WO2015019997A1 - 光学応答を改善する方法及びそれを用いた液晶表示素子 - Google Patents
光学応答を改善する方法及びそれを用いた液晶表示素子 Download PDFInfo
- Publication number
- WO2015019997A1 WO2015019997A1 PCT/JP2014/070468 JP2014070468W WO2015019997A1 WO 2015019997 A1 WO2015019997 A1 WO 2015019997A1 JP 2014070468 W JP2014070468 W JP 2014070468W WO 2015019997 A1 WO2015019997 A1 WO 2015019997A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- optical
- plate
- crystal layer
- improving
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133711—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
- G02F1/133531—Polarisers characterised by the arrangement of polariser or analyser axes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13356—Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
- G02F1/133562—Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13356—Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
- G02F1/133567—Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the back side
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133742—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/01—Number of plates being 1
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/02—Number of plates being 2
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/05—Single plate on one side of the LC cell
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/08—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation
Definitions
- the present invention relates to a method for improving the optical response of a liquid crystal display element and a liquid crystal display element using the same.
- liquid crystal display devices are widely used in displays such as watches and calculators, various measurement devices, automobiles, word processors, electronic notebooks, printers, computers, televisions, watches, advertisement display boards, and the like.
- Typical display methods of the liquid crystal display element include, for example, a TN (twisted nematic) type, an STN (super twisted nematic) type, and an ECB (field effect birefringence) type.
- a driving method such as VA type for vertically aligning liquid crystal molecules or IPS (in-plane switching) type or FFS type for horizontally aligning liquid crystal molecules Is adopted.
- methods of improving the optical response of the liquid crystal display element include the following (1) to (5).
- the two-layer panel in which the liquid crystal cell is disposed at the optical compensation position is driven under specific conditions (see Non-Patent Document 1).
- retardation plates such as a negative A plate, a positive A plate, a negative C plate, a positive C plate, a biaxial plate, a half wave plate, a quarter wave plate (optical There is a method of using a compensation plate).
- the response time to the drive voltage of the liquid crystal display element is considered to be in accordance with the following equations A and B which are solutions of the torque equation to the external field.
- equations A and B which are solutions of the torque equation to the external field.
- the optical response of the liquid crystal display element is considered to be, for example, a time corresponding to a predetermined change in the amount of transmitted light when light passes through one pixel in the liquid crystal display element.
- the amount of transmitted light of the liquid crystal display element is determined by the arrangement of the polarizing plates, the retardation of the liquid crystal layer, the retardation of the retardation film, and the like. Therefore, the above formulas A and B represent only the molecular motion of the liquid crystal layer, and do not represent the temporal change of the transmitted light amount directly involved in the optical response of the liquid crystal display element.
- the present invention has been proposed in view of such conventional circumstances, and provides a method of improving an optical response to a temporal change in transmitted light amount of a liquid crystal display element, and a liquid crystal display element using such a method.
- the purpose is to
- the present invention provides the following means. [1] a first substrate and a second substrate disposed opposite to each other; A liquid crystal layer sandwiched between the first substrate and the second substrate; An alignment layer controlling an alignment state of the liquid crystal layer between the first substrate and the second substrate; An electrode for changing the alignment state of the liquid crystal layer by an electric field generated by application of a drive voltage; A liquid crystal cell having The transmission axes of the liquid crystal cells are arranged so as to maximize or minimize the amount of light transmitted from the back side to the front side of the liquid crystal cell when the drive voltage is applied.
- Liquid crystal display element comprising The optical compensation plate is disposed such that the derivative of the amount of transmitted light ⁇ 1 with respect to time t when the drive voltage is switched from the on state to the off state when the arrangement of the optical compensation plate is omitted is ⁇ 1 / ⁇ t.
- the liquid crystal display element as described in. [3] The first polarizing plate and the second polarizing plate have a positional relationship in which transmission axes of the first polarizing plate and the second polarizing plate are orthogonal to each other when viewed from the normal direction,
- the liquid crystal layer and the optical compensation plate are in a positional relationship in which the respective slow axes are orthogonal to each other when viewed from the normal direction,
- the method for improving the optical response according to [1] or [2], wherein an angle [rad] formed by the transmission axis and the slow axis is ⁇ / 4.
- [4] The method for improving the optical response according to any one of [1] to [3], wherein the liquid crystal cell drives the liquid crystal layer in a voltage control birefringence mode.
- [5] The method for improving the optical response according to any one of [1] to [4], wherein in the liquid crystal cell, the alignment state of the liquid crystal layer at the time of no application of the drive voltage is horizontal alignment.
- [6] The method for improving the optical response according to any one of [1] to [4], wherein in the liquid crystal cell, the alignment state of the liquid crystal layer at the time of no application of the drive voltage is vertical alignment.
- [7] The method of improving the optical response according to any one of [1] to [6], wherein the optical compensator is a retardation plate.
- the liquid crystal layer improves the optical response according to any one of [1] to [9], including any of nematic liquid crystal, smectic liquid crystal, cholesteric liquid crystal, and ferroelectric liquid crystal. Method.
- the liquid crystal layer has the following general formulas (L1) to (L3): The method of improving the optical response as described in said [10] which contains the liquid crystal compound represented by these.
- a liquid crystal cell having The transmission axes of the liquid crystal cells are arranged so as to maximize or minimize the amount of light transmitted from the back side to the front side of the liquid crystal cell when the drive voltage is applied.
- Liquid crystal display element comprising The optical compensation plate is disposed such that the derivative of the amount of transmitted light ⁇ 1 with respect to time t when the drive voltage is switched from the on state to the off state when the arrangement of the optical compensation plate is omitted is ⁇ 1 / ⁇ t.
- a liquid crystal display device characterized by performing optical design of the retardation of the liquid crystal layer and the retardation of the optical compensation plate so as to satisfy the relationship of
- the voltage is set such that the relationship of V1> V2 by performing the optical design of the retardation of the liquid crystal layer and the retardation of the optical compensation plate so as to satisfy the above equation (1).
- the optical response at the fall (off) from V1 to the voltage V2 can be improved. Therefore, an excellent optical response can be obtained without relying on the improvement of the physical properties of the liquid crystal material, even for a large liquid crystal display element in which a wide viewing angle is important and a medium-small liquid crystal display element pursuing high resolution. it can.
- FIG. 6 is a graph showing various voltage-transmittance curves in normally white and normally black. It is a graph which shows the example of the simulation result in case incident light is perpendicular
- FIG. 1 is a schematic view showing an optical arrangement of each part constituting the liquid crystal optical element 1.
- FIG. 2 is a schematic view showing the optical arrangement of each part when the arrangement of the retardation plate (optical compensation plate) 4 is omitted from the liquid crystal optical element 1 shown in FIG.
- the liquid crystal optical element 1 generally includes a liquid crystal cell 2, a first polarizing plate 3 and a second polarizing plate 4, and a retardation plate 5.
- the liquid crystal cell 2 is homogeneous alignment (horizontal alignment) in which liquid crystal molecules of the nematic liquid crystal layer at the time of no marking of the drive voltage are in the substrate plane.
- the liquid crystal cell 2 is disposed between the first polarizing plate 3 and the second polarizing plate 4.
- the first polarizing plate 3 is disposed on the back side of the liquid crystal cell 2 as a polarizer P.
- the second polarizing plate 3 is disposed on the front side of the liquid crystal cell 2 as an analyzer A.
- the first polarizing plate 3 and the second polarizing plate 4 are in a positional relationship in which their transmission axes are orthogonal to each other when viewed from the normal direction.
- the normal direction of the first polarizing plate 3 and the second polarizing plate 4 is taken as the Z-axis direction of the XYZ coordinates, and the transmission axis of the first polarizing plate 3 coincides with the X-axis direction of the XYZ coordinates.
- the transmission axis of the second polarizing plate 4 is made to coincide with the Y-axis direction of the XYZ coordinates.
- the slow axis of the liquid crystal layer is aligned with the direction of 45 ° from the X-axis direction.
- the retardation plate 5 is an A plate disposed between the liquid crystal cell 2 and the second polarizing plate 4.
- the retardation plate 5 has its slow axis aligned with the direction of 135 ° from the X-axis direction.
- FIG. 2 shows a liquid crystal optical element 1 ′ when the arrangement of the retardation plate 5 is omitted from the liquid crystal optical element 1 shown in FIG. Then, the amount of light transmitted through the liquid crystal optical element 1 'in the case of omitting the arrangement of the phase difference plate 5 and iota 1. On the other hand, the amount of light transmitted through the liquid crystal optical element 1 in the case where the phase difference plate 5 is arranged to iota 2.
- incident light of wavelength k is incident vertically (in a direction parallel to the Z axis) from the back side of each liquid crystal cell 2. It is assumed that transmitted light is emitted perpendicularly (in a direction parallel to the Z axis) from the front side of.
- the phase difference Rf of the phase difference plate 5 does not change with drive voltage or time.
- the driving voltage is V
- the time is t
- the birefringence of the liquid crystal layer is ⁇ n (V, t)
- the retardation Rlc of the liquid crystal layer is d It is represented by ⁇ n (V, t). Therefore, the phase difference Rlc of the liquid crystal layer changes with respect to the drive voltage and time.
- the effective ⁇ n (V, t) focuses on the director of the nematic liquid crystal determined by the continuum elastic theory and the torque equation of relaxation phenomenon, and the inclination angle ⁇ lc (V, t, Z) from the Z axis It can be calculated.
- the inclination angle ⁇ lc is treated as temporally changing when the drive voltage changes from the on state to the off state (at the fall time).
- the transmitted light amounts ⁇ 1 and ⁇ 2 are both expressed in the state of ⁇ n (t) which is determined by ⁇ lc (t) which changes with time.
- the transmitted light amounts ⁇ 1 and ⁇ 2 and their time variations ⁇ 1 / ⁇ t and ⁇ 2 / ⁇ t are expressed by the following formulas 2a and 2b and formulas 3a and 3b. Further, the retardation Rlc (t) of the liquid crystal layer is expressed by Equation 4.
- the transmitted light amount when the drive voltage V changes from the on state to the off state (during falling) when the arrangement of the retardation plate 5 is omitted.
- the derivative of ⁇ 1 with respect to time t is ⁇ 1 / ⁇ t, and the transmitted light amount ⁇ 2 when the drive voltage V changes from the on state to the off state (during falling) when the retardation plate 5 is disposed.
- the optical response to the temporal change of the transmitted light amount is fast or slow is replaced by comparing the magnitude of the transmitted light amount ⁇ 1 , ⁇ 2 to the temporal change. Therefore, the preferable condition of the retardation Rlc of the liquid crystal layer which determines the magnitude relation between the absolute value of the equation 2b and the absolute value of the equation 3b and the retardation Rf of the retardation plate 5 is determined.
- the phase difference Rlc (V) of the liquid crystal layer becomes close to 0 (at least ⁇ / 4 or less). From this, the trigonometric function of the second term in the braces of the equation 5b is a positive value.
- the phase plate is required to satisfy the above equation (1).
- at least one of an A plate, a C plate, and a biaxial plate is preferably provided as a retardation plate, and it is more preferable to combine the A plate and the C plate.
- the retardation Rlc of the liquid crystal layer and the retardation Rf of the retardation plate 5 are both equal to each other and smaller than ⁇ / 2 at least with respect to incident light of wavelength ⁇ incident from the normal direction. More specifically, in the liquid crystal layer and the retardation plate 5, the phase difference [rad] given by the respective retardations when the drive voltage is turned off is 0.1 to 0.6 more than ⁇ / 2. It is preferable to be in a small range. As a result, the optical response (falling time) to the temporal change of the transmitted light amount at falling (off) can be quickened as compared with the case where the arrangement of the phase difference plate 5 is omitted.
- the optical response (rise time) to the temporal change of the transmitted light amount when the drive voltage changes from the off state to the on state (at the rise time) is slower than at the fall time, but the relationship of the above equation (2) is Satisfyingly, by driving the liquid crystal cell 2, it is possible to remarkably improve the optical response to the time change of the transmitted light amount at the fall while improving the optical response to the time change of the transmitted light amount at the rise. It is.
- the height relationship V1> V2 The optical response at the time of falling (off) from the voltage V1 to the voltage V2 can be improved. Therefore, an excellent optical response can be obtained without relying on the improvement of the physical properties of the liquid crystal material, even for a large liquid crystal display element in which a wide viewing angle is important and a medium-small liquid crystal display element pursuing high resolution. it can.
- the liquid crystal cell 20 shown in FIG. 13 has a first substrate 21, a second substrate 22, and a liquid crystal layer 23 sandwiched between the first substrate 21 and the second substrate 22.
- the alignment layers 24 a and 24 b for controlling the alignment state of the liquid crystal layer 23 and the alignment states of the liquid crystal layer 23 are generated on the mutually opposing surfaces of the first substrate 21 and the second substrate 22 by application of a drive voltage.
- Transparent electrodes 25a and 25b to be changed by an electric field are respectively provided.
- the alignment layers 24a and 24b are in a direction substantially horizontal to the substrate surface with the liquid crystal molecules 23a of the liquid crystal layer 23 when no drive voltage is applied.
- Orientation horizontal orientation
- substantially horizontal directions include horizontal and substantially horizontal directions.
- the alignment layers 24a and 24b align the liquid crystal molecules 23a of the liquid crystal layer 23 in a direction substantially perpendicular to the substrate surface when no drive voltage is applied ( Vertical orientation).
- the substantially vertical direction includes the vertical and substantially vertical directions.
- the liquid crystal cell 20 may be a passive matrix display type or an active matrix display type.
- the passive matrix display format for example, STN mode etc. may be mentioned.
- STN mode the transparent electrode 25a on the first substrate 21 and the transparent electrode 25b on the second substrate 22 are patterned in stripes so as to be orthogonal to each other.
- the active matrix display system has a structure in which a plurality of pixel electrodes are arranged in a matrix, and driving is independently controlled by non-linear active elements (not shown) electrically connected to the respective pixel electrodes. Ru. Therefore, in the active matrix display method, one of the transparent electrodes 25a and 25b is a pixel electrode, and the other is a common electrode.
- a liquid crystal cell 30 shown in FIG. 14 has a first substrate 31, a second substrate 32, and a liquid crystal layer 33 sandwiched between the first substrate 31 and the second substrate 32.
- Alignment layers 34 a and 34 b for controlling the alignment state of the liquid crystal layer 23 are provided on mutually facing surfaces of the first substrate 21 and the second substrate 22.
- a transparent electrode 35 is provided on the surface of the first substrate 21 facing the second substrate 22. The transparent electrode 35 changes the alignment state of the liquid crystal layer 23 by an electric field generated by applying a drive voltage.
- an electrode is provided on only one of the first substrate 21 and the second substrate 22.
- This configuration is applied to, for example, a horizontal orientation type such as IPS mode.
- the alignment layers 34a and 34b align (horizontally align) the liquid crystal molecules 33a of the liquid crystal layer 33 in a direction substantially horizontal to the substrate surface when no drive voltage is applied.
- the transparent electrode 35 constitutes a comb-like electrode composed of a common electrode and a pixel electrode.
- liquid crystal layers 23 and 33 will be specifically described.
- liquid crystal materials such as nematic liquid crystal, smectic liquid crystal, ferroelectric liquid crystal, and cholesteric liquid crystal can be used. Among them, it is particularly preferable to use a liquid crystal having a nematic phase.
- the dielectric anisotropy of the liquid crystal layers 23 and 33 may be positive or negative, but it is preferable that ⁇ ⁇ ⁇ n / ⁇ be around ⁇ / 2 or smaller. It is preferable to use a material with a smaller rate ⁇ n.
- liquid crystal layer of the present invention more preferably contains liquid crystal compounds represented by general formulas (L1) to (L3).
- the liquid crystal material used in the above optical measurement contains a compound represented by the following general formula (L1) and a compound represented by the following general formula (L3). Since the thickness ⁇ of the liquid crystal layer being put to practical use is about 1 to 4 ⁇ m, the birefringence ⁇ n of the liquid crystal material can be selected from 0.04 to 0.15, but 0.05 to 0.12 Is preferred, and 0.06 to 0.10 is more preferred.
- each of R 11 to R 32 independently represents an alkyl group having 1 to 15 carbon atoms, an alkoxy group, an alkenyl group or an alkenyloxy group.
- Each of A11 to A32 independently represents any of the following structures.
- m11 to m31 independently represents an integer of 0 to 3.
- X11 and X12 each independently represent -H, -Cl or -F.
- Y 11 represents —CN, —Cl, —F, —OCHF 2 , —CF 3 , —OCF 3 , a fluorinated alkyl group having 2 to 5 carbon atoms, an alkoxy group, an alkenyl group or an alkenyloxy group.
- the optical response of the liquid crystal layers 23 and 33 is also affected by the orientation layers 24a, 24b, 34a and 34b. Therefore, it is preferable to use a material having a relatively large anchoring energy with the liquid crystal layers 23, 33 for the alignment layers 24a, 24b, 34a, 34b, specifically, polyimide (PI), polyamide, chalcone, cinnamate It is preferable to use at least one selected from cinnamoyl.
- PI polyimide
- polyamide polyamide
- chalcone cinnamate
- FIG. 3 is a schematic view showing the optical arrangement of each part constituting the liquid crystal optical element 10.
- FIG. 2 is a schematic view showing an optical arrangement of each part when the arrangement of the retardation plates (optical compensation plates) 6 and 7 is omitted from the liquid crystal optical element 10 shown in FIG.
- the liquid crystal optical element 10 includes the liquid crystal cell 2, the first polarizing plate 3 and the second polarizing plate 4, and the first retardation plate 6 and the second retardation plate 7. It is equipped roughly.
- the liquid crystal optical element 10 has a first retardation plate 6 disposed between the liquid crystal cell 2 and the first polarizing plate 3, and a second retardation plate 6 disposed between the liquid crystal cell 2 and the second polarizing plate 4.
- the phase difference plate 7 is disposed.
- the other configuration is basically the same as that of the liquid crystal optical element 1 shown in FIG. Therefore, in the liquid crystal optical element 10 shown in FIG. 3, the description of the same parts as those of the liquid crystal optical element 1 shown in FIG. 1 will be omitted, and the same reference numerals will be given in the drawings.
- FIG. 4 shows a liquid crystal optical element 10 ′ when the arrangement of the first retardation plate 6 and the second retardation plate 7 is omitted from the liquid crystal optical element 10 shown in FIG. 3.
- the transmission axes of the first polarizing plate 3 and the second polarizing plate 4 are in a positional relationship orthogonal to each other when viewed from the normal direction, the first polarizing plate 3 and the second polarizing plate 4 It is arbitrary about arrangement of. Further, in the liquid crystal optical elements 10 and 10 ′ shown in FIGS. 3 and 4, any light having a wavelength k from the back surface side of each liquid crystal cell 2 is perpendicular to the direction (direction parallel to the Z axis). It shall be incident from the direction.
- the coordinate axes and the like are defined by taking the cases shown in FIGS. 3 and 4 as an example, and the calculation is advanced. Further, in the following description, it is assumed that scattering, reflection, attenuation, etc. are small at each interface to approximate the dynamic matrix to proceed with the calculation (J. Opt. Soc. Am. Vol. 72, No. 4, p. 507 (1982)).
- the polarization state of light incident on the optical anisotropic body is expressed by the extended Jones matrix equation (Jo) of the following equation 6a. Further, in the extended Mueller matrix (Mu), it is represented by the following equation 6b.
- the transmitted light Stokes vector S is the following equation 6c
- the transmitted light Stokes vector S ' is the following equation 6d
- the polarizer matrix is P
- the analyzer matrix is A, from the relationship of the following equation 6e , Becomes the component S0 'of the transmitted light Stokes vector S'.
- the optical axis rotation angle ⁇ and the phase rotation angle ⁇ ⁇ ⁇ ⁇ in the equation 6a and the equation 6b are optical quantities corresponding to the light incident on the optically anisotropic member, as shown in FIGS. 5A and 5B. Therefore, if expressions of the optical axis rotation angle ⁇ and the phase rotation angle ⁇ ⁇ ⁇ ⁇ in arbitrary arrangement can be obtained, it is possible to consider the amount of transmitted light.
- 5A shows the case where light is incident on a uniaxial optical anisotropic body
- FIG. 5B shows the case where light is incident on a biaxial optical anisotropic body.
- the s-wave of the incident light is defined by the following equation 9
- the o-wave of the light transmitted through the polarizing plate is defined by the following equation 10a and the following equation 11a.
- the rotation angle ⁇ ⁇ ⁇ used in the Mueller matrix of the polarizing plate can be obtained by the following equation 10b and 10c in the case of a polarizer, and by the following equation 11b and 11c in the case of an analyzer.
- the Mueller matrices of the polarizer and the analyzer become the following expressions 12a and 12b and the expressions 13a to 13c.
- an expression concerning light ( ⁇ i, ⁇ i) incident from an arbitrary direction on polarizing plates ( ⁇ p, ⁇ a) arranged arbitrarily can be obtained.
- the first retardation plate 6 (position of optical axis: polar angle ⁇ c, azimuth angle ⁇ c, refractive index: ne c , no c , thickness: ⁇ c), liquid crystal layer of liquid crystal cell 2 (position of optical axis: Polar angle ⁇ d, azimuth angle ⁇ d, refractive index: ned, nod, thickness: ⁇ d), second retardation plate 7 (position of optical axis: polar angle ⁇ b, azimuth angle ⁇ b, refractive index: neb, nob, thickness: Derivation of the Mueller matrix in each optical anisotropic field of ⁇ b) substitutes the part of the same calculation process with the arguments “b”, “d” and “c” and is expressed as “j”.
- the incident light vector k is divided into two of the following equation 15a and the following equation 15b because it is refracted and propagated in the optically anisotropic member according to Snell's law (the component in the Z-axis direction changes).
- the optical axis rotation angle ⁇ j of the Mueller matrix of the optically anisotropic body is obtained as the following Expression 18a and Expression 18b from the following Expression 17a and Expression 17b in which the inner product and outer product formulas of vectors are applied and the expressions are modified.
- Equations 19a and 19b are substituted into the equation obtained from the Maxwell equation of the following Equation 19c. Then, it is equivalent to solving the eigenvalue problem of the simultaneous equations expressed by the following equation 19d derived therefrom.
- a meaningful solution in which the electric field E is other than E ⁇ 0 results in solving the equation F of the following equation 20a.
- the vector (ka, kb j , kc j ) is a component of the vector ke j in the abc coordinate system.
- the coordinate conversion of this vector to the XYZ coordinate system is expressed by the following equation 20b. That is, when the conversion equation of the following equation 20b is substituted into the following equation 20a, the equation F becomes a quartic equation of kez j .
- ⁇ , ⁇ a j , ⁇ b j and ⁇ c j are in the relationship of the following Formula 20c to Formula 20e.
- factorization can be performed as in the following equation 22b, so that double roots of koz j and two positive and negative roots of kez j can be obtained.
- the negative kez j optical meaning is that the directions of light mean reverse directions, so positive kez j and koz j are uniaxial optical anisotropy involved in refracted light.
- koz j is represented by the following equation 24c.
- the root of kezj is represented by the following equation 24b from the quadratic equation of the following equation 23a.
- the phase rotation angle ⁇ ⁇ ⁇ j used in the Mueller matrix becomes Expression 24a.
- the equation F is kez j quartic equation.
- the description will be made using the fourth-order equation of the following equation 25c in which the above equation 20a is arranged.
- the root of the following formula 25c is an imaginary number, the optical meaning corresponds to the attenuation of light and is therefore excluded from consideration. If the following equations 25c has four real roots, the following formulas 25d, the two Seine (k11 j, k21 j) and two negative roots (k12 j, k22 j).
- phase rotation angle ⁇ j is the following equation 25e.
- the optical axis rotation angle ⁇ j in the biaxial optical anisotropic body is determined as follows. That is, since the two positive roots (k11 j , k21 j ) are eigenvalues of the following equation 19d, the vector component ratio of the electric field vector Eabc (Ea, Eb, Ec) corresponding to the eigenvalues is Kramer's formula It can be calculated by the following equation 26d applied (abc coordinate system notation).
- the extended Mueller matrix of each of the retardation films B and C and the optically anisotropic members of the liquid crystal panel LCD which are arbitrarily disposed. If the extended Mueller matrix of uniaxial optical anisotropy is rewritten again, Expression 27 to Expression 28e are obtained.
- the extended Mueller matrix expression of the uniaxial optical anisotropic body and the biaxial optical anisotropic body is obtained, and using these, optical design satisfying the above equation (1) is performed. It is possible.
- A-plate, C-plate, ⁇ / 4 plate, homogeneous alignment liquid crystal cell (ECB mode), vertical alignment for each optical anisotropic material of the first retardation plate 6, second retardation plate 7 and liquid crystal cell 2 Table 1 can be used when specific designation can be made, such as the liquid crystal cell (VA mode) of
- the difference between the A plate and the C plate is the difference in the method of specifying the parameters of the Mueller matrix.
- the difference between the ECB mode and the VA mode is the difference in the method of specifying ⁇ d. Therefore, the desired arrangement is possible only by specifying the parameters of the Mueller matrix.
- First polarizing plate 3 (axis position: azimuth angle ⁇ a ), First retardation plate 6 (axis: polar angle ⁇ b , azimuth angle ⁇ b , refractive index: ne b , no b , thickness: ⁇ b ), Liquid crystal layer of liquid crystal cell 2 (axis: polar angle ⁇ d , azimuth angle ⁇ d , refractive index: ne d , no d , thickness: ⁇ d ), Second retardation plate 7 (axis: polar angle ⁇ c , azimuth angle ⁇ c , refractive index: ne c , no c , thickness: ⁇ c ), Second polarizing plate 4 (axis position: azimuth angle ⁇ p )
- the product of these Mueller matrices is expressed by the following expression 30.
- the first retardation plate 6 is formed of n retardation plates
- the following equation 31a is used.
- the second retardation plate 7 is formed of n retardation plates
- the following equation 31b is used.
- the result of the simulation at the time of applying is shown.
- the upper part in FIG. 6 shows the relationship between the transmitted light amount ⁇ and the polar angle ⁇ d
- the lower part in FIG. 6 shows the relationship between ⁇ / ⁇ d and the polar angle ⁇ d.
- ⁇ d is 0 ° when the drive voltage is sufficiently high (when it is on). On the other hand, when the drive voltage is 0 V (off), ⁇ d is 90 °.
- the solid line is the case where the first retardation plate 6 and the second retardation plate 7 are arranged (liquid crystal display element 10 shown in FIG. 3),
- the double-dashed line shows the case where the arrangement of the first retardation plate 6 and the second retardation plate 7 is omitted (liquid crystal display element 10 ′ shown in FIG. 4) (the same applies to the following).
- the response time at the time of falling (off) from voltage V1 to voltage V2 whose relationship of height is V1> V2 is ⁇ d
- the response time at the time of rising (on) from voltage V2 to voltage V1 is ⁇ r the same.
- the liquid crystal molecules of the liquid crystal layer have angles of ⁇ d (V1) and ⁇ d (V2) calculated by the theory of continuum elasticity.
- V1 and V2 the voltages V1 and V2 are applied to the liquid crystal cell 2
- the liquid crystal molecules of the liquid crystal layer have angles of ⁇ d (V1) and ⁇ d (V2) calculated by the theory of continuum elasticity.
- the inclination of the liquid crystal molecules temporally changes from ⁇ d (V1) to ⁇ d (V2) according to the torque equation of the relaxation phenomenon.
- the transmitted light amount ⁇ is obtained from the following formula 32c and formula 32d by this ⁇ d (t).
- the liquid crystal display element 10 shown in FIG. 3 and the liquid crystal display element 10 ′ shown in FIG. 4 use the same liquid crystal cell 2 (the liquid crystal physical properties and panel constituent factors are also the same) 2,
- the solutions of the torque equation are identical. Therefore, it is estimated that the transmitted light amounts ⁇ 2 and ⁇ 1 of each other tend to be similar in influence of the relaxation phenomenon.
- the respective transmitted light amounts ⁇ 2 and ⁇ 1 are different with respect to the same ⁇ d. Conversely, ⁇ d is different when the transmitted light amounts ⁇ 2 and ⁇ 1 are the same.
- each value is as follows. In this case, enough slightly less variation of iota 2 of [theta] d, (? 2a, .theta.2b) derivative absolute value of iota 2 of interval ( ⁇ 1a, ⁇ 1b) greater than the differential coefficient absolute value of iota 1 interval is shown And ⁇ d has been speeded up.
- Amount of change in ⁇ d of ⁇ 2 ⁇ 2a ⁇ ⁇ 2b ⁇ 1 of ⁇ d amount of change: ⁇ 1a ⁇ ⁇ 1b
- the transmitted light amount does not use all 0 to 100%. Further, the display quality is designed to be maintained against the influence of various factors such as the environmental temperature and the viewing angle.
- the broken line is the region of the drive voltage used. In a region other than this region, if the transmitted light amount ⁇ has a local extreme value, an error occurs in the determination of the magnitude relation of the differential coefficient ⁇ / ⁇ d ( ⁇ d).
- the display area of the liquid crystal display element is difficult to specify because it depends on the desired design, it is optimal to use the means of the present invention in the angle area of ⁇ d corresponding to the area used for display as a concept .
- ⁇ 2 and ⁇ 1 are not generally the same “normally white” or the same “normally black”.
- convert either transmitted light quantity and ⁇ d It is self-evident that optical design is carried out so as to obtain the relationship of the above equation (1).
- the absolute value function is added to the above equation (1) in order to avoid the simulation of the prone error in the above description, in the case of a simulation with a sufficient understanding, it may be designed without the absolute value.
- I 1 ( ⁇ d) “ maximum transmitted light quantity among the values of I 1 ” ⁇ I 1 ( ⁇ d)
- ⁇ d of the liquid crystal molecules has been treated the same for all thickness ⁇ d of the liquid crystal layer. It is also possible to divide the thickness ⁇ d of the liquid crystal layer by n, calculate ⁇ d of the k-th divided layer by the continuum elastic theory, convert it to a Mueller matrix, and set the following equation to advance. This method is effective in determining accuracy. On the other hand, simplification is also effective in the case of seeking physical optical understanding of optical design, new problem solution and selection diversity.
- the liquid crystal cell 2 is in the horizontal alignment (HO).
- FIG.9 and FIG.10 the ratio of the time change of the transmitted light quantity of said Formula 32g was also shown on the graph.
- FIG. 9 is an example of the simulation result in the case where the incident light is vertical.
- case 1 satisfies the above equation (1), and it is shown that it is sufficient to perform optical design in which both the liquid crystal layer and the retardation plate have ⁇ n / ⁇ ⁇ / 2. .
- FIG. 10 is an example of a simulation result of a change in viewing angle with respect to incident light.
- the azimuth of the viewing angle to be observed coincides with the incident light azimuth ( ⁇ i, ⁇ i).
- case 10 that satisfies the above equation (1), and it is shown that it is sufficient to perform an optical design in which both the liquid crystal layer and the retardation plate are ⁇ n / ⁇ ⁇ / 2. . That is, it has been shown that the optical design conditions derived at normal incidence maintain the improvement effect of making ⁇ d fast even in a relatively wide viewing angle region.
- FIG. 11 is an example of a simulation result of the phase difference between the liquid crystal layer and the retardation plate when the thickness of the liquid crystal layer is changed.
- the thickness ⁇ of the liquid crystal layer is changed to make the phase difference between the liquid crystal layer and the phase plate inconsistent as follows.
- Case 13 corresponds to the present invention satisfying the formula (1), and case 14 falls outside the present invention not satisfying the condition of the formula (1).
- Table 2 The results of case 1 and case 3 are also shown in Table 2 below.
- FIG. 12 shows the response time ⁇ d at falling (off) and falling (on) for cases 15 to 18 in which the phase difference between the liquid crystal layer and the retardation plate is changed when the thickness of the liquid crystal layer is changed.
- Response time ⁇ r was measured.
- LCD liquid crystal cell
- One of the produced LCDs was used as a phase plate, and the liquid crystal display element was assembled in the same arrangement as the liquid crystal display element 10 shown in FIG.
- the wavelength of light used for measurement was 550 nm.
- FIG. 13 shows the result of measuring the response time ⁇ d of mid-tone for the above cases 15 to 18. Also, the results of case 15 to case 18 are shown in Table 4 below. From the results shown in Table 4, it can be seen that the response time ⁇ d is significantly improved to 50 to 60% in any gradation.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Geometry (AREA)
- Liquid Crystal (AREA)
- Liquid Crystal Substances (AREA)
Abstract
Description
(1) 液晶層の厚みを下げる。
(2) 液晶材料の粘弾性を低減させる。
(3) 過電圧印加による中間階調応答を改善する(オーバードライブ方式という。)。
(4) リフレッシュレート増で動画フレーム間をつなぐ映像を補間する(倍速駆動という。)。
(5) 液晶セルを光学的補償位置に配置した2層パネルを特定の条件で駆動する(非特許文献1を参照。)。
〔1〕 互いに対向して配置された第1の基板及び第2の基板;
前記第1の基板及び前記第2の基板の間に挟持された液晶層;
前記第1の基板及び前記第2基板の間で前記液晶層の配向状態を制御する配向層;
前記液晶層の配向状態を駆動電圧の印加により発生する電界によって変化させる電極;
を有する液晶セル;並びに、
前記液晶セルの背面側及び前面側に配置されて、前記駆動電圧の印加時に前記液晶セルの背面側から前面側へと透過する光の透過光量が最大又は最小となるように、互いの透過軸の向きが設定された第1の偏光板及び第2の偏光板;
前記第1の偏光板及び前記第2の偏光板と前記液晶セルとの間のうち少なくとも一方の間に配置されて、その間を通過する光の光学補償を行う光学補償板;
を備える液晶表示素子において、
前記光学補償板の配置を省略した場合の前記駆動電圧がオン状態からオフ状態となるときの透過光量Ι1の時間tに対する微分係数を∂Ι1/∂tとし、前記光学補償板が配置された場合の前記駆動電圧がオン状態からオフ状態となるときの透過光量Ι2の時間tに対する微分係数を∂Ι2/∂tとしたときに、下記式(1):
|∂Ι2/∂t|>|∂Ι1/∂t| …(1)
の関係を満足するように、前記液晶層の位相差と前記光学補償板の位相差との光学設計を行うことにより、
高低関係がV1>V2である電圧V1から電圧V2への立下り(オフ)時の光学応答を改善することを特徴とする光学応答を改善する方法。
〔2〕 前記液晶層及び前記光学補償板は、前記駆動電圧がオフ状態となるときのそれぞれのリタデーションにより与えられる位相差[rad]を等しくし、且つ、π/2よりも小さい、前記〔1〕に記載の液晶表示素子。
〔3〕 前記第1の偏光板及び前記第2の偏光板は、それぞれの透過軸が法線方向から見て互い直交した位置関係にあり、
前記液晶層及び前記光学補償板は、それぞれの遅相軸が法線方向から見て互い直交した位置関係にあり、
前記透過軸及び前記遅相軸の為す角度[rad]がπ/4である、前記〔1〕又は〔2〕に記載の光学応答を改善する方法。
〔4〕 前記液晶セルは、前記液晶層を電圧制御複屈折モードで駆動する、前記〔1〕~〔3〕の何れか一項に記載の光学応答を改善する方法。
〔5〕 前記液晶セルは、前記駆動電圧の無印加時における前記液晶層の配向状態が水平配向である、前記〔1〕~〔4〕の何れか一項に記載の光学応答を改善する方法。
〔6〕 前記液晶セルは、前記駆動電圧の無印加時における前記液晶層の配向状態が垂直配向である、前記〔1〕~〔4〕の何れか一項に記載の光学応答を改善する方法。
〔7〕 前記光学補償板は、位相差板である、前記〔1〕~〔6〕の何れか一項に記載の光学応答を改善する方法。
〔8〕 前記位相差板は、Aプレート、Cプレート、二軸性プレートのうちの何れかを含む、前記〔7〕に記載の光学応答を改善する方法。
〔9〕 前記光学補償板は、光学補償用の液晶セルである、前記〔1〕~〔8〕の何れか一項に記載の光学応答を改善する方法。
〔10〕 前記液晶層は、ネマチック液晶、スメクチック液晶、コレスチック液晶、強誘電性液晶のうちの何れかを含む、前記〔1〕~〔9〕の何れか一項に記載の光学応答を改善する方法。
〔11〕 前記液晶層は、下記一般式(L1)~(L3):
〔12〕 前記液晶セルは、前記電極と電気的に接続された非線形アクティブ素子を含む、前記〔1〕~〔11〕の何れか一項に記載の光学応答を改善する方法。
〔13〕 前記配向層は、ポリイミド、ポリアミド、カルコン、シンナメート、シンナモイルのうちの何れかを含む、前記〔1〕~〔12〕の何れか一項に記載の光学応答を改善する方法。
〔14〕 前記〔1〕~〔13〕の何れか一項に記載の光学応答を改善する方法を用いた液晶表示素子。
〔15〕 互いに対向して配置された第1の基板及び第2の基板;
前記第1の基板及び前記第2の基板の間に挟持された液晶層;
前記第1の基板及び前記第2基板の間で前記液晶層の配向状態を制御する配向層;及び
前記液晶層の配向状態を駆動電圧の印加により発生する電界によって変化させる電極;
を有する液晶セル;並びに、
前記液晶セルの背面側及び前面側に配置されて、前記駆動電圧の印加時に前記液晶セルの背面側から前面側へと透過する光の透過光量が最大又は最小となるように、互いの透過軸の向きが設定された第1の偏光板及び第2の偏光板;
前記第1の偏光板及び前記第2の偏光板と前記液晶セルとの間のうち少なくとも一方の間に配置されて、その間を通過する光の光学補償を行う光学補償板;
を備える液晶表示素子において、
前記光学補償板の配置を省略した場合の前記駆動電圧がオン状態からオフ状態となるときの透過光量Ι1の時間tに対する微分係数を∂Ι1/∂tとし、前記光学補償板が配置された場合の前記駆動電圧がオン状態からオフ状態となるときの透過光量Ι2の時間tに対する微分係数を∂Ι2/∂tとしたときに、下記式(1):
|∂Ι2/∂t|>|∂Ι1/∂t| …(1)
の関係を満足するように、前記液晶層の位相差と前記光学補償板の位相差との光学設計を行ことを特徴とする液晶表示素子。
なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を模式的に示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
なお、図1は、液晶光学素子1を構成する各部の光学配置を示す模式図である。図2は、図1に示す液晶光学素子1から位相差板(光学補償板)4の配置を省略した場合の各部の光学配置を示す模式図である。
|∂Ι2/∂t|>|∂Ι1/∂t| …(1)
の関係を満足するように、液晶層の位相差Rlcと、位相差板5の位相差Rfとの光学設計を行う必要がある。
VLC1<VLC2 …(2)
の関係を満足するように、液晶セル2の駆動を行う。
次に、液晶セルの具体的な構成について、図13に示す液晶セル20及び図14に示す液晶セル30を例に挙げて説明する。
次に、液晶層23,33について具体的に説明する。
液晶層23,33には、例えば、ネマチック液晶、スメクチック液晶、強誘電性液晶、コレスチック液晶などの液晶材料を使用できるが、その中でも、ネマテック相を有する液晶を用いることが特に好ましい。
A11~A32は、それぞれ独立して下記の何れかの構造を表す。
m11~m31は、それぞれ独立して0~3の整数を表す。
X11、X12は、それぞれ独立して-H、-Cl、-Fを表す。
Y11は、-CN、-Cl、-F、-OCHF2、-CF3、-OCF3、炭素数2~5のフッ素化されたアルキル基、アルコキシ基、アルケニル基またはアルケニルオキシ基を表す。
したがって、k11jで屈折した波がe波(eabcと表記する。)、k21jで屈折した波がo波(oabcと表記する。)に該当する。
本例では、上記図3及び図4に示す液晶光学素子10,10’について、下記の定義により計算を進めるものとする。
第1の位相差板6(軸:極角θb、方位角φb、屈折率:neb、nob、厚み:Λb)、
液晶セル2の液晶層(軸:極角θd、方位角φd、屈折率:ned、nod、厚み:Λd)、
第2の位相差板7(軸:極角θc、方位角φc、屈折率:nec、noc、厚み:Λc)、
第2の偏光板4(軸位置:方位角φp)
さらに、位相差板の配置を省略した場合、例えば第2の位相差板7の配置を省略した場合は、θc=0、nec=nocと置いて、下記式29cのMueller行列を単位行列化すればよい。
以下、上記式32c~式32gを用いた種々のシミュレーション結果を例示し、本発明による光学設計の方法や有用性について説明する。
第1の偏光板3及び第2の偏光板4の配置:(φp,φa)=(15°,135°)
液晶セル2の配置:(φd)=(0°)
第1の位相板6の配置:(θb,φb)=(90°,90°)
第2の位相板7の配置:単位行列
なお、第1の位相板6はAプレートとし、簡略に説明する意図で、第2の位相板7はその配置を省略する(該当Mueller行列を単位行列にする。)ものとする。
透過光量Ι1=Ι2=1(共にθd=0°)から透過光量Ιaへの光学応答の場合、各値は下記となる。この場合、Ι2のθdの変化量が少なくて足り、Ι2の微分係数絶対値も大きいことが示され、ダブルでτdの高速化がなされている。
Ι2のθd変化量:0°→θ2a
Ι1のθd変化量:0°→θ1a
|∂Ι2/∂θd(θ2a)|>|∂Ι1/∂θd(θ1a)|
Ι2のθd変化量:θ2a→θ2b
Ι1のθd変化量:θ1a→θ1b
|∂Ι2/∂θd(θ2a)|>|∂Ι1/∂θd(θ1a)|
|∂Ι2/∂θd(θ2b)|≧|∂Ι1/∂θd(θ1b)|
応答時間τdに該当するθdの区間は、おおよそ(90°,45°)である。「Rlc=Rf<π/2」の場合、この区間のΙ2の微分係数絶対値はΙ1のそれよりも小さく、位相差板を配置することでτdが大幅に悪化している。逆に、「Rlc=Rf>π/2」の場合は、この区間のΙ2の微分係数絶対値はΙ1のそれよりも大きく、τdを改善している。
この領域以外の領域では、透過光量Ιが局所極値となるところがあると、微係数∂Ι/∂θd(θd)の大小関係の判断に誤りが生じる。
I1(θd)←「I1の数値の中で最大となる透過光量」-I1(θd)
なお、以下に示すシミュレーション結果は、何れも図3に示す液晶光学素子10を用いた例である。
第1の偏光板3及び第2の偏光板4の配置:(φp,φa)=(15°,135°)
液晶セル2の配置:(φd)=(0°)
第1の位相差板6の配置:(θb,φb)=(90°,90°)
第2の位相差板7の配置:単位行列
なお、第1の位相板6はAプレートとし、簡略に説明する意図で、第2の位相板7はその配置を省略する(該当Mueller行列を単位行列にする。)ものとする。液晶セル2は水平配向(HO)である。
また、図9及び図10には、上記式32gの透過光量の時間変化の比もグラフに示した。
図9は、入射光が垂直の場合のシミュレーション結果の例である。
図9に示すcase1~case3は、波長λ=550nmで、nedを1.58、1.5916666、1.600とした場合である。
図9に示すcase4~case6は、ned-nod=0.06で、入射波長を420nm、550nm、600nmに変化させた場合である。
図10は、入射光に対する視野角変化のシミュレーション結果の例である。
本例では、入射光に関する透過光強度を観測することになるので、観測する視野角の方位は入射光方位(θi,φi)と一致する。
case7~case9:(θi,φi)=(15°,45°)
case10~case12:θi,φi)=(15°,45°)
図11は、液晶層の厚みを変化させた場合の液晶層と位相差板との位相差のシミュレーション結果の例である。本例では、液晶層の厚みΛを変えて、液晶層と位相板との位相差を下記のように不一致にさせている。
case13:Λd=4μm、Λd(ned-nod)=0.28、Λb=3μm、Λb(neb-nob)=0.21
case14:Λd=3μm、Λd(ned-nod)=0.21、Λb=4μm、Λb(neb-nob)=0.28
図12は、液晶層の厚みを変化させた場合の液晶層と位相差板との位相差を異ならせたcase15~case18について、立下り(オフ)時の応答時間τdと、立下り(オン)時の応答時間τrを測定した。
(i) 上記式(1)を満たすことによりτdの改善が確認できたこと。
(ii) 任意の配置に関する透過光量の表式の導出と、その時間微分式である式32e~式32gが検証されたこと。
(iii) 改善効果が特段に大きかったこと(応答改善の為に液晶材料の粘性γ1を半減させることは、現在極めて困難な課題となっている。)。
図13は、上記case15~case18について、中間諧調の応答時間τdを測定した結果である。また、case15~case18の結果を下記表4に示す。
表4に示す結果から、何れの階調も応答時間τdが50~60%と大幅に改良していることがわかる。
Claims (15)
- 互いに対向して配置された第1の基板及び第2の基板;
前記第1の基板及び前記第2の基板の間に挟持された液晶層;
前記第1の基板及び前記第2基板の間で前記液晶層の配向状態を制御する配向層;及び
前記液晶層の配向状態を駆動電圧の印加により発生する電界によって変化させる電極;
を有する液晶セル;並びに、
前記液晶セルの背面側及び前面側に配置されて、前記駆動電圧の印加時に前記液晶セルの背面側から前面側へと透過する光の透過光量が最大又は最小となるように、互いの透過軸の向きが設定された第1の偏光板及び第2の偏光板;
前記第1の偏光板及び前記第2の偏光板と前記液晶セルとの間のうち少なくとも一方の間に配置されて、その間を通過する光の光学補償を行う光学補償板;
を備える液晶表示素子において、
前記光学補償板の配置を省略した場合の前記駆動電圧がオン状態からオフ状態となるときの透過光量Ι1の時間tに対する微分係数を∂Ι1/∂tとし、前記光学補償板が配置された場合の前記駆動電圧がオン状態からオフ状態となるときの透過光量Ι2の時間tに対する微分係数を∂Ι2/∂tとしたときに、下記式(1):
|∂Ι2/∂t|>|∂Ι1/∂t| …(1)
の関係を満足するように、前記液晶層の位相差と前記光学補償板の位相差との光学設計を行うことにより、
高低関係がV1>V2である電圧V1から電圧V2への立下り(オフ)時の光学応答を改善する方法。 - 前記液晶層及び前記光学補償板は、前記駆動電圧がオフ状態となるときのそれぞれのリタデーションにより与えられる位相差[rad]を等しくし、且つ、π/2よりも小さい、請求項1に記載の光学応答を改善する方法。
- 前記第1の偏光板及び前記第2の偏光板は、それぞれの透過軸が法線方向から見て互い直交した位置関係にあり、
前記液晶層及び前記光学補償板は、それぞれの遅相軸が法線方向から見て互い直交した位置関係にあり、
前記透過軸及び前記遅相軸の為す角度[rad]がπ/4である、請求項1又は2に記載の光学応答を改善する方法。 - 前記液晶セルは、前記液晶層を電圧制御複屈折モードで駆動する、請求項1~3の何れか一項に記載の光学応答を改善する方法。
- 前記液晶セルは、前記駆動電圧の無印加時における前記液晶層の配向状態が水平配向である、請求項1~4の何れか一項に記載の光学応答を改善する方法。
- 前記液晶セルは、前記駆動電圧の無印加時における前記液晶層の配向状態が垂直配向である、請求項1~4の何れか一項に記載の光学応答を改善する方法。
- 前記光学補償板は、位相差板である、請求項1~6の何れか一項に記載の光学応答を改善する方法。
- 前記位相差板は、Aプレート、Cプレート、二軸性プレートのうちの何れかを含む、請求項7に記載の光学応答を改善する方法。
- 前記光学補償板は、光学補償用の液晶セルである、請求項1~8の何れか一項に記載の光学応答を改善する方法。
- 前記液晶層は、ネマチック液晶、スメクチック液晶、コレスチック液晶、強誘電性液晶のうちの何れかを含む、請求項1~9の何れか一項に記載の光学応答を改善する方法。
- 前記液晶セルは、前記電極と電気的に接続された非線形アクティブ素子を含む、請求項1~11の何れか一項に記載の光学応答を改善する方法。
- 前記配向層は、ポリイミド、ポリアミド、カルコン、シンナメート、シンナモイルのうちの何れかを含む、請求項1~12の何れか一項に記載の光学応答を改善する方法。
- 請求項1~13の何れか一項に記載の光学応答を改善する方法を用いた液晶表示素子。
- 互いに対向して配置された第1の基板及び第2の基板;
前記第1の基板及び前記第2の基板の間に挟持された液晶層;
前記第1の基板及び前記第2基板の間で前記液晶層の配向状態を制御する配向層;及び
前記液晶層の配向状態を駆動電圧の印加により発生する電界によって変化させる電極;
を有する液晶セル;並びに、
前記液晶セルの背面側及び前面側に配置されて、前記駆動電圧の印加時に前記液晶セルの背面側から前面側へと透過する光の透過光量が最大又は最小となるように、互いの透過軸の向きが設定された第1の偏光板及び第2の偏光板;
前記第1の偏光板及び前記第2の偏光板と前記液晶セルとの間のうち少なくとも一方の間に配置されて、その間を通過する光の光学補償を行う光学補償板;
を備える液晶表示素子において、
前記光学補償板の配置を省略した場合の前記駆動電圧がオン状態からオフ状態となるときの透過光量Ι1の時間tに対する微分係数を∂Ι1/∂tとし、前記光学補償板が配置された場合の前記駆動電圧がオン状態からオフ状態となるときの透過光量Ι2の時間tに対する微分係数を∂Ι2/∂tとしたときに、下記式(1):
|∂Ι2/∂t|>|∂Ι1/∂t| …(1)
の関係を満足するように、前記液晶層の位相差と前記光学補償板の位相差との光学設計を行うことを特徴とする液晶表示素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480043912.5A CN105452947B (zh) | 2013-08-08 | 2014-08-04 | 改善光学响应的方法以及使用了该方法的液晶显示元件 |
US14/910,744 US9575363B2 (en) | 2013-08-08 | 2014-08-04 | Method for improving optical response and liquid crystal display device using same |
KR1020167003182A KR101691871B1 (ko) | 2013-08-08 | 2014-08-04 | 광학 응답을 개선하는 방법 및 그것을 사용한 액정 표시 소자 |
JP2015516130A JP5866068B2 (ja) | 2013-08-08 | 2014-08-04 | 光学応答を改善する方法及びそれを用いた液晶表示素子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-165620 | 2013-08-08 | ||
JP2013165620 | 2013-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015019997A1 true WO2015019997A1 (ja) | 2015-02-12 |
Family
ID=52461329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/070468 WO2015019997A1 (ja) | 2013-08-08 | 2014-08-04 | 光学応答を改善する方法及びそれを用いた液晶表示素子 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9575363B2 (ja) |
JP (1) | JP5866068B2 (ja) |
KR (1) | KR101691871B1 (ja) |
CN (1) | CN105452947B (ja) |
WO (1) | WO2015019997A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017099124A1 (ja) * | 2015-12-07 | 2017-06-15 | Dic株式会社 | 光学応答を改善する方法及びそれを用いた液晶表示素子 |
CN106918963A (zh) * | 2015-12-28 | 2017-07-04 | 日立乐金光科技株式会社 | 调光器和使用该调光器的影像显示装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017179493A1 (ja) * | 2016-04-14 | 2017-10-19 | シャープ株式会社 | 液晶表示パネル、及び、液晶表示装置 |
JP2019124775A (ja) * | 2018-01-15 | 2019-07-25 | セイコーエプソン株式会社 | 液晶装置および電子機器 |
US11042019B2 (en) * | 2018-12-17 | 2021-06-22 | Purdue Research Foundation | Systems and methods for imaging a sample |
CN109671412B (zh) * | 2019-02-18 | 2021-05-25 | 京东方科技集团股份有限公司 | 过驱动方法、装置、液晶显示面板的控制器和显示设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0220829A (ja) * | 1988-07-08 | 1990-01-24 | Fujitsu Ltd | 液晶表示装置 |
JPH03185421A (ja) * | 1989-12-15 | 1991-08-13 | Fujitsu Ltd | 液晶表示器 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0320829A (ja) * | 1989-06-16 | 1991-01-29 | Nec Corp | ソース統計情報取得方式 |
JP3144125B2 (ja) * | 1993-03-08 | 2001-03-12 | 松下電器産業株式会社 | 液晶セルの光学特性測定方法 |
US6108064A (en) * | 1997-11-06 | 2000-08-22 | Sharp Kabushiki Kaisha | Reflective-type liquid crystal display device including a single polarizer plate |
JP4381492B2 (ja) | 1998-02-27 | 2009-12-09 | 龍男 内田 | 液晶光学素子 |
JP3810969B2 (ja) | 1999-12-06 | 2006-08-16 | 日東電工株式会社 | 光学補償偏光板及び液晶表示装置の各製造方法 |
JP4421271B2 (ja) | 2003-11-28 | 2010-02-24 | 東芝モバイルディスプレイ株式会社 | 液晶表示装置 |
JP4476293B2 (ja) | 2004-06-29 | 2010-06-09 | シャープ株式会社 | 液晶表示装置 |
JP2007078854A (ja) | 2005-09-12 | 2007-03-29 | Tohoku Univ | 偏光板及び液晶表示装置 |
US7932980B2 (en) * | 2005-11-23 | 2011-04-26 | University Of Central Florida Research Foundation, Inc. | Liquid crystal display device having patterned electrodes for repetitive divided horizontal electric field and fringing electric field |
JP5278720B2 (ja) | 2006-03-27 | 2013-09-04 | Nltテクノロジー株式会社 | 液晶パネル、液晶表示装置及び端末装置 |
JP2008139769A (ja) | 2006-12-05 | 2008-06-19 | Tohoku Univ | 視野角制御液晶パネル |
CN101604099A (zh) | 2008-06-11 | 2009-12-16 | 胜华科技股份有限公司 | 一种微反射液晶显示器 |
-
2014
- 2014-08-04 KR KR1020167003182A patent/KR101691871B1/ko active IP Right Grant
- 2014-08-04 JP JP2015516130A patent/JP5866068B2/ja active Active
- 2014-08-04 WO PCT/JP2014/070468 patent/WO2015019997A1/ja active Application Filing
- 2014-08-04 US US14/910,744 patent/US9575363B2/en active Active
- 2014-08-04 CN CN201480043912.5A patent/CN105452947B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0220829A (ja) * | 1988-07-08 | 1990-01-24 | Fujitsu Ltd | 液晶表示装置 |
JPH03185421A (ja) * | 1989-12-15 | 1991-08-13 | Fujitsu Ltd | 液晶表示器 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017099124A1 (ja) * | 2015-12-07 | 2017-06-15 | Dic株式会社 | 光学応答を改善する方法及びそれを用いた液晶表示素子 |
CN106918963A (zh) * | 2015-12-28 | 2017-07-04 | 日立乐金光科技株式会社 | 调光器和使用该调光器的影像显示装置 |
Also Published As
Publication number | Publication date |
---|---|
US20160187698A1 (en) | 2016-06-30 |
KR20160041913A (ko) | 2016-04-18 |
CN105452947A (zh) | 2016-03-30 |
US9575363B2 (en) | 2017-02-21 |
JP5866068B2 (ja) | 2016-02-17 |
JPWO2015019997A1 (ja) | 2017-03-02 |
KR101691871B1 (ko) | 2017-01-02 |
CN105452947B (zh) | 2017-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015019997A1 (ja) | 光学応答を改善する方法及びそれを用いた液晶表示素子 | |
EP1600810B1 (en) | Liquid crystal display device | |
WO2005078516A1 (ja) | 液晶表示素子 | |
TW201426142A (zh) | 顯示面板 | |
JP2004212938A (ja) | Ocbモード液晶表示装置 | |
WO2006030512A1 (ja) | 液晶表示素子 | |
KR100762034B1 (ko) | Ocb 모드 액정표시장치 | |
WO2010001648A1 (ja) | 液晶表示装置 | |
KR20070024785A (ko) | 광시야각 특성이 개선된 액정표시장치 | |
JP2002148623A (ja) | 液晶表示装置 | |
JP2005037784A (ja) | 液晶表示素子 | |
JP6717323B2 (ja) | 光学応答を改善する方法及びそれを用いた液晶表示素子 | |
KR20070024784A (ko) | 광시야각 특성이 개선된 액정표시장치 | |
KR101774280B1 (ko) | 평면정렬 스위칭 방식 액정표시장치 및 그 구동방법 | |
JP2005338504A (ja) | 液晶表示素子 | |
KR101108066B1 (ko) | 횡전계방식 액정표시소자 및 그의 제조 방법 | |
JP2006011414A (ja) | 液晶表示素子 | |
KR20080047689A (ko) | 액정표시장치 | |
JP2009075549A (ja) | 液晶表示装置 | |
KR100708795B1 (ko) | 액정 표시 소자 | |
KR100735203B1 (ko) | 오씨비 모드 액정표시장치 | |
KR20100110074A (ko) | 위상차 필름 및 이를 포함하는 면상 스위칭 액정표시장치 | |
KR101812542B1 (ko) | 평면정렬 스위칭 방식 액정표시장치 및 그 구동방법 | |
Lu et al. | Characteristics of a 12-Domain MVA-LCD | |
Jiao et al. | P‐114: Achromatic Dark State of MVA‐LCDs with a Negative C‐Plate and a Biaxial Film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480043912.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14834446 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015516130 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20167003182 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14910744 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14834446 Country of ref document: EP Kind code of ref document: A1 |