WO2015017993A1 - 用于发光二极管的热传输送装置 - Google Patents

用于发光二极管的热传输送装置 Download PDF

Info

Publication number
WO2015017993A1
WO2015017993A1 PCT/CN2013/080950 CN2013080950W WO2015017993A1 WO 2015017993 A1 WO2015017993 A1 WO 2015017993A1 CN 2013080950 W CN2013080950 W CN 2013080950W WO 2015017993 A1 WO2015017993 A1 WO 2015017993A1
Authority
WO
WIPO (PCT)
Prior art keywords
glue
emitting diode
led chip
led
light emitting
Prior art date
Application number
PCT/CN2013/080950
Other languages
English (en)
French (fr)
Inventor
丁廉君
Original Assignee
方晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 方晶科技股份有限公司 filed Critical 方晶科技股份有限公司
Priority to PCT/CN2013/080950 priority Critical patent/WO2015017993A1/zh
Publication of WO2015017993A1 publication Critical patent/WO2015017993A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like

Definitions

  • the present invention relates to a packaging process for a light emitting diode, and more particularly to an encapsulant and a heat transfer device associated with a packaging process for a light emitting diode. Background technique
  • the semiconductor industry is one of the fastest growing high-tech industries in recent years. With the rapid development of electronic technology, the high-tech electronics industry has emerged, making more humanized and functional electronic products continue to evolve and become lighter. Thin, short, and small trend design.
  • a light emitting diode is a semiconductor electronic component that emits light.
  • This composite light source consisting of trivalent and pentavalent elements can only emit low-light red light in the early days and is used as an indicator light. However, until now, the light that LEDs can emit has spread over the range of visible light, infrared light, and ultraviolet light. LEDs can only be used as indicators and display panels, etc. In recent years, various lighting devices have been developed.
  • LED industry chain can be divided into three levels: upstream, midstream and downstream. Among them: upstream is shy and epitaxial film production; middle reaches for LED chip manufacturing; downstream for LED chip packaging and various LED display, lighting, backlight products Production and application. If focusing on the LED downstream industry chain, it can be subdivided into parts for packaging and application.
  • the package refers to the LED chip being adhered to the wire, fixed, and packaged into different shapes with different materials, such as bulb type and digital display type. , dot matrix type or surface mount type (SMD) and so on.
  • the production process of LED can be divided into two types: bracket type and flip chip type.
  • the general method for manufacturing the stent type LED chip comprises the following steps: (1) Silver paste: silver paste is applied to the polyphthalamide (PPA) support to facilitate the chip; (2) solid crystal: the LED chip Put into the silver glue in the above PPA bracket; (3) heat hardening baking: ⁇ makes silver glue hard (4) Welding wire: The LED chip of step (2) is connected to the metal wire to form an electrical connection with the PPA bracket of the LED chip; (5) The first segment of the dispensing: is poured into the LED chip by using a transparent encapsulating resin.
  • the first stage of the point is thermally hardened: the upper layer of the step (5) is dried, or the resin is hardened by ultraviolet light; (7)
  • the second stage of dispensing using the heat-dissipating resin mixed with the heat-dissipating powder and the encapsulating resin, encapsulating the lower heat-dissipating area of the LED chip; and (8) the second-stage dispensing heat-hardening baking: the step (7)
  • the lower heat sink is baked or hardened with UV light.
  • it can be roughly divided into: solid crystal, wire bonding, dispensing, baking, cutting, testing, sorting and packaging.
  • FIG. 1 illustrates a package device of a conventional light emitting diode.
  • the package device comprises an LED chip 11, a L11, a bump 11B, an encapsulant 10 and a package 11C, wherein the bump 11B acts as a soldering machine to act on the solder formed between the LED chip 11 and the substrate 11S, and the encapsulant 10 Both the package and the package 11C are used to seal the gap between the LED chip 11, the substrate 11S, and the bump 11B.
  • the encapsulant generally used for LED chips needs to have the following characteristics: high light transmittance, high water permeability, long-term high temperature and no discoloration characteristics, low viscosity after mixing, good fluidity, easy defoaming; encapsulant can be at medium temperature or Curing under high temperature conditions, fast curing speed; and low shrinkage after curing, good moisture resistance, good gloss and hardness of 4 ;; good mechanical strength of the cured product, excellent electrical properties and good moisture resistance.
  • the packaged LEDs can be tested and sorted according to wavelength, luminous intensity, illumination angle, and operating voltage. Then manually sort the LEDs and distribute them in different Inside the box (BIN). The result of the package will greatly affect the distribution of the BIN. Summary of the invention
  • the invention mainly provides an automatic production method of a light emitting diode (LED), comprising the following steps: providing a plurality of light emitting diode chips; performing a die bonding process of the light emitting diode chips by using a die bonding machine; Performing a wire bonding process of the LED chips; performing a packaging process of the LED chips by using a glue machine, wherein the dispenser comprises a glue and a heat transfer device; and performing the LED chips Cutting, testing, sorting and packaging processes.
  • LED light emitting diode
  • the present invention further provides a package process for a light emitting diode, at 120.
  • the viscosity change under C for five minutes is greater than 9 PaS/min, wherein the viscosity is preferably 18 PaS/min, and the preferred curing temperature range of the gel is 150 degrees Celsius. Between 200 degrees Celsius, the gel is preferably heated for a period of time between 20 minutes and 40 minutes.
  • the present invention further provides a heat transfer device for packaging a light emitting diode chip, including a preheating assembly and a conveyor belt.
  • the preheating component is configured to preheat the LED chip, wherein the LED chip has just been coated with a glue.
  • the conveyor belt is used to transport the LED chip to a baking space to complete encapsulation of the LED, wherein the glue has not cured prior to delivery of the LED chip through the conveyor.
  • the invention further provides a packaging process for a light emitting diode, comprising: transporting a light emitting diode chip to a baking space; and in the transporting step, coating a light on the light emitting diode chip by a single glue machine.
  • the invention further provides a packaging process for a light emitting diode, comprising: transporting an LED chip to a baking space; and providing a preheating component for preheating the LED chip in the conveying step.
  • a packaging process for a light emitting diode comprising: transporting an LED chip to a baking space; and providing a preheating component for preheating the LED chip in the conveying step.
  • FIG. 2 is a graph showing temperature versus viscosity for an embodiment of a package process glue for an LED.
  • 3A is a side elevational view of an embodiment of a heat transfer device that can be used to package an LED chip.
  • FIG. 3B illustrates a heat transfer device that can be used to package an LED chip.
  • FIG. 4 is a flow chart of an embodiment of an LED package process.
  • FIG. 5 is a flow chart showing another embodiment of an LED package process.
  • 6 is a flow chart showing an embodiment of an automated method for producing a light emitting diode. detailed description
  • the main components of the glue include: Methyl silicone, Benzyl compounds, epoxy. Epoxy resin, rare earth phosphor, silicon carbide heat-dissipating powder and silicon anti-precipitant.
  • Methyl silicone Benzyl compounds
  • epoxy Epoxy resin
  • rare earth phosphor silicon carbide heat-dissipating powder
  • silicon anti-precipitant silicon anti-precipitant
  • Polydimethylsiloxane is a high molecular silicone compound, commonly referred to as silicone, which is optically transparent and, in general, considered to be inert, non-toxic and non-flammable.
  • PDMS is the most widely used, silicon-based organic polymer material.
  • Solid state PDMS is a type of silica gel.
  • Epoxy resin is an important type of thermosetting plastic widely used in adhesives, coatings and other applications.
  • the rare earth phosphor is based on yttrium oxyfluoride-based phosphor and is added with lead and bismuth as an activator to form a double-activated yttrium oxyfluoride-based phosphor.
  • Silicon anti-precipitants are used to improve phosphor precipitation in LED packages.
  • the silicon anti-precipitant can effectively diffuse the phosphor evenly, form a three-dimensional molecular chain in the glue, disperse and adsorb the phosphor, distribute it evenly, eliminate the spot and enhance the luminous flux. Silicon anti-precipitant also improves the rheology of the gel, which in turn increases yield and consistency.
  • the LED chip generates extremely high heat in a very small volume, and the LED itself has a small heat capacity, so it must be conducted at the fastest speed, otherwise high junction heat will be generated.
  • silicon carbide heat-dissipating powder is added to the glue.
  • the difference between the refractive index (RI) of the LED chip and the refractive index of the encapsulating material should not be too large, otherwise it will cause total reflection so that the light is reflected back inside the LED chip and cannot be effectively derived.
  • the gel has a refractive index of 1.41.
  • FIG. 2 is a graph showing temperature versus viscosity for an embodiment of a package process for a light emitting diode, wherein the horizontal axis is the heating time (minutes) and the vertical axis is the viscosity (PaS).
  • the glue is heated from 25 degrees Celsius to 120 degrees Celsius, the temperature changes with viscosity.
  • curve B is heated from 25 degrees Celsius to 80 degrees Celsius, the temperature is changed for viscosity, and the rate of temperature rise of curve A is 20 degrees Celsius per minute, and at a constant temperature of 120.
  • the viscosity of the glue changes more than 9 PaS/min, wherein the change in viscosity is preferably 18 PaS/min, wherein the preferred curing temperature range of the glue is between 150 degrees Celsius and 200 degrees Celsius, and the glue is preferably heated in use.
  • the time range is between 20 minutes and 40 minutes.
  • FIG. 3A, 3B, FIG. 3A, FIG. 3B are different side views of an embodiment of a heat transfer device that can be used to package an LED chip, including: a glue 30, an LED chip 31, and a mechanical arm of a dispenser. 32.
  • the preheating component 33 is configured to preheat the LED chip 31, wherein the LED chip 31 is just coated with a glue 30 by the action of the mechanical arm 32 of the dispenser; and a conveyor belt 35 for conveying the illumination
  • the diode chip 31 is to a baking space 37 to complete encapsulation of the light emitting diode 31, wherein the glue 30 has not been cured before the light emitting diode chip 31 is transported through the conveyor belt 35.
  • the preheating assembly 33 can include: a heating plate having a temperature range between 80 degrees Celsius and 120 degrees Celsius and a material structure that can be thermally conductive. It is composed of a good material such as at least one of aluminum, copper and silver.
  • the preheating assembly 33 may further include: a heating tunnel having a temperature range between 80 degrees Celsius and 120 degrees Celsius and a material structure that may be thermally conductive
  • the material is composed of at least one of aluminum, copper and silver.
  • FIG. 4 is a flow chart of an embodiment of an LED package process, including: transporting an LED chip 31 to a baking space 37 (step 8401); and in the transporting step S401, by a little melter The robot arm 32 applies a glue 30 to the LED chip 31 (step S402).
  • the step of transporting the LED package process may further include one of a heat-curing and a UV-curing process to make the LED chip and the bump. Shame can be tightly joined by glue.
  • the following steps may be further included: enabling the dispenser to have an image processing function, such as a micro camera; and by using the image The processing function is such that the glue forms a colloid having a semi-spherical shape on each of the plurality of LED chips, so that the colloid has a height of a colloidal radius.
  • a package ⁇ can be disposed outside the LED chip to ensure the shape of the glue is not ensured. Exceeding the scope of the package.
  • FIG. 5 is a flow chart showing an embodiment of an LED package process.
  • the method includes: transporting an LED chip 21 to a baking space 27 (step 8501); and providing a preheating component 23 for preheating the LED chip 21 in the conveying step (step S502).
  • step S601 provides a plurality of light emitting diode chips (step S601); performing a die bonding process of the light emitting diode chips by using a die bonding machine (step S602); performing the light emitting diode chips by using a reflow machine a wire bonding process (step S603); performing a packaging process of the LED chips by a one-point glue machine, wherein the dispenser comprises a glue and a heat transfer device (step S604); and performing the light-emitting diode chips Cutting, testing, sorting and packaging processes (step S605).
  • the interaction between the light-emitting diode chip and the substrate can be made closer by the interaction of the preheating component and the glue, forming a perfect bulb-shaped shape.
  • the process of automated production of diode chips is made possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

一种用于封装发光二极管芯片(31)的热传输送装置,该装置包括一预热组件(33)以及一输送带(35)。该预热组件(33)用于预热该发光二极管芯片(31),该发光二极管芯片(31)刚经涂布一胶(30),该输送带(35)用于输送该发光二极管芯片(31)至一烘烤空间(37),以完成封装发光二极管,在该发光二极管芯片(31)经该输送带(35)输送前,该胶(30)尚未固化。

Description

用于发光二极管的热传输送装置 技术领域
本发明系相关于一种发光二极管的封装制程,特别是相关于 在发光二极管的封装制程中的一种封装胶以及热传输送装置。 背景技术
半导体工业是近年来发展速度最快之高科技工业之一, 随着 电子技术的日新月异, 高科技电子产业的相继问世, 使得更人性 化、 功能更佳的电子产品不断地推陈出新, 并朝向轻、 薄、 短、 小的趋势设计。
发光二极管(LED )是一种能发光的半导体电子组件。 这种 透过三价与五价元素所组成的复合光源, 早期只能够发出低光度 的红光, 而被当作指示灯利用。 然而, 时至今曰, LED能够发出 的光傳已经遍及可见光、 红外线及紫外光的范围。 LED最初只能 作为指示灯及显示板等, 近年逐渐发展出各种照明设备。
LED产业链一般可以分为上游、 中游、下游三个层次,其中: 上游为羞 和外延片的生产; 中游为 LED芯片制造; 下游为 LED 芯片的封装以及各类 LED显示、 照明、 背光产品的生产和应用。 若聚焦于 LED下游产业链则可细分为封装和应用的部分, 其中封 装是指将 LED芯片黏着导线、 进行固定, 并且用不同的材料封装 成所需要的形状, 比如灯泡型、 数字显示型、 点矩阵型或者表面 贴装型 ( SMD )等等。
LED之生产流程可分为支架型和覆晶型等两大类。一般支架 型 LED芯片的制法, 系包括以下步骤: (1)点银胶: 在聚邻苯二酰 胺(PPA )支架中点上银胶, 以便 着芯片; (2)固晶: 将 LED芯 片放入上述 PPA支架中的银胶上; (3)热硬化烘烤: 俾使得银胶硬 化; (4)焊线: 将步骤 (2)之 LED芯片连结上金属线, 与 LED芯片的 PPA支架构成电性连接; (5)第一段点胶: 利用透明封装树脂灌注 至 LED芯片的 PPA支架约一半处,封装成 LED芯片的上层发光区; (6)第一段点胶热硬化烘烤: 将步骤 (5)之上层发光区烘干, 或以紫 外光进行树脂硬化; (7)第二段点胶: 利用由散热粉体与封装树脂 混合成的散热树脂, 封装成 LED芯片的下层散热区; 及 (8)第二段 点胶热硬化烘烤:将步骤 (7)之下层散热区烘烤,或以紫外光硬化。 此外, 在覆晶型 LED之生产流程之中, 大致可分为: 固晶、 焊线、 点胶、 烘烤、 切割、 测试、 分选和包装等步骤。
请参阅图 1。 图 1绘示习用发光二极管的封装装置。 该封装装 置包括 LED芯片 11、 ^LllS, 凸块 11B、 封装胶 10和封装圏 11C, 其中凸块 11B系回焊机作用于 LED芯片 11和基板 11S之间所形成 之焊料, 且封装胶 10和封装圏 11C皆用于密封 LED芯片 11、 基板 11S和凸块 11B之间的空隙。
一般用于 LED芯片之封装胶需要具有以下特性: 高透光性、 高透水性, 具有长时间高温不变色的特性, 混合后黏度低、 流动 性好、 易消泡; 封装胶可在中温或高温条件之下固化, 固化速度 快; 而且固化后收缩率小、 耐湿性佳、 有 4艮好的光泽、 硬度高; 固化物机械强度佳, 电气特性优良且需较好的防潮性。
实验发现: 当光源在长时间高温的条件之下, 原本紧紧包裹 芯片的点胶与芯片将产生分离, 并出现炭化发黑现象, 因而产生 了不同程度的光衰, 色温光傳上移, 由暖变冷。 当去掉胶体重新 封装, 光强基本恢复正常。 封装胶水的选择, 除了需要考量折射 率、散热性、半衰期和成本, 并需解决点胶过程中出现胶体气泡、 胶体变形、 碗气泡、 刮伤等等现象。
封装后的 LED可以按照波长、发光强度、发光角度以及工作 电压等进行测试分选。 然后以人工拣选 LED并将其分装在不同的 箱 (BIN ) 内。 封装的结果将大大地影响 BIN的分布。 发明内容
本发明主要提出一种发光二极管 (LED ) 自动化生产方法, 包括下列步骤: 提供复数发光二极管芯片; 藉由一固晶机来进行 该等发光二极管芯片之固晶制程; 藉由一回焊机来进行该等发光 二极管芯片之焊线制程; 藉由一点胶机来进行该等发光二极管芯 片之封装制程, 其中该点胶机包括一胶和一热传输送装置; 以及 进行该等发光二极管芯片之切割、 测试、 分选和包装制程。
本发明又提出一种用于一发光二极管的封装制程之胶, 在 120。C下加热五分钟之条件下, 其黏滞度的变化大于 9 PaS/min, 其中该黏滞度的变化较佳为 18 PaS/min, 其中该胶之较佳固化温 度范围介于摄氏 150度到摄氏 200度之间, 该胶在使用上之较佳被 加热之时间范围介于 20分钟到 40分钟之间。
本发明又提出一种热传输送装置,用以封装一发光二极管芯 片, 包括一预热组件以及一输送带。 该预热组件用以预热该发光 二极管芯片, 其中该发光二极管芯片刚经涂布一胶。 该输送带用 以输送该发光二极管芯片至一烘烤空间, 以完成封装该发光二极 管,其中在该发光二极管芯片经该输送带输送前,该胶尚未固化。
本发明又提出一种发光二极管的封装制程, 包括: 输送一发 光二极管芯片至一烘烤空间; 以及于该输送步骤中, 藉由一点胶 机, 在该发光二极管芯片上涂布一胶。
本发明又提出一种发光二极管的封装制程, 包括: 输送一发 光二极管芯片至一烘烤空间; 以及提供一预热组件, 用以于该输 送步骤中预热该发光二极管芯片。 附图说明 本案得藉由下列图式之详细说明, 俾得更深入之了解: 图 1绘示习用发光二极管的封装装置。
图 2绘示用于一发光二极管的封装制程之胶的一实施例的温 度对于黏滞度变化图。
图 3A绘示可用于封装发光二极管芯片的一种热传输送装置 一实施例的一侧面图。
图 3B绘示可用于封装发光二极管芯片的一种热传输送装置 一实施例一另侧面图。
图 4绘示一种发光二极管封装制程一实施例的流程图。
图 5绘示一种发光二极管封装制程另一实施例的流程图。 图 6绘示一种发光二极管自动化生产方法一实施例的流程 图。 具体实施方式
本文提出一种用于一发光二极管的封装制程之胶,在一较佳 的实施例中,该胶的主要成分包括: 甲^^胶 ( Methyl silicone )、 笨环化合物 ( Benzyl compounds ) 、 环氧树脂 ( Epoxy resin ) 、 稀土荧光粉、 碳化硅散热粉与硅抗沉淀剂。 以下是关于胶组成材 料的简介:
聚二甲基硅氧烷(PDMS)是一种高分子有机硅化合物,通常 被称为有机硅, 具有光学透明的特性, 且在一般情况下, 被认为 是惰性, 无毒且不易燃。 PDMS属于使用最广, 以硅为基础的有 机聚合物材料。 固态的 PDMS属于一种硅胶。
环氧树脂是一类重要的热固性塑料, 广泛用于胶 t剂, 涂料 等用途。
稀土荧光粉是以氧氟化镧系荧光粉为基体, 并添加铅、铋为 活化剂, 以形成双重活化的氧氟化镧系荧光粉。 硅抗沉淀剂是为了改善 LED封装中荧光粉沉淀问题而被采 用。 硅抗沉淀剂可以有效地将荧光粉扩散均匀, 在胶之中形成立 体分子链, 分散和吸附荧光粉, 使之均 分布, 并消除光斑, 提 升光通量。 硅抗沉淀剂同时可以改善胶的流变性, 进而提高良率 和一致性。
此外, LED芯片会在极小的体积内产生极高的热量, 而 LED 本身的热容量很小,所以必须以最快的速度把这些热量传导出去, 否则就会产生很高的结热。 为了尽可能地把热量引出到 LED芯片 外面, 便在该胶之中添加了碳化硅散热粉。
此外, LED芯片折射率(RI )和封装材料折射率之间的差异 不可太大, 否则将导致全反射使得光线反射回 LED芯片内部而无 法有效导出。 在本实施例中, 该胶的折射率为 1.41。
Florian Schneider等人曾经探讨用于光学微机电系统之 PDMS的材料特性: 坊间 PDMS, 比如道康宁( Dow Corning )虽 可在中温或高温条件之下固化, 然而其固化速度较慢。 请参考下 列超级链接:
www. sciencedirect. com/science/article/pii/S0924424709000466 习用胶水固化速度较慢,而且在呈队列式排列的复数个 LED 芯片点胶的过程必然存在一时间差, 以致于在进行烘烤之前, 稍 早涂布在 LED芯片上的胶水已经变形,这便降低了胶水的折射率。 有鉴于此, 本文提出了一种对于胶水进行短时间预热的作法。
请参阅图 2。 图 2绘示用于一发光二极管的封装制程之胶的一 实施例的温度对于黏滞度变化图,其中横轴为加热时间(分钟数), 纵轴为黏滞度(PaS ) , 曲线甲为胶从摄氏 25度加热至摄氏 120度 时, 温度对于黏滞度的变化, 曲线乙为胶从摄氏 25度加热至摄氏 80度时,温度对于黏滞度的变化, 曲线甲的 升温速率为每分钟摄 氏 20度, 并在恒温 120。C下加热五分钟, 胶的黏滞度的变化大于 9 PaS/min,其中该黏滞度的变化较佳为 18 PaS/min, 其中该胶之较 佳固化温度范围介于摄氏 150度到摄氏 200度之间, 该胶在使用上 之较佳被加热之时间范围介于 20分钟到 40分钟之间。
请参阅图 3A、 3Bo 图 3A、 3B绘示可用于封装发光二极管芯 片的一种热传输送装置的一实施例的不同侧面图, 包括: 胶 30、 发光二极管芯片 31、 点胶机的机械手臂 32、 预热组件 33、 输送带 35和烘烤空间 37。 预热组件 33, 用以预热该发光二极管芯片 31, 其中该发光二极管芯片 31刚经由点胶机的机械手臂 32的作用而涂 布一胶 30; 以及一输送带 35, 用以输送该发光二极管芯片 31至一 烘烤空间 37, 以完成封装该发光二极管 31, 其中在该发光二极管 芯片 31经该输送带 35输送前, 该胶 30尚未固化。
在另一实施例之中, 预热组件 33可以包括: 一加热板, 该加 热板具有介于摄氏 80度到摄氏 120度之间的温度范围和一材料结 构, 该材料结构可以由导热性较佳的质材所构成, 比如铝、 铜和 银的至少其中之一。
在另一实施例之中, 预热组件 33可以更包括: 一加热隧道, 该加热隧道具有介于摄氏 80度到摄氏 120度之间的温度范围和一 材料结构,该材料结构可以由导热性较佳的质材所构成, 比如铝、 铜和银的至少其中之一。
请同时参照图 3和图 4。 图 4绘示一种发光二极管封装制程一 实施例的流程图, 包括: 输送一发光二极管芯片 31至一烘烤空间 37 (步骤8401 ) ; 以及于该输送步骤 S401中, 藉由一点胶机的机 械手臂 32, 在该发光二极管芯片 31上涂布一胶 30 (步骤 S402 ) 。
在另一实施例之中,发光二极管的封装制程之输送步骤可更 包括一热固化 (Heat-Curing)和一紫外光固化 (UV-Curing)程序的 其中之一, 以便使得 LED芯片、 凸块和羞 能够藉由胶而紧密地 接合。 为了使得点胶、 涂布的动作能够更加的精准且标准化, 在另 一个实施例之中, 可更包括下列步骤: 使该点胶机具有一影像处 理功能, 比如微型摄影机; 以及藉由该影像处理功能, 使得该胶 于该复数个发光二极管芯片中的每一发光二极管芯片上, 分别形 成具有一半球状的一胶体,使得该胶体具有一高度为胶体半径的
75%。
为了在发光二极管的封装制程中能更好地固化发光二极管 芯片, 并保证其成型, 在另一个实施例之中, 可在该发光二极管 芯片之外部设置一封装圏, 可以保证该胶的形状不致于超出封装 圏的范围。
请同时参照图 3和图 5。 图 5绘示一种发光二极管封装制程一 实施例的流程图。 包括: 输送一发光二极管芯片 21至一烘烤空间 27 (步骤8501 ) ; 以及提供一预热组件 23, 用以于该输送步骤中 预热该发光二极管芯片 21 (步骤 S502 ) 。
请参阅图 6。 图 6绘示一种发光二极管自动化生产方法一实施 例的流程图。 包括下列步骤: 提供复数发光二极管芯片 (步骤 S601 ) ;藉由一固晶机来进行该等发光二极管芯片之固晶制程(步 骤 S602 ) ; 藉由一回焊机来进行该等发光二极管芯片之焊线制程 (步骤 S603 ) ; 藉由一点胶机来进行该等发光二极管芯片之封装 制程, 其中该点胶机包括一胶和一热传输送装置 (步骤 S604 ) ; 以及进行该等发光二极管芯片之切割、测试、分选和包装制程(步 骤 S605 ) 。
总之, 本文所提出的发光二极管的封装制程中, 藉由预热组 件和胶的交互作用, 可以使得发光二极管芯片和基板之间的连接 更为紧密, 形成了完美的灯泡型的形状。 除了提升了发光二极管 的良率之外, 并大大地减少了人工分选的需求, 进而使得自动化 生产二极管芯片的流程成为可能。 符号说明
11 LED芯片
11S ^
11B凸块
10 封装胶
11C封装圏
曲线甲、 乙 温度对于黏滞度的变化
30 胶
31 发光二极管芯片
32 点胶机的机械手臂
33 预热组件
35 输送带
37 烘烤空间

Claims

1. 一种发光二极管 (LED ) 的封装制程, 包括:
输送一发光二极管芯片至一烘烤空间; 以及
于该输送步骤中, 藉由一点胶机, 在该发光二极管芯片上涂 布一胶。
2. 如权利要求 1所述之发光二极管的封装制程,其中该输送步 骤更包括一热固化 (Heat-Curing)和一紫外光固化 (UV-Curing)程 序的其中之一。
3. 如权利要求 1所述之发光二极管的封装制程,更包括下列步
·
使该点胶机具有一影像处理功能; 以及
藉由该影像处理功能,使得该胶于该复数个发光二极管芯片 中的每一发光二极管芯片上, 分别形成具有一半球状的一胶体, 其中该胶体具有一高度。
4. 如权利要求 1项所述之发光二极管的封装制程,更包括下列 步骤:在该发光二极管芯片之外部设置一封装圏。
5. 一种发光二极管的封装制程, 包括:
输送一发光二极管芯片至一烘烤空间; 以及
提供一预热组件,用以于该输送步骤中预热该发光二极管芯 片。
6. 一种热传输送装置, 用以封装一发光二极管芯片, 包括: 一预热组件, 用以预热该发光二极管芯片, 其中该发光二极 管芯片刚经涂布一胶; 以及
一输送带, 用以输送该发光二极管芯片至一烘烤空间, 以完 成封装该发光二极管, 其中在该发光二极管芯片经该输送带输送 前, 该胶尚未固化。
7. 如权利要求 6所述之热传输送装置, 其中该预热组件包括: 一加热板, 该加热板具有一温度和一材料结构, 该材料结构 包括铝、 铜和银的至少其中之一。
8. 一种用于一发光二极管的封装制程之胶,在 120。C下加热五 分钟之条件下, 其黏滞度的变化大于 9 PaS/min, 其中
该黏滞度的变化较佳为 18 PaS/min,其中该胶之较佳固化温 度范围介于摄氏 150度到摄氏 200度之间, 该胶在使用上之较佳 被加热之时间范围介于 20分钟到 40分钟之间。
9. 如权利要求 9所述之股,包括: 甲^ J :股(Methyl silicone )、 笨环化合物 ( Benzyl compounds ) 、 环氧树脂 ( Epoxy resin ) 、 稀土荧光粉、 硅抗沉淀剂与碳化硅散热粉; 以及该胶的折射率
( RI )为 1.41。
10. 一种发光二极管自动化生产方法, 包括下列步骤:
提供复数发光二极管芯片;
藉由一固晶机来进行该等发光二极管芯片之固晶制程; 藉由一回焊机来进行该等发光二极管芯片之焊线制程; 藉由一点胶机来进行该等发光二极管芯片之封装制程,其中 该点胶机包括一胶和一热传输送装置; 以及
进行该等发光二极管芯片之切割、 测试、 分选和包装制程。
PCT/CN2013/080950 2013-08-07 2013-08-07 用于发光二极管的热传输送装置 WO2015017993A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/080950 WO2015017993A1 (zh) 2013-08-07 2013-08-07 用于发光二极管的热传输送装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/080950 WO2015017993A1 (zh) 2013-08-07 2013-08-07 用于发光二极管的热传输送装置

Publications (1)

Publication Number Publication Date
WO2015017993A1 true WO2015017993A1 (zh) 2015-02-12

Family

ID=52460497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080950 WO2015017993A1 (zh) 2013-08-07 2013-08-07 用于发光二极管的热传输送装置

Country Status (1)

Country Link
WO (1) WO2015017993A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108735768A (zh) * 2017-04-18 2018-11-02 特利丹E2V半导体简化股份公司 气密的电子元件封装、特别是用于图像传感器的气密的电子元件封装
CN110299315A (zh) * 2019-08-06 2019-10-01 马鞍山正复安电子科技有限公司 一种集成电路自动封装设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1945803A (zh) * 2006-10-27 2007-04-11 杭州中宙光电有限公司 一种大功率led扩展光源器件的封装方法
CN101546804A (zh) * 2009-04-27 2009-09-30 隆达电子股份有限公司 发光二极管封装方法
CN101740708A (zh) * 2009-12-25 2010-06-16 杜姬芳 大功率led光源的集成封装方法
CN201644323U (zh) * 2009-12-22 2010-11-24 全方位自动化股份有限公司 自动点胶机构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1945803A (zh) * 2006-10-27 2007-04-11 杭州中宙光电有限公司 一种大功率led扩展光源器件的封装方法
CN101546804A (zh) * 2009-04-27 2009-09-30 隆达电子股份有限公司 发光二极管封装方法
CN201644323U (zh) * 2009-12-22 2010-11-24 全方位自动化股份有限公司 自动点胶机构
CN101740708A (zh) * 2009-12-25 2010-06-16 杜姬芳 大功率led光源的集成封装方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108735768A (zh) * 2017-04-18 2018-11-02 特利丹E2V半导体简化股份公司 气密的电子元件封装、特别是用于图像传感器的气密的电子元件封装
CN108735768B (zh) * 2017-04-18 2023-11-10 特利丹E2V半导体简化股份公司 气密的电子元件封装、特别是用于图像传感器的气密的电子元件封装
CN110299315A (zh) * 2019-08-06 2019-10-01 马鞍山正复安电子科技有限公司 一种集成电路自动封装设备

Similar Documents

Publication Publication Date Title
US10153404B2 (en) LED with high thermal conductivity particles in phosphor conversion layer
US10062809B2 (en) Light emitting device package, backlight unit, lighting device and its manufacturing method
JP4922189B2 (ja) 光学素子及び放射線を発する素子の製造方法及び光学素子ならびに放射線を発する素子
KR100665121B1 (ko) 파장변환형 발광 다이오드 패키지 제조방법
WO2016150069A1 (zh) 发光器件的芯片级封装方法及结构
JP5239941B2 (ja) 発光装置の製造方法
CN101123286A (zh) 发光二极管封装结构和方法
CN204577469U (zh) 片式白光发光二极管
CN102185042A (zh) Led封装方法、封装器件、光调节方法及系统
JP6596410B2 (ja) チップスケールパッケージ発光素子およびその製造方法
CN105870298A (zh) 一种led光源的封装方法
CN103972222A (zh) Led光源封装方法、led光源封装结构及光源模块
WO2015017993A1 (zh) 用于发光二极管的热传输送装置
TWI552389B (zh) 發光二極體封裝結構及其方法
CN104037302A (zh) 一种led封装组件
CN104576900A (zh) Led芯片的封装方法
TW201511344A (zh) 用於發光二極體的熱傳輸送裝置
Lin et al. LED and optical device packaging and materials
JP2009200172A (ja) 光半導体装置の製造方法、および光半導体装置の製造装置
CN104347461A (zh) 用于发光二极管的热传输送装置
TWI483418B (zh) 發光二極體封裝方法
JP5816479B2 (ja) 半導体発光装置の製造方法。
CN204760430U (zh) 发光二极管的透镜封装系统
CN105374924B (zh) 胶膜的制备装置、制备方法及倒装led芯片的制备方法
CN109904298A (zh) Led封装结构及其制备方法,以及led灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 13.04.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13891103

Country of ref document: EP

Kind code of ref document: A1