WO2015019997A1 - 光学応答を改善する方法及びそれを用いた液晶表示素子 - Google Patents

光学応答を改善する方法及びそれを用いた液晶表示素子 Download PDF

Info

Publication number
WO2015019997A1
WO2015019997A1 PCT/JP2014/070468 JP2014070468W WO2015019997A1 WO 2015019997 A1 WO2015019997 A1 WO 2015019997A1 JP 2014070468 W JP2014070468 W JP 2014070468W WO 2015019997 A1 WO2015019997 A1 WO 2015019997A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
optical
plate
crystal layer
improving
Prior art date
Application number
PCT/JP2014/070468
Other languages
English (en)
French (fr)
Inventor
小林 駿介
竹内 清文
昌和 金親
Original Assignee
学校法人東京理科大学
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学, Dic株式会社 filed Critical 学校法人東京理科大学
Priority to CN201480043912.5A priority Critical patent/CN105452947B/zh
Priority to US14/910,744 priority patent/US9575363B2/en
Priority to KR1020167003182A priority patent/KR101691871B1/ko
Priority to JP2015516130A priority patent/JP5866068B2/ja
Publication of WO2015019997A1 publication Critical patent/WO2015019997A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133567Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the back side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/01Number of plates being 1
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/05Single plate on one side of the LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation

Definitions

  • the present invention relates to a method for improving the optical response of a liquid crystal display element and a liquid crystal display element using the same.
  • liquid crystal display devices are widely used in displays such as watches and calculators, various measurement devices, automobiles, word processors, electronic notebooks, printers, computers, televisions, watches, advertisement display boards, and the like.
  • Typical display methods of the liquid crystal display element include, for example, a TN (twisted nematic) type, an STN (super twisted nematic) type, and an ECB (field effect birefringence) type.
  • a driving method such as VA type for vertically aligning liquid crystal molecules or IPS (in-plane switching) type or FFS type for horizontally aligning liquid crystal molecules Is adopted.
  • methods of improving the optical response of the liquid crystal display element include the following (1) to (5).
  • the two-layer panel in which the liquid crystal cell is disposed at the optical compensation position is driven under specific conditions (see Non-Patent Document 1).
  • retardation plates such as a negative A plate, a positive A plate, a negative C plate, a positive C plate, a biaxial plate, a half wave plate, a quarter wave plate (optical There is a method of using a compensation plate).
  • the response time to the drive voltage of the liquid crystal display element is considered to be in accordance with the following equations A and B which are solutions of the torque equation to the external field.
  • equations A and B which are solutions of the torque equation to the external field.
  • the optical response of the liquid crystal display element is considered to be, for example, a time corresponding to a predetermined change in the amount of transmitted light when light passes through one pixel in the liquid crystal display element.
  • the amount of transmitted light of the liquid crystal display element is determined by the arrangement of the polarizing plates, the retardation of the liquid crystal layer, the retardation of the retardation film, and the like. Therefore, the above formulas A and B represent only the molecular motion of the liquid crystal layer, and do not represent the temporal change of the transmitted light amount directly involved in the optical response of the liquid crystal display element.
  • the present invention has been proposed in view of such conventional circumstances, and provides a method of improving an optical response to a temporal change in transmitted light amount of a liquid crystal display element, and a liquid crystal display element using such a method.
  • the purpose is to
  • the present invention provides the following means. [1] a first substrate and a second substrate disposed opposite to each other; A liquid crystal layer sandwiched between the first substrate and the second substrate; An alignment layer controlling an alignment state of the liquid crystal layer between the first substrate and the second substrate; An electrode for changing the alignment state of the liquid crystal layer by an electric field generated by application of a drive voltage; A liquid crystal cell having The transmission axes of the liquid crystal cells are arranged so as to maximize or minimize the amount of light transmitted from the back side to the front side of the liquid crystal cell when the drive voltage is applied.
  • Liquid crystal display element comprising The optical compensation plate is disposed such that the derivative of the amount of transmitted light ⁇ 1 with respect to time t when the drive voltage is switched from the on state to the off state when the arrangement of the optical compensation plate is omitted is ⁇ 1 / ⁇ t.
  • the liquid crystal display element as described in. [3] The first polarizing plate and the second polarizing plate have a positional relationship in which transmission axes of the first polarizing plate and the second polarizing plate are orthogonal to each other when viewed from the normal direction,
  • the liquid crystal layer and the optical compensation plate are in a positional relationship in which the respective slow axes are orthogonal to each other when viewed from the normal direction,
  • the method for improving the optical response according to [1] or [2], wherein an angle [rad] formed by the transmission axis and the slow axis is ⁇ / 4.
  • [4] The method for improving the optical response according to any one of [1] to [3], wherein the liquid crystal cell drives the liquid crystal layer in a voltage control birefringence mode.
  • [5] The method for improving the optical response according to any one of [1] to [4], wherein in the liquid crystal cell, the alignment state of the liquid crystal layer at the time of no application of the drive voltage is horizontal alignment.
  • [6] The method for improving the optical response according to any one of [1] to [4], wherein in the liquid crystal cell, the alignment state of the liquid crystal layer at the time of no application of the drive voltage is vertical alignment.
  • [7] The method of improving the optical response according to any one of [1] to [6], wherein the optical compensator is a retardation plate.
  • the liquid crystal layer improves the optical response according to any one of [1] to [9], including any of nematic liquid crystal, smectic liquid crystal, cholesteric liquid crystal, and ferroelectric liquid crystal. Method.
  • the liquid crystal layer has the following general formulas (L1) to (L3): The method of improving the optical response as described in said [10] which contains the liquid crystal compound represented by these.
  • a liquid crystal cell having The transmission axes of the liquid crystal cells are arranged so as to maximize or minimize the amount of light transmitted from the back side to the front side of the liquid crystal cell when the drive voltage is applied.
  • Liquid crystal display element comprising The optical compensation plate is disposed such that the derivative of the amount of transmitted light ⁇ 1 with respect to time t when the drive voltage is switched from the on state to the off state when the arrangement of the optical compensation plate is omitted is ⁇ 1 / ⁇ t.
  • a liquid crystal display device characterized by performing optical design of the retardation of the liquid crystal layer and the retardation of the optical compensation plate so as to satisfy the relationship of
  • the voltage is set such that the relationship of V1> V2 by performing the optical design of the retardation of the liquid crystal layer and the retardation of the optical compensation plate so as to satisfy the above equation (1).
  • the optical response at the fall (off) from V1 to the voltage V2 can be improved. Therefore, an excellent optical response can be obtained without relying on the improvement of the physical properties of the liquid crystal material, even for a large liquid crystal display element in which a wide viewing angle is important and a medium-small liquid crystal display element pursuing high resolution. it can.
  • FIG. 6 is a graph showing various voltage-transmittance curves in normally white and normally black. It is a graph which shows the example of the simulation result in case incident light is perpendicular
  • FIG. 1 is a schematic view showing an optical arrangement of each part constituting the liquid crystal optical element 1.
  • FIG. 2 is a schematic view showing the optical arrangement of each part when the arrangement of the retardation plate (optical compensation plate) 4 is omitted from the liquid crystal optical element 1 shown in FIG.
  • the liquid crystal optical element 1 generally includes a liquid crystal cell 2, a first polarizing plate 3 and a second polarizing plate 4, and a retardation plate 5.
  • the liquid crystal cell 2 is homogeneous alignment (horizontal alignment) in which liquid crystal molecules of the nematic liquid crystal layer at the time of no marking of the drive voltage are in the substrate plane.
  • the liquid crystal cell 2 is disposed between the first polarizing plate 3 and the second polarizing plate 4.
  • the first polarizing plate 3 is disposed on the back side of the liquid crystal cell 2 as a polarizer P.
  • the second polarizing plate 3 is disposed on the front side of the liquid crystal cell 2 as an analyzer A.
  • the first polarizing plate 3 and the second polarizing plate 4 are in a positional relationship in which their transmission axes are orthogonal to each other when viewed from the normal direction.
  • the normal direction of the first polarizing plate 3 and the second polarizing plate 4 is taken as the Z-axis direction of the XYZ coordinates, and the transmission axis of the first polarizing plate 3 coincides with the X-axis direction of the XYZ coordinates.
  • the transmission axis of the second polarizing plate 4 is made to coincide with the Y-axis direction of the XYZ coordinates.
  • the slow axis of the liquid crystal layer is aligned with the direction of 45 ° from the X-axis direction.
  • the retardation plate 5 is an A plate disposed between the liquid crystal cell 2 and the second polarizing plate 4.
  • the retardation plate 5 has its slow axis aligned with the direction of 135 ° from the X-axis direction.
  • FIG. 2 shows a liquid crystal optical element 1 ′ when the arrangement of the retardation plate 5 is omitted from the liquid crystal optical element 1 shown in FIG. Then, the amount of light transmitted through the liquid crystal optical element 1 'in the case of omitting the arrangement of the phase difference plate 5 and iota 1. On the other hand, the amount of light transmitted through the liquid crystal optical element 1 in the case where the phase difference plate 5 is arranged to iota 2.
  • incident light of wavelength k is incident vertically (in a direction parallel to the Z axis) from the back side of each liquid crystal cell 2. It is assumed that transmitted light is emitted perpendicularly (in a direction parallel to the Z axis) from the front side of.
  • the phase difference Rf of the phase difference plate 5 does not change with drive voltage or time.
  • the driving voltage is V
  • the time is t
  • the birefringence of the liquid crystal layer is ⁇ n (V, t)
  • the retardation Rlc of the liquid crystal layer is d It is represented by ⁇ n (V, t). Therefore, the phase difference Rlc of the liquid crystal layer changes with respect to the drive voltage and time.
  • the effective ⁇ n (V, t) focuses on the director of the nematic liquid crystal determined by the continuum elastic theory and the torque equation of relaxation phenomenon, and the inclination angle ⁇ lc (V, t, Z) from the Z axis It can be calculated.
  • the inclination angle ⁇ lc is treated as temporally changing when the drive voltage changes from the on state to the off state (at the fall time).
  • the transmitted light amounts ⁇ 1 and ⁇ 2 are both expressed in the state of ⁇ n (t) which is determined by ⁇ lc (t) which changes with time.
  • the transmitted light amounts ⁇ 1 and ⁇ 2 and their time variations ⁇ 1 / ⁇ t and ⁇ 2 / ⁇ t are expressed by the following formulas 2a and 2b and formulas 3a and 3b. Further, the retardation Rlc (t) of the liquid crystal layer is expressed by Equation 4.
  • the transmitted light amount when the drive voltage V changes from the on state to the off state (during falling) when the arrangement of the retardation plate 5 is omitted.
  • the derivative of ⁇ 1 with respect to time t is ⁇ 1 / ⁇ t, and the transmitted light amount ⁇ 2 when the drive voltage V changes from the on state to the off state (during falling) when the retardation plate 5 is disposed.
  • the optical response to the temporal change of the transmitted light amount is fast or slow is replaced by comparing the magnitude of the transmitted light amount ⁇ 1 , ⁇ 2 to the temporal change. Therefore, the preferable condition of the retardation Rlc of the liquid crystal layer which determines the magnitude relation between the absolute value of the equation 2b and the absolute value of the equation 3b and the retardation Rf of the retardation plate 5 is determined.
  • the phase difference Rlc (V) of the liquid crystal layer becomes close to 0 (at least ⁇ / 4 or less). From this, the trigonometric function of the second term in the braces of the equation 5b is a positive value.
  • the phase plate is required to satisfy the above equation (1).
  • at least one of an A plate, a C plate, and a biaxial plate is preferably provided as a retardation plate, and it is more preferable to combine the A plate and the C plate.
  • the retardation Rlc of the liquid crystal layer and the retardation Rf of the retardation plate 5 are both equal to each other and smaller than ⁇ / 2 at least with respect to incident light of wavelength ⁇ incident from the normal direction. More specifically, in the liquid crystal layer and the retardation plate 5, the phase difference [rad] given by the respective retardations when the drive voltage is turned off is 0.1 to 0.6 more than ⁇ / 2. It is preferable to be in a small range. As a result, the optical response (falling time) to the temporal change of the transmitted light amount at falling (off) can be quickened as compared with the case where the arrangement of the phase difference plate 5 is omitted.
  • the optical response (rise time) to the temporal change of the transmitted light amount when the drive voltage changes from the off state to the on state (at the rise time) is slower than at the fall time, but the relationship of the above equation (2) is Satisfyingly, by driving the liquid crystal cell 2, it is possible to remarkably improve the optical response to the time change of the transmitted light amount at the fall while improving the optical response to the time change of the transmitted light amount at the rise. It is.
  • the height relationship V1> V2 The optical response at the time of falling (off) from the voltage V1 to the voltage V2 can be improved. Therefore, an excellent optical response can be obtained without relying on the improvement of the physical properties of the liquid crystal material, even for a large liquid crystal display element in which a wide viewing angle is important and a medium-small liquid crystal display element pursuing high resolution. it can.
  • the liquid crystal cell 20 shown in FIG. 13 has a first substrate 21, a second substrate 22, and a liquid crystal layer 23 sandwiched between the first substrate 21 and the second substrate 22.
  • the alignment layers 24 a and 24 b for controlling the alignment state of the liquid crystal layer 23 and the alignment states of the liquid crystal layer 23 are generated on the mutually opposing surfaces of the first substrate 21 and the second substrate 22 by application of a drive voltage.
  • Transparent electrodes 25a and 25b to be changed by an electric field are respectively provided.
  • the alignment layers 24a and 24b are in a direction substantially horizontal to the substrate surface with the liquid crystal molecules 23a of the liquid crystal layer 23 when no drive voltage is applied.
  • Orientation horizontal orientation
  • substantially horizontal directions include horizontal and substantially horizontal directions.
  • the alignment layers 24a and 24b align the liquid crystal molecules 23a of the liquid crystal layer 23 in a direction substantially perpendicular to the substrate surface when no drive voltage is applied ( Vertical orientation).
  • the substantially vertical direction includes the vertical and substantially vertical directions.
  • the liquid crystal cell 20 may be a passive matrix display type or an active matrix display type.
  • the passive matrix display format for example, STN mode etc. may be mentioned.
  • STN mode the transparent electrode 25a on the first substrate 21 and the transparent electrode 25b on the second substrate 22 are patterned in stripes so as to be orthogonal to each other.
  • the active matrix display system has a structure in which a plurality of pixel electrodes are arranged in a matrix, and driving is independently controlled by non-linear active elements (not shown) electrically connected to the respective pixel electrodes. Ru. Therefore, in the active matrix display method, one of the transparent electrodes 25a and 25b is a pixel electrode, and the other is a common electrode.
  • a liquid crystal cell 30 shown in FIG. 14 has a first substrate 31, a second substrate 32, and a liquid crystal layer 33 sandwiched between the first substrate 31 and the second substrate 32.
  • Alignment layers 34 a and 34 b for controlling the alignment state of the liquid crystal layer 23 are provided on mutually facing surfaces of the first substrate 21 and the second substrate 22.
  • a transparent electrode 35 is provided on the surface of the first substrate 21 facing the second substrate 22. The transparent electrode 35 changes the alignment state of the liquid crystal layer 23 by an electric field generated by applying a drive voltage.
  • an electrode is provided on only one of the first substrate 21 and the second substrate 22.
  • This configuration is applied to, for example, a horizontal orientation type such as IPS mode.
  • the alignment layers 34a and 34b align (horizontally align) the liquid crystal molecules 33a of the liquid crystal layer 33 in a direction substantially horizontal to the substrate surface when no drive voltage is applied.
  • the transparent electrode 35 constitutes a comb-like electrode composed of a common electrode and a pixel electrode.
  • liquid crystal layers 23 and 33 will be specifically described.
  • liquid crystal materials such as nematic liquid crystal, smectic liquid crystal, ferroelectric liquid crystal, and cholesteric liquid crystal can be used. Among them, it is particularly preferable to use a liquid crystal having a nematic phase.
  • the dielectric anisotropy of the liquid crystal layers 23 and 33 may be positive or negative, but it is preferable that ⁇ ⁇ ⁇ n / ⁇ be around ⁇ / 2 or smaller. It is preferable to use a material with a smaller rate ⁇ n.
  • liquid crystal layer of the present invention more preferably contains liquid crystal compounds represented by general formulas (L1) to (L3).
