WO2015016649A1 - 태양전지의 광흡수층 제조용 금속 칼코게나이드 나노입자 및 이의 제조방법 - Google Patents

태양전지의 광흡수층 제조용 금속 칼코게나이드 나노입자 및 이의 제조방법 Download PDF

Info

Publication number
WO2015016649A1
WO2015016649A1 PCT/KR2014/007090 KR2014007090W WO2015016649A1 WO 2015016649 A1 WO2015016649 A1 WO 2015016649A1 KR 2014007090 W KR2014007090 W KR 2014007090W WO 2015016649 A1 WO2015016649 A1 WO 2015016649A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
metal
chalcogenide
phases
phase
Prior art date
Application number
PCT/KR2014/007090
Other languages
English (en)
French (fr)
Inventor
윤석회
박은주
이호섭
윤석현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to ES14832898T priority Critical patent/ES2772177T3/es
Priority to US14/898,079 priority patent/US20160149061A1/en
Priority to CN201480033231.0A priority patent/CN105324852B/zh
Priority to JP2016519462A priority patent/JP6276401B2/ja
Priority to EP14832898.2A priority patent/EP3029742B1/en
Publication of WO2015016649A1 publication Critical patent/WO2015016649A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to metal chalcogenide nanoparticles for producing a solar cell light absorption layer and a method of manufacturing the same.
  • CIGS copper-insulation-gallium-sulfo-die-selenide, Cu (In, Ga) (S, Se) 2
  • CIGS copper-insulation-gallium-sulfo-die-selenide, Cu (In, Ga) (S, Se) 2
  • It consists of a back electrode layer, a ⁇ -junction, and a ⁇ -type absorbing layer.
  • Solar cells described with CIGS layers have power conversion efficiencies in excess of 19%.
  • CZTS Cu 2 ZnSn (S, Se) 4
  • the CZTS has a direct bandgap of about 1.0 to 1.5 eV. gap) and absorption coefficients of 10 4 cm— 'and higher, with the advantage of using relatively low reserves and low cost Sn and Zn.
  • CZTS-based solar cells lags behind that of CIGS, and the photovoltaic efficiency for CZTS cells is less than 10%, far short of that of CIGS.
  • CZTS Thin Films are Sputtered, Hybrid
  • PCT US / 2010-035792 describes ink containing CZTS / Se nanoparticles.
  • the nanoparticles used in the thin film include Cu, Zn, Sn, but using precursor-type particles that can be converted into CZTS / Se during thin film processing rather than using CZTS / Se crystals. It is possible to shorten the process time. It is possible to use metal nanoparticles as these precursors or to use binary compound particles composed of metals and group VI elements, but each individual single metal nanoparticle is used in combination. In the case of using a mixture of binary compounds, they are difficult to be uniformly uniformly mixed in the ink composition, and metal particles are easily oxidized, and as a result, it is difficult to obtain a good CZTS / Se thin film.
  • the present invention aims to solve the above-mentioned problems of the prior art and technical problems that have been requested from the past.
  • phase 1 consisting of zinc (Zn) -containing chalcogenides and a phase 2 consisting of tin (Sn) -containing chalcogenides.
  • metal comprising two or more phases selected from phases and a third phase consisting of copper (Cu) -containing chalcogenides
  • chalcogenide nanoparticles When chalcogenide nanoparticles were developed and used to manufacture thin films, they not only have a uniform composition throughout the thin film, but also include S or Se in the nanoparticles to stabilize oxidation, and further include metal nanoparticles.
  • S or Se in the nanoparticles to stabilize oxidation
  • metal nanoparticles In the case of the production of selenium, it is possible to grow a high-density light absorbing layer due to the increase of the particle volume due to the addition of group VI elements in the selenization process, and to confirm that it is possible to manufacture a high quality thin film having a high content of group VI elements in the final thin film. It has come to complete the present invention.
  • Task solution In the case of the production of selenium, it is possible to grow a high-density light absorbing layer due to the increase of the particle volume due to the addition of group VI elements in the selenization process, and to confirm that it is possible to manufacture a high quality thin film having a
  • Metal chalcogenide nanoparticles forming a light absorption layer comprising: a first phase consisting of zinc (Zn) -containing chalcogenide, a second phase consisting of tin (Sn) -containing chalcogenide, and copper ( It is characterized by comprising two or more phases selected from the third phase consisting of Cu) -containing chalcogenide.
  • chalcogenides are group VI elements, such as sulfur (S) and / or By material comprising selenium (Se), in one specific example, the copper (Cu) -containing chalcogenide is Cu x S (0.5 ⁇ x ⁇ 2.0) and / or Cu y Se (0.5 ⁇ y ⁇ 2.0), the zinc (Zn) -containing chalcogenide may be ZnS and / or ZnSe, and the tin (Sn) -containing chalcogenide is Sn z S (0.5 ⁇ z ⁇ 2.0) and / or Sn w Se (0.5 ⁇ w ⁇ 2.0) and may be, for example, one or more selected from the group consisting of SnS, SnS 2 , SnSe and SnSe 2 .
  • the metal chalcogenide nanoparticles may be composed of two phases or three phases, and the cobblestone may exist independently in one metal chalcogenide nanoparticle and have a very uniform composition. Can be distributed as
  • the two phases can be any combination from the first, second, and third phases: first and second phases, or second and third phases; Alternatively, it may be a first phase and a third phase, and may include all of the first phase, the second phase, and the third phase when the three phases are included.
  • the metal chalcogenide nanoparticles according to the present invention are prepared by a substitution reaction using a reduction potential of zinc (Zn), tin (Sn), and copper (Cu), and thus are substituted with a substituted metal component. It can be evenly present in metals or in old particles.
  • the content ratio of copper and zinc is higher than that of substituted semi-ungxia.
  • the equivalence ratio of copper (Cu) salt to the molar ratio of chalcogenide and the reaction conditions it is possible to adjust freely in the range of 0 ⁇ Cu / Zn.
  • the content ratio of copper and tin can be freely adjusted in the range of 0 ⁇ Cu / Sn by adjusting the equivalence ratio of copper (Cu) salt and reaction conditions for the molar ratio of tin-containing chalcogenide during the substitution reaction. Even in the case of nanoparticles formed in phase 1, the content ratio of tin and zinc can be freely adjusted in the range of 0 ⁇ Sn / Zn.
  • tin (Sn) salts with respect to the molar ratio of the initial zinc-containing chalcogenide, and It is possible to freely control the composition ratio of zinc, tin and copper by adjusting the equivalence ratio of copper (Cu) salt, but considering the formation of CZTS / Se thin film, 0.5 ⁇ Cu / (Zn + Sn) ⁇ 1.5, 0.5 ⁇ It is preferable to have a range of Zn / Sn ⁇ 2, and in detail, it is preferable to have a range of 0.7 ⁇ Cu / (Zn + Sn) ⁇ 1.2 and 0.8 ⁇ Zn / Sn ⁇ 1.4.
  • the nanoparticles are not limited in scope, but variously possible, but in one specific example, two phases of one phase form a core and the other phase forms a shell, or One of the three phases forms the core and the other two phases form the shell in the form of a composite, or two of the three phases form the core in the form of a composite and the rest One phase may be in the form of a shell.
  • It may be nanoparticles in a distributed form or nanoparticles distributed evenly over all three phases.
  • the metal chalcogenide nanoparticles prepared as described above are composed of metal elements in the particles.
  • group VI elements can be contained in 0.5 to 3 moles.
  • these metal chalcogenide nanoparticles are produced.
  • a part of zinc (Zn) of the primary precursor is replaced with tin (Sn) and / or copper (Cu) using a reduction potential of metal, or a part of tin (Sn) of the primary precursor is made of metal. May be replaced with copper (Cu) using a reduction potential difference of.
  • the primary precursor is, for example,
  • the primary precursor may be zinc (Zn) -containing chalcogenide or tin (Sn) -containing chalcogenide, and the subsequent steps vary depending on the type of the primary precursor.
  • the primary precursor is a zinc (Zn) -containing chalcogenide
  • Zn zinc
  • a portion of zinc (Zn) can be converted to tin (Sn) and / or copper using the reduction potential of the metal Can be replaced with (Cu).
  • substitution with tin (Sn) or copper (Cu) may include zinc (Zn) -containing chalcogenide.
  • a third solution containing tin (Sn) salt or copper (Cu) salt was added to the product containing.
  • the substitution with copper (Cu) can be accomplished by mixing and mixing a third solution containing copper (Cu) salt with a product containing tin (Sn) -containing chalcogenide.
  • the Group VI source in the case of mixing the first solution and the second solution, is in the range of 1 to 10 moles with respect to 1 mole of zinc (Zn) salt or tin (Sn) salt. It can be included as a desired composition ratio within.
  • the composition contains 3 ⁇ 4 particle size of zinc (Zn) -containing chalcogenide or tin (Sn) 1 ⁇ 2: cogenide nano Particle can be obtained.
  • the solvent of the first solution to the fourth solution is water, alcohols, diethylene glycol, oleylamine,
  • It may be one or more selected from the group consisting of dimethyl sulfoxide, dimethyl formamide and NMP (N-methyl-2-pyrrolidone), and the alcohol solvent may be one to one carbon atom. It may be eight kinds of methanol, ethanol, propanol, butanol, pentanol, nucleool, cotanol, and octane.
  • the salts are chloride, bromide,
  • It may be in one or more forms selected from the group consisting of acetate, sulfite, acetylacetonate and hydroxide, in which case divalent and tetravalent salts are not limited. No use all ⁇
  • the Group VI source is Se, Na 2 Se, K 2 Se, CaSe, (CH 3 ) 2 Se,
  • the first solution to the fourth solution may further include a capping agent.
  • the capping agent can control the size, shape and phase of the metal chalcogenide nanoparticles synthesized by being included in the solution process.
  • the third solution or the fourth solution may be mixed in the state where the synthesized particles are uniformly dispersed, so that the replacement of the uniform metal is possible throughout the particle.
  • capping agents are not particularly limited, for example polyvinyl chloride.
  • Pyrrolidone polyvinylpyrrolidone
  • Sodium L-tartrate dibasic dehydrate Potassium sodium tartrate
  • Sodium L-tartrate dibasic dehydrate Potassium sodium tartrate
  • the present invention also includes at least one metal chalcogenide nanoparticle.
  • an ink composition for manufacturing a light absorption layer is provided.
  • the ink composition is an ink composition composed of metal chalcogenide nanoparticles including all of the first phase, the second phase, and the third phase, or the metal chalcogenide including the first phase and the third phase.
  • Ink composition consisting of a mixture of nanoparticles and metal chalcogenide nanoparticles comprising a second phase and a third phase, or metal chalcogenide nanoparticles comprising a first phase and a second phase and a third phase and a third phase
  • It may be an ink composition composed of a mixture of metal chalcogenide nanoparticles comprising a metal chalcogenide nanoparticle comprising a first phase and a second phase and a metal chalcogenide nanoparticle comprising a first phase and a third phase.
  • It may be an ink composition made up of a mixture of particles.
  • the ink composition is bimetallic or comprises at least two metals selected from the group consisting of copper (Cu), zinc (Zn) and tin (Sn).
  • the ink composition may further comprise intermetallic metal nanoparticles, i.e., the ink composition may comprise metal chalcogenide nanoparticles comprising two or more phases. It can consist of a mixture of bimetallic or intermetallic metal nanoparticles.
  • the bimetallic or intermetallic metal nanoparticles may be, for example, Cu—Sn.
  • It may be one or more selected from the group consisting of bimetallic metal nanoparticles, Cu-Zn bimetallic metal nanoparticles, Sn-Zn bimetallic metal nanoparticles, and Cu ⁇ Sn-Zn intermetallic metal nanoparticles.
  • Intermetallic metal nanoparticles are more stable to oxidation than ordinary metal nanoparticles, and can form a high-density film due to the increase in volume caused by the addition of Group VI elements during the heat treatment of selenization.
  • the group VI element in the ink composition is increased together with the increase in the density of group VI in the final thin film. High quality CZTS / Se thin film can be formed.
  • the method for producing the bimetallic or intermetallic metal nanoparticles is not limited, but in detail, it may be achieved by a solution process using an organic reducing agent and / or an inorganic reducing agent, and the reducing agent may be, for example, LiBH. 4 , NaBH 4 , KBH 4 , Ca (B) 2 , Mg (BH 4 ) 2 , LiB (Et) 3 H, NaBH 3 (CN), NaBH (OAc) 3 , hydrazine, ascorbic acid and triethanol It may be one selected from the group consisting of amines (triethanolamine).
  • the reducing agent may be, for example, LiBH. 4 , NaBH 4 , KBH 4 , Ca (B) 2 , Mg (BH 4 ) 2 , LiB (Et) 3 H, NaBH 3 (CN), NaBH (OAc) 3 , hydrazine, ascorbic acid and triethanol It may be one selected from the group consisting of amines (triethanolamine).
  • the reducing agent may be included in a molar ratio of 1 to 20 times the total amount of the metal salt included in the solution process.
  • the content of the reducing agent exceeds 20 times the metal salt content. If included, it is not desirable to remove reducing agents and by-products from the purification process, which is not recommended.
  • the size of the intermetallic metal nanoparticles can be, in detail, from about 1 nanometer to about 500 nanometers.
  • the composition ratio of the CZTS thin film is then adjusted.
  • the metal nanoparticles and the metal chalcogenide nanoparticles are mixed to include all of Cu, Zn, and Sn in the ink composition.
  • Zn and Sn are not particularly limited as long as the combination is included in at least one of the above-described metal nanoparticles or metal chalcogenide nanoparticles, but in detail, the bimetallic or intermetallic metal nanoparticles are Cu— Sn bimetallic metal nanoparticles, the metal chalcogenide nano
