WO2020133111A1 - 天线装置及终端 - Google Patents

天线装置及终端 Download PDF

Info

Publication number
WO2020133111A1
WO2020133111A1 PCT/CN2018/124495 CN2018124495W WO2020133111A1 WO 2020133111 A1 WO2020133111 A1 WO 2020133111A1 CN 2018124495 W CN2018124495 W CN 2018124495W WO 2020133111 A1 WO2020133111 A1 WO 2020133111A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
antenna
antenna device
pcb
frequency band
Prior art date
Application number
PCT/CN2018/124495
Other languages
English (en)
French (fr)
Inventor
常乐
魏鲲鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/418,515 priority Critical patent/US11876285B2/en
Priority to PCT/CN2018/124495 priority patent/WO2020133111A1/zh
Priority to EP18944219.7A priority patent/EP3883061A4/en
Priority to CN201880100525.9A priority patent/CN113287230B/zh
Publication of WO2020133111A1 publication Critical patent/WO2020133111A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present invention relates to the technical field of antennas, and particularly to an antenna device applied in a terminal.
  • multi-input multi-output (MIMO) antenna technology such as high-fidelity wireless multi-input (wireless fidelity MIMO, Wi-Fi MIMO) antennas
  • MIMO multi-input multi-output
  • the number of antennas has increased exponentially, covering more and more frequency bands.
  • the recent terminal design trends are higher screen ratio, more multimedia devices and larger battery capacity, these designs have caused the antenna space to be sharply compressed.
  • How to arrange multiple antennas in a limited design space is a very challenging problem.
  • the antenna layout also needs to consider the industrial design (ID) of the terminal product, such as metal ID, full screen ID, etc., which further increases the difficulty of the antenna layout.
  • ID industrial design
  • the first type is the stacked antenna, which is to put some basic types of antenna elements, such as monopoles, dipoles, slots, etc., together with some decoupling technologies, such as neutral lines, choke slots, etc. antenna.
  • This MIMO antenna design is complex, it is difficult to expand to more antenna units and occupy a larger headroom.
  • the second type is the compact dual antenna pair, that is, two antenna units are placed in a small scale, and the isolation of the dual antenna pair is improved by using self-decoupling or polarization orthogonality. It belongs to a modular design scheme and is easy to expand to more. Antenna unit. The design of this MIMO antenna array is simple, but currently there is only a non-metal ID solution, which is not suitable for metal ID terminals.
  • An embodiment of the present invention provides an antenna device, which can realize a multi-antenna structure on a terminal with a metal frame or an all-metal ID, and has a simple structure.
  • the present application provides an antenna device applied to a terminal.
  • the terminal may include a metal frame, a printed circuit board (PCB), a PCB floor, and a back cover, wherein the metal frame may be provided at the edge of the PCB floor, and the PCB floor may Set between the PCB and the back cover, the PCB floor can be used to ground the electronic components carried on the PCB.
  • the antenna device may include: a slot antenna formed by forming a slot in the metal frame, and a slot antenna formed by a slot connecting the slot.
  • the slot may communicate with the gap at one side of the slot, and the other side of the slot may contact the PCB floor.
  • the groove may specifically communicate with the gap at the middle position of one side thereof.
  • a first feed network may be connected to both sides of the slot, and the first feed network may be used to excite the antenna device to generate a first radiation pattern.
  • the main radiator of the first radiation pattern is a slot, and a half-period length is distributed on the slot In-phase electric field; a second feed network can also be connected to one side of the slot. The second feed network can be used to excite the antenna device to generate a second radiation pattern.
  • the main radiator of the second radiation pattern is the PCB floor. In-phase current loop; the polarization direction of the first radiation mode is orthogonal to the polarization direction of the second radiation mode.
  • the antenna device may have two radiation modes: a first radiation mode and a second radiation mode.
  • the first radiation mode may be the half-wavelength slot mode mentioned in the embodiment section
  • the second radiation mode may be the open slot mode (also called in-phase current loop mode) mentioned in the embodiment section. among them:
  • the first radiation mode a half-period in-phase electric field is distributed on the groove.
  • the groove can be used as the main radiator, and its polarization direction is the negative X direction of the horizontal axis of the groove (for the antenna structure shown in FIGS. 2A-B) or the Z direction (for the antenna shown in FIGS. 3A-B). structure). That is to say, the first radiation mode can generate radiation through the groove.
  • Second radiation mode the slot divides the slot into two slots on both sides of the slot. Both slots can work in 1/4 wavelength mode. From one end of the groove to the other end, the electric field distribution is: the electric field changes from zero to the maximum, the direction of the electric field reverses after passing through the gap, and then the electric field changes from the reverse maximum to zero.
  • the current forms an in-phase current loop around the slot, which can effectively stimulate the PCB floor to generate radiation. That is to say, the second radiation mode can stimulate the PCB floor to generate radiation through the gap.
  • the PCB floor may be the main radiator, and the polarization direction is the negative Y direction.
  • the antenna device can realize multiple antennas at the slot, has a simple structure, and belongs to a modular design, which is convenient for expansion. Especially when the slot is opened on a metal frame, the antenna device can be realized as a dual-antenna pair of the same frequency or multiple antennas of other specifications suitable for an all-metal ID terminal with zero clearance.
  • the back cover may be a back cover made of an insulating material, such as a glass back cover, a plastic back cover, and the like.
  • the back cover may also be a metal back cover. If the terminal is an all-metal ID terminal, the back cover is the metal back cover.
  • the groove may be a groove formed on the PCB floor, or the groove may be formed on the metal frame.
  • the slot opening direction of the slot may be the same as the extending direction of the metal frame.
  • the specific implementation of the first feed network may be as follows:
  • the first feeding network may include feeding points on the metal frame located on both sides of the slot: a first feeding point and a second feeding point, the first feeding point is set on one side of the slot, and the second feeding point The electrical point is located on the other side of the gap.
  • the first feeding network may further include a first feeding line and a first feeding port (port1).
  • the first feeder may be a microstrip line or other wires.
  • the first feed line may also be used to connect the first feed port and the feed points on both sides of the slot across the slot.
  • the first feeder can also cross the slot. In this way, the groove can be excited to generate an in-phase electric field with a half-cycle length distributed on the groove.
  • the first feeder may be a symmetrical feeder structure, so that the electric potentials of the first feeding point and the second feeding point are equal, so that the two sides of the slot have equal potentials.
  • a matching network may be designed at the first feed port (port1), and the matching network may be used to adjust the frequency band range covered by the slot (by adjusting the antenna transmission coefficient, impedance, etc.).
  • the specific implementation of the second feed network may be as follows:
  • the second feeding network may include a third feeding point on the side of the slit provided on the metal frame, a second feeding line, and a second feeding port (port 2).
  • the second feeder may be a microstrip line or other wires.
  • the second feed line can be used to connect the second feed port and the third feed point.
  • the second feeder can cross the gap, which can excite the gap to generate an electric field distributed on the gap, and finally form an in-phase current loop around the slot, which can effectively excite the PCB floor.
  • the PCB floor can act as the main radiator of the antenna structure to generate radiation.
  • a matching network may be designed at the second feed port (port2), and the matching network may be used to adjust the frequency band range covered by the PCB floor (by adjusting the antenna transmission coefficient, impedance, etc.).
  • the resonance generated by the excitation slot when the antenna device operates in the aforementioned half-wavelength mode and the resonance generated when the antenna device operates in the aforementioned in-phase current loop mode may excite the PCB floor in the same frequency band. That is to say, the antenna device may be a dual-antenna pair of the same frequency.
  • the antenna device may specifically be a SUB-6G dual antenna pair, and its operating frequency is 3.4 GHz-3.6 GHz, that is, the same frequency band is the SUB-6G frequency band.
  • the antenna device may specifically be a dual-Wi-Fi antenna pair of the same frequency, such as a dual-Wi-Fi antenna pair of the 2.4 GHz frequency band, that is, the same frequency band is a Wi-Fi frequency band, such as the 2.4 GHz Wi-Fi frequency band. It is not limited to this, and the antenna device may also have the same frequency dual antenna pair in other frequency bands.
  • the groove when the antenna device operates in the aforementioned half-wavelength mode, the groove can be excited to generate resonance in the first frequency band, and when the antenna device operates in the aforementioned in-phase current loop mode, the PCB floor can be excited to generate resonance in the second frequency band.
  • the first frequency band may include a Wi-Fi frequency band
  • the second frequency band may include a Wi-Fi frequency band and a GPS frequency band.
  • the antenna device can generate 2.4 GHz Wi-Fi resonance in the excitation slot in the aforementioned half-wavelength mode (the first frequency band is 2.4 GHz Wi-Fi band), and excite the PCB floor in the aforementioned in-phase current loop mode to generate GPS L1 and 2.4 GHz Two Wi-Fi resonances (the second frequency band includes 2.4GHz Wi-Fi frequency band and GPS L1 frequency band).
  • the first frequency band and the second frequency band may also be other frequency bands, for example, the antenna structure may also generate a 2.4GHz Wi-Fi resonance in the excitation slot in the aforementioned half-wavelength mode (the first frequency band is the 2.4GHz Wi-Fi frequency band)
  • the PCB floor is excited to generate two resonances of GPS L5 and 2.4GHz Wi-Fi (the second frequency band includes 2.4GHz Wi-Fi frequency band and GPS L5 frequency band).
  • the present application provides a terminal, which may include a metal frame, a printed circuit board PCB, a PCB floor, a back cover, and the antenna device described in the first aspect above.
  • FIG. 1 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • FIGS. 2A-2B are schematic diagrams of an antenna device provided by this application.
  • 3A-3B are schematic diagrams of an antenna device provided by this application.
  • FIGS. 2A-2B are schematic diagrams of two radiation modes of the antenna structure shown in FIGS. 2A-2B;
  • FIGS. 3A-3B are schematic diagrams of two radiation modes of the antenna structure shown in FIGS. 3A-3B;
  • 6A-6B are schematic diagrams of an antenna design solution according to an embodiment of the present application.
  • FIGS. 6A-6B are schematic diagrams of some simulation of the antenna design shown in FIGS. 6A-6B;
  • FIGS. 8A-8B are schematic diagrams of the matching network at the feed port in the antenna design shown in FIGS. 6A-6B;
  • FIG. 9 is a schematic diagram of some simulations of the antenna design scheme of another embodiment of the present application.
  • 10A-10B are schematic diagrams of the matching network at the feed port in the antenna design scheme of another embodiment of the present application.
  • 11A-11B are schematic diagrams of a design solution according to yet another embodiment of the present application.
  • FIGS. 11A-11B are schematic diagrams of some simulation of the antenna design shown in FIGS. 11A-11B;
  • FIGS. 11A-11B are schematic diagrams of the matching network at the feed port of the antenna design shown in FIGS. 11A-11B;
  • FIGS 14A-14C are schematic structural diagrams of antenna devices provided by still other embodiments of the present application.
  • the technical solutions provided in this application are applicable to terminals using one or more of the following MIMO communication technologies: long term evolution (LTE) communication technology, Wi-Fi communication technology, 5G communication technology, SUB-6G communication technology, and future Other MIMO communication technologies, etc.
  • the terminal may be a mobile phone, a tablet computer, a personal digital assistant (personal digital assistant, PDA) and other electronic devices.
  • LTE long term evolution
  • PDA personal digital assistant
  • FIG. 1 exemplarily shows the internal environment of the terminal on which the antenna design scheme provided by the present application is based.
  • the terminal may include a display screen 11, a printed circuit board PCB 13, a PCB floor 15, a metal frame 17, and a back cover 19.
  • the display screen 11, the printed circuit board PCB13, the PCB floor 15 and the back cover 19 can be arranged in different layers, these layers can be parallel to each other, the plane where each layer lies can be called the XY plane, and the direction perpendicular to the XY plane is the Z direction . That is to say, the display screen 11, the printed circuit board PCB 13, the PCB floor 15 and the back cover 17 can be distributed in layers in the Z direction.
  • the printed circuit board PCB13 may use a FR-4 dielectric board, or a Rogers (Rogers) dielectric board, or a mixed dielectric board of Rogers and FR-4, and so on.
  • FR-4 is a code name for a flammable material grade
  • Rogers dielectric board is a high-frequency board.
  • the back cover 19 may be a back cover made of insulating material, such as a glass back cover, a plastic back cover, and the like.
  • the back cover 19 may be a metal back cover. If the terminal shown in FIG. 1 is an all-metal ID terminal, the back cover 19 is a metal back cover.
  • the PCB floor 15 is grounded and can be disposed between the printed circuit board PCB 13 and the back cover 19.
  • the PCB floor 15 may also be referred to as a PCB bottom plate.
  • the PCB floor 15 may be a layer of metal etched on the surface of the PCB 13, and this layer of metal may also be connected to the metal middle frame (not shown) through a series of metal dome sheets to be integrated with the metal middle frame.
  • the PCB floor 15 can be used for grounding the electronic components carried on the printed circuit board PCB13.
  • the electronic components carried on the printed circuit board PCB13 can be grounded by wiring to the PCB floor 15 to prevent user electric shock or equipment damage.
  • the metal frame 17 may be disposed on the edges of the printed circuit board PCB13 and the PCB floor 15, and the printed circuit board PCB13 and the PCB floor 15 between the back cover 19 and the display screen 11 may be covered from the side to achieve dustproof and waterproof the goal of.
  • the metal frame 17 may include four metal edges, and the four metal edges may be looped around the display screen 11, the printed circuit board PCB 13, the PCB floor 15, and the back cover 19.
  • the metal frame 17 may include only two metal edges, and the two metal edges may be disposed on both sides of the display screen 11, the printed circuit board PCB 13, the PCB floor 15, and the back cover 19 in the Y direction .
  • the metal frame 17 may also present other design styles, such as a single metal edge metal frame 17, which is not limited in this application.
  • the present application Based on the internal environment of the terminal shown in FIG. 1, the present application provides a multi-antenna design solution for a terminal with a metal frame, and a multi-antenna design solution for a terminal with an all-metal ID.
  • the main design idea of the multi-antenna design scheme provided by the present application may include: a slot is formed in the metal frame 17, and a slot antenna formed by the slot and a slot antenna formed by a slot connecting the slot are used to form a multi-antenna structure.
  • the groove can communicate with the gap in the middle of one side of the side, and the other side of the groove can contact the PCB floor.
  • the groove may be provided on the PCB floor 15, as shown in FIGS. 2A-2B.
  • 2A is a view of the antenna structure viewed in the Z direction
  • FIG. 2B is a view of the antenna structure viewed in the negative X direction.
  • the groove may be a groove 23 formed by grooving on the PCB floor 15.
  • the direction of the groove 23 can be the same as the extending direction of the metal frame 17.
  • the groove 23 may communicate with the slit 21 formed in the metal frame 17 at the middle of its side.
  • the groove may be disposed on the metal frame 17, as shown in FIGS. 3A-3B.
  • 3A is a view of the antenna structure viewed in the Z direction
  • FIG. 3B is a view of the antenna structure viewed in the negative X direction.
  • the groove may be a groove 23 formed by grooving on the metal frame 17.
  • the groove 23 has the same groove opening direction as the metal frame 17 extending direction.
  • the groove 23 may communicate with the slit 21 formed in the metal frame 17 in the middle of one side. The other side of the groove 23 can contact the PCB floor 15.
  • FIGS. 4A-4B and FIGS. 5A-5B show the radiation pattern of the antenna structure shown in FIGS. 2A-2B.
  • 5A-5B show the radiation pattern of the antenna structure shown in FIGS. 3A-3B.
  • the antenna structure provided by the present application may have two radiation modes: half-wavelength slot mode (shown in FIGS. 4A and 5A) and open slot mode (also called in-phase current loop mode) (shown in FIGS. 4B and 5B).
  • the half-wavelength mode may be referred to as the first radiation mode
  • the open-slot mode also referred to as the in-phase current loop mode
  • the second radiation mode among them:
  • Half-wavelength slot mode A half-cycle length of in-phase electric field is distributed on the slot 23.
  • the two sides of the slot 21 can have the same potential.
  • the slot 21 does not affect the slot 23 as a slot antenna (closed at both ends) to generate resonance.
  • the slot antenna with closed ends usually generates resonance in the half-wavelength mode.
  • the current distribution on the slot 23 may be a typical current distribution of the slot antenna in the half-wavelength mode.
  • the groove 23 can be used as a main radiator, and its polarization direction is the negative X direction of the transverse axis direction of the groove 23 (for the antenna structure shown in FIGS. 2A-2B) or the Z direction (for FIG. 3A-3B). Antenna structure).
  • the half-wavelength slot mode can excite the slot 23 to generate a half-cycle length in-phase electric field distributed on the slot 23 (distributed on the slot 23).
  • the slot 23 can be used as the main radiation of the antenna structure to generate radiation. That is, the half-wavelength slot mode can generate radiation through the slot.
  • Open slot mode (or in-phase current loop mode): slot 21 divides slot 23 into two slots on both sides of slot 21. Both slots can work in 1/4 wavelength mode. From one end of the groove 23 to the other end, the electric field distribution is as follows: the electric field changes from zero to the maximum, the direction of the electric field reverses after passing through the gap 21, and then the electric field changes from the reverse maximum to the zero. As shown in FIGS. 4B and 5B, the current forms an in-phase current loop around the slot 23, which can effectively stimulate the PCB floor to generate radiation. That is to say, the in-phase current loop mode can stimulate the PCB floor to generate radiation through the gap. At this time, the PCB floor 15 may be the main radiator, and the polarization direction is the negative Y direction.
  • the open-slot mode (or in-phase current loop mode) can excite the slot 21 to generate an in-phase current loop around the slot 23, thereby effectively exciting the PCB floor 15 to generate radiation.
  • the PCB floor 15 can be used as the main radiation of the antenna structure to generate radiation.
  • the polarization directions of the two radiation modes are orthogonal, that is, the polarization direction of the main radiator groove 23 of the first radiation mode and the polarization direction of the main radiator PCB floor 15 of the second radiation mode are orthogonal, High isolation can be achieved.
  • the antenna structure provided in this application (as shown in FIGS. 2A-2B or shown in FIGS. 3A-3B) can be operated in the above two radiation modes by using a suitable feed network. In this way, a dual antenna pair can be obtained on the slot 21, and a 2 ⁇ 2 MIMO specification can be realized. By further combining some matching circuits (such as tuning switches) or switch circuits to adjust the length of the slot 23, more frequency bands can be covered.
  • this antenna design scheme is a modular design, which can be easily expanded to more antenna units.
  • the antenna design scheme provided by this application can be applied to a terminal with a metal frame.
  • the slot 23 in the antenna structure shown in FIGS. 3A-3B is opened on the metal frame 17, at this time, the antenna structure can radiate signals outward through the slot 23, and there is no need to reserve clearance on the PCB 13, which can be applied to all metal IDs. terminal.
  • FIG. 6A-6B exemplarily show the antenna structure provided in the first embodiment.
  • 6A is a schematic diagram of an antenna model including a PCB dielectric board
  • FIG. 6B is a schematic diagram of the antenna structure after the PCB dielectric board is hidden.
  • the PCB floor 15 may be disposed at the bottom of the first PCB dielectric board 31 (that is, the PCB 13 in FIG. 1 ), and a second PCB dielectric board 32 may be disposed next to the metal frame 13.
  • the antenna structure may include: a slot 21 opened on the metal frame 17 and a slot 23 opened on the PCB floor 15.
  • the groove 23 may communicate with the slit 21 in the middle of one side.
  • the first feed network 33 may be connected to both sides of the slot 21.
  • the first feeding network 33 may be specifically printed on the first PCB dielectric board 31 and the second PCB dielectric board 32.
  • the first feeding network 33 can be used to excite the antenna structure to work in the aforementioned half-wavelength slot mode, that is, it can be used to excite the antenna structure to generate a half-cycle length in-phase electric field distributed on the slot 23. At this time, the groove 23 generates radiation as a main radiator.
  • the first feeding network 33 may include feeding points provided on the metal frame 17 on both sides of the slot 21: a first feeding point 33-1 and a second feeding point 33-2, the first feeding The electric point 33-1 is provided on one side of the slit 21, and the second feeding point 33-2 is provided on the other side of the slit 21.
  • the first feeding network 33 may further include a first feeding line 33-3 and a first feeding port 33-4 (port1).
  • the first feeder 33-3 may be a microstrip line or other wires.
  • the first feed line 33-3 may be used to connect the first feed port 33-4 and the feed points on both sides of the slot 21.
  • the end of the first feeder 33-3 can be connected (through a hole punching) through the second PCB dielectric board 32 to the feed points on both sides of the slot 21.
  • the first feeder 33-3 may be a symmetrical feeder structure, such as the T-shaped feeder structure shown in FIGS. 6A-6B, so that the first feed point 33-1 and the second feed point 33-2 can be realized
  • the electric potentials are equal, so that both sides of the gap 21 are equipotential. Therefore, the slot 21 may not affect the slot 23 as a slot antenna (closed at both ends) to generate resonance.
  • the first feeder 33-3 may also cross the slot 23. In this way, the groove 23 can be excited to generate a half-cycle length in-phase electric field distributed on the groove 23.
  • the groove 23 can be used as the main radiation of the antenna structure to generate radiation.
  • a matching network may be designed at the first feed port 33-4 (port1), and the matching network may be used (by adjusting the antenna transmission coefficient, impedance, etc.) to adjust the frequency band range covered by the slot antenna formed by the slot 23.
  • a second feeding network 35 may be connected to one side of the slot 21.
  • the second feeding network 35 may be specifically printed on the second PCB dielectric board 32.
  • the second feeding network 35 can be used to excite the antenna structure to work in the aforementioned open-slot mode (or called in-phase current loop mode), that is, it can be specifically used to excite the antenna structure to generate an in-phase current loop around the slot 23.
  • the second feeding network 35 may include a third feeding point 35-1 on the side of the slot 21 provided on the metal frame, a second feeding line 35-2, and a second feeding port 35-3 (port 2 ).
  • the second feeder 35-2 may be a microstrip line or other wires.
  • the second feeding line 35-2 may be used to connect the second feeding port 35-3 and the third feeding point 35-1.
  • the end of the second feeder 35-2 may be connected to the third feed point 35-1 through the second PCB dielectric board 32 (by punching).
  • the second feeder 35-2 can cross the slot 21, which can excite the slot 21 to generate an electric field distributed on the slot 21, and finally form an in-phase current loop around the slot 23, which can effectively excite the PCB floor 15.
  • the PCB floor 15 can act as the main radiator of the antenna structure to generate radiation.
  • a matching network may be designed at the second feed port 35-3 (port 2), and the matching network may be used to adjust the frequency band covered by the PCB floor 15 (by adjusting the antenna transmission coefficient, impedance, etc.).
  • the polarization direction when the antenna structure operates in the half-wavelength slot mode and the polarization direction when the antenna structure operates in the open-slot mode (or in-phase current loop mode) are orthogonal, so Has good isolation.
  • the antenna structure provided in the first embodiment may be a SUB-6G dual antenna pair, and its operating frequency is 3.4 GHz-3.6 GHz.
  • the overall size of the terminal may be 150 mm ⁇ 75 mm ⁇ 7 mm
  • the first PCB dielectric board 31 may be a 0.8 mm thick FR-4 dielectric board
  • the size of the slot 23 may be 25 mm ⁇ 1.5 In mm
  • the size of the gap 21 may be 7 mm ⁇ 1.5 mm
  • the second PCB dielectric board 32 close to the metal frame 17 may be a layer of FR-4 dielectric board with a thickness of 0.254 mm.
  • the matching network designed at the first feed port 33-4 (port1) may be a parallel connection of 12nH inductance (L1) and then 9.1nH inductance (L2) in series at port1, as shown in the figure 8A.
  • the matching network designed at the second feed port 35-3 (port2) may be paralleled with an 8.2nH inductor (L3) and then a 6.2nH inductor (L4) in series at port2, such as As shown in Figure 8B.
  • the inductances mentioned here can all be lumped inductances, which can be ideal devices.
  • the reflection coefficient is less than -4.7 dB ;
  • the reflection coefficient is less than -9.9dB. It can be seen that the antenna device can cover the frequency range of 3.4 GHz-3.6 GHz in both modes. As shown in (b) of FIG. 7, in the required operating frequency range of 3.4 GHz-3.6 GHz, for the aforementioned half-wavelength slot mode excited by the first feed port 33-4 (port1), the reflection coefficient is less than -4.7 dB ; For the aforementioned in-phase current loop mode excited by the second feed port 35-3 (port2), the reflection coefficient is less than -9.9dB. It can be seen that the antenna device can cover the frequency range of 3.4 GHz-3.6 GHz in both modes. As shown in (b) of FIG.
  • the symmetric structure adopted by the first feeding network 33 is very helpful for improving the isolation. Since the first feed network 33 adopts a symmetrical structure, when the first feed port 33-4 (port1) feeds the aforementioned half-wavelength slot mode, the electric field phases on both sides of the slot 21 are the same; and when the second feed port When 35-3 (port2) feeding stimulates the aforementioned in-phase current loop mode, the phase difference of the electric field on both sides of the slot 21 differs by 180°. In this way, the first feed port 33-4 (port1) and the second feed port 35-3 (port2) cannot transfer energy to each other, which provides a prerequisite for achieving high isolation.
  • the antenna structure provided in the first embodiment can realize dual antenna pairs on the SUB-6G frequency band.
  • the antenna structure is compact and has high isolation. It is not limited to the SUB-6G frequency band.
  • the antenna structure exemplarily shown in FIGS. 6A-6B can also be realized as the same frequency and high isolation dual antenna pair in other frequency bands. Specifically, the gap 21 and the slot 23 in the antenna structure can be adjusted. Size to set.
  • the antenna structure can also be implemented as a dual-Wi-Fi antenna pair of the same frequency in the 2.4 GHz band.
  • the antenna structure is suitable for the terminal of the metal frame.
  • the antenna structure can also be applied to the terminal of the all-metal ID, except that a clear space needs to be reserved on the first PCB dielectric board 31 for the antenna structure.
  • the antenna structure provided in Example 2 can be implemented as a GPS L1+2.4GHz Wi-Fi MIMO antenna.
  • the operating frequency of GPS L1 is 1.575GHz
  • the operating frequency range of 2.4GHz Wi-Fi MIMO is 2.4-2.5GHz.
  • the overall size of the terminal, the size of the first PCB dielectric board 31, the size of the second PCB dielectric board 32, and the size of the gap 21 are the same as the corresponding designs in the first embodiment.
  • the size of the groove 23 in the second embodiment may be 60 mm ⁇ 2 mm, that is, longer and wider than the groove 23 in the first embodiment.
  • the structure and form of the feeding network (the first feeding network 33 and the second feeding network 35) in the second embodiment may be the same as that in the first embodiment, only because the size of the groove 23 changes, the feeding in the second embodiment
  • the size of each branch of the electrical network varies, for example, the branch of the feeder line crossing the slot 23 is longer.
  • FIG. 9 shows the simulated S-parameter, efficiency curve and envelope correlation coefficient of the antenna structure provided in the second embodiment.
  • (a) represents the simulation S parameter
  • (b) represents the efficiency curve
  • (c) identifies the envelope correlation coefficient.
  • the matching network designed at the first feed port 33-4 (port1) may be a 3nH inductor (L5) connected in series with a 3.3pF capacitor (C1) in parallel at port1, which can produce 2.4
  • the operating frequency of GHz Wi-Fi can be shown in Figure 10A.
  • the matching network designed at the second feed port 35-3 may be a 15nH inductor (L6) connected in series at port 2 and then a 0.5pF capacitor (C2) connected in parallel, and then connected in parallel 18nH inductance (L7), and finally 0.4pF capacitor (C3) in series, can produce dual frequency: GPS L1 operating frequency and 2.4GHz Wi-Fi operating frequency, as shown in Figure 10B.
  • L6 15nH inductor
  • C2 0.5pF capacitor
  • L7 18nH inductance
  • C3 0.4pF capacitor
  • the reflection coefficient is less than -6.3 dB, that is The antenna structure can generate 2.4GHz Wi-Fi resonance in half-wavelength slot mode. As shown in (a) of FIG. 9, for the aforementioned half-wavelength slot mode excited by the first feed port 33-4 (port1), in the 2.4 GHz Wi-Fi operating frequency range, the reflection coefficient is less than -6.3 dB, that is The antenna structure can generate 2.4GHz Wi-Fi resonance in half-wavelength slot mode. As shown in (a) of FIG.
  • the two resonances generated in the 2.4GHz Wi-Fi operating frequency range and the GPS L1 operating frequency have higher radiation efficiency, and there is no obvious efficiency pit. Because the polarization directions of the antennas in these two modes are orthogonal, a high degree of isolation and a small envelope correlation coefficient are also obtained in the 2.4GHz Wi-Fi operating frequency range. As shown in (c) of Fig. 9, in the required operating frequency range of 3.4GHz-3.6GHz, the envelope correlation coefficient is less than 0.0065, and the isolation is better than -21.6dB.
  • the antenna structure provided in the second embodiment can realize the GPS L1+2.4GHz Wi-Fi MIMO specification antenna, and has high isolation. Not limited to this, the antenna structure can also work in other frequency bands, such as the operating frequency range of GPS L5 (operating frequency is 1.176 GHz) + 2.4 GHz Wi-Fi MIMO, which can be specifically set by adjusting the size of the slot 23 in the antenna structure .
  • FIG. 11A-11B exemplarily show the antenna structure provided in the third embodiment.
  • FIG. 11A is a schematic diagram of an antenna model including a PCB dielectric board
  • FIG. 11B is a schematic diagram of the antenna structure after the PCB dielectric board is hidden.
  • the PCB floor 15 may be disposed at the bottom of the first PCB dielectric board 31 (i.e., the PCB 13 in FIG. 1), and a second PCB dielectric board 32 may be disposed next to the metal frame 13.
  • the antenna structure may include: a slit 21 formed in the metal frame 17 and a slot 23 communicating with the slit 21.
  • the groove 23 may communicate with the slit 21 in the middle of one side.
  • the groove 23 in the third embodiment is opened on the metal frame 17.
  • the antenna structure can radiate signals outward through the groove 23 on the metal frame 17, and no clear space can be reserved for the antenna structure on the first PCB dielectric board 31, and an antenna structure with zero clear space can be realized.
  • the first feed network 33 may be connected to both sides of the slot 21.
  • the first feeding network 33 may be specifically printed on the first PCB dielectric board 31 and the second PCB dielectric board 32.
  • the first feeding network 33 can be used to excite the antenna structure to work in the aforementioned half-wavelength slot mode, that is, it can be used to excite the antenna structure to generate a half-cycle length in-phase electric field distributed on the slot 23. At this time, the groove 23 generates radiation as a main radiator.
  • the first feeding network 33 may include feeding points provided on the metal frame 17 on both sides of the slot 21: a first feeding point 33-1 and a second feeding point 33-2, the first feeding The electric point 33-1 is provided on one side of the slit 21, and the second feeding point 33-2 is provided on the other side of the slit 21.
  • the first feeding network 33 may further include a first feeding line 33-3 and a first feeding port 33-4 (port1).
  • the first feeder 33-3 may be a microstrip line or other wires.
  • the first feed line 33-3 may be used to connect the first feed port 33-4 and the feed points on both sides of the slot 21.
  • the end of the first feeder 33-3 can be connected (through a hole punching) through the second PCB dielectric board 32 to the feed points on both sides of the slot 21.
  • the first feeder 33-3 may be a symmetric feeder structure, such as the T-shaped feeder structure shown in FIGS. 11A-11B, so that the first feed point 33-1 and the second feed point 33-2 can be realized
  • the electric potentials are equal, so that both sides of the gap 21 are equipotential. Therefore, the slot 21 may not affect the slot 23 as a slot antenna (closed at both ends) to generate resonance.
  • the first feeder 33-3 may also cross the slot 23. In this way, the groove 23 can be excited to generate a half-cycle length in-phase electric field distributed on the groove 23.
  • the groove 23 can be used as the main radiation of the antenna structure to generate radiation.
  • a matching network may be designed at the first feed port 33-4 (port1), and the matching network may be used to adjust the frequency band range covered by the slot 23 (by adjusting the antenna transmission coefficient, impedance, etc.).
  • a second feeding network 35 may be connected to one side of the slot 21.
  • the second feeding network 35 may be specifically printed on the second PCB dielectric board 32.
  • the second feeding network 35 can be used to excite the antenna structure to work in the aforementioned open-slot mode (or called in-phase current loop mode), that is, it can be specifically used to excite the antenna structure to generate an in-phase current loop around the slot 23.
  • the second feeding network 35 may include a third feeding point 35-1 on the side of the slot 21 provided on the metal frame, a second feeding line 35-2, and a second feeding port 35-3 (port 2 ).
  • the second feeder 35-2 may be a microstrip line or other wires.
  • the second feeding line 35-2 may be used to connect the second feeding port 35-3 and the third feeding point 35-1.
  • the end of the second feeder 35-2 may be connected to the third feed point 35-1 through the second PCB dielectric board 32 (by punching).
  • the second feeder 35-2 can cross the slot 21, which can excite the slot 21 to generate an electric field distributed on the slot 21, and finally form an in-phase current loop around the slot 23, which can effectively excite the PCB floor 15.
  • the PCB floor 15 can act as the main radiator of the antenna structure to generate radiation.
  • a matching network may be designed at the second feed port 35-3 (port 2), and the matching network may be used to adjust the frequency band covered by the PCB floor 15 (by adjusting the antenna transmission coefficient, impedance, etc.).
  • the polarization direction when the antenna structure operates in the half-wavelength slot mode and the polarization direction when the antenna structure operates in the open-slot mode (or in-phase current loop mode) are orthogonal, so Has good isolation.
  • the antenna structure provided in Embodiment 3 may be a zero-clearance SUB-6G dual antenna pair suitable for an all-metal ID terminal, and its operating frequency is 3.4 GHz-3.6 GHz.
  • the overall size of the terminal may be 150 mm ⁇ 75 mm ⁇ 7 mm
  • the first PCB dielectric board 31 may be a 0.8 mm thick FR-4 dielectric board
  • the size of the slot 23 may be 25 mm ⁇ 1.5 mm
  • the size of the gap 21 may be 5.5 mm ⁇ 1.5 mm
  • the second PCB dielectric board 32 closely attached to the metal frame 17 may be a layer of FR-4 dielectric board with a thickness of 0.254 mm.
  • FIG. 12 shows the simulated S-parameter, efficiency curve, and envelope correlation coefficient of the SUB-6G dual antenna pair provided in Embodiment 3.
  • (a) represents the simulation S parameter
  • (b) represents the efficiency curve
  • (c) identifies the envelope correlation coefficient.
  • the matching network designed at the first feed port 33-4 (port1) may be a parallel 33nH inductance (L8) and then a 10nH inductance (L9) in series at port1, as shown in FIG. 13A As shown.
  • the matching network designed at the second feed port 35-3 (port2) may be a parallel connection of 0.1pF capacitor (C4) and then 8nH inductor (L10) in series at port2, as shown in the figure 13B.
  • the inductances mentioned here can all be lumped inductances, which can be ideal devices.
  • the reflection coefficient is less than -4.1 dB ;
  • the reflection coefficient is less than -9.6dB. It can be seen that the antenna device can cover the frequency range of 3.4 GHz-3.6 GHz in both modes. As shown in (b) of FIG.
  • the total efficiency is between -5.8 to -3.5; for the second feed port 35 -3 (port2) the aforementioned in-phase current loop mode, the total efficiency is between -1.3 ⁇ -0.9. It can be seen that the radiation efficiency of the antenna device in these two modes is higher, and there is no obvious efficiency pit. Since the polarization directions of the antennas in these two modes are orthogonal, a high degree of isolation and a small envelope correlation coefficient are also obtained. As shown in (c) of Figure 12, within the required operating frequency range of 3.4GHz-3.6GHz, the envelope correlation coefficient is less than 0.0018, and the isolation is better than -22.6dB.
  • the antenna structure provided in Embodiment 3 is suitable for a terminal with a metal frame.
  • the antenna structure can also be applied to the terminal of the all-metal ID, and can be realized as a zero-clearance antenna structure of the terminal of the all-metal ID.
  • the antenna structure exemplarily shown in FIGS. 11A-11B can also be realized as a double-antenna pair with the same frequency and high isolation in other frequency bands at zero headroom, specifically by adjusting the slot 21 in the antenna structure , The size of the groove 23 is set.
  • the dual-Wi-Fi antenna pair with the same frequency in the 2.4GHz band is realized at zero headroom.
  • the antenna structure exemplarily shown in FIGS. 11A-11B can also be implemented as GPS L1+2.4GHz Wi-Fi MIMO specifications at zero headroom antenna.
  • the antenna structure exemplarily shown in FIGS. 11A-11B can also be implemented as an antenna of GPS L5+2.4 GHz Wi-Fi MIMO specifications with zero headroom.
  • the antenna structure provided in Embodiment 3 can also be implemented as a multi-antenna structure of other specifications at zero headroom.
  • a matching technique or a switch can be combined to adjust the length of the slot 23 so that the antenna structure can cover more frequency bands.
  • the two sides of the slot 23 may be connected through a tuning switch S1.
  • the tuning switch S1 When the tuning switch S1 is in the closed state, the length of the slot 23 becomes shorter.
  • the antenna structure may generate other resonances, which may be different from the resonance generated by the antenna structure when the tuning switch S1 is turned off. In this way, the antenna structure exemplarily shown in FIG. 14A can generate more resonances and cover more frequency bands. It is not limited to the example of FIG. 14A.
  • other matching techniques or switches may be used to adjust the length of the groove 23, which is not limited in this application.
  • Fig. 14A simplifies and exemplifies this antenna structure, and does not reflect the metal frame 17, the PCB floor 15, etc. designed for the antenna structure.
  • the groove 23 may not necessarily communicate with the gap 21 in the middle of its side
  • the slit 21 may communicate with the groove 23 at a non-intermediate position on the side of the groove 23.
  • This antenna structure can also realize multiple antennas at the slot 21, but the isolation is not as high as the antenna structures described in Embodiments 1 to 3.
  • FIG. 14B simplifies and exemplifies this antenna structure, and does not reflect the metal frame 17, PCB floor 15, etc. designed by the antenna structure.
  • the first feed network 33 may also adopt an asymmetric network structure
  • the first feeding network 33 may adopt an asymmetric network structure, for example, a feeding point 33-1 is provided only on one side of the slot 21, and the feeding line 33-3 spans ⁇ 23 ⁇ 23 through the slot.
  • This first feeding network 33 can also excite the antenna structure to work in the aforementioned half-wavelength slot mode, that is, the excitation slot 23 acts as a main radiator to generate radiation.
  • the antenna structure can also realize multiple antennas at the slot 21, but the degree of isolation is not as high as that of the antenna structures described in the first to third embodiments.
  • the antenna structures provided by the embodiments of the present application can use the slot 21 on the metal frame of the terminal and the slot 23 connecting the slot 21 to form a common antenna structure, which can realize a multi-antenna structure at the slot 21 and can be applied to Metal frame terminal or full metal ID terminal.
  • the antenna has a simple structure and belongs to a modular design, which is easy to expand.
  • the wavelength in a certain wavelength mode of the antenna may refer to the wavelength of the signal radiated by the antenna.
  • the half-wavelength mode of a floating metal antenna can generate resonance in the 2.4 GHz band, where the wavelength in the half-wavelength mode refers to the wavelength of the antenna radiating signals in the 2.4 GHz band.
  • the wavelength of the radiation signal in the medium can be calculated as follows: Where ⁇ is the relative dielectric constant of the medium, and the frequency is the frequency of the radiated signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线装置,该天线装置可以适用于金属边框的终端或全金属ID的终端。该天线装置可包括:在金属边框上开设的缝隙形成缝隙天线,以及连通该缝隙的槽形成的槽天线。该槽可以在该一条侧边的中间位置连通该缝隙,该槽可以开设于终端的金属边框上或终端的PCB地板上。该天线装置可在该缝隙处实现多天线,结构简单,属于模块化设计,便于扩展。尤其当该槽开设于金属边框上时,该天线装置可在零净空下实现为适用于全金属ID的终端的同频双天线对或其他规格的多天线。

Description

天线装置及终端 技术领域
本发明涉及天线技术领域,特别涉及应用在终端中的天线装置。
背景技术
随着移动通信技术的发展,多输入多输出(multi input multi output,MIMO)天线技术,如高保真无线多输入所输出(wireless fidelity MIMO,Wi-Fi MIMO)天线,在终端上的应用愈加广泛,天线数量成倍增加,覆盖频段越来越多。而最近的终端设计趋势是更高的屏占比、更多的多媒体器件以及更大的电池容量,这些设计使得天线空间被急剧压缩。如何在有限的设计空间内布局多天线是十分有挑战的问题。而且天线布局还需要考虑终端产品的工业设计(industry design,ID),如金属ID、全面屏ID等,这又进一步增加了天线布局的难度。
现有的MIMO天线技术可分为两类。
第一类为堆叠天线,即将一些基本类型的天线单元,如单极子、偶极子、槽等,放置在一起,再配合一些解耦技术,如中和线、扼流槽等,构成多天线。这种MIMO天线设计复杂,难以拓展到更多的天线单元并且占据较大净空。
第二类为紧凑双天线对,即在小尺度范围内放置两个天线单元,利用自解耦或者极化正交来提高双天线对隔离度,属于模块化设计方案,易于拓展到更多的天线单元。这种MIMO天线阵设计简单,但是目前仅有非金属ID解决方案,不适用于金属ID的终端。
发明内容
本发明实施例提供了一种天线装置,可在金属边框或全金属ID的终端上实现多天线结构,而且结构简单。
第一方面,本申请提供了一种应用于终端的天线装置,该终端可包括金属边框、印刷电路板PCB、PCB地板和后盖,其中,金属边框可以设置在PCB地板的边缘,PCB地板可以设置于PCB与后盖之间,PCB地板可用于PCB上承载的电子元件接地。该天线装置可包括:金属边框上开设缝隙形成的缝隙天线,以及连通该缝隙的槽形成的槽天线。该槽可以在其一条侧边连通该缝隙,该槽的另一条侧边可以接触PCB地板。具体的,该槽具体可以在其一条侧边的中间位置连通该缝隙。
其中,缝隙的两侧可以连接有第一馈电网络,第一馈电网络可用于激励天线装置产生第一辐射模式,第一辐射模式的主辐射体为槽,槽上分布有半周期长度的同相电场;缝隙的一侧还可以连接有第二馈电网络,第二馈电网络可用于激励天线装置产生第二辐射模式,第二辐射模式的主辐射体为PCB地板,槽的周围分布有同相电流环;第一辐射模式的极化方向与第二辐射模式的极化方向正交。
也即是说,该天线装置可具有两种辐射模式:第一辐射模式和第二辐射模式。其中,第一辐射模式可以是实施例部分提及的半波长槽模式,第二辐射模式可以是实施例部分提及的开路槽模式(又可称为同相电流环模式)。其中:
第一辐射模式:槽上分布着半周期长度的同相电场。此时,槽可以作为主辐射体,其极化方向为槽的横轴方向负X方向(对于图2A-图2B所示的天线结构)或Z方向(对于图3A-图3B所示的天线结构)。也即是说,第一辐射模式可以通过槽产生辐射。
第二辐射模式:缝隙将槽分成缝隙两侧的两个槽。这两个槽都可以工作在1/4波长模式下。从槽的一端到另一端,电场分布为:电场由零点变化到最大值,经过缝隙后电场方向发生反转,然后电场从反向最大值变化到零点。电流围绕着槽形成同相电流环,从而可有效激励PCB地板产生辐射。也即是说,第二辐射模式可以通过缝隙激励PCB地板产生辐射。此时,PCB地板可以是主辐射体,极化方向为负Y方向。
可以看出,这两种辐射模式的主辐射体的极化方向正交,即槽的极化方向和PCB地板的极化方向正交,可实现高隔离度。而且,该天线装置可在该缝隙处实现多天线,结构简单,属于模块化设计,便于扩展。尤其当该槽开设于金属边框上时,该天线装置可在零净空下实现为适用于全金属ID的终端的同频双天线对或其他规格的多天线。
结合第一方面,在一些实施例中,后盖可以是绝缘材料制成的后盖,如玻璃后盖、塑料后盖等。后盖也可以是金属后盖。如果终端是全金属ID的终端,那后盖就是金属后盖。
结合第一方面,在一些实施例中,该槽可以是在PCB地板上开槽形成的槽,该槽也可以是在金属边框上开槽形成的槽。槽的开槽方向可以和金属边框的延伸方向一致。
结合第一方面,在一些实施例中,第一馈电网络的具体实现可如下:
第一馈电网络可包括在金属边框上设置的分别位于缝隙两侧的馈电点:第一馈电点和第二馈电点,第一馈电点设置在缝隙的一侧,第二馈电点设置在缝隙的另一侧。第一馈电网络还可包括第一馈电线和第一馈电端口(port1)。第一馈电线可以是微带线或者其他导线。第一馈电线还可以跨过槽可用于连接第一馈电端口和缝隙两侧的馈电点。第一馈电线还可以跨过槽。这样可以激励槽产生分布在槽上的半周期长度的同相电场。
其中,第一馈电线可以是对称馈电线结构,这样可实现第一馈电点和第二馈电点的电势相等,从而使得缝隙两侧等电势。
其中,第一馈电端口(port1)处可设计有匹配网络,该匹配网络可以用于(通过调节天线发射系数、阻抗等)调节槽所覆盖的频段范围。
结合第一方面,在一些实施例中,第二馈电网络的具体实现可如下:
第二馈电网络可包括在金属边框上设置的位于缝隙一侧的第三馈电点、第二馈电线和第二馈电端口(port2)。第二馈电线可以是微带线或者其他导线。第二馈电线可用于连接第二馈电端口和第三馈电点。第二馈电线可以跨过缝隙,这样可以激励缝隙产生分布在缝隙上的电场,最终形成围绕槽的同相电流环,可有效激励PCB地板。此时,PCB地板可作为该天线结构的主辐射体产生辐射。
其中,第二馈电端口(port2)处可设计有匹配网络,该匹配网络可用于(通过调节天线发射系数、阻抗等)调节PCB地板所覆盖的频段范围。
结合第一方面,在一些实施例中,天线装置工作在前述半波长模式时激励槽产生的谐振和天线装置工作在前述同相电流环模式时激励PCB地板产生的谐振可以处于相同频段。也即是说,该天线装置可以是同频双天线对。
可选的,该天线装置具体可以是SUB-6G双天线对,其工作频率为3.4GHz-3.6GHz, 即该相同频段为SUB-6G频段。可选的,该天线装置具体也可以是同频双Wi-Fi天线对,如2.4GHz频段的双Wi-Fi天线对,即该相同频段为Wi-Fi频段,如2.4GHz Wi-Fi频段。不限于此,该天线装置还可以其他频段的同频双天线对。
结合第一方面,在一些实施例中,天线装置工作在前述半波长模式时可以激励槽产生第一频段的谐振,天线装置工作在前述同相电流环模式时可以激励PCB地板产生第二频段的谐振。
可选的,第一频段可包括Wi-Fi频段,第二频段可包括Wi-Fi频段和GPS频段。例如,该天线装置可以在前述半波长模式下激励槽产生2.4GHz Wi-Fi谐振(第一频段为2.4GHz Wi-Fi频段),在前述同相电流环模式下激励PCB地板产生GPS L1和2.4GHz Wi-Fi两个谐振(第二频段包括2.4GHz Wi-Fi频段和GPS L1频段)。不限于此,第一频段、第二频段还可以是其他频段,例如该天线结构还可以在前述半波长模式下激励槽产生2.4GHz Wi-Fi谐振(第一频段为2.4GHz Wi-Fi频段),在前述同相电流环模式下激励PCB地板产生GPS L5和2.4GHz Wi-Fi两个谐振(第二频段包括2.4GHz Wi-Fi频段和GPS L5频段)。
第二方面,本申请提供了一种终端,该终端可包括金属边框、印刷电路板PCB、PCB地板、后盖和上述第一方面描述的天线装置。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1是本申请的一个实施例提供的终端的结构示意图;
图2A-图2B是本申请提供的一种天线装置的示意图;
图3A-图3B是本申请提供的一种天线装置的示意图;
图4A-图4B是图2A-图2B所示的天线结构的两种辐射模式的示意图;
图5A-图5B是图3A-图3B所示的天线结构的两种辐射模式的示意图;
图6A-图6B是本申请的一个实施例的一种天线设计方案的示意图;
图7是图6A-图6B所示的天线设计方案的一些仿真示意图;
图8A-图8B是图6A-图6B所示的天线设计方案中馈电端口处的匹配网络的示意图;
图9是本申请的另一个实施例的天线设计方案的一些仿真示意图;
图10A-图10B是本申请的另一个实施例的天线设计方案中馈电端口处的匹配网络的示意图;
图11A-图11B是本申请的再一个实施例的一种设计方案的示意图;
图12是图11A-图11B所示的天线设计方案的一些仿真示意图;;
图13A-图13B是图11A-图11B所示的天线设计方案馈电端口处的匹配网络的示意图;
图14A-14C是本申请的再一些实施例提供的天线装置的结构示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
本申请提供的技术方案适用于采用以下一种或多种MIMO通信技术的终端:长期演进 (long term evolution,LTE)通信技术、Wi-Fi通信技术、5G通信技术、SUB-6G通信技术以及未来其他MIMO通信技术等。本申请中,终端可以是手机、平板电脑、个人数码助理(personal digital assistant,PDA)等等电子设备。
图1示例性示出了本申请提供的天线设计方案所基于的终端内部环境。如图1所示,终端可包括:显示屏11、印刷电路板PCB13、PCB地板15、金属边框17和后盖19。显示屏11、印刷电路板PCB13、PCB地板15和后盖19可以分别设置于不同的层,这些层可以相互平行,各层所在的平面可以称为X-Y平面,垂直于X-Y平面的方向为Z方向。也即是说,显示屏11、印刷电路板PCB13、PCB地板15和后盖17可以在Z方向上分层分布。
其中,印刷电路板PCB13可以采用FR-4介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板一种高频板。
其中,后盖19可以是绝缘材料制成的后盖,如玻璃后盖、塑料后盖等。后盖19也可以是金属后盖。如果图1所示的终端是全金属ID的终端,那后盖19就是金属后盖。
其中,PCB地板15接地,可设置于印刷电路板PCB13与后盖19之间。PCB地板15又可以称为PCB底板。具体的,PCB地板15可以是蚀刻在PCB13表面的一层金属,这层金属还可以通过一系列金属弹片接在金属中框(未示出)上,跟金属中框成为一体。PCB地板15可用于印刷电路板PCB13上承载的电子元件接地。具体的,印刷电路板PCB13上承载的电子元件可以通过接线到PCB地板15来实现接地,以防止用户触电或设备损坏。
其中,金属边框17可以设置于印刷电路板PCB13、PCB地板15的边缘,可以从侧边包覆后盖19与显示屏11之间的印刷电路板PCB13、PCB地板15,以达到防尘、防水的目的。在一种实现方式中,金属边框17可以包括4条金属边,这4条金属边可以环设于显示屏11、印刷电路板PCB13、PCB地板15和后盖19的周围。在另一种实现方式中,金属边框17可以仅包括2条金属边,这2条金属边可以在Y方向上设置于显示屏11、印刷电路板PCB13、PCB地板15和后盖19的两侧。不限于这两种实现方式,金属边框17还可以呈现其他的设计样式,例如单金属边的金属边框17,本申请对此不做限制。
基于图1所示的终端内部环境,本申请提供了适用于金属边框的终端的多天线设计方案,以及适用全金属ID的终端的多天线设计方案。
本申请提供的多天线设计方案的主要设计思想可包括:在金属边框17上开设缝隙,利用该缝隙形成的缝隙天线和连通该缝隙的槽形成的槽天线来构成多天线结构。其中,该槽可以在其一条侧边的中间位置连通该缝隙,该槽的另一条侧边可接触PCB地板。
在一些实施例中,该槽可以设置于PCB地板15上,可如图2A-图2B所示。其中,图2A是沿Z方向观察该天线结构的视图,图2B是沿负X方向观察该天线结构的视图。如图2A-图2B所示,该槽可以是在PCB地板15上开槽形成的槽23。槽23的开槽方向可以和金属边框17的延伸方向一致。槽23可以在其侧边的中间位置连通金属边框17上开设的缝隙21。
在另一些实施例中,该槽可以设置于金属边框17上,可如图3A-图3B所示。其中,图3A是沿Z方向观察该天线结构的视图,图3B是沿负X方向观察该天线结构的视图。 如图3A-图3B所示,该槽可以是在金属边框17上开槽形成的槽23。槽23的开槽方向和金属边框17的延伸方向一致。槽23可以在其一条侧边的中间位置连通金属边框17上开设的缝隙21。槽23的另一条侧边可接触PCB地板15。
本申请提供的天线结构具有的两种辐射模式可如图4A-图4B所示和图5A-图5B所示。其中,图4A-图4B示出了图2A-图2B所示的天线结构的辐射模式。图5A-图5B示出了图3A-图3B所示的天线结构的辐射模式。
本申请提供的天线结构可具有两种辐射模式:半波长槽模式(图4A和图5A所示)和开路槽模式(又可称为同相电流环模式)(图4B和图5B所示)。本申请中,可以将半波长模式称为第一辐射模式,可以将开路槽模式(又可称为同相电流环模式)称为第二辐射模式。其中:
半波长槽模式:槽23上分布着半周期长度的同相电场。缝隙21的两侧可以等电势,缝隙21不影响槽23作为一个槽天线(两端闭合)产生谐振,两端闭合的槽天线通常在半波长模式下产生谐振。如图4A和图5A所示,槽23上的电流分布可以为槽天线在半波长模式下的典型电流分布。此时,槽23可以作为主辐射体,其极化方向为槽23的横轴方向负X方向(对于图2A-图2B所示的天线结构)或Z方向(对于图3A-图3B所示的天线结构)。
也即是说,半波长槽模式可以激励槽23产生分布在槽23上的半周期长度的同相电场(分布在槽23上),此时槽23可作为该天线结构的主辐射产生辐射。即半波长槽模式可以通过槽产生辐射。
开路槽模式(或称为同相电流环模式):缝隙21将槽23分成缝隙21两侧的两个槽。这两个槽都可以工作在1/4波长模式下。从槽23的一端到另一端,电场分布为:电场由零点变化到最大值,经过缝隙21后电场方向发生反转,然后电场从反向最大值变化到零点。如图4B和图5B所示,电流围绕着槽23形成同相电流环,从而可有效激励PCB地板产生辐射。也即是说,同相电流环模式可以通过缝隙激励PCB地板产生辐射。此时,PCB地板15可以是主辐射体,极化方向为负Y方向。
也即是说,开路槽模式(或称为同相电流环模式)可以激励缝隙21产生围绕着槽23的同相电流环,从而可有效激励PCB地板15产生辐射。此时PCB地板15可作为该天线结构的主辐射产生辐射。
可以看出,这两种辐射模式的极化方向正交,即第一辐射模式的主辐射体槽23的极化方向和第二辐射模式的主辐射体PCB地板15的极化方向正交,可实现高隔离度。具体实现中,利用合适的馈电网络便可使得本申请提供的天线结构(如图2A-2B所示或图3A-图3B所示)工作在上述两种辐射模式下。这样,便可实现在缝隙21上得到双天线对,实现2×2 MIMO规格。再进一步结合一些匹配电路(如调谐开关)或开关电路来调节槽23的长度,便可覆盖更多的频段。而且,这种天线设计方案属于模块化设计,易于扩展为更多的天线单元。
另外,本申请提供的天线设计方案可适用于金属边框的终端。而且,图3A-图3B所示的天线结构中的槽23开设在金属边框17上,此时该天线结构可以通过槽23向外辐射信号,PCB13上无需预留净空,可适用全金属ID的终端。
下面将详细说明本申请的各个实施例提供的天线结构。
实施例一
图6A-图6B示例性示出了实施例一提供的天线结构。其中,图6A为包括PCB介质板的天线模型示意图,图6B为隐去PCB介质板后的天线结构示意图。PCB地板15可以设置于第一PCB介质板31(即图1中的PCB13)的底部,紧贴着金属边框13也可以设置一层第二PCB介质板32。如图6A-图6B所示,该天线结构可以包括:在金属边框17上开设的缝隙21和在PCB地板15上开设的槽23。槽23可以在其一侧边的中间位置连通缝隙21。
缝隙21的两侧可连接有第一馈电网络33。第一馈电网络33具体可以印制在第一PCB介质板31和第二PCB介质板32上。第一馈电网络33可用于激励该天线结构工作在前述半波长槽模式,即可用于激励该天线结构产生分布在槽23上的半周期长度的同相电场。此时槽23作为主辐射体产生辐射。
具体的,第一馈电网络33可包括在金属边框17上设置的分别位于缝隙21两侧的馈电点:第一馈电点33-1和第二馈电点33-2,第一馈电点33-1设置在缝隙21的一侧,第二馈电点33-2设置在缝隙21的另一侧。第一馈电网络33还可包括第一馈电线33-3和第一馈电端口33-4(port1)。第一馈电线33-3可以是微带线或者其他导线。第一馈电线33-3可用于连接第一馈电端口33-4和缝隙21两侧的馈电点。具体的,第一馈电线33-3的末端可以(通过打孔的方式)穿过第二PCB介质板32连接到缝隙21两侧的馈电点。第一馈电线33-3可以是对称馈电线结构,如图6A-图6B所示的T型馈电线结构,这样可实现第一馈电点33-1和第二馈电点33-2的电势相等,从而使得缝隙21两侧等电势。因此,缝隙21可以不影响槽23作为一个槽天线(两端闭合)产生谐振。第一馈电线33-3还可以跨过槽23。这样可以激励槽23产生分布在槽23上的半周期长度的同相电场。此时槽23可作为该天线结构的主辐射产生辐射。第一馈电端口33-4(port1)处可设计有匹配网络,该匹配网络可以用于(通过调节天线发射系数、阻抗等)调节槽23形成的槽天线所覆盖的频段范围。
缝隙21的一侧可连接有第二馈电网络35。第二馈电网络35具体可以印制在第二PCB介质板32上。第二馈电网络35可用于激励该天线结构工作在前述开路槽模式(或称为同相电流环模式),即具体可用于激励该天线结构产生围绕槽23的同相电流环。
具体的,第二馈电网络35可包括在金属边框上设置的位于缝隙21一侧的第三馈电点35-1、第二馈电线35-2和第二馈电端口35-3(port2)。第二馈电线35-2可以是微带线或者其他导线。第二馈电线35-2可用于连接第二馈电端口35-3和第三馈电点35-1。具体的,第二馈电线35-2的末端可以(通过打孔的方式)穿过第二PCB介质板32连接到第三馈电点35-1。第二馈电线35-2可以跨过缝隙21,这样可以激励缝隙21产生分布在缝隙21上的电场,最终形成围绕槽23的同相电流环,可有效激励PCB地板15。此时,PCB地板15可作为该天线结构的主辐射体产生辐射。第二馈电端口35-3(port2)处可设计有匹配网络,该匹配网络可用于(通过调节天线发射系数、阻抗等)调节PCB地板15所覆盖的频段范围。
根据前述内容可知,该天线结构工作在前述半波长槽模式时的极化方向和该天线结构工作在前述开路槽模式(或称为同相电流环模式)时的极化方向是正交的,因而具有良好 的隔离度。
实施例一提供的天线结构可以为SUB-6G双天线对,其工作频率为3.4GHz-3.6GHz。在一种可选的实现方式中,终端的整机尺寸可以为150mm×75mm×7mm,第一PCB介质板31可以为0.8mm厚的FR-4介质板,槽23的尺寸可以为25mm×1.5mm,缝隙21的尺寸可以为7mm×1.5mm,紧贴着金属边框17的第二PCB介质板32可以一层厚度为0.254mm的FR-4介质板。
图7示出了实施例一提供的SUB-6G双天线对的仿真S参数、效率曲线和包络相关系数。其中,(a)表示仿真S参数,(b)表示效率曲线,(c)标识包络相关系数。在一种可选的实现方式中,第一馈电端口33-4(port1)处设计的匹配网络可以是在port1处先并联12nH电感(L1)再串联9.1nH电感(L2),可如图8A所示。在一种可选的实现方式中,第二馈电端口35-3(port2)处设计的匹配网络可以是在port2处先并联8.2nH电感(L3)再串联6.2nH电感(L4),可如图8B所示。这里提及的电感均可以是集总电感,可为理想器件。
如图7中(a)所示,在所需工作频率范围3.4GHz-3.6GHz内,对于第一馈电端口33-4(port1)所激励的前述半波长槽模式,反射系数小于-4.7dB;对于第二馈电端口35-3(port2)所激励的前述同相电流环模式,反射系数小于-9.9dB。可以看出,该天线装置在这两种模式下都可以覆盖3.4GHz-3.6GHz的频率范围。如图7中(b)所示,对于第一馈电端口33-4(port1)所激励的前述半波长槽模式,总效率介于-4.7~-2.7之间;对于第二馈电端口35-3(port2)所激励的前述同相电流环模式,总效率介于-1.6~-1.1之间。可以看出,该天线装置在这两种模式下的辐射效率均较高,没有明显的效率凹坑。由于这两种模式下的天线极化方向正交,因此也得到了很高的隔离度和很小的包络相关系数。如图7中(c)所示,在所需工作频率范围3.4GHz-3.6GHz内,包络相关系数小于0.009,隔离度优于-22.1dB。第一馈电网络33采用的对称结构对于提高隔离度有很大帮助。由于第一馈电网络33采用对称结构,因此,当第一馈电端口33-4(port1)馈电激励前述半波长槽模式时,缝隙21两侧电场相位相同;而当第二馈电端口35-3(port2)馈电激励前述同相电流环模式时,缝隙21两侧电场相位差相差180°。这样,第一馈电端口33-4(port1)和第二馈电端口35-3(port2)之间便无法互相传递能量,为实现高隔离度提供了前提。
实施例一提供的天线结构可实现SUB-6G频段上的双天线对,天线结构紧凑,而且具有很高的隔离度。不限于SUB-6G频段,图6A-图6B示例性所示的天线结构还可以实现为其他频段的同频高隔离度双天线对,具体可通过调整该天线结构中的缝隙21、槽23的尺寸来设置。例如,该天线结构还可以实现为2.4GHz频段的同频双Wi-Fi天线对。该天线结构适用于金属边框的终端。可选的,该天线结构也可以适用于全金属ID的终端,只是需要在第一PCB介质板31上为该天线结构预留净空。
实施例二
实例二提供的天线结构可以参考图6A-图6B。实施例二提供的天线结构可以实现为GPS L1+2.4GHzWi-Fi MIMO规格的天线,GPS L1的工作频率1.575GHz,2.4GHz Wi-Fi MIMO的工作频率范围为2.4~2.5GHz。实施例二中,终端的整机尺寸、第一PCB介质板 31的尺寸、第二PCB介质板32的尺寸以及缝隙21的尺寸均与实施例一中的相应设计相同。与实施例一不同的是,实施例二中的槽23的尺寸可以为60mm×2mm,即比实施例一中的槽23更长更宽。另外,实施例二中的馈电网络(第一馈电网络33、第二馈电网络35)的结构和形式可以同于实施例一,只是因为槽23的尺寸变化,实施例二中的馈电网络的各枝节尺寸有所变化,如跨过槽23的馈电线枝节更长。
图9示出了实施例二提供的天线结构的仿真S参数、效率曲线和包络相关系数。其中,(a)表示仿真S参数,(b)表示效率曲线,(c)标识包络相关系数。在一种可选的实现方式中,第一馈电端口33-4(port1)处设计的匹配网络可以是在port1处先串联3nH电感(L5)再并联3.3pF电容(C1),可产生2.4GHz Wi-Fi的工作频率,可如图10A所示。在一种可选的实现方式中,第二馈电端口35-3(port2)处设计的匹配网络可以是在port2处先串联15nH电感(L6)再并联0.5pF电容(C2),然后再并联18nH电感(L7),最后串联0.4pF电容(C3),可产生双频:GPS L1的工作频率和2.4GHz Wi-Fi的工作频率,可如图10B所示。这里提及的电感和电容均可以是集总元件,可为理想器件。
如图9中(a)所示,对于第一馈电端口33-4(port1)所激励的前述半波长槽模式,在2.4GHz Wi-Fi工作频率范围内,反射系数小于-6.3dB,即该天线结构可以在半波长槽模式下产生2.4GHz Wi-Fi谐振。如图9中(a)所示,对于第二馈电端口35-3(port2)所激励的前述同相电流环模式,可产生GPS L1和2.4GHz Wi-Fi两个谐振,其中,2.4GHz Wi-Fi谐振的反射系数接近半波长槽模式下的2.4GHz Wi-Fi谐振的反射系数(即小于-6.3dB),在GPS L1的工作频率上的谐振的发射系数小于-5.8dB。如图9中(b)所示,对于第一馈电端口33-4(port1)所激励的前述半波长槽模式,在2.4GHz Wi-Fi工作频率范围内,总效率介于-2.2~-1.9之间。可以看出,该天线装置在半波长槽模式下在2.4GHz Wi-Fi工作频率范围内产生的谐振的辐射效率较高,没有明显的效率凹坑。如图9中(b)所示,对于第二馈电端口35-3(port2)所激励的前述同相电流环模式,可产生GPS L1和2.4GHz Wi-Fi两个谐振,其中,2.4GHz Wi-Fi谐振的总效率几乎同于半波长槽模式下的2.4GHz Wi-Fi谐振的总效率(即介于-2.2~-1.9之间),在GPS L1的工作频率上的谐振的总效率为-4.9。可以看出,该天线装置在同相电流环模式下分别在2.4GHz Wi-Fi工作频率范围内、GPS L1工作频率产生的两个谐振的辐射效率均较高,没有明显的效率凹坑。由于这两种模式下的天线极化方向正交,因此在2.4GHz Wi-Fi工作频率范围内也得到了很高的隔离度和很小的包络相关系数。如图9中(c)所示,在所需工作频率范围3.4GHz-3.6GHz内,包络相关系数小于0.0065,隔离度优于-21.6dB。
实施例二提供的天线结构可实现GPS L1+2.4GHzWi-Fi MIMO规格的天线,而且具有很高的隔离度。不限于此,该天线结构还可以工作在其他频段,如GPS L5(工作频率为1.176GHz)+2.4GHzWi-Fi MIMO的工作频率范围,具体可通过调整该天线结构中的槽23的尺寸来设置。
实施例三
图11A-图11B示例性示出了实施例三提供的天线结构。其中,图11A为包括PCB介质板的天线模型示意图,图11B为隐去PCB介质板后的天线结构示意图。PCB地板15可 以设置于第一PCB介质板31(即图1中的PCB13)的底部,紧贴着金属边框13也可以设置一层第二PCB介质板32。如图11A-图11B所示,该天线结构可以包括:在金属边框17上开设的缝隙21和连通缝隙21的槽23。槽23可以在其一侧边的中间位置连通缝隙21。和实施例一不同是,实施例三中的槽23开设于金属边框17上。这样,该天线结构可以通过金属边框17上的槽23向外辐射信号,第一PCB介质板31上可无需为该天线结构预留净空,可实现零净空的天线结构。
缝隙21的两侧可连接有第一馈电网络33。第一馈电网络33具体可以印制在第一PCB介质板31和第二PCB介质板32上。第一馈电网络33可用于激励该天线结构工作在前述半波长槽模式,即可用于激励该天线结构产生分布在槽23上的半周期长度的同相电场。此时槽23作为主辐射体产生辐射。
具体的,第一馈电网络33可包括在金属边框17上设置的分别位于缝隙21两侧的馈电点:第一馈电点33-1和第二馈电点33-2,第一馈电点33-1设置在缝隙21的一侧,第二馈电点33-2设置在缝隙21的另一侧。第一馈电网络33还可包括第一馈电线33-3和第一馈电端口33-4(port1)。第一馈电线33-3可以是微带线或者其他导线。第一馈电线33-3可用于连接第一馈电端口33-4和缝隙21两侧的馈电点。具体的,第一馈电线33-3的末端可以(通过打孔的方式)穿过第二PCB介质板32连接到缝隙21两侧的馈电点。第一馈电线33-3可以是对称馈电线结构,如图11A-图11B所示的T型馈电线结构,这样可实现第一馈电点33-1和第二馈电点33-2的电势相等,从而使得缝隙21两侧等电势。因此,缝隙21可以不影响槽23作为一个槽天线(两端闭合)产生谐振。第一馈电线33-3还可以跨过槽23。这样可以激励槽23产生分布在槽23上的半周期长度的同相电场。此时槽23可作为该天线结构的主辐射产生辐射。第一馈电端口33-4(port1)处可设计有匹配网络,该匹配网络可以用于(通过调节天线发射系数、阻抗等)调节槽23所覆盖的频段范围。
缝隙21的一侧可连接有第二馈电网络35。第二馈电网络35具体可以印制在第二PCB介质板32上。第二馈电网络35可用于激励该天线结构工作在前述开路槽模式(或称为同相电流环模式),即具体可用于激励该天线结构产生围绕槽23的同相电流环。
具体的,第二馈电网络35可包括在金属边框上设置的位于缝隙21一侧的第三馈电点35-1、第二馈电线35-2和第二馈电端口35-3(port2)。第二馈电线35-2可以是微带线或者其他导线。第二馈电线35-2可用于连接第二馈电端口35-3和第三馈电点35-1。具体的,第二馈电线35-2的末端可以(通过打孔的方式)穿过第二PCB介质板32连接到第三馈电点35-1。第二馈电线35-2可以跨过缝隙21,这样可以激励缝隙21产生分布在缝隙21上的电场,最终形成围绕槽23的同相电流环,可有效激励PCB地板15。此时,PCB地板15可作为该天线结构的主辐射体产生辐射。第二馈电端口35-3(port2)处可设计有匹配网络,该匹配网络可用于(通过调节天线发射系数、阻抗等)调节PCB地板15所覆盖的频段范围。
根据前述内容可知,该天线结构工作在前述半波长槽模式时的极化方向和该天线结构工作在前述开路槽模式(或称为同相电流环模式)时的极化方向是正交的,因而具有良好的隔离度。
实施例三提供的天线结构可以为适用于全金属ID的终端的零净空SUB-6G双天线对, 其工作频率为3.4GHz-3.6GHz。在一种可选的实现方式中,终端的整机尺寸可以为150mm×75mm×7mm,第一PCB介质板31可以为0.8mm厚的FR-4介质板,槽23的尺寸可以为25mm×1.5mm,缝隙21的尺寸可以为5.5mm×1.5mm,紧贴着金属边框17的第二PCB介质板32可以一层厚度为0.254mm的FR-4介质板。
图12示出了实施例三提供的SUB-6G双天线对的仿真S参数、效率曲线和包络相关系数。其中,(a)表示仿真S参数,(b)表示效率曲线,(c)标识包络相关系数。在一种可选的实现方式中,第一馈电端口33-4(port1)处设计的匹配网络可以是在port1处先并联33nH电感(L8)再串联10nH电感(L9),可如图13A所示。在一种可选的实现方式中,第二馈电端口35-3(port2)处设计的匹配网络可以是在port2处先并联0.1pF电容(C4)再串联8nH电感(L10),可如图13B所示。这里提及的电感均可以是集总电感,可为理想器件。
如图12中(a)所示,在所需工作频率范围3.4GHz-3.6GHz内,对于第一馈电端口33-4(port1)所激励的前述半波长槽模式,反射系数小于-4.1dB;对于第二馈电端口35-3(port2)所激励的前述同相电流环模式,反射系数小于-9.6dB。可以看出,该天线装置在这两种模式下都可以覆盖3.4GHz-3.6GHz的频率范围。如图12中(b)所示,对于第一馈电端口33-4(port1)所激励的前述半波长槽模式,总效率介于-5.8~-3.5之间;对于第二馈电端口35-3(port2)所激励的前述同相电流环模式,总效率介于-1.3~-0.9之间。可以看出,该天线装置在这两种模式下的辐射效率均较高,没有明显的效率凹坑。由于这两种模式下的天线极化方向正交,因此也得到了很高的隔离度和很小的包络相关系数。如图12中(c)所示,在所需工作频率范围3.4GHz-3.6GHz内,包络相关系数小于0.0018,隔离度优于-22.6dB。
实施例三提供的天线结构适用于金属边框的终端。该天线结构还可适用于全金属ID的终端,并且可以实现为适用全金属ID的终端的零净空天线结构。不限于SUB-6G频段,图11A-图11B示例性所示的天线结构还可以在零净空下实现为其他频段的同频高隔离度双天线对,具体可通过调整该天线结构中的缝隙21、槽23的尺寸来设置。例如,在零净空下实现为2.4GHz频段的同频双Wi-Fi天线对。又例如,当槽23的尺寸采用实施例二中的槽23的尺寸时,图11A-图11B示例性所示的天线结构还可以在零净空下实现为GPS L1+2.4GHzWi-Fi MIMO规格的天线。再例如,图11A-图11B示例性所示的天线结构还可以在零净空下实现为GPS L5+2.4GHzWi-Fi MIMO规格的天线。不限于这些示例,实施例三提供的天线结构还可以在零净空下实现为其他规格的多天线结构。
下面说明上述各个实施例涉及的扩展实施方式。
1.结合匹配技术调节槽23的长度
在一些实施例中,可以结合匹配技术或开关来调节槽23的长度,使得该天线结构可以覆盖更多的频段。例如,如图14A示例性所示,在槽23的两侧边可以通过调谐开关S1连接。当调谐开关S1处于闭合状态时,槽23的长度变短了。此时,该天线结构可以产生其他谐振,该其他谐振可以不同于调谐开关S1断开时该天线结构所产生的谐振。这样,图14A示例性所示的天线结构便可以产生更多谐振,覆盖更多的频段。不限于图14A的示例,实际应用中还可以结合其他匹配技术或开关来调节槽23的长度,本申请不做限制。图14A简化示例 性示意了这种天线结构,未体现该天线结构所设计的金属边框17、PCB地板15等。
2.槽23可以不必须在其侧边的中间位置连通缝隙21
在一些实施例中,如图14B示例性所示,缝隙21可以在槽23的侧边的非中间位置连通槽23。这种天线结构也可以在缝隙21处实现多天线,只是隔离度的不如实施例一至实施例三所描述的天线结构的隔离度高。图14B简化示例性示意了这种天线结构,未体现该天线结构所设计的金属边框17、PCB地板15等。
3.第一馈电网络33也可以采用非对称网络结构
在一些实施例中,如图14C示例性所示,第一馈电网络33可以采用非对称网络结构,如只在缝隙21的一侧设有馈电点33-1,馈电线33-3跨过槽23。这种第一馈电网络33也可以激励该天线结构工作在前述半波长槽模式,即激励槽23作为主辐射体产生辐射。此时该天线结构也可以在缝隙21处实现多天线,只是隔离度的不如实施例一至实施例三所描述的天线结构的隔离度高。
可以看出,本申请的各个实施例提供的天线结构可以利用终端的金属边框上的缝隙21和连通缝隙21的槽23构成共体天线结构,可在缝隙21处实现多天线结构,可适用于金属边框的终端或全金属ID的终端。而且天线结构简单,属于模块化设计,易于扩展。
本申请中,天线的某种波长模式(如二分之一波长模式等)中的波长可以是指该天线辐射的信号的波长。例如,悬浮金属天线的二分之一波长模式可产生2.4GHz频段的谐振,其中二分之一波长模式中的波长是指天线辐射2.4GHz频段的信号的波长。应理解的是,辐射信号在空气中的波长可以如下计算:波长=光速/频率,其中频率为辐射信号的频率。辐射信号在介质中的波长可以如下计算:
Figure PCTCN2018124495-appb-000001
其中,ε为该介质的相对介电常数,频率为辐射信号的频率。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种应用于终端的天线装置,所述终端包括金属边框、印刷电路板PCB、PCB地板和后盖,所述金属边框设置在所述PCB地板的边缘,所述PCB地板设置于所述PCB与所述后盖之间,所述PCB地板用于所述PCB上承载的电子元件接地;其特征在于,所述天线装置包括:在所述金属边框上开设缝隙形成的缝隙天线以及连通所述缝隙的槽形成的槽天线;所述槽在所述槽的一条侧边连通所述缝隙,所述槽的另一条侧边接触所述PCB地板;
    所述缝隙的两侧连接有第一馈电网络,所述第一馈电网络用于激励所述天线装置产生第一辐射模式,所述第一辐射模式的主辐射体为所述槽,所述槽上分布有半周期长度的同相电场;
    所述缝隙的一侧还连接有第二馈电网络,所述第二馈电网络用于激励所述天线装置产生第二辐射模式,所述第二辐射模式的主辐射体为所述PCB地板,所述槽的周围分布有同相电流环;
    所述第一辐射模式的极化方向与所述第二辐射模式的极化方向正交。
  2. 如权利要求1所述的天线装置,其特征在于,所述槽具体在所述槽的一条侧边的中间位置连通所述缝隙。
  3. 如权利要求1或2所述的天线装置,其特征在于,所述槽天线是在所述金属边框上开槽形成的。
  4. 如权利要求1或2所述的天线装置,其特征在于,所述槽天线是在所述PCB地板上开槽形成的。
  5. 如权利要求1-4中任一项所述的天线装置,其特征在于,所述第一馈电网络包括第一馈电点、第二馈电点、第一馈电线和第一馈电端口;所述第一馈电点设置在所述缝隙的一侧,所述第二馈电点设置在所述缝隙的另一侧;所述第一馈电线跨过所述槽,所述第一馈电线用于连接所述第一馈电端口、第一馈电点和第二馈电点。
  6. 如权利要求5所述的天线装置,其特征在于,所述第一馈电线的结构是对称馈电线结构,使得所述缝隙两侧的电势相等。
  7. 如权利要求5-6中任一项所述的天线装置,其特征在于,所述第一馈电端口处设有匹配网络,所述匹配网络用于调节所述槽天线覆盖的频段范围。
  8. 如权利要求1-4中任一项所述的天线装置,其特征在于,所述第二馈电网络包括第三馈电点、第二馈电线和第二馈电端口,所述第三馈电点设置在所述缝隙的一侧,所述第 二馈电线跨过所述缝隙,所述第二馈电线用于连接所述第二馈电端口和所述第三馈电点。
  9. 如权利要求8所述的天线装置,其特征在于,所述第二馈电端口处设有匹配网络,所述匹配网络用于调节所述PCB地板覆盖的频段范围。
  10. 如权利要求1-9中任一项所述的天线装置,其特征在于,所述天线装置工作在所述第一辐射模式时激励所述槽天线产生的谐振和所述天线装置工作在所述第二辐射模式时激励所述PCB地板产生的谐振处于相同频段。
  11. 如权利要求10所述的天线装置,其特征在于,所述相同频段包括:SUB-6G频段、Wi-Fi频段或GPS频段。
  12. 如权利要求1-9中任一项所述的天线装置,其特征在于,所述天线装置工作在所述第一辐射模式时激励所述槽天线产生第一频段的谐振,所述天线装置工作在所述第二辐射模式时激励所述PCB地板产生第二频段的谐振。
  13. 如权利要求12所述的天线装置,其特征在于,所述第一频段包括:Wi-Fi频段;所述第二频段包括:Wi-Fi频段和GPS频段。
  14. 如权利要求1-13中任一项所述的天线装置,其特征在于,所述后盖为金属后盖。
  15. 一种电子设备,其特征在于,包括金属边框、印刷电路板PCB、PCB地板、后盖和如权利要求1至14中任意一项所述的天线装置。
PCT/CN2018/124495 2018-12-27 2018-12-27 天线装置及终端 WO2020133111A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/418,515 US11876285B2 (en) 2018-12-27 2018-12-27 Antenna apparatus and terminal
PCT/CN2018/124495 WO2020133111A1 (zh) 2018-12-27 2018-12-27 天线装置及终端
EP18944219.7A EP3883061A4 (en) 2018-12-27 2018-12-27 ANTENNA DEVICE AND TERMINAL DEVICE
CN201880100525.9A CN113287230B (zh) 2018-12-27 2018-12-27 天线装置及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124495 WO2020133111A1 (zh) 2018-12-27 2018-12-27 天线装置及终端

Publications (1)

Publication Number Publication Date
WO2020133111A1 true WO2020133111A1 (zh) 2020-07-02

Family

ID=71129427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124495 WO2020133111A1 (zh) 2018-12-27 2018-12-27 天线装置及终端

Country Status (4)

Country Link
US (1) US11876285B2 (zh)
EP (1) EP3883061A4 (zh)
CN (1) CN113287230B (zh)
WO (1) WO2020133111A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111987432A (zh) * 2020-09-04 2020-11-24 维沃移动通信有限公司 天线结构和电子设备
CN112542679A (zh) * 2020-12-18 2021-03-23 维沃移动通信有限公司 电子设备
CN112736431A (zh) * 2020-12-25 2021-04-30 Oppo广东移动通信有限公司 天线装置及电子设备
CN113708050A (zh) * 2021-07-22 2021-11-26 北京睿翔讯通通信技术有限公司 一种宽频带槽缝天线及终端设备
WO2022042533A1 (zh) * 2020-08-31 2022-03-03 维沃移动通信有限公司 天线结构及电子设备
WO2022083398A1 (zh) * 2020-10-19 2022-04-28 华为技术有限公司 一种电子设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355018B (zh) * 2018-12-24 2022-07-26 启碁科技股份有限公司 天线结构和移动装置
CN112751155B (zh) * 2019-10-31 2022-04-05 华为技术有限公司 电子设备
CN112864583B (zh) * 2019-11-28 2023-07-18 华为技术有限公司 天线装置及电子设备
CN113764885B (zh) * 2020-06-05 2022-12-30 华为技术有限公司 一种电子设备
CN113964537A (zh) * 2021-10-12 2022-01-21 维沃移动通信有限公司 电子设备
CN116073125B (zh) * 2021-10-30 2024-09-06 荣耀终端有限公司 一种高隔离度的终端天线系统
CN118104074A (zh) * 2022-09-28 2024-05-28 广州视源电子科技股份有限公司 一种缝隙天线及电子设备
WO2024177320A1 (ko) * 2023-02-25 2024-08-29 삼성전자주식회사 안테나를 포함하는 전자 장치
CN118572366A (zh) * 2023-02-28 2024-08-30 华为技术有限公司 一种天线结构和电子设备
WO2024196308A1 (en) * 2023-03-23 2024-09-26 PCI Private Limited Antenna system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204481122U (zh) * 2014-04-16 2015-07-15 苹果公司 电子设备
US20180205146A1 (en) * 2017-01-13 2018-07-19 Futurewei Technologies, Inc. Mobile device with multiple-antenna system
CN108417973A (zh) * 2017-02-10 2018-08-17 智易科技股份有限公司 裂环型天线
CN108987901A (zh) * 2018-06-12 2018-12-11 珠海市魅族科技有限公司 天线装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6282653B2 (ja) * 2013-08-09 2018-02-21 華為終端(東莞)有限公司 印刷回路基板アンテナ及び端末
CN104103888B (zh) * 2014-08-06 2016-09-21 广东欧珀移动通信有限公司 一种手机及其天线
CN107317103A (zh) * 2017-06-23 2017-11-03 曲龙跃 一种一体式双天线系统
CN108808221B (zh) * 2018-06-19 2021-05-04 深圳市万普拉斯科技有限公司 天线系统及移动终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204481122U (zh) * 2014-04-16 2015-07-15 苹果公司 电子设备
US20180205146A1 (en) * 2017-01-13 2018-07-19 Futurewei Technologies, Inc. Mobile device with multiple-antenna system
CN108417973A (zh) * 2017-02-10 2018-08-17 智易科技股份有限公司 裂环型天线
CN108987901A (zh) * 2018-06-12 2018-12-11 珠海市魅族科技有限公司 天线装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LI, MINGYANG ET AL.: "Eight-Port Orthogonally Dual-Polarized Antenna Array for 5G Smartphone Applications", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 64, no. 9, 30 September 2016 (2016-09-30), XP011621881, DOI: 20190909112209A *
See also references of EP3883061A4 *
SUN, LIBIN ET AL.: "Compact 5G MIMO Mobile Phone Antennas With Tightly Arranged Orthogonal-Mode Pairs", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 66, no. 11, 30 November 2018 (2018-11-30), XP011694189, DOI: 20190909112435A *
YAN, KUIXI ET AL.: "Eight-Antenna Array in the 5G Smartphone for the Dual-Band MIMO System", 2018 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 13 July 2018 (2018-07-13), XP033496262, DOI: 20190911163211A *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022042533A1 (zh) * 2020-08-31 2022-03-03 维沃移动通信有限公司 天线结构及电子设备
CN111987432A (zh) * 2020-09-04 2020-11-24 维沃移动通信有限公司 天线结构和电子设备
CN111987432B (zh) * 2020-09-04 2023-05-23 维沃移动通信有限公司 天线结构和电子设备
WO2022083398A1 (zh) * 2020-10-19 2022-04-28 华为技术有限公司 一种电子设备
EP4213304A4 (en) * 2020-10-19 2024-03-06 Huawei Technologies Co., Ltd. ELECTRONIC DEVICE
CN112542679A (zh) * 2020-12-18 2021-03-23 维沃移动通信有限公司 电子设备
CN112542679B (zh) * 2020-12-18 2023-12-08 维沃移动通信有限公司 电子设备
CN112736431A (zh) * 2020-12-25 2021-04-30 Oppo广东移动通信有限公司 天线装置及电子设备
CN112736431B (zh) * 2020-12-25 2023-12-12 Oppo广东移动通信有限公司 天线装置及电子设备
CN113708050A (zh) * 2021-07-22 2021-11-26 北京睿翔讯通通信技术有限公司 一种宽频带槽缝天线及终端设备

Also Published As

Publication number Publication date
CN113287230A (zh) 2021-08-20
US20220123456A1 (en) 2022-04-21
CN113287230B (zh) 2022-06-28
EP3883061A4 (en) 2021-12-01
EP3883061A1 (en) 2021-09-22
US11876285B2 (en) 2024-01-16

Similar Documents

Publication Publication Date Title
WO2020133111A1 (zh) 天线装置及终端
WO2020228399A1 (zh) 天线装置及移动终端
Parchin et al. Dual-polarized MIMO antenna array design using miniaturized self-complementary structures for 5G smartphone applications
TWI484772B (zh) 多輸入多輸出天線裝置
US7453402B2 (en) Miniature balanced antenna with differential feed
US11205847B2 (en) 5-6 GHz wideband dual-polarized massive MIMO antenna arrays
TWI420743B (zh) 用於電子裝置之雙頻印刷電路天線
US20120062437A1 (en) Antenna system with planar dipole antennas and electronic apparatus having the same
CN107634322B (zh) 双频高增益全向天线
GB2533358A (en) Reconfigurable multi-band multi-function antenna
WO2022156550A1 (zh) 一种电子设备
CN101388494A (zh) 多天线整合模组
CN113224503A (zh) 一种天线及终端设备
CN110444866A (zh) 一种基于peg和八木天线结构的三元微带偶极子天线
TW202215712A (zh) 天線系統
US6946994B2 (en) Dielectric antenna
CN206432384U (zh) 多输入多输出天线系统及移动终端
US7102573B2 (en) Patch antenna
CN105958192A (zh) 一种采用Peano分形电磁带隙结构的双频抗多径导航天线
WO2023138324A1 (zh) 一种天线结构、电子设备及无线网络系统
WO2022017220A1 (zh) 一种电子设备
CA2625388A1 (en) Multi-mode resonant wideband antenna
You et al. Highly efficient ultra-wideband planar folded dipole antenna for mobile applications
CN109088168B (zh) 一种移动终端天线和移动终端
KR102123976B1 (ko) 일차원 전자기 밴드갭 접지 구조를 구비하는 안테나 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018944219

Country of ref document: EP

Effective date: 20210618