  • the liquid crystal material used in the above optical measurement contains a compound represented by the following general formula (L1) and a compound represented by the following general formula (L3). Since the thickness ⁇ of the liquid crystal layer being put to practical use is about 1 to 4 ⁇ m, the birefringence ⁇ n of the liquid crystal material can be selected from 0.04 to 0.15, but 0.05 to 0.12 Is preferred, and 0.06 to 0.10 is more preferred.
  • each of R 11 to R 32 independently represents an alkyl group having 1 to 15 carbon atoms, an alkoxy group, an alkenyl group or an alkenyloxy group.
  • Each of A11 to A32 independently represents any of the following structures.
  • m11 to m31 independently represents an integer of 0 to 3.
  • X11 and X12 each independently represent -H, -Cl or -F.
  • Y 11 represents —CN, —Cl, —F, —OCHF 2 , —CF 3 , —OCF 3 , a fluorinated alkyl group having 2 to 5 carbon atoms, an alkoxy group, an alkenyl group or an alkenyloxy group.
  • the optical response of the liquid crystal layers 23 and 33 is also affected by the orientation layers 24a, 24b, 34a and 34b. Therefore, it is preferable to use a material having a relatively large anchoring energy with the liquid crystal layers 23, 33 for the alignment layers 24a, 24b, 34a, 34b, specifically, polyimide (PI), polyamide, chalcone, cinnamate It is preferable to use at least one selected from cinnamoyl.
  • PI polyimide
  • polyamide polyamide
  • chalcone cinnamate
  • FIG. 3 is a schematic view showing the optical arrangement of each part constituting the liquid crystal optical element 10.
  • FIG. 2 is a schematic view showing an optical arrangement of each part when the arrangement of the retardation plates (optical compensation plates) 6 and 7 is omitted from the liquid crystal optical element 10 shown in FIG.
  • the liquid crystal optical element 10 includes the liquid crystal cell 2, the first polarizing plate 3 and the second polarizing plate 4, and the first retardation plate 6 and the second retardation plate 7. It is equipped roughly.
  • the liquid crystal optical element 10 has a first retardation plate 6 disposed between the liquid crystal cell 2 and the first polarizing plate 3, and a second retardation plate 6 disposed between the liquid crystal cell 2 and the second polarizing plate 4.
  • the phase difference plate 7 is disposed.
  • the other configuration is basically the same as that of the liquid crystal optical element 1 shown in FIG. Therefore, in the liquid crystal optical element 10 shown in FIG. 3, the description of the same parts as those of the liquid crystal optical element 1 shown in FIG. 1 will be omitted, and the same reference numerals will be given in the drawings.
  • FIG. 4 shows a liquid crystal optical element 10 ′ when the arrangement of the first retardation plate 6 and the second retardation plate 7 is omitted from the liquid crystal optical element 10 shown in FIG. 3.
  • the transmission axes of the first polarizing plate 3 and the second polarizing plate 4 are in a positional relationship orthogonal to each other when viewed from the normal direction, the first polarizing plate 3 and the second polarizing plate 4 It is arbitrary about arrangement of. Further, in the liquid crystal optical elements 10 and 10 ′ shown in FIGS. 3 and 4, any light having a wavelength k from the back surface side of each liquid crystal cell 2 is perpendicular to the direction (direction parallel to the Z axis). It shall be incident from the direction.
  • the coordinate axes and the like are defined by taking the cases shown in FIGS. 3 and 4 as an example, and the calculation is advanced. Further, in the following description, it is assumed that scattering, reflection, attenuation, etc. are small at each interface to approximate the dynamic matrix to proceed with the calculation (J. Opt. Soc. Am. Vol. 72, No. 4, p. 507 (1982)).
  • the polarization state of light incident on the optical anisotropic body is expressed by the extended Jones matrix equation (Jo) of the following equation 6a. Further, in the extended Mueller matrix (Mu), it is represented by the following equation 6b.
  • the transmitted light Stokes vector S is the following equation 6c
  • the transmitted light Stokes vector S ' is the following equation 6d
  • the polarizer matrix is P
  • the analyzer matrix is A, from the relationship of the following equation 6e , Becomes the component S0 'of the transmitted light Stokes vector S'.
  • the optical axis rotation angle ⁇ and the phase rotation angle ⁇ ⁇ ⁇ ⁇ in the equation 6a and the equation 6b are optical quantities corresponding to the light incident on the optically anisotropic member, as shown in FIGS. 5A and 5B. Therefore, if expressions of the optical axis rotation angle ⁇ and the phase rotation angle ⁇ ⁇ ⁇ ⁇ in arbitrary arrangement can be obtained, it is possible to consider the amount of transmitted light.
  • 5A shows the case where light is incident on a uniaxial optical anisotropic body
  • FIG. 5B shows the case where light is incident on a biaxial optical anisotropic body.
  • the s-wave of the incident light is defined by the following equation 9
  • the o-wave of the light transmitted through the polarizing plate is defined by the following equation 10a and the following equation 11a.
  • the rotation angle ⁇ ⁇ ⁇ used in the Mueller matrix of the polarizing plate can be obtained by the following equation 10b and 10c in the case of a polarizer, and by the following equation 11b and 11c in the case of an analyzer.
  • the Mueller matrices of the polarizer and the analyzer become the following expressions 12a and 12b and the expressions 13a to 13c.
  • an expression concerning light ( ⁇ i, ⁇ i) incident from an arbitrary direction on polarizing plates ( ⁇ p, ⁇ a) arranged arbitrarily can be obtained.
  • the first retardation plate 6 (position of optical axis: polar angle ⁇ c, azimuth angle ⁇ c, refractive index: ne c , no c , thickness: ⁇ c), liquid crystal layer of liquid crystal cell 2 (position of optical axis: Polar angle ⁇ d, azimuth angle ⁇ d, refractive index: ned, nod, thickness: ⁇ d), second retardation plate 7 (position of optical axis: polar angle ⁇ b, azimuth angle ⁇ b, refractive index: neb, nob, thickness: Derivation of the Mueller matrix in each optical anisotropic field of ⁇ b) substitutes the part of the same calculation process with the arguments “b”, “d” and “c” and is expressed as “j”.
  • the incident light vector k is divided into two of the following equation 15a and the following equation 15b because it is refracted and propagated in the optically anisotropic member according to Snell's law (the component in the Z-axis direction changes).
  • the optical axis rotation angle ⁇ j of the Mueller matrix of the optically anisotropic body is obtained as the following Expression 18a and Expression 18b from the following Expression 17a and Expression 17b in which the inner product and outer product formulas of vectors are applied and the expressions are modified.
  • Equations 19a and 19b are substituted into the equation obtained from the Maxwell equation of the following Equation 19c. Then, it is equivalent to solving the eigenvalue problem of the simultaneous equations expressed by the following equation 19d derived therefrom.
  • a meaningful solution in which the electric field E is other than E ⁇ 0 results in solving the equation F of the following equation 20a.
  • the vector (ka, kb j , kc j ) is a component of the vector ke j in the abc coordinate system.
  • the coordinate conversion of this vector to the XYZ coordinate system is expressed by the following equation 20b. That is, when the conversion equation of the following equation 20b is substituted into the following equation 20a, the equation F becomes a quartic equation of kez j .
  • ⁇ , ⁇ a j , ⁇ b j and ⁇ c j are in the relationship of the following Formula 20c to Formula 20e.
  • factorization can be performed as in the following equation 22b, so that double roots of koz j and two positive and negative roots of kez j can be obtained.
  • the negative kez j optical meaning is that the directions of light mean reverse directions, so positive kez j and koz j are uniaxial optical anisotropy involved in refracted light.
  • koz j is represented by the following equation 24c.
  • the root of kezj is represented by the following equation 24b from the quadratic equation of the following equation 23a.
  • the phase rotation angle ⁇ ⁇ ⁇ j used in the Mueller matrix becomes Expression 24a.
  • the equation F is kez j quartic equation.
  • the description will be made using the fourth-order equation of the following equation 25c in which the above equation 20a is arranged.
  • the root of the following formula 25c is an imaginary number, the optical meaning corresponds to the attenuation of light and is therefore excluded from consideration. If the following equations 25c has four real roots, the following formulas 25d, the two Seine (k11 j, k21 j) and two negative roots (k12 j, k22 j).
  • phase rotation angle ⁇ j is the following equation 25e.
  • the optical axis rotation angle ⁇ j in the biaxial optical anisotropic body is determined as follows. That is, since the two positive roots (k11 j , k21 j ) are eigenvalues of the following equation 19d, the vector component ratio of the electric field vector Eabc (Ea, Eb, Ec) corresponding to the eigenvalues is Kramer's formula It can be calculated by the following equation 26d applied (abc coordinate system notation).
  • the extended Mueller matrix of each of the retardation films B and C and the optically anisotropic members of the liquid crystal panel LCD which are arbitrarily disposed. If the extended Mueller matrix of uniaxial optical anisotropy is rewritten again, Expression 27 to Expression 28e are obtained.
  • the extended Mueller matrix expression of the uniaxial optical anisotropic body and the biaxial optical anisotropic body is obtained, and using these, optical design satisfying the above equation (1) is performed. It is possible.
  • A-plate, C-plate, ⁇ / 4 plate, homogeneous alignment liquid crystal cell (ECB mode), vertical alignment for each optical anisotropic material of the first retardation plate 6, second retardation plate 7 and liquid crystal cell 2 Table 1 can be used when specific designation can be made, such as the liquid crystal cell (VA mode) of
  • the difference between the A plate and the C plate is the difference in the method of specifying the parameters of the Mueller matrix.
  • the difference between the ECB mode and the VA mode is the difference in the method of specifying ⁇ d. Therefore, the desired arrangement is possible only by specifying the parameters of the Mueller matrix.
  • First polarizing plate 3 (axis position: azimuth angle ⁇ a ), First retardation plate 6 (axis: polar angle ⁇ b , azimuth angle ⁇ b , refractive index: ne b , no b , thickness: ⁇ b ), Liquid crystal layer of liquid crystal cell 2 (axis: polar angle ⁇ d , azimuth angle ⁇ d , refractive index: ne d , no d , thickness: ⁇ d ), Second retardation plate 7 (axis: polar angle ⁇ c , azimuth angle ⁇ c , refractive index: ne c , no c , thickness: ⁇ c ), Second polarizing plate 4 (axis position: azimuth angle ⁇ p )
  • the product of these Mueller matrices is expressed by the following expression 30.
  • the first retardation plate 6 is formed of n retardation plates
  • the following equation 31a is used.
  • the second retardation plate 7 is formed of n retardation plates
  • the following equation 31b is used.
  • the result of the simulation at the time of applying is shown.
  • the upper part in FIG. 6 shows the relationship between the transmitted light amount ⁇ and the polar angle ⁇ d
  • the lower part in FIG. 6 shows the relationship between ⁇ / ⁇ d and the polar angle ⁇ d.
  • ⁇ d is 0 ° when the drive voltage is sufficiently high (when it is on). On the other hand, when the drive voltage is 0 V (off), ⁇ d is 90 °.
  • the solid line is the case where the first retardation plate 6 and the second retardation plate 7 are arranged (liquid crystal display element 10 shown in FIG. 3),
  • the double-dashed line shows the case where the arrangement of the first retardation plate 6 and the second retardation plate 7 is omitted (liquid crystal display element 10 ′ shown in FIG. 4) (the same applies to the following).
  • the response time at the time of falling (off) from voltage V1 to voltage V2 whose relationship of height is V1> V2 is ⁇ d
  • the response time at the time of rising (on) from voltage V2 to voltage V1 is ⁇ r the same.
  • the liquid crystal molecules of the liquid crystal layer have angles of ⁇ d (V1) and ⁇ d (V2) calculated by the theory of continuum elasticity.
  • V1 and V2 the voltages V1 and V2 are applied to the liquid crystal cell 2
  • the liquid crystal molecules of the liquid crystal layer have angles of ⁇ d (V1) and ⁇ d (V2) calculated by the theory of continuum elasticity.
  • the inclination of the liquid crystal molecules temporally changes from ⁇ d (V1) to ⁇ d (V2) according to the torque equation of the relaxation phenomenon.
  • the transmitted light amount ⁇ is obtained from the following formula 32c and formula 32d by this ⁇ d (t).
  • the liquid crystal display element 10 shown in FIG. 3 and the liquid crystal display element 10 ′ shown in FIG. 4 use the same liquid crystal cell 2 (the liquid crystal physical properties and panel constituent factors are also the same) 2,
  • the solutions of the torque equation are identical. Therefore, it is estimated that the transmitted light amounts ⁇ 2 and ⁇ 1 of each other tend to be similar in influence of the relaxation phenomenon.
  • the respective transmitted light amounts ⁇ 2 and ⁇ 1 are different with respect to the same ⁇ d. Conversely, ⁇ d is different when the transmitted light amounts ⁇ 2 and ⁇ 1 are the same.
  • each value is as follows. In this case, enough slightly less variation of iota 2 of [theta] d, (? 2a, .theta.2b) derivative absolute value of iota 2 of interval ( ⁇ 1a, ⁇ 1b) greater than the differential coefficient absolute value of iota 1 interval is shown And ⁇ d has been speeded up.
  • Amount of change in ⁇ d of ⁇ 2 ⁇ 2a ⁇ ⁇ 2b ⁇ 1 of ⁇ d amount of change: ⁇ 1a ⁇ ⁇ 1b
  • the transmitted light amount does not use all 0 to 100%. Further, the display quality is designed to be maintained against the influence of various factors such as the environmental temperature and the viewing angle.
  • the broken line is the region of the drive voltage used. In a region other than this region, if the transmitted light amount ⁇ has a local extreme value, an error occurs in the determination of the magnitude relation of the differential coefficient ⁇ / ⁇ d ( ⁇ d).
  • the display area of the liquid crystal display element is difficult to specify because it depends on the desired design, it is optimal to use the means of the present invention in the angle area of ⁇ d corresponding to the area used for display as a concept .
  • ⁇ 2 and ⁇ 1 are not generally the same “normally white” or the same “normally black”.
  • convert either transmitted light quantity and ⁇ d It is self-evident that optical design is carried out so as to obtain the relationship of the above equation (1).
  • the absolute value function is added to the above equation (1) in order to avoid the simulation of the prone error in the above description, in the case of a simulation with a sufficient understanding, it may be designed without the absolute value.
  • I 1 ( ⁇ d) “ maximum transmitted light quantity among the values of I 1 ” ⁇ I 1 ( ⁇ d)
  • ⁇ d of the liquid crystal molecules has been treated the same for all thickness ⁇ d of the liquid crystal layer. It is also possible to divide the thickness ⁇ d of the liquid crystal layer by n, calculate ⁇ d of the k-th divided layer by the continuum elastic theory, convert it to a Mueller matrix, and set the following equation to advance. This method is effective in determining accuracy. On the other hand, simplification is also effective in the case of seeking physical optical understanding of optical design, new problem solution and selection diversity.
  • the liquid crystal cell 2 is in the horizontal alignment (HO).
  • FIG.9 and FIG.10 the ratio of the time change of the transmitted light quantity of said Formula 32g was also shown on the graph.
  • FIG. 9 is an example of the simulation result in the case where the incident light is vertical.
  • case 1 satisfies the above equation (1), and it is shown that it is sufficient to perform optical design in which both the liquid crystal layer and the retardation plate have ⁇ n / ⁇ ⁇ / 2. .
  • FIG. 10 is an example of a simulation result of a change in viewing angle with respect to incident light.
  • the azimuth of the viewing angle to be observed coincides with the incident light azimuth ( ⁇ i, ⁇ i).
  • case 10 that satisfies the above equation (1), and it is shown that it is sufficient to perform an optical design in which both the liquid crystal layer and the retardation plate are ⁇ n / ⁇ ⁇ / 2. . That is, it has been shown that the optical design conditions derived at normal incidence maintain the improvement effect of making ⁇ d fast even in a relatively wide viewing angle region.
  • FIG. 11 is an example of a simulation result of the phase difference between the liquid crystal layer and the retardation plate when the thickness of the liquid crystal layer is changed.
  • the thickness ⁇ of the liquid crystal layer is changed to make the phase difference between the liquid crystal layer and the phase plate inconsistent as follows.
  • Case 13 corresponds to the present invention satisfying the formula (1), and case 14 falls outside the present invention not satisfying the condition of the formula (1).
  • Table 2 The results of case 1 and case 3 are also shown in Table 2 below.
  • FIG. 12 shows the response time ⁇ d at falling (off) and falling (on) for cases 15 to 18 in which the phase difference between the liquid crystal layer and the retardation plate is changed when the thickness of the liquid crystal layer is changed.
  • Response time ⁇ r was measured.
  • LCD liquid crystal cell
  • One of the produced LCDs was used as a phase plate, and the liquid crystal display element was assembled in the same arrangement as the liquid crystal display element 10 shown in FIG.
  • the wavelength of light used for measurement was 550 nm.
  • FIG. 13 shows the result of measuring the response time ⁇ d of mid-tone for the above cases 15 to 18. Also, the results of case 15 to case 18 are shown in Table 4 below. From the results shown in Table 4, it can be seen that the response time ⁇ d is significantly improved to 50 to 60% in any gradation.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

本発明は、液晶表示素子の透過光量の時間変化に対する光学応答を改善する方法を提供する。本発明の方法においては、液晶層を有する液晶セル2と、第1の偏光板3及び第2の偏光板4と、光学補償板5とを備える液晶表示素子1において、光学補償板5の配置を省略した場合の駆動電圧の立下り時の透過光量Ιの時間tに対する微分係数を∂Ι/∂tとし、光学補償板5が配置された場合の駆動電圧の立下り時の透過光量Ιの時間tに対する微分係数を∂Ι/∂tとしたときに、下記式(1): |∂Ι/∂t|>|∂Ι/∂t| …(1) の関係を満足するように、液晶層の位相差と光学補償板5の位相差との光学設計を行うことにより、高低関係がV1>V2である電圧V1から電圧V2への立下り(オフ)時の光学応答を改善する。

Description

光学応答を改善する方法及びそれを用いた液晶表示素子
 本発明は、液晶表示素子の光学応答を改善する方法及びそれを用いた液晶表示素子に関する。
 例えば、液晶表示素子は、時計や電卓を始めとして、各種の測定機器、自動車、ワードプロセッサー、電子手帳、プリンター、コンピューター、テレビ、時計、広告表示板などの表示部に広く用いられている。
 液晶表示素子の代表的な表示方式としては、例えば、TN(ツイステッド・ネマチック)型、STN(スーパー・ツイステッド・ネマチック)型、ECB(電界効果複屈折)型などがある。また、TFT(薄膜トランジスタ)を用いたアクティブマトリクス型の液晶表示素子では、液晶分子を垂直配向させるVA型や、液晶分子を水平配向させるIPS(イン・プレーン・スイッチング)型又はFFS型などの駆動方式が採用されている。
 最近の液晶表示素子では、大型や中小型の各種用途に対して、4K×2K、8K×4Kなどの高精細化・高解像度化や、400ppi、600ppiなどの表示容量の増加などが行われている。
 液晶表示素子では、これらに適合すべき新たな課題の一つに光学応答の改善がある。具体的に、液晶表示素子の光学応答を改善する方法としては、下記(1)~(5)などがある。
(1) 液晶層の厚みを下げる。
(2) 液晶材料の粘弾性を低減させる。
(3) 過電圧印加による中間階調応答を改善する(オーバードライブ方式という。)。
(4) リフレッシュレート増で動画フレーム間をつなぐ映像を補間する(倍速駆動という。)。
(5) 液晶セルを光学的補償位置に配置した2層パネルを特定の条件で駆動する(非特許文献1を参照。)。
 一方、液晶表示素子において、上述した高精細化・高解像度化や、表示容量の増加を図るためには、広視野角化や色再現性などの改善が必要である。このため、多くの研究開発が現在も行われている。
 これらに有用な方法としては、例えば、ネガAプレートや、ポジAプレート、ネガCプレート、ポジCプレート、ニ軸性プレート、1/2波長板、1/4波長板などの位相差板(光学補償板)を用いる方法がある。
 しかしながら、これらの技術の中には、位相差板の設計により光学応答を改善したものはない(特許文献1~4を参照。)。したがって、液晶表示素子の光学応答を改善する方法としては、上述した従来の考え方から変わっていない。
 また、液晶表示素子の駆動電圧に対する応答時間は、外場に対するトルク方程式の解である下記式A及びBに従うと考えられている。しかしながら、この考え方は、根本的な間違いではないが不正確であった。
Figure JPOXMLDOC01-appb-M000002
(式A,B中において、「τr」は立上り(オン)時の応答時間、「τd」は立下り(オフ)時の応答時間、「γ1」は液晶の粘性率、「K」は液晶の弾性率、「d」は液晶の層厚、「Δε」は液晶の誘電異方性、「V」は駆動電圧、「Vth」は閾値電圧を表す。)
 すなわち、この式A,Bの正確な意味は、液晶分子そのものの動きを表すのみで、液晶表示素子の透過光量の時間変化を直接的に表したものではない。したがって、液晶表示素子の光学応答とは、例えば液晶表示素子中にある1つの画素を光が透過するときの透過光量の所定変化に対応した時間と考えられる。
 液晶表示素子の透過光量は、偏光板の配置や、液晶層の位相差、位相差フィルムの位相差などによって決まるものである。したがって、上記式A,Bは、液晶層の分子運動のみを表しているに過ぎず、液晶表示素子の光学応答に直接かかわっている透過光量の時間的変化を表したものではない。
特開平11-249126号公報 特開2007-78854号公報 特開2008-139769号公報 特開2010-72658号公報
IDW2010 DIGEST p.605
 本発明は、このような従来の事情に鑑みて提案されたものであり、液晶表示素子の透過光量の時間変化に対する光学応答を改善する方法、並びにそのような方法を用いた液晶表示素子を提供することを目的とする。
 上記目的を達成するために、本発明は以下の手段を提供する。
〔1〕 互いに対向して配置された第1の基板及び第2の基板;
 前記第1の基板及び前記第2の基板の間に挟持された液晶層;
 前記第1の基板及び前記第2基板の間で前記液晶層の配向状態を制御する配向層;
 前記液晶層の配向状態を駆動電圧の印加により発生する電界によって変化させる電極;
を有する液晶セル;並びに、
 前記液晶セルの背面側及び前面側に配置されて、前記駆動電圧の印加時に前記液晶セルの背面側から前面側へと透過する光の透過光量が最大又は最小となるように、互いの透過軸の向きが設定された第1の偏光板及び第2の偏光板;
 前記第1の偏光板及び前記第2の偏光板と前記液晶セルとの間のうち少なくとも一方の間に配置されて、その間を通過する光の光学補償を行う光学補償板;
を備える液晶表示素子において、
 前記光学補償板の配置を省略した場合の前記駆動電圧がオン状態からオフ状態となるときの透過光量Ιの時間tに対する微分係数を∂Ι/∂tとし、前記光学補償板が配置された場合の前記駆動電圧がオン状態からオフ状態となるときの透過光量Ιの時間tに対する微分係数を∂Ι/∂tとしたときに、下記式(1):
       |∂Ι/∂t|>|∂Ι/∂t| …(1)
の関係を満足するように、前記液晶層の位相差と前記光学補償板の位相差との光学設計を行うことにより、
 高低関係がV1>V2である電圧V1から電圧V2への立下り(オフ)時の光学応答を改善することを特徴とする光学応答を改善する方法。

〔2〕 前記液晶層及び前記光学補償板は、前記駆動電圧がオフ状態となるときのそれぞれのリタデーションにより与えられる位相差[rad]を等しくし、且つ、π/2よりも小さい、前記〔1〕に記載の液晶表示素子。
〔3〕 前記第1の偏光板及び前記第2の偏光板は、それぞれの透過軸が法線方向から見て互い直交した位置関係にあり、
 前記液晶層及び前記光学補償板は、それぞれの遅相軸が法線方向から見て互い直交した位置関係にあり、
 前記透過軸及び前記遅相軸の為す角度[rad]がπ/4である、前記〔1〕又は〔2〕に記載の光学応答を改善する方法。
〔4〕 前記液晶セルは、前記液晶層を電圧制御複屈折モードで駆動する、前記〔1〕~〔3〕の何れか一項に記載の光学応答を改善する方法。
〔5〕 前記液晶セルは、前記駆動電圧の無印加時における前記液晶層の配向状態が水平配向である、前記〔1〕~〔4〕の何れか一項に記載の光学応答を改善する方法。
〔6〕 前記液晶セルは、前記駆動電圧の無印加時における前記液晶層の配向状態が垂直配向である、前記〔1〕~〔4〕の何れか一項に記載の光学応答を改善する方法。
〔7〕 前記光学補償板は、位相差板である、前記〔1〕~〔6〕の何れか一項に記載の光学応答を改善する方法。
〔8〕 前記位相差板は、Aプレート、Cプレート、二軸性プレートのうちの何れかを含む、前記〔7〕に記載の光学応答を改善する方法。
〔9〕 前記光学補償板は、光学補償用の液晶セルである、前記〔1〕~〔8〕の何れか一項に記載の光学応答を改善する方法。
〔10〕 前記液晶層は、ネマチック液晶、スメクチック液晶、コレスチック液晶、強誘電性液晶のうちの何れかを含む、前記〔1〕~〔9〕の何れか一項に記載の光学応答を改善する方法。
〔11〕 前記液晶層は、下記一般式(L1)~(L3):
Figure JPOXMLDOC01-appb-C000003
で表される液晶化合物を含む、前記〔10〕に記載の光学応答を改善する方法。
〔12〕 前記液晶セルは、前記電極と電気的に接続された非線形アクティブ素子を含む、前記〔1〕~〔11〕の何れか一項に記載の光学応答を改善する方法。
〔13〕 前記配向層は、ポリイミド、ポリアミド、カルコン、シンナメート、シンナモイルのうちの何れかを含む、前記〔1〕~〔12〕の何れか一項に記載の光学応答を改善する方法。
〔14〕 前記〔1〕~〔13〕の何れか一項に記載の光学応答を改善する方法を用いた液晶表示素子。
〔15〕 互いに対向して配置された第1の基板及び第2の基板;
 前記第1の基板及び前記第2の基板の間に挟持された液晶層;
 前記第1の基板及び前記第2基板の間で前記液晶層の配向状態を制御する配向層;及び
 前記液晶層の配向状態を駆動電圧の印加により発生する電界によって変化させる電極;
を有する液晶セル;並びに、
 前記液晶セルの背面側及び前面側に配置されて、前記駆動電圧の印加時に前記液晶セルの背面側から前面側へと透過する光の透過光量が最大又は最小となるように、互いの透過軸の向きが設定された第1の偏光板及び第2の偏光板;
 前記第1の偏光板及び前記第2の偏光板と前記液晶セルとの間のうち少なくとも一方の間に配置されて、その間を通過する光の光学補償を行う光学補償板;
を備える液晶表示素子において、
 前記光学補償板の配置を省略した場合の前記駆動電圧がオン状態からオフ状態となるときの透過光量Ιの時間tに対する微分係数を∂Ι/∂tとし、前記光学補償板が配置された場合の前記駆動電圧がオン状態からオフ状態となるときの透過光量Ιの時間tに対する微分係数を∂Ι/∂tとしたときに、下記式(1):
       |∂Ι/∂t|>|∂Ι/∂t| …(1)
の関係を満足するように、前記液晶層の位相差と前記光学補償板の位相差との光学設計を行ことを特徴とする液晶表示素子。
 以上のように、本発明では、上記式(1)を満足するように、液晶層の位相差と光学補償板の位相差との光学設計を行うことにより、高低関係がV1>V2である電圧V1から電圧V2への立下り(オフ)時の光学応答を改善することができる。したがって、広視野角が重要な大型の液晶表示素子や、高解像度化を追求する中小型の液晶表示素子に対しても、液晶材料の物性改善に頼ることなく、優れた光学応答を得ることができる。
液晶光学素子を構成する各部の光学配置の一例を示す模式図である。 図1に示す液晶光学素子から位相差板の配置を省略した場合の模式図である。 液晶光学素子を構成する各部の光学配置の他例を示す模式図である。 図3に示す液晶光学素子から位相差板の配置を省略した場合の模式図である。 一軸の光学異方体に入射した光に対応した光学量を示す模式図である。 二軸の光学異方体に入射した光に対応した光学量を示す模式図である。 水平配向(HO)となる場合に本発明の方法を適用した例を示すグラフである。 垂直配向(VA)となる場合に本発明の方法を適用した例を示すグラフである。 ノーマリーホワイトとノーマリーブラックにおける種々の電圧-透過率曲線を示すグラフである。 入射光が垂直の場合のシミュレーション結果の例を示すグラフである。 入射光に対する視野角変化のシミュレーション結果の例を示すグラフである。 液晶層の厚みを変化させた場合の液晶層と位相差板との位相差のシミュレーション結果の例を示すグラフである。 液晶層の厚みを変化させた場合の液晶層と位相差板との位相差を異ならせたシミュレーション結果の例を示すグラフである。 液晶セルの一例を示す斜視図である。 液晶セルの他例を示す斜視図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を模式的に示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
 先ず、本発明を適用した液晶表示素子の光学応答を改善する方法の一例について図1及び図2を参照して説明する。
 なお、図1は、液晶光学素子1を構成する各部の光学配置を示す模式図である。図2は、図1に示す液晶光学素子1から位相差板(光学補償板)4の配置を省略した場合の各部の光学配置を示す模式図である。
 液晶光学素子1は、図1に示すように、液晶セル2と、第1の偏光板3及び第2の偏光板4と、位相差板5とを概略備えている。
 液晶セル2は、駆動電圧の無印時におけるネマチック液晶層の液晶分子が基板面内にあるホモジニアス配向(水平配向)である。液晶セル2は、第1の偏光板3と第2の偏光板4との間に配置されている。
 第1の偏光板3は、偏光子Pとして液晶セル2の背面側に配置されている。第2の偏光板3は、検光子Aとして液晶セル2の正面側に配置されている。第1の偏光板3と第2の偏光板4とは、それぞれの透過軸が法線方向から見て互い直交した位置関係にある。なお、図1では、第1の偏光板3及び第2の偏光板4の法線方向をXYZ座標のZ軸方向とし、第1の偏光板3の透過軸をXYZ座標のX軸方向と一致させ、第2の偏光板4の透過軸をXYZ座標のY軸方向と一致させている。
 液晶セル2は、液晶層の遅相軸をX軸方向から45°となる方向と一致させている。位相差板5は、液晶セル2と第2の偏光板4との間に配置されたAプレートである。位相差板5は、その遅相軸をX軸方向から135°となる方向と一致させている。
 ここで、図1に示す液晶光学素子1から位相差板5の配置を省略した場合の液晶光学素子1’を図2に示す。そして、この位相差板5の配置を省略した場合の液晶光学素子1’の透過光量をΙとする。一方、位相差板5が配置された場合の液晶光学素子1の透過光量をΙとする。また、図1及び図2に示す液晶光学素子1,1’には、それぞれの液晶セル2の背面側から波長kの入射光が垂直(Z軸と平行な方向)に入射し、液晶セル2の前面側から透過光が垂直(Z軸と平行な方向)に出射するものとする。
 液晶セル2(LCD)における液晶層の位相差をRlcとし、位相差板5の位相差をRfとしたとき、位相差板5の位相差Rfは、駆動電圧や時間に対して変化しない。一方、液晶層の位相差Rlcは、液晶セル2の基板間距離をdとし、駆動電圧をVとし、時間をtとし、液晶層の複屈折を△n(V,t)としたとき、d△n(V,t)で表される。したがって、液晶層の位相差Rlcは、駆動電圧や時間的に対して変化する。
 実効的な△n(V,t)は、連続体弾性理論や緩和現象のトルク方程式によって決まるネマチック液晶のダイレクターに着目し、そのZ軸からの傾き角θlc(V,t,Z)によって計算できる。
 したがって、この傾き角θlcは、駆動電圧のオン状態からオフ状態となるとき(立下り時)に、時間的に変化するものとして扱う。透過光量Ι,Ιは、何れも時間的に変化するθlc(t)によって決まる△n(t)の状態で表される。
 以上の関係から、透過光量Ι,Ι及びこれらの時間変化∂Ι/∂t,∂Ι/∂tは、下記式2a,2b及び式3a,3bで表される。また、液晶層の位相差Rlc(t)は、式4で表される。
Figure JPOXMLDOC01-appb-M000004
 本発明の課題である透過光量の時間変化に対する光学応答の改善には、位相差板5の配置を省略した場合の駆動電圧Vがオン状態からオフ状態となるとき(立下り時)の透過光量Ιの時間tに対する微分係数を∂Ι/∂tとし、位相差板5が配置された場合の駆動電圧Vがオン状態からオフ状態となるとき(立下り時)の透過光量Ιの時間tに対する微分係数を∂Ι/∂tとしたときに、下記式(1):
       |∂Ι/∂t|>|∂Ι/∂t| …(1)
の関係を満足するように、液晶層の位相差Rlcと、位相差板5の位相差Rfとの光学設計を行う必要がある。
 ここで、透過光量の時間変化に対する光学応答が速い又は遅いとは、透過光量Ι,Ιの時間的変化に対する大きさを比較することに置き換えられる。したがって、上記式2bの絶対値と、上記式3bの絶対値との大小関係を決める液晶層の位相差Rlcと、位相差板5の位相差Rfとの好適条件を求めることになる。
 具体的に、本実施形態においては、上記式2bと上記式3bから導出される下記式5aの波括弧内における値が1以上となることで得られる。
 駆動電圧Vの無印加時(V=0)における液晶層の位相差Rlcと位相差板5の位相差Rfとは、光学的に補償関係にすることから、Rlc(V=0)=Rfと考える。また、このときの傾き角θlcは0°である。
 駆動電圧Vの無印加時(V=0)における透過光量Ιが十分な明るさとなる液晶層の位相差Rlc(V=0)は、πRlc/λ=π/2付近にすることが好適である。したがって、この条件を位相差板5の位相差Rfに適用した場合、位相差板5の位相差Rfは、この近似式である下記式5cを下記式5aに代入することによって、下記式5b:
Figure JPOXMLDOC01-appb-M000005
で表される。
 ここで、駆動電圧Vが高いときには、液晶層の位相差Rlc(V)が0に近くなる(少なくともπ/4以下となる。)。このことから、上記式5bの波括弧内における第2項の三角関数は正の値である。
 そこで、α<0とすると、上記式5bの波括弧における値は1より常に大となる。要約すると、πRlc(V=0)/λ<π/2、πRf/λ<π/2のとき、上記式2bの∂Ι/∂tの絶対値より、上記式3bの∂Ι/∂tの絶対値が大となるため、上記式(1)の関係が得られる。
 以上のことから、上記式(1)を満足するように、液晶層の位相差Rlcと位相差板の位相差Rfとの光学設計を行うことによって、透過光量の時間変化に対する光学応答の改善が可能となることが明らかとなった。
 位相板は、上記式(1)を満足させることが必要である。具体的には、位相差板として、Aプレート、Cプレート、ニ軸性プレートの中から少なくとも1つを設けることが好ましく、AプレートとCプレートとを組み合わせることがより好ましい。
 さらに、少なくとも法線方向から入射する波長λの入射光に対して、液晶層の位相差Rlcと位相差板5の位相差Rfが、共に等しく、且つ、π/2よりも小さいことが好ましい。より具体的には、液晶層と位相差板5とは、駆動電圧がオフ状態となるときのそれぞれのリタデーションにより与えられる位相差[rad]がπ/2よりも0.1~0.6だけ小さい範囲にあることが好ましい。これにより、立下り(オフ)時の透過光量の時間変化に対する光学応答(立下り時間)を、位相差板5の配置を省略した場合に比べて速めることができる。
 また、位相差板5の配置を省略した場合の駆動電圧又は駆動電圧振幅をVLC1とし、位相差板5が配置された場合の駆動電圧又は駆動電圧振幅をVLC2としたときに、下記式(2):
           VLC1<VLC2 …(2)
の関係を満足するように、液晶セル2の駆動を行う。
 これにより、駆動電圧がオフ状態からオン状態になるとき(立上り時)の透過光量の時間変化に対する光学応答(立上り時間)は、立下り時よりも遅くなるものの、上記式(2)の関係を満足するように、液晶セル2の駆動を行うことで、立上り時の透過光量の時間変化に対する光学応答を改善しながら、立下り時の透過光量の時間変化に対する光学応答を著しく改善することが可能である。
 以上のように、本発明では、上記式(1)を満足するように、液晶層の位相差Rlcと位相差板5の位相差Rfとの光学設計を行うことで、高低関係がV1>V2である電圧V1から電圧V2への立下り(オフ)時の光学応答を改善することができる。したがって、広視野角が重要な大型の液晶表示素子や、高解像度化を追求する中小型の液晶表示素子に対しても、液晶材料の物性改善に頼ることなく、優れた光学応答を得ることができる。
[液晶セル]
 次に、液晶セルの具体的な構成について、図13に示す液晶セル20及び図14に示す液晶セル30を例に挙げて説明する。
 図13に示す液晶セル20は、第1の基板21と、第2の基板22と、第1の基板21と第2の基板22との間に挟持された液晶層23とを有する。
 第1の基板21と第2の基板22との互いに対向する面には、液晶層23の配向状態を制御する配向層24a,24bと、液晶層23の配向状態を駆動電圧の印加により発生する電界によって変化させる透明電極25a,25bとがそれぞれ設けられている。
 例えば、TNモードやSTNモード等の水平配向型の場合には、配向層24a,24bは、駆動電圧の無印加時に液晶層23の液晶分子23aを、基板面に対して実質的に水平な方向に配向(水平配向)させる。ここで、実質的に水平な方向には、水平及び略水平な方向が含まれる。
 一方、VAモード等の垂直配向型の場合には、配向層24a,24bは、駆動電圧の無印加時に液晶層23の液晶分子23aを、基板面に対して実質的に垂直な方向に配向(垂直配向)させる。ここで、実質的に垂直な方向には、垂直及び略垂直な方向が含まれる。
 液晶セル20は、パッシブマトリクス表示形式でも、アクティブマトリクス表示方式でもよい。パッシブマトリクス表示形式の場合には、例えばSTNモードなどが挙げられる。STNモードでは、第1の基板21上の透明電極25aと第2の基板22上の透明電極25bとは、互いに直交するように縞状にパターニングされる。
 アクティブマトリクス表示方式の場合には、例えば、TNモード、VAモードなどが挙げられる。アクティブマトリクス表示方式では、複数の画素電極がマトリクス状に配列された構造を有し、各画素電極と電気的に接続された非線形アクティブ素子(図示せず。)によって、それぞれ独立に駆動が制御される。したがって、アクティブマトリクス表示方式では、透明電極25a,25bのうち、何れか一方が画素電極であり、もう一方が共通電極である。
 図14に示す液晶セル30は、第1の基板31と、第2の基板32と、第1の基板31と第2の基板32との間に挟持された液晶層33とを有する。
 第1の基板21と第2の基板22との互いに対向する面には、それぞれ液晶層23の配向状態を制御する配向層34a,34bが設けられている。また、第1の基板21の第2の基板22と対向する面には、液晶層23の配向状態を駆動電圧の印加により発生する電界によって変化させる透明電極35が設けられている。
 すなわち、この液晶セル30では、第1の基板21と第2の基板22とのうち、一方の基板のみに電極が設けられた構成である。この構成は、例えばIPSモード等の水平配向型に適用される。IPSモードの場合、配向層34a,34bは、駆動電圧の無印加時に液晶層33の液晶分子33aを、基板面に対して実質的に水平な方向に配向(水平配向)させる。IPSモードの場合、透明電極35は、共通電極と画素電極とからなる櫛歯電極を構成している。
[液晶層]
 次に、液晶層23,33について具体的に説明する。
 液晶層23,33には、例えば、ネマチック液晶、スメクチック液晶、強誘電性液晶、コレスチック液晶などの液晶材料を使用できるが、その中でも、ネマテック相を有する液晶を用いることが特に好ましい。
 液晶層23,33の誘電率異方性については、正、負ともに使用できるが、πΛ△n/λがπ/2前後かそれよりも小さいことが好ましいとの結果から、液晶層の複屈折率△nがより小さい材料を用いることが好ましい。
 このことから、本発明の液晶層には、一般式(L1)~式(L3)で表される液晶化合物を含有することがより好ましい。
 上記の光学測定で使用した液晶材料は、下記一般式(L1)で表される化合物と下記一般式(L3)で表される化合物を含有している。実用化されている液晶層の厚みΛは1~4μm程度であることから、液晶材料の複屈折率△nは0.04~0.15から選ぶことができるが、0.05~0.12が好ましく、0.06~0.10が更に好ましい。
Figure JPOXMLDOC01-appb-C000006
 式中、R11~R32は、それぞれ独立して炭素数1~15のアルキル基、アルコキキシ基、アルケニル基又はアルケニルオキシ基を表す。
 A11~A32は、それぞれ独立して下記の何れかの構造を表す。
Figure JPOXMLDOC01-appb-C000007
 式中、Z11及びZ32は、それぞれ独立して単結合、-CH=CH-、-C≡C-、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-又は-CFO-を表す。
 m11~m31は、それぞれ独立して0~3の整数を表す。
 X11、X12は、それぞれ独立して-H、-Cl、-Fを表す。
 Y11は、-CN、-Cl、-F、-OCHF、-CF、-OCF、炭素数2~5のフッ素化されたアルキル基、アルコキシ基、アルケニル基またはアルケニルオキシ基を表す。
 また、液晶層23,33の光学応答は、配向層24a,24b,34a,34bからも優劣の影響を受けている。したがって、配向層24a,24b,34a,34bには、液晶層23,33とのアンカリングエネルギィーが比較的大きな材料を用いることが好ましく、具体的には、ポリイミド(PI)、ポリアミド、カルコン、シンナメート又はシンナモイルの中から選ばれる少なくとも1つを用いることが好ましい。
 以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
 本実施例では、先ず、本発明を適用した液晶表示素子の光学応答を改善する方法の一般的な方法について図3及び図4を参照して説明する。なお、図3は、液晶光学素子10を構成する各部の光学配置を示す模式図である。図2は、図4に示す液晶光学素子10から位相差板(光学補償板)6,7の配置を省略した場合の各部の光学配置を示す模式図である。
 液晶光学素子10は、図3に示すように、液晶セル2と、第1の偏光板3及び第2の偏光板4と、第1の位相差板6及び第2の位相差板7とを概略備えている。そして、この液晶光学素子10は、液晶セル2と第1の偏光板3との間に第1の位相差板6が配置され、液晶セル2と第2の偏光板4との間に第2の位相差板7が配置されている。
 それ以外の構成については、上記図1に示す液晶光学素子1と基本的に同じである。したがって、図3に示す液晶光学素子10において、上記図1に示す液晶光学素子1と同等の部分については説明を省略すると共に、図面において同じ符号を付すものとする。
 また、図3に示す液晶光学素子10から第1の位相差板6及び第2の位相差板7の配置を省略した場合の液晶光学素子10’を図4に示す。
 本例では、第1の偏光板3と第2の偏光板4との透過軸が法線方向から見て互い直交した位置関係にあるものの、第1の偏光板3及び第2の偏光板4の配置については任意である。また、図3及び図4に示す液晶光学素子10,10’には、それぞれの液晶セル2の背面側から波長kの入射光が垂直な方向(Z軸と平行な方向)に対して任意の方向から入射するものとする。
 ここで、第1の偏光板3及び第2の偏光板4が任意に配置された場合の透過光量Ι,Ιの数式が存在しないため、Stokesベクトル、拡張Jones行列、拡張Mueller行列などを用いて、上記式(1)に関わる表式を導き出し、本発明に適用可能な透過光量Ι,Ιの計算方法について説明する。
 以下の説明では、図3及び図4に示す場合を例に挙げて座標軸などを定義して計算を進める。また、以下の説明では、散乱、反射、減衰などが各界面で小さいとしてダイナミック行列を近似して計算を進めるものとする(J.Opt.Soc.Am.Vol.72,No.4,p.507(1982))。
 先ず、光学異方体に入射した光の偏光状態は、下記式6aの拡張Jones行列式(Jo)で表される。また、拡張Mueller行列(Mu)では、下記式6bで表される。
 また、透過光量は、入射光StokesベクトルSを下記式6cとし、透過光StokesベクトルS’を下記式6dとし、偏光子行列をPとし、検光子行列をAとすると、下記式6eの関係から、透過光StokesベクトルS’の成分S0’になる。
Figure JPOXMLDOC01-appb-M000008
 ここで、上記式6a及び式6b中における光学軸回転角Ψ及び位相回転角Γは、図5A、及び図5Bに示すように、光学異方体に入射した光に対応した光学量である。したがって、任意配置における光学軸回転角Ψ及び位相回転角Γの表式が得られれば、透過光量に関する考察ができる。なお、図5Aは、一軸の光学異方体に光が入射した場合を示し、図5Bは、二軸の光学異方体に光が入射した場合を示す。
 次に、偏光板の上に下記のXY座標(式7a,式7b)を取り、偏光板の法線方向をZ軸(式7c)とする。第1の偏光板3の吸収軸を偏光子ベクトルPとし、第2の偏光板4の透過軸を検光子ベクトルAとし、下記のXY座標(式8a,式8b)を取る。極角θi、方位角φi、波長kである入射光は、入射光ベクトルkとして下記式7dで表される。
 入射光のs波は、下記式9で定義され、偏光板を透過した光のo波は、下記式10a及び式11aで定義される。このことから、偏光板のMueller行列で用いられる回転角Ψは、偏光子の場合は下記式10b及び式10cで求められ、検光子の場合は下記式11b及び式11cで求められる。
 したがって、偏光子と検光子の各Mueller行列は、下記式12a,12b及び式13a~式13cとなる。これにより、任意に配置された偏光板(φp,φa)に任意な方向から入射する光(θi,φi)に関する表式が得られる。
Figure JPOXMLDOC01-appb-M000009
 次に、第1の位相差板6(光学軸の位置:極角θc、方位角φc、屈折率:ne、no、厚み:Λc)、液晶セル2の液晶層(光学軸の位置:極角θd、方位角φd、屈折率:ned、nod、厚み:Λd)、第2の位相差板7(光学軸の位置:極角θb、方位角φb、屈折率:neb、nob、厚み:Λb)の各光学異方体におけるMueller行列の導出は、同じ計算過程の部分を引数「b」、「d」、「c」に替え「j」として表記する。
 XYZ座標に対する光学異方体の主軸系座標abcは、下記式14a~式14cとして定義する。
 入射光ベクトルkは、スネルの法則(Z軸方向の成分が変化する)に従って、光学異方体中に屈折して伝搬することから、下記式15aと下記式15bの2つに分かれる。
 ここで、|ne-no|<<ne、no、nz及び|ne-nz|<<ne、no、nzの場合には、下記式16aの近似ができるとの立場(J.Opt.Soc.Am.Vol.72,No.4,p.507(1982))を使って、光学異方体中のoj波は、下記式16bで表すことができる。
 光学異方体のMueller行列の光学軸回転角Ψjは、ベクトルの内積、外積の公式を適用し、式を変形をした下記式17a及び式17bから、下記式18a及び式18bとして得られる。
Figure JPOXMLDOC01-appb-M000010
 次に、ベクトルkoz、kezを求める。具体的には、入射光がabc座標系の光学異方体に入射する場合、下記式19a及び式19bを下記式19cのマックスウェル方程式から得られる方程式に代入する。そして、そこから導き出された下記式19dで表される連立方程式の固有値問題を解くことと等価になる。電場EがE≠0以外の意味ある解は、下記式20aの方程式Fを解くことに帰着する。
 ここで、ベクトル(ka,kb,kc)は、abc座標系のベクトルkeの成分である。このベクトルのXYZ座標系への座標変換は、下記式20bで表される。すなわち、下記式20bの変換式を下記式20aに代入すると、方程式Fは、kezの四次方程式になる。なお、ω、εa、εb、εcは、下記式20c~式20eの関係にある。
 下記式21aのようにNa、Nb、Ncが全て等しい場合は、下記式21bの四重根となり、kezはなく、下記式24cで表されるkozのみの光学等方体である。
 例えば、下記式22aのようにNa、Nb、Ncの2つが等しく1つが異なる場合は、下記式22bのように因数分解できることから、kozの重根とkezの正負の2根が得られる。
 負のkezの光学的意味は、光の進路が逆方向を意味することから、正のkezとkozが屈折光に関わる一軸の光学異方体である。その場合、kozは、下記式24cで表される。kezjの根は、下記式23aの二次方程式から、下記式24bで表される。これにより、Mueller行列で用いられる位相回転角Γjは、式24aとなる。
Figure JPOXMLDOC01-appb-M000011
 下記式25aのようにNa、Nb、Ncが全て異なる場合、方程式Fはkezの四次方程式となる。ここで、下記式25bの条件で、上記式20aを整理した下記式25cの四次方程式を用いて説明する。
 下記式25cの根が虚数の場合、光学的意味は光の減衰に該当することから、考察から除外する。下記25cの方程式が4実根を持つ場合、下記式25dから、二つの正根(k11、k21)と二つの負根(k12、k22)になる。
 負の根の光学的意味は、先ほどと同じく、光の進路が逆方向を意味することから、正のk11とk21が屈折光に関わる二軸の光学異方体である。したがって、位相回転角Γは、下記式25eとなる。
 さらに、「屈折率間の積どうしの差は桁落ちして微量になる」として、下記式26aの近似を下記式25cの方程式に適応すると、k11とk21はより簡便な表式に変形できる。このときの位相回転角Γは、下記式26cとなる。
 次に、二軸の光学異方体における光学軸回転角Ψは、以下のように求められる。すなわち、2つの正根(k11,k21)は、下記式19dの固有値であることから、該固有値に対応する電界ベクトルEabc(Ea,Eb,Ec)のベクトル成分比は、クラメルの公式を適用した下記式26dで計算できる(abc座標系表記)。
 電界ベクトルEabc(k11)と電界ベクトルEabc(k21)は、数学的には上記式(1)9dの固有ベクトルであるので、両者は直交関係(内積がゼロ)にある。
したがって、k11で屈折した波がe波(eabcと表記する。)、k21で屈折した波がo波(oabcと表記する。)に該当する。
 XYZ座標系表記のoXYZ波のベクトル成分比は、θ=0、φをEuler anglesとした回転行列(Z軸周りの回転)をoabc波ベクトル成分に乗じた式26eから得られる。従って、回転角Ψは、式26g~式26jの関係式を使用して、式26fで得られる。以上で任意に配置した位相差フィルムB、Cや液晶パネルLCDの各光学異方体の拡張Mueller行列の導出ができたことになる。一軸光学異方体の拡張Mueller行列を改めて書き下すと式27~式28eとなる。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 以上のようにして、一軸の光学異方体と二軸の光学異方体の拡張Mueller行列表式を得たことになり、これらを使用することで上記式(1)を満たす光学設計をすることが可能である。
 次に、一軸の光学異方体の具体的な表記を表1に示す。
Figure JPOXMLDOC01-appb-T000014
 第1の位相差板6、第2の位相差板7、液晶セル2の各光学異方体について、Aプレート、Cプレート、λ/4板、ホモジニアス配向の液晶セル(ECBモード)、垂直配向の液晶セル(VAモード)などのように、具体的に指定できる場合には、表1を使用することができる。
 ここで補足すると、AプレートとCプレートの相違は、Mueller行列のパラメーターの特定方法の相違である。ECBモードとVAモードの相違は、θdの特定方法の相違である。したがって、Mueller行列のパラメーターの特定方法のみで所望の配置が可能となる。
 また、一軸の光学異方体と二軸の光学異方体の相違は、上記式26cと上記式26fにnz=noの関係を代入すれば、θj=0を代入した上記式24aと上記式(1)8aになることから、同様にMueller行列のパラメーターの特定方法のみで所望の配置が可能となる。したがって、これらの式を用いた透過光量は、一般論として考察できる。
 次に、積層の計算と透過光量及び時間変化について説明する。
 本例では、上記図3及び図4に示す液晶光学素子10,10’について、下記の定義により計算を進めるものとする。
第1の偏光板3(軸位置:方位角φ)、
第1の位相差板6(軸:極角θ、方位角φ、屈折率:ne、no、厚み:Λ)、
液晶セル2の液晶層(軸:極角θ、方位角φ、屈折率:ne、no、厚み:Λ)、
第2の位相差板7(軸:極角θ、方位角φ、屈折率:ne、no、厚み:Λ)、
第2の偏光板4(軸位置:方位角φ
 第1の位相差板6、第2の位相差板7及び液晶セル2の各Mueller行列を下記式29a~式29cと置くと、これらのMueller行列の積は、下記式30となる。また、第1の位相差板6をn個の位相差板で構成した場合は、下記式31aを使用する。同様に、第2の位相差板7をn個の位相差板で構成した場合は、下記式31bを使用する。
さらに、位相差板の配置を省略した場合、例えば第2の位相差板7の配置を省略した場合は、θc=0、ne=noと置いて、下記式29cのMueller行列を単位行列化すればよい。
 入射光を自然光(偏りがない光)とした場合、Stokesベクトルは、下記式30aで表されるので、図3及び図4に示す液晶表示素子10,10’の透過光量Ι,Ιは、下記式32bの計算を経て、下記式32d及び式32cとなる。そして、これらの時間微分とその比は、下記式32e~式32gとして得られる。
 なお、高低関係がV1>V2である電圧V1から電圧V2への立下り(オフ)時の光学応答をECBモードとVAモードに適用した場合、液晶層のθdのみがθd(V,t)であることから、下記式32e~式32gにおいてθd(t)を独立変数とする。
Figure JPOXMLDOC01-appb-M000015
[シミュレーションの実施要件]
 以下、上記式32c~式32gを用いた種々のシミュレーション結果を例示し、本発明による光学設計の方法や有用性について説明する。
 先ず、図6及び図7に示すシミュレーション結果は、何れも図3に示す液晶光学素子10を用いた例である。また、液晶光学素子10の各種条件については、以下のとおりとした。
第1の偏光板3及び第2の偏光板4の配置:(φp,φa)=(15°,135°)
液晶セル2の配置:(φd)=(0°)
第1の位相板6の配置:(θb,φb)=(90°,90°)
第2の位相板7の配置:単位行列
 なお、第1の位相板6はAプレートとし、簡略に説明する意図で、第2の位相板7はその配置を省略する(該当Mueller行列を単位行列にする。)ものとする。
 図6は、駆動電圧の無印加時に液晶層の配向状態が水平配向(HO)となる場合に本発明の方法を適用した例であり、Rlc=Rf<π/2の条件で上記式(1)を適用した場合のシミュレーションの結果を示す。また、図6中の上段には、透過光量Ιと極角θdとの関係を示し、図6中の下段には、∂Ι/∂θdと極角θdとの関係を示す。
 図6に示すように、駆動電圧が十分高いとき(オン時)には、θdが0°である。一方、駆動電圧が0Vのとき(オフ時)には、θdが90°である。
 図7は、駆動電圧の無印加時に液晶層の配向状態が垂直配向(VA)となる場合の例であり、∂Ι/∂θdの関係を示す。また、図7中の上段は、上記式(1)を満たさない光学条件(Rlc=Rf<π/2)のシミュレーション結果を示し、図7中の下段は、上記式(1)を満たす光学条件(Rlc=Rf>π/2)のシミュレーション結果である。
 図7に示すように、駆動電圧が十分高いとき(オン時)には、θdが90°である。一方、駆動電圧が0Vのとき(オフ時)には、θdが0°である。
 また、図6及び図7中に示すグラフのうち、実線は、第1の位相差板6及び第2の位相差板7が配置された場合(図3に示す液晶表示素子10)であり、二重線破線は、第1の位相差板6及び第2の位相差板7の配置を省略した場合(図4に示す液晶表示素子10’)である(以下同じ。)。
 また、高低関係がV1>V2である電圧V1から電圧V2への立下り(オフ)時の応答時間をτd、電圧V2から電圧V1への立上り(オン)時の応答時間をτrとする(以下同じ。)。なお、∂Ι/∂θdは、数値微分の方法で求めた(以下同じ。)。
 各電圧V1,V2を液晶セル2に印加すると、液晶層の液晶分子は、連続体弾性理論で計算されたθd(V1)やθd(V2)の角度になる。V1からV2へと電圧を切り替えると、緩和現象のトルク方程式に従い、液晶分子の傾きは、θd(V1)からθd(V2)へと時間変化する。透過光量Ιは、このθd(t)によって、下記式32c,式32dから得られる。
 ここで、図3に示す液晶表示素子10と図4に示す液晶表示素子10’とは、同一の液晶セル(液晶物性やパネル構成因子も同じ。)2を使用しているため、緩和現象のトルク方程式の解は同一である。したがって、互いの透過光量Ι,Ιは、緩和現象から受ける影響もよく似た傾向と推定される。一方、互いの透過光量Ι,Ιは、同一のθdに対して異なっている。逆に、互いの透過光量Ι,Ιが同一となる場合のθdは異なる。
 これを前提に、上記図6示すHOの場合について説明する。
 透過光量Ι=Ι=1(共にθd=0°)から透過光量Ιaへの光学応答の場合、各値は下記となる。この場合、Ιのθdの変化量が少なくて足り、Ιの微分係数絶対値も大きいことが示され、ダブルでτdの高速化がなされている。
Ιのθd変化量:0°→θ2a
Ιのθd変化量:0°→θ1a
|∂Ι/∂θd(θ2a)|>|∂Ι/∂θd(θ1a)|
 透過光量Ι=Ι=Ιaから透過光量Ι=Ι=Ιbへの階調光学応答の場合、各値は下記となる。この場合、Ιのθdの変化量がやや少なくて足り、(θ2a,θ2b)区間のΙの微分係数絶対値が(θ1a,θ1b)区間のΙの微分係数絶対値より大きいことが示され、τdの高速化がなされている。
Ιのθd変化量:θ2a→θ2b
Ιのθd変化量:θ1a→θ1b
|∂Ι/∂θd(θ2a)|>|∂Ι/∂θd(θ1a)|
|∂Ι/∂θd(θ2b)|≧|∂Ι/∂θd(θ1b)|
 次に、上記図7に示すVAの場合について説明する。
 応答時間τdに該当するθdの区間は、おおよそ(90°,45°)である。「Rlc=Rf<π/2」の場合、この区間のΙの微分係数絶対値はΙのそれよりも小さく、位相差板を配置することでτdが大幅に悪化している。逆に、「Rlc=Rf>π/2」の場合は、この区間のΙの微分係数絶対値はΙのそれよりも大きく、τdを改善している。
 実用化されている液晶表示素子において、透過光量は0~100%全てを使用していない。また、環境温度や視野角などの種々の要因による影響に対し、表示品位が保持されるように設計されている。
 ここで、駆動電圧の印加時に液晶セル2の背面側から前面側へと透過する光の透過光量が最大となる場合(ノーマリーホワイト)と、駆動電圧の印加時に液晶セル2の背面側から前面側へと透過する光の透過光量が最小となる場合(ノーマリーブラック)における種々の電圧-透過率曲線を図8に示す。
 なお、図8中において、破線の間が使用される駆動電圧の領域である。
 この領域以外の領域では、透過光量Ιが局所極値となるところがあると、微係数∂Ι/∂θd(θd)の大小関係の判断に誤りが生じる。
 液晶表示素子の表示領域は、所望の設計に依存するため特定化は困難であるが、概念として表示に使用する領域に対応したθdの角度領域に、本発明の手段を用いることが最適である。
 また、Ι及びΙは、同じ「ノーマリーホワイト」又は同じ「ノーマリーブラック」となることは一般的にはない。本発明が明示した「高低関係がV1>V2である電圧V1から電圧V2への立下り(オフ)時の光学応答を改善する」ことが可能なように、どちらかの透過光量とθdを変換して使用し、上記式(1)の関係が得られるように光学設計をすることは自明である。
 上述した説明で陥りやすい誤りのシミュレーションを避けるために、上記式(1)に絶対値関数を付加しているが、十分な理解によるシミュレーションの場合には、絶対値を無くして設計してもよい。例えば、透過光量Iを変換して透過光量Iに合わせた場合には、以下のようにすればよい。
(θd)←「Iの数値の中で最大となる透過光量」-I(θd)
 なお、上述した説明における液晶分子のθdは、液晶層の厚みΛdの全てで同一に扱ってきた。液晶層の厚みΛdをn分割し、k番目の分割層のθdを連続体弾性理論で計算し、これをMueller行列化し、下式を立てて進めることも可能である。この方法は、正確さを求める場合に有効である。一方、光学設計の物理光学的理解度と新たな課題解決や選択多様性を求める場合は、単純化も有効である。
Figure JPOXMLDOC01-appb-M000016
 次に、種々のシミュレーション結果について説明する。
 なお、以下に示すシミュレーション結果は、何れも図3に示す液晶光学素子10を用いた例である。
 また、液晶光学素子10の各種条件については、以下のとおり共通とした。
第1の偏光板3及び第2の偏光板4の配置:(φp,φa)=(15°,135°)
液晶セル2の配置:(φd)=(0°)
第1の位相差板6の配置:(θb,φb)=(90°,90°)
第2の位相差板7の配置:単位行列
 なお、第1の位相板6はAプレートとし、簡略に説明する意図で、第2の位相板7はその配置を省略する(該当Mueller行列を単位行列にする。)ものとする。液晶セル2は水平配向(HO)である。
 また、図9及び図10には、上記式32gの透過光量の時間変化の比もグラフに示した。
[nedと入射波長のシミュレーション結果]
 図9は、入射光が垂直の場合のシミュレーション結果の例である。
 図9に示すcase1~case3は、波長λ=550nmで、nedを1.58、1.5916666、1.600とした場合である。
 図9に示すcase4~case6は、ned-nod=0.06で、入射波長を420nm、550nm、600nmに変化させた場合である。
 case1~case3の結果から、上記式(1)を満たすのはcase1であり、液晶層と位相差板を共にπΛ△n/λ<π/2とする光学設計をすればよいことが示された。
 case4~case6の結果から、△nを0.06程度にすれば、バックライトからの光が3原色(RGB)に対して全て上記式(1)を満たし、τdの改善が可能であることが示された。
 また、∂Ι/∂θdの大きさの比較による光学設計と、上記式32gの時間変化の比による光学設計とは、同じ結果を示していることが確認された。
 なお、case3においてθd=(0°,90°)全域に対し欠けた曲線となっている理由は、上記図8で説明したように、使用が不適切な表示領域が生じたためである。
[視野角変化のシミュレーション結果]
 図10は、入射光に対する視野角変化のシミュレーション結果の例である。
 本例では、入射光に関する透過光強度を観測することになるので、観測する視野角の方位は入射光方位(θi,φi)と一致する。
case7~case9:(θi,φi)=(15°,45°)
case10~case12:θi,φi)=(15°,45°)
 case7~case9の結果から、上記式(1)を満たすのはcase7であり、液晶層と位相差板を共にπΛ△n/λ<π/2とする光学設計をすればよいことが示された。
 case10~case12の結果から、上記式(1)を満たすのはcase10であり、液晶層と位相差板を共にπΛ△n/λ<π/2とする光学設計をすればよいことが示された。すなわち、垂直入射で導かれた光学設計条件は、比較的広い視野角領域でもτdを高速とする改善効果を維持することが示された。
[液晶層の厚みを変化させた場合の液晶層と位相差板との位相差のシミュレーション結果]
 図11は、液晶層の厚みを変化させた場合の液晶層と位相差板との位相差のシミュレーション結果の例である。本例では、液晶層の厚みΛを変えて、液晶層と位相板との位相差を下記のように不一致にさせている。
case13:Λd=4μm、Λd(ned-nod)=0.28、Λb=3μm、Λb(neb-nob)=0.21
case14:Λd=3μm、Λd(ned-nod)=0.21、Λb=4μm、Λb(neb-nob)=0.28
 case13は、上記式(1)を満たす本発明に該当し、case14は、上記式(1)の条件満たさない本発明外となる。case1とcase3の結果も含め下記表2に示す。
Figure JPOXMLDOC01-appb-T000017
 表2に示す結果から、case1が上記式(1)を満たす必要十分条件ではないことが明らかになった。勿論、case1がより安定なτdの効果を発揮すると推定される。
[光学測定のシミュレーション結果]
 図12は、液晶層の厚みを変化させた場合の液晶層と位相差板との位相差を異ならせたcase15~case18について、立下り(オフ)時の応答時間τdと、立下り(オン)時の応答時間τrを測定した。
 本例では、同一の液晶材料(ned-nod=0.062)を厚みΛが3.29μm、3.75μm、4.78μm、5.01μmである液晶セル(LCD)に注入し、LCDを各2枚作製した。
 作製したLCDの1枚を位相板として使用し、上記図3示す液晶表示素子10と同様の配置で液晶表示素子を組み立てた。測定に使用する光の波長は550nmとした。
 電圧の高低関係をV1>V2としたとき、図12中のグラフに示す「印加電圧」をV1とし、V2=0Vとし、電圧V1から電圧V2への立下り(オフ)時の応答時間τdと、電圧V2から電圧V1への立下り(オン)時の応答時間τrとを測定した。また、case15~case18の結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000018
 表3に示す結果から、以下の(i)~(iii)が示された。
(i) 上記式(1)を満たすことによりτdの改善が確認できたこと。
(ii) 任意の配置に関する透過光量の表式の導出と、その時間微分式である式32e~式32gが検証されたこと。
(iii) 改善効果が特段に大きかったこと(応答改善の為に液晶材料の粘性γ1を半減させることは、現在極めて困難な課題となっている。)。
 一方、本発明は、立上り時の応答時間τrを悪化させることが教示されたが、結果は「印加電圧」V1依存性が強く、上記背景技術で述べた(3)オーバードライブ方式や、(4)倍速駆動方式などで補える程度であることが示された。
[中間諧調の光学測定]
 図13は、上記case15~case18について、中間諧調の応答時間τdを測定した結果である。また、case15~case18の結果を下記表4に示す。
 表4に示す結果から、何れの階調も応答時間τdが50~60%と大幅に改良していることがわかる。
Figure JPOXMLDOC01-appb-T000019
 1…液晶表示素子 2…液晶セル 3…第1の偏光板 4…第2の偏光板 5…位相差板(光学補償板) 6…第1の位相差板(光学補償板) 7…第2の位相差板(光学補償板) 20…液晶セル 21…第1の基板 22…第2の基板 23…液晶層 24a,24b…配向層 25a,25b…透明電極(電極) 30…液晶セル 31…第1の基板 32…第2の基板 33…液晶層 34a,34b…配向層 35…透明電極(電極)

Claims (15)

  1.  互いに対向して配置された第1の基板及び第2の基板;
     前記第1の基板及び前記第2の基板の間に挟持された液晶層;
     前記第1の基板及び前記第2基板の間で前記液晶層の配向状態を制御する配向層;及び
     前記液晶層の配向状態を駆動電圧の印加により発生する電界によって変化させる電極;
    を有する液晶セル;並びに、
     前記液晶セルの背面側及び前面側に配置されて、前記駆動電圧の印加時に前記液晶セルの背面側から前面側へと透過する光の透過光量が最大又は最小となるように、互いの透過軸の向きが設定された第1の偏光板及び第2の偏光板;
     前記第1の偏光板及び前記第2の偏光板と前記液晶セルとの間のうち少なくとも一方の間に配置されて、その間を通過する光の光学補償を行う光学補償板;
    を備える液晶表示素子において、
     前記光学補償板の配置を省略した場合の前記駆動電圧がオン状態からオフ状態となるときの透過光量Ιの時間tに対する微分係数を∂Ι/∂tとし、前記光学補償板が配置された場合の前記駆動電圧がオン状態からオフ状態となるときの透過光量Ιの時間tに対する微分係数を∂Ι/∂tとしたときに、下記式(1):
           |∂Ι/∂t|>|∂Ι/∂t| …(1)
    の関係を満足するように、前記液晶層の位相差と前記光学補償板の位相差との光学設計を行うことにより、
     高低関係がV1>V2である電圧V1から電圧V2への立下り(オフ)時の光学応答を改善する方法。
  2.  前記液晶層及び前記光学補償板は、前記駆動電圧がオフ状態となるときのそれぞれのリタデーションにより与えられる位相差[rad]を等しくし、且つ、π/2よりも小さい、請求項1に記載の光学応答を改善する方法。
  3.  前記第1の偏光板及び前記第2の偏光板は、それぞれの透過軸が法線方向から見て互い直交した位置関係にあり、
     前記液晶層及び前記光学補償板は、それぞれの遅相軸が法線方向から見て互い直交した位置関係にあり、
     前記透過軸及び前記遅相軸の為す角度[rad]がπ/4である、請求項1又は2に記載の光学応答を改善する方法。
  4.  前記液晶セルは、前記液晶層を電圧制御複屈折モードで駆動する、請求項1~3の何れか一項に記載の光学応答を改善する方法。
  5.  前記液晶セルは、前記駆動電圧の無印加時における前記液晶層の配向状態が水平配向である、請求項1~4の何れか一項に記載の光学応答を改善する方法。
  6.  前記液晶セルは、前記駆動電圧の無印加時における前記液晶層の配向状態が垂直配向である、請求項1~4の何れか一項に記載の光学応答を改善する方法。
  7.  前記光学補償板は、位相差板である、請求項1~6の何れか一項に記載の光学応答を改善する方法。
  8.  前記位相差板は、Aプレート、Cプレート、二軸性プレートのうちの何れかを含む、請求項7に記載の光学応答を改善する方法。
  9.  前記光学補償板は、光学補償用の液晶セルである、請求項1~8の何れか一項に記載の光学応答を改善する方法。
  10.  前記液晶層は、ネマチック液晶、スメクチック液晶、コレスチック液晶、強誘電性液晶のうちの何れかを含む、請求項1~9の何れか一項に記載の光学応答を改善する方法。
  11.  前記液晶層は、下記一般式(L1)~(L3):
    Figure JPOXMLDOC01-appb-C000001
    で表される液晶化合物を含む、請求項10に記載の光学応答を改善する方法。
  12.  前記液晶セルは、前記電極と電気的に接続された非線形アクティブ素子を含む、請求項1~11の何れか一項に記載の光学応答を改善する方法。
  13.  前記配向層は、ポリイミド、ポリアミド、カルコン、シンナメート、シンナモイルのうちの何れかを含む、請求項1~12の何れか一項に記載の光学応答を改善する方法。
  14.  請求項1~13の何れか一項に記載の光学応答を改善する方法を用いた液晶表示素子。
  15.  互いに対向して配置された第1の基板及び第2の基板;
     前記第1の基板及び前記第2の基板の間に挟持された液晶層;
     前記第1の基板及び前記第2基板の間で前記液晶層の配向状態を制御する配向層;及び
     前記液晶層の配向状態を駆動電圧の印加により発生する電界によって変化させる電極;
    を有する液晶セル;並びに、
     前記液晶セルの背面側及び前面側に配置されて、前記駆動電圧の印加時に前記液晶セルの背面側から前面側へと透過する光の透過光量が最大又は最小となるように、互いの透過軸の向きが設定された第1の偏光板及び第2の偏光板;
     前記第1の偏光板及び前記第2の偏光板と前記液晶セルとの間のうち少なくとも一方の間に配置されて、その間を通過する光の光学補償を行う光学補償板;
    を備える液晶表示素子において、
     前記光学補償板の配置を省略した場合の前記駆動電圧がオン状態からオフ状態となるときの透過光量Ιの時間tに対する微分係数を∂Ι/∂tとし、前記光学補償板が配置された場合の前記駆動電圧がオン状態からオフ状態となるときの透過光量Ιの時間tに対する微分係数を∂Ι/∂tとしたときに、下記式(1):
           |∂Ι/∂t|>|∂Ι/∂t| …(1)
    の関係を満足するように、前記液晶層の位相差と前記光学補償板の位相差との光学設計を行うことを特徴とする液晶表示素子。
PCT/JP2014/070468 2013-08-08 2014-08-04 光学応答を改善する方法及びそれを用いた液晶表示素子 WO2015019997A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480043912.5A CN105452947B (zh) 2013-08-08 2014-08-04 改善光学响应的方法以及使用了该方法的液晶显示元件
US14/910,744 US9575363B2 (en) 2013-08-08 2014-08-04 Method for improving optical response and liquid crystal display device using same
KR1020167003182A KR101691871B1 (ko) 2013-08-08 2014-08-04 광학 응답을 개선하는 방법 및 그것을 사용한 액정 표시 소자
JP2015516130A JP5866068B2 (ja) 2013-08-08 2014-08-04 光学応答を改善する方法及びそれを用いた液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-165620 2013-08-08
JP2013165620 2013-08-08

Publications (1)

Publication Number Publication Date
WO2015019997A1 true WO2015019997A1 (ja) 2015-02-12

Family

ID=52461329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070468 WO2015019997A1 (ja) 2013-08-08 2014-08-04 光学応答を改善する方法及びそれを用いた液晶表示素子

Country Status (5)

Country Link
US (1) US9575363B2 (ja)
JP (1) JP5866068B2 (ja)
KR (1) KR101691871B1 (ja)
CN (1) CN105452947B (ja)
WO (1) WO2015019997A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099124A1 (ja) * 2015-12-07 2017-06-15 Dic株式会社 光学応答を改善する方法及びそれを用いた液晶表示素子
CN106918963A (zh) * 2015-12-28 2017-07-04 日立乐金光科技株式会社 调光器和使用该调光器的影像显示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179493A1 (ja) * 2016-04-14 2017-10-19 シャープ株式会社 液晶表示パネル、及び、液晶表示装置
JP2019124775A (ja) * 2018-01-15 2019-07-25 セイコーエプソン株式会社 液晶装置および電子機器
US11042019B2 (en) * 2018-12-17 2021-06-22 Purdue Research Foundation Systems and methods for imaging a sample
CN109671412B (zh) * 2019-02-18 2021-05-25 京东方科技集团股份有限公司 过驱动方法、装置、液晶显示面板的控制器和显示设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220829A (ja) * 1988-07-08 1990-01-24 Fujitsu Ltd 液晶表示装置
JPH03185421A (ja) * 1989-12-15 1991-08-13 Fujitsu Ltd 液晶表示器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320829A (ja) * 1989-06-16 1991-01-29 Nec Corp ソース統計情報取得方式
JP3144125B2 (ja) * 1993-03-08 2001-03-12 松下電器産業株式会社 液晶セルの光学特性測定方法
US6108064A (en) * 1997-11-06 2000-08-22 Sharp Kabushiki Kaisha Reflective-type liquid crystal display device including a single polarizer plate
JP4381492B2 (ja) 1998-02-27 2009-12-09 龍男 内田 液晶光学素子
JP3810969B2 (ja) 1999-12-06 2006-08-16 日東電工株式会社 光学補償偏光板及び液晶表示装置の各製造方法
JP4421271B2 (ja) 2003-11-28 2010-02-24 東芝モバイルディスプレイ株式会社 液晶表示装置
JP4476293B2 (ja) 2004-06-29 2010-06-09 シャープ株式会社 液晶表示装置
JP2007078854A (ja) 2005-09-12 2007-03-29 Tohoku Univ 偏光板及び液晶表示装置
US7932980B2 (en) * 2005-11-23 2011-04-26 University Of Central Florida Research Foundation, Inc. Liquid crystal display device having patterned electrodes for repetitive divided horizontal electric field and fringing electric field
JP5278720B2 (ja) 2006-03-27 2013-09-04 Nltテクノロジー株式会社 液晶パネル、液晶表示装置及び端末装置
JP2008139769A (ja) 2006-12-05 2008-06-19 Tohoku Univ 視野角制御液晶パネル
CN101604099A (zh) 2008-06-11 2009-12-16 胜华科技股份有限公司 一种微反射液晶显示器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220829A (ja) * 1988-07-08 1990-01-24 Fujitsu Ltd 液晶表示装置
JPH03185421A (ja) * 1989-12-15 1991-08-13 Fujitsu Ltd 液晶表示器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099124A1 (ja) * 2015-12-07 2017-06-15 Dic株式会社 光学応答を改善する方法及びそれを用いた液晶表示素子
CN106918963A (zh) * 2015-12-28 2017-07-04 日立乐金光科技株式会社 调光器和使用该调光器的影像显示装置

Also Published As

Publication number Publication date
US20160187698A1 (en) 2016-06-30
KR20160041913A (ko) 2016-04-18
CN105452947A (zh) 2016-03-30
US9575363B2 (en) 2017-02-21
JP5866068B2 (ja) 2016-02-17
JPWO2015019997A1 (ja) 2017-03-02
KR101691871B1 (ko) 2017-01-02
CN105452947B (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2015019997A1 (ja) 光学応答を改善する方法及びそれを用いた液晶表示素子
EP1600810B1 (en) Liquid crystal display device
WO2005078516A1 (ja) 液晶表示素子
TW201426142A (zh) 顯示面板
JP2004212938A (ja) Ocbモード液晶表示装置
WO2006030512A1 (ja) 液晶表示素子
KR100762034B1 (ko) Ocb 모드 액정표시장치
WO2010001648A1 (ja) 液晶表示装置
KR20070024785A (ko) 광시야각 특성이 개선된 액정표시장치
JP2002148623A (ja) 液晶表示装置
JP2005037784A (ja) 液晶表示素子
JP6717323B2 (ja) 光学応答を改善する方法及びそれを用いた液晶表示素子
KR20070024784A (ko) 광시야각 특성이 개선된 액정표시장치
KR101774280B1 (ko) 평면정렬 스위칭 방식 액정표시장치 및 그 구동방법
JP2005338504A (ja) 液晶表示素子
KR101108066B1 (ko) 횡전계방식 액정표시소자 및 그의 제조 방법
JP2006011414A (ja) 液晶表示素子
KR20080047689A (ko) 액정표시장치
JP2009075549A (ja) 液晶表示装置
KR100708795B1 (ko) 액정 표시 소자
KR100735203B1 (ko) 오씨비 모드 액정표시장치
KR20100110074A (ko) 위상차 필름 및 이를 포함하는 면상 스위칭 액정표시장치
KR101812542B1 (ko) 평면정렬 스위칭 방식 액정표시장치 및 그 구동방법
Lu et al. Characteristics of a 12-Domain MVA-LCD
Jiao et al. P‐114: Achromatic Dark State of MVA‐LCDs with a Negative C‐Plate and a Biaxial Film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043912.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015516130

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167003182

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14910744

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14834446

Country of ref document: EP

Kind code of ref document: A1