  • the particles may be zinc (Zn) -containing chalcogenide-copper (Cu) -containing chalcogenide nanoparticles consisting of two phases of the first and third phases.
  • the bimetallic or intermetallic metal nanoparticles may also be Cu.
  • the metal chalcogenide nanoparticles may be metal chalcogenide nanoparticles consisting of two phases of the second and third phase, in some cases Cu-Zn-Sn intermetallic It is also possible to mix nanoparticles with metal chalcogenide nanoparticles comprising all of the first, second, and third phases.
  • the Cu-Sn bimetallic nanoparticles more specifically, CuSn or Cu-Sn particles of copper excess (Cu-rich), for example, Cu 3 Sn, Cu, 0 Sn 3 , Cu 6 . 26 Sn 5 , Cu 41 Sn 1 , or Cu 6 Sn 5 , but is not limited to these.
  • the Cu—Zn bimetallic nanoparticles may be, for example, Cu 5 Zn 8 or CuZn.
  • the bimetallic or intermetallic metal nanoparticles may be formed so that the CZTS final thin film can have the maximum efficiency.
  • 0.5 ⁇ Cu / (Zn + Sn) ⁇ 1.5, 0.5 ⁇ Zn / Sn ⁇ ⁇ l can be mixed with metal chalcogenide nanoparticles, specifically 0.7 ⁇ Cu / (Zn + Sn) ⁇ 1.2, 0.8 Can be mixed in a range of ⁇ Zn / Sn ⁇ 1.4.
  • the present invention also provides a method of manufacturing a thin film using the ink composition fire.
  • phase 1 consisting of zinc (Zn) -containing chalcogenide, phase 2 consisting of tin (Sn) -containing chalcogenide, and knife containing Cu (Cu).
  • Disperse metal chalcogenide nanoparticles comprising at least two phases selected from a third phase consisting of cogenide in one or more solvents, or (b) bimetallic or intermetallic metal nanoparticles , Phase 1 consisting of zinc (Zn) -containing chalcogenide, phase 2 consisting of tin (Sn) -containing chalcogenide, and phase 3 consisting of copper (Cu) -containing chalcogenide ( Metal chalcogenide nanoparticles comprising at least two phases selected from Process of dispersing ink;
  • the inclusion of at least one metal chalcogenide nanoparticle according to the present invention means that at least one selected from all kinds of metal chalcogenide nanoparticles can be produced according to the present invention.
  • zinc ( ⁇ ) -containing chalcogenides composed of first and second phases -Calcogenide-containing particles containing tin (Sn), chalcogenides containing tin (Sn) consisting of second and third phases- Copper (Cu) -containing chalcogenide particles, zinc (Zn) consisting of first and third phases
  • a second phase consisting of bimetallic or intermetallic metal nanoparticles and a zinc (Zn) -containing chalcogenide
  • a second phase consisting of a tin (Sn) -containing chalcogenide
  • metals comprising two or more phases selected from a third phase consisting of copper (Cu) -containing chalcogenides
  • chalcogenide nanoparticles and their mixing ratios are the same as described above.
  • step (i) is a general organic solvent
  • alkanes alkenes
  • the alcohol solvent is ethane, 1-propane (1-propanol),
  • the amine solvent is triethyl amine, dibutyl amine, dipropyl amine, butylamine, ethanolamine,
  • DETA Diethylenetriamine
  • TETA Triethylenetetraine
  • It may be one or more mixed solvents selected from tris (2-aminoethyl) amine.
  • the thiol solvent may be at least one mixed solvent selected from 1,2-ethanedithiol, pentanethiol, hexanethiol, and mercaptoethanol. have.
  • the alkane solvent may be one or more mixed solvents selected from hexane, heptane, and octaneosis.
  • the aromatic compounds solvents include toluene, xylene,
  • It may be one or more mixed solvents selected from nitrobenzene, pyridineosis.
  • the organic halides solvent may be a mixture of one or more selected from chloroform, methylene chloride, tetrachloromethane, dichloroethane, and chlorobenzene. It may be a solvent.
  • the nitrile solvent may be acetonitrile.
  • the ketone solvent may be one or more mixed solvents selected from acetone, cyclohexanone, cyclopentanone, and acetylacetone.
  • the ether solvent is ethyl ether
  • It may be one or more mixed solvents selected from tetrahydrofurane, and 1,4-dioxane.
  • the sulfoxides solvent is DMSO (dimethyl sulfoxide), and
  • It may be one or more mixed solvents selected from sulfolanes.
  • the amide solvent is DMF (dimethyl formamide), and
  • the ester solvent is ethyl lactate,
  • It may be one or more mixed solvents selected from r-butyrolactone, and ethyl acetoacetate.
  • the carboxylic acid solvent is propionic acid, hexanoic acid, meso-2,3-dimercaptosuccinic acid, thiolactic acid. It may be one or more mixed solvents selected from thiolactic acid, and thioglycolic acid.
  • the solvents may be one example and are not limited thereto.
  • it may be prepared by further adding an additive to the ink of step (i).
  • the additives include, for example, dispersants, surfactants, polymers, binders, crosslinkers, emulsifiers, antifoaming agents, desiccants, fillers, extenders, thickeners, film conditioners, antioxidants, glidants, leveling additives, and corrosion agents. It may be one or more selected from the group consisting of inhibitors, in particular polyvinylpyrrolidone (PVP), polyvinylalcohol, anti-terra 204, anti-terra
  • PVP polyvinylpyrrolidone
  • anti-terra 204 anti-terra
  • Anti-terra 205 (Anti-terra 205), ethyl cellulose, and
  • It may be one or more selected from the group consisting of DispersBYKl lO.
  • the method of forming the coating layer of the above process (ii) may include, for example, wet coating, spray coating, spin coating, doctor blade coating, contact printing, upper feed reverse printing, and lower printing.
  • Feed reverse printing, nozzle feed reverse printing, gravure printing, micro gravure printing, reverse micro gravure printing, lor coating, slot die It can be any one selected from the group consisting of coating, capillary coating, inkjet printing, jet deposition and spray deposition.
  • the heat treatment in step (iii) can be performed at a temperature in the range of 300 to 800 degrees Celsius.
  • a thin film of higher density solar cell may optionally include a selenization process
  • the selenization process may be accomplished by a variety of methods.
  • bimetallic or intermetallic metal nanoparticles and metal chalcogenide nanoparticles together with S and / or Se may be dispersed in the solvent in the form of an ink to prepare an ink, and may be achieved by heat treatment in step (iii).
  • step (iii) above is performed under the condition that S or Se is present.
  • condition in which the S or Se element is present is a gas of H 2 S or H 2 Se.
  • It can be supplied in the form or by heating Se or S to a gas.
  • step (iii) is performed.
  • the lamination may be accomplished by a solution process or by a deposition method.
  • the present invention also provides a thin film manufactured by the above method.
  • the thin film may have a thickness in the range of 0.5 ⁇ to 3.0, and more specifically, the thickness of the thin film may be 0.5 m to 2.5; t m.
  • the thickness of the thin film is less than 0.5, the density and quantity of the light absorbing layer are insufficient, so that the desired photoelectric efficiency cannot be obtained. If the thin film exceeds 3.0; Mil, the distance the charge carriers move increases. The higher the probability of recombination, the lower the efficiency.
  • the present invention provides a thin film solar cell manufactured using the thin film.
  • FIG. 2 is a line-scan result of the composition of ZnS-CuS nanoparticles showing uniform composition of substituted metals and substituted metals in particles synthesized by reduction potential according to the present invention
  • Example 3 is a SEM photograph of nanoparticles according to Example 1.
  • Example 4 is an XRD graph of nanoparticles according to Example 1.
  • Example 5 is a SEM photograph of the nanoparticles according to Example 2.
  • Example 7 is an XRD graph of nanoparticles according to Example 2.
  • Example 11 is a SEM photograph of nanoparticles according to Example 5.
  • FIG. 13 is an SEM image of nanoparticles according to Example 10.
  • Example 14 is an XRD graph of nanoparticles according to Example 10.
  • Example 15 is a cross-sectional SEM photograph of the thin film according to Example 12.
  • Example 16 is a cross-sectional XRD graph of a thin film according to Example 12.
  • Example 17 is a cross-sectional SEM photograph of the thin film according to Example 13;
  • Example 18 is an IV of a solar cell using the thin film of Example 12 according to Experimental Example 1.
  • ZyS particles were obtained by dissolving 2mm of pyrrolidone in 200 ml of ethylene glycol and reacting for 3 hours at 180 degrees, and then purifying by centrifugation. 2.5 mmol solution of CuCl 2 * 2H 2 0 was added dropwise. ZnS-CuS particles were obtained by centrifugation after 3 hours reaction. SEM pictures, EDX results, and XRD graphs of the formed particles are shown in FIGS. 5 to 7.
  • ZnS-SnS particles synthesized in the same manner as in Example 3 were dispersed in 100 ml of ethylene glycol, and then added dropwise to CuCl 2 * 2H 2 0 4.5 mm in 50 ml of ethylene glycol, followed by stirring for 3 hours.
  • the ratio Zn: Sn 4.5: 3: 2.5 obtained ZnS-SnS-CuS nanoparticles. SEM pictures of the formed particles were shown in FIG.
  • ZnSe-SnSe particles were obtained by centrifugation and purification after stirring at 50 ° C for 3 hours.
  • NaBH 4 20 mm was dissolved in 50 ml of distilled water, and 25 ml of distilled water was dissolved in H 2 Se0 3 10 mm. After stirring for 20 minutes, 10 mmol solution of SnCI 2 dissolved in 25 ml distilled water was added, and the resultant was purified after 3 hours to obtain SnSe particles.
  • the obtained particles were dispersed in 100 m of ethanol, and 50 ml of ethane was added to 2.5 ml of CuCl 2 * 2H 2. The melted solution was added dropwise and stirred at 50 ° C. for 3 hours, followed by purification to obtain SnSe-CuSe particles. SEM photographs of the formed particles are shown in FIG. Example 9
  • ZnS and SnS were synthesized in the same manner as in Example 2 and Example 4, and CuS was 50 ml of ethylene, each of Cu (N0 3 ) 2 10 mm Iguathioacetamide 10 mm.
  • the ink was prepared by adding it to a mixed solvent and dispersing it in an 18% concentration.
  • the obtained ink was coated on a Mo thin film coated on glass, and then dried to 200 ° C.
  • the CZTS thin film was heat-treated at 550 ° C in the presence of Se. Got.
  • the ink was prepared by adding it to a solvent and dispersing it at 18% concentration.
  • the obtained ink was coated on a Mo thin film coated on glass, and then dried to 200 degrees Celsius.
  • the CZTS thin film was heat-treated at 575 degrees Celsius in the presence of Se.
  • the cross-sectional shape and XRD image of the obtained thin film are shown in FIGS. 15 and 16.
  • An ink was prepared by adding a solvent containing a mixture of ether, acetylacetone, propylene glycol proyl ether, cyclonucleanol, and propane to a concentration of 16%.
  • the obtained ink was coated on a Mo thin film coated on glass. It was dried up to 200 degrees Celsius. It was heat treated at 575 degrees Celsius in the presence of Se to obtain a CZTS thin film.
  • the cross-sectional shape of the obtained thin film is shown in FIG.
  • Ink was prepared by adding to a mixed solvent of monomethyl ether, acetylacetone, propylene glycol proyl ether, cyclonucleanol, and propanol, and then dispersing it at a concentration of 16%.
  • the obtained ink was coated on Mo film coated on glass. It was dried up to 200 degrees Celsius.
  • the CZTS thin film was obtained by heat treatment at 575 degrees Celsius in the presence of Se.
  • a CZTS thin film was prepared in the same manner as in Example 12 except that the ink was prepared by mixing with bimetallic metal particles.
  • a CZTS thin film was manufactured in the same manner as in Example 13, except that the ZnS-CuS particles prepared in Example 2 and the SnSe-CuSe particles prepared in Example 8 were mixed to prepare an ink.
  • An ink was prepared by mixing CuS particles, ZnS particles, and SnS particles prepared in Comparative Example 1.
  • a CZTS thin film was prepared in the same manner as in Example 13 except for the preparation.
  • a CdS buffer layer was prepared on the CZTS thin film prepared in Examples 11 to 18 and Comparative Example 2 by depositing ZnO and Al: ZnO in a sputtering method in turn, and then raising the A1 electrode by e-beam method.
  • the characteristics obtained from the cells are shown in Table 1 and FIG. 18.
  • variable J sc which determines the efficiency of the solar cell described in Table 1, represents the current density.
  • V w is the open circuit voltage measured at zero output current
  • photoelectric efficiency is the ratio of the cell output to the amount of energy of light incident on the solar panel
  • FF is the maximum power point. Is the product of the current density and the voltage value divided by the product of V ⁇ and J sc .
  • Table 1 and FIG. 18 when manufacturing a CZTS thin film using metal chalcogenide nanoparticles according to the present invention, nanoparticles containing only one existing metal element may be prepared, and then mixed. Compared with the manufacturing of the CZTS thin film, it can be seen that the current density, the open circuit voltage, and the photoelectric efficiency all have improved values. In particular, the current density and the photoelectric efficiency show very good values.
  • the metal chalcogenide nanoparticles according to the present invention comprise a first phase composed of zinc (Zn) -containing chalcogenide and a second phase composed of chalcogenide containing tin (Sn). Two or more phases selected from a third phase consisting of a phase and a copper (Cu) -containing chalcogenide are included in one particle, which is used to produce a thin film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 태양전지의 광흡수층을 형성하는 금속칼코게 나이드나노입자로서, 아연 (Zn)함유 칼코게나이드로 이루어진 제 1상 (phase), 주석 (Sn)함유 칼코게나이드로 이투어진 제 2상 (phase), 및구리 (Cu)함유 칼코게나이드로 이루어진 제 3 상 (phase)으로부터 선택되는 둘이상의 상들 (phases)을 포함하는 것을 특징으로 하는 금속 칼코게나이드 나노 입자 및 이의 제조방법에 관한 것이다.

