WO2015018070A1 - 印制电路板天线和终端 - Google Patents
印制电路板天线和终端 Download PDFInfo
- Publication number
- WO2015018070A1 WO2015018070A1 PCT/CN2013/081193 CN2013081193W WO2015018070A1 WO 2015018070 A1 WO2015018070 A1 WO 2015018070A1 CN 2013081193 W CN2013081193 W CN 2013081193W WO 2015018070 A1 WO2015018070 A1 WO 2015018070A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- inductor
- resonant
- resonant circuit
- circuit board
- Prior art date
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 48
- 229910052802 copper Inorganic materials 0.000 claims abstract description 48
- 239000010949 copper Substances 0.000 claims abstract description 48
- 230000007423 decrease Effects 0.000 claims description 23
- 230000008878 coupling Effects 0.000 claims description 13
- 238000010168 coupling process Methods 0.000 claims description 13
- 238000005859 coupling reaction Methods 0.000 claims description 13
- 238000005253 cladding Methods 0.000 claims 4
- 239000002184 metal Substances 0.000 description 34
- 229910052751 metal Inorganic materials 0.000 description 34
- 238000010586 diagram Methods 0.000 description 30
- 238000004088 simulation Methods 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 230000001808 coupling effect Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000005404 monopole Effects 0.000 description 2
- 244000208734 Pisonia aculeata Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/342—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
- H01Q5/357—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
- H01Q13/106—Microstrip slot antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
- H01Q13/16—Folded slot antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/30—Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/314—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/378—Combination of fed elements with parasitic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
- H01Q7/005—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with variable reactance for tuning the antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0421—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
Definitions
- Embodiments of the present invention relate to antenna technologies, and in particular, to a printed circuit board antenna and a terminal. Background technique
- IFA inverted F antenna
- PCB printed circuit board
- the IFA antenna combines Planar Inverted F Antenna (PIFA) and monopole.
- PIFA Planar Inverted F Antenna
- monopole A new type of antenna developed by the characteristics of the (monopole) antenna.
- the IFA antenna has the advantages of small size, high efficiency, sufficient bandwidth, and strong anti-interference ability of the PIFA antenna. Therefore, the IFA antenna is suitable for use in a miniaturized mobile terminal.
- BT-WLAN Blue Tooth-Wireless Local Area Networks
- GPS Global Positioning System
- LTE Long Term Evolution
- Embodiments of the present invention provide a printed circuit board antenna and a terminal, and the printed circuit board antenna can operate in two different frequency bands at the same time.
- a first aspect provides a printed circuit board antenna comprising:
- the printed circuit board being provided with copper;
- the copper plate on the printed circuit board is provided with a slit, and the slit is connected to the outside of the printed circuit board, and the copper plate on the printed circuit board is provided with a slot perpendicular to the slit.
- the slot is in communication with the slit, and the copper on both sides of the slit forms a first antenna and a second antenna from the slit to both ends of the slot;
- the feed point is configured to form a first resonant circuit and a second resonant circuit with the first antenna and the second antenna, and the resonant frequencies of the first resonant circuit and the second resonant circuit are different.
- the feed point is electrically connected to the first antenna, and a length of the first antenna is different from a length of the second antenna; Forming a first resonant circuit and a second resonant circuit with the first antenna and the second antenna, where the resonant frequencies of the first resonant circuit and the second resonant circuit are different, specifically:
- the first antenna is formed by the feed point to form the first resonant circuit
- the second antenna is coupled by the first antenna to form the second resonant circuit, the first resonant circuit and The resonant frequency of the second resonant tank is different.
- the antenna further includes: a first inductor and a second inductor;
- the first inductor is disposed on the first antenna and electrically connected to the first antenna
- the second inductor is disposed on the second antenna and electrically connected to the second antenna.
- the first inductor is disposed at a position where a current is the largest on the first antenna, and the second inductor is disposed in the first The position of the current on the two antennas is the largest.
- the resonant frequency of the first resonant circuit decreases as the inductance of the first inductor increases.
- the resonant frequency of the second resonant tank decreases as the inductance of the second inductor increases.
- the slot is provided with a feed line, and the feed point is electrically connected to the feed line, and a length of the first antenna is different from a length of the second antenna;
- the feed point is configured to form a first resonant circuit and a second resonant circuit with the first antenna and the second antenna, where a resonant frequency of the first resonant circuit and the second resonant circuit is different, specifically : the first antenna forms the first resonant circuit through a coupling feeding of the feeder, and the second antenna forms a second resonant circuit by coupling feeding of the feeding line, the first resonant circuit and The resonant frequency of the second resonant tank is different.
- the antenna further includes: a first inductor and a second inductor;
- the first inductor is disposed on the first antenna and electrically connected to the first antenna, and the second inductor is disposed on the second antenna and electrically connected to the second antenna.
- the first inductor is disposed at a position where a current is the largest on the first antenna, and the second inductor is disposed in the first The position of the current on the two antennas is the largest.
- the resonant frequency of the first resonant circuit decreases as the inductance of the first inductor increases.
- the resonant frequency of the second resonant tank decreases as the inductance of the second inductor increases.
- a second aspect provides a terminal, including an antenna, where the antenna includes:
- the printed circuit board being provided with copper;
- the copper plate on the printed circuit board is provided with a slit, and the slit is connected to the outside of the printed circuit board, and the copper plate on the printed circuit board is provided with a slot perpendicular to the slit.
- the slot is in communication with the slit, and the copper on both sides of the slit forms a first antenna and a second antenna from the slit to both ends of the slot;
- the feed point is configured to form a first resonant circuit and a second resonant circuit with the first antenna and the second antenna, and the resonant frequencies of the first resonant circuit and the second resonant circuit are different.
- the feed point is electrically connected to the first antenna, and a length of the first antenna is different from a length of the second antenna; Forming a first resonant circuit and a second resonant circuit with the first antenna and the second antenna, where the resonant frequencies of the first resonant circuit and the second resonant circuit are different, specifically:
- the first antenna is formed by the feed point to form the first resonant circuit
- the second antenna is coupled by the first antenna to form the second resonant circuit, the first resonant circuit and The resonant frequency of the second resonant tank is different.
- the antenna further includes: a first inductor and a second inductor;
- the first inductor is disposed on the first antenna and electrically connected to the first antenna
- the second inductor is disposed on the second antenna and electrically connected to the second antenna.
- the first inductor is disposed at a position where a current is the largest on the first antenna, and the second inductor is disposed in the first The position of the current on the two antennas is the largest.
- the resonant frequency of the first resonant tank decreases as the inductance of the first inductor increases, and the resonant frequency of the second resonant loop increases with the inductance of the second inductor And lower.
- the slot is provided with a feed line, the feed point is electrically connected to the feed line, and a length of the first antenna is different from a length of the second antenna;
- the feed point is configured to form a first resonant circuit and a second resonant circuit with the first antenna and the second antenna, where a resonant frequency of the first resonant circuit and the second resonant circuit is different, specifically : the first antenna forms the first resonant circuit through a coupling feeding of the feeder, and the second antenna forms a second resonant circuit by coupling feeding of the feeding line, the first resonant circuit and The resonant frequency of the second resonant tank is different.
- the antenna further includes: a first inductor and a second inductor;
- the first inductor is disposed on the first antenna and electrically connected to the first antenna
- the second inductor is disposed on the second antenna and electrically connected to the second antenna.
- the first inductor is disposed at a position where a current is the largest on the first antenna, and the second inductor is disposed in the first The position of the current on the two antennas is the largest.
- the resonant frequency of the first resonant circuit decreases as the inductance of the first inductor increases.
- the resonant frequency of the second resonant tank decreases as the inductance of the second inductor increases.
- the printed circuit board antenna and the terminal provided by the embodiment of the present invention provide a first antenna by connecting a slit and a slit perpendicular to the slit through a copper covering on the printed circuit board. And a second antenna, the feed point forms two resonant circuits of different frequencies on the first antenna and the second antenna, so that the printed circuit board antenna can work in two different frequency bands at the same time.
- FIG. 1 is a schematic structural diagram of Embodiment 1 of a printed circuit board antenna according to an embodiment of the present invention
- 2 is a schematic structural diagram of Embodiment 2 of a printed circuit board antenna according to an embodiment of the present invention
- FIG. 3 is a schematic structural diagram of Embodiment 3 of a printed circuit board antenna according to an embodiment of the present invention
- FIG. 4 is FIG. 1
- FIG. 5 is a schematic structural diagram of a fourth embodiment of a printed circuit board antenna according to an embodiment of the present invention
- FIG. 6 is a schematic diagram of the printed circuit board antenna shown in FIG. Wave loss simulation curve
- FIG. 7 is a schematic structural diagram of Embodiment 5 of a printed circuit board antenna according to an embodiment of the present invention
- FIG. 8 is a simulation curve of return loss of the printed circuit board antenna shown in FIG. 7;
- FIG. 9 is a schematic structural diagram of Embodiment 1 of a metal frame antenna according to an embodiment of the present invention
- FIG. 10 is a simulation curve diagram of return loss of the metal frame antenna shown in FIG. 9;
- FIG. 11 is a schematic structural diagram of Embodiment 2 of a metal frame antenna according to an embodiment of the present invention
- FIG. 12 is a simulation curve diagram of return loss of the metal frame antenna shown in FIG. 11;
- FIG. 13 is a schematic structural diagram of Embodiment 1 of a terminal according to an embodiment of the present disclosure.
- FIG. 14 is a schematic structural diagram of Embodiment 2 of a terminal according to an embodiment of the present disclosure.
- FIG. 15 is a schematic structural diagram of Embodiment 3 of a terminal according to an embodiment of the present disclosure.
- FIG. 16 is a schematic structural diagram of Embodiment 4 of a terminal according to an embodiment of the present invention.
- the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
- the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
- the printed circuit board antenna and the metal frame antenna provided by the embodiments of the present invention can be set in mobile terminals that need to work in multiple wireless frequency bands, such as mobile terminals such as mobile phones and tablet computers, and multiple wireless frequency bands are, for example, BT-WLAN, GPS.
- BT-WLAN is in the 2.4GHz band
- GPS is in the 1575.42MHz band
- TD-LTE is in the 2.6GHz band.
- the printed circuit board antenna of this embodiment includes: a printed circuit board 11 and a printed circuit board. At the feed point 12 on the 11, the printed circuit board 11 is provided with copper.
- the copper on the printed circuit board 11 is provided with a slit 13, a slit 13 and a printed circuit board 11 Externally connected, the copper clad on the printed circuit board 11 is provided with a slot 14 perpendicular to the slit 13, and the slot 14 is in communication with the slit 13, and the copper on both sides of the slit 13 is formed first from the slit 13 to the slot 14.
- the antenna 15 and the second antenna 16 are configured to form a first resonant circuit and a second resonant circuit with the first antenna 15 and the second antenna 16. The resonant frequencies of the first resonant circuit and the second resonant circuit are different.
- the printed circuit board of the mobile terminal is generally covered with copper outside the line and the device, and the laid copper is grounded, and no line and device are removed on one side of the printed circuit board 11.
- a part of the copper is provided with a slit 13 .
- the slit 13 is generally rectangular.
- a portion of the copper-clad placement groove 14 is removed from the printed circuit board 11, and the groove 14 is perpendicular to and communicates with the slit 13, and the groove 14 is also generally rectangular.
- the groove 14 and the slit 13 form a "T"-shaped structure.
- two sections of separated copper are formed on the side of the slit 14 on the slit 13 side, and the copper layers of the two sections from the slit 13 to the groove 14 are the first antenna 15 and the second antenna 16, respectively.
- the position 17 of the first antenna 15 at one end of the slot 14 and the position 18 of the second antenna 16 at the other end of the slot 14 are respectively connected to the remaining copper on the printed circuit board 11, that is, the first antenna 15 and the second antenna 16 are respectively Position 17 and position 18 at both ends of slot 14 are grounded.
- the printed circuit board 11 is further provided with a radio frequency circuit (not shown) for receiving or generating a radio frequency signal, and the radio frequency circuit is connected to the feed point 12 and transmits the radio frequency signal from the first antenna 15 and/or the second antenna 16 through the feed point 12.
- the radio frequency signals received by the first antenna 15 and/or the second antenna 16 are transmitted or received through the feed point 12.
- the manner in which the feed point 12 feeds the first antenna 15 and the second antenna 16 can be divided into two forms.
- the first specific one can be: the feed point 12 is electrically connected to the first antenna 15 by direct feeding. Feeding the first antenna 15 and forming a first resonant circuit, the first antenna 15 receiving the direct feeding as the excitation source of the second antenna 16 feeds the second antenna 16 by means of coupling feeding, and forms The second resonant circuit.
- the second specific one may be: a feed line is provided at the slit 13 , and the feed point 12 is electrically connected to the feed line, and the first antenna 15 and the second antenna 16 respectively form a first resonant circuit and a second resonant circuit through the coupling feeding of the feed line.
- the following embodiments illustrate two types of feed modes, respectively.
- the wavelength of the resonance frequency generated by the antenna can be determined based on the resonance frequency and the speed of light generated by the antenna, and the length of the antenna can be confirmed based on the wavelength, so that the lengths of the first antenna 15 and the second antenna 16 can be determined.
- the copper is provided on the printed circuit board with slits 13 and slots 14.
- the first antenna 15 and the second antenna 16 can be formed on the printed circuit board, and a first resonant circuit is formed on the first antenna 15, and a second resonant circuit is formed on the second antenna 16.
- the first resonant circuit A first resonant frequency may be generated, a second resonant frequency may generate a second resonant frequency, the first antenna 15 and the second antenna 16 are different in size, a first resonant frequency generated by the first resonant circuit and a second generated by the second resonant circuit
- the resonant frequency is different.
- the terminal device using the printed circuit board antenna provided by the embodiment can operate at two different frequencies, for example, the first resonant frequency is located in the BT-WLAN band, and the second resonant frequency is located in the GPS band.
- the printed circuit board antenna of this embodiment is provided with a slit and a slit perpendicular to the slit by a copper clad on the printed circuit board, and the slot communicates with the slit to form a first antenna and a second antenna.
- the feed point forms two resonant circuits of different frequencies on the first antenna and the second antenna, so that the printed circuit board antenna can work in two different frequency bands at the same time.
- the feed point 12 is located at one end of the slot 14 adjacent to the first antenna 15, and the feed point 12 is electrically connected to the first antenna 15, and the feed point 12 is electrically connected to the first antenna 15. Near the position 17, the length of the first antenna 15 is different from the length of the second antenna 16. Since the first antenna 15 is electrically connected to the feed point 12, the first antenna 15 is directly fed by the feed point 12 to form a first resonant circuit.
- the first antenna 15 is grounded at the position 17, so that the resistance of the first antenna 15 at the position 17 at one end of the slot 14 is the smallest, and the resistance of the first antenna 15 at the slit 13-end is the largest, and the impedance of the RF circuit is generally 50 ohms,
- the position of the feed point 12 electrically connected to the first antenna 15 should be as close as possible to the position of the first antenna 15 having an impedance of 50 ohms, which is close to the position 17.
- the second antenna 16 is not electrically connected to the feed point 12, the first antenna 15 serves as an excitation source (i.e., feed point) of the second antenna 16, and the second antenna 16 is fed by the coupling of the first antenna 15 to form a second resonance circuit.
- the first antenna 15 serves as an excitation source (i.e., feed point) of the second antenna 16
- the second antenna 16 is fed by the coupling of the first antenna 15 to form a second resonance circuit.
- the frequency of the second resonant circuit formed by the second antenna 16 is c / 4 / 2
- / 2 is the length of the second antenna 16.
- the first inductor 21 is disposed on the first antenna 15 and electrically connected to the first antenna 15; the second inductor 22 is disposed on the second antenna 16 and electrically connected to the second antenna 16.
- the inductive device has two pins, and the first inductor 21 is electrically connected to the first antenna 15, that is, the two pins of the first inductor 21 are electrically connected to the first antenna 15, and the second inductor 22 and the second The two antennas 16 are electrically connected, that is, the two pins of the second inductor 22 are electrically connected to the second antenna 16.
- the inductive reactance of the inductor can cancel all or part of the capacitive reactance of the antenna at the point from the point to the free end of the antenna. (For the first antenna 15, for example, the first inductor 21 can be added.
- the capacitive reactance of the antenna of the first inductor 21 to the slit 13 at the first inductor 21 is cancelled, thereby increasing the antenna current from the point to the grounding point of the antenna (taking the first antenna 15 as an example, adding the first inductor 21)
- the antenna current of the first inductance 21 to the position 17 is increased, that is, the effective length of the antenna is increased. Therefore, the first inductor 21 and the second inductor 22 are disposed on the first antenna 15 and the second antenna 16, which is equivalent to increasing the lengths of the first antenna 15 and the second antenna 16, which reduces the first resonant circuit and the second The resonant frequency of the resonant tank.
- the first antenna 21 and the second inductor 22 are respectively disposed on the first antenna 15 and the second antenna 16 while ensuring that the resonant frequencies of the first resonant circuit and the second resonant circuit are constant, and the first antenna 15 needs to be shortened. And the length of the second antenna 16, that is, the length of the groove 14 extending toward both sides of the slit 13. Further, the larger the inductance of the first inductor 21 and the second inductor 22, the narrower the bandwidth of the corresponding first resonant tank and the second resonant loop.
- the frequency and bandwidth of the first resonant circuit and the second resonant circuit can be shortened while ensuring the frequency and bandwidth of the first resonant circuit and the second resonant circuit.
- the lengths of the first antenna 15 and the second antenna 16 can reduce the size of the printed circuit board antenna, facilitating miniaturization of the mobile terminal using the printed circuit board antenna.
- the inductive reactance of the inductor can cancel all or part of the capacitive reactance of the antenna at the point from the point to the free end of the antenna, thereby increasing the point to the antenna ground point.
- the antenna current so the inductor is placed at the maximum current on the antenna to offset the capacitive reactance on the antenna. Therefore, the first inductor 21 can be disposed at a position where the current is the largest on the first antenna 15, and the second inductor 22 is disposed at a position where the current is the largest at the second antenna 16, such that the first inductor 21 and the second inductor 22 are opposite to the first antenna.
- the length of 15 and the second antenna 16 have the greatest effect.
- the first inductor 21 is disposed at the position of the first antenna 15 and the second inductor 22 is disposed at the second antenna 22.
- the embodiment of the present invention is not limited thereto.
- the copper covering on the printed circuit board is provided with a slit and a slot perpendicular to the slit, and the slot is connected with the slit to form a first antenna and a second antenna, and the feeding point is at two antennas.
- Two resonant circuits of different frequencies are formed on the circuit, so that the printed circuit board antenna can work in two different frequency bands at the same time.
- an inductor is further disposed on the two antennas, and the resonant frequency generated by the antenna can be generated.
- the length of the antenna is shortened under constant conditions, so that the size of the printed circuit board antenna can be reduced.
- FIG. 3 is a schematic structural diagram of Embodiment 3 of a printed circuit board antenna according to an embodiment of the present invention.
- the difference between the printed circuit board antenna of this embodiment and the printed circuit board antenna shown in FIG. 1 is that A feed line 31 is provided at the slit 13, and the feed point 12 is disposed in the slot 14 near the slit 13, and the feed point 12 is electrically connected to the feed line 31, and the length of the first antenna 15 is different from the length of the second antenna 16.
- the first antenna 15 and the second antenna 16 are fed from the feed point 12 by means of coupling feeding.
- the feed point 12 needs to be connected to a feed line 31.
- the feed line 31 is not electrically connected to the first antenna 15 and the second antenna 16, and the feed line 31 receives the feed point 12 directly.
- the first antenna 15 and the second antenna 16 are respectively coupledly fed by the capacitive coupling effect, and the first resonant circuit and the second resonant circuit are respectively formed on the first antenna 15 and the second antenna 16.
- the frequency of the first resonant circuit formed by the first antenna 15 is the length of the first antenna 15, and the frequency of the second resonant circuit formed by the second antenna 16 is c/4/ 2 , / 2 is the length of the second antenna 16.
- the slot and the slot are connected to form a first antenna and a second antenna by providing a slit on the printed circuit board and a slit perpendicular to the slit, and the feed point is two.
- Two resonant circuits of different frequencies are formed on the antenna, so that the printed circuit board antenna can work simultaneously in two different
- the frequency band provides a dual-frequency printed circuit board antenna.
- FIG. 4 is a simulation diagram of the return loss of the printed circuit board antenna shown in FIG. 1 and FIG. 3, and the size setting between the first antenna 15 and the second antenna 16 ground point in the printed circuit board antenna shown in FIG. 63mm, the width of the first antenna 15 and the second antenna 16 is set to 5mm, and the size between the ground point of the first antenna 15 and the second antenna 16 in the printed circuit board antenna shown in FIG. 3 is set to 49mm, first The width of the antenna 15 and the second antenna 16 is set to 5 mm, so that the first antenna 15 of the printed circuit board antenna shown in FIGS. 1 and 3 operates in the GPS band, and the second antenna 16 operates in the BT-WLAN band.
- the center frequency of the BT-WLAN band is 2400MHz
- the center frequency of the GPS band is 1575.42MHz.
- curve 41 represents the return loss curve of the printed circuit board antenna shown in Fig. 1
- curve 42 represents the return loss curve of the printed circuit board antenna shown in Fig. 3.
- the return loss of curve 41 at a frequency of 1575.42 MHz is less than -10 dB
- the return loss of curve 42 at a frequency of 1575.42 MHz is also less than -10 dB
- the return loss of curve 41 at a frequency of 2.4 GHz is approximately At -12 dB
- curve 42 has a return loss of approximately -9 dB at 2.4 GHz.
- the printed circuit board antennas shown in Figures 1 and 3 can meet the working requirements of BT-WLAN and GPS dual-band.
- FIG. 5 is a schematic structural diagram of Embodiment 4 of a printed circuit board antenna according to an embodiment of the present invention. As shown in FIG. 5, the printed circuit board antenna of this embodiment further includes a first inductor 51 and The second inductor 52.
- the first inductor 51 is disposed on the first antenna 15 and electrically connected to the first antenna 15; the second inductor 52 is disposed on the second antenna 16 and electrically connected to the second antenna 16.
- the inductive device has two pins, and the first inductor 51 is electrically connected to the first antenna 15 to electrically connect the two pins of the first inductor 51 to the first antenna 15.
- the second inductor 52 is used. Electrically connecting to the second antenna 16 electrically connects the two pins of the second inductor 52 to the second antenna 16. Loading an inductor at a point of the antenna, the inductive reactance of the inductor cancels all or part of the capacitive reactance of the antenna at the point to the free end of the antenna, thereby increasing the antenna current from the point to the ground point of the antenna. That is, the effective length of the antenna is increased.
- providing the first inductor 51 and the second inductor 52 on the first antenna 15 and the second antenna 16 corresponds to increasing the lengths of the first antenna 15 and the second antenna 16, which reduces the first resonant tank and the second resonance.
- the resonant frequency of the loop In the case where the resonant frequencies of the first resonant circuit and the second resonant circuit are kept constant, the first inductor 51 and the second inductor 52 are respectively disposed on the first antenna 15 and the second antenna 16, and the first antenna 15 needs to be shortened. And the next day The length of the wire 16, i.e., the length of the groove 14 extending toward both sides of the slit 13 is shortened.
- the frequency and bandwidth of the first resonant circuit and the second resonant circuit can be shortened under the premise of ensuring the frequency and bandwidth of the first resonant circuit and the second resonant circuit.
- the lengths of the first antenna 15 and the second antenna 16 can reduce the size of the printed circuit board antenna, facilitating miniaturization of the mobile terminal using the printed circuit board antenna.
- the inductive reactance of the inductor can cancel all or part of the capacitive reactance of the antenna at the point from the point to the free end of the antenna, thereby increasing the point to the antenna ground point.
- the antenna current so the inductor is placed at the maximum current on the antenna to offset the capacitive reactance on the antenna. Therefore, the first inductor 51 can be disposed at a position where the current is the largest on the first antenna 15, and the second inductor 52 is disposed at a position where the current is the largest at the second antenna 16, such that the first inductor 51 and the second inductor 52 are opposite to the first antenna.
- the length of 15 and the second antenna 16 have the greatest effect.
- the resonant frequency of the first resonant circuit is in the GPS band
- the resonant frequency of the second resonant circuit is in the BT-WLAN band, between the ground point of the first antenna 15 and the second antenna 16.
- the size of the first antenna 15 and the second antenna 16 is set to 5 mm.
- the size between the ground point of the first antenna 15 and the second antenna 16 is 37 mm, and the width of the first antenna 15 and the second antenna 16 are Set to 5mm.
- the resonant frequency of the first resonant tank is in the GPS band and the resonant frequency of the second resonant circuit is in the BT-WLAN band. It can be seen that the introduction of the inductor in this embodiment can significantly shorten the size of the antenna.
- the slot and the slot are connected to form a first antenna and a second antenna by providing a slit on the printed circuit board and a slit perpendicular to the slit, and the feed point is two.
- Two resonant circuits of different frequencies are formed on the antenna, so that the printed circuit board antenna can work on two different frequency bands at the same time, and further, an inductor is respectively disposed on the two antennas, which can shorten the length of the antenna, thereby Reduce the size of the printed circuit board antenna.
- 6 is a simulation diagram of return loss of the printed circuit board antenna shown in FIG. 5, and FIG. 6 is a curve 61 between the grounding points of the first antenna 15 and the second antenna 16 in the printed circuit board antenna shown in FIG.
- the size of the first antenna 15 and the second antenna 16 is set to be 5 mm, and the return loss simulation curves of the first antenna 15 and the second antenna 16 when operating in the GPS and BT-WLAN bands, respectively. Comparing the curve 61 with the curve 42 of FIG. 4, it can be concluded that the printed circuit board antenna of the embodiment shown in FIG. 5 can still operate in the BT-WLAN and GPS bands simultaneously, although the return loss is implemented as shown in FIG. There is an increase in the example, but it still meets the needs of use.
- the first resonance is equivalent.
- the frequency bands of the loop and the second resonant tank are combined to form a new frequency band with a wide bandwidth.
- the printed circuit board antenna in the embodiment shown in Figs. 1 and 3 can be extended to a wideband antenna, which can meet the requirements of high frequency diversity, for example, it can be applied to an LTE high band diversity antenna.
- the inductors shown in Figures 2 and 5 can be added to reduce the size of the antenna.
- the lengths of the first antenna 15 and the second antenna 16 are different, so that the resonant frequencies generated by the first antenna 15 and the second antenna 16 are different.
- the printed circuit board antenna of the present invention is not limited thereto. As shown in FIG. 2 and FIG. 5, a first inductor 21 (51) and a second inductor 22 (52) are added to the first antenna 15 and the second antenna 16, respectively, and the first antenna 15 is added. The resonant frequency produced by the second antenna 16 is reduced.
- the first antenna and the second antenna are formed by providing slots and slits, and the lengths of the first antenna and the second antenna are the same, respectively, at the first antenna and the first antenna Adding a first inductor and a second inductor to the two antennas, and adjusting the magnitudes of the inductances of the first inductor and the second inductor and adjusting the positions of the first inductor and the second inductor on the first antenna and the second antenna,
- the resonant frequencies of the first resonant tank and the second resonant loop formed by the first antenna and the second antenna are different.
- FIG. 7 is a schematic structural diagram of Embodiment 5 of a printed circuit board antenna according to an embodiment of the present invention.
- the printed circuit board antenna of the embodiment includes: a printed circuit board 71 and a printed circuit board.
- the feed point 72 and the inductor 73 on the 71, and the printed circuit board 71 are provided with copper.
- the copper on the printed circuit board 71 is provided with a slit 74, and the slit 74 communicates with the outside of the printed circuit board 71.
- the copper on the printed circuit board 71 is provided with a slot 75 perpendicular to the slit 74, the slot 75 is in communication with the slit 74, and the copper on the side of the slit 74 is formed from the slit 74 to the groove 75 to form the antenna 76;
- the groove 75 is provided with a feed line 78, the feed point 72 is electrically connected to the feed line 78, and the antenna 76 is coupled through the feed line 78.
- the feed forms a resonant tank, and the inductor 73 is disposed on the antenna 76 and is electrically coupled to the antenna 76.
- the printed circuit board of the mobile terminal is generally covered with copper outside the line and the device, and the laid copper is grounded through the position where there is no line and device on one side of the printed circuit board 71.
- a portion of the copper is removed to provide a slit 74, which is generally rectangular.
- the groove 75 is perpendicular to and communicates with the slit 74.
- the groove 75 is also generally rectangular, and the groove 75 and the slit 74 form an "L"-shaped structure.
- a copper layer is formed on the side of the slit 74 at the side of the slit 74, and only one end is connected to the printed circuit board.
- the copper covering portion from the slit 74 to the end 75 of the groove is the antenna 76.
- the position of the antenna 76 at the end 75 of the slot 77 is connected to the remaining copper on the printed circuit board 71, i.e., the antenna 76 is grounded at the position 77 of the slot 75.
- the printed circuit board 71 is further provided with a radio frequency circuit (not shown) for receiving or generating a radio frequency signal.
- the radio frequency circuit is connected to the feed point 72 and transmits the radio frequency signal from the antenna 76 through the feed point 72 or the antenna through the feed point 72. 76 received RF signal.
- the feed line 78 is located in the slit 74. The feed line 78 is not electrically connected to the antenna 76.
- Inductor 73 has two pins that electrically connect inductor 73 to antenna 76 to electrically connect the two pins of inductor 73 to antenna 76.
- a feed line 78 is shown in Fig. 7 as a feed point 72, which is fed to the antenna 76 by means of coupling feed points.
- the feed point 72 can also be fed to the antenna 76 by means of a direct feed.
- the direct feed mode is similar to the feed of the feed point 12 to the first antenna 15 in FIG. 1 and will not be described here.
- the provision of the inductor 73 on the antenna 76 corresponds to an increase in the length of the antenna 76, which reduces the resonant frequency of the resonant tank formed by the antenna 76.
- the inductance 73 is provided on the antenna 76, and the length of the antenna 76 needs to be shortened, that is, the length of the groove 14 extending toward the side of the slit 13 is shortened.
- the larger the inductance of the inductor 73 the narrower the bandwidth of the resonant loop formed by the antenna 76.
- the length of the antenna 76 can be shortened while ensuring the frequency and bandwidth of the resonant circuit formed by the antenna 76, thereby reducing the size of the printed circuit board antenna and facilitating the size of the printed circuit board antenna. Miniaturization of mobile terminals using the printed circuit board antenna.
- the inductive reactance of the inductor can cancel all or part of the capacitive reactance of the antenna at the point from the point to the free end of the antenna, thereby increasing the point to the antenna ground point.
- the antenna current so the inductor is placed at the maximum current on the antenna to offset the capacitive reactance on the antenna. Therefore, the inductor 73 can be placed on the antenna 76 to maximize the current.
- the position of the inductor 73 thus has the greatest effect on the length of the antenna 76. The closer the theoretical position is to the antenna ground point, the greater the influence of the inductance 73 on the length of the antenna 76 as it approaches position 77.
- the size of the antenna 76 is 4 mm x 23 mm.
- an inductance 73 with an inductance of 4.1 nH is added.
- the antenna is still operated in the BT-WLAN band, and the size of the antenna 76 can be shortened to 4 mm x 16 mm. It can be seen that the introduction of the inductor in this embodiment can significantly shorten the size of the antenna.
- FIG. 8 is a simulation diagram of the return loss of the printed circuit board antenna shown in FIG. 7.
- the curve 81 is the return loss curve of the printed circuit board antenna not incorporating the inductor 73
- the curve 82 is a joining diagram.
- the return loss curve of the printed circuit board antenna added to the inductor 73 shown in Fig. 7 is that both antennas operate in the BT-WLAN band, and the size of the antenna 76 to which the inductor 73 is not added is 4 mm x 23 mm, and an inductance of 4.1 nH is added.
- the rear antenna 76 has a size of 4 mm x 16 mm.
- the length of the feeder can be shortened, so that the size of the printed circuit board antenna can be reduced.
- FIG. 9 is a schematic structural diagram of Embodiment 1 of a metal frame antenna according to an embodiment of the present invention.
- the metal frame antenna of this embodiment includes: a feed point 91 and a metal frame 92.
- the metal frame 92 is generally the outer frame of the mobile terminal using the metal frame antenna.
- the feed point 91 is disposed on the printed circuit board in the mobile terminal and is connected to the radio frequency circuit for receiving or generating the radio frequency signal.
- the metal frame 92 is provided with a slit 93, and the metal frame 92 is on both sides of the slit 93.
- the grounding point 94 and the grounding point 95 are respectively grounded, and the metal frame between the feeding point 91 and the grounding point 94 can form a first resonant circuit, and the metal frame between the feeding point 91 and the grounding point 95 can form a second resonant circuit.
- the resonant frequencies of the first resonant tank and the second resonant loop can be adjusted, so that the metal frame antenna in this embodiment can generate two different resonant frequencies. .
- the feed point 91 is electrically connected to the metal frame on both sides of the slit 93, and the metal frame on both sides of the slit 93 forms a first resonant circuit and a second resonant circuit through direct feeding of the feed point 91.
- FIG. 10 is a simulation curve of return loss of the metal frame antenna shown in FIG. 9, as shown in FIG. 101 is the pullback loss simulation curve of the metal frame antenna shown in FIG. 9. It can be seen that the metal frame antenna shown in FIG. 9 can generate two different resonant frequencies, and the return loss can meet the use requirements.
- the metal frame antenna of the embodiment is grounded on the metal frame by being provided with a slit on the metal frame, and the feeding point is electrically connected to the metal frame at the slit, so that two resonant circuits with different frequencies are formed on the metal frame.
- a dual frequency metal frame antenna is provided.
- FIG. 11 is a schematic structural diagram of Embodiment 2 of a metal frame antenna according to an embodiment of the present invention. As shown in FIG. 11, the difference between the metal frame antenna of this embodiment and the metal frame antenna of FIG. 9 is: feeding point 91 and slotting The metal frame 92 on both sides of the 93 is not electrically connected, and the metal frame 92 on both sides of the slit 93 is fed by the coupling of the feed point 91 to form a first resonant circuit and a second resonant circuit.
- FIG. 12 is a simulation diagram of the return loss of the metal frame antenna shown in FIG. 11. As shown in FIG. 12, the curve 121 is a simulation curve of the callback loss of the metal frame antenna shown in FIG. 11, and it can be seen that the metal shown in FIG. The frame antenna can generate two different resonant frequencies, and the return loss meets the requirements of use.
- FIG. 13 is a schematic structural diagram of Embodiment 1 of a terminal according to an embodiment of the present invention.
- the terminal 130 of this embodiment includes: an antenna, where the antenna includes a printed circuit board 131 and is disposed on the printed circuit board 131.
- the feeding point 132, the printed circuit board 131 is provided with copper; the copper on the printed circuit board 131 is provided with a slit 133, and the slit 133 communicates with the printed circuit board 131, and the printed circuit board 131 is covered.
- the copper is provided with a slot 134 perpendicular to the slit 133, the slot 134 is in communication with the slit 133, and the copper on both sides of the slit 133 forms a first antenna 135 and a second antenna 136 from the slit 133 to both ends of the slot 134;
- Point 132 is configured to form a first resonant circuit and a second resonant circuit with the first antenna 135 and the second antenna 136, and the resonant frequencies of the first resonant circuit and the second resonant circuit are different.
- the printed circuit board 131 can be used as the main board of the terminal 130.
- the processor, the memory, the input/output device and the like for completing various service functions in the terminal 130 are respectively disposed on the printed circuit board 131. It is connected to other devices via the printed circuit board 131.
- the terminal 130 also includes a housing 137, each of which is disposed within the housing 137.
- the terminal 130 shown in this embodiment may be a mobile terminal device that needs to perform wireless communication, such as a mobile phone or a tablet computer.
- the antenna and the printed circuit board antenna shown in FIG. 1 have similar implementation principles and technical effects, and are not described herein again.
- the antenna in the terminal 130 is formed by removing a portion of the printed circuit board, the antenna has a simple structure and a small footprint, and is suitable for use in a miniaturized mobile terminal device.
- the terminal provided by this embodiment includes a printed circuit board antenna through a cover on a printed circuit board
- the copper is provided with slits and slots perpendicular to the slits, and the slots are connected with the slits to form a first antenna and a second antenna.
- the feed points form two resonant circuits of different frequencies on the two antennas, so that the printed circuit board antenna can simultaneously It works in two different frequency bands, allowing the terminal to operate in both bands simultaneously.
- the antenna may have two forms, the first type is shown in FIG. 13, and the second type is shown in FIG. 15.
- the feed point 132 is electrically connected to the first antenna 135, and the length of the first antenna 135 is different from the length of the second antenna 136; the first antenna 135 is formed by direct feeding of the feed point 132.
- the first resonant circuit, the second antenna 136 is coupled by the first antenna 135 to form a second resonant circuit, and the resonant frequencies of the first resonant circuit and the second resonant circuit are different.
- FIG. 14 is a schematic structural diagram of a second embodiment of a terminal according to an embodiment of the present invention. As shown in FIG. 14, the terminal of the embodiment further includes a first inductor 141 and a second inductor 142.
- the first inductor 14 1 is disposed on the first antenna 135 and electrically connected to the first antenna 135
- the second inductor 142 is disposed on the second antenna 136 and electrically connected to the second antenna 136 .
- the antenna in the terminal shown in this embodiment is similar to the implementation principle and technical effect of the printed circuit board antenna shown in FIG. 2, and details are not described herein again.
- the first inductor 141 is disposed at the position where the current is the largest on the first antenna 135, and the second inductor 142 is disposed at the position where the current is the largest at the second antenna 136.
- the resonant frequency of the first resonant circuit decreases as the inductance of the first inductor 141 increases, and the resonant frequency of the second resonant circuit increases with the inductance of the second inductor 142. Big and lower.
- FIG. 15 is a schematic structural diagram of Embodiment 3 of a terminal according to an embodiment of the present invention.
- the terminal in this embodiment is different from the terminal shown in FIG. 13 in that a feed line 151 is provided at a slot 133.
- 132 is disposed in the slot 134 near the slit 133, and the feed point 132 is electrically connected to the feed line 151, and the length of the first antenna 135 is different from the length of the second antenna 136.
- FIG. 16 is a schematic structural diagram of a fourth embodiment of a terminal according to an embodiment of the present invention. As shown in FIG. 16, the terminal of the embodiment further includes a first inductor 161 and a second inductor 162.
- the first inductor 161 is disposed on the first antenna 135 and electrically connected to the first antenna 135.
- the second inductor 162 is disposed on the second antenna 136 and electrically connected to the second antenna 136.
- the implementation principle and technical effect of the antenna in the terminal shown in this embodiment are similar to those of the printed circuit board antenna shown in FIG. 5, and details are not described herein again.
- the first inductance is set at a position where the current is the largest on the first antenna
- the second inductance is set at a position where the current is the largest on the second antenna.
- the resonant frequency of the first resonant circuit decreases as the inductance of the first inductor increases, and the resonant frequency of the second resonant circuit follows the second The inductance of the inductor increases and decreases.
- the lengths of the first antenna 135 and the second antenna 136 are different, so that the resonant frequencies generated by the first antenna 135 and the second antenna 136 are different, and the terminal is Can work in both bands simultaneously.
- the terminal of the present invention is not limited to this.
- a first inductor 141 (161) and a second inductor 142 (162) are added to the first antenna 135 and the second antenna 136, respectively, and the first antenna 135 and the second antenna are added.
- the resonant frequency produced by 136 will decrease.
- the first antenna and the second antenna are formed by providing slots and slits, and the lengths of the first antenna and the second antenna are the same, respectively, at the first antenna and the first antenna
- a first inductor and a second inductor are added to the two antennas.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Waveguide Aerials (AREA)
- Details Of Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Support Of Aerials (AREA)
Abstract
本发明实施例提供一种印制电路板天线和终端,一种印制电路板天线包括:印制电路板和设置在所述印制电路板上的馈点,所述印制电路板上设有覆铜;所述印制电路板上的覆铜设置有一开缝,所述开缝与所述印制电路板外界连通,所述印制电路板上的覆铜设置有一垂直于所述开缝的槽,所述槽与所述开缝连通,所述开缝两侧的覆铜从所述开缝到所述槽的两端形成第一天线和第二天线;所述馈点,用于与所述第一天线和所述第二天线形成第一谐振回路和第二谐振回路,所述第一谐振回路和所述第二谐振回路的谐振频率不同。
Description
印制电路板天线和终端
技术领域
本发明实施例涉及天线技术, 尤其涉及一种印制电路板天线和终端。 背景技术
随着移动通信技术的发展, 移动终端越来越向小型化的方向发展, 并且 移动终端集成的业务越来越多, 这样就需要移动终端中的天线具有紧凑的尺 寸、 足够的带宽和多频段工作能力。
目前有一种结合印制电路板(Printed Circuit Board, PCB ) 的单频倒 F天 线(Inverted F Antenna, IFA), IFA天线是结合了平面倒 F天线(Planar Inverted F Antenna, PIFA)和单极子(monopole)天线的特点发展出的一种新型天线。 IFA天线同时具有单极子天线体积小、效率高、带宽充分以及 PIFA天线抗干 扰能力强的优点, 因此 IFA天线适合用于小型化的移动终端使用。
但是目前的移动终端可能需要在蓝牙 -无线局域网 (Blue Tooth-Wireless Local Area Networks, BT-WLAN)、全球定位系统(Global Positioning System, GPS ) 、 高频长期演进 (Long Term Evolution, LTE) 等多个频段下工作, 因 此结合 PCB的单频的 IFA天线不适于需要在多频段工作的移动终端使用。 发明内容
本发明实施例提供一种印制电路板天线和终端, 印制电路板天线可以同 时工作在两个不同的频段。
第一方面提供一种印制电路板天线, 包括:
印制电路板和设置在所述印制电路板上的馈点, 所述印制电路板上设有 覆铜;
所述印制电路板上的覆铜设置有一开缝, 所述开缝与所述印制电路板外 界连通, 所述印制电路板上的覆铜设置有一垂直于所述开缝的槽, 所述槽与 所述开缝连通, 所述开缝两侧的覆铜从所述开缝到所述槽的两端形成第一天 线和第二天线;
所述馈点, 用于与所述第一天线和所述第二天线形成第一谐振回路和第 二谐振回路, 所述第一谐振回路和所述第二谐振回路的谐振频率不同。
在第一方面第一种可能的实现方式中,所述馈点与所述第一天线电连接, 所述第一天线的长度与所述第二天线的长度不同; 所述馈点, 用于与所述第 一天线和所述第二天线形成第一谐振回路和第二谐振回路, 所述第一谐振回 路和所述第二谐振回路的谐振频率不同, 具体为:
所述第一天线通过所述馈点馈电形成所述第一谐振回路, 所述第二天线 通过所述第一天线的耦合馈电形成所述第二谐振回路, 所述第一谐振回路和 所述第二谐振回路的谐振频率不同。
结合第一方面或第一方面第一种可能的实现方式, 在第二种可能的实现 方式中, 所述天线还包括: 第一电感和第二电感;
所述第一电感设置在所述第一天线上, 与所述第一天线电连接, 所述第 二电感设置在所述第二天线上, 与所述第二天线电连接。
结合第一方面第二种可能的实现方式, 在第三种可能的实现方式中, 所 述第一电感设置在所述第一天线上电流最大的位置, 所述第二电感设置在所 述第二天线上电流最大的位置。
结合第一方面第二种或第三种可能的实现方式, 在第四种可能的实现方 式中, 所述第一谐振回路的谐振频率随着所述第一电感的电感量的增大而降 低,所述第二谐振回路的谐振频率随着所述第二电感的电感量的增大而降低。
在第一方面第五种可能的实现方式中, 所述开缝处设置有馈线, 所述馈 点与所述馈线电连接, 所述第一天线的长度与所述第二天线的长度不同; 所 述馈点, 用于与所述第一天线和所述第二天线形成第一谐振回路和第二谐振 回路, 所述第一谐振回路和所述第二谐振回路的谐振频率不同, 具体为: 所述第一天线通过所述馈线的耦合馈电形成所述第一谐振回路, 所述第 二天线通过所述馈线的耦合馈电形成所述第二谐振回路, 所述第一谐振回路 和所述第二谐振回路的谐振频率不同。
结合第一方面第五种可能的实现方式, 在第六种可能的实现方式中, 所 述天线还包括: 第一电感和第二电感;
所述第一电感设置在所述第一天线上, 与所述第一天线电连接, 所述第 二电感设置在所述第二天线上, 与所述第二天线电连接。
结合第一方面第六种可能的实现方式, 在第七种可能的实现方式中, 所 述第一电感设置在所述第一天线上电流最大的位置, 所述第二电感设置在所 述第二天线上电流最大的位置。
结合第一方面第六种或第七种可能的实现方式, 在第八种可能的实现方 式中, 所述第一谐振回路的谐振频率随着所述第一电感的电感量的增大而降 低,所述第二谐振回路的谐振频率随着所述第二电感的电感量的增大而降低。
第二方面提供一种终端, 包括天线, 所述天线包括:
印制电路板和设置在所述印制电路板上的馈点, 所述印制电路板上设有 覆铜;
所述印制电路板上的覆铜设置有一开缝, 所述开缝与所述印制电路板外 界连通, 所述印制电路板上的覆铜设置有一垂直于所述开缝的槽, 所述槽与 所述开缝连通, 所述开缝两侧的覆铜从所述开缝到所述槽的两端形成第一天 线和第二天线;
所述馈点, 用于与所述第一天线和所述第二天线形成第一谐振回路和第 二谐振回路, 所述第一谐振回路和所述第二谐振回路的谐振频率不同。
在第二方面第一种可能的实现方式中,所述馈点与所述第一天线电连接, 所述第一天线的长度与所述第二天线的长度不同; 所述馈点, 用于与所述第 一天线和所述第二天线形成第一谐振回路和第二谐振回路, 所述第一谐振回 路和所述第二谐振回路的谐振频率不同, 具体为:
所述第一天线通过所述馈点馈电形成所述第一谐振回路, 所述第二天线 通过所述第一天线的耦合馈电形成所述第二谐振回路, 所述第一谐振回路和 所述第二谐振回路的谐振频率不同。
结合第二方面或第二方面第一种可能的实现方式, 在第二种可能的实现 方式中, 所述天线还包括: 第一电感和第二电感;
所述第一电感设置在所述第一天线上, 与所述第一天线电连接, 所述第 二电感设置在所述第二天线上, 与所述第二天线电连接。
结合第二方面第二种可能的实现方式, 在第三种可能的实现方式中, 所 述第一电感设置在所述第一天线上电流最大的位置, 所述第二电感设置在所 述第二天线上电流最大的位置。
结合第二方面第二种或第三种可能的实现方式, 在第四种可能的实现方
式中, 所述第一谐振回路的谐振频率随着所述第一电感的电感量的增大而降 低,所述第二谐振回路的谐振频率随着所述第二电感的电感量的增大而降低。
在第二方面第五种可能的实现方式中, 所述开缝处设置有馈线, 所述馈 点与所述馈线电连接, 所述第一天线的长度与所述第二天线的长度不同; 所 述馈点, 用于与所述第一天线和所述第二天线形成第一谐振回路和第二谐振 回路, 所述第一谐振回路和所述第二谐振回路的谐振频率不同, 具体为: 所述第一天线通过所述馈线的耦合馈电形成所述第一谐振回路, 所述第 二天线通过所述馈线的耦合馈电形成所述第二谐振回路, 所述第一谐振回路 和所述第二谐振回路的谐振频率不同。
结合第二方面第五种可能的实现方式, 在第六种可能的实现方式中, 所 述天线还包括: 第一电感和第二电感;
所述第一电感设置在所述第一天线上, 与所述第一天线电连接, 所述第 二电感设置在所述第二天线上, 与所述第二天线电连接。
结合第二方面第六种可能的实现方式, 在第七种可能的实现方式中, 所 述第一电感设置在所述第一天线上电流最大的位置, 所述第二电感设置在所 述第二天线上电流最大的位置。
结合第二方面第六种或第七种可能的实现方式, 在第八种可能的实现方 式中, 所述第一谐振回路的谐振频率随着所述第一电感的电感量的增大而降 低,所述第二谐振回路的谐振频率随着所述第二电感的电感量的增大而降低。
本发明实施例提供的印制电路板天线和终端, 通过在印制电路板上的覆 铜设置开缝和垂直于所述开缝的槽, 所述槽与所述开缝连通形成第一天线和 第二天线, 馈点在所述第一天线和所述第二天线上形成两个不同频率的谐振 回路, 使印制电路板天线可以同时工作在两个不同的频段。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的印制电路板天线实施例一的结构示意图;
图 2为本发明实施例提供的印制电路板天线实施例二的结构示意图; 图 3为本发明实施例提供的印制电路板天线实施例三的结构示意图; 图 4为图 1和图 3所示印制电路板天线的回波损耗仿真曲线图; 图 5为本发明实施例提供的印制电路板天线实施例四的结构示意图; 图 6为图 5所示印制电路板天线的回波损耗仿真曲线图;
图 7为本发明实施例提供的印制电路板天线实施例五的结构示意图; 图 8为图 7所示印制电路板天线的回波损耗仿真曲线图;
图 9为本发明实施例提供的金属框天线实施例一的结构示意图; 图 10为图 9所示金属框天线的回波损耗仿真曲线图;
图 11为本发明实施例提供的金属框天线实施例二的结构示意图; 图 12为图 11所示金属框天线的回波损耗仿真曲线图;
图 13为本发明实施例提供的终端实施例一的结构示意图;
图 14为本发明实施例提供的终端实施例二的结构示意图;
图 15为本发明实施例提供的终端实施例三的结构示意图;
图 16为本发明实施例提供的终端实施例四的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供的印制电路板天线和金属框天线可以设置在需要在多 个无线频段下工作的移动终端, 例如手机、 平板电脑等移动终端, 多个无线 频段例如是 BT-WLAN、 GPS、 TD-LTE等频段,其中 BT-WLAN位于 2.4GHz 频段, GPS位于 1575.42MHz频段, TD-LTE位于 2.6GHz频段。
图 1为本发明实施例提供的印制电路板天线实施例一的结构示意图, 如 图 1所示, 本实施例的印制电路板天线包括: 印制电路板 11和设置在印制电 路板 11上的馈点 12, 印制电路板 11上设有覆铜。
其中, 印制电路板 11上的覆铜设置有一开缝 13, 开缝 13与印制电路板
11外界连通, 印制电路板 11上的覆铜设置有一垂直于开缝 13的槽 14, 槽 14与开缝 13连通, 开缝 13两侧的覆铜从开缝 13到槽 14形成第一天线 15 和第二天线 16; 馈点 12, 用于与第一天线 15和第二天线 16形成第一谐振回 路和第二谐振回路, 第一谐振回路和第二谐振回路的谐振频率不同。
具体地, 移动终端的印制电路板在线路和器件之外的地方一般都铺设有 覆铜, 并且铺设的覆铜接地, 在印制电路板 11的一个侧边上没有线路和器件 的位置去除一部分覆铜设置开缝 13。 其中, 开缝 13—般为矩形。 同样的, 在印制电路板 11上去除一部分覆铜设置槽 14, 槽 14与开缝 13垂直并连通, 槽 14一般也为矩形。 其中, 槽 14与开缝 13形成一 "T"形结构。 这样在槽 14位于开缝 13—侧的形成了两段分离的覆铜,这两段分别从开缝 13到槽 14 的覆铜即为第一天线 15和第二天线 16。 第一天线 15位于槽 14一端的位置 17和第二天线 16位于槽 14另一端的位置 18分别与印制电路板 11上剩余的 覆铜相连, 即第一天线 15和第二天线 16分别在槽 14两端的位置 17和位置 18接地。印制电路板 11上还设置有用于接收或产生射频信号的射频电路(未 示出) , 射频电路连接馈点 12并通过馈点 12将射频信号从第一天线 15和 / 或第二天线 16发射出去或者通过馈点 12接收第一天线 15和 /或第二天线 16 接收到的射频信号。
其中,馈点 12向第一天线 15和第二天线 16馈电的方式可以分为两种形 式, 第一种具体可以为: 馈点 12与第一天线 15电连接, 通过直接馈电的方 式向第一天线 15进行馈电, 并形成第一谐振回路, 接受直接馈电的第一天线 15作为第二天线 16的激励源通过耦合馈电的方式向第二天线 16进行馈电, 并形成第二谐振回路。 第二种具体可以为: 开缝 13处设置有馈线, 馈点 12 与馈线电连接, 第一天线 15和第二天线 16分别通过馈线的耦合馈电形成第 一谐振回路和第二谐振回路。 下述实施例分别对两种馈电方式进行说明。
其中, 天线所产生的谐振频率与天线长度的关系为 / = /4, λ = α , 其中
/为天线长度, 为天线所产生的谐振频率的波长, /为天线所产生的谐振频 率, c为光速。 因此, 根据天线所产生的谐振频率和光速就可以确定天线所产 生的谐振频率的波长, 进而根据波长就可以确认天线的长度, 这样, 就可以 确定第一天线 15和第二天线 16的长度。
本实施例中的印制电路板天线,在印制电路板上的覆铜设置开缝 13和槽
14, 就可以在印制电路板上形成第一天线 15和第二天线 16, 并在第一天线 15上形成第一谐振回路, 在第二天线 16上形成第二谐振回路, 第一谐振回 路可以产生第一谐振频率, 第二谐振回路可以产生第二谐振频率, 第一天线 15和第二天线 16的尺寸不同, 第一谐振回路产生的第一谐振频率和第二谐 振回路产生的第二谐振频率不同。 这样, 使用本实施例提供的印制电路板天 线的终端设备可以在两个不同的频率下工作, 例如第一谐振频率位于 BT-WLAN频段, 第二谐振频率位于 GPS频段。
本实施例的印制电路板天线, 通过在印制电路板上的覆铜设置开缝和垂 直于所述开缝的槽, 所述槽与所述开缝连通形成第一天线和第二天线, 馈点 在所述第一天线和所述第二天线上形成两个不同频率的谐振回路, 使印制电 路板天线可以同时工作在两个不同的频段。
图 1所示的印制电路板天线中,馈点 12位于槽 14中靠近第一天线 15的 一端, 馈点 12与第一天线 15电连接, 馈点 12与第一天线 15电连接的位置 靠近位置 17, 第一天线 15的长度与第二天线 16的长度不同。 第一天线 15 由于与馈点 12存在电连接,因此第一天线 15通过馈点 12直接馈电形成第一 谐振回路。 第一天线 15在位置 17处接地, 因此第一天线 15位于槽 14一端 的位置 17的电阻最小, 而第一天线 15上开缝 13—端的电阻最大, 射频电路 的阻抗一般为 50欧姆, 为了保证阻抗匹配, 馈点 12与第一天线 15电连接的 位置应尽量靠近第一天线 15上阻抗为 50欧姆的位置,该位置靠近位置 17处。 根据公式 / = / 4, Af = c , 可知第一天线 15 形成的第一谐振回路的频率为 c / 41, , 为第一天线 15的长度。 第二天线 16与馈点 12没有电连接, 第一天 线 15作为第二天线 16的激励源 (即馈点) , 第二天线 16通过第一天线 15 的耦合馈电形成第二谐振回路。 当第一天线 15上存在电场时, 第二天线 16 上开缝 13的一端通过电容耦合效应会产生电场, 第二天线 16与第一天线 15 之间的距离越短 (即开缝 13越窄) , 则第一天线 16耦合到的电场越强, 这 样在第二天线 16上将会产生第二谐振回路。 根据公式 / = 4, Af = c , 可知 第二天线 16形成的第二谐振回路的频率为 c / 4/2, /2为第二天线 16的长度。 通过调整槽 14向开缝 13两侧延伸的尺寸和开缝 13的尺寸,可以调整第一天 线 15和第二天线 16的长度, 从而可以调整第一谐振回路和第二谐振回路的 谐振频率。
图 2为本发明实施例提供的印制电路板天线实施例二的结构示意图, 如 图 2所示, 本实施例的印制电路板天线在图 1的基础上, 还包括第一电感 21 和第二电感 22。
第一电感 21设置在第一天线 15上, 与第一天线 15 电连接; 第二电感 22设置在第二天线 16上, 与第二天线 16电连接。
具体地, 电感器件具有两个接脚, 第一电感 21与第一天线 15电连接即 第一电感 21的两个接脚电连接到第一天线 15上, 同理, 第二电感 22与第二 天线 16电连接即第二电感 22的两个接脚电连接到第二天线 16上。在天线的 某点上连接一个电感, 这个电感的感抗可以抵消该点至天线自由端的天线在 该点所呈现的全部或部分容抗 (以第一天线 15为例, 加入第一电感 21可以 抵消第一电感 21至开缝 13的天线在第一电感 21处呈现的容抗), 从而增大 了该点至天线接地点的天线电流 (以第一天线 15为例, 加入第一电感 21增 大了第一电感 21至位置 17的天线电流) , 即提高了天线的有效长度。 因此, 在第一天线 15和第二天线 16上设置第一电感 21和第二电感 22, 相当于增 加了第一天线 15和第二天线 16的长度, 这样会降低第一谐振回路和第二谐 振回路的谐振频率。 在保证第一谐振回路和第二谐振回路的谐振频率不变的 情况下, 在第一天线 15和第二天线 16上分别设置第一电感 21和第二电感 22, 则需要缩短第一天线 15和第二天线 16的长度, 即缩短槽 14向开缝 13 两侧延伸的长度。 进一步的, 第一电感 21和第二电感 22的电感量越大, 相 应地第一谐振回路和第二谐振回路的带宽也越窄。 这样, 通过在第一天线 15 和第二天线 16上设置电感量适合的第一电感 21和第二电感 22, 可以在保证 第一谐振回路和第二谐振回路的频率和带宽的前提下,缩短第一天线 15和第 二天线 16的长度, 从而可以减小印制电路板天线的尺寸, 有利于使用该印制 电路板天线的移动终端的小型化。
进一步地, 由于在天线的某点上连接一个电感, 这个电感的感抗可以抵 消该点至天线自由端的天线在该点所呈现的全部或部分容抗, 从而增大了该 点至天线接地点的天线电流, 因此将电感设置在天线上电流最大的位置对天 线上容抗的抵消作用最强。 因此, 可以将第一电感 21设置在第一天线 15上 电流最大的位置, 第二电感 22设置在第二天线 16上电流最大的位置, 这样 第一电感 21和第二电感 22对第一天线 15和第二天线 16的长度影响最大。
理论上越靠近天线接地点的位置电流越大, 因此第一电感 21越靠近位置 17 对第一天线 15的长度影响越大, 第二电感 22越靠近位置 18对第二天线 16 的长度影响越大。 在实际应用中, 第一电感 21设置在第一天线 15的位置以 及第二电感 22设置在第二天线 22的位置可以根据需要而定, 本发明实施例 对此并不限制。
本实施例的印制电路板天线, 在印制电路板上的覆铜设置开缝和垂直于 开缝的槽, 槽与开缝连通形成第一天线和第二天线, 馈点在两根天线上形成 两个不同频率的谐振回路, 使印制电路板天线可以同时工作在两个不同的频 段, 在此基础上, 进一步地在两根天线上分别设置一个电感, 可以在天线产 生的谐振频率不变的情况下缩短天线的长度, 从而可以减小印制电路板天线 的尺寸。
图 3为本发明实施例提供的印制电路板天线实施例三的结构示意图, 如 图 3所示, 本实施例的印制电路板天线与图 1所示的印制电路板天线的区别 在于: 在开缝 13处设置有馈线 31, 馈点 12设置在槽 14中靠近开缝 13的位 置, 馈点 12与馈线 31电连接, 第一天线 15的长度与第二天线 16的长度不 同。
具体地, 本实施例中, 第一天线 15和第二天线 16均采用耦合馈电的方 式从馈点 12进行馈电。 馈点 12为了向第一天线 15和第二天线 16进行耦合 馈电, 需要连接一段馈线 31, 馈线 31与第一天线 15和第二天线 16均没有 电连接, 馈线 31接受馈点 12的直接馈电后, 通过电容耦合效应分别向第一 天线 15和第二天线 16进行耦合馈电, 在第一天线 15和第二天线 16上分别 形成第一谐振回路和第二谐振回路。 另, 根据公式 / = 1/4, λ = α , 可知第一 天线 15形成的第一谐振回路的频率为 为第一天线 15的长度, 第二 天线 16第形成的第二谐振回路的频率为 c/4/2, /2为第二天线 16的长度。 通 过调整槽 14向开缝 13两侧延伸的尺寸和开缝 13的尺寸,可以调整第一天线 15和第二天线 16的长度, 从而可以调整第一谐振回路和第二谐振回路的谐 振频率。
本实施例的印制电路板天线, 通过在印制电路板上的覆铜设置开缝和垂 直于开缝的槽, 槽与开缝连通形成第一天线和第二天线, 馈点在两根天线上 形成两个不同频率的谐振回路, 使印制电路板天线可以同时工作在两个不同
的频段, 提供了一种双频的印制电路板天线。
图 4为图 1和图 3所示印制电路板天线的回波损耗仿真曲线图, 将图 1 所示印制电路板天线中第一天线 15与第二天线 16接地点之间的尺寸设置为 63mm, 第一天线 15与第二天线 16的宽度设置为 5mm, 将图 3所示印制电 路板天线中第一天线 15与第二天线 16接地点之间的尺寸设置为 49mm, 第 一天线 15与第二天线 16的宽度设置为 5mm, 使图 1和图 3所示印制电路板 天线中第一天线 15工作均工作在 GPS频段,第二天线 16均工作在 BT-WLAN 频段。 其中, BT-WLAN频段的中心频率在 2400MHz, GPS频段的中心频率 在 1575.42MHz。 图 4中曲线 41表示图 1所示印制电路板天线的回波损耗曲 线,曲线 42表示图 3所示印制电路板天线的回波损耗曲线。由图 4中可看出, 曲线 41在 1575.42MHz频率时的回波损耗小于 -10dB,曲线 42在 1575.42MHz 频率时的回波损耗同样小于 -10dB,曲线 41在 2.4GHz频率时回波损耗大约为 -12dB, 曲线 42在 2.4GHz频率时回波损耗大约为 -9dB。 根据 BT-WLAN和 GPS天线的回波损耗要求可知, 图 1和图 3所示的印制电路板天线均可以满 足在 BT-WLAN和 GPS双频段的工作需求。
图 5为本发明实施例提供的印制电路板天线实施例四的结构示意图, 如 图 5所示, 本实施例的印制电路板天线在图 3的基础上, 还包括第一电感 51 和第二电感 52。
第一电感 51设置在第一天线 15上, 与第一天线 15 电连接; 第二电感 52设置在第二天线 16上, 与第二天线 16电连接。
具体地, 电感器件具有两个接脚, 将第一电感 51与第一天线 15电连接 即将第一电感 51的两个接脚电连接到第一天线 15上, 同理, 将第二电感 52 与第二天线 16电连接即将第二电感 52的两个接脚电连接到第二天线 16上。 在天线的某点上加载一个电感, 这个电感的感抗可以抵消该点至天线自由端 的天线在该点所呈现的全部或部分容抗, 从而增大了该点至天线接地点的天 线电流, 即提高了天线的有效长度。 因此, 在第一天线 15和第二天线 16上 设置第一电感 51和第二电感 52, 相当于增加了第一天线 15和第二天线 16 的长度, 会降低第一谐振回路和第二谐振回路的谐振频率。 在保证第一谐振 回路和第二谐振回路的谐振频率不变的情况下, 在第一天线 15 和第二天线 16上分别设置第一电感 51和第二电感 52,则需要缩短第一天线 15和第二天
线 16的长度, 即缩短槽 14向开缝 13两侧延伸的长度。 但第一电感 51和第 二电感 52 的电感量越大, 相应地第一谐振回路和第二谐振回路的带宽也越 窄。 这样, 通过在第一天线 15和第二天线 16上设置电感量适合的第一电感 51和第二电感 52,可以在保证第一谐振回路和第二谐振回路的频率和带宽的 前提下, 缩短第一天线 15和第二天线 16的长度, 从而可以减小印制电路板 天线的尺寸, 有利于使用该印制电路板天线的移动终端的小型化。
进一步地, 由于在天线的某点上加载一个电感, 这个电感的感抗可以抵 消该点至天线自由端的天线在该点所呈现的全部或部分容抗, 从而增大了该 点至天线接地点的天线电流, 因此将电感设置在天线上电流最大的位置对天 线上容抗的抵消作用最强。 因此, 可以将第一电感 51设置在第一天线 15上 电流最大的位置, 第二电感 52设置在第二天线 16上电流最大的位置, 这样 第一电感 51和第二电感 52对第一天线 15和第二天线 16的长度影响最大。 理论上越靠近天线接地点的位置电流越大, 因此第一电感 51越靠近位置 17 对第一天线 15的长度影响越大, 第二电感 52越靠近位置 18对第二天线 16 的长度影响越大。
在图 3所示实施例中, 第一谐振回路的谐振频率在 GPS 频段、第二谐振 回路的谐振频率在 BT-WLAN频段的情况下, 第一天线 15与第二天线 16的 接地点之间的尺寸为 49mm,第一天线 15与第二天线 16的宽度设置为 5mm。 当在上述尺寸的天线上引入如图 5所示的第一电感 51和第二电感 52后, 第 一电感 51设置在第一天线 15上电流最大的位置, 电感量为 3nH, 第二电感 52设置在第二天线 16上电流最大的位置, 电感量为 3.8nH, 此时第一天线 15与第二天线 16的接地点之间的尺寸为 37mm, 第一天线 15与第二天线 16 的宽度设置为 5mm。即可使第一谐振回路的谐振频率在 GPS频段、第二谐振 回路的谐振频率在 BT-WLAN频段。 由此可见, 本实施例中引入电感可以显 著缩短天线的尺寸。
本实施例的印制电路板天线, 通过在印制电路板上的覆铜设置开缝和垂 直于开缝的槽, 槽与开缝连通形成第一天线和第二天线, 馈点在两根天线上 形成两个不同频率的谐振回路, 使印制电路板天线可以同时工作在两个不同 的频段的基础上, 进一步地在两根天线上分别设置一个电感, 可以缩短天线 的长度, 从而可以减小印制电路板天线的尺寸。
图 6为图 5所示印制电路板天线的回波损耗仿真曲线图, 图 6中曲线 61 为图 5所示印制电路板天线中第一天线 15与第二天线 16的接地点之间的尺 寸为 37mm, 第一天线 15与第二天线 16的宽度设置为 5mm, 第一天线 15 与第二天线 16分别工作在 GPS和 BT-WLAN频段时的回波损耗仿真曲线。 将曲线 61与图 4中的曲线 42进行比较可以得出, 图 5所示实施例的印制电 路板天线仍能够同时工作在 BT-WLAN和 GPS频段,虽然回波损耗较图 3所 示实施例中有所上升, 但仍能够满足使用需求。
另外, 在图 1和图 3所示实施例中, 若通过调节开缝和槽的位置, 使形 成的第一谐振回路和第二谐振回路的谐振频率相隔较近, 则相当于将第一谐 振回路和第二谐振回路的频段进行合并, 形成一个带宽较宽的新的频段。 这 样可以将图 1和图 3所示实施例中的印制电路板天线扩展为宽带天线, 可以 满足高频分集的需求, 例如可适用于 LTE高频段分集天线的应用。 同样, 也 可以在此基础上加入如图 2和图 5所示的电感, 以减小天线的尺寸。
需要说明的是, 上述各实施例中, 第一天线 15和第二天线 16的长度不 同, 以使第一天线 15和第二天线 16产生的谐振频率不同。 但本发明的印制 电路板天线不限于此。 如图 2和图 5所示的印制电路板天线, 分别在第一天 线 15和第二天线 16上加入了第一电感 21 (51 )和第二电感 22 (52) , 则第 一天线 15和第二天线 16所产生的谐振频率会降低。 因此, 在本发明另一实 施例中, 若通过设置槽和开缝, 形成第一天线和第二天线, 并且使第一天线 和第二天线的长度相同, 此时分别在第一天线和第二天线上加入第一电感和 第二电感, 通过调整第一电感和第二电感的电感量的大小和调整第一电感和 第二电感位于第一天线和第二天线上的位置, 则仍可以使第一天线和第二天 线形成的第一谐振回路和第二谐振回路的谐振频率不同。
图 7为本发明实施例提供的印制电路板天线实施例五的结构示意图, 如 图 7所示, 本实施例的印制电路板天线包括: 印制电路板 71和设置在印制电 路板 71上的馈点 72和电感 73, 印制电路板 71上设有覆铜。
其中, 印制电路板 71上的覆铜设置有一开缝 74, 开缝 74与印制电路板 71外界连通, 印制电路板 71上的覆铜设置有一垂直于开缝 74的槽 75, 槽 75与开缝 74连通, 开缝 74—侧的覆铜从开缝 74到槽 75形成天线 76; 槽 75中设置有馈线 78, 馈点 72与馈线 78电连接, 天线 76通过馈线 78的耦合
馈电形成一谐振回路, 电感 73设置在天线 76上, 与天线 76电连接。
具体地, 移动终端的印制电路板在线路和器件之外的地方一般都铺设有 覆铜, 并且铺设的覆铜接地, 通过在印制电路板 71的一个侧边上没有线路和 器件的位置去除一部分覆铜设置开缝 74, 开缝 74—般为矩形。 同样的, 通 过在印制电路板 71上去除一部分覆铜设置槽 75, 槽 75与开缝 74垂直并连 通, 槽 75—般也为矩形, 槽 75与开缝 74形成一 "L"形结构。 这样在槽 75 位于开缝 74—侧的形成了一段只有一端与印制电路板连接的覆铜,这段从开 缝 74到槽 75—端 77的覆铜即为天线 76。 天线 76位于槽 75—端的位置 77 与印制电路板 71上剩余的覆铜相连,即天线 76在槽 75—端的位置 77接地。 印制电路板 71上还设置有用于接收或产生射频信号的射频电路 (未示出) , 射频电路连接馈点 72并通过馈点 72将射频信号从天线 76发射出去或者通过 馈点 72接收天线 76接收到的射频信号。馈线 78位于开缝 74中, 馈线 78与 天线 76没有电连接, 馈线 78接受馈点 72的直接馈电后, 通过电容耦合效应 向天线 76进行耦合馈电, 在天线 76上形成一谐振回路。 电感 73具有两个接 脚,将电感 73与天线 76电连接即将电感 73的两个接脚电连接到天线 76上。
图 7中示出为馈点 72连接一段馈线 78, 通过耦合馈点的方式向天线 76 进行馈电。 馈点 72还可以通过直接馈电的方式向天线 76进行馈电, 直接馈 电的方式与图 1中馈点 12向第一天线 15馈电的方式类似, 此处不再赘述。
本实施例中, 在天线 76上设置电感 73, 相当于增加了天线 76的长度, 这样会降低天线 76形成的谐振回路的谐振频率。 在保证天线 76形成的谐振 回路的谐振频率不变的情况下, 在天线 76上设置电感 73, 则需要缩短天线 76的长度, 即缩短槽 14向开缝 13—侧延伸的长度。 但电感 73的电感量越 大, 相应地天线 76形成的谐振回路的带宽也越窄。 通过在天线 76上设置电 感量适合的电感 73, 可以在保证天线 76形成的谐振回路的频率和带宽的前 提下, 缩短天线 76的长度, 从而可以减小印制电路板天线的尺寸, 有利于使 用该印制电路板天线的移动终端的小型化。
进一步地, 由于在天线的某点上加载一个电感, 这个电感的感抗可以抵 消该点至天线自由端的天线在该点所呈现的全部或部分容抗, 从而增大了该 点至天线接地点的天线电流, 因此将电感设置在天线上电流最大的位置对天 线上容抗的抵消作用最强。 因此, 可以将电感 73设置在天线 76上电流最大
的位置, 这样电感 73对天线 76的长度影响最大。 理论上越靠近天线接地点 的位置电流越大, 因此电感 73越靠近位置 77对天线 76的长度影响越大。
当图 7所示印制电路板天线工作在 BT-WLAN频段时,若不加入电感 73, 则天线 76的尺寸为 4mmX 23mm, 当在天线 76电流最大的位置加入电感量 为 4.1nH的电感 73后, 仍使天线工作在 BT-WLAN频段, 则天线 76的尺寸 可以缩短为 4mmX 16mm。 由此可见, 本实施例中引入电感可以显著缩短天 线的尺寸。
图 8为图 7所示印制电路板天线的回波损耗仿真曲线图, 如图 8所示, 曲线 81为未加入电感 73的印制电路板天线的回波损耗曲线, 曲线 82为加入 图 7所示的加入电感 73的印制电路板天线的回波损耗曲线,两天线均工作在 BT-WLAN频段, 未加入电感 73的天线 76的尺寸为 4mmX 23mm, 加入电 感量为 4.1nH的电感 73后天线 76的尺寸为 4mmX 16mm。将曲线 81与曲线 82 进行比较可以得出, 加入电感 73 的印制电路板天线仍能够工作在 BT-WLAN频段, 虽然回波损耗比未加入电感的印制电路板天线有所上升, 但仍能够满足使用需求。
本实施例的印制电路板天线, 通过在 IFA天线上加入一颗电感, 可以缩 短馈线的长度, 从而可以减小印制电路板天线的尺寸。
图 9为本发明实施例提供的金属框天线实施例一的结构示意图, 如图 9 所示, 本实施例的金属框天线包括: 馈点 91和金属框 92。
金属框 92—般为使用金属框天线的移动终端的外边框。 馈点 91设置在 移动终端中的印制电路板上, 并与用于接收或产生射频信号的射频电路相连 接, 金属框 92上设置有一开缝 93, 金属框 92在开缝 93两侧的接地点 94和 接地点 95分别接地,馈点 91与接地点 94之间的金属框可以形成第一谐振回 路, 馈点 91与接地点 95之间的金属框可以形成第二谐振回路。 通过调整接 地点 94和接地点 95相对于开缝 93的位置,可以调整第一谐振回路和第二谐 振回路的谐振频率, 从而可以使本实施例中的金属框天线产生两个不同的谐 振频率。
本实施例中, 馈点 91与开缝 93两侧的金属框存在电连接, 开缝 93两侧 的金属框通过馈点 91的直接馈电形成第一谐振回路和第二谐振回路。
图 10为图 9所示金属框天线的回波损耗仿真曲线图, 如图 9所示, 曲线
101为图 9所示金属框天线的回拨损耗仿真曲线, 可以看出, 图 9所示金属 框天线可以产生两个不同的谐振频率, 并且回波损耗均满足使用需求。
本实施例的金属框天线, 通过在金属框上设置开缝, 在开缝两侧分别接 地, 馈点在开缝处与金属框电连接, 使金属框上形成两个频率不同的谐振回 路, 提供了一种双频的金属框天线。
图 11 为本发明实施例提供的金属框天线实施例二的结构示意图, 如图 11所示, 本实施例的金属框天线与图 9所示金属框天线的区别在于: 馈点 91 与开缝 93两侧的金属框 92没有电连接, 开缝 93两侧的金属框 92通过馈点 91的耦合馈电形成第一谐振回路和第二谐振回路。
图 12为图 11所示金属框天线的回波损耗仿真曲线图, 如图 12所示, 曲 线 121为图 11所示金属框天线的回拨损耗仿真曲线, 可以看出, 图 12所示 金属框天线可以产生两个不同的谐振频率, 并且回波损耗均满足使用需求。
图 13为本发明实施例提供的终端实施例一的结构示意图,如图 13所示, 本实施例的终端 130包括: 天线, 天线包括印制电路板 131和设置在印制电 路板 131上的馈点 132, 印制电路板 131上设有覆铜; 印制电路板 131上的 覆铜设置有一开缝 133, 开缝 133与印制电路板 131外界连通, 印制电路板 131上的覆铜设置有一垂直于开缝 133的槽 134, 槽 134与开缝 133连通, 开 缝 133两侧的覆铜从开缝 133到槽 134的两端形成第一天线 135和第二天线 136; 馈点 132, 用于与第一天线 135和第二天线 136形成第一谐振回路和第 二谐振回路, 第一谐振回路和第二谐振回路的谐振频率不同。
图 13所示终端 130中, 印制电路板 131可以作为终端 130的主板, 终端 130 中用于完成各种业务功能的处理器、 存储器、 输入 \输出装置等器件分别 设置在印制电路板 131上或者通过印制电路板 131与其他器件连接。终端 130 还包括外壳 137, 上述各器件均设置在外壳 137内。
本实施例所示的终端 130可以为手机、 平板电脑等需要进行无线通信的 移动终端设备, 其中天线与图 1所示印制电路板天线的实现原理和技术效果 类似, 此处不再赘述。 另外, 由于终端 130中的天线是通过去除部分印制电 路板形成的, 因此天线的结构简单, 占用空间小, 适合用于小型化的移动终 端设备。
本实施例提供的终端, 包括印制电路板天线, 通过在印制电路板上的覆
铜设置开缝和垂直于开缝的槽, 槽与开缝连通形成第一天线和第二天线, 馈 点在两根天线上形成两个不同频率的谐振回路, 使印制电路板天线可以同时 工作在两个不同的频段, 从而使终端可以同时在双频段工作。
本发明实施例提供的终端中,天线可以有两种形式,第一种如图 13所示, 第二种如图 15所示。
图 13所示实施例中, 具体地, 馈点 132与第一天线 135电连接, 第一天 线 135的长度与第二天线 136的长度不同; 第一天线 135通过馈点 132的直 接馈电形成第一谐振回路, 第二天线 136通过第一天线 135的耦合馈电形成 第二谐振回路, 第一谐振回路和第二谐振回路的谐振频率不同。
图 14为本发明实施例提供的终端实施例二的结构示意图,如图 14所示, 本实施例的终端在图 13的基础上,天线还包括第一电感 141和第二电感 142。
第一电感 141设置在第一天线 135上, 与第一天线 135电连接, 第二电 感 142设置在第二天线 136上, 与第二天线 136电连接。
本实施例所示终端中的天线与图 2所示印制电路板天线的实现原理和技 术效果类似, 此处不再赘述。
进一步地, 图 14所示终端中, 第一电感 141设置在第一天线 135上电流 最大的位置, 第二电感 142设置在第二天线 136上电流最大的位置。
进一步地, 图 14所示终端中, 第一谐振回路的谐振频率随着第一电感 141 的电感量的增大而降低, 第二谐振回路的谐振频率随着第二电感 142的 电感量的增大而降低。
图 15为本发明实施例提供的终端实施例三的结构示意图,如图 15所示, 本实施例的终端与图 13所示终端的区别在于,在开缝 133处设置有馈线 151, 馈点 132设置在槽 134中靠近开缝 133的位置,馈点 132与馈线 151电连接, 第一天线 135的长度与第二天线 136的长度不同。
本实施例所示终端中的天线与图 3所示印制电路板天线的实现原理和技 术效果类似, 此处不再赘述。
图 16为本发明实施例提供的终端实施例四的结构示意图,如图 16所示, 本实施例的终端在图 15的基础上,天线还包括第一电感 161和第二电感 162。
第一电感 161设置在第一天线 135上, 与第一天线 135电连接, 第二电 感 162设置在第二天线 136上, 与第二天线 136电连接。
本实施例所示终端中的天线与图 5所示印制电路板天线的实现原理和技 术效果类似, 此处不再赘述。
进一步地, 图 16所示终端中, 所述第一电感设置在所述第一天线上电流 最大的位置, 所述第二电感设置在所述第二天线上电流最大的位置。
进一步地, 图 16所示终端中, 所述第一谐振回路的谐振频率随着所述第 一电感的电感量的增大而降低, 所述第二谐振回路的谐振频率随着所述第二 电感的电感量的增大而降低。
需要说明的是, 图 13至图 16所示各终端实施例中, 第一天线 135和第 二天线 136的长度不同, 以使第一天线 135和第二天线 136产生的谐振频率 不同, 则终端可以同时工作在两个频段。 但本发明的终端不限于此。 如图 14 和图 16所示的终端,分别在第一天线 135和第二天线 136上加入了第一电感 141 ( 161 ) 和第二电感 142 ( 162 ) , 则第一天线 135和第二天线 136所产生 的谐振频率会降低。 因此, 在本发明另一实施例中, 若通过设置槽和开缝, 形成第一天线和第二天线, 并且使第一天线和第二天线的长度相同, 此时分 别在第一天线和第二天线上加入第一电感和第二电感, 通过调整第一电感和 第二电感的电感量的大小和位于第一天线和第二天线上的位置, 则仍可以使 第一天线和第二天线形成的第一谐振回路和第二谐振回路的谐振频率不同。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换。 因此, 本发明的保护范围 应以权利要求的保护范围为准。
Claims
1、 一种印刷电路板天线, 其特征在于, 包括:
印制电路板和设置在所述印制电路板上的馈点, 所述印制电路板上设有 覆铜;
所述印制电路板上的覆铜设置有一开缝, 所述开缝与所述印制电路板外 界连通, 所述印制电路板上的覆铜设置有一垂直于所述开缝的槽, 所述槽与 所述开缝连通, 所述开缝两侧的覆铜从所述开缝到所述槽的两端形成第一天 线和第二天线;
所述馈点, 用于与所述第一天线和所述第二天线形成第一谐振回路和第 二谐振回路, 所述第一谐振回路和所述第二谐振回路的谐振频率不同。
2、 根据权利要求 1所述的天线, 其特征在于, 所述馈点与所述第一天线 电连接, 所述第一天线的长度与所述第二天线的长度不同; 所述馈点, 用于 与所述第一天线和所述第二天线形成第一谐振回路和第二谐振回路, 所述第 一谐振回路和所述第二谐振回路的谐振频率不同, 具体为:
所述第一天线通过所述馈点馈电形成所述第一谐振回路, 所述第二天线 通过所述第一天线的耦合馈电形成所述第二谐振回路, 所述第一谐振回路和 所述第二谐振回路的谐振频率不同。
3、 根据权利要求 1或 2所述的天线, 其特征在于, 所述天线还包括: 第 一电感和第二电感;
所述第一电感设置在所述第一天线上, 与所述第一天线电连接, 所述第 二电感设置在所述第二天线上, 与所述第二天线电连接。
4、 根据权利要求 3所述的天线, 其特征在于, 所述第一电感设置在所述 第一天线上电流最大的位置, 所述第二电感设置在所述第二天线上电流最大 的位置。
5、 根据权利要求 3或 4所述的天线, 其特征在于, 所述第一谐振回路的 谐振频率随着所述第一电感的电感量的增大而降低, 所述第二谐振回路的谐 振频率随着所述第二电感的电感量的增大而降低。
6、 根据权利要求 1所述的天线, 其特征在于, 所述开缝处设置有馈线, 所述馈点与所述馈线电连接, 所述第一天线的长度与所述第二天线的长度不 同; 所述馈点, 用于与所述第一天线和所述第二天线形成第一谐振回路和第
二谐振回路, 所述第一谐振回路和所述第二谐振回路的谐振频率不同, 具体 为:
所述第一天线通过所述馈线的耦合馈电形成所述第一谐振回路, 所述第 二天线通过所述馈线的耦合馈电形成所述第二谐振回路, 所述第一谐振回路 和所述第二谐振回路的谐振频率不同。
7、 根据权利要求 6所述的天线, 其特征在于, 所述天线还包括: 第一电 感和第二电感;
所述第一电感设置在所述第一天线上, 与所述第一天线电连接, 所述第 二电感设置在所述第二天线上, 与所述第二天线电连接。
8、 根据权利要求 7所述的天线, 其特征在于, 所述第一电感设置在所述 第一天线上电流最大的位置, 所述第二电感设置在所述第二天线上电流最大 的位置。
9、 根据权利要求 7或 8所述的天线, 其特征在于, 所述第一谐振回路的 谐振频率随着所述第一电感的电感量的增大而降低, 所述第二谐振回路的谐 振频率随着所述第二电感的电感量的增大而降低。
10、 一种终端, 包括天线, 其特征在于, 所述天线包括:
印制电路板和设置在所述印制电路板上的馈点, 所述印制电路板上设有 覆铜;
所述印制电路板上的覆铜设置有一开缝, 所述开缝与所述印制电路板外 界连通, 所述印制电路板上的覆铜设置有一垂直于所述开缝的槽, 所述槽与 所述开缝连通, 所述开缝两侧的覆铜从所述开缝到所述槽的两端形成第一天 线和第二天线;
所述馈点, 用于与所述第一天线和所述第二天线形成第一谐振回路和第 二谐振回路, 所述第一谐振回路和所述第二谐振回路的谐振频率不同。
11、 根据权利要求 10所述的终端, 其特征在于, 所述馈点与所述第一天 线电连接, 所述第一天线的长度与所述第二天线的长度不同; 所述馈点, 用 于与所述第一天线和所述第二天线形成第一谐振回路和第二谐振回路, 所述 第一谐振回路和所述第二谐振回路的谐振频率不同, 具体为:
所述第一天线通过所述馈点馈电形成所述第一谐振回路, 所述第二天线 通过所述第一天线的耦合馈电形成所述第二谐振回路, 所述第一谐振回路和
所述第二谐振回路的谐振频率不同。
12、 根据权利要求 10或 11所述的终端, 其特征在于, 所述天线还包括: 第一电感和第二电感;
所述第一电感设置在所述第一天线上, 与所述第一天线电连接, 所述第 二电感设置在所述第二天线上, 与所述第二天线电连接。
13、 根据权利要求 12所述的终端, 其特征在于, 所述第一电感设置在所 述第一天线上电流最大的位置, 所述第二电感设置在所述第二天线上电流最 大的位置。
14、 根据权利要求 12或 13所述的终端, 其特征在于, 所述第一谐振回 路的谐振频率随着所述第一电感的电感量的增大而降低, 所述第二谐振回路 的谐振频率随着所述第二电感的电感量的增大而降低。
15、根据权利要求 10所述的终端,其特征在于,所述开缝处设置有馈线, 所述馈点与所述馈线电连接, 所述第一天线的长度与所述第二天线的长度不 同; 所述馈点, 用于与所述第一天线和所述第二天线形成第一谐振回路和第 二谐振回路, 所述第一谐振回路和所述第二谐振回路的谐振频率不同, 具体 为:
所述第一天线通过所述馈线的耦合馈电形成所述第一谐振回路, 所述第 二天线通过所述馈线的耦合馈电形成所述第二谐振回路, 所述第一谐振回路 和所述第二谐振回路的谐振频率不同。
16、 根据权利要求 15所述的终端, 其特征在于, 所述天线还包括: 第一 电感和第二电感;
所述第一电感设置在所述第一天线上, 与所述第一天线电连接, 所述第 二电感设置在所述第二天线上, 与所述第二天线电连接。
17、 根据权利要求 16所述的终端, 其特征在于, 所述第一电感设置在所 述第一天线上电流最大的位置, 所述第二电感设置在所述第二天线上电流最 大的位置。
18、 根据权利要求 16或 17所述的终端, 其特征在于, 所述第一谐振回 路的谐振频率随着所述第一电感的电感量的增大而降低, 所述第二谐振回路 的谐振频率随着所述第二电感的电感量的增大而降低。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910300828.1A CN110085971B (zh) | 2013-08-09 | 2013-08-09 | 印制电路板天线和终端 |
EP13881458.7A EP2858171B1 (en) | 2013-08-09 | 2013-08-09 | Printed circuit board antenna and terminal |
PCT/CN2013/081193 WO2015018070A1 (zh) | 2013-08-09 | 2013-08-09 | 印制电路板天线和终端 |
JP2015530282A JP6282653B2 (ja) | 2013-08-09 | 2013-08-09 | 印刷回路基板アンテナ及び端末 |
ES13881458.7T ES2657405T3 (es) | 2013-08-09 | 2013-08-09 | Antena y terminal de placa de circuito impreso |
CN201380002715.4A CN103843194B (zh) | 2013-08-09 | 2013-08-09 | 印制电路板天线和终端 |
US14/517,418 US9666951B2 (en) | 2013-08-09 | 2014-10-17 | Printed circuit board antenna and terminal |
US15/461,297 US10355357B2 (en) | 2013-08-09 | 2017-03-16 | Printed circuit board antenna and terminal |
US16/426,701 US10819031B2 (en) | 2013-08-09 | 2019-05-30 | Printed circuit board antenna and terminal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/081193 WO2015018070A1 (zh) | 2013-08-09 | 2013-08-09 | 印制电路板天线和终端 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/517,418 Continuation US9666951B2 (en) | 2013-08-09 | 2014-10-17 | Printed circuit board antenna and terminal |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015018070A1 true WO2015018070A1 (zh) | 2015-02-12 |
Family
ID=50804809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/081193 WO2015018070A1 (zh) | 2013-08-09 | 2013-08-09 | 印制电路板天线和终端 |
Country Status (6)
Country | Link |
---|---|
US (3) | US9666951B2 (zh) |
EP (1) | EP2858171B1 (zh) |
JP (1) | JP6282653B2 (zh) |
CN (2) | CN103843194B (zh) |
ES (1) | ES2657405T3 (zh) |
WO (1) | WO2015018070A1 (zh) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6282653B2 (ja) * | 2013-08-09 | 2018-02-21 | 華為終端(東莞)有限公司 | 印刷回路基板アンテナ及び端末 |
ES2721262T3 (es) * | 2015-01-09 | 2019-07-30 | Amor Gummiwaren Gmbh | Dispositivo de masaje |
CN204885439U (zh) * | 2015-07-15 | 2015-12-16 | 西安中兴新软件有限责任公司 | 一种天线和终端 |
WO2017035730A1 (zh) * | 2015-08-31 | 2017-03-09 | 华为技术有限公司 | 一种缝隙天线和终端设备 |
US9768506B2 (en) * | 2015-09-15 | 2017-09-19 | Microsoft Technology Licensing, Llc | Multi-antennna isolation adjustment |
US10225024B2 (en) * | 2016-06-28 | 2019-03-05 | R & D Microwaves, LLC | Antenna |
CN106129670B (zh) * | 2016-07-19 | 2018-05-29 | 广东欧珀移动通信有限公司 | 壳体装置及终端设备 |
CN108666780B (zh) * | 2016-07-19 | 2019-10-18 | Oppo广东移动通信有限公司 | 壳体装置、连接结构及终端设备 |
CN106025591B (zh) * | 2016-07-19 | 2018-05-29 | 广东欧珀移动通信有限公司 | 壳体装置、连接结构及终端设备 |
CN106654562A (zh) * | 2017-01-03 | 2017-05-10 | 深圳市信维通信股份有限公司 | 毫米波天线及其天线系统 |
CN108270080A (zh) * | 2017-01-03 | 2018-07-10 | 深圳市信维通信股份有限公司 | 基于金属机身的毫米波阵列天线系统 |
TWI637558B (zh) | 2017-05-25 | 2018-10-01 | 和碩聯合科技股份有限公司 | 天線結構及電子裝置 |
CN107425284B (zh) * | 2017-06-21 | 2020-07-14 | 瑞声科技(新加坡)有限公司 | 天线系统及移动终端 |
CN107528119A (zh) * | 2017-06-27 | 2017-12-29 | 捷开通讯(深圳)有限公司 | 一种天线装置及终端 |
JP6960588B2 (ja) * | 2017-07-20 | 2021-11-05 | パナソニックIpマネジメント株式会社 | マルチバンド対応アンテナ及び無線通信装置 |
JP6495985B2 (ja) * | 2017-09-05 | 2019-04-03 | 株式会社ヨコオ | 車載用アンテナ装置 |
WO2020133111A1 (zh) * | 2018-12-27 | 2020-07-02 | 华为技术有限公司 | 天线装置及终端 |
CN110034379B (zh) * | 2019-04-19 | 2020-12-01 | Oppo广东移动通信有限公司 | 天线组件及电子设备 |
CN112751159B (zh) * | 2019-10-31 | 2022-06-10 | 华为终端有限公司 | 电子设备 |
JP7508237B2 (ja) | 2020-02-26 | 2024-07-01 | 日本航空電子工業株式会社 | マルチバンドアンテナ |
US11605896B2 (en) * | 2020-04-16 | 2023-03-14 | Motorola Mobility Llc | Communication device having metallic frame that includes a T-shaped slot antenna |
CN113555692B (zh) * | 2020-04-23 | 2023-02-03 | 华为技术有限公司 | 一种电子设备 |
CN113708050A (zh) * | 2021-07-22 | 2021-11-26 | 北京睿翔讯通通信技术有限公司 | 一种宽频带槽缝天线及终端设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006270760A (ja) * | 2005-03-25 | 2006-10-05 | Kyocera Corp | アンテナ |
CN101123323A (zh) * | 2006-08-11 | 2008-02-13 | 英业达股份有限公司 | 通讯装置及其立体天线 |
CN202384494U (zh) * | 2011-11-23 | 2012-08-15 | 深圳市发斯特精密技术有限公司 | 一种平面微带天线 |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57110B2 (zh) | 1974-06-07 | 1982-01-05 | ||
JP3004082B2 (ja) * | 1991-06-19 | 2000-01-31 | 京セラ株式会社 | 平板型スロットアンテナ |
FR2680283B1 (fr) | 1991-08-07 | 1993-10-01 | Alcatel Espace | Antenne radioelectrique elementaire miniaturisee. |
JP3174424B2 (ja) | 1992-03-17 | 2001-06-11 | 株式会社上野製薬応用研究所 | 結晶化粉末マルチトールの製法 |
JPH06199031A (ja) | 1993-01-08 | 1994-07-19 | Canon Inc | インクジェット記録方法及びその装置 |
FI113212B (fi) * | 1997-07-08 | 2004-03-15 | Nokia Corp | Usean taajuusalueen kaksoisresonanssiantennirakenne |
JP4045459B2 (ja) * | 1998-11-06 | 2008-02-13 | 日立金属株式会社 | アンテナ素子及びこれを用いた無線通信装置 |
US6452554B1 (en) | 1998-11-06 | 2002-09-17 | Hitachi Metals, Ltd. | Antenna element and radio communication apparatus |
FI112982B (fi) * | 1999-08-25 | 2004-02-13 | Filtronic Lk Oy | Tasoantennirakenne |
JP2001185938A (ja) * | 1999-12-27 | 2001-07-06 | Mitsubishi Electric Corp | 2周波共用アンテナ、多周波共用アンテナ、および2周波または多周波共用アレーアンテナ |
WO2001052353A2 (en) * | 2000-01-12 | 2001-07-19 | Emag Technologies L.L.C. | Low cost compact omni-directional printed antenna |
US7427689B2 (en) * | 2000-07-28 | 2008-09-23 | Georgetown University | ErbB-2 selective small molecule kinase inhibitors |
JP3733059B2 (ja) * | 2001-11-22 | 2006-01-11 | 京セラ株式会社 | アンテナ装置およびその製造方法 |
US6621455B2 (en) * | 2001-12-18 | 2003-09-16 | Nokia Corp. | Multiband antenna |
JP3844717B2 (ja) * | 2002-07-19 | 2006-11-15 | ソニー・エリクソン・モバイルコミュニケーションズ株式会社 | アンテナ装置および携帯無線通信端末 |
GB2401725B (en) * | 2003-05-12 | 2006-10-11 | Nokia Corp | Antenna |
FI120606B (fi) * | 2003-10-20 | 2009-12-15 | Pulse Finland Oy | Sisäinen monikaista-antenni |
TWI239120B (en) * | 2004-05-12 | 2005-09-01 | Arcadyan Technology Corp | Microstrip antenna having slot structure |
CN100428563C (zh) * | 2005-01-24 | 2008-10-22 | 连展科技电子(昆山)有限公司 | 双频倒f型天线 |
WO2006097496A1 (en) * | 2005-03-15 | 2006-09-21 | Fractus, S.A. | Slotted ground-plane used as a slot antenna or used for a pifa antenna |
FI20055353A0 (fi) * | 2005-06-28 | 2005-06-28 | Lk Products Oy | Sisäinen monikaista-antenni |
US20080266189A1 (en) * | 2007-04-24 | 2008-10-30 | Cameo Communications, Inc. | Symmetrical dual-band uni-planar antenna and wireless network device having the same |
CN101359763B (zh) * | 2007-07-30 | 2012-07-25 | 广达电脑股份有限公司 | 双频天线 |
US8599088B2 (en) * | 2007-12-18 | 2013-12-03 | Apple Inc. | Dual-band antenna with angled slot for portable electronic devices |
US8077096B2 (en) * | 2008-04-10 | 2011-12-13 | Apple Inc. | Slot antennas for electronic devices |
US8085202B2 (en) * | 2009-03-17 | 2011-12-27 | Research In Motion Limited | Wideband, high isolation two port antenna array for multiple input, multiple output handheld devices |
US8847833B2 (en) * | 2009-12-29 | 2014-09-30 | Pulse Finland Oy | Loop resonator apparatus and methods for enhanced field control |
KR101074331B1 (ko) * | 2010-06-16 | 2011-10-17 | 주식회사 이엠따블유 | 메타머티리얼을 이용한 광대역 안테나 및 이를 포함하는 통신장치 |
US8750798B2 (en) * | 2010-07-12 | 2014-06-10 | Blackberry Limited | Multiple input multiple output antenna module and associated method |
JP2012039230A (ja) * | 2010-08-04 | 2012-02-23 | Mitsubishi Electric Corp | アンテナ装置 |
US8489162B1 (en) * | 2010-08-17 | 2013-07-16 | Amazon Technologies, Inc. | Slot antenna within existing device component |
US8947302B2 (en) * | 2010-11-05 | 2015-02-03 | Apple Inc. | Antenna system with antenna swapping and antenna tuning |
GB201100617D0 (en) * | 2011-01-14 | 2011-03-02 | Antenova Ltd | Dual antenna structure having circular polarisation characteristics |
CN102842747B (zh) * | 2011-06-21 | 2014-12-17 | 英华达(上海)科技有限公司 | 具调整槽道的单极槽孔天线结构 |
US9088069B2 (en) * | 2011-09-21 | 2015-07-21 | Sony Corporation | Wireless communication apparatus |
US9041606B2 (en) * | 2011-11-30 | 2015-05-26 | Motorola Solutions, Inc. | Uninterrupted bezel antenna |
JP5582158B2 (ja) * | 2012-03-28 | 2014-09-03 | 株式会社村田製作所 | マルチバンドアンテナ装置 |
CN202503107U (zh) * | 2012-04-28 | 2012-10-24 | 惠州硕贝德无线科技股份有限公司 | 一种新型多频段手机天线 |
US9203139B2 (en) * | 2012-05-04 | 2015-12-01 | Apple Inc. | Antenna structures having slot-based parasitic elements |
JP5772868B2 (ja) * | 2012-05-21 | 2015-09-02 | 株式会社村田製作所 | アンテナ装置および無線通信装置 |
CN102800950B (zh) * | 2012-08-03 | 2015-09-09 | 电子科技大学 | 印刷宽带终端天线 |
US9716307B2 (en) * | 2012-11-08 | 2017-07-25 | Htc Corporation | Mobile device and antenna structure |
CN103050773B (zh) * | 2012-12-20 | 2016-03-30 | 华为终端有限公司 | 一种天线及具有该天线的电子设备 |
CN103078176B (zh) * | 2013-01-07 | 2015-04-15 | 华为终端有限公司 | 金属环耦合天线与手持式通信设备 |
CN103199339B (zh) * | 2013-03-28 | 2015-05-27 | 哈尔滨工程大学 | 一种电抗加载的双频天线 |
JP6282653B2 (ja) * | 2013-08-09 | 2018-02-21 | 華為終端(東莞)有限公司 | 印刷回路基板アンテナ及び端末 |
US9985341B2 (en) * | 2015-08-31 | 2018-05-29 | Microsoft Technology Licensing, Llc | Device antenna for multiband communication |
-
2013
- 2013-08-09 JP JP2015530282A patent/JP6282653B2/ja not_active Expired - Fee Related
- 2013-08-09 CN CN201380002715.4A patent/CN103843194B/zh active Active
- 2013-08-09 CN CN201910300828.1A patent/CN110085971B/zh active Active
- 2013-08-09 WO PCT/CN2013/081193 patent/WO2015018070A1/zh active Application Filing
- 2013-08-09 EP EP13881458.7A patent/EP2858171B1/en active Active
- 2013-08-09 ES ES13881458.7T patent/ES2657405T3/es active Active
-
2014
- 2014-10-17 US US14/517,418 patent/US9666951B2/en active Active
-
2017
- 2017-03-16 US US15/461,297 patent/US10355357B2/en active Active
-
2019
- 2019-05-30 US US16/426,701 patent/US10819031B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006270760A (ja) * | 2005-03-25 | 2006-10-05 | Kyocera Corp | アンテナ |
CN101123323A (zh) * | 2006-08-11 | 2008-02-13 | 英业达股份有限公司 | 通讯装置及其立体天线 |
CN202384494U (zh) * | 2011-11-23 | 2012-08-15 | 深圳市发斯特精密技术有限公司 | 一种平面微带天线 |
Also Published As
Publication number | Publication date |
---|---|
US10355357B2 (en) | 2019-07-16 |
US20190280382A1 (en) | 2019-09-12 |
US9666951B2 (en) | 2017-05-30 |
EP2858171B1 (en) | 2017-12-13 |
JP2015534324A (ja) | 2015-11-26 |
ES2657405T3 (es) | 2018-03-05 |
CN103843194A (zh) | 2014-06-04 |
EP2858171A4 (en) | 2015-09-16 |
EP2858171A1 (en) | 2015-04-08 |
US20150048982A1 (en) | 2015-02-19 |
CN110085971B (zh) | 2021-10-22 |
US20170229776A1 (en) | 2017-08-10 |
US10819031B2 (en) | 2020-10-27 |
JP6282653B2 (ja) | 2018-02-21 |
CN103843194B (zh) | 2019-04-19 |
CN110085971A (zh) | 2019-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015018070A1 (zh) | 印制电路板天线和终端 | |
TWI487198B (zh) | 多頻天線 | |
JP3864127B2 (ja) | デュアルフィーディングポートを有するマルチバンドチップアンテナ及びこれを用いる移動通信装置 | |
US7187338B2 (en) | Antenna arrangement and module including the arrangement | |
WO2021104336A1 (zh) | 无线耳机 | |
US6380903B1 (en) | Antenna systems including internal planar inverted-F antennas coupled with retractable antennas and wireless communicators incorporating same | |
WO2012088837A1 (zh) | 一种移动终端的阵列天线及其实现方法 | |
JPWO2004109857A1 (ja) | アンテナとそれを用いた電子機器 | |
TW201517389A (zh) | 天線結構及具有該天線結構的無線通訊裝置 | |
US20100309087A1 (en) | Chip antenna device | |
TWI484768B (zh) | 無線通訊裝置及訊號饋入方法 | |
JP2005535239A (ja) | デュアルバンドアンテナシステム | |
AU2014200229B2 (en) | Antenna and mobile terminal having the same | |
JP3982692B2 (ja) | アンテナ装置 | |
WO2017107137A1 (zh) | 一种缝隙天线和终端 | |
KR101218702B1 (ko) | 멀티모드 고주파 모듈 | |
JP5817024B2 (ja) | マルチモード高周波モジュール | |
CN114914665A (zh) | 一种天线及终端设备 | |
TW201128848A (en) | Dual-band mobile communication device | |
TW201517380A (zh) | 無線通訊裝置 | |
TWI583058B (zh) | 天線結構及具有該天線結構的無線通訊裝置 | |
CN106058434A (zh) | 一种应用于移动终端的天线 | |
US20080129628A1 (en) | Wideband antenna for mobile devices | |
KR20020087139A (ko) | 무선 단말기 | |
JP2009118417A (ja) | 携帯無線機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2013881458 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015530282 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13881458 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |