WO2015020015A1 - 色素増感太陽電池 - Google Patents

色素増感太陽電池 Download PDF

Info

Publication number
WO2015020015A1
WO2015020015A1 PCT/JP2014/070528 JP2014070528W WO2015020015A1 WO 2015020015 A1 WO2015020015 A1 WO 2015020015A1 JP 2014070528 W JP2014070528 W JP 2014070528W WO 2015020015 A1 WO2015020015 A1 WO 2015020015A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
dye
solar cell
conductive polymer
sensitized solar
Prior art date
Application number
PCT/JP2014/070528
Other languages
English (en)
French (fr)
Inventor
健治 町田
慎吾 竹内
賢次 玉光
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Priority to JP2015530889A priority Critical patent/JP6519475B2/ja
Publication of WO2015020015A1 publication Critical patent/WO2015020015A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2095Light-sensitive devices comprising a flexible sustrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lightweight dye-sensitized solar cell provided with an anode having excellent catalytic ability and heat resistance.
  • dye-sensitized solar cells are advantageous in that they have no resource restrictions, are inexpensive in raw materials, and have a simple manufacturing method, so that production costs can be kept low. Therefore, it is highly anticipated as a next-generation solar cell.
  • an electrolyte layer containing a pair of oxidizing species and reducing species converts a cathode having a semiconductor layer containing a dye as a photosensitizer, and converts the oxidizing species in the electrolyte layer into reducing species. And having a structure sandwiched between the anode having the catalyst layer.
  • ITO tin-doped indium oxide
  • FTO fluorine-doped tin oxide
  • An electrode in which a layer is formed is used as a cathode, and an electrode obtained by adhering Pt on a substrate such as the above-described transparent electrode or steel by a sputtering method, a vacuum evaporation method, or the like is used as an anode.
  • the dye When light is irradiated onto the dye of the semiconductor layer through the transparent electrode, the dye absorbs light energy to be in an excited state and emits electrons toward the semiconductor. The emitted electrons move from the semiconductor layer to the transparent electrode, and further move from the transparent electrode to the anode via the external circuit.
  • the Pt catalyst layer of the anode is excellent in catalytic ability to convert oxidized species of the electrolyte layer into reducing species, but is expensive.
  • a vacuum process is necessary for the production of the Pt catalyst layer, the production equipment becomes expensive, the process is complicated, and the mass productivity is inferior.
  • durability against I ⁇ ions in the presence of moisture is not sufficient. Therefore, there is a demand for a conductive material that can replace the Pt catalyst layer, and conductive polymer layers, particularly conductive polymer layers containing poly (3,4-ethylenedioxythiophene) have been frequently studied so far.
  • EDOT 3,4-ethylenedioxythiophene
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • Non-Patent Document 1 Electrochemistry 71, No. 11 (2003) 944-946 selects an electrode including three conductive polymer layers of PEDOT, polystyrenesulfonate, polyaniline, and polypyrrole, and I - / I 3 - cyclic voltammograms in an electrolytic solution containing a redox couple is measured, reporting the results of comparison with those of the Pt electrode.
  • the cyclic voltammogram of the Pt electrode clearly shows a reduction wave from I 3 ⁇ to I ⁇
  • the cyclic voltammogram of the PEDOT polystyrene sulfonate electrode and the polypyrrole electrode the I 3 - from I - reduction wave was hardly observed to, in a cyclic voltammogram of the polyaniline electrode was observed redox wave itself at all.
  • the reduction wave from I 3 ⁇ to I ⁇ is particularly important. This is because sufficient regeneration of I ⁇ is necessary to obtain a dye-sensitized solar cell having satisfactory performance.
  • PEDOT polystyrene sulfonate electrodes do not show clear reduction waves and do not have satisfactory performance as anodes for dye-sensitized solar cells. It was.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-351289 discloses that an average surface roughness of a surface in a solution containing a compound selected from bis (perfluoroalkanesulfonyl) imide and a salt thereof is 10 nm or more, preferably A method of forming a porous conductive polymer layer on the surface of the electrode substrate by electropolymerizing an aromatic compound such as pyrrole, thiophene, or aniline on the surface of the electrode substrate of 30 nm or more, more preferably 100 nm or more, and The use of the conductive polymer layer obtained by this method as a catalyst electrode for a dye-sensitized solar cell is disclosed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2008-16442 is provided with a semiconductor electrode (cathode) provided with a photoelectric conversion layer made of a semiconductor having a dye adsorbed on a conductive substrate, and facing the semiconductor electrode.
  • a dye-sensitized solar cell having a counter electrode (anode) provided with a conductive polymer layer on a conductive substrate, and an electrolyte layer containing a thioalkoxide / disulfide redox pair held therebetween.
  • a monomer for forming the conductive polymer layer it is described that EDOT and its derivatives are preferable.
  • a cathode in which a titanium oxide layer containing a dye N719 is formed on FTO glass, a thioalkoxide / A dye comprising: an electrolyte layer containing a disulfide redox couple; and an anode in which PEDOT obtained by chemical polymerization using EDOT tris-p-toluenesulfonate iron (III) as an oxidizing agent is coated on FTO glass A sensitized solar cell is shown.
  • the conductive polymer layer of the anode is required to have high catalytic ability to convert oxidized species in the electrolyte layer to reduced species as a basic performance.
  • sufficient heat resistance is required for each component of the solar cell.
  • conventional conductive polymer layers such as PEDOT layers containing polystyrene sulfonate ions as dopants and PEDOT layers containing tris-p-toluene sulfonate ions as dopants have sufficient performance to satisfy these requirements. Did not have.
  • Patent Document 3 WO2012 / 133858A1
  • Patent Document 4 WO2012 / 133589A1
  • a polymer composed of at least one monomer selected from the group consisting of thiophene having a substituent at the 4-position hereinafter, thiophene having a substituent at the 3-position and 4-position is referred to as “substituted thiophene”
  • a conductive polymer layer comprising a non-sulfonic acid organic compound as a dopant for the polymer and an anion generated from at least one compound having a molecular weight of 200 or more of the anion of the compound.
  • non-sulfonic acid organic compound means an organic compound having no sulfonic acid group and / or sulfonic acid group.
  • a conductive polymer layer is formed on the conductive layer using a substrate in which a conductive layer such as ITO is formed on a plastic film such as polyethylene naphthalate or polyethylene terephthalate, and this is used as an anode, it is lightweight. It is expected that a dye-sensitized solar cell will be obtained.
  • the inventors formed a conductive polymer layer containing a polymer composed of substituted thiophene and the above-mentioned specific range of dopant on the ITO conductive layer using a substrate having an ITO conductive layer formed on a plastic film.
  • an object of the present invention is to provide a lightweight dye-sensitized solar cell including an anode having excellent catalytic ability and heat resistance based on the knowledge in Patent Document 3 and Patent Document 4.
  • the inventors have roughened the surface of the ITO conductive layer of the substrate on which the ITO conductive layer is formed on the plastic film so that the root mean square roughness (RMS) is 5.0 nm or more. Thereafter, when electrolytic polymerization is performed using water as a main solvent and a polymerization solution containing a substituted thiophene and the non-sulfonic acid organic compound in the specific range described above, unlike the knowledge from Patent Document 1, porous conductivity is obtained. A conductive polymer layer having a dense surface, not a polymer layer, is formed on the roughened ITO conductive layer. As a result, excellent adhesion to the ITO conductive layer and excellent catalytic performance and heat resistance are maintained.
  • RMS root mean square roughness
  • the RMS of the surface of the conductive polymer layer (the surface of the surface that should face the electrolyte layer) is the RMS of the surface of the ITO conductive layer that faces the conductive polymer layer, unless the thickness of the conductive polymer layer is extremely thin. Is almost unaffected.
  • the dye-sensitized solar cell of the present invention is an electrolyte comprising a cathode having a semiconductor layer containing a dye as a photosensitizer, and a pair of oxidized and reduced species stacked on the semiconductor layer of the cathode.
  • a dye-sensitized solar cell comprising: a layer; and an anode having a conductive polymer layer that acts as a catalyst that converts the oxidized species stacked on the electrolyte layer to the reduced species, At least one monomer selected from the group consisting of thiophene having a substituent at the 3-position and 4-position, wherein the conductive polymer layer is formed on the conductive layer of the substrate having the ITO conductive layer formed on the plastic film A non-sulfonic acid organic compound as a dopant to the polymer, and at least one compound having a molecular weight of an anion of 200 or more.
  • RMS of the surface facing the conducting polymer layer of the conductive layer is more than 5.0nm It is characterized by being.
  • a transparent film such as polyethylene naphthalate or polyethylene terephthalate is preferably used.
  • the conductive polymer layer of the anode is dense, and the density is in the range of 1.15 to 1.80 g / cm 3 .
  • the density of the conductive polymer layer is preferably in the range of 1.20 to 1.80 g / cm 3 , and particularly preferably in the range of 1.60 to 1.80 g / cm 3 .
  • the density is less than 1.15 g / cm 3 , the heat resistance is drastically lowered, and it is difficult to produce a conductive polymer layer having a density exceeding 1.80 g / cm 3 .
  • the density of the conductive polymer layer is 1. It is preferably 75 g / cm 3 or less, particularly preferably 1.70 g / cm 3 or less.
  • the RMS of the surface of the ITO conductive layer facing the conductive polymer layer is 5.0 nm or more. If the RMS is less than 5.0 nm, the adhesion between the ITO conductive layer and the conductive polymer layer is not sufficient.
  • the RMS of the ITO conductive layer surface is preferably 100 nm or less, particularly preferably in the range of 6.5 to 20.0 nm. Note that RMS is a scale that is more susceptible to the effects of surface protrusions than the average surface roughness (Ra) employed in Patent Document 1, and is more suitable for evaluating the effects of surface unevenness. It is a scale.
  • the thickness of the conductive polymer layer is preferably in the range of 10 to 500 nm, more preferably in the range of 30 to 300 nm. If the thickness of the conductive polymer exceeds 500 nm, the internal resistance increases, and it takes time for the electropolymerization, which is economically disadvantageous.
  • the thickness of the conductive polymer layer is preferably in the range of 10 to 300 nm, and particularly preferably in the range of 100 to 200 nm.
  • the conductive polymer layer contains, as a dopant, an anion generated from a non-sulfonic acid organic compound having a molecular weight of 200 or more.
  • borodisalicylic acid borodisalicylate, formula (I) or formula (II)
  • m means an integer of 1 to 8, preferably an integer of 1 to 4, particularly preferably 2
  • n means an integer of 1 to 8, preferably an integer of 1 to 4, particularly preferably 2.
  • a compound selected from sulfonylimidic acid represented by (2) or (3) and salts thereof is particularly preferable because it provides a conductive polymer layer excellent in heat resistance.
  • the monomer for constituting the conductive polymer layer is not particularly limited as long as it is a compound selected from the group consisting of substituted thiophenes, that is, thiophenes having substituents at the 3- and 4-positions.
  • the substituents at the 3-position and 4-position of the thiophene ring may form a ring together with the carbons at the 3-position and 4-position.
  • the monomer is EDOT, it is preferable because a conductive polymer layer having excellent catalytic stability for converting oxidized species in the electrolyte layer into reducing species can be obtained in addition to excellent environmental stability.
  • the anode in the dye-sensitized solar cell of the present invention 1) An etching step in which a substrate having an ITO conductive layer formed on a plastic film is immersed in a solution containing an acid to roughen the surface of the conductive layer.
  • a solvent composed of 100 to 80% by weight of water and 0 to 20% by weight of an organic solvent, at least one monomer selected from the group consisting of thiophene having substituents at the 3rd and 4th positions, and a non-sulfone
  • non-sulfonic acid-based organic compound in a specific range acts as a supporting electrolyte in the polymerization solution, and thus is also referred to as “non-sulfonic acid-based organic supporting electrolyte”.
  • a solvent comprising 100 to 80% by mass of water and 0 to 20% by mass of an organic solvent is hereinafter referred to as “water-rich solvent”. In the water-rich solvent, the total amount of water and the organic solvent is 100% by mass.
  • a conductive polymer layer containing an anion of a non-sulfonic acid organic compound has excellent catalytic ability to convert oxidized species in the electrolyte layer to reduced species, and also has excellent heat resistance.
  • the ITO conductive layer having a predetermined surface roughness improves the adhesion between the conductive polymer layer and the ITO conductive layer, and the conductive polymer layer is prevented from peeling from the ITO conductive layer. Therefore, a lightweight dye-sensitized solar cell provided with an anode having excellent catalytic ability and heat resistance can be obtained with high productivity.
  • a cyclic voltammogram of an anode used for a dye-sensitized solar cell (1) shows a cyclic voltammogram of an anode having a conductive polymer layer with a thickness of 105 nm, and (2) is a conductivity with a thickness of 210 nm.
  • Fig. 3 shows a cyclic voltammogram of an anode having a conductive polymer layer
  • Fig. 3 (3) shows a cyclic voltammogram of an anode having a conductive polymer layer having a thickness of 105 nm obtained using another substrate. It is the figure which showed the short circuit current density of a dye-sensitized solar cell.
  • Anode for the dye-sensitized solar cell of the present invention is a polymer composed of substituted thiophene and a non-sulfonic acid organic compound as a dopant for the polymer, and the molecular weight of the anion of the compound is 200 or more.
  • an anion generated from the compound is a conductive polymer layer.
  • the conductive polymer layer is formed on the ITO conductive layer of the base having the ITO conductive layer formed on the plastic film, and has a dense density in the range of 1.15 to 1.80 g / cm 3. Is a layer.
  • the RMS of the surface of the ITO conductive layer facing the conductive polymer layer is 5.0 nm or more.
  • the anode in the dye-sensitized solar cell of the present invention 1) An etching step in which a substrate having an ITO conductive layer formed on a plastic film is immersed in a solution containing an acid to roughen the surface of the conductive layer. 2) A preparation stage for obtaining a polymerization liquid comprising a water-rich solvent, a substituted thiophene as a monomer, and the above-mentioned specific range of non-sulfonic acid organic compound, and 3) A polymerization stage in which a conductive polymer layer obtained by polymerization of the monomer is formed on the conductive layer by introducing the substrate obtained in the etching stage into the polymerization liquid and performing electrolytic polymerization. It can form suitably by the process including this.
  • each step will be described.
  • Etching stage In the etching stage, the substrate on which the ITO conductive layer is formed on the plastic film is immersed in a solution containing an acid, and the surface of the ITO conductive layer is roughened so that the RMS is 5.0 nm or more. To do.
  • the RMS is less than 5.0 nm, even if a conductive polymer layer is formed on the ITO conductive layer in the following polymerization step, the adhesion between the ITO conductive layer and the conductive polymer layer is not sufficient, and the above conductive property
  • the polymer layer may peel from the ITO conductive layer.
  • the RMS of the ITO conductive layer surface is preferably 100 nm or less, particularly preferably in the range of 6.5 to 20.0 nm.
  • plastic film a known plastic film used for an anode of a dye-sensitized solar cell can be used without particular limitation, such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, polyacrylate, etc.
  • a transparent and insulating plastic substrate is preferably used.
  • Particularly preferred are flexible polyethylene terephthalate film and polyethylene naphthalate film.
  • the thickness of the film is not particularly limited, but is generally in the range of 1 ⁇ m to 1 cm, preferably in the range of 10 ⁇ m to 1 mm.
  • ITO conductive layer is provided on the surface of the plastic film by vapor deposition or coating.
  • ITO may be crystalline or amorphous, but is preferably amorphous because the surface is easy to roughen.
  • the thickness and surface resistance of the ITO conductive layer vary depending on the required conductivity, but the thickness is generally in the range of 0.05 to 5 ⁇ m, preferably 0.1 to 1 ⁇ m, and the surface resistance is generally 100 ⁇ . / ⁇ or less, preferably 50 ⁇ / ⁇ or less.
  • a known etching solution containing an acid can be used as long as the plastic film is not adversely affected.
  • examples include oxalic acid aqueous solution, iodic acid aqueous solution, acetic acid aqueous solution, dilute hydrochloric acid, dilute nitric acid, dilute sulfuric acid, dilute phosphoric acid, aqueous solution containing hydrochloric acid and nitric acid, aqueous solution containing hydrochloric acid and iron (II) chloride, sulfuric acid and peroxygen.
  • An aqueous solution containing hydrogen oxide can be given.
  • the kind and concentration of the acid in the solution vary depending on the RMS value of the desired ITO conductive layer surface, the surface roughness of the ITO conductive layer on the substrate to be treated, the crystallinity of the ITO, etc. Can be determined.
  • the substrate to be treated is cleaned by UV-ozone treatment, washing with a neutral washing solution, ultrasonic washing, etc., and then immersed in a solution containing the above-mentioned acid to roughen the surface of the ITO conductive layer.
  • the dipping temperature and dipping time vary depending on the desired RMS value of the ITO conductive layer surface, the surface roughness of the ITO conductive layer on the substrate to be treated, the crystallinity of the ITO, etc.
  • the range of 60 ° C. and the immersion time are generally in the range of 5 minutes to 1 hour, and can be determined by simple preliminary experiments.
  • the substrate after the immersion treatment is taken out from the immersion solution, sufficiently washed with deionized water, ultrapure water, or the like, dried and used for the electrolytic polymerization shown below. Since the RMS of the ITO conductive layer surface is affected by the surface roughness of the plastic film and the formation conditions of the ITO conductive layer, an ITO conductive layer having a surface with an RMS of 5.0 nm or more is previously formed on the plastic film. If so, the etching step can be omitted.
  • the polymerization liquid for electrolytic polymerization prepared at this stage contains a water-rich solvent, a substituted thiophene as a monomer, and a non-sulfonic acid organic supporting electrolyte in a specific range as essential components.
  • this polymerization solution may contain an organic solvent such as methanol, ethanol, isopropanol, butanol, ethylene glycol, acetonitrile, acetone, tetrahydrofuran, and methyl acetate.
  • an organic solvent such as methanol, ethanol, isopropanol, butanol, ethylene glycol, acetonitrile, acetone, tetrahydrofuran, and methyl acetate.
  • Water is preferably 90% by mass or more of the whole solvent, more preferably 95% by mass or more of the whole solvent, and particularly preferably the solvent consists of water alone.
  • the conductive polymer layer in which the polymer particles are densely packed becomes difficult to be formed on the ITO conductive layer by electrolytic polymerization, and the content of the organic solvent is 20 mass of the whole solvent. When it exceeds%, the heat resistance of the obtained conductive polymer layer is significantly lowered.
  • a substituted thiophene that is, a monomer selected from thiophene having substituents at the 3-position and 4-position is used.
  • the substituents at the 3-position and 4-position of the thiophene ring may form a ring together with the carbons at the 3-position and 4-position.
  • monomers that can be used include 3,4-dialkylthiophenes such as 3,4-dimethylthiophene and 3,4-diethylthiophene, 3,4 such as 3,4-dimethoxythiophene and 3,4-diethoxythiophene.
  • a non-sulfonic acid organic compound having an anion molecular weight of 200 or more is used as the supporting electrolyte in the polymerization solution.
  • These anions of the supporting electrolyte are contained in the conductive polymer layer as a dopant in the process of electrolytic polymerization shown below.
  • borodisalicylic acid, borodisalicylate, formula (I) or formula (II) (In the formula, m means an integer of 1 to 8, preferably an integer of 1 to 4, particularly preferably 2, and n means an integer of 1 to 8, preferably an integer of 1 to 4, particularly preferably 2. And o means 2 or 3) and salts thereof can be preferably used.
  • the salt examples include alkali metal salts such as lithium salt, sodium salt and potassium salt, alkyl ammonium salts such as ammonium salt, ethyl ammonium salt and butyl ammonium salt, dialkyl ammonium salts such as diethyl ammonium salt and dibutyl ammonium salt, and triethyl ammonium salt. And trialkylammonium salts such as tributylammonium salt, and tetraalkylammonium salts such as tetraethylammonium salt and tetrabutylammonium salt.
  • These supporting electrolytes provide a conductive polymer layer that is particularly excellent in heat resistance.
  • salts of bis (pentafluoroethanesulfonyl) imidic acid, such as potassium salt, sodium salt, and ammonium salt give a conductive polymer layer having extremely high heat resistance.
  • borodisalicylic acid and borodisalicylate are inexpensive and economically advantageous, and are particularly preferable because they provide a conductive polymer layer having excellent heat resistance.
  • borodisalicylic acid and borodisalicylate are preferable. It has been found that salicylate ions hydrolyze into salicylic acid and boric acid, which have very low water solubility in water. For this reason, when borodisalicylic acid and / or borodisalicylate is used as a supporting electrolyte, precipitation gradually occurs in the polymerization solution, making it unusable.
  • the supporting electrolyte is added to the solution and then subjected to electrolytic polymerization before formation of the precipitate, Used in combination with a stabilizer selected from the group consisting of nitrobenzene and nitrobenzene derivatives, which have the action of inhibiting the hydrolysis of salicylate ions.
  • the stabilizer may be a single compound or two or more compounds.
  • nitrobenzene derivatives include nitrophenol, nitrobenzyl alcohol, nitrobenzoic acid, dinitrobenzoic acid, dinitrobenzene, nitroanisole, and nitroacetophenone, and include o-nitrophenol, m-nitrophenol, p-nitrophenol, And mixtures thereof are preferred.
  • a single compound may be used, or two or more compounds may be used, and the amount is sufficient to obtain a sufficient current for electrolytic polymerization at a concentration equal to or lower than the saturated dissolution amount in the polymerization solution. Used, preferably at a concentration of 10 mM or more, particularly preferably at a concentration of 30 mM or more.
  • the polymerization solution is prepared by the following method depending on the monomer content.
  • a water-rich solvent, a substituted thiophene as a monomer, and the above-mentioned specific range of supporting electrolyte are introduced into a container for producing a polymerization solution, and are manually or mechanically
  • a polymerization solution is prepared by dissolving each component in a water-rich solvent using a proper stirring means.
  • the monomer exceeds the saturated dissolution amount, that is, a water-rich solvent, a substituted thiophene as a monomer, and the above-mentioned specific range of supporting electrolyte are introduced into a container for producing a polymerization solution, and stirred and homogenized.
  • the polymerization solution can be prepared by irradiating the solution with ultrasonic waves and dispersing the phase-separated monomer as oil droplets in the polymerization solution.
  • the polymerization liquid of the present invention is obtained by irradiating a liquid obtained by adding a monomer exceeding the amount of saturated dissolution in a water-rich solvent with ultrasonic irradiation to disperse the monomer as oil droplets, and then adding a supporting electrolyte to the obtained liquid. You can also get If each component in the polymerization solution is stable, there is no limitation on the temperature during preparation.
  • “ultrasound” means a sound wave having a frequency of 10 kHz or more.
  • an ultrasonic oscillator conventionally known for ultrasonic cleaners, cell grinders and the like can be used without particular limitation.
  • the phase-separated monomer must be oil droplets having a diameter of several ⁇ m or less.
  • the output of the ultrasonic wave is preferably 4 W / cm 2 or more.
  • the ultrasonic irradiation time is not strictly limited but is preferably in the range of 2 to 10 minutes.
  • the longer the irradiation time the more the aggregation of monomer oil droplets is inhibited, and the time until demulsification tends to be longer.
  • the ultrasonic irradiation time is 10 minutes or more, the aggregation effect of oil droplets tends to be saturated. Is recognized. It is also possible to perform multiple irradiations using ultrasonic waves having different frequencies and / or outputs.
  • the monomer content exceeding the saturated dissolution amount may be an amount that can obtain a dispersion in which demulsification is suppressed by ultrasonic irradiation.
  • ultrasonic irradiation conditions It also changes depending on.
  • the polymerization liquid of the present invention contains a water-rich solvent, a monomer selected from substituted thiophenes, and other additives within a range that does not adversely affect the present invention in addition to the above-mentioned specific range of supporting electrolyte. Also good. Suitable additives include water-soluble nonionic surfactants. Since the monomer is concentrated in the micelles of the nonionic surfactant, electrolytic polymerization proceeds rapidly, and a polymer exhibiting high conductivity is obtained. In addition, the nonionic surfactant itself does not ionize, and does not inhibit doping of the polymer in the specific range with the anion of the supporting electrolyte.
  • nonionic surfactant a known water-soluble nonionic surfactant can be used without any particular limitation.
  • examples include polyalkylene glycol, polyvinyl alcohol, polyoxyalkylene alkyl ether, polyoxyalkylene alkyl phenyl ether, polyoxyalkylene styryl phenyl ether, polyoxyalkylene benzyl phenyl ether, polyoxyalkylene-added alkylphenol formaldehyde condensate, polyoxyalkylene Addition styrylphenol formaldehyde condensate, polyoxyalkylene addition benzylphenol formaldehyde condensate, alkyne diol, polyoxyalkylene addition alkyne diol, polyoxyalkylene fatty acid ester, polyoxyalkylene sorbitan fatty acid ester, polyoxyalkylene castor oil, polyoxyalkylene hydrogenated castor oil , Polyglycerin alkyl agent Le, such as polyglyce
  • alkyne diol having high dispersion effect such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol and other nonionic surfactants, preferably polyoxyethylene (9) nonyl
  • alkyne diol having high dispersion effect such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol and other nonionic surfactants, preferably polyoxyethylene (9) nonyl
  • a combination with a polyoxyethylene alkylphenyl ether such as a phenyl ether branched type in the polymerization liquid is preferable because the monomer content in the polymerization liquid can be greatly increased.
  • a water-rich solvent, a monomer, the above-mentioned specific range of supporting electrolyte, and a nonionic surfactant are introduced into a container for producing a polymerization solution, and are manually or mechanically stirred.
  • a polymerization solution is prepared by dissolving each component in a water-rich solvent by using or irradiating ultrasonic waves.
  • a water-rich solvent, a monomer, and a nonionic surfactant are introduced into a container for producing a polymerization solution to prepare a solution in which each component is dissolved in a water-rich solvent.
  • the supporting electrolyte in the specific range may be added and dissolved.
  • any method for producing a polymerization liquid when borodisalicylic acid and / or borodisalicylate as a supporting electrolyte and nitrobenzene and / or a nitrobenzene derivative as a stabilizer are used in combination, the polymerization liquid is produced. Both are introduced into the container almost simultaneously, or the stabilizer is introduced first. This is because the stabilizer is used to suppress hydrolysis of borodisalicylate ions.
  • a counter electrode for electrolytic polymerization a plate of platinum, nickel, or the like can be used.
  • the electrolytic polymerization is performed by any one of a constant potential method, a constant current method, and a potential sweep method using the polymerization solution obtained in the preparation stage.
  • a potential of 1.0 to 1.5 V is suitable for the saturated calomel electrode, and in the case of the constant current method, it depends on the type of monomer.
  • a current value of 1 to 10000 ⁇ A / cm 2 preferably 5 to 500 ⁇ A / cm 2 , more preferably 10 to 100 ⁇ A / cm 2 is suitable, and depends on the type of monomer when using the potential sweep method.
  • the polymerization temperature is not strictly limited, but is generally in the range of 10 to 60 ° C.
  • the polymerization time varies depending on the composition of the polymerization solution and the electrolytic polymerization conditions, but is generally in the range of 0.6 second to 2 hours, preferably 1 to 10 minutes, particularly preferably 2 to 6 minutes.
  • a conductive polymer layer containing the anion of the above-mentioned specific range non-sulfonic acid organic supporting electrolyte as a dopant is densely formed on the ITO conductive layer of the substrate.
  • the RMS of the surface of the conductive polymer layer (the surface of the surface that should face the electrolyte layer) hardly affects the RMS of the surface of the ITO conductive layer facing the conductive polymer layer unless the thickness of the conductive polymer layer is extremely thin. I do not receive it.
  • the density of the conductive polymer layer obtained is in the range of 1.15 to 1.80 g / cm 3 , more preferably in the range of 1.20 to 1.80 g / cm 3 , and 1.60 to 1.
  • a range of 80 g / cm 3 is particularly preferred.
  • the density is less than 1.15 g / cm 3 , the heat resistance is drastically lowered, and it is difficult to produce a conductive polymer layer having a density exceeding 1.80 g / cm 3 .
  • the density of the conductive polymer layer is 1. It is preferably 75 g / cm 3 or less, particularly preferably 1.70 g / cm 3 or less.
  • the thickness of the conductive polymer layer is preferably in the range of 10 to 500 nm, more preferably in the range of 30 to 300 nm. If the thickness of the conductive polymer exceeds 500 nm, the internal resistance increases, and it takes time for the electropolymerization, which is economically disadvantageous. If the thickness of the conductive polymer exceeds 300 nm, cracks may be observed in the conductive polymer layer.
  • the thickness of the conductive polymer layer is preferably in the range of 10 to 300 nm, particularly preferably in the range of 10 to 200 nm. The thickness of the conductive polymer can be measured with an atomic force microscope or the like.
  • constant current electropolymerization at a predetermined current density is performed twice or more at different times, and after measuring the thickness of the conductive polymer layer obtained by each electropolymerization, the obtained thickness and the energization in the electropolymerization are measured.
  • a calculation formula indicating the relationship with the charge amount may be derived, and the thickness of the conductive polymer layer may be calculated from the energization charge amount using the calculated calculation formula.
  • an anode in which a dense conductive polymer layer having excellent heat resistance is formed on a substrate can be obtained.
  • the obtained conductive polymer layer of the anode is stable to moisture in the air and exhibits a pH near neutral, so that other components are not corroded in the process of manufacturing or using the solar cell. .
  • a dye-sensitized solar cell includes a cathode having a semiconductor layer containing a dye as a photosensitizer, and a pair of oxidized and reduced species stacked on the semiconductor layer of the cathode. And an electrolyte layer including the anode described above.
  • the conductive polymer layer of the anode described above has sufficient catalytic ability and excellent heat resistance to convert the oxidizing species constituting the redox couple into reducing species in the electrolyte layer.
  • the conductive substrate and the semiconductor layer constituting the cathode in the dye-sensitized solar cell the conductive substrate and the semiconductor layer in the conventional dye-sensitized solar cell can be used without any particular limitation.
  • a substrate having at least a conductive portion on the surface can be used, and the conductive portion of the substrate may be a single layer or may include a plurality of different types of layers.
  • a plate or foil of a conductor such as platinum, nickel, titanium, steel, chromium, niobium, molybdenum, ruthenium, rhodium, tantalum, tungsten, iridium, or hastelloy can be used as a substrate, or optical glass, quartz
  • a transparent and insulating glass substrate such as glass and alkali-free glass, or transparent and insulating plastic substrate such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, polyacrylate, indium oxide, ITO,
  • a transparent substrate provided with a transparent conductive layer such as zinc-doped indium oxide, tin oxide, antimony-doped tin oxide, FTO, zinc oxide, and aluminum-doped
  • a substrate in which a metal film such as platinum, nickel, titanium, rhodium, and ruthenium is provided on the above glass substrate or plastic substrate by vapor deposition or coating can be used.
  • a transparent substrate is used as the cathode substrate.
  • an all-transparent solar cell can be constructed by using a transparent base for the cathode.
  • a substrate having a conductive layer formed on a plastic film As a cathode, a lightweight and flexible dye-sensitized solar cell can be obtained.
  • a substrate having an ITO conductive layer formed on the plastic film used for the anode is also used for the cathode.
  • Semiconductor layer is titanium oxide, zirconium oxide, zinc oxide, tin oxide, nickel oxide, niobium oxide, magnesium oxide, tungsten oxide, bismuth oxide, indium oxide, thallium oxide, lanthanum oxide, yttrium oxide, phosphonium oxide, cerium oxide, oxide
  • An oxide semiconductor such as aluminum, cadmium sulfide, cadmium selenide, cadmium telluride, calcium titanate, strontium titanate, or barium titanate can be used.
  • the oxide semiconductor a single compound may be used, or two or more kinds may be mixed and used. It is preferable to use titanium oxide having high photoelectric conversion efficiency.
  • An oxide semiconductor is usually used in a porous form so that a large amount of dye can be supported on a semiconductor layer.
  • an organic dye or a metal complex dye having absorption in the visible light region and / or the infrared light region can be used.
  • Organic dyes include coumarin, cyanine, merocyanine, phthalocyanine, porphyrin, azo, quinone, quinoneimine, quinacridone, squarylium, triphenylmethane, xanthene, perylene, indigo, na
  • a phthalocyanine dye or the like can be used, and a coumarin dye is preferably used.
  • an osmium complex, a ruthenium complex, an iron complex, a zinc complex, a platinum complex, a palladium complex, or the like can be used, and in particular, a ruthenium bipyridine complex such as N3 or N719 in that it has a wide absorption band. It is preferable to use a ruthenium terpyridine complex and a ruthenium quarterpyridine complex such as N749.
  • a carboxyl group in the dye molecule Those having an interlock group such as an alkoxy group, a hydroxyl group, a hydroxyalkyl group, a sulfonic acid group, an ester group, a mercapto group, and a phosphonyl group are preferable, and among these, a group having a carboxyl group is particularly preferable.
  • an acid functional group such as a carboxyl group is neutralized with an alkali metal hydroxide, a tetraalkylammonium hydroxide, an imidazolium hydroxide, a pyridinium hydroxide, or the like, an anion is obtained.
  • the repulsive force acting between them suppresses the association between the dye molecules, and can greatly reduce the electron trap between the dye molecules.
  • these dyes a single compound may be used, or a mixture of two or more kinds may be used.
  • the cathode of the dye-sensitized solar cell can be obtained by a known method.
  • a dispersion containing the above-described oxide semiconductor particles and an organic binder such as polytetrafluoroethylene, polyvinylidene fluoride, or carboxymethyl cellulose on a conductive portion of a substrate is wet by spin coating, bar coating, cast coating, or the like. After laminating by the method, drying by heating, and firing at a temperature of 400 to 500 ° C., a porous layer of the oxide semiconductor is provided on the substrate.
  • the oxide semiconductor particles spherical, rod-like, needle-like particles having an average primary particle diameter of 1 to 200 nm are preferably used.
  • the substrate after baking is immersed in a solution in which the above-described dye is dissolved in a solvent such as ethanol, isopropyl alcohol, butyl alcohol, etc., taken out from the immersion liquid after a predetermined time, and dried to carry the dye on the oxide semiconductor.
  • a solvent such as ethanol, isopropyl alcohol, butyl alcohol, etc.
  • a reverse electron transfer inhibitor having a functional group such as an imidazolyl group, a carboxy group, or a phosphone group that binds to the semiconductor, such as tert-butylpyridine, 1-methoxybenzimidazole, decanoic acid
  • a phosphonic acid having a long-chain alkyl group having about 13 carbon atoms
  • the reverse electron transfer inhibitor is adsorbed in the gap between the dyes on the semiconductor surface. It is preferable because reverse electron transfer in the liquid can be prevented and the dye is less likely to be eluted into the electrolytic solution.
  • the thickness of the semiconductor layer is generally in the range of 1 to 100 ⁇ m, preferably 3 to 50 ⁇ m, particularly preferably 3 to 20 ⁇ m. If the thickness of the semiconductor layer is less than 1 ⁇ m, light absorption may be insufficient. If the thickness of the semiconductor layer is greater than 100 ⁇ m, the distance from which the electrons reach the conductive portion of the base becomes long, and the electrons Is not preferable because of inactivation.
  • the electrolyte layer of the dye-sensitized solar cell can be used without any particular limitation.
  • an electrolytic solution for forming the electrolyte layer an electrolytic solution in which an organic solvent, an ionic liquid, or a mixture thereof is used as a solvent and a redox couple is dissolved in these solvents can be used.
  • organic solvent examples include nitriles such as acetonitrile, methoxyacetonitrile, and 3-methoxypropionitrile, carbonates such as propylene carbonate and ethylene carbonate, lactones such as ⁇ -butyrolactone, alcohols such as ethylene glycol, sulfolane, 3- Examples thereof include cyclic sulfones such as methyl sulfolane and 2,4-dimethyl sulfolane, and chain sulfones.
  • nitriles such as acetonitrile, methoxyacetonitrile, and 3-methoxypropionitrile
  • carbonates such as propylene carbonate and ethylene carbonate
  • lactones such as ⁇ -butyrolactone
  • alcohols such as ethylene glycol
  • sulfolane 3- Examples thereof include cyclic sulfones such as methyl sulfolane and 2,4-dimethyl sulfolane, and chain sulf
  • cations such as imidazolium, ammonium, pyridinium, pyrrolidinium, triazolium, piperidinium, phosphonium, sulfonium, morpholinium, [(C 2 F 5 ) 3 PF 3 ] ⁇ , [N (SO 2 CF 3 ) 2 ] -, [CF 3 SO 3 ] -, [B (CN) 4] -, [N (CN) 2] -, [SCN] -, [Al 2 Cl 7] -, [HSO 4] -, [C 2 H 5 SO 4] -, [C 8 H 17 SO 4] -, [C 5 H 11 O 2 SO 4] -, [B (C 2 O 4) 2] -, [CH 3 SO 3] -, [(CH 3) 2 PO 4 ) -, [(C 2 H 5) 2 PO 4] -, [BF 4] -, [PF 6] -, [C 4 F 9 SO
  • metal complexes such as ferrocyanate / ferricyanate and ferrocene / ferricinium ions, sulfur compounds such as sodium polysulfide, alkylthiol / alkyl disulfide, viologen dyes, hydroquinone / quinone, etc.
  • sulfur compounds such as sodium polysulfide, alkylthiol / alkyl disulfide, viologen dyes, hydroquinone / quinone, etc.
  • Li, Na, K, Mg, Ca, Cs and the like are preferable as the cation of the metal compound
  • tetraalkylammoniums, pyridiniums, imidazoliums and the like are preferable as the cation of the organic compound.
  • iodide and iodine having high photoelectric conversion efficiency, and in particular, I 2 and alkali metal iodides such as LiI, NaI, and KI, and imidazolium such as dimethylpropylimidazolium iodide. It is preferred to use a combination of a compound and a quaternary ammonium iodide.
  • concentration of the above-mentioned salt is preferably 0.05M to 5M, more preferably 0.2M to 2M with respect to the solvent.
  • concentration of I 2 or Br 2 is preferably 0.0005M to 1M, and more preferably 0.001 to 0.2M.
  • additives such as 4-tert-butylpyridine and carboxylic acid can also be added for the purpose of improving the open circuit voltage of the dye-sensitized solar cell.
  • a supporting electrolyte such as lithium iodide or lithium tetrafluoroborate may be added to the electrolytic solution as necessary.
  • the electrolyte layer can also be formed from a gel electrolyte that is pseudo-solidified by adding a gelling agent to the electrolyte solution.
  • a gelling agent When used as a physical gel, polyacrylonitrile, polyvinylidene fluoride, or the like can be used as a gelling agent.
  • an acrylic (methacrylic) ester oligomer or tetra (bromomethyl) benzene as a gelling agent.
  • a combination of polyvinyl pyridine and polyvinyl pyridine can be used.
  • the dye-sensitized solar cell can be obtained by a known method using the above-described anode. For example, by disposing a cathode semiconductor layer and an anode conductive polymer layer with a predetermined gap, injecting an electrolyte into the gap, and heating as necessary to form an electrolyte layer, dye sensitization A solar cell can be obtained.
  • the thickness of the electrolyte layer is generally in the range of 1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, excluding the thickness of the electrolyte layer that has penetrated into the semiconductor layer. If the thickness of the electrolyte layer is less than 1 ⁇ m, the semiconductor layer of the cathode may be short-circuited. If the thickness of the electrolyte layer is more than 100 ⁇ m, the internal resistance increases, which is not preferable.
  • a substrate original substrate 1: surface resistance 14 ⁇ / ⁇
  • an amorphous ITO conductive layer is formed on polyethylene naphthalate by sputtering, 0.055 mass% hydrogen chloride and After being immersed in an aqueous solution containing 0.05% by mass of iron (II) chloride at 40 ° C. for 30 minutes, the substrate was taken out, sufficiently washed with deionized water and ultrapure water, and dried.
  • Ra was 15.0 nm and RMS was 17.3 nm.
  • Distilled water 50 mL was introduced into a glass container, and p-nitrophenol 0.70 g (0.10 M), EDOT 0.105 g (concentration 0.0148 M), and ammonium borodisalicylate 1.4 g (concentration 0.08 M) were added to this solution. Were added in this order and stirred to obtain a polymerization solution in which all EDOT was dissolved.
  • a dried substrate was used as a working electrode, and a SUS mesh having an area of 5 cm 2 was introduced as a counter electrode, and constant current electrolytic polymerization was performed for 3 minutes under the condition of 100 ⁇ A / cm 2 .
  • the working electrode after polymerization was washed with water / methanol and then dried at 150 ° C. for 30 minutes to obtain an anode having a PEDOT layer (dopant: borodisalicylate anion) having a thickness of 105 nm formed on the ITO electrode layer.
  • the density of the PEDOT layer was about 1.6 g / cm 3 .
  • Anode B The manufacturing procedure of the anode A was repeated except that the polymerization time was extended to 6 minutes to obtain an anode having a PEDOT layer having a thickness of 210 nm formed on the ITO electrode layer.
  • the density of the PEDOT layer was about 1.6 g / cm 3 .
  • Anode C The base substrate 1 used for the production of the anode A was immersed in an aqueous solution containing 0.15% by mass of hydrogen peroxide and 0.05% by mass of sulfuric acid at 40 ° C. for 8 minutes, and then the substrate was taken out and removed. It was thoroughly washed with ionic water and ultrapure water and dried. When the surface roughness of the ITO conductive layer on the dried substrate was measured using an atomic force microscope, Ra was 5.0 nm and RMS was 6.6 nm.
  • a SUS mesh having an area of 5 cm 2 was introduced as a counter electrode using the dried substrate as a working electrode, and constant current electrolytic polymerization was performed for 3 minutes under the condition of 100 ⁇ A / cm 2. went.
  • the working electrode after polymerization was washed with water / methanol and then dried at 150 ° C. for 30 minutes to obtain an anode in which a PEDOT layer having a thickness of 105 nm was formed on the ITO electrode layer.
  • the density of the PEDOT layer was about 1.6 g / cm 3 .
  • Anode D The base substrate 1 used for the production of the anode A is immersed in a neutral detergent (10% aqueous solution of Clean Ace S manufactured by AS ONE Co., Ltd.), subjected to ultrasonic irradiation for 10 minutes, and then the substrate is taken out and deionized. It was thoroughly washed with water and ultrapure water and dried. When the surface roughness of the ITO conductive layer in the substrate after drying was measured using an atomic force microscope, Ra was 2.0 nm and RMS was 2.6 nm.
  • a SUS mesh having an area of 5 cm 2 was introduced as a counter electrode using the dried substrate as a working electrode, and constant current electrolytic polymerization was performed for 3 minutes under the condition of 100 ⁇ A / cm 2. went.
  • the working electrode after polymerization was washed with water / methanol and then dried at 150 ° C. for 30 minutes to obtain an anode in which a PEDOT layer having a thickness of 105 nm was formed on the ITO electrode layer.
  • the density of the PEDOT layer was about 1.6 g / cm 3 .
  • Anode E The production procedure of the anode D was repeated except that the polymerization time was extended to 6 minutes to obtain an anode in which a PEDOT layer having a thickness of 210 nm was formed on the ITO electrode layer.
  • the density of the PEDOT layer was about 1.6 g / cm 3 .
  • Anode F A base body (original base body 2) having a size of 1 cm ⁇ 3 cm and having an amorphous ITO conductive layer formed by sputtering on polyethylene naphthalate was mixed with 0.055 mass% hydrogen chloride and 0.05 mass%. After immersing in an aqueous solution containing iron (II) chloride at 40 ° C. for 30 minutes, the substrate was taken out, thoroughly washed with deionized water and ultrapure water, and dried. When the surface roughness of the ITO conductive layer on the dried substrate was measured using an atomic force microscope, Ra was 14.6 nm and RMS was 16.7 nm.
  • a SUS mesh having an area of 5 cm 2 was introduced as a counter electrode using the dried substrate as a working electrode, and constant current electrolytic polymerization was performed for 3 minutes under the condition of 100 ⁇ A / cm 2. went.
  • the working electrode after polymerization was washed with water / methanol and then dried at 150 ° C. for 30 minutes to obtain an anode in which a PEDOT layer having a thickness of 105 nm was formed on the ITO electrode layer.
  • the density of the PEDOT layer was about 1.6 g / cm 3 .
  • Anode G The base substrate 2 used for the anode F was immersed in an aqueous solution containing 0.15% by mass hydrogen peroxide and 0.05% by mass sulfuric acid at 40 ° C. for 8 minutes, and then the substrate was taken out and deionized water. And thoroughly washed with ultrapure water and dried. When the surface roughness of the ITO conductive layer on the dried substrate was measured using an atomic force microscope, Ra was 15.7 nm and RMS was 17.0 nm.
  • the polymerization solution was used in the preparation of the anode A, the working electrode substrate after drying, the SUS mesh having an area of 5 cm 2 as a counter electrode, respectively introduced, 100 .mu.A / cm 2 conditions constant current electrolytic polymerization for 3 minutes went.
  • the working electrode after polymerization was washed with water / methanol and then dried at 150 ° C. for 30 minutes to obtain an anode in which a PEDOT layer having a thickness of 105 nm was formed on the ITO electrode layer.
  • the density of the PEDOT layer was about 1.6 g / cm 3 .
  • Anode H The base substrate 2 used for the anode F was immersed in a neutral detergent (10% aqueous solution of Clean Ace S manufactured by AS ONE Co., Ltd.) and subjected to ultrasonic irradiation for 10 minutes. Then, the substrate was taken out, deionized water and It was thoroughly washed with ultrapure water and dried. When the surface roughness of the ITO conductive layer on the dried substrate was measured using an atomic force microscope, Ra was 2.9 nm and RMS was 4.8 nm.
  • a SUS mesh having an area of 5 cm 2 was introduced as a counter electrode using the dried substrate as a working electrode, and constant current electrolytic polymerization was performed for 3 minutes under the condition of 100 ⁇ A / cm 2. went.
  • the working electrode after polymerization was washed with water / methanol and then dried at 150 ° C. for 30 minutes to obtain an anode in which a PEDOT layer having a thickness of 105 nm was formed on the ITO electrode layer.
  • the density of the PEDOT layer was about 1.6 g / cm 3 .
  • the thickness of the conductive polymer layer in the anodes A to H was calculated as follows. First, a conductive polymer is obtained by performing constant current electrolytic polymerization for 1 minute on the ITO conductive layer of each substrate used for anodes A, C, D, F, G, and H under the condition of 0.1 mA / cm 2. An experiment was conducted in which the layer was formed and the thickness of the polymer layer was measured with an atomic force microscope. Next, a constant current electropolymerization is performed on the ITO conductive layer of each substrate under a condition of 0.1 mA / cm 2 for 28.6 minutes to form a conductive polymer layer, and the thickness of the polymer layer is measured by a step gauge. The experiment was conducted.
  • the density of the conductive polymer layer in the anodes A to H was calculated from the thickness of the conductive polymer layer, the area of the ITO conductive layer, and the weight of the conductive polymer layer. In any of the anodes, the density of the conductive polymer layer was substantially the same.
  • the RMS value on the surface of the ITO conductive layer of the substrate on the formation of the conductive polymer layer was minimized and the RMS value on the surface of the ITO conductive layer was maximized.
  • the surface roughness of the conductive polymer layer was measured with an atomic force microscope.
  • the Ra of the conductive polymer layer in the anode A was 8.6 nm and RMS was 11.0 nm
  • the Ra of the conductive polymer layer in the anode D was 8.6 nm
  • RMS was 10.9 nm. This also shows that a uniform and dense conductive polymer layer is formed regardless of the surface roughness of the ITO conductive layer of the substrate.
  • the quality of adhesiveness is evaluated by classifying it into any one of scales 0 to 5 according to the residual degree of the cut portion on the substrate after the adhesive tape is peeled off.
  • a scale of 0 means that the grid-like cut portion of the conductive polymer layer did not peel off from the ITO conductive layer
  • a scale of 5 means that most of the grid-like cut portion of the conductive polymer layer peeled off from the ITO conductive layer.
  • the adhesion between the conductive polymer layer and the ITO conductive layer was poor.
  • the anodes A, B, C, F, and G in which the RMS of the ITO conductive layer surface is 5.0 nm or more the conductive polymer layer and the ITO conductive layer are still subjected to this severe high temperature standing condition. Adhesion with the layer was good.
  • a platinum mesh having an area of 4 cm 2 and a silver-silver chloride electrode as a reference electrode were introduced, the scanning potential range was ⁇ 0.8 to +0.8 V, and the scanning speed was 10 mV / s.
  • Figure 1 shows a cyclic voltammogram.
  • (1) shows the cyclic voltammograms of anode A and anode D having a conductive polymer layer with a thickness of 105 nm prepared starting from original substrate 1, and (2) starting from original substrate 1
  • FIG. 2 shows cyclic voltammograms of anode B and anode E having a created 210 nm thick conductive polymer layer, (3) having a 105 nm thick conductive polymer layer created starting from the original substrate 2.
  • the cyclic voltammogram of the anode F and the anode H is shown.
  • Redox wave of negative potential side is I 3 - / I - a redox wave corresponding to the redox wave of the positive potential side I 2 / I 3 - redox waves corresponding to.
  • a reduction wave from I 3 ⁇ to I ⁇ observed around ⁇ 0.2 V with respect to a silver-silver chloride electrode is particularly important. This is because sufficient regeneration of I ⁇ is necessary.
  • the anode which has the conductive polymer layer of the same thickness produced using the same original substrate (1 or 2) showed the substantially same cyclic voltammogram. From these, it can be seen that the catalytic performance of the anode does not depend on the surface roughness of the ITO conductive layer of the substrate.
  • the anodes A, B, D, E, F, and H were taken out of the electrolyte, washed, and then subjected to thermal aging that was allowed to stand in a high-temperature atmosphere at 160 ° C. for 500 hours, and the cyclic voltammogram was measured again. All showed cyclic voltammograms almost identical to the initial ones.
  • a titanium oxide paste (manufactured by JGC Catalysts and Chemicals) was applied to the surface of an FTO electrode having a surface area of 0.25 cm 2 by screen printing, and then pre-dried at 120 ° C. for 20 minutes.
  • the titanium oxide paste having the thickness of 14 ⁇ 1 ⁇ m in total is formed by repeating the application of the titanium oxide paste by the screen printing method and the preliminary drying for 20 minutes at 120 ° C. twice. Formed. Subsequently, it baked at 450 degreeC for 15 minute (s), and the titanium oxide porous layer was formed on the FTO electrode.
  • the titanium oxide porous layer was immersed in a 1: 1 solution of t-butanol / acetonitrile containing dye N719 at a concentration of 0.5 mM for 24 hours and then dried at room temperature, whereby the dye N719 was added to the titanium oxide porous layer.
  • the obtained cathode and the anode A having a conductive polymer layer with a thickness of 105 nm are bonded together so that the titanium oxide porous layer and the conductive polymer layer face each other with a spacer of 50 ⁇ m, and an electrolytic solution is put in the gap
  • An electrolyte layer was formed by impregnation to obtain a dye-sensitized solar cell.
  • the electrolyte used was 0.1M lithium iodide, 0.05M iodine, 0.6M 1,2-dimethyl-3-propylimidazolium iodide, and 0.5M 4-t-butylpyridine in acetonitrile. The solution dissolved in was used.
  • Example 2 The procedure of Example 1 was repeated using anode F having a conductive polymer layer with a thickness of 105 nm instead of anode A.
  • Example 1 The procedure of Example 1 was repeated using anode D with a conductive polymer layer 105 nm thick instead of anode A.
  • Example 2 The procedure of Example 1 was repeated using anode H having a conductive polymer layer of 105 nm thickness instead of anode A.
  • FIG. 3, FIG. 4 and FIG. 5 are diagrams showing the short-circuit current density, open-circuit voltage, fill factor and photoelectric conversion efficiency for each dye-sensitized solar cell, respectively.
  • the dye-sensitized solar cell of Example 1 provided with the anode A prepared from the substrate 1 and the dye-sensitized solar cell of Comparative Example 1 provided with the anode D are substantially the same. It showed equal short circuit current density, open circuit voltage, fill factor and photoelectric conversion efficiency.
  • the dye-sensitized solar cell of Example 2 provided with the anode F prepared from the substrate 2 and the dye-sensitized solar cell of Comparative Example 2 provided with the anode H are also substantially equal in short circuit current density and open circuit. The voltage, fill factor and photoelectric conversion efficiency were shown. From these, it can be seen that the performance of the dye-sensitized solar cell does not depend on the surface roughness of the ITO conductive layer of the anode substrate.
  • Example 3 Anode A with 0.1M lithium iodide, 0.05M iodine, 0.6M 1,2-dimethyl-3-propylimidazolium iodide, and 0.5M 4-tert-butylpyridine in acetonitrile It was immersed in the dissolved electrolyte and allowed to stand at 85 ° C. for 100 hours. The anode A after standing was taken out from the electrolyte solution, washed with water / methanol, dried, and then the cathode obtained in Example 1 was used as a spacer having a porous titanium oxide layer and a conductive polymer layer of 50 ⁇ m.
  • Example 4 Instead of leaving at 85 ° C. for 100 hours, the procedure of Example 3 was repeated except that it was left at 85 ° C. for 250 hours.
  • Example 5 Instead of leaving at 85 ° C. for 100 hours, the procedure of Example 3 was repeated except that it was left at 85 ° C. for 500 hours.
  • Example 6 Instead of leaving at 85 ° C. for 100 hours, the procedure of Example 3 was repeated except that it was left at 85 ° C. for 1000 hours.
  • Example 7 Anode F was prepared by adding 0.1 M lithium iodide, 0.05 M iodine, 0.6 M 1,2-dimethyl-3-propylimidazolium iodide, and 0.5 M 4-tert-butylpyridine to acetonitrile. It was immersed in the dissolved electrolyte and allowed to stand at 85 ° C. for 100 hours. After leaving the anode F out of the electrolyte, washing with water / methanol and drying, this and the cathode obtained in Example 1 were combined with a spacer having a porous titanium oxide layer and a conductive polymer layer of 50 ⁇ m.
  • Example 8 Instead of leaving at 85 ° C. for 100 hours, the procedure of Example 7 was repeated except that it was left at 85 ° C. for 250 hours.
  • Example 9 Instead of leaving at 85 ° C. for 100 hours, the procedure of Example 7 was repeated except that it was left at 85 ° C. for 500 hours.
  • Example 10 Instead of leaving at 85 ° C. for 100 hours, the procedure of Example 7 was repeated except that it was left at 85 ° C. for 1000 hours.
  • FIG. 6 shows Example 1 (initial), Example 3 (100 hours left), Example 4 (250 hours left), Example 5 (500 hours left) and Example formed by using the anode A.
  • the values of the fill factor in the dye-sensitized solar cell of 6 are shown in FIG. 7 in Example 2 (initial), Example 7 (left for 100 hours) formed by using the anode F.
  • the values of the fill factor in the dye-sensitized solar cells of Example 8 (left for 250 hours), Example 9 (left for 500 hours) and Example 10 (left for 1000 hours) are shown.
  • the dye-sensitized solar cell using the anode A or the anode F uses the initial anode even when an anode that has been subjected to severe high-temperature storage conditions of being immersed in an electrolytic solution at 85 ° C. for 1000 hours is used.
  • the value of the fill factor of the dye-sensitized solar cell was about 80%. From this, it can be seen that both anode A and anode F have excellent durability.
  • the adhesion between the conductive polymer layer and the ITO conductive layer is improved, and the weight of the pigment is low even when it comes into contact with the electrolytic solution.
  • a sensitized solar cell could be obtained.
  • a lightweight dye-sensitized solar cell provided with an anode having excellent catalytic ability and heat resistance can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 優れた触媒能と耐熱性とを有する陽極を備えた軽量な色素増感太陽電池を提供する。 色素を含む半導体層を有する陰極と、該陰極の半導体層上に積層された対を成す酸化種と還元種とを含む電解質層と、該電解質層上に積層された前記酸化種を前記還元種に変換する触媒として作用する導電性ポリマー層を有する陽極とを備えた本発明の色素増感太陽電池は、上記導電性ポリマー層が、プラスチックフィルム上にスズドープ酸化インジウム導電層が形成された基体の上記導電層上に形成されており、3位と4位に置換基を有するチオフェンから構成されたポリマーと、該ポリマーに対するドーパントとしての非スルホン酸系有機化合物から発生したアニオンとを含み、1.15~1.80g/cmの範囲の密度を有している。前記導電層の前記導電性ポリマー層に対向する表面の自乗平均面粗さは5.0nm以上である。

Description

色素増感太陽電池
 本発明は、優れた触媒能と耐熱性とを有する陽極を備えた軽量な色素増感太陽電池に関する。
 色素増感太陽電池は、シリコン系太陽電池や化合物系太陽電池と比較して、資源的制約が無く、原材料が安価であり、製法が簡便であるため生産コストを低く抑えることができるなどの利点を有しているため、次世代の太陽電池として大きな期待を集めている。
 この色素増感太陽電池は、対を成す酸化種と還元種とを含む電解質層が、光増感剤としての色素を含む半導体層を有する陰極と、電解質層中の酸化種を還元種に変換する触媒層を有する陽極との間に挟み込まれた構造を有している。一般に、ガラスなどの透明基体の表面にスズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)などの半導体セラミックスの蒸着層を形成した透明電極の上にルテニウム錯体などの色素を担持した酸化物半導体層を形成した電極が陰極として使用されており、上述した透明電極や鋼などの基体上にPtをスパッタリング法、真空蒸着法などにより付着させた電極が陽極として使用されている。透明電極を介して半導体層の色素に光が照射されると、色素が光エネルギーを吸収して励起状態となり、電子を半導体に向けて放出する。放出された電子は半導体層から透明電極へと移動し、さらに透明電極から外部回路を経由して陽極へと移動する。そして、陽極のPt触媒層の作用により電解質層の酸化種(例えばI )が陽極から電子を受け取って還元種(例えばI)へと変換され、さらに還元種(例えばI)が色素に電子を放出して酸化種(例えばI )へと変換される。
 陽極のPt触媒層は、電解質層の酸化種を還元種に変換する触媒能に優れているが、高価である。その上、Pt触媒層の製造のために真空プロセスが必要なことから、製造設備が高価になり、工程も複雑であり、量産性に劣るという問題点をかかえている。また、水分存在下でのIイオンに対する耐久性が十分でないという問題点も有している。そのため、Pt触媒層の代替となる導電性材料が求められており、これまでに導電性ポリマー層、特にポリ(3,4-エチレンジオキシチオフェン)を含む導電性ポリマー層が頻繁に検討されてきた(以下、3,4-エチレンジオキシチオフェンを「EDOT」と表わし、ポリ(3,4-エチレンジオキシチオフェン)を「PEDOT」と表わす)。PEDOT等の導電性ポリマー層の製造は湿式方式で行われるため、Pt触媒層の製造に比較して、製造設備が安価で、工程も簡便である。
 例えば、非特許文献1(Electrochemistry 71,No.11(2003)944-946)は、PEDOTのポリスチレンスルホン酸塩、ポリアニリン、及びポリピロールの3種の導電性ポリマー層を備えた電極を選択し、I/I 酸化還元対を含む電解液中でのサイクリックボルタモグラムを測定し、Pt電極のものと比較した結果を報告している。この文献の報告によると、Pt電極のサイクリックボルタモグラムにはI からIへの還元波が明瞭に認められるのに対し、PEDOTのポリスチレンスルホン酸塩の電極及びポリピロール電極のサイクリックボルタモグラムにはI からIへの還元波がほとんど認められず、ポリアニリン電極のサイクリックボルタモグラムには酸化還元波自体が全く認められなかった。色素増感太陽電池において、このI からIへの還元波が特に重要である。満足のいく性能を有する色素増感太陽電池を得るためには、Iの十分な再生が必要だからである。しかしながら、ポリアニリン電極やポリピロール電極はもちろんのこと、PEDOTのポリスチレンスルホン酸塩の電極であっても、明瞭な還元波を示さず、色素増感太陽電池の陽極として満足のいく性能を有していなかった。
 特許文献1(特開2006-351289号公報)は、ビス(パーフルオロアルカンスルホニル)イミド及びそれらの塩から選ばれた化合物を含有する溶液中で、表面の平均面粗さが10nm以上、好ましくは30nm以上、より好ましくは100nm以上の電極基体表面上に、ピロール、チオフェン、アニリン等の芳香族化合物を電解重合させることにより、電極基体表面上に多孔性の導電性ポリマー層を形成する方法、及び、この方法により得られた導電性ポリマー層の色素増感太陽電池用触媒電極としての利用を開示している。電極表面の凹凸により部分的に重合電荷密度が高まるため、その点を中心として高分子が成長し始めることに加え、ビス(パーフルオロアルカンスルホニル)イミドが左右に広く展開した弓形若しくは扇型の分子構造をしていること且つアルキル基の存在によって成長過程の高分子と絡まる形状で成長することにより、フィブリル状の高分子(この文献の図3参照)が生成すると推測されている。色素増感太陽電池において、多孔性ポリピロール層を有する触媒電極を用いると、粒塊状ポリピロール層を有する触媒電極を用いた場合に比較して、光電変換効率が向上することが記載されている。導電性ポリマー層を形成するためのモノマーとしてEDOTが特に好ましいことが記載されているものの、多孔性のPEDOT層を有する陽極を備えた色素増感太陽電池の具体例は存在しない。
 特許文献2(特開2008-16442号公報)は、導電性基材上に色素を吸着した半導体からなる光電変換層を設けた半導体電極(陰極)と、該半導体電極に対向して設けられた導電性基材上に導電性ポリマー層を設けた対向電極(陽極)と、これらの間に保持されたチオアルコキシド/ジスルフィド酸化還元対を含む電解質層と、を有する色素増感太陽電池を開示している。導電性ポリマー層を形成するためのモノマーとして、EDOT及びその誘導体が好ましいことが記載されており、具体例として、FTOガラス上に色素N719を含む酸化チタン層が形成された陰極と、チオアルコキシド/ジスルフィド酸化還元対を含む電解質層と、EDOTのトリス-p-トルエンスルホン酸鉄(III)を酸化剤とした化学重合により得られたPEDOTがFTOガラス上に塗布された陽極と、を備えた色素増感太陽電池が示されている。
 陽極の導電性ポリマー層には基本的性能として電解質層中の酸化種を還元種に変換する高い触媒能が要求されるが、その上、太陽電池の製造過程において太陽電池の各構成要素が高温を経験することがあり、また太陽電池を猛暑時に野外で使用する場合も想定されるため、太陽電池の各構成要素には十分な耐熱性が求められる。しかしながら、ポリスチレンスルホン酸イオンをドーパントとして含むPEDOT層、トリス-p-トルエンスルホン酸イオンをドーパントとして含むPEDOT層等の従来から検討されてきた導電性ポリマー層は、これらの要請を十分に満足させる性能を有していなかった。そこで、出願人は、高い触媒能を有する上に耐熱性に優れた導電性ポリマー層を得るべく検討を重ね、特許文献3(WO2012/133858A1)及び特許文献4(WO2012/133859A1)において、3位と4位に置換基を有するチオフェン(以下、3位と4位に置換基を有するチオフェンを、「置換チオフェン」と表わす。)から成る群から選択された少なくとも一種のモノマーから構成されたポリマーと、該ポリマーに対するドーパントとしての、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である少なくとも一種の化合物から発生したアニオンと、を含む導電性ポリマー層が、優れた耐熱性を有する上に電解質層中の酸化種を還元種に変換する触媒能にも優れていること、さらには、上記導電性ポリマー層を1.15~1.80g/cmの範囲の密度を有する緻密な層とすることにより、高い触媒能を維持したままで耐熱性を向上させることができることを報告した。上記導電性ポリマー層の密度が低下すると、耐熱性が顕著に低下した。ここで、「非スルホン酸系有機化合物」とは、スルホン酸基及び/又はスルホン酸塩基を有していない有機化合物を意味する。
特開2006-351289号公報 特開2008-16442号公報 WO2012/133858A1 WO2012/133859A1
Electrochemistry 71,No.11(2003)944-946
 ところで、ポリエチレンナフタレートやポリエチレンテレフタレートのようなプラスチックフィルム上にITO等の導電層が形成された基体を用いて、上記導電層上に導電性ポリマー層を形成し、これを陽極として用いると、軽量な色素増感太陽電池が得られると期待される。しかしながら、発明者らが、プラスチックフィルム上にITO導電層が形成された基板を用いて、置換チオフェンから構成されたポリマーと上記特定範囲のドーパントとを含む導電性ポリマー層をITO導電層上に形成したところ、ITO導電層と導電性ポリマー層との接着性が十分でなく、基体の柔軟性も手伝って、導電性ポリマー層がITO導電層から剥がれる傾向があった。この剥がれは軽量な色素増感太陽電池の生産性を著しく低下させるため解決が望まれる。
 そこで、本発明の目的は、特許文献3及び特許文献4における知見を基礎として、優れた触媒能と耐熱性とを有する陽極を備えた軽量な色素増感太陽電池を提供することである。
 発明者らは、鋭意検討した結果、プラスチックフィルム上にITO導電層が形成された基板のITO導電層の表面を自乗平均面粗さ(RMS)が5.0nm以上になるように粗面化した後、水を主溶媒とし、置換チオフェンと上述した特定範囲の非スルホン酸系有機化合物とを含む重合液を用いて電解重合を行うと、特許文献1からの知見と異なり、多孔性の導電性ポリマー層ではなく緻密な表面を有する導電性ポリマー層が粗面化したITO導電層上に形成され、その結果、ITO導電層との接着性に優れる上に優れた触媒能と耐熱性とが維持された導電性ポリマー層が得られることを発見し、発明を完成させた。意外にも、導電性ポリマー層表面(電解質層に対向すべき面の表面)のRMSは、導電性ポリマー層の厚みが著しく薄くない限り、ITO導電層の導電性ポリマー層に対向する表面のRMSの影響をほとんど受けない。
 したがって、本発明の色素増感太陽電池は、光増感剤としての色素を含む半導体層を有する陰極と、該陰極の半導体層上に積層された対を成す酸化種と還元種とを含む電解質層と、該電解質層上に積層された上記酸化種を上記還元種に変換する触媒として作用する導電性ポリマー層を有する陽極と、を備えた色素増感太陽電池であって、上記陽極における導電性ポリマー層が、プラスチックフィルム上にITO導電層が形成された基体の上記導電層上に形成されており、3位と4位に置換基を有するチオフェンから成る群から選択された少なくとも一種のモノマーから構成されたポリマーと、該ポリマーに対するドーパントとしての、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である少なくとも一種の化合物から発生したアニオンと、を含み、且つ1.15~1.80g/cmの範囲の密度を有しており、上記導電層の上記導電性ポリマー層に対向する表面のRMSが5.0nm以上であることを特徴とする。上記基体におけるプラスチックフィルムとしては、ポリエチレンナフタレート、ポリエチレンテレフタレート等の透明なフィルムが好適に使用される。
 本発明の色素増感太陽電池において、陽極の導電性ポリマー層は緻密であり、その密度は、1.15~1.80g/cmの範囲である。導電性ポリマー層の密度は、1.20~1.80g/cmの範囲であるのが好ましく、1.60~1.80g/cmの範囲であるのが特に好ましい。密度が1.15g/cm未満であると、耐熱性が急激に低下し、密度が1.80g/cmを超える導電性ポリマー層の製造は困難である。また、柔軟性を有する色素増感太陽電池のためには、導電性ポリマー層の密度が高すぎると導電性ポリマー層が固くなって柔軟性に乏しくなるため、導電性ポリマー層の密度が1.75g/cm以下であるのが好ましく、1.70g/cm以下であるのが特に好ましい。
 上記ITO導電層の上記導電性ポリマー層に対向する表面のRMSは5.0nm以上である。RMSが5.0nm未満であると、ITO導電層と導電性ポリマー層との接着性が十分でない。ITO導電層表面のRMSは、好ましくは100nm以下であり、特に好ましくは6.5~20.0nmの範囲である。なお、RMSは、特許文献1において採用されている平均面粗さ(Ra)と比較して、表面の凸部の影響を受けやすい尺度であり、表面の凹凸の影響を評価するためにより適した尺度である。
 上記導電性ポリマー層の厚みは、好ましくは10~500nmの範囲、より好ましくは30~300nmの範囲である。導電性ポリマーの厚みが500nmを超えると、内部抵抗が高くなり、また電解重合に時間がかかるため経済的に不利である。また、柔軟な色素増感太陽電池のためには、導電性ポリマー層の厚みが10~300nmの範囲であるのが好ましく、100~200nmの範囲であるのが特に好ましい。
 上記導電性ポリマー層には、ドーパントとして、非スルホン酸系有機化合物であってそのアニオンの分子量が200以上である化合物から発生したアニオンが含まれる。無機化合物から発生したアニオン、或いは、有機化合物であってもスルホン酸基及び/又はスルホン酸塩基を有する化合物から発生したアニオン、或いは、スルホン酸基及び/又はスルホン酸塩基を有していない有機化合物であってもアニオンの分子量が200未満である化合物から発生したアニオンは、耐熱性に優れた導電性ポリマー層を与えない(WO2012/133858A1及びWO2012/133859A1参照)。非スルホン酸系有機化合物であってそのアニオンの分子量が200以上である化合物のなかでも、ボロジサリチル酸、ボロジサリチル酸塩、式(I)又は式(II)
Figure JPOXMLDOC01-appb-C000002
(式中、mが1~8の整数、好ましくは1~4の整数、特に好ましくは2を意味し、nが1~8の整数、好ましくは1~4の整数、特に好ましくは2を意味し、oが2又は3を意味する)で表わされるスルホニルイミド酸及びこれらの塩から選択された化合物は、特に耐熱性に優れた導電性ポリマー層を与えるため好ましい。
 上記導電性ポリマー層を構成するためのモノマーには、置換チオフェン、すなわち、3位と4位に置換基を有するチオフェンから成る群から選択された化合物であれば、特に限定が無い。チオフェン環の3位と4位の置換基は、3位と4位の炭素と共に環を形成していても良い。特にモノマーがEDOTであると、環境安定性に優れる上に、電解質層中の酸化種を還元種に変換する触媒能に優れた導電性ポリマー層が得られるため好ましい。
 本発明の色素増感太陽電池における陽極は、
 1)プラスチックフィルム上にITO導電層が形成された基体を、酸を含む溶液に浸漬し、上記導電層の表面を粗面化するエッチング段階、
 2)100~80質量%の水と0~20質量%の有機溶媒とから成る溶媒と、3位と4位に置換基を有するチオフェンから成る群から選択された少なくとも一種のモノマーと、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である少なくとも一種の化合物と、を含む重合液を得る調製段階、及び、
 3)上記重合液に上記エッチング段階で得られた基体を導入し、電解重合を行うことにより、上記モノマーの重合により得られた導電性ポリマー層を上記導電層上に形成する重合段階、
 を含む工程により好適に形成することができる。エッチング段階と調製段階とはいずれを先に実施しても良い。上述した特定範囲の非スルホン酸系有機化合物は、重合液において支持電解質として作用するため、「非スルホン酸系有機支持電解質」とも表わされる。また、100~80質量%の水と0~20質量%の有機溶媒とから成る溶媒を、以下「水リッチ溶媒」と表わす。水リッチ溶媒において、水と有機溶媒との合計量は100質量%である。水リッチ溶媒における有機溶媒の含有量が増加すると、ポリマー粒子が緻密に充填された導電性ポリマー層が電解重合により基体上に形成されにくくなり、有機溶媒の含有量が溶媒全体の20質量%を超えると、得られた導電性ポリマー層の耐熱性が顕著に低下する(WO2012/133858A1及びWO2012/133859A1参照)。
 本発明において、プラスチックフィルム上に所定の表面粗さを有するITO導電層が形成された基体のITO導電層上に形成された、置換チオフェンから構成されたポリマーと該ポリマーに対するドーパントとしての特定範囲の非スルホン酸系有機化合物のアニオンとを含む導電性ポリマー層は、電解質層中の酸化種を還元種に変換する触媒能に優れる上に耐熱性に優れる。また、所定の表面粗さを有するITO導電層により、上記導電性ポリマー層とITO導電層との接着性が向上し、上記導電性ポリマー層がITO導電層から剥離するのが抑制される。したがって、優れた触媒能と耐熱性とを有する陽極を備えた軽量な色素増感太陽電池が生産性良く得られる。
色素増感太陽電池に用いられる陽極のサイクリックボルタモグラムであり、(1)は105nmの厚みの導電性ポリマー層を有する陽極のサイクリックボルタモグラムを示しており、(2)は、210nmの厚みの導電性ポリマー層を有する陽極のサイクリックボルタモグラムを示しており、(3)は、別の基体を用いて得られた105nmの厚みの導電性ポリマー層を有する陽極のサイクリックボルタモグラムを示している。 色素増感太陽電池の短絡電流密度を示した図である。 色素増感太陽電池の開放電圧を示した図である。 色素増感太陽電池の曲線因子を示した図である。 色素増感太陽電池の光電変換効率を示した図である。 色素増感太陽電池の曲線因子と電解液中での陽極の放置時間との関係をした図である。 別の陽極を用いた色素増感太陽電池の曲線因子と電解液中での陽極の放置時間との関係を示した図である。
 まず、上述した特定範囲の陽極について説明し、次いで、色素増感太陽電池の全体について説明する。
 A:陽極
 本発明の色素増感太陽電池のための陽極は、置換チオフェンから構成されたポリマーと、該ポリマーに対するドーパントとしての非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である化合物から発生したアニオンと、を含む導電性ポリマー層を備えている。そして、この導電性ポリマー層は、プラスチックフィルム上にITO導電層が形成された基体のITO導電層上に形成されており、1.15~1.80g/cmの範囲の密度を有する緻密な層である。ITO導電層の導電性ポリマー層に対向する表面のRMSは、5.0nm以上である。本発明の色素増感太陽電池における陽極は、
 1)プラスチックフィルム上にITO導電層が形成された基体を、酸を含む溶液に浸漬し、上記導電層の表面を粗面化するエッチング段階、
 2)水リッチ溶媒と、モノマーとしての置換チオフェンと、上述した特定範囲の非スルホン酸系有機化合物と、を含む重合液を得る調製段階、及び、
 3)上記重合液に上記エッチング段階で得られた基体を導入し、電解重合を行うことにより、上記モノマーの重合により得られた導電性ポリマー層を上記導電層上に形成する重合段階、
 を含む工程により好適に形成することができる。以下、各段階について説明する。
 (1)エッチング段階
 エッチング段階では、プラスチックフィルム上にITO導電層が形成された基体を、酸を含む溶液に浸漬し、ITO導電層の表面をRMSが5.0nm以上になるように粗面化する。RMSが5.0nm未満であると、以下の重合段階でITO導電層上に導電性ポリマー層を形成しても、ITO導電層と導電性ポリマー層との接着性が十分でなく、上記導電性ポリマー層がITO導電層から剥離する場合がある。ITO導電層表面のRMSは、好ましくは100nm以下であり、特に好ましくは6.5~20.0nmの範囲である。
 プラスチックフィルムとしては、色素増感太陽電池の陽極のために用いられている公知のプラスチックフィルムを特に限定なく使用することができ、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルサルホン、ポリアクリレートなどの透明で絶縁性のプラスチック基板が好適に使用される。特に好ましいのは、柔軟性を有するポリエチレンテレフタレートフィルム及びポリエチレンナフタレートフィルムである。フィルムの厚みには特別な限定が無いが、一般には1μm~1cmの範囲、好ましくは10μm~1mmの範囲である。
 上記プラスチックフィルムの表面には、ITO導電層が蒸着又は塗布により設けられている。ITOは結晶質でも非晶質でも良いが、非晶質であると表面を粗面化しやすいため好ましい。ITO導電層の厚み及び表面抵抗は、求められる電導度に依存して変化するが、厚みは一般には0.05~5μm、好ましくは0.1~1μmの範囲であり、表面抵抗は一般には100Ω/□以下、好ましくは50Ω/□以下である。
 ITO層の粗面化のために用いる酸を含む溶液としては、プラスチックフィルムに悪影響を及ぼさない限り、酸を含む公知のエッチング液を使用することができる。例としては、シュウ酸水溶液、ヨウ素酸水溶液、酢酸水溶液、希塩酸、希硝酸、希硫酸、希リン酸、塩酸と硝酸とを含む水溶液、塩酸と塩化鉄(II)とを含む水溶液、硫酸と過酸化水素とを含む水溶液が挙げられる。溶液中の酸の種類及び濃度は、所望のITO導電層表面のRMS値、処理されるべき基体におけるITO導電層の表面粗さやITOの結晶性等に依存して変化し、簡単な予備実験によって決定することができる。
 処理すべき基体を、必要に応じて、UV-オゾン処理、中性洗浄液による洗浄、超音波洗浄等によって清浄化した後、上述した酸を含む溶液に浸漬し、ITO導電層の表面を粗面化する。浸漬温度及び浸漬時間は、所望のITO導電層表面のRMS値、処理されるべき基体におけるITO導電層の表面粗さやITOの結晶性等に依存して変化するが、浸漬温度は一般には10~60℃の範囲、浸漬時間は一般には5分~1時間の範囲であり、簡単な予備実験によって決定することができる。
 浸漬処理後の基体を浸漬溶液から取り出し、脱イオン水、超純水等により十分に洗浄した後に乾燥して、以下に示す電解重合のために用いる。なお、ITO導電層表面のRMSは、プラスチックフィルムの表面粗さやITO導電層の形成条件によって影響を受けるため、RMSが5.0nm以上の表面を有するITO導電層がプラスチックフィルム上に予め形成されていれば、エッチング段階を省略することができる。
 (2)調製段階
 この段階で調製する電解重合用の重合液は、水リッチ溶媒と、モノマーとしての置換チオフェンと、特定範囲の非スルホン酸系有機支持電解質と、を必須成分として含む。
 重合液の調製には、環境負荷が小さく、経済的にも優れる水を主溶媒として使用する。この重合液には、水に加えて、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、アセトニトリル、アセトン、テトラヒドロフラン、酢酸メチルなどの有機溶媒が含まれていてもよいが、溶媒全体の80質量%以上は水である。水は溶媒全体の90質量%以上であるのが好ましく、溶媒全体の95質量%以上であるのがより好ましく、溶媒が水のみから成るのが特に好ましい。水リッチ溶媒における有機溶媒の含有量が増加すると、ポリマー粒子が緻密に充填された導電性ポリマー層が電解重合によりITO導電層上に形成されにくくなり、有機溶媒の含有量が溶媒全体の20質量%を超えると、得られた導電性ポリマー層の耐熱性が顕著に低下する。
 モノマーとしては、置換チオフェン、すなわち、3位と4位に置換基を有するチオフェンから選択されたモノマーが用いられる。チオフェン環の3位と4位の置換基は、3位と4位の炭素と共に環を形成していても良い。使用可能なモノマーの例としては、3,4-ジメチルチオフェン、3,4-ジエチルチオフェンなどの3,4-ジアルキルチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェンなどの3,4-ジアルコキシチオフェン、3,4-メチレンジオキシチオフェン、EDOT、3,4-(1,2-プロピレンジオキシ)チオフェンなどの3,4-アルキレンジオキシチオフェン、3,4-メチレンオキシチアチオフェン、3,4-エチレンオキシチアチオフェン、3,4-(1,2-プロピレンオキシチア)チオフェンなどの3,4-アルキレンオキシチアチオフェン、3,4-メチレンジチアチオフェン、3,4-エチレンジチアチオフェン、3,4-(1,2-プロピレンジチア)チオフェンなどの3,4-アルキレンジチアチオフェン、チエノ[3,4-b]チオフェン、イソプロピルチエノ[3,4-b]チオフェン、t-ブチル-チエノ[3,4-b]チオフェンなどのアルキルチエノ[3,4-b]チオフェンが挙げられる。モノマーとして、単独の化合物を使用しても良く、2種以上の化合物を混合して使用しても良い。特に、EDOTを使用するのが好ましい。
 重合液中の支持電解質としては、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である化合物が用いられる。これらの支持電解質のアニオンが、以下に示す電解重合の過程でドーパントとして導電性ポリマー層中に含まれる。特に、ボロジサリチル酸、ボロジサリチル酸塩、式(I)又は式(II)
Figure JPOXMLDOC01-appb-C000003
(式中、mが1~8の整数、好ましくは1~4の整数、特に好ましくは2を意味し、nが1~8の整数、好ましくは1~4の整数、特に好ましくは2を意味し、oが2又は3を意味する)で表わされるスルホニルイミド酸及びこれらの塩を好ましく使用することができる。塩としては、リチウム塩、ナトリウム塩、カリウム塩などのアルカリ金属塩、アンモニウム塩、エチルアンモニウム塩、ブチルアンモニウム塩などのアルキルアンモニウム塩、ジエチルアンモニウム塩、ジブチルアンモニウム塩などのジアルキルアンモニウム塩、トリエチルアンモニウム塩、トリブチルアンモニウム塩などのトリアルキルアンモニウム塩、テトラエチルアンモニウム塩、テトラブチルアンモニウム塩などのテトラアルキルアンモニウム塩を例示することができる。これらの支持電解質は、特に耐熱性に優れた導電性ポリマー層を与える。中でも、ビス(ペンタフルオロエタンスルホニル)イミド酸の塩、例えばカリウム塩、ナトリウム塩、アンモニウム塩は、極めて高い耐熱性を有する導電性ポリマー層を与える。
 また、ボロジサリチル酸及びボロジサリチル酸塩は、安価で経済的に有利であり、特に耐熱性に優れた導電性ポリマー層を与えるため好ましいが、ボロジサリチル酸及びボロジサリチル酸塩に含まれるボロジサリチル酸イオンが水中で水への溶解度が極めて小さいサリチル酸とホウ酸とに加水分解することがわかっている。そのため、ボロジサリチル酸及び/又はボロジサリチル酸塩を支持電解質として使用すると、徐々に重合液中に沈殿が生じて使用に耐えなくなる。このことを回避するため、ボロジサリチル酸及び/又はボロジサリチル酸塩を支持電解質として使用する場合には、この支持電解質を液に添加した後沈殿生成前に電解重合を行うか、或いは、ボロジサリチル酸イオンの加水分解を抑制する作用を有するニトロベンゼン及びニトロベンゼン誘導体から成る群から選択された安定化剤と併用する。上記安定化剤は、単独の化合物であっても良く、2種以上の化合物であっても良い。ニトロベンゼン誘導体としては、ニトロフェノール、ニトロベンジルアルコール、ニトロ安息香酸、ジニトロ安息香酸、ジニトロベンゼン、ニトロアニソール、ニトロアセトフェノンを例示することができ、o-ニトロフェノール、m-ニトロフェノール、p-ニトロフェノール、及びこれらの混合物が好ましい。
 支持電解質は、単独の化合物を使用しても良く、2種以上の化合物を使用しても良く、重合液に対する飽和溶解量以下の濃度で且つ電解重合のために充分な電流が得られる量で使用され、好ましくは10mM以上の濃度で、特に好ましくは30mM以上の濃度で使用される。
 重合液の調製は、モノマーの含有量に応じて、以下のような方法により行う。モノマーが飽和溶解量以下の量である場合には、重合液製造用の容器に、水リッチ溶媒、モノマーとしての置換チオフェン、及び上述した特定範囲の支持電解質を導入し、手作業により或いは機械的な攪拌手段を使用して各成分を水リッチ溶媒に溶解させることにより、重合液を調製する。モノマーが飽和溶解量を超える量である場合には、すなわち、重合液製造用の容器に、水リッチ溶媒、モノマーとしての置換チオフェン、及び上述した特定範囲の支持電解質を導入して攪拌・均一化した後静置するとモノマーが相分離する場合には、液に超音波照射を施して相分離したモノマーを重合液中に油滴として分散させることにより重合液を調製することができる。水リッチ溶媒に飽和溶解量を超える量のモノマーを添加した液に超音波照射を施してモノマーを油滴として分散させ、次いで得られた液に支持電解質を添加することにより、本発明の重合液を得ることもできる。重合液における各成分が安定であれば、調製時の温度に制限は無い。なお、本明細書において、「超音波」とは10kHz以上の周波数を有する音波を意味する。
 超音波照射のために、超音波洗浄機用、細胞粉砕機用等として従来から知られている超音波発振器を特に限定なく使用することができる。モノマー油滴が水リッチ溶媒に安定に分散している液を超音波照射により得るためには、相分離しているモノマーを数μm以下の直径を有する油滴にする必要があり、そのためには、少なくとも機械的作用が強い数百nm~数μmのキャビテーションを発生させることができる15~200kHzの周波数の超音波を相分離液に照射する必要がある。超音波の出力は、4W/cm以上であるのが好ましい。超音波照射時間には厳密な制限はないが、2~10分の範囲であるのが好ましい。照射時間が長いほど、モノマー油滴の凝集が阻害され、解乳化までの時間が長期化する傾向にあるが、超音波照射時間が10分以上では、油滴の凝集阻害効果が飽和する傾向が認められる。異なる周波数及び/又は出力を有する超音波を用いて複数回の照射を行うことも可能である。飽和溶解量を超えるモノマーの含有量は、超音波照射により解乳化が抑制された分散液が得られる量であれば良く、モノマーの種類ばかりでなく、支持電解質の種類と量、超音波照射条件によっても変化する。
 本発明の重合液には、水リッチ溶媒、置換チオフェンから選択されたモノマー、及び上記特定範囲の支持電解質に加えて、本発明に悪影響を与えない範囲内で他の添加物が含まれていても良い。好適な添加物として、水溶性のノニオン界面活性剤が挙げられる。モノマーがノニオン界面活性剤のミセル中に濃縮されるため、速やかに電解重合が進行し、高電導度を示すポリマーが得られる。その上、ノニオン界面活性剤自体はイオン化せず、上記特定範囲の支持電解質のアニオンによるポリマーへのドーピングを阻害することが無い。
 ノニオン界面活性剤としては、公知の水溶性のノニオン界面活性剤を特に限定無く使用することができる。例としては、ポリアルキレングリコール、ポリビニルアルコール、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンスチリルフェニルエーテル、ポリオキシアルキレンベンジルフェニルエーテル、ポリオキシアルキレン付加アルキルフェノールホルムアルデヒド縮合物、ポリオキシアルキレン付加スチリルフェノールホルムアルデヒド縮合物、ポリオキシアルキレン付加ベンジルフェノールホルムアルデヒド縮合物、アルキンジオール、ポリオキシアルキレン付加アルキンジオール、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステル、ポリオキシアルキレンひまし油、ポリオキシアルキレン硬化ひまし油、ポリグリセリンアルキルエーテル、ポリグリセリン脂肪酸エステルなどが挙げられる。これらは単独で使用しても良く、2種以上を混合して使用しても良い。また、例えば2,4,7,9-テトラメチル-5-デシン-4,7-ジオールのような分散効果が高いアルキンジオールと他のノニオン界面活性剤、好ましくは、ポリオキシエチレン(9)ノニルフェニルエーテル分岐型のようなポリオキシエチレンアルキルフェニルエーテルとの組み合わせを重合液において使用すると、重合液におけるモノマーの含有量を大幅に増加させることができるため好ましい。
 ノニオン界面活性剤を併用する場合には、重合液製造用の容器に、水リッチ溶媒、モノマー、上記特定範囲の支持電解質、及びノニオン界面活性剤を導入し、手作業により或いは機械的な攪拌手段を使用して或いは超音波を照射して各成分を水リッチ溶媒に溶解させることにより、重合液を調製する。また、重合液製造用の容器に、水リッチ溶媒、モノマー、及びノニオン界面活性剤を導入して、各成分を水リッチ溶媒に溶解させた液を調製した後、電解重合直前に、この液に上記特定範囲の支持電解質を添加して溶解させても良い。
 いずれの重合液の製造方法においても、支持電解質としてのボロジサリチル酸及び/又はボロジサリチル酸塩と、安定化剤としてのニトロベンゼン及び/又はニトロベンゼン誘導体と、を併用する場合には、重合液製造用の容器に両者をほぼ同時に導入するか、或いは安定化剤を先に導入する。安定化剤はボロジサリチル酸イオンの加水分解を抑制するために使用されるからである。
 (3)重合段階
 上述の調製段階により得られた重合液に、上述のエッチング段階で得られた基体を作用極として、対極と共に導入し、電解重合を行うことにより、置換チオフェンの重合により得られた導電性ポリマー層を基体のITO導電層上に形成し、色素増感太陽電池のための陽極を得る。RMSが5.0nm以上の表面を有するITO導電層がプラスチックフィルム上に予め形成されている、エッチング段階を省略した基体を作用極とすることもできる。
 電解重合の対極としては、白金、ニッケルなどの板を用いることができる。
 電解重合は、調製段階により得られた重合液を用いて、定電位法、定電流法、電位掃引法のいずれかの方法により行われる。定電位法による場合には、モノマーの種類に依存するが、飽和カロメル電極に対して1.0~1.5Vの電位が好適であり、定電流法による場合には、モノマーの種類に依存するが、1~10000μA/cm、好ましくは5~500μA/cm、より好ましくは10~100μA/cmの電流値が好適であり、電位掃引法による場合には、モノマーの種類に依存するが、飽和カロメル電極に対して-0.5~1.5Vの範囲を5~200mV/秒の速度で掃引するのが好適である。重合温度には厳密な制限がないが、一般的には10~60℃の範囲である。重合時間は重合液の組成や電解重合条件に依存して変化するが、一般的には0.6秒~2時間、好ましくは1~10分、特に好ましくは2~6分の範囲である。
 電解重合により、上述した特定範囲の非スルホン酸系有機支持電解質のアニオンをドーパントとして含む導電性ポリマー層が、基体のITO導電層の上に緻密に形成される。導電性ポリマー層表面(電解質層に対向すべき面の表面)のRMSは、導電性ポリマー層の厚みが著しく薄くない限り、ITO導電層の導電性ポリマー層に対向する表面のRMSの影響をほとんど受けない。得られる導電性ポリマー層の密度は、1.15~1.80g/cmの範囲であり、1.20~1.80g/cmの範囲であるのがより好ましく、1.60~1.80g/cmの範囲であるのが特に好ましい。密度が1.15g/cm未満であると、耐熱性が急激に低下し、密度が1.80g/cmを超える導電性ポリマー層の製造は困難である。また、柔軟性を有する色素増感太陽電池のためには、導電性ポリマー層の密度が高すぎると導電性ポリマー層が固くなって柔軟性に乏しくなるため、導電性ポリマー層の密度が1.75g/cm以下であるのが好ましく、1.70g/cm以下であるのが特に好ましい。
 導電性ポリマー層の厚みは、好ましくは10~500nmの範囲、より好ましくは30~300nmの範囲である。導電性ポリマーの厚みが500nmを超えると、内部抵抗が高くなり、また電解重合に時間がかかるため経済的に不利である。また、導電性ポリマーの厚みが300nmを超えると、導電性ポリマー層に亀裂が認められる場合がある。柔軟な色素増感太陽電池のためには、導電性ポリマー層の厚みが10~300nmの範囲であるのが好ましく、10~200nmの範囲であるのが特に好ましい。導電性ポリマーの厚みは、原子間力顕微鏡等により測定することができる。また、所定の電流密度での定電流電解重合を時間を変えて2回以上行い、各回の電解重合により得られた導電性ポリマー層の厚みを計測した後、得られた厚みと電解重合における通電電荷量との関係を示す計算式を導出し、導出した計算式を用いて通電電荷量から導電性ポリマー層の厚みを算出しても良い。
 電解重合後の導電性ポリマー層を水、エタノール等で洗浄し、乾燥することにより、緻密で耐熱性に優れた導電性ポリマー層が基体上に密着性良く形成された陽極を得ることができる。得られた陽極の導電性ポリマー層は、空気中の水分に安定であり、また中性付近のpHを示すため、太陽電池の製造或いは使用の過程で他の構成要素が腐食されるおそれも無い。
 B:色素増感太陽電池
 色素増感太陽電池は、光増感剤としての色素を含む半導体層を有する陰極と、該陰極の半導体層上に積層された対を成す酸化種と還元種とを含む電解質層と、上述した陽極と、を備えている。上述した陽極の導電性ポリマー層は、電解質層中で酸化還元対を構成する酸化種を還元種に変換させるのに十分な触媒能と優れた耐熱性とを有している。
 色素増感太陽電池における陰極を構成する導電性基体及び半導体層は、従来の色素増感太陽電池における導電性基体及び半導体層を特に限定無く使用することができる。
 導電性基体としては、少なくとも表面に導電性部分を有する基体を使用することができ、基体の導電性部分は、単層であっても良く、異なる種類の複数の層を含んでいても良い。例えば、白金、ニッケル、チタン、鋼、クロム、ニオブ、モリブデン、ルテニウム、ロジウム、タンタル、タングステン、イリジウム、ハステロイなどの導電体の板或いは箔を基体として使用することができ、或いは、光学ガラス、石英ガラス、無アルカリガラスなどの透明で絶縁性のガラス基板、又は、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルサルホン、ポリアクリレートなどの透明で絶縁性のプラスチック基板の表面に酸化インジウム、ITO、亜鉛ドープ酸化インジウム、酸化スズ、アンチモンドープ酸化スズ、FTO、酸化亜鉛、アルミニウムドープ酸化亜鉛などの透明導電層を蒸着又は塗布により設けた透明基体を使用することもできる。この他、上述のガラス基板又はプラスチック基板の上に、白金、ニッケル、チタン、ロジウム、ルテニウムなどの金属膜を蒸着又は塗布により設けた基体を使用することもできる。陽極に含まれる基体が不透明である場合には、透明な基体を陰極の基体として使用する。また、陽極に含まれる基体が透明であっても、陰極のためにも透明基体を使用することにより、全透明型の太陽電池を構成することもできる。
 色素増感太陽電池の軽量化のためには、プラスチックフィルム上に導電層が形成された基体を陰極のために使用するのが好ましい。この構成により、軽量で柔軟な色素増感太陽電池を得ることができる。また、陽極のために用いたプラスチックフィルム上にITO導電層が形成された基体を陰極のためにも使用すると、色素増感太陽電池の生産効率の点で好ましい。
 半導体層は、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化スズ、酸化ニッケル、酸化ニオブ、酸化マグネシウム、酸化タングステン、酸化ビスマス、酸化インジウム、酸化タリウム、酸化ランタン、酸化イットリウム、酸化ホスホニウム、酸化セリウム、酸化アルミニウム、硫化カドミウム、セレン化カドミウム、テルル化カドミウム、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウムなどの酸化物半導体を使用して形成することができる。酸化物半導体は、単一の化合物を使用しても良く、2種以上を混合して使用しても良い。光電変換効率が高い酸化チタンを使用するのが好ましい。酸化物半導体は、通常、多くの色素を半導体層に担持できるように、多孔質の形態で使用される。
 光増感剤として作用する色素としては、可視光領域及び/又は赤外光領域に吸収を有する有機色素又は金属錯体色素などを使用することができる。有機色素としては、クマリン系、シアニン系、メロシアニン系、フタロシアニン系、ポルフィリン系、アゾ系、キノン系、キノンイミン系、キナクリドン系、スクアリリウム系、トリフェニルメタン系、キサンテン系、ペリレン系、インジゴ系、ナフタロシアニン系などの色素を使用することができ、クマリン系の色素を使用するのが好ましい。金属錯体色素としては、オスミウム錯体、ルテニウム錯体、鉄錯体、亜鉛錯体、白金錯体、パラジウム錯体などを使用することができ、特に、幅広い吸収帯を有する点で、N3、N719のようなルテニウムビピリジン錯体、N749のようなルテニウムターピリジン錯体及びルテニウムクォーターピリジン錯体を使用するのが好ましい。また、多孔性酸化物半導体層に色素を強固に吸着させ、励起状態の色素と多孔性酸化物半導体層の伝導帯との間の電子移動を容易にするために、色素分子中にカルボキシル基、アルコキシ基、ヒドロキシル基、ヒドロキシアルキル基、スルホン酸基、エステル基、メルカプト基、ホスホニル基等のインターロック基を有するものが好ましく、これらの中でもカルボキシル基を有するものが特に好ましい。また、カルボキシル基などの酸官能基の一部をアルカリ金属水酸化物、テトラアルキルアンモニウム水酸化物、イミダゾリウム水酸化物、及びピリジニウム水酸化物などで中和してアニオン化しておくと、アニオン間に働く斥力により色素分子同士の会合が抑制され、色素分子間の電子トラップの大幅な低減を図ることができる。これらの色素も、単一の化合物を使用しても良く、2種以上の混合物を使用しても良い。
 色素増感太陽電池の陰極は、公知の方法により得ることができる。例えば、基体の導電性部分の上に、上述した酸化物半導体粒子とポリテトラフルオロエチレン、ポリフッ化ビニリデン、カルボキシメチルセルロースなどの有機バインダーとを含む分散物をスピンコート、バーコート、キャストコートなどの湿式法により積層し、加熱乾燥した後、400~500℃の温度で焼成することにより、酸化物半導体の多孔質層を基体上に設ける。酸化物半導体粒子としては、1~200nmの平均一次粒子径を有する、球状、棒状、針状等の粒子が好ましく使用される。上記分散物の塗布及び加熱乾燥の工程を2回以上繰り返した後に400~500℃の温度で焼成を行うと、均一で厚い多孔質層を得ることができ、その結果、色素増感太陽電池の短絡電流密度を向上させることができ、したがって光電変換効率を向上させることができるため好ましい。また、酸化物半導体粒子間のネッキングを向上させ、電子輸送特性を向上させ、光電変換効率を向上させるために、酸化物半導体の多孔質層にTiCl溶液を浸透させて表面を水洗した後、400~500℃の温度で焼成しても良い。次いで、エタノール、イソプロピルアルコール、ブチルアルコール等の溶剤に上述した色素を溶解した液に焼成後の基体を浸漬し、所定時間経過後に浸漬液から取り出し、乾燥して酸化物半導体に色素を担持することにより、陰極を得ることができる。酸化物半導体に色素を担持させた後、半導体と結合するイミダゾリル基、カルボキシ基、ホスホン基などの官能基を有する逆電子移動防止剤、例えば、tert-ブチルピリジン、1-メトキシベンゾイミダゾール、デカンリン酸などの長鎖アルキル基(炭素数13程度)を持つホスホン酸、を溶解させた液に得られた基体を浸漬し、逆電子移動防止剤を半導体表面の色素間の隙間に吸着させると、電解液中の逆電子移動を防止することができる上に、色素が電解液に溶出しにくくなるため好ましい。半導体層の厚みは、一般には1~100μm、好ましくは3~50μm、特に好ましくは3~20μmの範囲である。半導体層の厚みが1μmより薄いと光の吸収が不十分な場合があり、半導体層の厚みが100μmより厚いと、酸化物半導体から基体の導電性部分に電子が到達する距離が長くなって電子が失活するため好ましくない。
 色素増感太陽電池の電解質層としては、従来の色素増感太陽電池における電解質層を特に限定無く使用することができる。例えば、電解質層を形成する電解液として、有機溶媒、イオン液体或いはこれらの混合物を溶媒とし、これらの溶媒に酸化還元対を溶解させた電解液を使用することができる。有機溶媒としては、アセトニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリルなどのニトリル類、プロピレンカーボネート、エチレンカーボネートなどのカーボネート類、γ-ブチロラクトンなどのラクトン類、エチレングリコールなどのアルコール類、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホランなどの環状スルホン類、鎖状スルホン類などが挙げられる。イオン液体としては、イミダゾリウム、アンモニウム、ピリジニウム、ピロリジウム、トリアゾリウム、ピペリジニウム、ホスホニウム、スルホニウム、モルホリニウム等のカチオンと、[(CPF、[N(SOCF、[CFSO、[B(CN)、[N(CN)、[SCN]、[AlCl、[HSO、[CSO、[C17SO、[C11SO、[B(C、[CHSO、[(CH)PO、[(CPO、[BF、[PF、[CSO、Cl、Br、I等のアニオンから成るものが挙げられる。酸化還元対としては、ヨウ素系酸化還元対を構成する金属ヨウ化物若しくは有機ヨウ化物とヨウ素との組合せ、臭素系酸化還元対を構成する金属臭化物若しくは有機臭化物と臭素との組合せ、コバルト錯体系酸化還元対を構成するCo(II)ポリピリジン錯体などが挙げられる。この他、酸化還元対として、フェロシアン酸塩/フェリシアン酸塩やフェロセン/フェリシニウムイオンなどの金属錯体、ポリ硫化ナトリウム、アルキルチオール/アルキルジスルフィドなどのイオウ化合物、ビオロゲン色素、ヒドロキノン/キノンなどを用いることができる。上記金属化合物のカチオンとしては、Li、Na、K、Mg、Ca、Csなどが好適であり、上記有機化合物のカチオンとしてはテトラアルキルアンモニウム類、ピリジニウム類、イミダゾリウム類などが好適である。この中でも、光電変換効率が高いヨウ化物とヨウ素との組み合わせを使用するのが好ましく、特に、Iと、LiI、NaI、KIなどのアルカリ金属ヨウ化物、ジメチルプロピルイミダゾリウムヨウ化物などのイミダゾリウム化合物及び4級アンモニウムヨウ化物の組み合わせを使用するのが好ましい。上述の塩の濃度は、溶媒に対して0.05M~5Mが好ましく、さらに好ましくは0.2M~2Mである。IやBrの濃度は0.0005M~1Mが好ましく、さらに好ましくは0.001~0.2Mである。また、色素増感太陽電池の開放電圧を向上させる目的で、4-tert-ブチルピリジンやカルボン酸などの各種添加剤を加えることもできる。さらに、電解液には、必要に応じて、ヨウ化リチウム、テトラフルオロホウ酸リチウムなどの支持電解質を添加しても良い。
 また、上記電解液にゲル化剤を添加して擬固体化したゲル電解質により電解質層を形成することもできる。物理ゲルとする場合には、ゲル化剤としてポリアクリロニトリル、ポリフッ化ビニリデンなどを使用することができ、化学ゲルとする場合には、ゲル化剤としてアクリル(メタクリル)エステルオリゴマー、テトラ(ブロモメチル)ベンゼンとポリビニルピリジンとの組み合わせなどを使用することができる。
 色素増感太陽電池は、上述した陽極を使用して公知の方法により得ることができる。例えば、陰極の半導体層と陽極の導電性ポリマー層とを所定の間隙を開けて配置し、間隙に電解液を注入し、必要に応じて加熱して電解質層を形成することにより、色素増感太陽電池を得ることができる。電解質層の厚みは、半導体層内に浸透した電解質層の厚みを除いて、一般には1~100μm、好ましくは1~50μmの範囲である。電解質層の厚みが1μmより薄いと、陰極の半導体層が短絡するおそれがあり、電解質層の厚みが100μmより厚いと、内部抵抗が高くなるため好ましくない。
 以下に本発明の実施例を示すが、本発明は以下の実施例に限定されない。
 (1)陽極
 (i)陽極の製造
 陽極A
 1cm×3cmの大きさを有する、ポリエチレンナフタレート上にスパッタリングにより非晶質のITOの導電層を形成した基体(原基体1:表面抵抗14Ω/□)を、0.055質量%の塩化水素と0.05質量%の塩化鉄(II)とを含む水溶液に40℃で30分間浸漬した後、基体を取り出し、脱イオン水及び超純水を用いて十分に洗浄し、乾燥させた。乾燥後の基体におけるITO導電層の表面粗さを原子間力顕微鏡を用いて測定したところ、Raは15.0nm、RMSは17.3nmであった。
 ガラス容器に蒸留水50mLを導入し、この液にp-ニトロフェノール0.70g(0.10M)、EDOT0.105g(濃度0.0148M)、及びボロジサリチル酸アンモニウム1.4g(濃度0.08M)をこの順番で添加して攪拌し、全てのEDOTが溶解した重合液を得た。得られた重合液に、乾燥後の基体を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、100μA/cmの条件で定電流電解重合を3分間行った。重合後の作用極を水・メタノールで洗浄した後、150℃で30分間乾燥し、ITO電極層上に105nmの厚みのPEDOT層(ドーパント:ボロジサリチル酸アニオン)が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 陽極B
 陽極Aの製造手順を、重合時間を6分に延長したことを除いて繰り返し、ITO電極層上に210nmの厚みのPEDOT層が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 陽極C
 陽極Aの製造のために用いた原基体1を、0.15質量%の過酸化水素と0.05質量%の硫酸とを含む水溶液に40℃で8分間浸漬した後、基体を取り出し、脱イオン水及び超純水を用いて十分に洗浄し、乾燥させた。乾燥後の基体におけるITO導電層の表面粗さを原子間力顕微鏡を用いて測定したところ、Raは5.0nm、RMSは6.6nmであった。
 陽極Aの製造に用いた重合液に、乾燥後の基体を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、100μA/cmの条件で定電流電解重合を3分間行った。重合後の作用極を水・メタノールで洗浄した後、150℃で30分間乾燥し、ITO電極層上に105nmの厚みのPEDOT層が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 陽極D
 陽極Aの製造のために用いた原基体1を、中性洗剤(アズワン株式会社製クリーンエースSの10%水溶液)に浸漬し、10分間超音波照射を行った後、基体を取り出し、脱イオン水及び超純水を用いて十分に洗浄し、乾燥させた。乾燥後の基体におけるITO導電層の表面粗さを原子間力顕微鏡を用いて測定したところ、Raは2.0nm、RMSは2.6nmであった。
 陽極Aの製造に用いた重合液に、乾燥後の基体を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、100μA/cmの条件で定電流電解重合を3分間行った。重合後の作用極を水・メタノールで洗浄した後、150℃で30分間乾燥し、ITO電極層上に105nmの厚みのPEDOT層が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 陽極E
 陽極Dの製造手順を、重合時間を6分に延長したことを除いて繰り返し、ITO電極層上に210nmの厚みのPEDOT層が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 陽極F
 1cm×3cmの大きさを有する、ポリエチレンナフタレート上にスパッタリングにより非晶質のITOの導電層を形成した基体(原基体2)を、0.055質量%の塩化水素と0.05質量%の塩化鉄(II)とを含む水溶液に40℃で30分間浸漬した後、基体を取り出し、脱イオン水及び超純水を用いて十分に洗浄し、乾燥させた。乾燥後の基体におけるITO導電層の表面粗さを原子間力顕微鏡を用いて測定したところ、Raは14.6nm、RMSは16.7nmであった。
 陽極Aの製造に用いた重合液に、乾燥後の基体を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、100μA/cmの条件で定電流電解重合を3分間行った。重合後の作用極を水・メタノールで洗浄した後、150℃で30分間乾燥し、ITO電極層上に105nmの厚みのPEDOT層が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 陽極G
 陽極Fのために用いた原基体2を、0.15質量%の過酸化水素と0.05質量%の硫酸とを含む水溶液に40℃で8分間浸漬した後、基体を取り出し、脱イオン水及び超純水を用いて十分に洗浄し、乾燥させた。乾燥後の基体におけるITO導電層の表面粗さを原子間力顕微鏡を用いて測定したところ、Raは15.7nm、RMSは17.0nmであった。
 陽極Aの製造に用いた重合液に、乾燥後の基体を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、100μA/cmの条件で定電流電解重合を3分間行った。重合後の作用極を水・メタノールで洗浄した後、150℃で30分間乾燥し、ITO電極層上に105nmの厚みのPEDOT層が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 陽極H
 陽極Fのために用いた原基体2を、中性洗剤(アズワン株式会社製クリーンエースSの10%水溶液)に浸漬し、10分間超音波照射を行った後、基体を取り出し、脱イオン水及び超純水を用いて十分に洗浄し、乾燥させた。乾燥後の基体におけるITO導電層の表面粗さを原子間力顕微鏡を用いて測定したところ、Raは2.9nm、RMSは4.8nmであった。
 陽極Aの製造に用いた重合液に、乾燥後の基体を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、100μA/cmの条件で定電流電解重合を3分間行った。重合後の作用極を水・メタノールで洗浄した後、150℃で30分間乾燥し、ITO電極層上に105nmの厚みのPEDOT層が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 なお、陽極A~Hにおける導電性ポリマー層の厚みは、以下のようにして算出した。まず、陽極A,C,D,F,G,Hのために用いたそれぞれの基体のITO導電層上に0.1mA/cmの条件で定電流電解重合を1分間行うことにより導電性ポリマー層を形成し、原子間力顕微鏡によりポリマー層の厚みを測定する実験を行った。次いで、それぞれの基体のITO導電層上に0.1mA/cmの条件で定電流電解重合を28.6分間行うことにより導電性ポリマー層を形成し、段差計によりポリマー層の厚みを測定する実験を行った。この2つの実験から、各基体における電荷量と導電性ポリマー層の厚みとの関係式を導出した。そして、導出された関係式を用いて、電解重合の電荷量を導電性ポリマー層の厚みに換算した。電荷量と導電性ポリマー層の厚みとの関係式は、基体の種類によらず略同一であり、したがって基体のITO導電層の表面粗さに依存せず、いずれの陽極においても均一な導電性ポリマー層が形成されていると判断された。また、陽極A~Hにおける導電性ポリマー層の密度は、導電性ポリマー層の厚みとITO導電層の面積と導電性ポリマー層の重量とから算出した。いずれの陽極においても導電性ポリマー層の密度は略同一であった。
 導電性ポリマー層の形成に対する基体のITO導電層の表面粗さの影響をさらに詳細に調査するため、ITO導電層表面のRMS値が最小であった陽極DとITO導電層表面のRMS値が最大であった陽極Aについて、導電性ポリマー層の表面粗さを原子間力顕微鏡にて測定した。陽極Aにおける導電性ポリマー層のRaは8.6nm、RMSは11.0nmであり、陽極Dにおける導電性ポリマー層のRaは8.6nm、RMSは10.9nmであった。このことからも、基体のITO導電層の表面粗さに依存せず、均一で緻密な導電性ポリマー層が形成されることがわかる。
 (ii)接着性評価
 陽極A~Hにおける導電性ポリマー層とITO導電層との接着性を、JIS K5600-5-6(ISO2409)のクロスカット法に従って評価した。すなわち、各陽極の導電性ポリマー層に格子状の切込みを入れ、接着テープを格子状のカット部分の上にしっかりと貼付した後、接着テープを60°に近い角度で0.5~1.0秒で引き剥がし、導電性ポリマー層のカット部分がITO導電層から剥離するか否かで評価した。このクロスカット法では、接着テープを引き剥がした後のカット部分の基材上での残留度に応じて、スケール0~5のいずれかに分類して接着性の良否を評価する。スケールの0は導電性ポリマー層の格子状のカット部分がITO導電層から剥離しなかったことを意味し、スケールの5は導電性ポリマー層の格子状のカット部分のほとんどがITO導電層から剥離したことを意味する。以下の表1に、各陽極におけるITO導電層の導電性ポリマー層に対向する表面のRMS、導電性ポリマー層の厚み、及び接着性評価結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000004
 表1より、ITO導電層表面のRMSが5.0nm以上であれば、導電性ポリマー層とITO導電層との接着性が良好であることがわかる。また、陽極Dと陽極Eとの比較、陽極Aと陽極Bとの比較から明らかなように、ITO導電層表面のRMS値が小さい場合には、導電性ポリマー層の厚みが厚くなるほど、導電性ポリマー層とITO導電層との接着性が低下するが、ITO導電層表面のRMS値が大きい場合には、導電性ポリマー層の厚みが厚くなっても、導電性ポリマー層とITO導電層との接着性が良好に保たれることがわかる。
 次いで、陽極と電解液との接触により陽極における導電性ポリマー層とITO導電層との接着性が劣化するか否かを、以下の方法により評価した。0.1Mのヨウ化リチウム、0.05Mのヨウ素、0.6Mの1,2-ジメチル-3-プロピルイミダゾリウムヨウ化物、及び0.5Mの4-t-ブチルピリジンをアセトニトリルに溶解させた電解液に、陽極A~Hを浸漬し、85℃で1000時間放置した。放置後の陽極A~Hを上記電解液から取り出し、水・メタノールで洗浄し、乾燥した後、上述した方法と同一のクロスカット法に従って評価した。以下の表2に、各陽極における接着性評価結果を示す。
Figure JPOXMLDOC01-appb-T000005
 表2より、ITO導電層表面のRMSが5.0nm未満であった陽極D,Hにおいては、電解液に85℃で1000時間浸漬するという過酷な高温放置条件を経験した結果、導電性ポリマー層とITO導電層との接着性がさらに悪化した。陽極Eにおいては、初期評価と同様に、導電性ポリマー層とITO導電層との接着性が不良であった。これに対し、ITO導電層表面のRMSが5.0nm以上である陽極A,B,C,F,Gにおいては、この過酷な高温放置条件を経験してもなお、導電性ポリマー層とITO導電層との接着性が良好であった。
 (iii)I/I 電解液における電気化学的応答の評価
 陽極A,B,D,E,F,Hについて、I/I 電解液における電気化学的応答をサイクリックボルタモグラムにより評価した。
 10mMのヨウ化リチウム、1mMのヨウ素、1Mのテトラフルオロホウ酸リチウムをアセトニトリルに溶解させた電解液に、作用極としての陽極A,B,D,E,F,Hのいずれかの陽極、対極としての4cmの面積を有する白金メッシュ、及び参照電極としての銀-塩化銀電極を導入し、走査電位範囲を-0.8~+0.8Vとし、走査速度を10mV/sとして評価した。
 図1に、サイクリックボルタモグラムを示す。(1)は、原基体1から出発して作成した105nmの厚みの導電性ポリマー層を有する陽極A及び陽極Dのサイクリックボルタモグラムを示しており、(2)は、原基体1から出発して作成した210nmの厚みの導電性ポリマー層を有する陽極B及び陽極Eのサイクリックボルタモグラムを示しており、(3)は、原基体2から出発して作成した105nmの厚みの導電性ポリマー層を有する陽極F及び陽極Hのサイクリックボルタモグラムを示している。
 図1から明らかなように、陽極A,B,D,E,F,Hのサイクリックボルタモグラムのいずれにも2対の酸化還元波が認められた。負電位側の酸化還元波がI /Iに対応する酸化還元波であり、正電位側の酸化還元波がI/I に対応する酸化還元波である。色素増感太陽電池においては、銀-塩化銀電極に対して-0.2V付近に認められるI からIへの還元波が特に重要である。Iの十分な再生が必要だからである。また、同じ原基体(1又は2)を用いて作成した同じ厚みの導電性ポリマー層を有する陽極は、略同一のサイクリックボルタモグラムを示した。これらのことから、陽極の触媒性能が基体のITO導電層の表面粗さに依存しないことがわかる。
 また、陽極A,B,D,E,F,Hを電解液から取り出し、洗浄後、空気中、160℃の高温雰囲気下に500時間放置する熱エージングを行い、再度サイクリックボルタモグラムを測定したが、いずれも初期と略同一のサイクリックボルタモグラムを示した。
 これらの結果から、ITO導電層表面のRMSの相違に依存せず、均一で緻密な性能を有する導電性ポリマー層がITO導電層上に形成され、ITO導電層の表面が粗面であっても導電性ポリマー層の優れた触媒能と耐熱性とが維持されることがわかる。したがって、ITO導電層表面のRMSが5.0nmである基体を用いることにより、陽極の優れた触媒能と耐熱性を維持しつつも導電性ポリマー層とITO導電層との接着性を大幅に向上させることができることがわかった。
 (2)色素増感太陽電池
 (i)色素増感太陽電池の製造
 実施例1
 0.25cmの表面積を有するFTO電極の表面に、酸化チタンペースト(日揮触媒化成株式会社製)をスクリーン印刷法により塗布した後、120℃で20分間予備乾燥した。得られた酸化チタン層の上に、上記酸化チタンペーストのスクリーン印刷法による塗布及び120℃での20分間の予備乾燥をさらに2回繰り返すことにより、合計で14±1μmの厚みの酸化チタン層を形成した。次いで、450℃で15分間焼成し、FTO電極上に酸化チタン多孔質層を形成した。さらに、色素N719を0.5mMの濃度で含むt-ブタノール/アセトニトリル1:1溶液に酸化チタン多孔質層を24時間浸漬した後、室温にて乾燥することにより、酸化チタン多孔質層に色素N719を添着させ、色素増感太陽電池の陰極を得た。
 次いで、得られた陰極と105nmの厚みの導電性ポリマー層を有する陽極Aとを酸化チタン多孔質層と導電性ポリマー層とが50μmのスペーサーを介して対向するように張り合わせ、間隙に電解液を含浸させることにより電解質層を形成して、色素増感太陽電池を得た。電解液としては、0.1Mのヨウ化リチウム、0.05Mのヨウ素、0.6Mの1,2-ジメチル-3-プロピルイミダゾリウムヨウ化物、及び0.5Mの4-t-ブチルピリジンをアセトニトリルに溶解させた液を用いた。
 実施例2
 陽極Aの代わりに105nmの厚みの導電性ポリマー層を有する陽極Fを使用して、実施例1の手順を繰り返した。
 比較例1
 陽極Aの代わりに105nmの厚みの導電性ポリマー層を有する陽極Dを使用して、実施例1の手順を繰り返した。
 比較例2
 陽極Aの代わりに105nmの厚みの導電性ポリマー層を有する陽極Hを使用して、実施例1の手順を繰り返した。
 (ii)色素増感太陽電池の評価
 実施例1、実施例2、比較例1及び比較例2の色素増感太陽電池について、ソーラシュミレータによる100mW/cm、AM1.5Gの照射条件下での電流-電圧特性を評価した。測定は、20℃で、電圧を10mV/sの速度で変化させながら行った。
 図2、図3、図4及び図5はそれぞれ、各色素増感太陽電池についての、短絡電流密度、開放電圧、曲線因子及び光電変換効率を示した図である。
 これらの図より明らかなように、基体1から出発して作成された陽極Aを備えた実施例1の色素増感太陽電池及び陽極Dを備えた比較例1の色素増感太陽電池は、略等しい短絡電流密度、開放電圧、曲線因子及び光電変換効率を示した。また、基体2から出発して作成された陽極Fを備えた実施例2の色素増感太陽電池及び陽極Hを備えた比較例2の色素増感太陽電池もまた、略等しい短絡電流密度、開放電圧、曲線因子及び光電変換効率を示した。これらのことから、色素増感太陽電池の性能が陽極の基体のITO導電層の表面粗さに依存しないことがわかる。
 (iii)耐久性評価
 電解液に85℃で1000時間浸漬するという過酷な高温放置条件を経験してもなお導電性ポリマー層とITO導電層との接着性が良好であった陽極A及び陽極F(表2参照)について、陽極と電解液との接触による色素増感太陽電池の特性変化を以下の方法により評価した。
 実施例3
 陽極Aを、0.1Mのヨウ化リチウム、0.05Mのヨウ素、0.6Mの1,2-ジメチル-3-プロピルイミダゾリウムヨウ化物、及び0.5Mの4-t-ブチルピリジンをアセトニトリルに溶解させた電解液に浸漬し、85℃で100時間放置した。放置後の陽極Aを上記電解液から取り出し、水・メタノールで洗浄し、乾燥した後、これと実施例1において得られた陰極とを酸化チタン多孔質層と導電性ポリマー層とが50μmのスペーサーを介して対向するように張り合わせ、間隙に0.1Mのヨウ化リチウム、0.05Mのヨウ素、0.6Mの1,2-ジメチル-3-プロピルイミダゾリウムヨウ化物、及び0.5Mの4-t-ブチルピリジンをアセトニトリルに溶解させた電解液を含浸させることにより電解質層を形成して、色素増感太陽電池を得た。得られた色素増感太陽電池について、ソーラシュミレータによる100mW/cm、AM1.5Gの照射条件下での電流-電圧特性を評価した。測定は、20℃で、電圧を10mV/sの速度で変化させながら行った。
 実施例4
 85℃で100時間放置する代わりに、85℃で250時間放置した点を除いて、実施例3の手順を繰り返した。
 実施例5
 85℃で100時間放置する代わりに、85℃で500時間放置した点を除いて、実施例3の手順を繰り返した。
 実施例6
 85℃で100時間放置する代わりに、85℃で1000時間放置した点を除いて、実施例3の手順を繰り返した。
 実施例7
 陽極Fを、0.1Mのヨウ化リチウム、0.05Mのヨウ素、0.6Mの1,2-ジメチル-3-プロピルイミダゾリウムヨウ化物、及び0.5Mの4-t-ブチルピリジンをアセトニトリルに溶解させた電解液に浸漬し、85℃で100時間放置した。放置後の陽極Fを上記電解液から取り出し、水・メタノールで洗浄し、乾燥した後、これと実施例1において得られた陰極とを酸化チタン多孔質層と導電性ポリマー層とが50μmのスペーサーを介して対向するように張り合わせ、間隙に0.1Mのヨウ化リチウム、0.05Mのヨウ素、0.6Mの1,2-ジメチル-3-プロピルイミダゾリウムヨウ化物、及び0.5Mの4-t-ブチルピリジンをアセトニトリルに溶解させた電解液を含浸させることにより電解質層を形成して、色素増感太陽電池を得た。得られた色素増感太陽電池について、ソーラシュミレータによる100mW/cm、AM1.5Gの照射条件下での電流-電圧特性を評価した。測定は、20℃で、電圧を10mV/sの速度で変化させながら行った。
 実施例8
 85℃で100時間放置する代わりに、85℃で250時間放置した点を除いて、実施例7の手順を繰り返した。
 実施例9
 85℃で100時間放置する代わりに、85℃で500時間放置した点を除いて、実施例7の手順を繰り返した。
 実施例10
 85℃で100時間放置する代わりに、85℃で1000時間放置した点を除いて、実施例7の手順を繰り返した。
 図6には、陽極Aを用いることによって形成された実施例1(初期)、実施例3(100時間放置)、実施例4(250時間放置)、実施例5(500時間放置)及び実施例6(1000時間放置)の色素増感太陽電池における曲線因子の値を、図7には、陽極Fを用いることによって形成された実施例2(初期)、実施例7(100時間放置)、実施例8(250時間放置)、実施例9(500時間放置)及び実施例10(1000時間放置)の色素増感太陽電池における曲線因子の値を、それぞれ示した。陽極A又は陽極Fを用いた色素増感太陽電池は、電解液に85℃で1000時間浸漬するという過酷な高温放置条件を経験した陽極が使用された場合であっても、初期の陽極を用いた色素増感太陽電池の約80%の曲線因子の値を示した。このことから、陽極A及び陽極Fがいずれも優れた耐久性を有することがわかる。
 したがって、陽極における優れた触媒能と耐熱性とが維持された上に、導電性ポリマー層とITO導電層との接着性が向上し、電解液との接触においても特性劣化が少ない、軽量な色素増感太陽電池を得ることができた。
 本発明により、優れた触媒能と耐熱性とを有する陽極を備えた軽量な色素増感太陽電池が得られる。

Claims (7)

  1.  光増感剤としての色素を含む半導体層を有する陰極と、
     該陰極の半導体層上に積層された、対を成す酸化種と還元種とを含む電解質層と、
     該電解質層上に積層された、前記酸化種を前記還元種に変換する触媒として作用する導電性ポリマー層を有する陽極と、
     を備えた色素増感太陽電池であって、
     前記陽極における導電性ポリマー層が、
     プラスチックフィルム上にスズドープ酸化インジウム導電層が形成された基体の導電層上に形成されており、
     3位と4位に置換基を有するチオフェンから成る群から選択された少なくとも一種のモノマーから構成されたポリマーと、
     該ポリマーに対するドーパントとしての、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である少なくとも一種の化合物から発生したアニオンと、
     を含み、且つ
     1.15~1.80g/cmの範囲の密度を有しており、
     前記導電層の前記導電性ポリマー層に対向する表面の自乗平均面粗さが5.0nm以上であることを特徴とする色素増感太陽電池。
  2.  前記導電性ポリマー層の厚みが10~500nmの範囲である、請求項1に記載の色素増感太陽電池。
  3.  前記導電層の前記導電性ポリマー層に対向する表面の自乗平均面粗さが6.5~20.0nmの範囲である、請求項1又は2に記載の色素増感太陽電池。
  4.  前記非スルホン酸系有機化合物が、式(I)又は式(II)
    Figure JPOXMLDOC01-appb-C000001
    (式中、mが1~8の整数を意味し、nが1~8の整数を意味し、oが2又は3を意味する)で表わされるスルホニルイミド酸及びこれらの塩から成る群から選択された少なくとも一種の化合物である、請求項1~3のいずれか1項に記載の色素増感太陽電池。
  5.  前記非スルホン酸系有機化合物が、ボロジサリチル酸及びボロジサリチル酸塩から成る群から選択された少なくとも一種の化合物である、請求項1~3のいずれか1項に記載の色素増感太陽電池。
  6.  前記モノマーが3,4-エチレンジオキシチオフェンである、請求項1~5のいずれか1項に記載の色素増感太陽電池。
  7.  前記陽極が、
     1)プラスチックフィルム上にスズドープ酸化インジウム導電層が形成された基体を、酸を含む溶液に浸漬し、前記導電層の表面を粗面化するエッチング段階、
     2)100~80質量%の水と0~20質量%の有機溶媒とから成る溶媒と、3位と4位に置換基を有するチオフェンから成る群から選択された少なくとも一種のモノマーと、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である少なくとも一種の化合物と、を含む重合液を得る調製段階、及び、
     3)前記重合液に前記エッチング段階で得られた基体を導入し、電解重合を行うことにより、前記モノマーの重合により得られた導電性ポリマー層を前記導電層上に形成する重合段階、
     を含む工程により形成されたものである、請求項1~6のいずれか1項に記載の色素増感太陽電池。
PCT/JP2014/070528 2013-08-09 2014-08-04 色素増感太陽電池 WO2015020015A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015530889A JP6519475B2 (ja) 2013-08-09 2014-08-04 色素増感太陽電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013165828 2013-08-09
JP2013-165828 2013-08-09

Publications (1)

Publication Number Publication Date
WO2015020015A1 true WO2015020015A1 (ja) 2015-02-12

Family

ID=52461347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070528 WO2015020015A1 (ja) 2013-08-09 2014-08-04 色素増感太陽電池

Country Status (2)

Country Link
JP (1) JP6519475B2 (ja)
WO (1) WO2015020015A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351289A (ja) * 2005-06-14 2006-12-28 Japan Carlit Co Ltd:The 多孔性材料の製造方法、及び得られた多孔性材料を用いた製品
JP2008153180A (ja) * 2006-12-20 2008-07-03 Fujikura Ltd 光電変換素子および光電変換素子用の対極の製造方法
JP2011150254A (ja) * 2010-01-25 2011-08-04 Nsc:Kk 表示装置の製造方法
JP2012171232A (ja) * 2011-02-22 2012-09-10 Teijin Dupont Films Japan Ltd 導電性フィルム
WO2012133858A1 (ja) * 2011-03-31 2012-10-04 日本ケミコン株式会社 太陽電池用電極体及びその製造方法、この電極体を備えた太陽電池
JP2013077578A (ja) * 2013-01-16 2013-04-25 Fujikura Ltd 光電変換素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351289A (ja) * 2005-06-14 2006-12-28 Japan Carlit Co Ltd:The 多孔性材料の製造方法、及び得られた多孔性材料を用いた製品
JP2008153180A (ja) * 2006-12-20 2008-07-03 Fujikura Ltd 光電変換素子および光電変換素子用の対極の製造方法
JP2011150254A (ja) * 2010-01-25 2011-08-04 Nsc:Kk 表示装置の製造方法
JP2012171232A (ja) * 2011-02-22 2012-09-10 Teijin Dupont Films Japan Ltd 導電性フィルム
WO2012133858A1 (ja) * 2011-03-31 2012-10-04 日本ケミコン株式会社 太陽電池用電極体及びその製造方法、この電極体を備えた太陽電池
JP2013077578A (ja) * 2013-01-16 2013-04-25 Fujikura Ltd 光電変換素子

Also Published As

Publication number Publication date
JP6519475B2 (ja) 2019-05-29
JPWO2015020015A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6070542B2 (ja) 太陽電池用電極体及びその製造方法、この電極体を備えた太陽電池
JP4187782B2 (ja) 光電変換素子用電解質
Zhang et al. Influence of doping anions on structure and properties of electro-polymerized polypyrrole counter electrodes for use in dye-sensitized solar cells
Seo et al. Printable ternary component polymer-gel electrolytes for long-term stable dye-sensitized solar cells
Li et al. TCO-free conducting polymers/carbon cloths as the flexible electro-catalytic counter electrodes for dye-sensitized solar cells
Bidikoudi et al. Solidification of ionic liquid redox electrolytes using agarose biopolymer for highly performing dye-sensitized solar cells
KR101726127B1 (ko) 블록 공중합체를 이용한 염료감응 태양전지용 상대전극 및 이를 포함하는 염료감응 태양전지
JP5924514B2 (ja) 太陽電池用電極体の製造方法
JP6287845B2 (ja) 有機薄膜太陽電池
Kurokawa et al. Controlling the electrocatalytic activities of conducting polymer thin films toward suitability as cost-effective counter electrodes of dye-sensitized solar cells
JP6218046B2 (ja) 色素増感太陽電池
Bandara et al. N719 and N3 dyes for quasi-solid state dye sensitized solar cells-A comparative study using polyacrylonitrile and CsI based electrolytes
JP6024359B2 (ja) 色素増感太陽電池
JP6519475B2 (ja) 色素増感太陽電池
JP2011165423A (ja) 光電変換素子
Veerender et al. Conducting polymers based counter electrodes for dye-sensitized solar cells
JP2014005410A (ja) 重合液、この重合液から得られた導電性ポリマーフィルム及び電極体
KR20100130529A (ko) 올리고머를 포함하는 고체 고분자 전해질을 적용한 염료감응 태양전지 및 이의 제조방법
JP2016111049A (ja) 光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530889

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14835057

Country of ref document: EP

Kind code of ref document: A1