Description

명세서
발명의명칭:태양전지광흡수층제조용금속칼코게나이드나노 입자및이의제조방법
기술분야
[1] 본발명은태양전지광흡수층제조용금속칼코게나이드나노입자및이의 제조방법에관한것이다.
배경기술
[2] 태양전지는개발초기때부터비싼제조과정의광흡수층및반도체물질로서 규소 (Si)를사용하여제작되어왔다.태양전지를더욱경제적으로산업에이용 가능하도록제조하기위해,박막태양전지의구조물로저비용의
CIGS (구리-인듬-갈륨-설포-다이-셀레나이드, Cu(In, Ga)(S, Se)2)와같은광흡수 물질을이용한제품이개발되어왔다.상기 CIGS계의태양전지는전형적으로 후면전극층 , η-형접합부,및 Ρ-형흡광층으로구성된다.이렇게 CIGS층이 기재된태양전지는 19%를초과하는전력변환효율을갖는다.그러나,
CIGS계의박막태양전지에대한잠재성에도불구하고,인듐 (In)의원가와 공급량부족으로인하여 CIGS계의광흡수층을이용한박막태양전지의 광범위한용도및적용성에주요한장애가되고있는바, In-free나 In-less의저가 범용원소를이용하는태양전지개발이시급한실정이다.
[3] 따라서,최근에는상기 CIGS계의광흡수층에대한대안으로초저가금속
원소인구리,아연,주석,황,또는셀레늄원소를포함하는 CZTS(Cu2ZnSn(S,Se)4 )계태양전지가주목받고있다.상기 CZTS는약 1.0내지 1.5eV의직접 밴드갭 (direct band gap)및 104 cm—'이상의흡수계수를갖고있고,상대적으로 매장량이풍부하고가격이저렴한 Sn과 Zn을사용하는장점을가지고있다.
[4] 1996년에처음 CZTS헤테로-접합 PV전지가보고되었지만,현재까지도
CZTS를기반으로한태양전지의기술은 CIGS의태양전지의기술보다뒤처져 있고, CZTS전지에대한광전효율은 10%이하로 CIGS의그것에비해아직많아 부족한상태이다. CZTS의박막은스퍼터링 (sputtering),하이브리드
스퍼터링 (hybrid sputtering),펄스레이저 (pulse laser)증착법 ,분무열분해법, 전착 /열황화 (thermal sulfurization), E-빔 (E-beam) Cu/Zn/Sn/열황화,및
졸-겔 (sol-gel)의방법들을이용하여제조되어왔다.
[5] 한편 , PCT US/2010-035792에서는 CZTS/Se나노입자를포함하는잉크를
이용하여기재상에열처리하여박막을형성시킨내용을개시하고있는데, 일반적으로, CZTS/Se나노입자를사용하여 CZTS박막을형성하는경우,이미 형성된결정이작기때문에이후박막을형성하는과정에서결정의크기를 키우기가힘들고,각각의그레인 (grain)이작은경우에는경계면이늘어나게 되고,경계면에서생기는전자의손실때문에효율이떨어질수밖에없다.또한, 만약이와같이 CZTS/Se나노입자를사용하면서도그레인의크기를
증가시키기위해서는매우긴열처리시간을필요로하게되는데이는비용과 시간측면에서매우비효율적이다.
[6] 따라서 ,박막에사용되는나노입자는 Cu, Zn, Sn을포함하되, CZTS/Se결정올 사용하기보다는박막공정시 CZTS/Se로변환될수있는전구체형태의입자를 사용하는것이그레인성장과공정시간단축에바람직하다.이러한전구체로서 금속나노입자를사용하거나,금속과 VI족원소로이루어진이원화합물 (binary compound)입자를사용하는것이가능하나,각각의개별적인단일금속 나노입자를흔합하여사용하거나,이원화합물들을혼합하여사용하는경우에는 이들이잉크조성물내에서층분히균일하게흔합되기어렵고,금속입자의 경우에는산화되기도쉬어결과적으로양질의 CZTS/Se박막을얻기어렵다는 단점이있다.
[7] 따라서 ,산화에안정할뿐아니라균일한조성으로결점을최소화시킨높은 효율의광흡수층을형성할수있는박막태양전지제조에대한기술의필요성이 높은실정이다.
발명의상세한설명
기술적과제
[8] 본발명은상기와같은종래기술의문제점과과거로부터요청되어온기술적 과제를해결하는것을목적으로한다.
[9] 본출원의발명자들은심도있는연구와다양한실¾을거듭한끝에,아연 (Zn) 함유칼코게나이드로이루어진제 1상 (phase),주석 (Sn)함유칼코게나이드로 이루어진제 2상 (phase),및구리 (Cu)함유칼코게나이드로이루어진제 3 상 (phase)으로부터선택되는둘이상의상들 (phases)을포함하는금속
칼코게나이드나노입자를개발하였고,이를사용하여박막을제조하는경우, 박막전체적으로균일한조성을가질뿐아니라,나노입자자체에 S또는 Se를 포함함으로써산화에안정하며 ,금속나노입자를더포함하여박막을제조하는 경우에는,셀렌화과정에서 VI족원소첨가에따른입자부피의증가로고밀도의 광흡수층을성장시킬수있으며,최종박막내에 VI족원소의함유량을높인 양질의박막을제조할수있는것을확인하고,본발명을완성하기에이르렀다. 과제해결수단
[10] 따라서,본발명에따른금속칼코게나이드나노입자는,태양전지의
광흡수층을형성하는금속칼코게나이드나노입자로서,아연 (Zn)함유 칼코게나이드로이루어진제 1상 (phase),주석 (Sn)함유칼코게나이드로 이루어진제 2상 (phase),및구리 (Cu)함유칼코게나이드로이루어진제 3 상 (phase)으로부터선택되는둘이상의상들 (phases)을포함하는것을특징으로 한다.
[11] 본발명에서 '칼코게나이드'는 VI족원소,예를들어,황 (S)및 /또는 셀레늄 (Se)을포함하는물질을의미하는바,하나의구체적인예에서,상기 구리 (Cu)함유칼코게나이드는 CuxS(0.5≤x≤2.0)및 /또는 CuySe(0.5≤y≤2.0)일수 있고,아연 (Zn)함유칼코게나이드는 ZnS및 /또는 ZnSe일수있으며,주석 (Sn) 함유칼코게나이드는 SnzS(0.5≤z≤2.0)및 /또는 SnwSe(0.5≤w<2.0)일수있고,예를 들어, SnS, SnS2, SnSe및 SnSe2로이루어진군으로부터선택되는하나이상일수 있다.
[12] 상기금속칼코게나이드나노입자는두개의상들로이루어지거나,또는세 개의상들로이루어질수있고,상기샅돌은하나의금속칼코게나이드나노 입자내에서독립적으로존재할수있고,매우균일한조성으로분포할수있다.
[13] 두개의상들로이루어지는경우,상기두개의상들은제 1상,제 2상,및제 3 상으로부터나오는모든조합이가능한바,제 1상및제 2상,또는제 2상및제 3상,또는제 1상및제 3상일수있고,세개의상들로이루어지는경우,제 1상, 제 2상,및제 3상을모두포함할수있다.
[14] 이때,본발명에따른금속칼코게나이드나노입자는아연 (Zn),주석 (Sn),및 구리 (Cu)의환원전위차를이용한치환반웅에의하여제조되고,따라서 치환하는금속성분과치환되는금속성분이나노입자내에서고르게존재할수 있다.
[15] 한편,상기금속칼코게나이드나노입자가제 1상과제 3상으로이루어진 나노입자의경우,구리와아연의함량비는,치환반웅시아연함유
칼코게나이드의몰비에대해구리 (Cu)염의당량비와반응조건을조절함에 따라, 0<Cu/Zn의범위에서자유롭게조절이가능하다.또한,제 2상과제 3 상으로이투어진나노입자의경우에도구리와주석의함량비는,치환반응시 주석함유칼코게나이드의몰비에대해구리 (Cu)염의당량비와반웅조건을 조절함에따라, 0<Cu/Sn의범위에서자유롭게조절이가능하며,제 1상과제 1 상으로이루어진나노입자의경우에도주석과아연의함량비는 0<Sn/Zn의 범위에서자유롭게조절이가능하다.
[16] 이와유사하게,상기금속칼코게나이드나노입자가제 1상,제 2상,및제 3 상으로이루어진나노입자의경우역시,초기아연함유칼코게나이드의몰비에 대한주석 (Sn)염및구리 (Cu)염의당량비를조절함에따라자유롭게아연,주석, 및구리의조성비를조절하는것이가능하나, CZTS/Se박막의형성을고려하면, 0.5≤Cu/(Zn+Sn)≤1.5, 0.5≤Zn/Sn≤2이되는범위를가지는것이바람직하며, 상세하게는 0.7≤Cu/(Zn+Sn)≤1.2, 0.8≤Zn/Sn≤1.4이되는범위를가지는것이 바람직하다.
[17] 한편,상기나노입자의몰포로지는한정되지아니하고,다양하게가능하나, 하나의구체적인예에서,두개의상들증하나의상이코어를이루고,다른 하나의상이쉘을형성하는형태이거나,상기세개의상들중하나의상은 코어를이루고,다른두개의상들은복합체형태로쉘을형성하는형태이거나, 또는세개의상들중두개의상들은복합체형태로코어를이루고,나머지 하나의상은쉘을형성하는형태일수있다.
[18] 또는도 1및도 2에서보는바와같이두개의상이입자전체에균일하게
분포한형태의나노입자이거나,세개의상이입자전체에균일하게분포한 형태의나노입자일수도있다
[19] 상기와같이제조된금속칼코게나이드나노입자는그입자내에금속원소
1몰을기준으로 VI족원소들을 0.5몰내지 3몰로포함할수있다.
[20] 상기범위를벗어나,금속원소들이너무많이포함되는경우 , VI족원소의
층분한제공이블가능하므로금속칼코게나이드와같은안정한상이형성되지 못하는바,이후공정에서상이변하거나분리된금속이산화될수있는문제가 있고,반대로,칼코게나이드원소가너무많이포함되는경우에는박막을 제조하기위한열처리공정에서 VI족소스가증발하면서최종박막에공극이 과도하게형성될수있으므로바람직하지않다.
[21] 하나의구체적인예에서 ,이러한금속칼코게나이드나노입자를제조하는
방법은,
[22] 아연 (Zn)또는주석 (Sn)과,황 (S)또는셀레늄 (Se)을포함하는 1차전구체를
제조한후,
[23] 상기 1차전구체의아연 (Zn)의일부를금속의환원전위차를이용하여주석 (Sn) 및 /또는구리 (Cu)로치환하거나,또는상기 1차전구체의주석 (Sn)의일부를 금속의환원전위차를이용하여구리 (Cu)로치환하는방법일수있다.
[24] 상기 1차전구체는,예를들어,
[25] (i)황 (S),셀레늄 (Se),및황 (S)또는샐레늄 (Se)을포함하는화합물로이루어진 군에서선택되는 1종이상의 VI족소스를포함하는제 1용액을준비하는과정;
[26] (ii)아연 (Zn)염또는주석 (Sn)염을포함하는제 2용액을준비하는과정;및
[27] (iii)상기제 1용액과제 2용액을흔합하여반웅시키는과정;
[28] 을포함하여제조될수있다.
[29] 따라서,상기 1차전구체는아연 (Zn)함유칼코게나이드또는주석 (Sn)함유 칼코게나이드일수있고,상기 1차전구체의종류에따라,이후공정이달라진다.
[3이 하나의예에서, 1차전구체가아연 (Zn)함유칼코게나이드인경우,앞서언급한 바와같이,아연 (Zn)의일부를금속의환원전위차를이용하여주석 (Sn)및 /또는 구리 (Cu)로치환할수있다.
[31] 이때,주석 (Sn)또는구리 (Cu)로의치환은,아연 (Zn)함유칼코게나이드를
포함하는생성물에주석 (Sn)염또는구리 (Cu)염을포함하는제 3용액을
혼합하여반웅시킴으로써달성될수있고,주석 (Sn)및구리 (Cu)로의치환은 아연 (Zn)함유칼코게나이드를포함하는생성물에주석 (Sn)염및구리 (Cu)염을 포함하는제 3용액을혼합하여반웅시킴으로써동시에진행하거나,
주석 (Sn)염을포함하는제 3용액과구리 (Cu)염을포함하는제 4용액을
순차적으로흔합하여반웅시킴으로써주석→구리순으로순차적반웅으로 진행할수도있다. [32] 한편, 1차전구체가주석 (Sn)함유칼코게나이드인경우,금속의환원전위차 때문에주석 (Sn)의일부를아연 (Zn)으로치환시키기는어렵고,구리 (Cu)로의 치환만이가능하다.
[33] 이때,구리 (Cu)로의치환은주석 (Sn)함유칼코게나이드를포함하는생성물에 구리 (Cu)염을포함하는제 3용액을흔합하여반웅시킴으로써이루어질수있다.
[34] 상기와같이진행되는이유는,아연,주석,및구리의환원전위차때문인데, 구체적으로,환원전위는아연 >주석 >구리순이다.이러한환원전위는전자를 잃기쉬운정도의척도라고볼수있는바,용액상에서아연이주석및구리보다, 주석이구리보다이온으로존재하려는경향이크다.따라서,아연 (Zn)함유 칼코게나이드의경우,아연이주석및구리로의치환이가능하고,주석 (Sn)함유 칼코게나이드의경우,주석이구리로의치환은가능하나,반대로구리가주석및 아연으로치환된다거나,주석이아연으로치환되는것은용이하지않다.
[35] 한편,하나의구체적인예에서,상기제 1용액과제 2용액을혼합하는경우, 상기 VI족소스는아연 (Zn)염또는주석 (Sn)염 1몰에대해 1몰내지 10몰의범위 내에서소망하는조성비로포함될수있다.
[36] 상기범위를벗어나 , VI족소스가 1몰미만으로포함되는경우, VI족원소의 충분한제공이불가능하므로높은수득율로금속칼코게나이드와같은안정한 상이형성되지못하는바,이후공정에서상이변하거나분리된금속이산화될 수있는문제가있고,반대로, VI족소스가 10몰을초과하여포함되는경우에는 반웅후 VI족소스가과도하게불순물로잔류하여입자의불균일을초래할수 있을뿐아니라,이를이용하여박막을제조하는경우박막의열처리공정에서
VI족소스가증발하면서최종박막에공극이과도하게형성될수있으므로 바람직하지않다.
[37] 이때,상기제 2용액을제 1용액과혼합한후적정온도에서반웅시키면,조성 ¾입자크기가균일한형태의아연 (Zn)함유칼코게나이드또는주석 (Sn)함유 ½:코게나이드나노입자를얻을수있다.
[38] 하나의구체적인예에서,상기제 1용액내지제 4용액의용매는물,알콜류, 디에틸렌글리콜 (diethylene glycol),오레일아민 (oleylamine),
에틸렌글리콜 (ethyleneglycol),트리에틸렌글리콜 (triethylene glycol),
디메틸설폭사이드 (dimethyl sulfoxide),디메틸포름아마이드 (dimethyl formamide) 및 NMP(N-methyl-2-pyrrolidone)로이루어진군에서선택되는하나이상일수 있고,상기알코올류용매는상세하게는,탄소수 1개내지 8개를갖는메탄올, 에탄올,프로판올,부탄올,펜탄올,핵산올,협탄올,및옥탄을일수있다.
[39] 하나의구체적인예에서,상기염은염화물 (chloride),브롬화물 (bromide),
요오드화물 (iodide),질산염 (nitrate),아질산염 (nitrite),황산염 (sulfate),
아세트산염 (acetate),아황산염 (sulfite),아세틸아세토네이트염 (acetylacetoante)및 수산화물 (hydroxide)로이루어진군에서선택되는하나이상의형태일수있고, 주석 (Sn)염의경우에는 2가및 4가의염이한정되지아니하고모두사용 、
가능하다.
[40] 하나의구체적인예에서 ,상기 VI족소스는 Se, Na2Se, K2Se, CaSe, (CH3)2Se,
Se02, SeCl4, H2Se03, H2Se04, Na2S, K2S, CaS, (CH3)2S, H2S04, S, Na2S203, NH2S03H 및이들의수화물과,티오요소 (thiourea),티오아세트아미드 (thioacetamide),및 셀레노유레아 (selenourea)로이루어진군에서선택되는하나이상일수있다.
[41] 한편,상기제 1용액내지제 4용액에는캡핑제 (capping agent)가더포함될수 있다.
[42] 상기캡핑제는용액공정증에포함됨으로써합성되는금속칼코게나이드나노 입자의크기,형태와입자의상을조절할수있다.
[43] 또한,이들은합성된금속칼코게나이드나노입자가서로웅집되는것을
방지하기때문에합성된입자가균일하게분산된상태에서제 3용액,또는제 4 • 용액이흔합될수있는바,입자전체에서균일한금속의치환이이루어질수 있다.
[44] 이러한캡핑제는특별히한정되지는않으나,예를들어,폴리비닐
피롤리돈 (polyvinylpyrrolidone), L-주석산나트륨 (sodium L-tartrate dibasic dehydrate),타르타르산나트륨칼륨 (potassium sodium tartrate),소듐
아크릴산 (sodium acrylate),폴리 (아크릴산소듐염 )(Poly(acrylic acid sodium salt)), 폴리 (비닐피를리돈) (Poly(vinyl pyrrolidone)),시트르산나트륨 (sodium citrate), 시트르산삼나트륨 (trisodium citrate),시트르산디나트륨 (disodium citrate), 글루콘산나트룹 (sodium gluconate),아스코르브산나트晉 (sodium ascorbate), 소비를 (sorbitol),트리에틸포스페이트 (triethyl phosphate),에틸렌디아민 (ethylene diamine),프로필렌디아민 (propylene diamine),에탄디티올 (1,2-ethanedithiol),및 에탄티을 (ethanethiol)로이루어진군에서선택되는하나이상일수있다.
[45] 본발명은또한,상기금속칼코게나이드나노입자를 1종이상포함하는
광흡수층제조용잉크조성물을제공한다.
[46] 구체적으로,상기잉크조성물은제 1상,제 2상,및제 3상을모두포함하는 금속칼코게나이드나노입자로이루어진잉크조성물이거나,제 1상과제 3 상을포함하는금속칼코게나이드나노입자와제 2상과제 3상을포함하는 금속칼코게나이드나노입자의흔합물로이루어진잉크조성물이거나,또는제 1상과제 2상을포함하는금속칼코게나이드나노입자와제 2상과제 3상을 포함하는금속칼코게나이드나노입자의흔합물로이루어진잉크조성물일 수도있고,제 1상과제 2상을포함하는금속칼코게나이드나노입자와제 1 상과제 3상을포함하는금속칼코게나이드나노입자의혼합물로이루어진 잉크조성물일수도있다.
[47] 또한,상기잉크조성물은구리 (Cu),아연 (Zn)및주석 (Sn)으로이루어진군에서 선택되는 2종이상의금속을포함하는바이메탈릭 (bimetallic)또는
인터메탈릭 (intermetallic)금속나노입자를더포함할수있다.즉,상기잉크 조성물은,둘이상의상들올포함하는금속칼코게나이드나노입자와 바이메탈릭또는인터메탈릭금속나노입자의혼합물로이루어질수있다.
[48] 상기바이메탈릭또는인터메탈릭금속나노입자는예를들어, Cu-Sn
바이메탈릭금속나노입자, Cu-Zn바이메탈릭금속나노입자, Sn-Zn 바이메탈릭금속나노입자,및 Cuᅳ Sn-Zn인터메탈릭금속나노입자로이루어진 군에서선택되는하나이상일수있다.
[49] 본출원의발명자들이확인한바에따르면,상기바이메탈릭또는
인터메탈릭의금속나노입자는,일반금속나노입자에비해산화에안정할뿐 아니라,열처리를통한샐렌화과정에서 VI족원소의첨가에의해일어나는 부피의증가로인하여고밀도의막을형성할수있다.따라서,상기바이메탈릭 또는인터메탈릭금속나노입자와금속칼코게나이드나노입자를흔합하여 제조한잉크조성물의경우,막밀도향상과함께잉크조성물에포함된 VI족 원소로인해최종박막내의 VI족함유량을증가시켜양질의 CZTS/Se박막을 형성할수있다.
[50] 상기바이메탈릭또는인터메탈릭금속나노입자의제조방법은한정되지는 아니하나,상세하게는,유기환원제및 /또는무기환원제를사용한용액 공정으로이루어질수있고,상기환원제는,예를들어, LiBH4, NaBH4,KBH4, Ca(B )2, Mg(BH4)2, LiB(Et)3H, NaBH3(CN), NaBH(OAc)3,하이드라진, 아스코르브산 (ascorbic acid)및트리에탄올아민 (triethanolamine)으로이루어진 군에서선택되는하나일수있다.
[51] 이때,상기환원제는용액공정과정에서포함되는금속염총량대비몰비로 1배내지 20배로포함될수있다.
[52] 환원제의함량이금속염에대하여너무적게포함될경우에는금속염의
환원이층분히일어나지못하므로,지나치게작은크기또는적은양의 바이메탈릭또는인터메탈릭금속나노입자만을얻을수있거나또는원하는 원소비의입자를얻기어렵다.또한,환원제의함량이금속염함량에대해 20배를초과하여포함되는경우에는정제과정에서의환원제및부산물을 제거하기가원활하지않은문제점이있어,바람직하지않다.
[53] 이렇게상기와같은용액공정에의해제조된상기바이메탈릭또는
인터메탈릭금속나노입자의크기는,상세하게는,약 1나노미터내지약 500 나노미터일수있다.
[54] 하나의구체적인예에서,상기와같이,바이메탈릭또는인터메탈릭금속나노 입자와금속칼코게나이 ^나노입자를함께용매에분산시켜잉크조성물을 제조하는경우,이후, CZTS박막의조성비를맞추기위해,잉크조성물내에 Cu, Zn,및 Sn이모두포함되도록금속나노입자와금속칼코게나이드나노입자를 혼합하게된다.이때, Cu. Zn,및 Sn이각각상기금속나노입자또는금속 칼코게나이드나노입자중적어도한종류의입자에포함되어있는조합이라면 특별히한정되지아니하나,상세하게는,바이메탈릭또는인터메탈릭금속나노 입자는 Cu-Sn바이메탈릭금속나노입자이고,상기금속칼코게나이드나노 입자는제 1상및제 3상의 2개의상들로이루어진아연 (Zn)함유 칼코게나이드 -구리 (Cu)함유칼코게나이드나노입자일수있다.또한,상기 바이메탈릭또는인터메탈릭금속나노입자는 Cu-Zn바이메탈릭금속나노 입자이고,상기금속칼코게나이드나노입자는제 2상및제 3상의 2개의 상들로이루어진금속칼코게나이드나노입자일수있으며,경우에따라서는 Cu-Zn-Sn인터메탈릭금속나노입자와제 1상,제 2상,및제 3상을모두 포함하는금속칼코게나이드나노입자를혼합할수도있다.
[55] 여기서,상기 Cu-Sn바이메탈릭나노입자는,더욱상세하게는, CuSn또는구리 과량 (Cu-rich)의 Cu-Sn입자로예를들면, Cu3Sn, Cu,0Sn3, Cu6.26Sn5, Cu41Snl,또는 Cu6Sn5등일수있으나,이들로한정되지않는다.
[56] 상기 Cu-Zn바이메탈릭나노입자는예를들어, Cu5Zn8,또는 CuZn일수있다.
[57] 물론, CZTS박막의조성비만을고려하는경우,상기에서 ,금속나노입자와 함께아연 (Zn)함유칼코게나이드나노입자또는주석 (Sn)함유칼코게나이드 나노입자만을흔합하거나,또는아연 (Zn)함유칼코게나이드나노입자및 구리 (Cu)함유칼코게나이드나노입자를각각합성하여흔합하거나,주석 (Sn) 함유칼코게나이드나노입자및구리 (Cu)함유칼코게나이드나노입자를각각 합성하여흔합할수도있다.그러나,이경우,박막제조시충분한흔합이 이루어지지않았을경우,각각의입자들이분리된영역이존재함으로써조성의 불균일성이문제될수있는바,하나의입자내에두개의원소를동시에 포함하는,예를들어, Cu및 Zn또는 Cu및 Sn등을동시에포함하는,본발명에 따른금속칼코게나이드나노입자를사용함으로써,상기조성불균일문제를 해결할수있다.
[58] 이경우,상기바이메탈릭또는인터메탈릭금속나노입자는,이후 CZTS최종 박막이최대의효율을가질수있도록,잉크조성물내의금속의조성이
0.5≤Cu/(Zn+Sn)≤1.5, 0.5≤Zn/Sn≤^l되는범위에서금속칼코게나이드나노 입자와혼합될수있고,상세하게는 0.7≤Cu/(Zn+Sn)≤1.2, 0.8≤Zn/Sn≤1.4이되는 범위에서흔합될수있다.
[59] 본발명은또한,상기잉크조성불을사용하여박막을제조하는방법을
제공한다.
[60] 본발명에따른박막의제조방법은,
[61] (i) (a)아연 (Zn)함유칼코게나이드로이루어진제 1상 (phase),주석 (Sn)함유 칼코게나이드로이루어진제 2상 (phase),및구리 (Cu)함유칼코게나이드로 이루어진제 3상 (phase)으로부터선택되는둘이상의상들 (phases)을포함하는 금속칼코게나이드나노입자를 1종이상용매에분산하거나, (b)바이메탈릭 또는인터메탈릭금속나노입자와,아연 (Zn)함유칼코게나이드로이루어진제 1상 (phase),주석 (Sn)함유칼코게나이드로이루어진제 2상 (phase),및구리 (Cu) 함유칼코게나이드로이루어진제 3상 (phase)으로부터선택되는둘이상의 상들 (phases)을포함하는금속칼코게나이드나노입자를 1종이상용매에 분산하여잉크를제조하는과정 ;
[62] (ii)전극이형성된기재상에상기잉크를코팅하는과정;및
[63] (iii)상기전극이형성된기재상에코팅된잉크를건조한후열처리하는과정; [64] 을포함한다.
[65] 상기에서,본발명에따른금속칼코게나이드나노입자를 1종이상포함한다는 것은,본발명에따라제조될수있는모든종류의금속칼코게나이드나노입자 중에서선택되는 1종이상이포함됨을의미하고,구체적으로,제 1상및제 2 상으로이루어진아연 (Ζπ)함유칼코게나이드 -주석 (Sn)함유칼코게나이드입자, 제 2상및제 3상으로이루어진주석 (Sn)함유칼코게나이드 -구리 (Cu)함유 칼코게나이드입자,제 1상및제 3상으로이루어진아연 (Zn)함유
칼코게나이드 -구리 (Cu)함유칼코게나이드입자,및제 1상,제 2상및제 3 상으로이루어진아연 (Ζπ)함유칼코게나이드 -주석 (Sn)함유
칼코게나이드 -구리 (Cu)함유칼코게나이드입자들로부터선택되는가능한모든 조합이포함될수있음을의미한다.
[66] 또한,상기에서,바이메탈릭또는인터메탈릭금속나노입자와아연 (Zn)함유 칼코게나이드로이루어진제 1상 (phase),주석 (Sn)함유칼코게나이드로 이루어진제 2상 (phase),및구리 (Cu)함유칼코게나이드로이루어진제 3 상 (phase)으로부터선택되는둘이상의상들 (phases)을포함하는금속
