fiber constituting the woven fabric is a polyamide fiber
  • the fiber is dissolved overnight at room temperature using 250 ml of 90% formic acid, and the undissolved crosslinked silicone membrane is separated by filtration.
  • the silicone film separated by filtration is thoroughly washed with a solvent, washed with water, dried in hot air at 105 ° C., the absolutely dry mass w (g) is measured, and the coating amount (g / m 2 ) is calculated.
  • Oiling rate About 20 g of polyamide fiber woven fabric was collected, and the mass (S) after being left in a hot air dryer at 105 ° C. for 1 hour 30 minutes was measured with an electronic balance.
  • the oil content of the fabric was subjected to solvent extraction with about 500 ml of cyclohexane using a Soxhlet extractor for 8 hours, and after filtration, the solvent was distilled off to recover the oil content.
  • the recovered oil was dried in a vacuum dryer at 5 mmHg and 25 ° C. for 1 hour. Then, after moving to a desiccator and allowing to cool for 15 minutes, the weight of the recovered oil was measured. This was processed several times, and the amount of recovered oil for about 100 g of the fabric sample was measured.
  • the oil coverage was calculated from the amount of recovered oil relative to the dry weight of the polyamide fiber fabric.
  • (5) Flatness difference The center of the woven yarn of the woven fabric was cut, and the bundled outer shape of the single yarn bundle of the woven yarn was observed for each of the wefts from the cross section. The ratio of the spread of the single yarn in the fabric plane direction (plane direction / thickness direction) to the spread of the single yarn in the fabric thickness direction was defined as flatness. Next, the absolute value of the difference in flatness of the warp and weft was defined as the flatness difference.
  • the average of the endothermic peak temperatures of the constituent yarns obtained by disassembling the woven fabric was used as the reference temperature.
  • the endothermic curve of the woven fabric was divided into a low temperature side and a high temperature side of the reference temperature, and the high temperature side endothermic amount ratio (%) in the endothermic curve was determined.
  • Stitch air permeability 1) Stitch treatment: The fabric sample was machined with the resin coating surface down and without a sewing thread. That is, the needle is pierced from the fabric toward the resin film surface side. The sewing machine needle was # 21, and 10 lines of stitches with 50 stitches / 10 cm in length were provided in parallel with 4 lines at 1 cm intervals along the weaving direction of the fabric. 2) Stitch air permeability: FX3350 dynamic air permeability measuring device manufactured by TEXTEST was used. The resin-coated surface of the woven fabric sample was placed on the opposite side of the filling tank, and was sandwiched so that all the stitch lines were placed in the ventilation opening (81 mm ⁇ ) sandwiching the woven fabric sample.
  • the dynamic air permeability (mm / sec) at 50 kPa was measured from the air permeability-pressure curve.
  • the stitch lengths contained in the inner diameter of the opening were measured and totaled, and the air permeation length (mm) that was about 300 mm was obtained.
  • the dynamic air permeability (mm / sec) of the measuring device is displayed per opening area (5,026 mm 2 ), it is converted into per air vent length (mm), and stitch air permeability (mm 3 / Mm / sec).
  • the air permeability was determined to be 0 mm / sec, assuming that there was substantially no ventilation.
  • Stitch air permeability increment after wet heat aging After the fabric sample is placed in a constant temperature and humidity chamber at 95% RH at 85 ° C. for 100 hours and returned to the standard state, the stitch processing described in (10) is performed and the stitch is performed. The air permeability (mm 3 / mm / sec) was evaluated. The increment from the stitch air permeability evaluated in (10) was the stitch air flow increment (mm 3 / mm / sec) after wet heat aging.
  • Example 1 Polyhexamethylene adipamide fiber having a strength of 8.5 cN / dtex was used as a woven yarn.
  • the fiber contained 50 ppm of copper and 1500 ppm of iodine. This fiber had a fineness of 470 dtex, a single cross-sectional yarn of 136 round cross-section yarns, a boiling water shrinkage of 7.5%, and the number of entanglements in the water immersion method was 15 / m.
  • the fibers were aligned with no twist and no glue for warp yarns to give a warp beam, and for wefts with no twist and no glue, they were supplied as they were from the winding package to the loom. With a water jet loom, the warp tension on the loom was set to 0.25 cN / dtex, and a plain fabric was obtained at 400 rpm.
  • the fabric was washed at 50 ° C. for 1 minute in a widened state and dried at 110 ° C.
  • a coating solution in which 2 wt% of tetraethoxysilane (TES) was added to an addition reaction cross-linked silicone liquid mainly composed of a solvent-free methyl vinyl silicone resin having a viscosity of 60,000 cP was added to this fabric using a floating knife coater.
  • TES tetraethoxysilane
  • a vulcanization treatment was performed at 210 ° C. for 2 minutes to obtain an airbag fabric.
  • the shrinkage of the fabric in the vulcanization process was 2.6% in the total direction of the weft.
  • the melting point was 259.0 ° C. for both the process and the endothermic curve
  • the ratio of the endothermic amount of the constituent yarn melting point on the high temperature side was 32% (see FIG. 2 and FIG. 2). 3).
  • the high-temperature side endothermic rate was 67% (FIG. 1).
  • the high-temperature side endothermic ratio was 13% (FIG. 4). The film peeling could not be confirmed up to 400 times, and the adhesiveness of the resin was good. Even in the fouling test after aging with wet heat, film peeling could not be confirmed up to 400 times.
  • Stitch air permeability is a model evaluation of the degree of air permeability suppression at the sewing part of an airbag using a sewing machine needle hole without sewing thread. Due to the development of mutual restraint, gas leakage at the needle hole is suppressed. Stitch air permeability after wet heat aging is also suppressed. The evaluation results are shown in Table 1.
  • Example 2 It was carried out in the same manner as in Example 1 except that the scouring after weaving was 60 ° C. and the vulcanization temperature was 200 ° C. The evaluation results are shown in Table 1. The high temperature side endotherm ratio of DSC analysis is high, and the fir test and the fir test after wet heat aging are good. Furthermore, both the stitch air permeability and the stitch air permeability after wet heat aging were suppressed.
  • Example 3 It was carried out in the same manner as in Example 1 except that the scouring after weaving was 70 ° C. and the vulcanization temperature was 190 ° C. The evaluation results are shown in Table 1. The high temperature side endotherm ratio of DSC analysis is high, and the fir test and the fir test after wet heat aging are good. Furthermore, both the stitch air permeability and the stitch air permeability after wet heat aging were suppressed.
  • Example 4 It was carried out in the same manner as in Example 1 except that the scouring after weaving was 70 ° C. and the vulcanization temperature was 150 ° C. The evaluation results are shown in Table 1. The high temperature side endotherm ratio of DSC analysis is high, and the fir test and the fir test after wet heat aging are good. Furthermore, although the stitch air permeability and the stitch air permeability after the wet heat aging increased slightly, they were well suppressed.
  • Example 5 The same procedure as in Example 4 was carried out except that the number of entanglements in the water immersion method of polyhexamethylene adipamide fiber was 25 / m.
  • the evaluation results are shown in Table 1.
  • the penetration of the resin is slightly suppressed, and the high temperature side endothermic rate ratio of DSC analysis is slightly lowered, but the fir test and the fir test after wet heat aging are good.
  • the stitch air permeability and the stitch air permeability after the wet heat aging increased slightly, they were well suppressed.
  • Example 6 Using a floating knife coater, coating is performed with a coating solution obtained by adding 8% by weight of tetraethoxysilane (TES) to an addition-reaction crosslinked silicone fluid mainly composed of a solvent-free methyl vinyl silicone resin having a viscosity of 60,000 cP. The same operation as in Example 1 was carried out except that the coating amount was 35 g / m 2 . The evaluation results are shown in Table 1. Although the weight of the woven fabric increased and the thickness increased, the fir test and the fir test after wet heat aging are good. Furthermore, both the stitch air permeability and the stitch air permeability after wet heat aging were suppressed.
  • TES tetraethoxysilane
  • Example 7 A polyethylene terephthalate fiber having a fineness of 550 dtex, a single yarn number of 144, a strength of 7 cN / dtex, a boiling water shrinkage of 2.2%, and a entanglement number of 15 / m was used as the woven yarn. This was carried out in the same manner as in Example 1 except that plain weaving was carried out with a water jet loom, and then the vulcanization temperature was set to 220 ° C. The evaluation results are shown in Table 1. The high temperature side endotherm ratio of DSC analysis is high, and the fir test and the fir test after wet heat aging are good. Furthermore, although the stitch air permeability and the stitch air permeability after the wet heat aging increased slightly, they were well suppressed.
  • the kneading restraint after the penetration of the resin between the woven fibers is small, and the evaluation of the kneading test after aging with wet heat is lowered. Because of the low restraint between fibers, the stitch air permeability and the stitch air permeability after wet heat aging are high.
  • the kneading restraint after the penetration of the resin between the fabric fibers is small, and the evaluation of the kneading test after aging with wet heat is lowered. Because of the low restraint between fibers, the stitch air permeability and the stitch air permeability after wet heat aging are high.
  • Example 3 It was carried out in the same manner as in Example 1 except that the scouring after weaving was 90 ° C. and the vulcanization temperature was 180 ° C. The evaluation results are shown in Table 1. Since the polyamide fiber has a large shrinkage during scouring and the shrinkage in the vulcanization process is small, the development of weaving yarn restraint cannot be expected, and the high temperature side endothermic ratio of DSC analysis is low.
  • the fabric structure is relaxed by scouring and there is penetration of the resin into the woven fiber, and the kneading test is good, the kneading constraint between the woven fibers after the resin penetration is small, and the evaluation of the kneading test after aging with wet heat decreases. Because of the low restraint between fibers, the stitch air permeability and the stitch air permeability after wet heat aging are high.
  • Example 4 This was carried out in the same manner as in Example 1 except that the scouring after weaving was 80 ° C. and the vulcanization temperature was 180 ° C. The evaluation results are shown in Table 1. There is no relaxation of the polyamide fiber weaving constraint during scouring, and the internal penetration of the coating resin is hindered. Since the shrinkage in the vulcanization process is small, the development of weaving yarn restraint cannot be expected, and the high temperature side endothermic rate ratio in DSC analysis is low.
  • the fabric structure is relaxed by scouring and there is penetration of the resin into the woven fiber, and the kneading test is good, the kneading constraint between the woven fibers after the resin penetration is small, and the evaluation of the kneading test after aging with wet heat decreases. Because of the low restraint between fibers, the stitch air permeability and the stitch air permeability after wet heat aging are high.
  • Example 6 For Example 1, scouring after weaving was not performed, and heat setting at 190 ° C. was performed. Furthermore, a coating solution of an addition reaction cross-linked silicone liquid mainly composed of a solvent-free methyl vinyl silicone resin having a viscosity of 15,000 cP is coated using a floating knife coater, and the coating amount is 18 g / m. Two . The evaluation results are shown in Table 1. There is no scouring and there is no relaxation of polyamide fiber weaving restraint, and internal penetration of the coating resin is suppressed. Since the shrinkage in the vulcanization process is small, the development of the weaving yarn constraint cannot be expected, and the high temperature side endothermic ratio in the DSC analysis is extremely low.
  • Example 7 For Example 1, scouring after weaving was not performed, and the vulcanization temperature was changed to 180 ° C. Furthermore, a coating solution of an addition reaction cross-linked silicone liquid mainly composed of a solvent-free methyl vinyl silicone resin having a viscosity of 12,000 cP is coated using a floating knife coater, and the coating amount is 25 g / m. Two . The evaluation results are shown in Table 1. There is no scouring and there is no relaxation of polyamide fiber weaving restraint, and internal penetration of the coating resin is suppressed. Although there is shrinkage in the vulcanization process and the yarn is constrained, since the resin penetration is small, the high temperature side endothermic rate ratio in DSC analysis is low.
  • Example 8 For Example 1, scouring after weaving was not performed, and the vulcanization temperature was changed to 180 ° C. Furthermore, a silicone coating comprising 18 parts by weight of a solvent-free methyl vinyl silicone resin having a viscosity of 500,000 cP, 43 parts by weight of a solvent-free methyl vinyl silicone resin having a viscosity of 20,000 cP, and 39 parts by weight of a toluene solvent in the coating process. The liquid was coated using a floating knife coater, and the coating amount was 30 g / m 2 . The evaluation results are shown in Table 1.
  • the fabric of the present invention is suitable as a fabric for an airbag.
  • it is suitable as a fabric for an airbag used for a coated sewing airbag excellent in air permeability suppression.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Woven Fabrics (AREA)
  • Air Bags (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

 本発明の目的は、エアバッグ用織物として樹脂被膜量の少ない軽量な織物で、経日後の高圧通気度を抑制し、縫製加工後の特性安定性に優れ、縫製部のガス漏れ抑制に優れたエアバッグ用織物を提供することであり、本発明のエアバッグ用織物は、樹脂が配された合成繊維からなる織物であって、その織物の昇温DSC吸熱曲線において、織物構成糸の昇温DSC吸熱曲線の溶融吸熱極大温度に対して高温度側の吸熱量の全体の吸熱量に対する比率が45%を超えることを特徴とする織物である。

Description

コーティング織物
 本発明は、乗り物の衝突時乗員保護装置であるエアバッグ装置の袋体として用いられるエアバッグ用途などに適した織物に関するものである。とりわけ、縫製加工による特性安定性に優れたエアバッグ用途などに優れた織物に関するものである。
 自動車など乗り物の衝突事故における人体への衝撃緩和のための装置として、乗り物へのエアバッグの装着が進んできている。衝突の際、ガスにより膨張し、人体の衝撃を吸収緩和するエアバッグとして、運転席用および助手席用エアバッグに加えて、カーテンエアバッグやサイドエアバッグ、ニーエアバッグ、リアエアバッグなどの車両中への装着が、乗員保護のために実用化されつつある。さらには、歩行者保護のために、車両の客室の外側に膨張するように装着されるエアバッグも提案されてきている。
 これらのエアバッグは、平常時は小さく折り畳まれて収納されている。事故の衝撃をセンサーが検出し、エアバッグが展開膨張する際は、インフレータで発生したガスによって折り畳みが押し拡げられながら、収納箇所のカバー部分を押し破ってエアバッグが飛び出し、充分に膨らんだところで人体を受け止めることになる。
 近年、エアバッグは広範な衝突条件に対応できるように、より高速で展開することが求められるようになってきた。そこで、より高出力の推薬を用いたインフレータにより、高温高圧ガスで展開するようになってきている。そのため、より安全性の高いエアバッグとするためには、袋体の耐熱耐圧性を高める必要がある。また、長期に性能を維持するために、経日後の高圧通気度を抑制するという課題がある。
 さらに、展開ガスの漏れを抑制して、より長時間内圧を維持することにより、人体拘束のタイミングを幅広くとって安全性を高める要求も高まっている。ベントホールでガス圧制御するエアバッグ以外に、ベントホールを設けないカーテンエアバッグなどでは、特に展開ガスの漏れを抑制することが重要となる。コーティング織物における縫製エアバッグにおいては、ガス漏れ部位は縫製部となるため、これを抑制することが課題となっている。
 下記特許文献1には、樹脂被膜を有するエアバッグ織物において、特定の樹脂組成物の塗布により、示差走査熱量計による融点が上昇するため、エアバッグの高温展開時の損傷が回避されることが示されている。しかし、経日後の高圧通気度を抑制することや、縫製部のガス漏れ抑制に関しては解決されていなかった。
 また、下記特許文献2には、コーティング樹脂を布帛中にある程度浸透させる塗布方法により、被膜接着性を改良する技術が開示されている。しかし、経日後の高圧通気度を抑制することや、縫製部のガス漏れ抑制に関しては解決されていなかった。
特開2004-149992号公報 特開2004-124321号公報
 本発明は、エアバッグ用織物として樹脂被膜量の少ない軽量な織物で、経日後の高圧通気度を抑制し、縫製加工後の特性安定性に優れ、縫製部のガス漏れ抑制に優れたエアバッグ用織物を提供することを目的とするものである。
 本発明者は、織物の織糸同士の相互拘束力をいったん緩め、樹脂の浸透を促進するコーティングを施した後、熱収縮にて織糸同士の相互拘束力を再度高めることで、示差走査熱量計による溶融挙動がより高温になるような織物構造にすることにより、高圧通気抑制や縫製部の通気抑制が得られることを見出して本発明をなすに至った。
 すなわち、本発明は下記の発明を提供する。
 (1)樹脂が配された合成繊維からなる織物であって、その織物の昇温DSC吸熱曲線において、織物構成糸の昇温DSC吸熱曲線の溶融吸熱極大温度に対して高温度側の吸熱量の全体の吸熱量に対する比率が45%を超えることを特徴とする織物。
 (2)織物構成糸の昇温DSC吸熱曲線の溶融吸熱極大温度に対して高温度側の吸熱量の全体の吸熱量に対する前記比率が50%を超えることを特徴とする上記(1)に記載の織物。
 (3)織物に樹脂が被膜として配され、樹脂量が10から50g/m2であることを特徴とする上記(1)または(2)に記載の織物。
 (4)油付率が0.005から0.20重量%であることを特徴とする上記(1)~(3)のいずれか一項に記載の織物。
 (5)織物を構成する経糸と緯糸の扁平度(平面方向の単糸の広がり/厚み方向の単糸の広がり)の差が1.8以下であることを特徴とする上記(1)~(4)のいずれか一項に記載の織物。
 (6)95%RHおよび85℃の環境下に100時間暴露後のスクラブ揉み試験による剥離耐性が200回以上であることを特徴とする上記(1)~(5)のいずれか一項に記載の織物。
 (7)95%RHおよび85℃の環境下に100時間暴露後のステッチ通気度増分が1,000mm3/mm/sec以下であることを特徴とする上記(1)~(6)のいずれか一項に記載の織物。
 (8)合成繊維がポリアミド66繊維であることを特徴とする上記(1)~(7)のいずれか一項に記載の織物。
 (9)製織に用いる合成繊維のエア交絡が5~30回/mであることを特徴とする上記(1)~(8)のいずれか一項に記載の織物。
 (10)無撚無糊の合成繊維をウォータージェット織機で製織し、引き続き70℃以下の精練を含む工程を経て製造されることを特徴とする上記(1)~(9)のいずれか一項に記載の織物。
 (11)樹脂がシリコーン樹脂であり、粘度が2万cPを超え50万cP未満の無溶媒のシリコーン樹脂含有塗工液によって樹脂被膜が配されることを特徴とする上記(3)~(10)のいずれか一項に記載の織物。
 (12)塗工液が分子量500以下の低分子量アルコキシシランを1~10重量%含有していることを特徴とする上記(11)に記載の織物。
 (13)シリコーン樹脂が1万cP以下の低粘性シリコーンを45重量%以下含有していることを特徴とする上記(11)または(12)に記載の織物。
 (14)樹脂の架橋で1.5%以上熱収縮させることを特徴とする上記(1)~(13)のいずれか一項に記載の織物。
 (15)上記(1)~(14)のいずれか一項に記載の織物を用いたエアバッグ。
 本発明の織物は、樹脂が配された軽量な織物であって、織物部やその縫製部における湿熱経時後の高圧通気度の上昇を抑制ができるという、優れたエアバッグを構成できる織物である。
本発明の織物のDSC吸熱曲線の図である。 本発明の織物の構成糸(経)のDSC吸熱曲線の図である。 本発明の織物の構成糸(緯)のDSC吸熱曲線の図である。 本発明の織物の精練後のDSC吸熱曲線の図である。
 以下、本発明について具体的に説明する。
 本発明の織物は合成繊維からなり、織物を構成する合成繊維は、熱可塑性樹脂からなる繊維であって、例えば、ポリアミド繊維、ポリエステル繊維などから選ぶことができる。
 織物を構成するポリアミド繊維としては、ポリアミド6、ポリアミド6・6、ポリアミド11、ポリアミド12、ポリアミド6・10、ポリアミド6・12、ポリアミド4・6、それらの共重合体およびそれらの混合物の樹脂からなる繊維が挙げられる。特にポリアミド6・6繊維としては、主としてポリヘキサメチレンアジパミド樹脂からなる繊維であることが好ましい。ポリヘキサメチレンアジパミド樹脂とは100%のヘキサメチレンジアミンとアジピン酸とから構成される融点が250℃以上のポリアミド樹脂を指すが、本発明で用いられるポリアミド6・6樹脂からなる繊維は、樹脂の融点が250℃未満とならない範囲で、ポリヘキサメチレンアジパミドにポリアミド6、ポリアミド6・I、ポリアミド6・10、ポリアミド6・Tなどを共重合、あるいはブレンドした樹脂からなる繊維でもよい。
 なお、かかる合成繊維には、原糸の製造工程や加工工程での生産性あるいは特性改善のために通常使用される各種添加剤を含んでいても良い。例えば熱安定剤、酸化防止剤、光安定剤、平滑剤、帯電防止剤、可塑剤、難燃剤などを含有せしめることができる。
 織物を構成する合成繊維の繊度は、好ましくは、200から800dtexである。また、織物を構成する合成繊維は多数の単糸からなるマルチフィラメント繊維であり、単糸の繊度は1から8dtexが好ましい。単糸繊度は8dtex以下で小さい方が織糸同士が食い込み合った織物形態を取りやすくなる。単糸繊度が1dtex以上であれば加工工程中にフィラメント損傷を受けることがなく、織物の機械特性を損なうことがない。単糸の断面形状は、実質的に丸断面であることが好ましい。単糸断面形状が扁平状になるほど織物の動的な高圧通気度が抑制しにくい。
 合成繊維は、整経時に糊付けせずに高密度製織が可能となるように、フィラメント切れによる毛羽が108mあたりに100個以下であることが好ましい。また、マルチフィラメントの集束性を得るためにエア交絡が5から30回/mであることが好ましい。エア交絡が30回/m以下であれば、織物中での単糸群の集束が適度で、塗布樹脂の織物への浸透を抑制しすぎることなく、樹脂被膜の接着や強さに寄与する。エア交絡が5回/m以上であれば、高密度製織工程での単糸ばらけや単糸切れによる織機停止などが避けられる。
 合成繊維からなる織糸は、好ましくは糊付けすること無しに整経工程に送られ、荒巻を経たのち、経糸用として整経ビームに捲返される。また、一部は緯糸として供給され、製織が実施される。
 本発明の織物は、昇温DSC(示差走査熱量計)で計測される溶融吸熱曲線において、高温度側吸熱量の全体の吸熱量に対する比率が45%を超えるものである。より好ましくは50%を超えるものであり、さらに好ましくは55%を超えるものである。一層好ましくは60%を超えるものである。織物試料を室温から5℃/分で昇温し、溶融による吸熱曲線を観測し、この溶融挙動を基準温度の低温度側溶融と高温度側溶融に分け、高温度側溶融の吸熱量の比率を求める。基準温度は、織物を解体して得られた構成糸を同じ昇温条件でDSC観測した際の溶融吸熱極大温度である。この極大吸熱温度は、通常、構成糸の融点として観測されるものである。
 織物の溶融において、構成糸の融点より高温で織物が溶融する比率が高いことは、織糸同士の拘束が強く、さらには、織糸同士や織糸中の単糸同士がその間に浸透した樹脂で固定された構造であることを示している。両者の固定構造によって、織糸の高分子鎖が配向緩和による吸熱をすることなく結晶溶融するため高温融解しているものと考えられ、織糸拘束や樹脂固定による高温融解ピークが観測される。
 一方、低温吸熱部分は、構成糸が示す融点よりも低温側に細かいピークを示すことが多くみられ、織物の織糸クリンプ構造の中で拘束されずにいるものが熱配向緩和し、吸熱してゆくためと考えられる。こうした非拘束の吸熱成分が少ない構造であれば、固定構造が十分に発達していると考えることができる。
 高温度側吸熱量の比率が高いほうがが好ましいが、織物構造による織糸拘束に限りがあり、80%程度までである。
 高温側吸熱量の比率が高い構造であれば、織物に配される樹脂による浸透固定構造が強固であり、応力負荷がかかったのちの通気性が抑制されている。さらには、縫製時の針穴において、織物に配される樹脂による繊維固定による単糸切れ抑制とともに、織糸拘束による引き締まりによって、通気性抑制に寄与する。
 本発明では、織物に配される樹脂が織物に充分浸透したうえで、最少量で非通気性を保っていることが重要である。織物に配される樹脂が非通気性の皮膜を形成しながらも織物に浸透してゆくためには、織物の精練工程によって高密度織の生機構造を整理して、織糸同士の拘束構造をいったん緩めておくことが好ましい。このとき、織物の昇温DSCによる溶融吸熱曲線は、構成糸の昇温DSCによる溶融吸熱曲線に限りなく近似し、織糸同士の相互拘束が緩んでいることが観測される。この構造のまま、樹脂を織物に配すれば、樹脂が良好に浸透した織物が得られる。このとき、樹脂を織物に配する前には熱セットなどで織物構造を引き締めすぎないことが好ましい。こうした樹脂浸透した織物で、樹脂固定による高温融解構造が得られる。
 製織は、ウォータージェット織機、エアジェット織機、レピア織機などを用いることができる。中でもウォータージェット織機を用いると、後の精練工程を強化すること無しに油分付着量を少なく制御できて好ましい。
 織物の織組織は、基本的に経緯とも同一繊維で単一繊維による平織物が好ましい。また、高密度の平織物を得るために、経緯とも2本の斜子織の手法で織って平織物を得ても良い。
 織物のカバーファクタは1900から2600が好ましい。カバーファクタ(CF)は以下の計算による。
    CF=経糸密度(本/2.54cm)×√経糸繊度(dtex)+
       緯糸密度(本/2.54cm)×√緯糸繊度(dtex)
 カバーファクタは、織物平面方向における繊維の充填度合いであり、1900以上であれば、エアバッグに要求される機械強度を満たしてゆくことができる。カバーファクタが2600以下であれば、製織工程での困難が回避できる。
 織糸は無撚、無糊で製織に供することが好ましい。無糊で製織すれば、精練工程の温度条件などを強化することなく済む。織糸を撚糸して製織した場合は、織糸の扁平度が2.5未満になるなど単糸群の集束性がよくなりすぎて、織物における経緯糸の相互拘束が強固にならない。また、織糸内での樹脂浸透が低下する。
 製織後の精練工程では、製織工程で形成された織糸が十分に噛み合った屈曲形態が、温水中の合成繊維の収縮作用で解消される。一方で、織物加工の最終工程である加硫工程において合成繊維の収縮を十分発現させるためには、製織後の精練工程では合成繊維の収縮を最小限にとどめておきたい。したがって、好ましくは70℃以下、さらに好ましくは60℃以下、一層好ましくは50℃以下の温度で、拡幅状態のままで、揉みなどの機械的変形の刺激を与えない精練方法を用いることが好ましい。
 本発明の織物は、シクロヘキサンで抽出される油分(油付率)が織物重量に対して0.005重量%~0.2重量%が好ましい。より好ましくは0.005~0.15重量%である。一層好ましくは0.005~0.1重量%である。シクロヘキサン抽出油分が0.005重量%以上であれば、織糸繊維の表面を低摩擦にし、織物の引裂き強力の低下を防止できる。したがって、エアバッグの耐破袋性を高めることが出来る。一方、0.2重量%以下とすることで、樹脂の接着性を高め、織物に負荷が与えられた後も通気抵抗を維持することができる。
 抽出される油分が0.005重量%以上で0.2重量%以下であるためには、織糸の製造工程に由来する紡糸油分や織糸の経糸整経工程での整経油分を、織物を作るウォータージェット織機工程で脱油させ、さらには、製織後の精練工程での条件を適宜選定することが出来る。
 乾燥工程でも製織後に精練工程で織糸同士の相互拘束が緩和された状態を、織物に樹脂を配するコーティング工程まで維持することが必要である。好ましくは120℃以下、さらに好ましくは80℃以下で乾燥処理する。
 本発明の織物に配される樹脂付着量は、10~50g/m2であることが好ましい。より好ましくは、15~45g/m2である。10g/m2以上の場合、塗布量が多いほど織物通気度は抑制され、内圧保持性は良好である。50g/m2以下で、塗布量が少ないほどエアバッグが軽量で展開時間の短縮(早期展開)に寄与する。
 織物に配するコーティング樹脂は、織物表面を非通気にするためのものであり、シリコーン、ポリウレタン、ポリアミドなどを用いることができる。とりわけシリコーンは好ましく、寒冷条件下でも柔軟でコーティング割れ剥がれの発生がなく、比較的燃焼しにくく織物の難燃性に寄与することが期待できる。シリコーンの場合、付加反応型で熱架橋する樹脂組成が好ましく、末端アルケニルポリオルガノシロキサンにハイドロジェンシリコーンを架橋剤とし、付加反応触媒を加えた組成を用いることができる。
 本発明において、織物に樹脂を配するために用いる塗工液は実質的に無溶媒の塗工液が好ましく、粘度は2万cPを超え50万cP未満であることが好ましい。より好ましくは3万cP以上30万cP未満である。塗工液粘度は低いほど塗工液の織物への浸み込みが多くなるが、コーティングナイフの接圧を高くすることで低塗布量のコーティングが可能となってくる。塗工液の織物への浸み込みが多くなると、低塗布量に制御しきれなかったり、低通気性が均一に確保しにくくなるから、2万cPを超えていることが好ましい。また、50万cP未満であれば、均一にコーティングすることができて、コーティング斑が発生することがない。また、塗工液の織物への浸み込みがほとんどないままに塗膜層を形成してしまうことが避けられる。塗工液粘度を低減するためには、有機溶媒を加えて塗工液の粘性を低減する方法があるものの、生産環境の悪化のためこれは避けたい。すなわち、無溶媒の塗工液が好ましい。
 本発明ではコーティングする際に、樹脂の織物への浸透を促進することが重要である。樹脂の浸透によって樹脂による織糸拘束を促すことができる。樹脂の浸透促進には、前述の塗工液の粘度低減のために、樹脂自体の粘度を下げ、例えば低分子量樹脂を用いる方法がある。しかし、低分子量樹脂の場合は、架橋した樹脂の応力追随性が悪く、エアバッグ展開時の応力ガス漏れにつながる。一方、樹脂を高粘度とした高分子量樹脂では、軽量コーティングのために浸透しすぎを防ぐことができるが、織物繊維に対する樹脂の接着サイト密度が低く、織物繊維と樹脂被膜間の湿熱経時後の接着不良という問題がある。これらを解決するため、無溶媒の高分子量(高粘性)樹脂主剤に、低分子量アルコキシシランを加えてコーティングすることが好ましい。低分子量アルコキシシランとは、分子量500以下で120以上の基本的に単分子、または、低重合度骨格を含む分子からなるシラン化合物で、珪素に対してアルコキシル基が2個以上置換していることが好ましい。例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、テトラエトキシシランなどが挙げられる。低分子量アルコキシシランは、塗工液に1~10重量%添加することが好ましい。1重量%以上の低分子量アルコキシシランの添加で希釈効果による浸み込みが促進される。低分子量アルコキシシランは、シリコーン樹脂の熱架橋の完了までに樹脂と織物繊維との接着反応を促進してゆくので、接着性を強化することができ、低塗布量にも関わらず高圧負荷時の局所剥がれが無く、内圧保持性が改良できる。また、接着反応して塗布液を希釈する効果を失ってゆくため、樹脂浸透を促進しすぎて過重な塗布量になったり、織物が硬くて収納性に劣るようなことがない。10重量%以下の添加量であれば、反応に伴う分解ガスで樹脂層に気泡欠陥を生ずることが防げる。
 さらに、浸透促進の方法として、架橋硬化する樹脂主剤に対して同種の架橋硬化する低粘性樹脂主剤を添加して粘性調節する方法もある。例えば、樹脂主剤を高粘性すなわち高重合度物と低粘性すなわち低重合度物の混合物とし、配合全体としてコーティング量を所望の値にするために適した上記の塗工液粘性にすることができる。この場合、低粘性樹脂主剤の効果で織糸の単糸露出を促すことができる。低粘性樹脂主剤の粘性は、樹脂の浸透により単糸露出を促すために10,000cP以下が好ましい。また、低粘性樹脂主剤の粘性は500cP以上が好ましく、電子部品に有害なシリコーン揮発成分を含有しない組成とすることができる。さらに、低粘性樹脂主剤はそれ自身が硬化加硫反応に与ることで内圧保持性にも寄与することができる。低粘性樹脂主剤は、全樹脂量の45重量%以下であることが好ましい。より好ましくは35重量%以下である。低粘性樹脂主剤を45重量%以下とすることで、高粘性樹脂主剤による樹脂の架橋物性を大きく損なうことなくバランスが取れる。また、低粘性樹脂主剤は、全樹脂量の5重量%以上であることが好ましい。
 本発明において樹脂のコーティング方法は特に限定されないが、ナイフコーターによるコーティングが好ましい。とりわけフローティングナイフコーティングが好ましい。ナイフコーターによれば、織物表面に樹脂被膜を形成して、非通気の状態をつくりながら、織物中に樹脂を一部浸透させることで、織物繊維を樹脂で拘束する状態が制御できる。織物をコーティングする時のナイフと織物との接圧は、0.5~20N/cmであることが好ましい。より好ましくは1.0N/cm以上で10N/cm以下である。0.5N/cm以上の場合、接圧が高いほどコーティング量が少なく低塗布量となる。20N/cm以下で織物にダメージを与えず、織物物性の低下や加工品位の低下が発生することがない。
 さらに、本発明では、最終的に織糸同士の相互拘束が発現していることが重要である。
 コーティング工程の後の加硫工程で、合成繊維からなる織糸に充分熱収縮力を発生させることで織糸拘束による高温融解構造が得られる。加硫工程での収縮量は、経緯方向の収縮率の合算で1.5%以上であることが好ましい。より好ましくは2%以上である。できるだけ加硫工程で大きく収縮発現させることで織糸同士の相互拘束が形成される。織糸同士の相互拘束によって、縫製時に針穴の貫通の影響が抑制され、樹脂浸透とあいまって針穴での通気性が抑制される。収縮を抑えた精練工程を経れば、加硫工程の収縮率を上げることができる。織糸原糸として使用する合成繊維の収縮の性質によって、加硫工程の収縮率は4%以下となる。
 加硫温度は、コーティング樹脂の架橋反応の設計によるが、150℃以上とすることで加硫できる。しかし、合成繊維の収縮を十分発現させるため、190℃以上であることが好ましい。加硫工程を多段に行うこともできる。例えば、1次加硫工程を150℃から180℃で実施し、2次加硫工程を180℃から200℃で実施し、3次加硫工程を200℃から220℃で実施する。最終到達温度が190℃から220℃にあることが好ましい。加硫時間は、加硫工程の滞留時間として30秒から3分の間で適宜実施することができる。樹脂の架橋と繊維への接着の反応を発達させ均一に至る時間をとればよい。
 本発明の織物は、構成する織糸の経緯が相互に、拘束し合っていることが好ましい。織糸の単糸の集束具合として、織物厚み方向の単糸の広がりに対して、織物平面方向の単糸の広がりの比率(平面方向/厚み方向)を、織糸の扁平度とすると、経糸扁平度および緯糸扁平度は同程度で、それらの差は1.8以下であることが好ましい。さらに好ましくは1.5以下である。経糸扁平度および緯糸扁平度の差が1.8以下であれば、樹脂が織物に浸透している構造が強固な固定構造になりやすい。さらに、ミシン針によって押し広げられる経緯糸の隙間における、コーティング樹脂の接着力が高く維持されやすくなる。
 また、本発明の織物は、経糸扁平度および緯糸扁平度のそれぞれが、2.5以上の広がった形態であることが好ましい。織糸の扁平度が2.5以上であれば、織糸同士が相互に拘束し合った構造が強固となりやすい。
 通気度は、125Pa差圧でのFRAZIER法により、0.3cc/cm2/sec以下で、できる限り通気が検出されないことが好ましい。
 本発明の織物は、ミシン掛け(ミシン針が#21番手、運針数が50回/10cm、縫糸なし)によるステッチラインを設けた際に、動的通気度評価による50kPa印加圧でのステッチ通気度が8,000mm3/mm/sec以下であることが好ましい。より好ましくは、5,000mm3/mm/sec以下であり、一層好ましくは、3,500mm3/mm/sec以下である。
 本発明の織物は、揉み試験で剥離の無い回数が200回以上であることが好ましい。さらには、湿熱経時後の揉み試験で剥離の無い回数が200回以上であることが好ましい。
 また、本発明の織物は、95%RHで85℃に100時間暴露後のステッチ通気度増分が1,000mm3/mm/sec以下であることが好ましい。より好ましくは、800mm3/mm/sec以下である。湿熱経時後のステッチ通気度増分が少ないことで、エアバッグの耐環境性が向上し、展開作動の信頼性が高まる。増分は無いほうが好ましい。
 本発明の織物は、縫製してエアバッグに用いるのに適している。
 本発明の織物からなる縫製エアバッグを組み込んで、エアバッグモジュール、エアバッグ装置として用いることができる。
 次に、実施例および比較例によって本発明を説明するが、本発明はこれらの実施例のみに限定されるものではない。先ず、本明細書で用いた測定方法および評価方法について説明する。
 (1)織糸の交絡数:交絡数は、水浸法で求められた値である。交絡数測定用の水浴バスは、標線間長さ1.0m、幅10cm、高さ(水深)5cmの大きさであり、水浴の標線外部分に供給口から供給された水はオーバーフローして排水される。すなわち、常に新しい水を約500cc/分の流量で供給することによって測定バス内の水を更新させる。これは、糸条を浸漬すると糸条に付着している油分が水面に拡がり、次に新しい糸条を浸漬したときにその糸条が開繊しにくくなることを防止する上で有用である。したがって、常に新しい水を供することにより測定バス内に拡がった油分膜の除去を行うことができる。さらに水浸した糸条の交絡数を計測するに当り、バス内部は黒色であることが好ましい。測定バス内に糸条を弛緩状態で浸漬させ、交絡状態を観察し、長さ1m当りの交絡数を目視により読み取る。これらの測定を10回繰り返し、その平均値を評価する。
 (2)織物試料の準備:JIS L0105(2006)の標準状態に調整して、各種測定および評価に供した。
 (3)塗布量:樹脂塗布工程における単位面積当たりの織物重量の増分を塗布量としている。一方で、以下のように織物の分析から塗布量を知ることができる。織物から正確に10cm角の試験片を採取し、およそ5mm角以下に刻み、シクロヘキサンを用い、25℃で5分間洗浄を2回繰り返し、風乾後に熱風乾燥機にて105℃で12時間乾燥する。溶媒で合成繊維を溶解する。織物を構成する繊維がポリアミド繊維であれば、90%蟻酸250mlを用いて常温の一夜で繊維を溶解し、溶解しない架橋シリコーン膜を濾別する。濾別したシリコーン膜を溶媒で良く洗い、水洗いした後、105℃で熱風乾燥し、絶乾質量w(g)を測定し、塗布量(g/m2)を算出する。
 (4)油付率:ポリアミド繊維の織物を約20g採取し、105℃の熱風乾燥機内に1時間30分放置した後の質量(S)を電子天秤で測定した。シクロヘキサン約500mlでソックスレー抽出器を用いて織物の油分を8時間溶媒抽出し、濾過後に溶媒留去して油分を回収した。回収油分を5mmHg、25℃の真空乾燥機内で1時間乾燥した。その後、デシケーターに移し15分間放冷した後、回収油分の重量を測定した。これを数回分処理し、織物試料約100g分の回収油分量を測定した。ポリアミド繊維の織物の乾燥重量に対する回収油分量から油付率を算出した。
 (5)扁平度差:織物の織糸中心を切断し、断面から経緯それぞれにつき織糸の単糸束の集束外形を観察した。織物厚み方向の単糸の広がりに対して、織物平面方向の単糸の広がりの比率(平面方向/厚み方向)を扁平度とした。次いで、経緯糸における扁平度の差の絶対値を扁平度差とした。
 (6)DSC吸熱曲線の高温度側吸熱比率:織物試料は、織物の織状態を崩さずにサンプリングパンに投入できる程度の大きさに切り、約5mg投入した。織物構成糸は、織物を経緯糸にほぐし、サンプリングパン(型番346-66963-91)に投入できる程度の長さに切り、約5mg投入した。株式会社島津製作所製DSC-60にて、空気流100ml/分の雰囲気下で5℃/分の昇温速度で溶融させ吸熱曲線を得た。230℃から280℃の間でベースラインを引き、吸熱量を分析した。織物を解体して得られた構成糸における吸熱ピーク温度の経緯平均を基準温度とした。織物の吸熱曲線を、基準温度の低温度側と高温度側に分け、吸熱曲線中の高温度側吸熱量比率(%)を求めた。
 (7)フラジール通気度:JIS L 1096(2010):8.26.1A規定のFRAZIER法で評価した。
 (8)スクラブ回数:ISO5981で規定されるスクラブもみ試験を実施。もみ回数50回ごとに樹脂被覆面の剥離の有無を観察し、剥離の無かった最大もみ回数をスクラブ回数とした。
 (9)湿熱経時後スクラブ回数:織物試料を95%RHで85℃の恒温恒湿槽中に100時間置き、標準状態に戻したのちに上記(8)に記載のスクラブ回数を評価した。
 (10)ステッチ通気度:
 1)ステッチ処理:織物試料を樹脂被膜面を下側にして縫い糸を付けずにミシン掛けした。すなわち、針は織物から樹脂被膜面側に向けて刺している。ミシン針が#21番手、運針50回/10cmの10cm長のステッチで織物の織糸方向に沿って1cm間隔で平行に4ライン設けた。
 2)ステッチ通気度:TEXTEST社製FX3350の動的通気度測定器を用いた。織物試料の樹脂被覆面を充填タンクの反対側にし、織物試料を挟む通気開口(81mmφ)に、ステッチラインが全て掛かるように挟んだ。すなわち、織物から樹脂被覆面側に向けての加圧通気の計測とした。充填圧100kPa、充填容量404ccの充填タンクを用い、通気度-圧力曲線から50kPa時の動的通気度(mm/sec)を測定した。通気度計測後に、開口部内径に入っているステッチ長を測って合計し、およそ300mmほどになる通気長(mm)を求めた。測定器の動的通気度(mm/sec)の値は、開口面積(5,026mm2)当たりで表示されるため、これを通気長(mm)当たりに換算して、ステッチ通気度(mm3/mm/sec)を求めた。
 充填タンクで蓄圧された圧力空気が放出されずに計測が行なわれない場合は、実質的に通気がないものとして、通気度は0mm/secと判定した。
 (11)湿熱経時後ステッチ通気度増分:織物試料を95%RHで85℃の恒温恒湿槽中に100時間置き、標準状態に戻したのちに、(10)に記載のステッチ処理し、ステッチ通気度(mm3/mm/sec)を評価した。(10)で評価したステッチ通気度からの増分を湿熱経時後ステッチ通気増分(mm3/mm/sec)とした。
 [実施例1]
 ポリヘキサメチレンアジパミド繊維で、強度8.5cN/dtexの繊維を織糸として用いた。繊維には銅元素が50ppm含有され、沃素が1500ppm含有されていた。この繊維は、繊度が470dtex、単糸が136本の丸断面糸、沸水収縮率が7.5%であり、水浸法の交絡数は15個/mであった。この繊維を経糸用に無撚無糊で引き揃え、整経ビームとし、緯糸用には無撚無糊で巻取りパッケージからそのまま織機に供給した。ウォータージェット織機にて織機上での経糸張力を0.25cN/dtexに設定し、400回転/分で平織物を得た。
 この織物を拡幅状態で50℃で1分間の洗浄をし、110℃で乾燥した。次いでこの織物に、粘度6万cPの無溶剤系メチルビニルシリコーン樹脂を主成分とする付加反応架橋シリコーン液にテトラエトキシシラン(TES)を2重量%添加した塗工液を、フローティングナイフコーターを用い、コーティングを行った後、210℃で2分間加硫処理を行い、エアバッグ用織物を得た。加硫処理での織物収縮は経緯方向の合算で2.6%であった。
 織物を解体して得られた構成糸のDSC分析では融点が経緯とも259.0℃であり、吸熱曲線は構成糸融点の高温側吸熱量比率が経緯とも32%であった(図2および図3)。織物のDSC分析では、高温側吸熱量比率は67%であった(図1)。ちなみに、加工途中の精練後の織物のDSC分析では、高温側吸熱量比率は13%であった(図4)。被膜剥離はもみ回数400回まで確認できず、樹脂の接着性は良好であった。湿熱経時後のもみ試験でも400回まで被膜剥離は確認できなかった。樹脂の接着性が織物への樹脂の浸透によって維持されていた。ステッチ通気度は、エアバッグの縫製部の通気度抑制の程度を、縫糸の無いミシン針穴でモデル評価したものであるが、樹脂の織物への浸透による接着性強化に加え、織糸同士の相互拘束の発達により、針穴でのガスリークが抑制されている。湿熱経時後のステッチ通気度も抑制されている。評価結果を表1に示す。
 [実施例2]
 製織後の精練を60℃とし、加硫温度を200℃とした以外は、実施例1と同様にして実施した。評価結果を表1に示す。DSC分析の高温側吸熱量比率は高く、もみ試験も、湿熱経時後のもみ試験も良好である。さらに、ステッチ通気度も、湿熱経時後ステッチ通気度も抑制されていた。
 [実施例3]
 製織後の精練を70℃とし、加硫温度を190℃とした以外は、実施例1と同様にして実施した。評価結果を表1に示す。DSC分析の高温側吸熱量比率は高く、もみ試験も、湿熱経時後のもみ試験も良好である。さらに、ステッチ通気度も、湿熱経時後ステッチ通気度も抑制されていた。
 [実施例4]
 製織後の精練を70℃とし、加硫温度を150℃とした以外は、実施例1と同様にして実施した。評価結果を表1に示す。DSC分析の高温側吸熱量比率は高く、もみ試験も、湿熱経時後のもみ試験も良好である。さらに、ステッチ通気度と、湿熱経時後ステッチ通気度はやや増えるが、よく抑制されていた。
 [実施例5]
 ポリヘキサメチレンアジパミド繊維の水浸法の交絡数を25個/mのものとした以外は実施例4と同様にして実施した。評価結果を表1に示す。樹脂の浸透が少々抑制され、DSC分析の高温側吸熱量比率がやや下がるが、もみ試験も、湿熱経時後のもみ試験も良好である。さらに、ステッチ通気度と、湿熱経時後ステッチ通気度はやや増えるが、よく抑制されていた。
 [実施例6]
 粘度6万cPの無溶剤系メチルビニルシリコーン樹脂を主成分とする付加反応架橋シリコーン液にテトラエトキシシラン(TES)を8重量%添加した塗工液を、フローティングナイフコーターを用い、コーティングを行い、塗布量を35g/m2とした以外は、実施例1と同様にして実施した。評価結果を表1に示す。織物の重量が増加し、厚みは厚くなったが、もみ試験も、湿熱経時後のもみ試験も良好である。さらに、ステッチ通気度も、湿熱経時後ステッチ通気度も抑制されていた。
 [実施例7]
 ポリエチレンテレフタレート繊維で、繊度が550dtex、単糸数が144本、強度が7cN/dtex、沸水収縮率が2.2%、交絡数が15個/mの繊維を織糸として用いた。ウォータージェット織機にて平織りし、その後、加硫温度を220℃とした以外は実施例1と同様にして実施した。評価結果を表1に示す。DSC分析の高温側吸熱量比率は高く、もみ試験も、湿熱経時後のもみ試験も良好である。さらに、ステッチ通気度と、湿熱経時後ステッチ通気度はやや増えるが、よく抑制されていた。
 [比較例1]
 製織後の精練を90℃とし、精練後の乾燥に替えて190℃の熱セットを施し、加硫温度を180℃とした以外は、実施例1と同様にして実施した。評価結果を表1に示す。精練時にポリアミド繊維の収縮が多く加硫工程での収縮が少ないため、織糸拘束の発達が期待できず、DSC分析の高温側吸熱量比率は低い。精練による織物構造緩和で樹脂の織物繊維への浸透があって、もみ試験は良好であるが、織物繊維同士の樹脂浸透後のひきしまり拘束が少なく、湿熱経時後のもみ試験評価は低下する。繊維同士の拘束の少なさから、ステッチ通気度も、湿熱経時後ステッチ通気度も多い。
 [比較例2]
 製織後の精練を80℃とし、精練後の乾燥に替えて190℃の熱セットを施し、加硫温度を180℃とした以外は、実施例1と同様にして実施した。評価結果を表1に示す。精練時にポリアミド繊維の収縮が多く加硫工程での収縮が少ないため、織糸拘束の発達が期待できず、DSC分析の高温側吸熱量比率は低い。精練による織物構造緩和で樹脂の織物繊維への浸透があり、もみ試験は良好であるが、織物繊維同士の樹脂浸透後のひきしまり拘束が少なく、湿熱経時後のもみ試験評価は低下する。繊維同士の拘束の少なさから、ステッチ通気度も、湿熱経時後ステッチ通気度も多い。
 [比較例3]
 製織後の精練を90℃とし、加硫温度を180℃とした以外は、実施例1と同様にして実施した。評価結果を表1に示す。精練時にポリアミド繊維の収縮が多く、加硫工程での収縮が少ないため、織糸拘束の発達が期待できず、DSC分析の高温側吸熱量比率は低い。精練による織物構造緩和で樹脂の織物繊維への浸透があり、もみ試験は良好であるが、織物繊維同士の樹脂浸透後のひきしまり拘束が少なく、湿熱経時後のもみ試験評価が低下する。繊維同士の拘束の少なさから、ステッチ通気度も、湿熱経時後ステッチ通気度も多い。
 [比較例4]
 製織後の精練を80℃とし、加硫温度を180℃とした以外は、実施例1と同様にして実施した。評価結果を表1に示す。精練時にポリアミド繊維の織糸拘束の緩和が無く、コーティング樹脂の内部浸透が妨げられている。加硫工程での収縮が少ないため、織糸拘束の発達が期待できず、DSC分析の高温側吸熱量比率は低い。精練による織物構造緩和で樹脂の織物繊維への浸透があり、もみ試験は良好であるが、織物繊維同士の樹脂浸透後のひきしまり拘束が少なく、湿熱経時後のもみ試験評価が低下する。繊維同士の拘束の少なさから、ステッチ通気度も、湿熱経時後ステッチ通気度も多い。
 [比較例5]
 実施例1に対して製織後の精練を80℃とし、精練後の乾燥に替えて190℃の熱セットを施し、加硫温度を190℃と変更した。さらに、コーティングで粘度1.2万cPの無溶剤系メチルビニルシリコーン樹脂を主成分とする付加反応架橋シリコーン塗工液を、フローティングナイフコーターを用い、コーティングを行い、塗布量を23g/m2とした。評価結果を表1に示す。
 精練時にポリアミド繊維の収縮が多く加硫工程での収縮が少ないため、織糸拘束の発達が期待できず、DSC分析の高温側吸熱量比率は低い。このコーティング樹脂はもみ試験の応力にやや弱いものだが、精練による織物構造緩和で樹脂の織物繊維への浸透があり、もみ試験評価は良好である。その一方、織物繊維同士の樹脂浸透後のひきしまり拘束がなく、樹脂の接着促進成分も無いため、湿熱経時後のもみ試験評価の低下が大きい。樹脂浸透後に織物繊維同士の拘束が発達することが無いため、ステッチ通気度も、湿熱経時後ステッチ通気度も多い。
 [比較例6]
 実施例1に対して、製織後の精練を実施せず、190℃の熱セットを施した。さらに、コーティングで粘度1.5万cPの無溶剤系メチルビニルシリコーン樹脂を主成分とする付加反応架橋シリコーン液の塗工液を、フローティングナイフコーターを用い、コーティングを行い、塗布量を18g/m2とした。評価結果を表1に示す。
 無精練でポリアミド繊維の織糸拘束の緩和が無く、コーティング樹脂の内部浸透が抑制されている。加硫工程での収縮が少ないため、織糸拘束の発達が期待できず、DSC分析の高温側吸熱量比率は著しく低い。残留油分の影響もあり、もみ試験評価はやや低い。さらに、織物繊維同士の樹脂浸透後のひきしまり拘束がなく、湿熱経時後のもみ試験評価が著しく悪い。樹脂浸透が少なく、繊維同士の拘束の少なさから、ステッチ通気度も、湿熱経時後ステッチ通気度も多い。
 [比較例7]
 実施例1に対して、製織後の精練を実施せず、加硫温度を180℃と変更した。さらに、コーティングで粘度1.2万cPの無溶剤系メチルビニルシリコーン樹脂を主成分とする付加反応架橋シリコーン液の塗工液を、フローティングナイフコーターを用い、コーティングを行い、塗布量を25g/m2とした。評価結果を表1に示す。
 無精練でポリアミド繊維の織糸拘束の緩和が無く、コーティング樹脂の内部浸透が抑制されている。加硫工程での収縮があり織糸拘束となるが、樹脂浸透が少ないため、DSC分析の高温側吸熱量比率は低い。残留油分の影響もあり、もみ試験評価はやや低い。さらに、織物繊維同士の樹脂浸透を伴ったひきしまり拘束がなく、湿熱経時後のもみ試験評価が著しく悪い。樹脂浸透が少なく、繊維同士の拘束の少なさから、ステッチ通気度も、湿熱経時後ステッチ通気度も多い。
 [比較例8]
 実施例1に対して、製織後の精練を実施せず、加硫温度を180℃と変更した。さらに、コーティング工程で粘度50万cPの無溶剤系メチルビニルシリコーン樹脂を18重量部、粘度2万cPの無溶剤系メチルビニルシリコーン樹脂を43重量部、トルエン溶媒を39重量部からなるシリコーン塗工液を、フローティングナイフコーターを用い、コーティングを行い、塗布量を30g/m2とした。評価結果を表1に示す。
 無精練でポリアミド繊維の織糸拘束の緩和が無く、溶媒希釈で低粘性ながら浸透は抑制され、不十分である。加硫工程での収縮があり織糸拘束となるが、樹脂浸透が少ないため、DSC分析の高温側吸熱量比率は低い。残留油分の影響もあり、もみ試験評価はやや低い。さらに、織物繊維同士の樹脂浸透を伴ったひきしまり拘束がなく、湿熱経時後のもみ試験評価が著しく悪い。樹脂浸透が少なく、繊維同士の拘束の少なさから、ステッチ通気度も、湿熱経時後ステッチ通気度も多い。
Figure JPOXMLDOC01-appb-T000001
 本発明の織物は、エアバッグ用織物として好適である。とりわけ、通気度抑制に優れたコーティング縫製エアバッグに用いるエアバッグ用織物として好適である。

Claims (15)

  1.  樹脂が配された合成繊維からなる織物であって、その織物の昇温DSC吸熱曲線において、織物構成糸の昇温DSC吸熱曲線の溶融吸熱極大温度に対して高温度側の吸熱量の全体の吸熱量に対する比率が45%を超えることを特徴とする織物。
  2.  織物構成糸の昇温DSC吸熱曲線の溶融吸熱極大温度に対して高温度側の吸熱量の全体の吸熱量に対する前記比率が50%を超えることを特徴とする請求項1に記載の織物。
  3.  織物に樹脂が被膜として配され、樹脂量が10から50g/m2であることを特徴とする請求項1または2項に記載の織物。
  4.  油付率が0.005から0.20重量%であることを特徴とする請求項1~3のいずれか一項に記載の織物。
  5.  織物を構成する経糸と緯糸の扁平度(平面方向の単糸の広がり/厚み方向の単糸の広がり)の差が1.8以下であることを特徴とする請求項1~4のいずれか一項に記載の織物。
  6.  95%RHおよび85℃の環境下に100時間暴露後のスクラブ揉み試験による剥離耐性が200回以上であることを特徴とする請求項1から5のいずれか一項に記載の織物。
  7.  95%RHおよび85℃の環境下に100時間暴露後のステッチ通気度増分が1,000mm3/mm/sec以下であることを特徴とする請求項1~6のいずれか一項に記載の織物。
  8.  合成繊維がポリアミド66繊維であることを特徴とする請求項1~7のいずれか一項に記載の織物。
  9.  製織に用いる合成繊維のエア交絡が5~30回/mであることを特徴とする請求項1~8のいずれか一項に記載の織物。
  10.  無撚無糊の合成繊維をウォータージェット織機で製織し、引き続き70℃以下の精練を含む工程を経て製造されることを特徴とする請求項1~9のいずれか一項に記載の織物。
  11.  樹脂がシリコーン樹脂であり、粘度が2万cPを超え50万cP未満の無溶媒のシリコーン樹脂含有塗工液によって樹脂被膜が配されることを特徴とする請求項3~10のいずれか一項に記載の織物。
  12.  塗工液が分子量500以下の低分子量アルコキシシランを1~10重量%含有していることを特徴とする請求項11に記載の織物。
  13.  シリコーン樹脂が1万cP以下の低粘性シリコーンを45重量%以下含有していることを特徴とする請求項11または12に記載の織物。
  14.  樹脂の架橋で1.5%以上熱収縮させることを特徴とする請求項1~13のいずれか一項に記載の織物。
  15.  請求項1~14のいずれか一項に記載の織物を用いたエアバッグ。
PCT/JP2014/071405 2013-08-13 2014-08-13 コーティング織物 WO2015022981A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/911,930 US20160193979A1 (en) 2013-08-13 2014-08-13 Coated woven fabric
MX2016001968A MX368062B (es) 2013-08-13 2014-08-13 Tela tejida recubierta.
CN201480044088.5A CN105452558B (zh) 2013-08-13 2014-08-13 涂层织物
JP2015518670A JP5848856B2 (ja) 2013-08-13 2014-08-13 コーティング織物及びその製造方法
EP14836027.4A EP3034686B1 (en) 2013-08-13 2014-08-13 Coated woven fabric
KR1020167002611A KR101843663B1 (ko) 2013-08-13 2014-08-13 코팅 직물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-168150 2013-08-13
JP2013168150 2013-08-13

Publications (1)

Publication Number Publication Date
WO2015022981A1 true WO2015022981A1 (ja) 2015-02-19

Family

ID=52468366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071405 WO2015022981A1 (ja) 2013-08-13 2014-08-13 コーティング織物

Country Status (8)

Country Link
US (1) US20160193979A1 (ja)
EP (1) EP3034686B1 (ja)
JP (1) JP5848856B2 (ja)
KR (1) KR101843663B1 (ja)
CN (1) CN105452558B (ja)
MX (1) MX368062B (ja)
TR (1) TR201909696T4 (ja)
WO (1) WO2015022981A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022954A1 (ja) 2013-08-13 2015-02-19 旭化成せんい株式会社 織物
US10920342B2 (en) * 2016-10-21 2021-02-16 Jiaxing Deyong Textiles Co., Ltd. Loom, method for producing textile, and ultrahigh-density textile
JPWO2021132575A1 (ja) 2019-12-25 2021-07-01

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09240405A (ja) * 1995-09-18 1997-09-16 Toray Ind Inc エアバッグ用基布およびその製造方法およびエアバッグ
JP2004124321A (ja) 2002-10-04 2004-04-22 Toray Ind Inc エアバッグ用基布およびその製造方法
JP2004149992A (ja) 2002-11-01 2004-05-27 Asahi Kasei Fibers Corp エアバック用基布
JP2004308076A (ja) * 2003-04-10 2004-11-04 Toray Ind Inc カーテンエアバッグ用基布およびカーテンエアバッグおよびその製造方法
JP2013514465A (ja) * 2009-12-24 2013-04-25 ヒョスン コーポレーション エアバッグ用ポリエチレンテレフタレート繊維及びこれを利用した織物
WO2014115864A1 (ja) * 2013-01-28 2014-07-31 東レ株式会社 エアバッグ用織物およびエアバッグ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529837A (en) * 1994-02-28 1996-06-25 Shin-Etsu Chemical Co., Ltd. Silicone coated base material and air bag base material
JP3457739B2 (ja) * 1994-06-29 2003-10-20 帝人株式会社 ノンコートサイドエアーバッグ用織物
US6569788B1 (en) * 2000-06-16 2003-05-27 Milliken & Company Low permeability airbag cushions having extremely low silicone-based coating levels
US6502853B2 (en) * 2001-04-17 2003-01-07 Milliken & Company Low permeability airbag and method
WO2009084334A1 (ja) 2007-12-28 2009-07-09 Toyo Boseki Kabushiki Kaisha エアバッグ用織物及びその製造方法
JP5359714B2 (ja) * 2009-09-09 2013-12-04 東レ株式会社 エアバッグ用基布
JP5549172B2 (ja) 2009-09-30 2014-07-16 東洋紡株式会社 エアバッグ用コート布
JP6013710B2 (ja) 2010-08-02 2016-10-25 旭化成株式会社 エアバッグ用織物およびエアバッグ
CN103189563B (zh) 2010-10-26 2015-04-01 东洋纺株式会社 一种安全气囊用涂层基布
JP6105192B2 (ja) 2011-02-01 2017-03-29 旭化成株式会社 エアバッグ織物
JP2013023784A (ja) 2011-07-21 2013-02-04 Asahi Kasei Fibers Corp エアバッグ用基布
CN103132333B (zh) * 2011-11-29 2016-03-02 东丽纤维研究所(中国)有限公司 一种气囊用涂层织物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09240405A (ja) * 1995-09-18 1997-09-16 Toray Ind Inc エアバッグ用基布およびその製造方法およびエアバッグ
JP2004124321A (ja) 2002-10-04 2004-04-22 Toray Ind Inc エアバッグ用基布およびその製造方法
JP2004149992A (ja) 2002-11-01 2004-05-27 Asahi Kasei Fibers Corp エアバック用基布
JP2004308076A (ja) * 2003-04-10 2004-11-04 Toray Ind Inc カーテンエアバッグ用基布およびカーテンエアバッグおよびその製造方法
JP2013514465A (ja) * 2009-12-24 2013-04-25 ヒョスン コーポレーション エアバッグ用ポリエチレンテレフタレート繊維及びこれを利用した織物
WO2014115864A1 (ja) * 2013-01-28 2014-07-31 東レ株式会社 エアバッグ用織物およびエアバッグ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3034686A1

Also Published As

Publication number Publication date
EP3034686A1 (en) 2016-06-22
EP3034686B1 (en) 2019-06-05
CN105452558B (zh) 2018-02-13
TR201909696T4 (tr) 2019-07-22
KR101843663B1 (ko) 2018-05-14
EP3034686A4 (en) 2016-08-24
CN105452558A (zh) 2016-03-30
JP5848856B2 (ja) 2016-01-27
MX368062B (es) 2019-09-18
US20160193979A1 (en) 2016-07-07
MX2016001968A (es) 2016-06-02
KR20160027113A (ko) 2016-03-09
JPWO2015022981A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP3727310B2 (ja) シリコーンコーティング布帛およびエアバッグ
JP5711803B2 (ja) エアバッグ用基布
JP5100895B2 (ja) エアバッグ用基布
JP6013710B2 (ja) エアバッグ用織物およびエアバッグ
JP2020518733A (ja) 低い透過性及び高い強度の織布並びにその製造方法
JP2019173262A (ja) エアバッグ用コート布
JP5848856B2 (ja) コーティング織物及びその製造方法
JP5848855B2 (ja) 織物及びその製造方法
JP6105192B2 (ja) エアバッグ織物
JP6973373B2 (ja) エアバッグ用コーティング基布およびその製造方法
WO2021132575A1 (ja) エアバッグ用ポリエステル基布
JP7373071B2 (ja) 向上した耐久性を有するエアバッグ布およびその製造方法
JP2015151636A (ja) エアバッグ用ポリアミド繊維、基布およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044088.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015518670

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167002611

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911930

Country of ref document: US

Ref document number: MX/A/2016/001968

Country of ref document: MX

Ref document number: 2014836027

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE