WO2015022847A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2015022847A1
WO2015022847A1 PCT/JP2014/069441 JP2014069441W WO2015022847A1 WO 2015022847 A1 WO2015022847 A1 WO 2015022847A1 JP 2014069441 W JP2014069441 W JP 2014069441W WO 2015022847 A1 WO2015022847 A1 WO 2015022847A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
polarizer
display device
crystal display
Prior art date
Application number
PCT/JP2014/069441
Other languages
English (en)
French (fr)
Inventor
森嶌 慎一
光進 松岡
市橋 光芳
顕夫 田村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201480044951.7A priority Critical patent/CN105452946B/zh
Publication of WO2015022847A1 publication Critical patent/WO2015022847A1/ja
Priority to US15/040,306 priority patent/US9977281B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention relates to a liquid crystal display device. Specifically, the present invention relates to a liquid crystal display device having a light conversion layer.
  • a liquid crystal device includes a liquid crystal layer and a liquid crystal cell that includes an electrode that applies an electric field to the liquid crystal layer.
  • an illumination unit that illuminates the liquid crystal cell is provided.
  • a desired image is formed by controlling the illumination light emitted by the illumination means with a liquid crystal cell.
  • a liquid crystal device using monochromatic light (particularly blue light) as a lighting means (particularly backlight) and separately provided with a light conversion layer for converting the monochromatic light into white light is known.
  • Patent Document 1 includes “a liquid crystal cell including a liquid crystal layer and an electrode that applies an electric field to the liquid crystal layer, and an illumination unit that illuminates the liquid crystal cell. And a light guide plate for guiding the light emitted from the light emitting element to the liquid crystal cell, and provided with color conversion means for color-converting at least a part of the illumination light emitted from the light guide plate to approximate white light.
  • a liquid crystal device characterized by the above. "(Claim 1).
  • Patent Document 2 includes “a backlight unit including an LED that emits monochromatic light, and a liquid crystal display panel formed on an upper surface of the backlight unit, and the liquid crystal display panel includes a first substrate, A liquid crystal layer that is formed on the upper surface of the first substrate and transmits monochromatic light, a light conversion layer that is formed on the upper surface of the liquid crystal layer and converts the monochromatic light into white light, and is formed on the upper surface of the light conversion layer. And a second substrate disposed on the upper surface of the color filter layer. ”[Claim 11].
  • an object of the present invention is to provide a liquid crystal display device having excellent color reproducibility.
  • the present inventors have found that a liquid crystal display device having a non-white light source, a rear-side polarizer, a liquid crystal layer, a front-side polarizer, and a light conversion layer in this order is light-converted.
  • the inventors have found that the color reproducibility is excellent even when quantum dots are used as the layer, and have completed the present invention. That is, it has been found that the above-described problem can be achieved by the following configuration.
  • a non-white light source, a rear-side polarizer, a liquid crystal layer, and a front-side polarizer in this order A liquid crystal display device having a light conversion layer for wavelength-converting light transmitted through a front-side polarizer, closer to the viewing side than the front-side polarizer.
  • a liquid crystal display device having a light conversion layer for wavelength-converting light transmitted through a front-side polarizer, closer to the viewing side than the front-side polarizer.
  • at least the front-side polarizer of the rear-side polarizer and the front-side polarizer is a monochromatic polarizer corresponding to a light source wavelength of a non-white light source.
  • the correspondence relationship between the non-white light source and the monochromatic polarizer satisfies the following formula (1).
  • A represents the wavelength difference at the peak top between the light source wavelength of the non-white light source and the absorption wavelength of the monochromatic polarizer
  • B represents the half-value width of the light source wavelength of the non-white light source
  • C represents It represents the half-value width of the absorption wavelength of the monochromatic polarizer.
  • quantum dots corresponding to blue light, red light, and green light are dispersed, and light transmitted from the front polarizer is mixed with blue light, red light, and green light.
  • the light transmitted through the front-side polarizer is a predetermined monochromatic light of any one of blue light, red light, and green light
  • the respective quantum dots corresponding to the light that is not the predetermined monochromatic light are dispersed, the predetermined monochromatic light is transmitted, and the predetermined monochromatic light is converted into the blue light.
  • a liquid crystal display device excellent in color reproducibility can be provided.
  • FIG. 1A and 1B are schematic cross-sectional views showing examples of embodiments of the liquid crystal display device of the present invention, respectively.
  • FIG. 2 is a schematic cross-sectional view showing an example of an embodiment of a conventional liquid crystal display device.
  • the liquid crystal display device of the present invention has a non-white light source, a rear-side polarizer, a liquid crystal layer, and a front-side polarizer in this order, and the front-side polarizer is arranged closer to the viewing side than the front-side polarizer. It is a liquid crystal display device having a light conversion layer that converts the wavelength of transmitted light.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the color reproducibility is good. This is not clear in detail, but is estimated to be as follows. That is, it is considered that depolarization did not occur by transmitting the light emitted from the non-white light source through the rear-side polarizer, the liquid crystal layer, and the front-side polarizer and then converting the light into white light by the light conversion layer. . This is because, in the configuration of Comparative Example 1 described later (see FIG. 2) corresponding to the liquid crystal display device of Patent Document 2, when quantum dots are used as the light conversion layer, depolarization occurs, and as a result, color It can be inferred from the results of poor reproducibility.
  • a liquid crystal display device 10 includes a backlight unit 1 having a non-white light source (not shown), a rear polarizer 2, a liquid crystal layer 3, and a front polarizer 4. And the light conversion layer 5 in this order.
  • the liquid crystal display device 10 includes a rear side cell substrate 6 and a front side cell substrate 7 for sandwiching the liquid crystal layer 3, and a color filter 8. It is preferable.
  • FIG. 1A is that the liquid crystal layer 3, the rear side polarizer 2, the front side polarizer 4, and the light conversion layer 5 are replaced by the rear side cell substrate 6 and the front side cell substrate 7.
  • FIG. 1B only the liquid crystal layer 3 is sandwiched between the rear side cell substrate 6 and the front side cell substrate 7 and the upper side (viewing side) has a front side.
  • the non-white light source included in the liquid crystal display device of the present invention is not particularly limited as long as it is a light source that emits non-white light (for example, a cold cathode fluorescent lamp, a xenon fluorescent lamp, an LED, an organic EL, etc.).
  • Specific examples of the non-white light emitted from the non-white light source include monochromatic light composed of any one of blue light, red light, and green light; ultraviolet light; infrared light; Among these, it is preferable that the light is monochromatic light composed of any one of blue light, red light, and green light. Above all, from the viewpoint of high energy and easy wavelength conversion in the light conversion layer described later, More preferably.
  • the non-white light source may constitute a backlight unit together with a plurality of members such as a light guide plate, a diffusion plate, and a light collecting plate that introduce light emitted from the light source from the end face.
  • members constituting such a backlight unit include, for example, Chapter 3 of “Latest Technology for Liquid Crystal Display Component Materials, Supervised by Iimura Yasufumi, CM Publishing” and “Backlight Technology for Liquid Crystal Display, Calantar Caryl Members described in “Supervision, CM Publishing” and the like can be used.
  • the rear-side polarizer and the front-side polarizer (hereinafter, collectively referred to as “polarizer” when there is no particular distinction) included in the liquid crystal display device of the present invention are not particularly limited, and are conventionally known.
  • a general polarizer used in a liquid crystal display device can be used.
  • At least the front-side polarizer among the rear-side polarizer and the front-side polarizer corresponds to the light source wavelength of the non-white light source described above.
  • a monochromatic polarizer is preferable, and both the rear side polarizer and the front side polarizer are more preferably monochromatic polarizers corresponding to the light source wavelength of the non-white light source described above.
  • the “monochromatic polarizer corresponding to the light source wavelength of the non-white light source” can polarize light emitted from the non-white light source into linearly polarized light with a high degree of polarization (for example, a degree of polarization of 95% or more).
  • a polarizer for example, a degree of polarization of 95% or more.
  • the polarizer thinner, and it is possible to easily produce an in-cell type polarizer in which the parallax of the liquid crystal display device is reduced, and the visibility of the liquid crystal display device is improved.
  • the correspondence relationship between the non-white light source and the monochromatic polarizer described above satisfies the following formula (1).
  • A represents the wavelength difference at the peak top between the light source wavelength of the non-white light source and the absorption wavelength of the monochromatic polarizer
  • B represents the half-value width of the light source wavelength of the non-white light source
  • C represents the absorption of the monochromatic polarizer. (It represents the half width of the wavelength.)
  • the monochromatic polarizer satisfying the correspondence relationship of the above formula (1) is the polarization axis of the polarizer ( It becomes a polarizer that absorbs the diagonal component of the transmission axis) and transmits blue linearly polarized light with a high degree of polarization.
  • the monochromatic polarizer is a dichroic organic dye polarizer, a wire grid polarizer, or a cholesteric liquid crystal polarizer because the durability, particularly thermal stability, is good. Is preferred.
  • a polarizer since a polarizer can be formed by coating, it is a dichroic organic dye polarizer from the viewpoint of easily producing an in-cell type polarizer that reduces the parallax of a liquid crystal display device. Is preferred.
  • dichroic organic dye used in the dichroic organic dye polarizer examples include dichroic dyes (azo dyes) described in JP-A 2010-152351, [0056] to [0081], and the following formula: And the like.
  • a dichroic organic dye polarizer specifically, for example, a dichroic organic dye is dissolved or adsorbed in a polymer material such as polyvinyl alcohol, and the film is stretched in a film shape in one direction.
  • the method of orienting dichroic dyes; glass and transparent films described in papers (Dreyer, JF, Journal de Physique, 1969, 4, 114. “Light Polarization From Films of Lyotropic Nematic Liquid Crystals”) And a method of forming a polarizer (anisotropic dye film) by orienting a dichroic dye on a substrate using intermolecular interaction of organic dye molecules.
  • the orientation of the dichroic dye on the substrate such as glass or transparent film by utilizing the intermolecular interaction of organic dye molecules can be achieved by a wet film forming method.
  • a wet film forming method for example, as described in paragraph [0022] of JP2010-152351A, paragraph [0211] of JP2011-213610A, two colors are formed on the transparent support. Examples thereof include a method of forming an extremely thin film containing a dichroic dye by applying a dichroic dye composition, and orienting the dichroic dye using an intermolecular interaction or the like.
  • the liquid crystal layer included in the liquid crystal display device of the present invention is not particularly limited, and a general liquid crystal layer used in a conventionally known liquid crystal display device can be used.
  • a material (liquid crystal material) for forming such a liquid crystal layer a material used in a normal liquid crystal display device can be suitably used. Examples include VA, IPS, TN, OCB, HAN, ECB, STN, DSTN, PSA, vertical alignment type in-plane electric field switching liquid crystal, ferroelectric liquid crystal, antiferroelectric liquid crystal, blue phase liquid crystal, etc.
  • the liquid crystal layer is preferably a layer filled with a nematic liquid crystal material having positive dielectric anisotropy.
  • the liquid crystal layer includes a front side cell substrate and a rear side cell substrate (see FIGS. 1A and 1B), and in the case of an in-cell type polarizer, the above-described rear side polarizer and A liquid crystal cell may be formed together with a front-side polarizer or the like (see FIG. 1A).
  • the front-side cell substrate and the rear-side cell substrate include a glass substrate and a plastic substrate, and among these, it is preferable to use a glass substrate.
  • Such a liquid crystal cell is preferably a VA mode, an OCB mode, an IPS mode, or a TN mode, but is not limited thereto.
  • a TN mode liquid crystal cell rod-like liquid crystal molecules are substantially horizontally aligned when no voltage is applied, and are twisted and aligned at 60 ° to 120 °.
  • the TN mode liquid crystal cell is most frequently used as a color TFT liquid crystal display device, and is described in many documents.
  • a VA mode liquid crystal cell rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied.
  • the VA mode liquid crystal cell includes: (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. Hei 2-). 176625) (2) Liquid crystal cell (SID97, Digest of tech. Papers (Preliminary Proceed) 28 (1997) 845 in which the VA mode is converted into a multi-domain (MVA mode) for widening the viewing angle.
  • VA mode liquid crystal cell includes: (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. Hei 2-). 176625) (2) Liquid crystal cell (SID97, Digest of tech. Papers (Preliminary Proceed) 28 (1997) 845 in which the VA mode is converted into a multi-domain (MVA mode) for widening the
  • a liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied, and twisted multi-domain alignment is applied when a voltage is applied (Preliminary collections 58-59 (1998)) and (4) SURVIVAL mode liquid crystal cells (announced at LCD International 98).
  • any of a PVA (Patterned Vertical Alignment) type, a photo-alignment type (Optical Alignment), and a PSA (Polymer-Stained Alignment) may be used. Details of these modes are described in JP-A-2006-215326 and JP-T 2008-538819.
  • JP-A-10-54982, JP-A-11-202323, and JP-A-9-292522 are methods for reducing leakage light during black display in an oblique direction and improving the viewing angle using an optical compensation sheet. No. 11-133408, No. 11-305217, No. 10-307291, and the like.
  • the light conversion layer of the liquid crystal display device of the present invention is particularly limited as long as it is a layer that is provided on the upper side (viewing side) of the above-described front side polarizer and can convert the wavelength of light transmitted through the front side polarizer. Not.
  • the light conversion layer for example, a phosphor that is excited by light (for example, blue light) that has passed through the above-described front-side polarizer and emits visible light (for example, red light) having a longer wavelength than the light.
  • light for example, blue light
  • visible light for example, red light
  • ZnSiO 3 zinc silicate
  • CdSiO 3 cadmium silicate
  • Cd 2 B 2 O 5 cadmium borate
  • respective quantum dots corresponding to blue light, red light and green light Layer.
  • the quantum dot means a semiconductor particle of a predetermined size having a quantum confinement effect.
  • the light conversion layer has each quantum dot corresponding to blue light, red light and green light dispersed therein and transmitted from the front polarizer.
  • the layer is preferably a layer capable of converting light into white light in which blue light, red light and green light are mixed.
  • a light conversion layer for example, when the light transmitted through the front polarizer is blue light, red light, other monochromatic light that is not green light, ultraviolet light, or infrared light, the light conversion layer is dispersed in the light conversion layer. You may make it filter transmitted light into blue, red, and green with a blue quantum dot, a red quantum dot, and a green quantum dot.
  • the light conversion layer has a better color reproducibility, Among the blue light, red light, and green light, each quantum dot corresponding to light that is not the predetermined monochromatic light is dispersed, transmits the predetermined monochromatic light, and the predetermined monochromatic light includes blue light, red light, and It is preferable that it is a layer which can mix the light which is not predetermined monochromatic light among green light, and can convert it into white light.
  • the light conversion layer for example, when the light transmitted through the front polarizer is blue light, the light conversion layer includes at least red quantum dots and green quantum dots.
  • a part of blue light is converted into red light having a wavelength range of 620 nm to 750 nm by the red quantum dots, and a part of blue light is converted to green light having a wavelength range of 495 nm to 570 nm by the green quantum dots.
  • the blue light that is not converted into red light and green light passes through the light conversion layer as it is, thereby generating white light in which the blue light, red light, and green light are mixed in the light conversion layer.
  • the light conversion layer includes blue quantum dots and green quantum dots
  • the light transmitted through the front polarizer is green light
  • the conversion layer includes blue quantum dots and red quantum dots.
  • the liquid crystal display device of the present invention reduces the influence of the above-described light conversion layer due to external light (natural light), and for better color reproducibility, if necessary, closer to the viewing side than the light conversion layer, You may have a color filter (refer FIG. 1).
  • a color filter generally has a structure in which red, green, and blue dot-like images are arranged in a matrix on a substrate, and the boundaries are divided by dark color separation walls such as a black matrix.
  • Color filters include those using a pigment as a color material and those using a dye as a color material, and any of them can be suitably used in the present invention. Examples of the pigment and dye include those described in JP-A-2009-139616.
  • Examples of the method for producing the color filter include a dyeing method, a printing method, a colored resist method, a transfer method, an ink jet method, and a printing method.
  • a coating solution of the dichroic dye composition was prepared by adding 1 part by mass of Exemplified Compound A-4), stirring and dissolving, and then filtering. Subsequently, the coating solution was applied onto the following polyvinyl alcohol alignment film formed and rubbed in advance on a glass substrate, and chloroform was naturally dried at room temperature to fix the alignment state. Subsequently, the following oxygen barrier layer coating solution was applied and dried at 100 ° C. for 2 minutes.
  • the coating liquid A for transparent resin cured layers described below was applied and dried at 100 ° C. for 2 minutes. Thereafter, it is polymerized by irradiating with ultraviolet rays of 5 J in a nitrogen atmosphere (oxygen concentration of 100 ppm or less), and on the surface of the light absorption anisotropic layer (layer thickness 0.4 ⁇ m), an oxygen blocking layer having a layer thickness of 1 ⁇ m and a layer thickness of 2 ⁇ m.
  • a polarizing element in which transparent resin cured layers were sequentially laminated was produced.
  • the peak top of the absorption wavelength of the produced polarizing element was 460 nm, and the half width was 110 nm.
  • iodine polarizer ⁇ Production of iodine polarizer> According to Example 1 of Japanese Patent Application Laid-Open No. 2001-141926, iodine was adsorbed to a stretched polyvinyl alcohol film to prepare a polarizer (iodine polarizer) having a thickness of 20 ⁇ m.
  • a wire grid type polarizer was produced according to Example 1 described in [0073] to [0077] of JP2012-027221A.
  • a cholesteric liquid crystal polarizer was produced according to Example 1 described in JP-A-2004-258405, [0072] to [0077].
  • Example 1 (Out-cell, dichroic organic dye polarizer) A polyimide alignment film was formed on a glass substrate (cell substrate) having a transparent electrode, and an alignment treatment by rubbing was performed. The glass substrate after the rubbing treatment and another glass substrate (cell substrate) subjected to the same treatment face each other with the rubbing treatment surfaces facing each other, and through a 2.8 ⁇ m uniform particle size spacer, the liquid crystal cell gap was set to 4.2 ⁇ m, and a liquid crystal composition (ZLI1132, manufactured by Merck & Co., Inc.) was sealed between the substrates by dropping injection to prepare a liquid crystal cell.
  • a liquid crystal composition ZLI1132, manufactured by Merck & Co., Inc.
  • the prepared dichroic organic dye polarizer was bonded to the top and bottom of the prepared liquid crystal cell via an adhesive so that the absorption axes of the previously prepared dichroic organic dye polarizer coincided with the rubbing direction of the cell substrate of the liquid crystal cell.
  • a light conversion layer in which red quantum dots and green quantum dots are dispersed is formed on the upper side (viewing side) of the front polarizer, and the surface of the formed light conversion layer corresponds to RGB of the liquid crystal cell.
  • An RGB color filter was formed.
  • a backlight (light source: blue LED, light source peak top: 465 nm, half-value width: 30 nm) was attached to the lower part of the rear-side polarizer to produce a liquid crystal display device of the type shown in FIG.
  • B represents the half-value width of the light source wavelength of the non-white light source
  • C represents the absorption of the monochromatic polarizer.
  • It represents the half width of the wavelength.
  • Example 2 In preparing a dichroic organic dye polarizer to be used, a yellow dichroic azo dye (A-4) is represented by the following formula, and a magenta dichroic dye (A-46: JP-A-2011-213610).
  • a liquid crystal display device was produced in the same manner as in Example 1, except that it was changed to the exemplified compound A1-46) described in the paragraph [0098].
  • the peak top of the absorption wavelength of the produced polarizing element was 565 nm, and the half width was 130 nm.
  • A represents the wavelength difference at the peak top between the light source wavelength of the non-white light source and the absorption wavelength of the monochromatic polarizer
  • B represents the half-value width of the light source wavelength of the non-white light source
  • C represents the absorption of the monochromatic polarizer. (It represents the half width of the wavelength.)
  • Example 3 (In-cell, iodine polarizer) (1) Formation of liquid crystal cell substrate with front side polarizer A light conversion layer produced in the same manner as in Example 1 was disposed on the transparent electrode surface of the liquid crystal cell substrate. The iodine polarizer produced previously was bonded through the adhesive film on it. Further thereon, a polyimide alignment film was formed in the same manner as in Example 1, and an alignment treatment by rubbing was performed. Next, an RGB color filter was formed on the surface of the liquid crystal cell substrate opposite to the transparent electrode so as to correspond to the RGB of the liquid crystal cell to be produced, and a liquid crystal cell substrate with a front side polarizer was formed.
  • Example 4 (Out-cell, wire grid polarizer) A liquid crystal display device was produced in the same manner as in Example 1 except that the wire grid polarizer produced earlier was used instead of the dichroic organic dye polarizer.
  • Example 5 (Out-cell, cholesteric liquid crystal polarizer) In place of the dichroic organic dye polarizer, a liquid crystal display device was produced in the same manner as in Example 1 except that the cholesteric liquid crystal type polarizer produced previously was used.
  • Example 6 In-cell, wire grid polarizer
  • Example 7 (In-cell, cholesteric liquid crystal polarizer) A liquid crystal display device was produced in the same manner as in Example 3 except that the cholesteric liquid crystal type polarizer produced earlier was used instead of the iodine polarizer.
  • Example 8 In-cell, dichroic organic dye polarizer
  • a liquid crystal display device was produced in the same manner as in Example 3 except that the previously prepared dichroic organic dye polarizer was used instead of the iodine polarizer.
  • Example 1 (Out-cell, iodine polarizer) A liquid crystal cell was produced in the same manner as in Example 1. A laminated body in which a light conversion layer in which red quantum dots and green quantum dots are dispersed was formed on the upper part (viewing side) of the produced liquid crystal cell. Subsequently, it bonded together through the adhesive so that the absorption axis of the iodine polarizer produced previously may mutually correspond with the rubbing direction of the cell board
  • reference numeral 11 backlight unit
  • reference numeral 12 rear-side polarizer
  • reference numeral 13 liquid crystal layer
  • reference numeral 14 front-side polarizer
  • Reference numeral 15 light conversion layer
  • reference numeral 16 rear side cell substrate
  • reference numeral 17 front side cell substrate
  • reference numeral 18 color filter
  • reference numeral 20 liquid crystal display device
  • the color reproducibility is generally determined by the color of light emitted from red, green, and blue pixels, and the chromaticity in the CIE 1931XYZ color system of each pixel is expressed by (x R , y R ), (x G , Y G ), (x B , y B ), it is represented by the area of a triangle surrounded by these three points on the xy chromaticity diagram. That is, the larger the area of the triangle, the more vivid color image can be reproduced.
  • the area of this triangle is usually the three primary colors defined by the US National Television System Committee (NTSC): red (0.67, 0.33), green (0.21, 0.71), blue ( 0.14, 0.08), which is expressed as a ratio (unit%, hereinafter abbreviated as “NTSC ratio”) with respect to the area of the triangle.
  • NTSC ratio unit%, hereinafter abbreviated as “NTSC ratio”.
  • the NTSC ratio of each manufactured liquid crystal display device was calculated and evaluated according to the following criteria. A: 90% or more. B: 60% or more and less than 90%. C: Less than 60%.
  • the luminance values of black display and white display in an oblique 45 ° direction are measured using a BM-5A manufactured by Topcon Corporation in a dark room, and the white luminance / black luminance is calculated and evaluated according to the following criteria. did. A: 100 or more. B: 60 or more and less than 100. C: Less than 60.
  • the produced liquid crystal display device is displayed in black, the amount of light (orthogonal transmitted light: leaked light) leaking from the normal direction (substantially vertical direction) of the liquid crystal panel is visually observed, and front visibility is evaluated according to the following criteria. did. Also, the chromaticity (u ( ⁇ ), v ( ⁇ )) when viewed from a substantially vertical direction when displaying black and the chromaticity when viewed from an orientation inclined up to 60 ° from the normal direction of the display surface. (U (45), v (45)) was measured with Topcon BM-5A, the color difference ⁇ u'v 'was calculated, and the maximum value of ⁇ u'v' at 0 ⁇ 60 ° was determined.
  • ⁇ Durable polarizer> Durability was evaluated about the polarizer used by the Example and the comparative example.
  • the polarizer was attached to a glass substrate through an adhesive as follows. First, two samples (about 5 cm ⁇ 5 cm) having a polarizer attached on a glass substrate were produced. Next, the film side of the prepared sample was set facing the light source, and the orthogonal transmittance was measured in the range of 380 nm to 780 nm using UV3100PC (manufactured by Shimadzu Corporation), and the measured value at 410 nm was adopted. In addition, it measured about each of two samples and made the average value the orthogonal transmittance
  • the orthogonal transmittance was measured by the same method after storage for 336 hours in an environment of 80 ° C. and 90% relative humidity.
  • the relative humidity in an environment without humidity control was in the range of 0% to 20%.
  • Changes in the orthogonal transmittance before and after aging were determined, and the durability of the polarizer was evaluated according to the following criteria. These results are shown in Table 1 below. A: Less than 0.6%. B: 0.6% to 1.0%. C: More than 1.0%.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

 本発明は、色再現性に優れた液晶表示装置を提供すること課題とする。本発明の液晶表示装置は、非白色光源と、リア側偏光子と、液晶セルと、フロント側偏光子とをこの順で有し、フロント側偏光子よりも視認側に、フロント側偏光子を透過した光を波長変換する光変換層を有する、液晶表示装置である。

Description

液晶表示装置
 本発明は、液晶表示装置に関する。詳しくは、光変換層を有する液晶表示装置に関する。
 一般に、液晶装置は、液晶層および液晶層に電界を印加する電極を備えた液晶セルを備えているが、液晶セル自体は自己発光しないため、液晶セルの照明を行う照明手段を設けて、この照明手段により出射される照明光を液晶セルによって制御することによって所望の画像を形成するように構成されている。
 また、近年、この照明手段(特にバックライト)として、単色光(特に青色光)を用い、この単色光を白色光に変換する光変換層を別途設けた液晶装置が知られている。
 例えば、特許文献1には、「液晶層及び該液晶層に電界を印加する電極を備えた液晶セルと、該液晶セルの照明を行う照明手段とを有し、前記照明手段は、発光素子と、該発光素子から放出される光を前記液晶セルに導く導光板とを備え、前記導光板から照射された照明光の少なくとも一部を色変換して白色光に近づける色変換手段を設けたことを特徴とする液晶装置。」が記載されている([請求項1])。
 また、特許文献2には、「単色光を発光するLEDを含むバックライトユニットと、前記バックライトユニットの上面に形成される液晶表示パネルとを含み、前記液晶表示パネルは、第1基板と、前記第1基板の上面に形成され、単色光を透過させる液晶層と、前記液晶層の上面に形成され、前記単色光を白色光に変換する光変換層と、前記光変換層の上面に形成されるRGBカラーフィルタ層と、前記カラーフィルタ層の上面に配置される第2基板とを含むことを特徴とする液晶表示装置。」が記載されている([請求項11])。
特開2004-271621号公報 特開2013-015812号公報
 本発明者らは、特許文献1および2に記載された液晶装置(液晶表示装置)について検討したところ、色変換手段(光変換層)として、量子ドット(例えば、特許文献2の請求項2など参照)を用いた場合には、色再現性(特に黒色の色再現性)が著しく劣るという問題があることを明らかとした。
 そこで、本発明は、色再現性に優れた液晶表示装置を提供することを課題とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、非白色光源、リア側偏光子、液晶層、フロント側偏光子、および、光変換層をこの順に有する液晶表示装置が、光変換層として量子ドットを用いた場合においても色再現性に優れることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を達成することができることを見出した。
 [1] 非白色光源と、リア側偏光子と、液晶層と、フロント側偏光子とをこの順で有し、
 フロント側偏光子よりも視認側に、フロント側偏光子を透過した光を波長変換する光変換層を有する、液晶表示装置。
 [2] リア側偏光子およびフロント側偏光子のうち、少なくともフロント側偏光子が、非白色光源の光源波長に対応した単色偏光子である、[1]に記載の液晶表示装置。
 [3] 非白色光源と単色偏光子との対応関係が、下記式(1)を満たす対応関係である、[2]に記載の液晶表示装置。
 A<{(B/2)+(C/2)} ・・・ (1)
 ここで、式(1)中、Aは非白色光源の光源波長と単色偏光子の吸収波長とのピークトップにおける波長差を表し、Bは非白色光源の光源波長の半値幅を表し、Cは単色偏光子の吸収波長の半値幅を表す。
 [4] 単色偏光子が、二色性有機色素偏光子、ワイヤーグリッド型偏光子、および、コレステリック液晶型偏光子のいずれかである、[2]または[3]に記載の液晶表示装置。
 [5] 光変換層は、青色光、赤色光および緑色光に対応するそれぞれの量子ドットが分散されており、フロント側偏光子から透過した光を、青色光、赤色光および緑色光が混合した白色光に変換することができる層である、[1]~[4]のいずれかに記載の液晶表示装置。
 [6] 非白色光源から出射される光が、青色光、赤色光および緑色光のいずれかからなる単色光である、[1]~[5]のいずれかに記載の液晶表示装置。
 [7] フロント側偏光子を透過した光が、青色光、赤色光および緑色光のうちのいずれか1つの所定単色光である場合、
 光変換層は、青色光、赤色光および緑色光のうち、所定単色光ではない光に対応するそれぞれの量子ドットが分散されており、所定単色光を透過させ、かつ、所定単色光に、青色光、赤色光および緑色光のうちの所定単色光でない光を混合して白色光に変換することができる層である、[1]~[4]のいずれかに記載の液晶表示装置。
 [8] 光変換層よりも視認側に、カラーフィルタを有する、[1]~[7]のいずれかに記載の液晶表示装置。
 本発明によれば、色再現性に優れた液晶表示装置を提供することができる。
図1(A)および(B)は、それぞれ、本発明の液晶表示装置の実施形態の例を示す模式的な断面図である。 図2は、従来の液晶表示装置の実施形態の例を示す模式的な断面図である。
 以下、本発明について詳細に説明する。
 本発明の液晶表示装置は、非白色光源と、リア側偏光子と、液晶層と、フロント側偏光子とをこの順で有し、フロント側偏光子よりも視認側に、フロント側偏光子を透過した光を波長変換する光変換層を有する液晶表示装置である。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明においては、上述した通り、非白色光源、リア側偏光子、液晶層、フロント側偏光子、および、光変換層をこの順に有する液晶表示装置が、光変換層として量子ドットを用いた場合においても色再現性が良好となる。
 これは、詳細には明らかではないが、およそ以下のとおりと推測される。
 すなわち、非白色光源から出射される光をリア側偏光子、液晶層およびフロント側偏光子を透過させた後に、光変換層によって白色光に変換することにより、偏光解消が起きなかったためと考えられる。
 このことは、特許文献2の液晶表示装置に相当する後述する比較例1の構成(図2参照)では、光変換層として量子ドットを用いた場合には、偏光解消が生じ、その結果、色再現性が劣る結果からも推察することができる。
 次に、本発明の液晶表示装置の全体の構成について図1を用いて説明した後に、各構成について詳述する。
 図1(A)および(B)は、それぞれ、本発明の液晶表示装置の実施形態の例を示す模式的な断面図である。
 図1(A)および(B)に示すように、液晶表示装置10は、非白色光源(図示せず)を有するバックライトユニット1、リア側偏光子2、液晶層3、フロント側偏光子4、および、光変換層5をこの順に有する。
 また、図1(A)および(B)に示すように、液晶表示装置10は、液晶層3を挟持するためのリア側セル基板6およびフロント側セル基板7、ならびに、カラーフィルタ8を有しているのが好ましい。
 ここで、図1(A)に示す偏光子の態様は、液晶層3とともに、リア側偏光子2、フロント側偏光子4および光変換層5を、リア側セル基板6およびフロント側セル基板7で挟持するインセルタイプであり、図1(B)に示す偏光子の態様は、液晶層3のみをリア側セル基板6およびフロント側セル基板7で挟持し、その上部(視認側)にフロント側偏光子4等を設けるアウトセルタイプである。
 〔非白色光源〕
 本発明の液晶表示装置が有する非白色光源は、出射される光が非白色光となる光源(例えば、冷陰極蛍光ランプ、キセノン蛍光ランプ、LED、有機ELなど)であれば特に限定されない。
 非白色光源から出射される非白色光としては、具体的には、例えば、青色光、赤色光および緑色光のいずれかからなる単色光;紫外線;赤外線;等が挙げられる。
 これらのうち、青色光、赤色光および緑色光のいずれかからなる単色光であるのが好ましく、中でも、エネルギーが高く、後述する光変換層における波長の変換が容易となる観点から、青色光であるのがより好ましい。
 本発明においては、上記非白色光源は、光源から出射される光を端面から導入する導光板、拡散板、集光板などの複数の部材とともに、バックライトユニットを構成していてもよい。
 このようなバックライトユニットを構成する部材としては、例えば、「液晶表示装置構成材料の最新技術、飯村靖文 監修、シーエムシー出版」の第3章や、「液晶表示装置用バックライト技術、カランタル カリル 監修、シーエムシー出版」等に記載された部材を用いることができる。
 〔偏光子(リア側偏光子・フロント側偏光子)〕
 本発明の液晶表示装置が有するリア側偏光子およびフロント側偏光子(以下、特に区別を要しない場合は、これらをまとめて単に「偏光子」ともいう。)は特に限定されず、従来公知の液晶表示装置に用いられる一般的な偏光子を用いることができる。
 <単色偏光子>
 本発明においては、偏光子を薄くすることが可能となる等の理由から、リア側偏光子およびフロント側偏光子のうち、少なくともフロント側偏光子が、上述した非白色光源の光源波長に対応した単色偏光子であるのが好ましく、リア側偏光子およびフロント側偏光子のいずれもが、上述した非白色光源の光源波長に対応した単色偏光子であるのがより好ましい。
 ここで、「非白色光源の光源波長に対応した単色偏光子」とは、非白色光源から出射される光を高い偏光度(例えば、偏光度95%以上)で直線偏光に偏光することができる偏光子をいう。
 また、本発明においては、偏光子をより薄くすることが可能となり、更に液晶表示装置の視差が小さくなるインセルタイプの偏光子を容易に作製することができ、また、液晶表示装置の視認性が良好となる等の理由から、上述した非白色光源と単色偏光子との対応関係が、下記式(1)を満たす対応関係であるのが好ましい。
 A<{(B/2)+(C/2)} ・・・ (1)
 (式中、Aは非白色光源の光源波長と単色偏光子の吸収波長とのピークトップにおける波長差を表し、Bは非白色光源の光源波長の半値幅を表し、Cは単色偏光子の吸収波長の半値幅を表す。)
 ここで、上記式(1)の技術的意義に関して、例えば、光源が青色光である場合、上記式(1)の対応関係を満たす単色偏光子は、青色光のうち、偏光子の偏光軸(透過軸)の対角成分を吸収し、偏光度の高い青色の直線偏光を透過する偏光子となる。
 更に、本発明においては、耐久性、特に熱安定性が良好となる理由から、単色偏光子が、二色性有機色素偏光子、ワイヤーグリッド型偏光子、または、コレステリック液晶型偏光子であるのが好ましい。
 これらのうち、塗布により偏光子を形成することができるため、液晶表示装置の視差が小さくなるインセルタイプの偏光子を容易に作製することができる観点から、二色性有機色素偏光子であるのが好ましい。
 二色性有機色素偏光子に用いられる二色性有機色素としては、特開2010-152351号公報の[0056]~[0081]に記載された二色性色素(アゾ色素)や、下記式で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000001

Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006
 <二色性有機色素偏光子の作製方法>
 二色性有機色素偏光子の作製方法としては、具体的には、例えば、二色性有機色素をポリビニルアルコールのような高分子材料に溶解または吸着させ、その膜を一方向にフィルム状に延伸して二色性色素を配向させる方法;論文(Dreyer,J.F.,Journal de Physique,1969,4,114.,“Light Polarization From Films of Lyotropic Nematic Liquid Crystals”)に記載されるガラスや透明フィルムなどの基板上に有機色素分子の分子間相互作用などを利用して二色性色素を配向させ、偏光子(異方性色素膜)を形成する方法;等が挙げられる。なお、上記ガラスや透明フィルムなどの基板上に有機色素分子の分子間相互作用などを利用して二色性色素を配向させることは湿式成膜法により達成される。
 その他の作製方法としては、例えば、特開2010-152351号公報の[0022]段落、特開2011-213610号公報の[0211]段落等に記載されているように、透明支持体上に二色性色素組成物を塗布することで二色性色素を含む極めて薄い膜を形成し、分子間相互作用等を利用して該二色性色素を配向させる方法等が挙げられる。
 〔液晶層〕
 本発明の液晶表示装置が有する液晶層は特に限定されず、従来公知の液晶表示装置に用いられる一般的な液晶層を用いることができる。
 このような液晶層を形成する材料(液晶材料)としては、通常の液晶表示装置に用いられているものを好適に利用できる。例えば、VA、IPS、TN、OCB、HAN、ECB、STN、DSTN、PSA、垂直配向型面内電界スイッチング液晶、強誘電性液晶、反強誘電性液晶、ブルー相液晶用などが挙げられ、具体的には、「液晶表示装置構成材料の最新技術、飯村靖文 監修、シーエムシー出版」の第3章に記載されているもの等が挙げられる。
 これらのうち、上記液晶層は、正の誘電異方性を有するネマチック液晶材料を充填してなる層であるのが好ましい。
 本発明においては、上記液晶層は、フロント側セル基板およびリア側セル基板(図1(A)および(B)参照)、更にはインセルタイプの偏光子の場合には上述したリア側偏光子およびフロント側偏光子などとともに(図1(A)参照)、液晶セルを構成していてもよい。
 ここで、フロント側セル基板およびリア側セル基板としては、例えば、ガラス基板、プラスチック基板等が挙げられ、中でも、ガラス基板を用いるのが好ましい。
 このような液晶セルは、VAモード、OCBモード、IPSモード、又はTNモードであることが好ましいが、これらに限定されるものではない。
 TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、更に60°~120°にねじれ配向している。TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
 VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)及び(4)SURVIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。また、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、及びPSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、及び特表2008-538819号公報に詳細な記載がある。
 IPSモードの液晶セルは、棒状液晶分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の吸収軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、特開平10-307291号公報などに開示されている。
 〔光変換層〕
 本発明の液晶表示装置が有する光変換層は、上述したフロント側偏光子の上部(視認側)に設けられ、フロント側偏光子を透過した光を波長変換することができる層であれば特に限定されない。
 上記光変換層としては、例えば、上述したフロント側偏光子を透過した光(例えば、青色光)により励起され、この光よりも長波長側の可視光(例えば、赤色光)を放出する蛍光体(例えば、珪酸亜鉛(ZnSiO3)、珪酸カドミウム(CdSiO3)、硼酸カドミウム(Cd225)など);青色光、赤色光および緑色光に対応するそれぞれの量子ドット;などが分散された層が挙げられる。
 ここで、量子ドットとは、量子閉じ込め効果(quantum confinement effect)を有する所定のサイズの半導体粒子をいう。
 本発明においては、色再現性がより良好となる理由から、上記光変換層は、青色光、赤色光および緑色光に対応するそれぞれの量子ドットが分散されており、フロント側偏光子から透過した光を、青色光、赤色光および緑色光が混合した白色光に変換することができる層であるのが好ましい。
 このような光変換層としては、例えば、フロント側偏光子を透過した光が青色光、赤色光、緑色光ではない他の単色光、紫外線または赤外線である場合において、光変換層に分散された青色量子ドット、赤色量子ドットおよび緑色量子ドットにより、透過光を青色、赤色および緑色にフィルタリングするようにしてもよい。
 一方、フロント側偏光子を透過した光が青色光、赤色光および緑色光のうちのいずれか1つの所定単色光である場合、上記光変換層は、色再現性がより良好となる理由から、青色光、赤色光および緑色光のうち、所定単色光ではない光に対応するそれぞれの量子ドットが分散されており、所定単色光を透過させ、かつ、所定単色光に、青色光、赤色光および緑色光のうちの所定単色光でない光を混合して白色光に変換することができる層であるのが好ましい。
 このような光変換層としては、例えば、フロント側偏光子を透過した光が青色光の場合、少なくとも赤色量子ドットおよび緑色量子ドットを含むものである。すなわち、赤色量子ドットにより、青色光の一部を620nm~750nmの波長領域を有する赤色光に変換し、緑色量子ドットにより、青色光の一部を495nm~570nmの波長領域を有する緑色光に変換し、赤色光および緑色光に変換されない青色光はそのまま光変換層を透過することにより、光変換層において青色光、赤色光および緑色光が混合した白色光が生成される。
 同様に、フロント側偏光子を透過した光が赤色光の場合、光変換層は、青色量子ドットおよび緑色量子ドットを含むものであり、フロント側偏光子を透過した光が緑色光の場合、光変換層は、青色量子ドットおよび赤色量子ドットを含むものである。
 〔カラーフィルタ〕
 本発明の液晶表示装置は、上述した光変換層の外光(自然光)による影響を低減し、色再現性がより良好となる理由から、必要に応じて、光変換層よりも視認側に、カラーフィルタを有していてもよい(図1参照)。
 カラーフィルタは、一般的に、基板上に赤色、緑色、青色のドット状画像をそれぞれマトリクス状に配置し、その境界をブラックマトリクスなどの濃色離画壁で区分した構造を有する。
 カラーフィルタは、顔料を色材に用いたものと染料を色材に用いたものがあるが、本発明においては、いずれも好適に利用することができる。
 顔料や染料としては、例えば、特開2009-139616号公報中に記載されているものが挙げられる。
 また、カラーフィルタの作製方法としては、例えば、染色法、印刷法、着色レジスト法、転写法、インクジェット法、印刷法等が挙げられる。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 <二色性有機色素偏光子の作製>
 クロロホルム99質量部に、下記式で表される、青色LED光源に対応したイエロー二色性アゾ色素(A-4:特開2011-213610号公報の[0238]~[0242]段落に記載された例示化合物A-4)を1質量部加え、撹拌し溶解させた後に濾過することにより、二色性色素組成物の塗布液を調製した。
 次いで、予めガラス基板上に形成しラビングした下記ポリビニルアルコール配向膜上に、上記塗布液を塗布し、室温でクロロホルムを自然乾燥して配向状態を固定化した。
 次いで、下記記載の酸素遮断層用塗布液を塗布し、100℃で2分間乾燥した。さらに、下記記載の透明樹脂硬化層用塗布液Aを塗布し、100℃で2分間乾燥した。その後、窒素雰囲気下(酸素濃度100ppm以下)5Jの紫外線を照射して重合し、光吸収異方性層(層厚0.4μm)の表面に、層厚1μmの酸素遮断層、層厚2μmの透明樹脂硬化層が順次積層された偏光素子を作製した。
 なお、作製した偏光素子の吸収波長のピークトップは460nmであり、半値幅は110nmであった。
Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-I000008
 (酸素遮断層用塗布液の調製)
 下記組成物をミキシングタンクに投入し、撹拌して酸素遮断層用塗布液とした。
 ポリビニルアルコール(PVA205、クラレ社製)3.2質量部、ポリビニルピロリドン(PVP K-30、日本触媒社製)1.5質量部、メタノール44質量部、および、水56質量部を添加して撹拌した。
 次いで、孔径0.4μmのポリプロピレン製フィルターで濾過して、酸素遮断層用塗布液を調製した。
 (透明樹脂硬化層用塗布液Aの調製)
 下記組成物をミキシングタンクに投入し、撹拌して透明樹脂硬化層塗布液Aとした。
 トリメチロールプロパントリアクリレート(ビスコート#295、大阪有機化学社製)7.5質量部に、質量平均分子量15000のポリ(グリシジルメタクリレート)2.7質量部、メチルエチルケトン7.3質量部、シクロヘキサノン5.0質量部、および、重合開始剤(イルガキュア184、チバ・スペシャルティ・ケミカルズ社製)0.5質量部を添加して撹拌した。
 次いで、孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層用の塗布液として、透明樹脂硬化層用塗布液Aを調製した。
 <ヨウ素偏光子の作製>
 特開2001-141926号公報の実施例1に従い、延伸したポリビニルアルコールフィルムにヨウ素を吸着させて膜厚20μmの偏光子(ヨウ素偏光子)を作製した。
 <ワイヤーグリッド型偏光子の作製>
 特開2012-027221号公報の[0073]~[0077]に記載された実施例1に従い、ワイヤーグリッド型偏光子を作製した。
 <コレステリック液晶型偏光子の作製>
 特開2004-258405号公報の[0072]~[0077]に記載された実施例1に従い、コレステリック液晶型偏光子を作製した。
 〔実施例1〕(アウトセル、二色性有機色素偏光子)
 透明電極を有するガラス基板(セル基板)にポリイミドの配向膜を形成し、ラビングによる配向処理を行った。
 ラビング処理後のガラス基板と、同様の処理を行った別のガラス基板(セル基板)とを、互いのラビング処理面を対向させ、2.8μmの均一粒径スペーサーを介することで、液晶セルギャップを4.2μmとし、液晶組成物(ZLI1132、メルク社製)を基板間に滴下注入で封入することで、液晶セルを作製した。
 作製した液晶セルの上下に、先に作製した二色性有機色素偏光子の吸収軸が液晶セルのセル基板のラビング方向と互いに一致するように、粘着剤を介して貼り合わせた。
 次いで、フロント側偏光子の上部(視認側)に、赤色量子ドットおよび緑色量子ドットが分散された光変換層を形成し、さらに形成した光変換層の表面に液晶セルのRGBと対応するようにRGBのカラーフィルタを形成した。
 次いで、リア側偏光子の下部にバックライト(光源:青色LED、光源ピークトップ:465nm、半値幅:30nm)を取り付けることにより、図1(B)に示すタイプの液晶表示装置を作製した。
 なお、作製した液晶表示装置は、A=465-460=5nm、B=30nm、C=110nmであり、下記式(1)を満たしていた。
 A<{(B/2)+(C/2)} ・・・ (1)
 (式中、Aは非白色光源の光源波長と単色偏光子の吸収波長とのピークトップにおける波長差を表し、Bは非白色光源の光源波長の半値幅を表し、Cは単色偏光子の吸収波長の半値幅を表す。)
Figure JPOXMLDOC01-appb-C000009
 〔実施例2〕
 使用する二色性有機色素偏光子の作製において、イエロー二色性アゾ色素(A-4)を下記式で表される、マゼンタ二色性色素(A-46:特開2011-213610号公報の[0098]段落に記載された例示化合物A1-46)に変更した以外は、実施例1と同様の方法で、液晶表示装置を作製した。
 なお、作製した偏光素子の吸収波長のピークトップは565nmであり、半値幅は130nmであった。
 また、作製した液晶表示装置は、A=565-465=100nm、B=30nm、C=130nmであり、下記式(1)を満たさないものであった。
 A<{(B/2)+(C/2)} ・・・ (1)
 (式中、Aは非白色光源の光源波長と単色偏光子の吸収波長とのピークトップにおける波長差を表し、Bは非白色光源の光源波長の半値幅を表し、Cは単色偏光子の吸収波長の半値幅を表す。)
Figure JPOXMLDOC01-appb-C000010
 〔実施例3〕(インセル、ヨウ素偏光子)
(1)フロント側偏光子付液晶セル基板の形成
 液晶セル基板の透明電極面上に、実施例1と同様に作製した光変換層を配置した。その上に、粘着フィルムを介して、先に作製したヨウ素偏光子を貼合した。さらにその上に、実施例1と同様、ポリイミドの配向膜を形成し、ラビングによる配向処理を行った。
 次いで、上記液晶セル基板の透明電極とは反対の面に、作製する液晶セルのRGBと対応するように、RGBのカラーフィルタを形成し、フロント側偏光子付液晶セル基板を形成した。
(2)リア側偏光子付液晶セル基板の形成
 液晶セル基板の透明電極面上に、先に作製したヨウ素偏光子を貼合し、さらにその上に実施例1と同様、ポリイミドの配向膜を形成し、ラビングによる配向処理を行い、リア側偏光子付液晶セル基板を形成した。
 上記作製した液晶セル基板を用い、実施例1と同様に液晶セルを作製し、リア側偏光子の下部にバックライト(光源:青色LED)を取り付けることにより、図1(A)に示すタイプの液晶表示装置を作製した。
 〔実施例4〕(アウトセル、ワイヤーグリッド型偏光子)
 二色性有機色素偏光子に代えて、先に作製したワイヤーグリッド型偏光子を用いた以外は、実施例1と同様の方法で、液晶表示装置を作製した。
 〔実施例5〕(アウトセル、コレステリック液晶型偏光子)
 二色性有機色素偏光子に代えて、先に作製したコレステリック液晶型偏光子を用いた以外は、実施例1と同様の方法で、液晶表示装置を作製した。
 〔実施例6〕(インセル、ワイヤーグリッド型偏光子)
 ヨウ素偏光子に代えて、先に作製したワイヤーグリッド型偏光子を用いた以外は、実施例3と同様の方法で、液晶表示装置を作製した。
 〔実施例7〕(インセル、コレステリック液晶型偏光子)
 ヨウ素偏光子に代えて、先に作製したコレステリック液晶型偏光子を用いた以外は、実施例3と同様の方法で、液晶表示装置を作製した。
 〔実施例8〕(インセル、二色性有機色素偏光子)
 ヨウ素偏光子に代えて、先に作製した二色性有機色素偏光子を用いた以外は、実施例3と同様の方法で、液晶表示装置を作製した。
 〔比較例1〕(アウトセル、ヨウ素偏光子)
 実施例1と同様の方法により、液晶セルを作製した。
 作製した液晶セルの上部(視認側)に、赤色量子ドットおよび緑色量子ドットが分散された光変換層を形成した積層体を作製した。
 次いで、作製した積層体の上下に、先に作製したヨウ素偏光子の吸収軸が液晶セルのセル基板のラビング方向と互いに一致するように、粘着剤を介して貼り合わせた。
 次いで、リア側のヨウ素偏光子の下部にバックライトを取り付けることにより、図2(符号11:バックライトユニット,符号12:リア側偏光子,符号13:液晶層,符号14:フロント側偏光子,符号15:光変換層,符号16:リア側セル基板,符号17:フロント側セル基板,符号18:カラーフィルタ,符号20:液晶表示装置)に示すタイプの液晶表示装置を作製した。
 <色再現性,視差,視認性>
 作製した各液晶表示装置の色再現性、視差、視認性(正面/斜め)を以下に示す方法および基準でA~Cの3段階(A良好~C不良)で記載した。これらの結果を下記第1表に示す。
 (色再現性)
 色再現性は、一般的に、赤、緑、青の画素から放射される光の色で決まり、それぞれの画素のCIE 1931XYZ表色系における色度を(xR、yR)、(xG、yG)、(xB、yB)としたとき、x-y色度図上のこれらの三点で囲まれる三角形の面積で表される。即ち、この三角形の面積が大きいほど鮮やかなカラー画像が再現できることになる。この三角形の面積は、通常、アメリカNational Television System Committee(NTSC)により定められた標準方式の3原色、赤(0.67、0.33)、緑(0.21、0.71)、青(0.14,0.08)の三点で形成される三角形を基準として、この三角形の面積に対する比(単位%、以下「NTSC比」と略す。)として表現される。
 作製した各液晶表示装置のNTSC比を算出し、以下の基準で評価した。
 A:90%以上である。
 B:60%以上90%未満である。
 C:60%未満である。
 (視差)
 作製した液晶表示装置について、暗室において、斜め45°方向の黒表示および白表示の輝度値をトプコン社製BM-5Aを用いて測定し、白輝度/黒輝度を算出し、以下の基準で評価した。
 A:100以上。
 B:60以上100未満。
 C:60未満。
 (視認性)
 作製した液晶表示装置を黒表示させ、液晶パネルの法線方向(略垂直方向)より漏れてくる光(直交透過光:漏れ光)の量を目視観察し、以下の基準で正面視認性を評価した。
 また、黒表示時の略垂直方向から見たときの色度(u(⊥)、v(⊥))と表示面の法線方向から最大60°まで傾けた方位よりから見たときの色度(u(45)、v(45))をトプコン社製BM-5Aにて測定し、色差Δu‘v’を算出し、0≦θ≦60°でのΔu’v’の最大値を求め、以下の基準で斜め視認性を評価した。
 <正面視認性>
  A:暗い画像でもはっきり見える(=コントラスト高い)
  B:暗い画像がはっきり見えない(=コントラスト低い)
 <斜め視認性>
  A:Δu'v'≦0.02
  B:0.02<Δu'v'≦0.03
  C:Δu'v>0.03
 <偏光子耐久性>
 実施例および比較例で用いた偏光子について、耐久性を評価した。
 具体的には、偏光子をガラス基板に粘着剤を介して貼り付けた形態で次のように行った。
 まず、ガラス基板上に偏光子を貼り付けたサンプル(約5cm×5cm)を2つ作製した。
 次いで、作製したサンプルのフィルム側を光源に向けてセットし、UV3100PC(島津製作所社製)を用いて380nm~780nmの範囲で直交透過率を測定し、410nmにおける測定値を採用した。なお、2つのサンプルについて各々測定し、その平均値を各偏光子の直交透過率とした。
 その後、80℃、相対湿度90%の環境下で336時間保存した後について同様の手法で直交透過率を測定した。なお、調湿なしの環境下での相対湿度は、0%~20%の範囲であった。
 経時前後の直交透過率の変化を求め、以下の基準で、偏光子の耐久性を評価した。これらの結果を下記第1表に示す。
 A:0.6%未満である。
 B:0.6%~1.0%である。
 C:1.0%を超える。
Figure JPOXMLDOC01-appb-T000011
 第1表に示すように、特許文献2の液晶表示装置に相当する比較例1の構成(図2)では、フロント側偏光子の下部(光源側)に光変換層を設けているため、光変換層として量子ドットを用いた場合には、色再現性が劣ることが分かった。また、ヨウ素偏光子を用いているため、偏光子の耐久性も劣ることが分かった。
 これに対し、フロント側偏光子よりも視認側に光変換層を設けた実施例1~8の構成(図1)では、非白色光源から出射される光をリア側偏光子、液晶層およびフロント側偏光子を透過させた後に、光変換層によって白色光に変換しているため、偏光解消が起きず、色再現性が良好となることが分かった。
 特に、実施例1と実施例2との対比から、非白色光源と単色偏光子との対応関係が、上記式(1)を満たす対応関係であると、視認性が良好となることが分かった。
 また、実施例3と他の実施例との対比から、単色偏光子として、二色性有機色素偏光子、ワイヤーグリッド型偏光子、または、コレステリック液晶型偏光子を用いた場合には、偏光子の耐久性が良好となることが分かった。
 また、実施例1と実施例8との対比などから、偏光子をインセルタイプとすることにより、視差が少なくなることが分かった。
 1,11 バックライトユニット
 2,12 リア側偏光子
 3,13 液晶層
 4,14 フロント側偏光子
 5,15 光変換層
 6,16 リア側セル基板
 7,17 フロント側セル基板
 8,18 カラーフィルタ
 10,20 液晶表示装置

Claims (8)

  1.  非白色光源と、リア側偏光子と、液晶層と、フロント側偏光子とをこの順で有し、
     前記フロント側偏光子よりも視認側に、前記フロント側偏光子を透過した光を波長変換する光変換層を有する、液晶表示装置。
  2.  前記リア側偏光子および前記フロント側偏光子のうち、少なくとも前記フロント側偏光子が、前記非白色光源の光源波長に対応した単色偏光子である、請求項1に記載の液晶表示装置。
  3.  前記非白色光源と前記単色偏光子との対応関係が、下記式(1)を満たす対応関係である、請求項2に記載の液晶表示装置。
     A<{(B/2)+(C/2)} ・・・ (1)
     ここで、式(1)中、Aは前記非白色光源の光源波長と前記単色偏光子の吸収波長とのピークトップにおける波長差を表し、Bは前記非白色光源の光源波長の半値幅を表し、Cは前記単色偏光子の吸収波長の半値幅を表す。
  4.  前記単色偏光子が、二色性有機色素偏光子、ワイヤーグリッド型偏光子、および、コレステリック液晶型偏光子のいずれかである、請求項2または3に記載の液晶表示装置。
  5.  前記光変換層は、青色光、赤色光および緑色光に対応するそれぞれの量子ドットが分散されており、前記フロント側偏光子から透過した光を、青色光、赤色光および緑色光が混合した白色光に変換することができる層である、請求項1~4のいずれか1項に記載の液晶表示装置。
  6.  前記非白色光源から出射される光が、青色光、赤色光および緑色光のいずれかからなる単色光である、請求項1~5のいずれか1項に記載の液晶表示装置。
  7.  前記フロント側偏光子を透過した光が、青色光、赤色光および緑色光のうちのいずれか1つの所定単色光である場合、
     前記光変換層は、青色光、赤色光および緑色光のうち、前記所定単色光ではない光に対応するそれぞれの量子ドットが分散されており、前記所定単色光を透過させ、かつ、前記所定単色光に、青色光、赤色光および緑色光のうちの前記所定単色光でない光を混合して白色光に変換することができる層である、請求項1~4のいずれか1項に記載の液晶表示装置。
  8.  前記光変換層よりも視認側に、カラーフィルタを有する、請求項1~7のいずれか1項に記載の液晶表示装置。
PCT/JP2014/069441 2013-08-13 2014-07-23 液晶表示装置 WO2015022847A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480044951.7A CN105452946B (zh) 2013-08-13 2014-07-23 液晶显示装置
US15/040,306 US9977281B2 (en) 2013-08-13 2016-02-10 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-167972 2013-08-13
JP2013167972A JP6144995B2 (ja) 2013-08-13 2013-08-13 液晶表示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/040,306 Continuation US9977281B2 (en) 2013-08-13 2016-02-10 Liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2015022847A1 true WO2015022847A1 (ja) 2015-02-19

Family

ID=52468234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069441 WO2015022847A1 (ja) 2013-08-13 2014-07-23 液晶表示装置

Country Status (4)

Country Link
US (1) US9977281B2 (ja)
JP (1) JP6144995B2 (ja)
CN (1) CN105452946B (ja)
WO (1) WO2015022847A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615142A (zh) * 2015-05-13 2018-01-19 奥特司科技株式会社 液晶显示装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6320289B2 (ja) * 2014-12-22 2018-05-09 エルジー ディスプレイ カンパニー リミテッド 液晶ディスプレイ
KR20180085848A (ko) * 2017-01-19 2018-07-30 삼성디스플레이 주식회사 색변환 패널 및 이를 포함하는 표시 장치
KR102225417B1 (ko) 2017-02-13 2021-03-08 코니카 미놀타 가부시키가이샤 액정 표시 장치 및 이 액정 표시 장치에 사용되는 한 쌍의 광학 필름
KR102214975B1 (ko) 2017-03-02 2021-02-09 코니카 미놀타 가부시키가이샤 액정 표시 장치 및 이 액정 표시 장치에 사용되는 한 쌍의 광학 필름
US10585306B2 (en) 2017-07-06 2020-03-10 Shenzhen China Star Optoelectronics Technology Co., Ltd Liquid crystal panel, liquid crystal display, and method for manufacturing a yellow-dye polarizer
CN107315276A (zh) * 2017-07-06 2017-11-03 深圳市华星光电技术有限公司 液晶面板、液晶显示器及黄色染料偏光片的制作方法
CN112567270B (zh) * 2018-08-30 2023-05-30 Scivax株式会社 偏振片及利用该偏振片的显示器及紫外线照射装置
KR102250952B1 (ko) * 2019-01-16 2021-05-13 이문연 양자점을 포함하는 화상표시장치용 편광필름, 이를 포함하는 화상표시장치
WO2023086685A1 (en) * 2021-11-12 2023-05-19 Formlabs Inc. Organic dye polarizers in a photopolymer curing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152371A (ja) * 1997-07-31 1999-02-26 Nec Corp 液晶表示素子
JPH11237632A (ja) * 1998-02-24 1999-08-31 Sharp Corp 蛍光型液晶表示装置
JP2000258771A (ja) * 1999-03-08 2000-09-22 Sharp Corp 液晶表示装置
JP2010197791A (ja) * 2009-02-26 2010-09-09 Sony Corp カラー液晶表示装置組立体及び光変換装置
JP2013015812A (ja) * 2011-07-05 2013-01-24 Lg Display Co Ltd 光変換層を含む液晶表示パネル及び液晶表示装置
WO2013179959A1 (ja) * 2012-05-28 2013-12-05 シャープ株式会社 色変換基板および液晶表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004271621A (ja) 2003-03-05 2004-09-30 Seiko Epson Corp 液晶装置及び電子機器
EP1832915B1 (en) * 2006-01-31 2012-04-18 Semiconductor Energy Laboratory Co., Ltd. Display device with improved contrast
JP5651595B2 (ja) * 2008-10-09 2015-01-14 ノース・キャロライナ・ステイト・ユニヴァーシティ 複数の偏光回折格子配置を有する偏光無依存型液晶ディスプレイ装置及び関連装置
KR100983026B1 (ko) * 2008-12-18 2010-09-17 주식회사 엘지화학 점착제 조성물, 편광판 및 액정표시장치
KR101331814B1 (ko) * 2009-12-09 2013-11-22 엘지디스플레이 주식회사 편광시트 및 이를 구비한 액정표시소자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152371A (ja) * 1997-07-31 1999-02-26 Nec Corp 液晶表示素子
JPH11237632A (ja) * 1998-02-24 1999-08-31 Sharp Corp 蛍光型液晶表示装置
JP2000258771A (ja) * 1999-03-08 2000-09-22 Sharp Corp 液晶表示装置
JP2010197791A (ja) * 2009-02-26 2010-09-09 Sony Corp カラー液晶表示装置組立体及び光変換装置
JP2013015812A (ja) * 2011-07-05 2013-01-24 Lg Display Co Ltd 光変換層を含む液晶表示パネル及び液晶表示装置
WO2013179959A1 (ja) * 2012-05-28 2013-12-05 シャープ株式会社 色変換基板および液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615142A (zh) * 2015-05-13 2018-01-19 奥特司科技株式会社 液晶显示装置

Also Published As

Publication number Publication date
US9977281B2 (en) 2018-05-22
JP2015036737A (ja) 2015-02-23
CN105452946B (zh) 2018-11-02
JP6144995B2 (ja) 2017-06-07
CN105452946A (zh) 2016-03-30
US20160161799A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
JP6144995B2 (ja) 液晶表示装置
US9891467B2 (en) Liquid crystal display device
WO2014196637A1 (ja) 光学シート部材及びそれを用いた画像表示装置
WO2017092130A1 (zh) Coa型液晶显示面板的制作方法及coa型液晶显示面板
WO2015022879A1 (ja) 液晶表示装置
TW201606392A (zh) 液晶顯示裝置
US11307337B2 (en) Display device and method for manufacturing display device
CN111190308A (zh) 液晶显示装置
TW201640189A (zh) 液晶面板及液晶顯示裝置
US20150219961A1 (en) High light transmittance and color adjusting circular polarizing plate and reflective liquid crystal displays comprising the same
JP2861982B2 (ja) 液晶表示装置及び二色性色素含有シートの製造方法
JP6998944B2 (ja) 液晶表示装置
TWI278668B (en) Liquid crystal display
TWI698688B (zh) 液晶顯示器
JP5066543B2 (ja) 液晶表示装置
KR20080100953A (ko) 액정 표시 장치
JP4605206B2 (ja) 液晶表示装置
TW202004290A (zh) 疊層以及包括其的液晶顯示器
KR101816607B1 (ko) 일축성 염료막을 포함하는 게스트-호스트 모드 액정표시장치
JP7145958B2 (ja) 液晶表示装置
JP7069332B2 (ja) 積層体及びこれを含む液晶表示装置
TWI420196B (zh) 液晶顯示器
US20240004235A1 (en) Optical display device module and optical display device comprising same
US20070171527A1 (en) Gel, polarizer laminated by the gel, and polarizer fabrication method
US20220137450A1 (en) Methods for fabricating liquid crystal polarizers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044951.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836559

Country of ref document: EP

Kind code of ref document: A1