칼코게나이드나노입자의구체적인예들과이들의흔합비등은상기에서 설명한것과동일하다.
[67] 하나의구체적인예에서,상기과정 (i)의용매는일반적인유기용매라면
특별히제한없이사용할수있는데알칸계 (alkanes),알켄계 (alkenes),
알킨계 (alkynes),방향족화합물계 (aromatics),케톤계 (ketons),니트릴계 (nitriles), 에테르계 (ethers),에스테르계 (esters),유기할로겐화물계 (organic halides), 알코올계 (alcohols),아민계 (amines),티올계 (thiols),카르복실산계 (carboxylic acids),수소화인계 (phosphines),아인산계 (phosphites),인산염계 (phosphates), 술폭시화물계 (sulfoxides),및아미드계 (amides)증에서선택된유기용매를 단독으로사용하거나이들중에서선택된하나이상의유기용매가혼합된 형태로사용할수있다.
[68] 구체적으로,상기알코올계용매는에탄을, 1-프로판을 (1-propanol),
2-프로판올 (2-propanol), 1-펜타놀 (1-pentanol), 2-펜타놀 Opentanol),
1-핵사놀 (l-hexanol), 2-핵사놀 (2-hexanol), 3-핵사놀 (3-hexanol),헵타놀 (heptanol), 옥타놀 (octanol), EG(ethylene glycol), DEGMEE(diethylene glycol monoethyl ether), EGMME(ethylene glycol monomethyl ether), EGMEE(ethylene glycol monoethyl ether), EGDME(ethylene glycol dimethyl ether), EGDEE(ethylene glycol diethyl ether), EGMPE(ethylene glycol monopropyl ether), EGMBE(ethylene glycol monobutyl ether), 2-메틸 -1-프로판올 (2-methyl-l-propanol),
시클로펜탄을 (cyclopentanol),시클로핵산올 (cyclohexanol), PGPE(propylene glycol propyl ether), DEGDME(diethylene glycol dimethyl ether), 1 ,2-PD( 1 ,2-propanediol), l,3-PD(l,3-propanediol), l,4-BD(l,4-butanediol), l,3-BD(l,3-butanediol), 알파테르피네올 (α-terpineol), DEG (diethylene glycol),글리세를 (glycerol),
2-에틸아미노에탄올 (2-(ethylamino)ethanol),
2- (메틸아미노)에탄을 (2-(methylamino)ethanol),및
2-아미노 -2-메틸 -1-프로판올 (2-amino-2-methyl-l-propanol)증에서선택되는하나 이상의혼합용매일수있다.
[69] 상기아민계용매는트리에틸아민 (triethyl amine),디부틸아민 (dibutyl amine), 디프로필아민 (dipropyl amine),부틸아민 (butylamine),에탄올아민 (ethanolamine),
DETA(Diethylenetriamine), TETA(Triethylenetetraine),
트리에탄올아민 (Triethanolamine), 2-아미노에틸피페라진 (2-aminoethyl piperazine), 2-하드록시에틸피페라진 (2-hydroxyethyl piperazine),
다이부틸아민 (dibutylamine),및
트리스 (2-아미노에틸)아민 (tris(2-aminoethyl)amine)중에서선택되는하나이상의 혼합용매일수있다.
[70] 상기티올계용매는 1,2-에탄디티올 (l,2-ethanedithiol),펜탄티올 (pentanethiol), 핵산티을 (hexanethiol),및메르캅토에탄올 (mercaptoethanol)중에서선택되는 하나이상의혼합용매일수있다.
[71] 상기알칸계 (alkane)용매는핵산 (hexane),헵탄 (heptane),옥탄 (octane)증에서 선택되는하나이상의흔합용매일수있다.
[72] 상기방향족화합물계 (aromatics)용매는를루엔 (toluene),자일렌 (xylene),
니트로벤젠 (nitrobenzene),피리딘 (pyridine)증에서선택되는하나이상의혼합 용매일수있다.
[73] 상기유기할로겐화물계 (organic halides)용매는클로로포름 (chloroform),메틸렌 클로라이드 (methylene chloride),테트라클로로메탄 (tetrachloromethane), 디클로로에탄 (dichloroethane),및클로로벤젠 (chlorobenzene)중에서선택되는 하나이상의혼합용매일수있다.
[74] 상기니트릴계 (nitrile)용매는아세토니트릴 (acetonitrile)일수있다.
[75] 상기케톤계 (ketone)용매는아세톤 (acetone),시클로핵사논 (cyclohexanone), 시클로펜타논 (cyclopentanone),및아세틸아세톤 (acetyl acetone)중에서선택되는 하나이상의흔합용매일수있다.
[76] 상기에테르계 (ethers)용매는에틸에테르 (ethyl ether),
테트라하이드로퓨란 (tetrahydrofurane),및 1,4-다이옥산 (1,4-dioxane)중에서 선택되는하나이상의혼합용매일수있다.
[77] 상기술폭시화물계 (sulfoxides)용매는 DMSO(dimethyl sulfoxide),및
술포란 (sulfolane)중에서선택되는하나이상의혼합용매일수있다.
[78] 상기아미드계 (amide)용매는 DMF(dimethyl formamide),및
NMP(n-methyl-2-pyrrolidone)중에서선택되는하나이상의흔합용매일수있다. [79] 상기에스테르계 (ester)용매는에틸락테이트 (ethyl lactate),
r-부틸로락톤 (r-butyrolactone),및에틸아세토아세테이트 (ethyl acetoacetate) 중에서선택되는하나이상의혼합용매일수있다.
[80] 상기카르복실산계 (carboxylic acid)용매는프로피온산 (propionic acid),핵산 산 (hexanoic acid),메소 -2,3-디메르캅토숙신산 (meso-2,3-dimercaptosuccinic acid), 티오락틱산 (thiolactic acid),및티오글리콜산 (thioglycolic acid)중에서선택되는 하나이상의혼합용매일수있다.
[81] 그러나,상기용매들은하나의예시일수있으며이에한정되지않는다.
[82] 경우에따라서는,상기과정 (i)의잉크에첨가제를더첨가하여제조될수있다.
[83] 상기첨가제는예를들어,분산제,계면활성제,중합체,결합제,가교결합제, 유화제,소포제,건조제,충전제,증량제,증점화제,필름조건화제,항산화제, 유동제,평활성첨가제,및부식억제제로이루어진군에서선택되는어느하나 이상일수있고,상세하게는폴리비닐피로리돈 (polyvinylpyrrolidone: PVP), 폴리비닐알코올 (Polyvinylalcohol),안티테라 204(Anti-terra 204),안티테라
205(Anti-terra 205),에틸썰를로오스 (ethyl cellulose),및
디스퍼스 BYKl lO(DispersBYKl lO)으로이루어진군에서선택되는어느하나 이상일수있다.
[84] 상기과정 (ii)의코팅층을형성하는방법은,예를들어,습식코팅,분무코팅, 스핀코팅 ,닥터블레이드 (doctor blade)코팅,접촉프린팅,상부피드리버스 (feed reverse)프린팅,하부피드리버스 (feed reverse)프린팅,노즐피드리버스 (nozzle feed reverse)프린팅,그라비어 (gravure)프린팅,마이크로그라비어 (micro gravure) 프린팅,리버스마이크로그라비어 (reverse micro gravure)프린팅,를러코팅,슬롯 다이 (slot die)코팅 ,모세관코팅,잉크젯프린팅,젯 (jet)침착,분무침착으로 이루어진군에서선택되는어느하나일수있다.
[85] 상기과정 (iii)의열처리는섭씨 300내지 800도범위의온도에서수행될수
있다.
[86] 한편,더욱높은밀도의태양전지의박막을제조하기위해서는선택적으로 셀렌화공정이포함될수있고,상기셀렌화공정은다양한방법에의해 이루어질수있다.
[87] 첫번째예에서,상기과정 (i)에서 1종이상의금속칼코게나이드나노입자
또는바이메탈릭또는인터메탈릭금속나노입자및금속칼코게나이드나노 입자와함께 S및 /또는 Se를입자형태로용매에분산하여잉크를제조하고, 과정 (iii)의열처리를통함으로써달성될수있다.
[88] 두번째예에서,상기과정 (iii)의열처리를 S또는 Se가존재하는조건에서
수행함으로써달성될수있다.
[89] 상세하게는,상기 S또는 Se원소가존재하는조건은 H2S또는 H2Se의가스
형태로공급하거나, Se또는 S를가열하여기체로공급함으로써가능하다.
[90] 세번째예에서,상기과정 (ii)이후에 S또는 Se를적층한후과정 (iii)을 진행하여달성될수있다.상세하게는,상기적층은용액공정에의하여 이루어질수있고증착방법에의해이루어질수도있다.
[91] 본발명은또한상기방법으로제조된박막을제공한다.
[92] 상기박막은 0.5 β 내지 3.0 의범위내에서두께를가질수있으며,더욱 상세하게는박막의두께는 0.5 m내지 2.5; t m일수있다.
[93] 박막의두께가 0.5 미만인경우에는광흡수층의밀도와양이충분치못해 소망하는광전효율을얻을수없고,박막이 3.0; Mil를초과하는경우에는, 전하운반자 (carrier)가이동하는거리가증가함에따라재결합 (recombination)이 일어날확률이높아지므로이로인한효율저하가발생하게된다.
[94] 더나아가,본발명은상기박막을사용하여제조되는박막태양전지를
제공한다.
[95] 박막의태양전지를제조하는방법은당업계에이미알려져있으므로본 명세서에는그에대한설명을생략한다.
도면의간단한설명
[96] 도 1은본발명에따라환원전위차에의해합성된입자에서치환된금속과 치환하는금속의조성이균일함을보여주는 ZnS-CuS나노입자의 EDS 맵핑 (mapping)결과이다;
[97] 도 2는본발명에따라환원전위차에의해합성된입자에서치환된금속과 치환하는금속의조성이균일함을보여주는 ZnS-CuS나노입자의조성에대한 라인스캔 (line-scan)결과이다;
[98] 도 3은실시예 1에따른나노입자의 SEM사진이다;
[99] 도 4는실시예 1에따른나노입자의 XRD그래프이다;
[100] 도 5는실시예 2에따른나노입자의 SEM사진이다;
[101] 도 6은실시예 2에따른나노입자의 EDX분석결과이다;
[102] 도 7은실시예 2에따론나노입자의 XRD그래프이다;
[103] 도 8은실시예 3에따른나노입자의 SEM사진이다;
[104] 도 9는실시예 4에따른나노입자의 SEM사진이다;
[105] 도 10은실시예 4에따른나노입자의 XRD결과이다;
[106] 도 11은실시예 5에따른나노입자의 SEM사진이다;
[107] 도 12는실시예 8에따른나노입자의 SEM사진이다;
[108] 도 13은실시예 10에따른나노입자의 SEM사진이다;
[109] 도 14는실시예 10에따른나노입자의 XRD그래프이다;
[110] 도 15는실시예 12에따른박막의단면 SEM사진이다;
[111] 도 16은실시예 12에따른박막의단면 XRD그래프이다;
[112] 도 17은실시예 13에따른박막의단면 SEM사진이다;
[113] 도 18은실험예 1에따른실시예 12의박막을사용한태양전지의 IV
그래프이다. 발명의실시를위한형태
[114] 이하,본발명의실시예를참조하여설명하지만,하기실시예는본발명을
예시하기위한것이며,본발명의범주가이들만으로한정되는것은아니다.
[115]
[116] <실시예 1>
[117] ZnS-CuS입자의합성
[118] 염화아연 5 rmn이과 Na2S 10 mm이을각각증류수 50 ml에녹이고,이들을
흔합한후상온에서 2시간동안반웅시켜 ZnS나노입자를제조하였다.
[119] ZnS나노입자 3 mm이을에틸렌글리콜 (ethylene glycol: EG) 30 m 분산한후 30 ml EG에녹인 0.6 mm이의 CuCl2*2H20용액을상온에서천천히적가하면서 교반하였다. 4시간교반한후에탄올을이용하여원심분리방법으로정제하여 Cu가치환된 ZnS-CuS입자를얻었다.상기형성된입자의전자현미경 (SEM) 사진,및 XRD그래프결과를도 3및 4에나타내었다.
[120] 상기입자는,도 1및 2와같이, EDS-mapping과 line-scan에의해 Zn와 Cu가
균일하게포함된상태의칼코게나이드입자로확인되었다.
[121]
[122] <실시예 2> - [123] ZnS-CuS입자의합성
[124] 염화아연 10 mmol,티오아세트아미드 (thioacetamide) 20 mmol,폴리비닐
필로리돈 2mm이을 200 ml에틸렌글리콜에녹인후 180도에서 3시간반응한후 원심분리방법으로정제하여 ZnS입자를얻었다.이를진공건조한후에틸렌 글리콜 100 ml에분산한후 50 ml의에틸렌글리콜에녹인 CuCl2*2H20 2.5 mmol 용액을점적하였다. 3시간반웅후원심분리방법으로정제하여 ZnS-CuS 입자를얻었다.상기형성된입자의 SEM사진, EDX결과,및 XRD그래프를도 5 내지도 7에나타내었다.
[125]
[126] <실시예 3>
[127] ZnS-SnS입자의합성
[128] 실시예 2와동일한방법으로얻어진 ZnS 10 mm 을에탄올 200 ml에분산한후 SnCl4 2.5 mind을에탄올 50 ml에녹여서만든용액을점적하였다.흔합용액을 5시간동안 80도에서교반한후정제하여 ZnS-SnS입자를얻었다.상기형성된 입자의 SEM사진을도 8에나타내었다.
[129]
[130] <실시예 4> '
[131] SnS-CuS입자의합성
[132] 에틸렌글리콜 100 ml에 SnCl2 5 mmol,티오아세트아미드 (thioacetamide) 5 mmol,폴리비닐필로리돈 1mm이을녹인후 180도에서 3시간반웅한후원심 분리방법으로정제하여 SnS입자를얻었다.이를에틸렌글리콜 100 ml에 분산한후 CuCl2*2H20 4 mmol용액을점적한후, 50도에서 3시간교반하여 SnS-CuS입자를얻었다.상기형성된입자의 SEM사진및 XRD그래프를도 9및 도 10에나타내었다.
[133]
[134] <실시예 5>
[135] ZnS-SnS-CuS입자의합성
[136] 상기실시예 3과같은방법으로합성된 ZnS-SnS입자를에틸렌글리콜 100 ml에분산한후에틸렌글리콜 50 ml에 CuCl2*2H20 4.5 mm이을점적한후 3시간 동안교반하여 Cu: Zn: Sn = 4.5: 3: 2.5의비율올가지는 ZnS-SnS-CuS나노 입자를얻었다.상기형성된입자의 SEM사진을도 11에나타내었다.
[137]
[138] <실시예 6>
[139] ZnSe-CuSe입자의합성
[140] NaBH4 20 mm이을증류수 50 ml에녹인후 50 ml의증류수에녹인 H2Se03 10 mm이을적가하였다. 20분간교반후 50 ml증류수에녹인 ZnCl2 10 mmol용액을 천천히가하였다.흔합액을 5시간교반한후,원심분리하여정제하여 ZnSe 입자를얻었다.얻어진입자를에탄올 100 ml에분산후 50 ml의에탄올에 2.5 mm이의구리아세테이트를녹인용액을점적하고, 3시간동안교반한후원심 분리하고정제하여 ZnSe-CuSe입자를얻었다.형성된입자를 ICP로분석한결과 Cu/Zn=0.37의비를나타내었다.
[141]
[142] <실시예 7>
[143] ZnSe-SnSe입자의합성
[144] 실시예 6과동일한방법으로 ZnSe를합성한후,얻어진입자를에탄올 100 ml에 분산후 50 ml의에탄올에 5 mm이의염화주석을녹인용액을점적하고,
50도에서 3시간동안교반한후원심분리하고정제하여 ZnSe-SnSe입자를 얻었다.
[145]
[146] <실시예 8>
[147] SnSe-CuSe입자의함성
[148] NaBH4 20 mm이을증류수 50 ml에녹인후 25 ml의증류수에녹인 H2Se03 10 mm이을적가하였다. 20분간교반후 25 ml증류수에녹인 SnCI2 10 mmol용액을 가하고, 3시간반웅후정제하여 SnSe입자를얻었다.얻어진입자를에탄올 100 m 분산후 50 ml의에탄을에 2.5 mm이의 CuCl2*2H20를녹인용액을점적하고, 50도에서 3시간동안교반한후정제하여 SnSe-CuSe입자를얻었다.상기형성된 입자의 SEM사진을도 12에나타내었다ᅳ [150] <실시예 9>
[151] ZnSe-SnSe-CuSe입자의한성
[152] 상기실시예 7과같은방법으로 ZnSe-SnSe를합성한후,이를에틸렌글리콜 100 m ^산후 CuCl2*2H20 3 mm 을에틸렌글리콜 50 ml에녹인용액을 점적하고, 3.5시간동안교반한후원심분리하고정제하여 ZnSe-SnSe-CuSe 입자를얻었다.형성된입자를 ICP로분석한결과 Cu: Zn: Sn=4.5: 3: 2.4의비를 나타내었다.
[153]
[154] <실시예 10>
[155] Qx-Sn입자의합성
[156] 60 mm 의 NaBH4를포함한수용액에 12 mm이의 CuCl2. 10 mm이의 SnCI2.및 50 mm이의시트르산삼나트륨 (trisodium citrate)을포함하는혼합수용액을 1시간에 걸쳐적가한후, 24시간동안교반하여반웅시키고,형성된입자를
원심분리법으로정제하고바이메탈릭나노입자형태의 0 6 5를제조하였다. 상기형성된입자의 SEM사진및 XRD그래프를도 13및도 14에나타내었다.
[157]
[158] <비교예 1>
[159] CuS. ZnS. SnS입자의합성
[160] ZnS와 SnS는실시예 2와실시예 4에서사용한방법으로각각합성하고, CuS는 Cu(N03)2 10 mm이과티오아세트아미드 10 mm이을각각 50 ml의에틸렌
글리콜에녹인후흔합하여 150도에서 3시간반웅하여 CuS입자를얻었다.
[161]
[162] <실시예 11>
[163] 박막의제조
[164] 실시예 1에서제조된 ZnS-CuS입자및실시예 10에서제조된 Cu-Sn
바이메탈릭금속입자를 Cu/(Zn+Sn)=0.9, Zn/Sn=1.24가되도록혼합하여에탄올, 에틸렌글리콜모노메틸에테르,아세틸아세톤,프로필렌글리콜프로일에테르, 사이클로핵사놀,및프로판을로이루어진혼합용매에가한후 18%농도로 분산하여잉크를제조하였다.얻어진잉크를 glass위에코팅된 Mo박막위에 코팅한후섭씨 200도까지건조하였다.이를 Se의존재하에서섭씨 550도에서 열처리하여 CZTS박막을얻었다.
[165]
[166] <실시예 12>
[167] 박막의제조
[168] 실시예 2에서제조된 ZnS-CuS입자및실시예 10에서제조된 Cu-Sn
바이메탈릭금속입자를 Cu/(Zn+Sn)=0.85, Zn/Sn=L26가되도록흔합하여 에탄을,에틸렌글리콜모노메틸에테르,아세틸아세톤,
프로필렌글리콜프로일에테르,사이클로핵사놀,및프로판올로이루어진흔합 용매에가한후 18%농도로분산하여잉크를제조하였다.얻어진잉크를 glass위에코팅된 Mo박막위에코팅한후섭씨 200도까지건조하였다.이를 Se의 존재하에서섭씨 575도에서열처리하여 CZTS박막을얻었다.얻어진박막의 단면형상과 XRD상을도 15및도 16에나타내었다.
[169]
[170] <실시예 13>
[171] 받막의제조
[172] 실시예 2에서제조된 ZnS-CuS입자및실시예 4에서제조된 SnS-CuS입자를 Cu/(Zn+Sn)=0.92, Zn/Sn=1.15가되도록혼합하여에탄올,에틸렌글리콜 모노메틸에테르,아세틸아세톤,프로필렌글리콜프로일에테르,사이클로핵사놀, 및프로판을로이루어진흔합용매에가한후 16%농도로분산하여잉크를 제조하였다.얻어진잉크를 glass위에코팅된 Mo박막위에코팅한후섭씨 200도까지건조하였다.이를 Se의존재하에서섭씨 575도에서열처리하여 CZTS 박막을얻었다.얻어진박막의단면형상을도 17에나타내었다.
[173]
[174] <실시예 14>
[175] 박막의제조
[176] 실시예 5에서제조된 ZnS-SnS-CuS입자를에탄을,에틸렌글리콜
모노메틸에테르,아세틸아세톤,프로필렌글리콜프로일에테르,사이클로핵사놀, 및프로판올로이루어진흔합용매에가한후 16%농도로분산하여잉크를 제조하였다.얻어진잉크를 glass위에코팅된 Mo박막위에코팅한후섭씨 200도까지건조하였다.이를 Se의존재하에서섭씨 575도에서열처리하여 CZTS 박막을얻었다.
[177]
[178] <실시예 15>
[179] 받막의제조
[180] 실시예 6에서제조된 ZnSe-CuSe입자를실시예 10에서제조한 Cu-Sn
바이메탈릭금속입자와혼합하여잉크를제조한것을제외하고는실시예 12와 동일한방법으로 CZTS박막을제조하였다.
[181]
[182] <실시예 16>
[183] 박막의제조
[184] 실시예 9에서제조된 ZnSe-SnSe-CuSe입자를사용한잉크를제조한것을
제외하고는실시예 14와동일한방법으로 CZTS박막을제조하였다.
[185]
[186] <실시예 17>
[187] 박막의제조
[188] 실시예 6에서제조된 ZnSe-CuSe입자및실시예 8에서제조된 SnSe-CuSe 입자를흔합하여잉크를제조한것을제외하고는실시예 13과동일한방법으로 CZTS박막을제조하였디-.
[189]
[190] <실시예 18>
[191] 박막의제조
[192] 실시예 2에서제조된 ZnS-CuS입자및실시예 8에서제조된 SnSe-CuSe입자를 혼합하여잉크를제조한것을제외하고는실시예 13과동일한방법으로 CZTS 박막을제조하였다.
[193]
[194] <비교예 2>
[195] 박막의제조
[196] 비교예 1에서제조된 CuS입자, ZnS입자, SnS입자들을흔합하여잉크를
제조한것올제외하고는실시예 13과동일한방법으로 CZTS박막을제조하였다.
[197]
[198] <실험예 1>
[199] 실시예 11내지 18및비교예 2에서제조된 CZTS박막위에 CBD방법으로 CdS 버퍼층을제조하고스퍼터방법으로 ZnO와 Al:ZnO를차례로증착한후 e-beam 방법으로 A1전극올올려서 cell들을제조하였다.상기 cell들로부터얻어진 특성을하기표 1및도 18에나타내었다.
[200] 표 1
[Table 1]
Figure imgf000019_0001
[201] 상기표 1에기재된태양전지의효율을결정하는변수인 Jsc는전류밀도를
의미하고, Vw는제로출력전류에서측정된개방회로전압을의미하며, 광전효율은태양전지판에입사된빛의에너지량에따른전지출력의비율을 의미하고, FF(Fill factor)는최대전력점에서의전류밀도와전압값의곱을 V와 Jsc 의곱으로나눈값을의미한다. [202] 표 1및도 18을참조하면,본발명에따른금속칼코게나이드나노입자를 사용하여 CZTS박막을제조하는경우,기존의하나의금속원소만을포함하는 나노입자들을제조하고,이들을흔합하여 CZTS박막을제조하는경우에비해, 전류밀도,개방희로전압,및광전효율이모두향상된값을가짐을알수있다. 특히,전류밀도와광전효율은매우우수한값을나타낸다.
[203]
[204] 본발명이속한분야에서통상의지식을가진자라면상기내용을바탕으로본 발명의범주내에서다양한웅용및변형을행하는것이가능할것이다.
산업상이용가능성
[205] 이상에서설명한바와같이,본발명에따른금속칼코게나이드나노입자는, 아연 (Zn)함유칼코게나이드로이루어진제 1상 (phase),주석 (Sn)함유 칼코게나이드로이루어진제 2상 (phase),및구리 (Cu)함유칼코게나이드로 이루어진제 3상 (phase)으로부터선택되는둘이상의상들 (phases)을한입자 내에포함하는바,이를사용하여박막을제조하는경우,한입자내에둘이상의 금속을포함하고있어박막전체적으로보다균일한조성을가질뿐아니라, 나노입자자체에 S또는 Se를포함함으로써산화에안정하고,금속나노입자를 더포함하여박막을제조하는경우에는,셀렌화과정에서 VI족원소첨가에따른 입자부피의증가로고밀도의광흡수층을성장시킬수있으며,최종박막내에
VI족원소의함유량을높여양질의박막을제조할수있는효과가있다.

Claims

청구범위
[청구항 1] . 태양전지의광흡수층을형성하는금속칼코게나이드나노
입자로서,아연 (Zn)함유칼코게나이드로이루어진제 1상 (phase), 주석 (Sn)함유칼코게나이드로이루어진제 2상 (phase),및 구리 (Cu)함유칼코게나이드로이루어진제 3상 (phase)으로부터 선택되는둘이상의상들 (phases)을포함하는것을특징으로하는 금속칼코게나이드나노입자.
[청구항 2] 제 1항에있어서,구리 (Cu)함유칼코게나이드는 CuxS(0.5≤x≤2.0), 및 /또는 CuySe(0.5≤y≤2.0)인것을특징으로하는금속
칼코게나이드나노입자.
[청구항 3] 제 1항에있어서,아연 (Zn)함유칼코게나이드는 ZnS,및 /또는
ZnSe인것을특징으로하는금속칼코게나이드나노입자.
[청구항 4] 제 1항에있어서,주석 (Sn)함유칼코게나이드는 S S(().5≤z≤2.0) 및 /또는 SnwSe(0.5≤w≤2.0)인것을특징으로하는금속
칼코게나이드나노입자.
[청구항 5] 제 1항에있어서,상기둘이상의상들 (phases)은독립적으로
존재하는것을특징으로하는금속칼코게나이드나노입자.
[청구항 6] 제 1항에있어서,상기금속칼코게나이드나노입자는두개의 상들 (phases)로이루어져있고,상기두개의상 "은제 1상및제 2 상,또는제 2상및제 3상,또는제 1상및제 3상인것을 특징으로하는금속칼코게나이드나노입자.
[청구항 7] 제 6항에있어서 ,상기두개의상들은제 1상및제 2상을
포함하고,주석과아연의함량비는 0<Sn/Zn인것을특징으로하는 금속칼코게나이드나노입자.
[청구항 8] 제 6항에있어서,상기두개의상들은제 2상및제 3상을
포함하고,주석과구리의함량비는 0<Cu/Sn인것을특징으로하는 금속칼코게나이드나노입자.
[청구항 9] 제 6항에있어서,상기두개의상돌은제 1상및제 3상을
포함하고,구리와아연의함량비는 0<Cu/Zn인것을특징으로하는 금속칼코게나이드나노입자.
[청구항 10] 제 6항에있어서,상기두개의상들은하나의상이코어를이루고, 다른하나의상이쉘을형성하는형태인것을특징으로하는금속 칼코게나이드나노입자.
[청구항 11] 제 6항에있어서,상기두개의상들은하나의입자내에균일한 분포를가지고있는형태인것을특징으로하는금속
칼코게나이드나노입자.
[청구항 12] 제 1항에있어서,상기금속칼코게나이드나노입자는제 1상,제 2상,및제 3상의세개의상들 (phases)로이루어진것을특징으로 하는금속칼코게나이드나노입자.
[청구항 13] 제 12항에있어서,상기세개의상을이루는아연,주석,및구리의 조성비는 0.5≤Cu/(Zn+Sn)≤1.5및 0.5≤Zn/Sn≤2를만족하는것을 특징으로하는금속칼코게나이드나노입자.
[청구항 14] 제 12항에있어서,상기세개의상들중하나의상은코어를
이루고,다른두개의상들은복합체형태로쉘을형성하는형태인 것을특징으로하는금속칼코게나이드나노입자.
[청구항 15] 제 12항에있어서,상기세개의상들중두개의상들은복합체 형태로코어를이루고,나머지하나의상은쉘을형성하는형태인 것을특징으로하는금속칼코게나이드나노입자.
[청구항 16] 제 12항에있어서,상기세개의상들은하나의입자내에균일한 분포를가지고있는형태인것을특징으로하는금속
칼코게나이드나노입자.
[청구항 17] 제 1항에있어서,상기금속칼코게나이드나노입자는아연 (Zn), 주석 (Sn),및구리 (Cu)의환원전위차를이용한치환반웅에의해 제조되는것을특징으로하는금속칼코게나이드나노입자.
[청구항 18] 금속칼코게나이드나노입자를합성하는방법으로서,
아연 (Zn)또는주석 (Sn),및황 (S)또는셀레늄 (Se)을포함하는 1차 전구체를제조한후,
상기 1차전구체의아연 (Zn)의일부를금속의환원전위차를 이용하여주석 (Sn)및 /또는구리 (Cu)로치환하거나,또는상기 1차 전구체의주석 (Sn)의일부를금속의환원전위차를이용하여 구리 (Cu)로치환하는것을특징으로하는금속칼코게나이드나노 입자의합성방법.
[청구항 19] 제 18항에있어서,상기 1차전구체의제조방법은,
(i)황 (S),셀레늄 (Se),및황 (S)또는셀레늄 (Se)을포함하는 화합물로이루어진군에서선택되는 1종이상의 VI족소스를 포함하는제 1용액을준비하는과정;
(ii)아연 (Zn)염또는주석 (Sn)염을포함하는제 2용액을준비하는 과정;및
(iii)상기제 1용액과제 2용액을혼합하여반웅시키는과정; 을포함하는것을특징으로하는금속칼코게나이드나노입자의 합성방법.
[청구항 20] 제 18항에있어서,상기금속의환원전위차를이용한치환은, 1차 전구체를포함하는생성물에치환하고자하는주석 (Sn)염및 /또는 구리 (Cu)염을포함하는제 3용액을흔합하여반웅시킴으로써 이루어지는것을특징으로하는금속칼코게나이드나노입자의 합성방법.
[청구항 21] 제 18항에있어서,상기 1차전구체의아연 (Zn)의일부를금속의 환원전위차를이용하여주석 (Sn)및구리 (Cu)로치환하는방법은, 1차전구체를포함하는생성물에주석 (Sn)염을포함하는제 3 용액과구리 (Cu)염을포함하는제 4용액을순차적으로흔합하여 반웅시 ¾으로써이루어지는것을특징으로하는금속
칼코게나이드나노입자의합성방법.
[청구항 22] 제 19항내지제 21항중어느하나에있어서,상기제 1용액내지 제 4용액의용매는물,알콜류,디에틸렌글리콜 (diethylene glycol), 오레일아민 (oleylamine),에틸렌글리콜 (ethyleneglycol),
트리에틸렌글리콜 (triethylene glycol),디메틸설폭사이드 (dimethyl sulfoxide),디메틸포름아마이드 (dimethyl formamide)및
NMP(N-methyl-2-pyrrolidone)로이루어진군에서선택되는하나 이상인것을특징으로하는금속칼코게나이드나노입자의 합성방법.
[청구항 23] 제 19항내지제 21항증어느하나에있어서,상기염은
염화물 (chloride),브롬화물 (bromide),요오드화물 (iodide), 질산염 (nitrate),아질산염 (nitrite),황산염 (sulfate),
아세트산염 (acetate),아황산염 (sulfite),아세틸아세토
네이트염 (acetylacetoante)및수산화물 (hydroxide)로이루어진 군에서선택되는하나이상의형태인것을특징으로하는금속 칼코게나이드나노입자의합성방법.
[청구항 24] 제 19항에있어서,상기 VI족소스는 Se, Na2Se, K2Se, CaSe, (CH3)2
Se, Se02, SeCl4) H2Se03) H2Se04, Na2S, K2S, CaS, (C )2S, H2S04, S, Na2S203, NH2S03H및이돌의수화물과,티오요소 (thiourea), 티오아세트아미드 (thioacetaniide),및샐레노유레아 (selenourea)로 이루어진군에서선택되는하나이상인것을특징으로하는금속 칼코게나이드나노입자의합성방법.
[청구항 25] 제 1항에따른금속칼코게나이드나노입자를 1종이상포함하는 것을특징으로하는광흡수층제조용잉크조성물.
[청구항 26] 제 25항에있어서,상기잉크조성물은구리 (Cu),아연 (Zn)및
주석 (Sn)으로이루어진군에서선택되는 2종이상의금속올 포함하는바이메탈릭 (bimetallic)또는인터메탈릭 (intermetallic) 금속나노입자를더포함하는것을특징으로하는광흡수층 제조용잉크조성물.
[청구항 27] 제 26항에있어서,상기바이메탈릭또는인터메탈릭금속나노 입자는, Cu-Sn바이메탈릭금속나노입자, Cu-Zn바이메탈릭금속 나노입자, Sn-Zn바이메탈릭금속나노입자,및 Cu-Sn-Zn 인터메탈릭금속나노입자로이루어진군에서선택되는하나 이상인것을특징으로하는광흡수층제조용잉크조성물.
[청구항 28] 제 26항에있어서,상기바이메탈릭또는인터메탈릭금속나노 입자는잉크조성물내의금속의조성이 0.5≤Cu/(Zn+Sn)≤1.5, 0.5≤:¾/ ≤2이되는범위에서금속칼코게나이드나노입자와 혼합되는것을특징으로하는광흡수층제조용잉크조성물.
[청구항 29] 제 25항내지제 28항중어느한항에따른광흡수층제조용잉크 조성물을사용하여박막을제조하는방법으로서,
(i) (a)아연 (Zn)함유칼코게나이드로이루어진제 1상 (phase), 주석 (Sn)함유칼코게나이드로이루어진제 2상 (phase),및 구리 (Cu)함유칼코게나이드로이루어진제 3상 (phase)으로부터 선택되는둘이상의상들 (phases)을포함하는금속칼코게나이드 나노입자를 1종이상용매에분산하거나, (b)바이메탈릭또는 인터메탈릭금속나노입자와,아연 (Zn)함유칼코게나이드로 이루어진제 1상 (phase),주석 (Sn)함유칼코게나이드로이루어진 제 2상 (phase),및구리 (Cu)함유칼코게나이드로이루어진제 3 상 (phase)으로부터선택되는둘이상의상들 (phases)을포함하는 금속칼코게나이드나노입자를용매에분산하여잉크를제조하는 과정;
(ii)전극이형성된기재상에상기잉크를코팅하는과정;및
(iii)상기전극이형성된기재상에코팅된잉크를건조한후 열처리하는과정;
을포함하는것을특징으로하는박막의제조방법.
[청구항 30] 제 29항에있어서,상기과정 (i)의용매는알칸계 (alkanes),
알켄계 (alkenes),알킨계 (alkynes),방향족화합물계 (aromatics), 케톤계 (ketons),니트릴계 (nitriles),에테르계 (ethers),
에스테르계 (esters),유기할로겐화물계 (organic halides),
알코올계 (alcohols),아민계 (a ines),티을계 (thiols),카르복실 산겨 carboxylic acids),수소화인계 (phosphines),
인산염계 (phosphates),황산화물계 (sulfoxides),및아미드계 (amides) 이루어진군으로부터선택된하나이상의유기용매인것을 특징으로하는박막의제조방법 .
[청구항 31] 제 29항에있어서,상기과정 (i)의잉크는첨가제를더포함하여 제조되는것을특징으로하는박막의제조방법.
[청구항 32] 제 31항에있어서,상기첨가제는
폴리비닐피로리돈 (Polyvinylpyrrolidone: PVP), 폴리비닐알코을 (Polyvinylalcohol),안티테라 204(Anti-terra 204), 안티테라 205(Anti-terra 205),에틸셀를로오스 (ethyl cellulose),및 디스퍼스 BYKUO(DispersBYKllO)으로이루어진군에서선택되는 어느하나이상인것을특징으로하는박막의제조방법 .
[청구항 33] 제 29항에있어서,상기과정 (ii)의코팅은습식코팅,분무코팅, 닥터블레이드 (doctor blade)코팅,또는잉크젯프린팅에의해 이루어지는것을특징으로하는박막의제조방법.
[청구항 34] 제 29항에있어서,상기과정 (Hi)의열처리는 300내지 800도
범위의온도에서수행되는것을특징으로하는박막의제조방법.
[청구항 35] 제 29항에따른방법으로제조된것을특징으로하는박막.
[청구항 36] 제 35항에따른박막을사용하여제조되는박막태양전지 .
PCT/KR2014/007090 2013-08-01 2014-08-01 태양전지의 광흡수층 제조용 금속 칼코게나이드 나노입자 및 이의 제조방법 WO2015016649A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES14832898T ES2772177T3 (es) 2013-08-01 2014-08-01 Nanopartículas de calcogenuro metálico para preparar una capa de absorción de luz de una célula solar, y método de preparación para esto
US14/898,079 US20160149061A1 (en) 2013-08-01 2014-08-01 Metal chalcogenide nanoparticles for manufacturing solar cell light absorption layers and method of manufacturing the same
CN201480033231.0A CN105324852B (zh) 2013-08-01 2014-08-01 用于制备太阳能电池的光吸收层的金属硫族化合物纳米颗粒及其制备方法
JP2016519462A JP6276401B2 (ja) 2013-08-01 2014-08-01 太陽電池の光吸収層製造用金属カルコゲナイドナノ粒子及びその製造方法
EP14832898.2A EP3029742B1 (en) 2013-08-01 2014-08-01 Metal chalcogenide nanoparticles for preparing light absorption layer of solar cell, and preparation method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130091781 2013-08-01
KR20130091778 2013-08-01
KR10-2013-0091781 2013-08-01
KR10-2013-0091778 2013-08-01

Publications (1)

Publication Number Publication Date
WO2015016649A1 true WO2015016649A1 (ko) 2015-02-05

Family

ID=52432099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007090 WO2015016649A1 (ko) 2013-08-01 2014-08-01 태양전지의 광흡수층 제조용 금속 칼코게나이드 나노입자 및 이의 제조방법

Country Status (8)

Country Link
US (1) US20160149061A1 (ko)
EP (1) EP3029742B1 (ko)
JP (1) JP6276401B2 (ko)
KR (1) KR101660268B1 (ko)
CN (1) CN105324852B (ko)
ES (1) ES2772177T3 (ko)
TW (1) TWI603912B (ko)
WO (1) WO2015016649A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9876131B2 (en) * 2013-08-01 2018-01-23 Lg Chem, Ltd. Ink composition for manufacturing light absorption layer of solar cells and method of manufacturing thin film using the same
JP6373124B2 (ja) * 2014-08-21 2018-08-15 東京応化工業株式会社 塗布液、太陽電池用光吸収層および太陽電池、ならびにその製造方法
US11247506B2 (en) * 2017-10-18 2022-02-15 Council Of Scientific And Industrial Research Printable bi-luminescent pigment for security ink formulation and process for the preparation thereof
KR102590581B1 (ko) * 2018-01-16 2023-10-17 이누루 게엠베하 반-산화성 졸-겔 프린팅 공정 및 해당 잉크 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100035792A1 (en) 2006-12-28 2010-02-11 Kao Corporation Fiber treating agent
WO2012037276A1 (en) * 2010-09-16 2012-03-22 Solexant Corp. Sintered czts nanoparticle solar cells
US20120100660A1 (en) * 2010-10-25 2012-04-26 Hagedorn Kevin V Method for preparation of metal chalcogenide solar cells on complexly shaped surfaces
US20120138866A1 (en) * 2009-05-26 2012-06-07 Purdue Research Foundation SYNTHESIS OF MULTINARY CHALCOGENIDE NANOPARTICLES COMPRISING Cu, Zn, Sn, S, AND Se
US20120282721A1 (en) * 2011-05-06 2012-11-08 Yueh-Chun Liao Method for forming Chalcogenide Semiconductor Film and Photovoltaic Device
US20130125988A1 (en) * 2009-11-25 2013-05-23 E I Du Pont De Nemours And Company CZTS/Se PRECURSOR INKS AND METHODS FOR PREPARING CZTS/Se THIN FILMS AND CZTS/Se-BASED PHOTOVOLTAIC CELLS

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567436B2 (ja) * 2001-07-20 2010-10-20 ライフ テクノロジーズ コーポレーション 発光ナノ粒子およびそれらの調製方法
WO2004024629A1 (en) * 2002-09-12 2004-03-25 Agfa-Gevaert Metal chalcogenide composite nano-particles and layers therewith
CA2491144C (en) * 2003-12-30 2013-06-11 National Research Council Of Canada Method of synthesizing colloidal nanocrystals
JP2007169605A (ja) * 2005-11-24 2007-07-05 National Institute Of Advanced Industrial & Technology 蛍光体、及びその製造方法
EP1998902A2 (en) * 2006-02-23 2008-12-10 Van Duren, Jeroen K.J. High-throughput formation of semiconductor layer by use of chalcogen and inter-metallic material
KR101144807B1 (ko) * 2007-09-18 2012-05-11 엘지전자 주식회사 태양전지 박막조성용 잉크와 그 제조방법, 이를 이용한cigs 박막형 태양전지, 및 그 제조 방법
EP2435248A2 (en) * 2009-05-26 2012-04-04 Purdue Research Foundation Thin films for photovoltaic cells
JP2011091306A (ja) * 2009-10-26 2011-05-06 Fujifilm Corp 光電変換半導体層とその製造方法、光電変換素子、及び太陽電池
KR20120085331A (ko) * 2009-11-25 2012-07-31 이 아이 듀폰 디 네모아 앤드 캄파니 CZTS/Se 전구체 잉크 및 얇은 CZTS/Se 필름과 CZTS/Se-계 광전지의 제조 방법
WO2011066204A1 (en) * 2009-11-25 2011-06-03 E. I. Du Pont De Nemours And Company Syntheses of quaternary chalcogenides in cesium, rubidium, barium and lanthanum containing fluxes
WO2012071287A1 (en) * 2010-11-22 2012-05-31 E. I. Du Pont De Nemours And Company Inks and processes to make a chalcogen-containing semiconductor
KR101197228B1 (ko) * 2010-12-29 2012-11-02 재단법인대구경북과학기술원 화합물 반도체 태양전지의 광흡수층 제조방법
JP5278778B2 (ja) * 2011-01-18 2013-09-04 株式会社豊田中央研究所 カルコゲナイト系化合物半導体及びその製造方法
KR101179010B1 (ko) * 2011-02-01 2012-08-31 연세대학교 산학협력단 칼코겐화물 반도체 박막 및 그 제조방법
CN103055774A (zh) * 2013-02-06 2013-04-24 桂林理工大学 常压溶剂热合成ZnS/SnS/CuA核壳结构复合粉体的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100035792A1 (en) 2006-12-28 2010-02-11 Kao Corporation Fiber treating agent
US20120138866A1 (en) * 2009-05-26 2012-06-07 Purdue Research Foundation SYNTHESIS OF MULTINARY CHALCOGENIDE NANOPARTICLES COMPRISING Cu, Zn, Sn, S, AND Se
US20130125988A1 (en) * 2009-11-25 2013-05-23 E I Du Pont De Nemours And Company CZTS/Se PRECURSOR INKS AND METHODS FOR PREPARING CZTS/Se THIN FILMS AND CZTS/Se-BASED PHOTOVOLTAIC CELLS
WO2012037276A1 (en) * 2010-09-16 2012-03-22 Solexant Corp. Sintered czts nanoparticle solar cells
US20120100660A1 (en) * 2010-10-25 2012-04-26 Hagedorn Kevin V Method for preparation of metal chalcogenide solar cells on complexly shaped surfaces
US20120282721A1 (en) * 2011-05-06 2012-11-08 Yueh-Chun Liao Method for forming Chalcogenide Semiconductor Film and Photovoltaic Device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3029742A4 *

Also Published As

Publication number Publication date
CN105324852A (zh) 2016-02-10
JP6276401B2 (ja) 2018-02-07
TWI603912B (zh) 2017-11-01
ES2772177T3 (es) 2020-07-07
KR20150016141A (ko) 2015-02-11
US20160149061A1 (en) 2016-05-26
EP3029742A1 (en) 2016-06-08
TW201522207A (zh) 2015-06-16
EP3029742B1 (en) 2020-01-15
KR101660268B1 (ko) 2016-09-27
JP2016527708A (ja) 2016-09-08
CN105324852B (zh) 2018-02-23
EP3029742A4 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
KR101619933B1 (ko) 태양전지 광흡수층 제조용 3층 코어-쉘 나노 입자 및 이의 제조 방법
JP6113284B2 (ja) 金属ナノ粒子を含む光吸収層製造用インク組成物及びそれを用いた薄膜の製造方法
US9972731B2 (en) Precursor for preparing light absorption layer of solar cells and method of preparing the same
KR20140097981A (ko) 태양전지용 금속 나노 입자의 제조 방법, 그 금속 나노 입자를 포함하는 잉크 조성물 및 이를 사용한 박막의 제조 방법
KR101650049B1 (ko) 태양전지 광흡수층 제조용 금속 칼코게나이드 나노 입자 및 이의 제조방법
KR101606420B1 (ko) 태양전지 광흡수층 제조용 잉크 조성물 및 이를 사용한 박막의 제조 방법
KR101747540B1 (ko) 금속 칼코게나이드 나노 입자의 제조방법 및 그에 기반한 광흡수층 박막의 제조방법
KR101660268B1 (ko) 태양전지 광흡수층 제조용 금속 칼코게나이드 나노 입자 및 이의 제조방법
JP6338660B2 (ja) 太陽電池光吸収層製造用凝集相前駆体及びその製造方法
KR101869138B1 (ko) 태양전지 광흡수층 제조용 전구체 및 이의 제조방법
KR101660265B1 (ko) 태양전지 광흡수층 제조용 금속 칼코게나이드 나노 입자 및 이의 제조방법
KR101796417B1 (ko) 태양전지 광흡수층 제조용 전구체 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033231.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832898

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014832898

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016519462

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14898079

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE