WO2015016269A1 - 窒化珪素質焼結体およびこれを用いた耐食性部材、摺動部材ならびに製紙機械用部材 - Google Patents

窒化珪素質焼結体およびこれを用いた耐食性部材、摺動部材ならびに製紙機械用部材 Download PDF

Info

Publication number
WO2015016269A1
WO2015016269A1 PCT/JP2014/070088 JP2014070088W WO2015016269A1 WO 2015016269 A1 WO2015016269 A1 WO 2015016269A1 JP 2014070088 W JP2014070088 W JP 2014070088W WO 2015016269 A1 WO2015016269 A1 WO 2015016269A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
sintered body
mass
silicon
oxide
Prior art date
Application number
PCT/JP2014/070088
Other languages
English (en)
French (fr)
Inventor
義宜 平野
瑞穂 大田
織田 武廣
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP14831783.7A priority Critical patent/EP3029008B1/en
Priority to JP2015529598A priority patent/JP6023337B2/ja
Priority to CN201480042433.1A priority patent/CN105408289B/zh
Publication of WO2015016269A1 publication Critical patent/WO2015016269A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates to a silicon nitride sintered body, a corrosion-resistant member using the same, a sliding member, and a papermaking machine member.
  • silicon nitride sintered bodies are used as industrial members such as engine parts, molten metal parts, cutting tools, fast reactor parts, and wear-resistant parts.
  • Patent Document 1 As an example of such a silicon nitride sintered body, for example, in Patent Document 1, 2 to 15 wt% of calcium oxide, 0.01 to 10 wt% of magnesium oxide and 0.01 to 10 wt% of aluminum oxide are converted in terms of oxides. A spark plug for an internal combustion engine made of a sintered body containing 0 to 15 wt% has been proposed.
  • the present invention has been proposed in order to solve the above-described problems, and its object is to reduce silicon corrosion in a corrosive environment and to have high mechanical properties even when exposed to a corrosive environment.
  • the present invention provides a sintered body and a corrosion-resistant member, a sliding member, and a papermaking machine member using the same.
  • the silicon nitride based sintered body of the present invention has an oxynitride crystal containing calcium, aluminum and silicon in a grain boundary phase between silicon nitride crystals, and constitutes the oxynitride crystal.
  • the mass ratios of the calcium, the aluminum, and the silicon are such that the calcium is 1.3 to 32.0%, the aluminum is 0.1 to 25.0%, and the balance is the silicon.
  • the corrosion-resistant member, the sliding member and the papermaking machine member of the present invention are characterized by using the silicon nitride sintered body.
  • the silicon nitride sintered body of the present invention there is little corrosion in a corrosive environment and high mechanical properties even when exposed to a corrosive environment.
  • the corrosion-resistant member, sliding member and paper machine member of the present invention has high reliability in a corrosive environment.
  • silicon nitride is the main crystal phase, and a crystal of an oxynitride containing calcium, aluminum, and silicon (hereinafter simply referred to as an acid) in the grain boundary phase between the silicon nitride crystals.
  • the mass ratio of calcium, aluminum and silicon constituting the oxynitride crystal is 1.3 to 32.0% for calcium, 0.1 to 25.0% for aluminum, and the balance Silicon.
  • the main crystal phase is a crystal having the highest abundance ratio among the crystals constituting the silicon nitride sintered body.
  • Silicon nitride which is a crystalline phase, exhibits the highest peak (the value of diffraction intensity is large).
  • the grain boundary phase is a phase that exists between the silicon nitride crystals that are the main crystal phase in the silicon nitride-based sintered body, and the grain boundary phase includes crystals other than silicon nitride and amorphous phases.
  • the above-mentioned oxynitride crystal is one in which part of oxygen in an oxide crystal containing calcium, aluminum, and silicon is replaced with nitrogen.
  • the oxynitride crystal in which part of oxygen in the oxide crystal containing calcium, aluminum, and silicon is replaced with nitrogen has high covalent bonding between the elements constituting the oxynitride crystal. Since the bonding strength between elements is strong, the silicon nitride sintered body of this embodiment has less corrosion in a corrosive environment because it has the oxynitride crystal in the grain boundary phase.
  • the respective mass ratios of calcium, aluminum, and silicon constituting the oxynitride crystal satisfy the above range, they have high mechanical characteristics even when exposed to a corrosive environment. Specifically, it has high mechanical strength and high fracture toughness.
  • the mechanical strength and fracture toughness are low. Further, when the mass ratio of calcium is larger than 32.0%, the mechanical strength is lowered. Further, when the mass ratio of aluminum is larger than 25.0%, the mechanical strength is lowered and the thermal conductivity is also lowered.
  • These are oxynitride crystals in which the crystal of the product and the first peak and the second peak all appear at a diffraction angle of 2 ⁇ 27.0 ° to 29.0 °.
  • the existence of a crystal other than silicon nitride is confirmed using an X-ray diffraction chart obtained by XRD, and it is confirmed whether the crystal is an oxide crystal containing calcium, aluminum, and silicon. To do.
  • EDS or WDS attached to the TEM it is confirmed whether or not the elements constituting the crystals present in the grain boundary phase are calcium, aluminum, silicon, oxygen, and nitrogen.
  • the content of each element It may be confirmed whether or not is within the above-described range.
  • the half width of the first peak is 0.1 ° or more and 0.9 ° or less, the crystal plane spread is large, the crystallinity is high, and the oxynitride crystal is fine and has low strain, so it has high wear resistance. , High thermal conductivity and high rigidity.
  • the half width of the first peak is preferably 0.15 ° or more and 0.3 ° or less.
  • the half width of the first peak in the X-ray diffraction chart is a width of intensity at a height of 1 ⁇ 2 of the first peak with respect to the background.
  • the content of the oxynitride crystal is preferably 1 to 10% by mass out of a total of 100% by mass of the crystals constituting the silicon nitride sintered body.
  • the content of the oxynitride crystal satisfies the above range, the mechanical strength is further increased due to an increase in the occupied area ratio of the oxynitride crystal phase in the grain boundary phase.
  • the content of the oxynitride crystal can be calculated by quantifying by Rietveld analysis from data obtained using XRD.
  • a compound containing iron and silicon having an equivalent circle diameter of 0.05 ⁇ m or more and 5 ⁇ m or less exists in the grain boundary phase, and the number of the compounds per 1 mm 2 is 2.0 ⁇ . It is preferable that the number is 10 4 or more and 2.0 ⁇ 10 5 or less.
  • the compound containing iron and silicon is a thermodynamically stable compound, the number of compounds containing iron and silicon having an equivalent circle diameter of 0.05 ⁇ m to 5 ⁇ m per mm 2 is 2.0 ⁇ 10 4 to 2.0 ⁇ . When it is 10 5 or less, it has excellent thermal shock resistance while being excellent in oxidation resistance.
  • the compound containing iron and silicon includes, for example, a compound made of iron and silicon, or iron and silicon and at least one of oxygen, tungsten, aluminum, magnesium, calcium, sodium, and potassium. A compound.
  • the composition formula is FeSi 3 , FeSi 2 , FeSi, Fe 2 Si 3 , Fe 3 Si, Fe 3 Si 2 , Fe 3 Si 4 , Fe 3 Si 7 , Fe 5 Si 2.
  • Fe 5 Si 3 it is represented by Fe 5 Si 3 .
  • the presence of the compound containing iron and silicon in the grain boundary phase can be confirmed by XRD identification or using a TEM equipped with EDS or WDS.
  • XRD identification or using a TEM equipped with EDS or WDS.
  • color mapping using an electron beam microanalyzer (EPMA) also indicates that silicon is present in the portion where iron is present in the grain boundary phase.
  • EPMA electron beam microanalyzer
  • the number of compounds having an equivalent circle diameter of 0.05 ⁇ m or more and 5 ⁇ m or less per 1 mm 2 is confirmed by the following method. be able to.
  • the magnification is set to 1000 times, for example, the area is set to 10.8 ⁇ 10 4 ⁇ m 2 (the length in the horizontal direction is 127 ⁇ m, the length in the vertical direction is 85.3 ⁇ m), and the CCD is set. Capture this range of images with the camera.
  • the threshold value which is an index indicating the brightness of the image, may be set to be 0.8 times or more and 2 times or less the peak value of the histogram indicating the brightness of each point (each pixel) in the image.
  • An optical microscope may be used instead of the SEM.
  • the silicon nitride based sintered body of the present embodiment includes one or more rare earth metal oxides in the grain boundary phase, out of a total of 100 mass% of all components constituting the silicon nitride based sintered body, It is preferable that the total content in terms of oxides of the rare earth metal is 0.1% by mass or more and 1.0% by mass or less. When such a configuration is satisfied, the mechanical strength of the silicon nitride sintered body is increased.
  • magnesium oxide is included in the grain boundary phase, and magnesium oxide out of a total of 100% by mass of all components constituting the silicon nitride-based sintered body.
  • the content in terms of conversion is preferably 0.1% by mass or more and 6.0% by mass or less.
  • the presence of magnesium oxide in the grain boundary phase increases the fracture toughness of the silicon nitride-based sintered body, and the main crystal phase exists densely.
  • the mechanical strength of the sintered material increases.
  • the grain boundary phase contains sodium oxide, and out of a total of 100 mass% of all components constituting the silicon nitride-based sintered body,
  • the content in terms of oxide is preferably 0.2% by mass or more and 1.0% by mass or less.
  • the presence of an oxide of sodium having high corrosion resistance against alkali increases the corrosion resistance against alkali of the silicon nitride-based sintered body, and increases the mechanical strength and fracture toughness in a corrosive environment.
  • the content in terms of oxides of rare earth metals, magnesium and sodium is determined using an ICP (Inductively-Coupled-Plasma) emission spectrometer. Just measure. The presence or absence of rare earth metal, magnesium and sodium oxide in the grain boundary phase may be confirmed by color mapping with TEM or EPMA.
  • the silicon nitride sintered body of this embodiment includes magnesium aluminate in the grain boundary phase.
  • the corrosion resistance to alkali is further enhanced because magnesium aluminate has higher corrosion resistance to alkali than silicon nitride which is the main crystal phase.
  • the corrosion-resistant member of the present embodiment is formed using the silicon nitride sintered body of the present embodiment, there is little corrosion in a corrosive environment and high mechanical strength and even when exposed to a corrosive environment. Since it has fracture toughness, it has high reliability in a corrosive environment. In particular, it is suitable for a member in contact with a component containing an alkali component such as sodium or potassium.
  • Examples of the member in contact with a component containing sodium or potassium include, for example, a fast reactor member using liquid sodium or liquid potassium as a coolant, a heater tube used in a molten metal containing an alkali metal salt, and alkaline. There are fishing line guide members that come into contact with seawater.
  • sliding member and the papermaking machine member of the present embodiment are formed using the silicon nitride-based sintered body of the present embodiment, the sliding member and the papermaking machine member have the same effects as the corrosion-resistant member, and thus have high reliability.
  • sliding members include seal rings, rolling elements for bearings, and members for rotary compressors (vanes, rollers, cylinders, etc.).
  • members for paper machines include, for example, paper machine foils and abrasion resistant materials. There is a wearable liner.
  • metal silicon powder and silicon nitride powder having a ⁇ conversion rate of 20% or less are prepared and mixed so that the mass ratio of (metal silicon powder) / (silicon nitride powder) is 1 or more and 10 or less. To obtain a mixed powder.
  • silicon nitride powder having a ⁇ conversion rate of 20% or less is used is that the mechanical strength and fracture toughness can be increased.
  • silicon nitride powder having a ⁇ conversion rate of 10% or less is preferable to use.
  • calcium carbonate powder and aluminum oxide powder are prepared as a sintering aid, and magnesium aluminate powder is prepared as an additive.
  • silicon nitride is formed by nitriding using metal silicon powder.
  • mass increase occurs due to nitridation of metal silicon
  • the mass ratio in the raw material powder and the silicon nitride sintered body There is a difference with the mass ratio. Therefore, when each powder is weighed, it is weighed in consideration of the increase in the mass of metallic silicon in the nitriding step.
  • magnesium aluminate powder as an additive is 2.5% by mass.
  • calcium was 3.9% by mass in terms of oxide and aluminum was 2.7% in terms of oxide, out of a total of 100% by mass of all components constituting the silicon nitride based sintered body.
  • Mass% magnesium is 2.1 mass% in terms of oxide, and the remainder excluding inevitable impurities is silicon nitride.
  • the grain boundary phase contains a rare earth metal oxide
  • the total content of the rare earth metal oxide in terms of oxide is 0.1% by mass out of the total 100% by mass of all the components constituting the silicon nitride sintered body.
  • the rare earth metal oxide powder may be appropriately weighed and used as a raw material powder in consideration of the mass increase of metal silicon in the nitriding step.
  • the grain boundary phase contains magnesium oxide, and out of a total of 100% by mass of all the components constituting the silicon nitride sintered body, the content in terms of magnesium oxide is 0.1% by mass or more and 6.0% by mass.
  • magnesium oxide powder when magnesium oxide powder is used, it may be appropriately weighed and used as a raw material powder in consideration of an increase in the mass of metal silicon in the nitriding step.
  • what is necessary is just to adjust the quantity of magnesium aluminate powder in consideration of the mass ratio of magnesium in magnesium aluminate when using magnesium aluminate powder.
  • the grain boundary phase contains an oxide of sodium, and out of a total of 100% by mass of all components constituting the silicon nitride sintered body, the content in terms of sodium oxide is 0.2% by mass or more and 1.0% by mass.
  • sodium oxide powder may be appropriately weighed and used as a raw material powder in consideration of the increase in the mass of metallic silicon in the nitriding step.
  • the sinterability is improved, a dense silicon nitride sintered body can be obtained, and the mechanical characteristics can be enhanced.
  • a slurry is prepared by pulverizing the mixed powder and additives weighed in a predetermined amount together with a solvent using a known barrel mill, rotary mill, vibration mill, bead mill, sand mill, agitator mill or the like.
  • media used in this pulverization media composed of a silicon nitride sintered body, a zirconium oxide sintered body, an aluminum oxide sintered body, or the like can be used, but the influence of impurities when mixed is reduced. Therefore, it is preferable to use a medium made of a silicon nitride sintered body having the same material composition or approximate composition as the silicon nitride sintered body to be produced.
  • particle size (D 90) is suitable to be ground to a 3 ⁇ m or less, the particle diameter of the (D 90) in a 3 ⁇ m or less
  • the outer diameter and amount of the media, and the pulverization time may be adjusted.
  • a powder having a particle size (D 50 ) of 1 ⁇ m or less that is 50% of the cumulative volume in advance it is preferable to use a powder having a particle size (D 50 ) of 1 ⁇ m or less that is 50% of the cumulative volume in advance.
  • the sintering aid is pulverized using any of the above-described known mills until the specific surface area of the sintering aid is 50.0 cm 2 / g or more.
  • the specific surface area of the sintering aid is 50.0 cm 2 / g or more.
  • the pulverized sintering aid is added to the slurry containing the mixed powder and additives and mixed.
  • an organic binder such as paraffin wax, polyvinyl alcohol (PVA), or polyethylene glycol (PEG) is appropriately selected according to the molding method.
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • an organic binder of 1 part by mass or more and 10 parts by mass or less is added to and mixed with the slurry with respect to a total of 100 parts by mass of the mixed powder, additive and sintering aid.
  • the slurry is spray-dried using a spray-drying device to obtain granulated granules.
  • the molded object which has a desired shape is produced for the obtained granule by press molding or CIP shaping
  • molding Cold Isostatic ⁇ Pressing.
  • the molded body may be cut, laminated, or bonded to obtain a desired shape.
  • the degreasing temperature varies depending on the type of added organic binder, but is preferably 900 ° C. or lower, and particularly preferably 450 ° C. or higher and 800 ° C. or lower.
  • firing is performed in a nitrogen atmosphere by further raising the temperature from the temperature at which the degreasing is performed.
  • This firing includes a nitriding step, and in this nitriding step, metal silicon is converted into silicon nitride by nitriding reaction with nitrogen gas. Further, by using a sintering aid having a large specific surface area, oxynitride crystals containing calcium, aluminum and silicon are generated in the grain boundary phase in this nitriding step.
  • the degreased body containing the degreased metal silicon starts nitriding from the metal silicon present on the surface of the degreased body in the nitriding step, and the metal silicon present inside the degreased body is nitrided over time. Therefore, in particular, in order not to cause insufficient nitriding inside the degreased body, it is preferable to perform nitriding at a high temperature (second nitriding step) after nitriding at a low temperature (first nitriding step).
  • the nitrogen partial pressure is set to 10 to 200 kPa and held at a temperature of 1000 to 1200 ° C. for 15 to 50 hours, so that 10 to 90% by mass of metallic silicon in the degreased body is obtained. Nitrid.
  • the remaining metal silicon that has not been nitrided in the first nitriding step is maintained at a temperature higher than the temperature of the first nitriding step up to 1400 ° C. for 5 to 20 hours. Is nitrided.
  • the first nitriding step and the second nitriding step are preferably performed continuously.
  • firing is performed by setting the pressure of nitrogen to 50 kPa to 160 kPa, the maximum temperature to 1700 ° C. to less than 1800 ° C., and holding for 6 hours to 14 hours.
  • the temperature lowering condition from the maximum temperature to 400 ° C. may be 150 ° C. or more and 250 ° C. or less per hour.
  • the temperature lowering condition from the maximum temperature to 400 ° C. may be 180 ° C. or more and 240 ° C. or less per hour.
  • the temperature lowering condition from the maximum temperature to 400 ° C. may be 250 ° C. or more and 350 ° C. or less per hour.
  • the content of the oxynitride crystal in which the first peak and the second peak both appear at a diffraction angle 2 ⁇ 27.0 ° to 29.0 ° out of the total 100 mass% of the crystals constituting the silicon nitride sintered body.
  • the temperature lowering condition from the maximum temperature to 400 ° C. may be 260 ° C. or more and 320 ° C. or less per hour.
  • pulverization is performed until the specific surface area of the sintering aid is 200 cm 2 / g or more and 500 cm 2 / g or less. do it.
  • the grain boundary phase there is a compound containing iron and silicon having an equivalent circle diameter of 0.05 ⁇ m or more and 5 ⁇ m or less, and the number of compounds per 1 mm 2 is 2.0 ⁇ 10 4 or more and 2.0 ⁇ 10 5 or less.
  • ferric oxide powder is used as a raw material powder.
  • the silicon nitride sintered body obtained by the manufacturing method described above is subjected to processing such as grinding and polishing as necessary to obtain a desired shape and surface properties, whereby the corrosion-resistant member and the sliding member of the present embodiment are formed. It can be a moving member or a paper machine member.
  • a metal silicon powder and a silicon nitride powder having a ⁇ conversion rate of 10% are prepared, and a mass ratio of (metal silicon powder) / (silicon nitride powder) is 5.4 ( 84.4: 15.6) to obtain a mixed powder.
  • the sintering aids and additives shown in Table 1 were prepared and weighed so as to have the composition shown in Table 1. Then, the mixed powder and the additive weighed in a predetermined amount were put in a barrel mill together with media and water and pulverized to obtain a slurry. Similarly, using a mill, the specific surface area of the sintering aid was pulverized to the values shown in Table 1, and after pulverization, mixed with the slurry.
  • the specific surface areas shown in Table 1 are measured values obtained in accordance with JIS R 1626-1996.
  • the compact was placed in a silicon carbide mortar and degreased by holding at 500 ° C. for 5 hours in a nitrogen atmosphere. Subsequently, the temperature was further raised, and nitriding was carried out by sequentially holding at 1050 ° C. for 20 hours and 1250 ° C. for 10 hours in a nitrogen partial pressure of 150 kPa consisting essentially of nitrogen. Then, it is further heated and held in a nitrogen atmosphere at normal pressure at 1730 ° C. for 10 hours and fired to form a silicon nitride sintered body having an outer diameter of 150 mm, an inner diameter of 130 mm, and a length of 1000 mm. Sample No. of bottom cylindrical body. 1-15 were obtained. The temperature drop conditions (cooling rate) from 1730 ° C. to 400 ° C. for each sample were as shown in Table 1.
  • “A” indicates that the crystals appearing at ° to 53.0 ° are “A”
  • test piece having a size used for measurement of corrosion resistance, mechanical strength, fracture toughness, and thermal conductivity was cut out from each sample and immersed in a 30% by mass sodium hydroxide solution having a temperature of 90 ° C. for 100 hours.
  • Table 2 shows the decrease in mass per unit area before and after immersion in the corrosion-resistant test piece. And each sample after being immersed in the said solution was fully wash
  • the four-point bending strength was measured according to JIS R 1604-2008.
  • the fracture toughness was measured according to the indenter press-in method (IF method) defined in JIS R 1607-1995.
  • Sample No. 1, 7 and 8 have oxynitride crystals, but they do not satisfy the mass ratio of 1.3 to 32.0% calcium, 0.1 to 25.0% aluminum, and the balance of silicon, so four-point bending The value of at least one of strength and fracture toughness was small. Further, there are no oxide crystals containing calcium, aluminum and silicon, and no sample No. containing no aluminum and nitrogen. No. 14 had small values of 4-point bending strength and fracture toughness.
  • Sample Nos. 2 , 3, 5, 6, 9, 10, 12, 13 and 15 have a mass loss of 0.28 mg / cm 2 , a four-point bending strength of 745 MPa or more, and a fracture toughness of 6.2 MPa ⁇ .
  • Calcium, aluminum which comprises oxynitride crystals containing calcium, aluminum, and silicon in the grain boundary phase that is greater than or equal to m and is between the silicon nitride crystals, and constitutes the oxynitride crystals
  • the mass ratio of silicon and silicon is 1.3-32.0% for calcium, 0.1-25.0% for aluminum, and the remainder is silicon, so there is little corrosion in corrosive environments and high mechanical properties even when exposed to corrosive environments. It was found to have characteristics.
  • sample no. 3 has a larger value for both the four-point bending strength and fracture toughness.
  • Example 1 In firing, the sample No. of Example 1 was changed except that the specific surface area of the sintering aid was changed to the value shown in Table 3. Sample No. 2 by the same method as that obtained. 16-23 were produced. Further, using the same granules, a disc-shaped test piece for sliding wear test having a diameter of 38 mm and a thickness of 3 mm was prepared.
  • one main surface of the test piece for the wear resistance test is polished with diamond abrasive grains until the arithmetic average roughness Ra is 0.05 ⁇ m or less, in accordance with JIS R 1691-2011. Then, a sliding wear test was performed, and the specific wear amount of the disk-shaped test piece was measured.
  • the spherical test piece that was in sliding contact with the disk-shaped test piece was a SUS440C ball having a diameter of 10 mm, and ion-exchanged water was used as the lubricating fluid.
  • the load was 10 N
  • the sliding speed of the disk-shaped test piece was 0.37 m / s
  • the sliding circle diameter was 14 mm
  • the sliding distance was 2000 m.
  • the thermal conductivity ⁇ (W / (m ⁇ K)) of each test piece was measured by the same method as that shown in Example 1.
  • the rigidity of each test piece was measured by a static elastic modulus, which is a measure of rigidity, in accordance with JIS R 1602-1995. The results are shown in Table 3.
  • sample No. Nos. 17 to 21 were found to be silicon nitride-based sintered bodies having high wear resistance, thermal conductivity, and rigidity because the half width of the first peak was 0.1 ° to 0.9 °. .
  • Example 1 was changed except that the temperature lowering conditions from 1730 ° C. to 400 ° C. were changed to the values shown in Table 4. Sample no. 23 to 30 were produced.
  • each sample was immersed in a 30% by mass sodium hydroxide solution having a temperature of 90 ° C. for 100 hours, and then the 4-point bending strength and fracture toughness were measured. It was.
  • sample no. 24 to 29 have a 4-point bending strength of 800 MPa or more and a fracture toughness of 6.5 MPa ⁇ m or more, and the content of oxynitride crystals out of a total of 100 mass% of the crystals constituting the silicon nitride sintered body 1 to 10% by mass was found to have high mechanical strength and high fracture toughness.
  • Example 1 mixed powder and sintering aid used in Example 1 were prepared, and magnesium aluminate powder and ferric oxide powder were prepared as additives. Calcium carbonate powder was 11.3% by mass, and aluminum oxide powder was 3.7%. Weighing was performed so that the mass was 2.6% by mass of magnesium aluminate powder, the ferric oxide powder was 1.4% by mass, and the balance was mixed powder.
  • the calcination conditions after nitriding are the maximum temperature of 1775 ° C, the nitrogen pressure is the value shown in Table 5, the holding time is 12 hours, and the temperature reduction condition from 1775 ° C to 400 ° C is the time per hour. Sample No. 2 was prepared in the same manner as in Example 1 except that the temperature was 225 ° C. 31-42 were obtained.
  • the specific surface area of the sintering aid after pulverization was 50.0 cm 2 / g.
  • the magnification is set to 1000 times, the area is set to 10.8 ⁇ 10 4 ⁇ m 2 (the length in the horizontal direction is 127 ⁇ m, the length in the vertical direction is 85.3 ⁇ m), and the CCD camera is used. Images in this range were captured.
  • the number of compounds having an equivalent circle diameter of 0.05 ⁇ m or more and 5 ⁇ m or less was determined by particle analysis using image analysis software “A image-kun” (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.).
  • the setting conditions of this method are as follows: the brightness is bright, the binarization method is manual, the threshold value is an index indicating the brightness of the image, and the brightness of each point (each pixel) in the image indicates the brightness
  • the analysis was performed by setting the value to 1.2 times the peak value. The results are shown in Table 5.
  • a thermal shock test was performed. Specifically, a test piece having a thickness of 3 mm, an axial direction of 40 mm and a vertical direction of 4 mm from the outer peripheral side of each sample was cut out, held at 820 ° C., and then dropped into 20 ° C. water. The presence or absence of cracks on the surface of the test piece after dropping was visually observed. Moreover, the temperature which hold
  • an oxidation test of the sample was performed. Specifically, it was exposed to a temperature of 900 ° C. for 200 hours in an air atmosphere. And after air cooling, the surface was observed visually. The sample whose surface is changed to red is marked red, and the sample whose surface is not changed is indicated by a bar.
  • the number of compounds containing iron and silicon having an equivalent circle diameter of 0.05 ⁇ m or more and 5 ⁇ m or less per 1 mm 2 on the surface of the silicon nitride sintered body is 2.0 ⁇ 10 4 or more and 2.0 ⁇ 10 5 It was found that having no more than one piece has excellent thermal shock resistance while being excellent in oxidation resistance. In particular, when the number of compounds containing iron and silicon having an equivalent circle diameter of 0.05 ⁇ m or more and 5 ⁇ m or less per 1 mm 2 is 5.1 ⁇ 10 4 or more and 2.0 ⁇ 10 5 or less, thermal shock resistance is further improved. I understood it.
  • Example 6 In addition to the mixed powder and sintering aid used in Example 1, as additives, magnesium aluminate powder, magnesium oxide powder and sodium oxide powder, and each rare earth metal oxide powder shown in Table 6 Were prepared and weighed so as to have the composition shown in Table 6. For the subsequent steps, sample No. 1 was obtained by the same method as in Example 1. 43-58 were obtained. The specific surface area of the sintering aid after pulverization was 50.0 cm 2 / g.
  • the inclusion of rare earth metal oxide in the grain boundary phase increases the mechanical properties, and in particular, among the total 100 mass% of all the components constituting the silicon nitride sintered body, It was found that when the total content in terms of oxide of the rare earth metal is 0.1% by mass or more and 1.0% by mass or less, a silicon nitride sintered body having high mechanical properties is obtained.
  • magnesium oxide in the grain boundary phase increases the mechanical characteristics, and in particular, in terms of magnesium oxide, out of a total of 100% by mass of all components constituting the silicon nitride sintered body. It was found that a silicon nitride sintered body having high mechanical properties was obtained when the content of was 0.1 mass% or more and 6.0 mass% or less. Moreover, it turned out that it is suitable to use a magnesium oxide powder as an oxide source of the magnesium which exists in a grain boundary phase.
  • magnesium oxide in the grain boundary phase increases the corrosion resistance.
  • inclusion in terms of sodium oxide It has been found that when the amount is 0.2% by mass or more and 1.0% by mass or less, a silicon nitride sintered body having excellent mechanical properties while being excellent in corrosion resistance is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

 【課題】 腐食環境下における腐食が少なく、かつ腐食環境下に曝されても高い機械的特性を有する窒化珪素質焼結体およびこれを用いた耐食性部材、摺動部材ならびに製紙機械用部材を提供する。 【解決手段】 本発明の窒化珪素質焼結体は、窒化珪素の結晶間である粒界相に、カルシウム、アルミニウムおよびシリコンを含む酸窒化物の結晶を有してなり、酸窒化物の結晶を構成するカルシウム、アルミニウムおよびシリコンにおけるそれぞれの質量比率は、カルシウムが1.3~32.0%、アルミニウムが0.1~25.0%、残部がシリコンである。

Description

窒化珪素質焼結体およびこれを用いた耐食性部材、摺動部材ならびに製紙機械用部材
 本発明は、窒化珪素質焼結体およびこれを用いた耐食性部材、摺動部材ならびに製紙機械用部材に関する。
 現在、エンジン部品、溶湯金属用部材、切削工具、高速炉用部品、耐磨耗性部材などの産業用部材として窒化珪素質焼結体が使用されている。
 このような窒化珪素質焼結体の例として、例えば、特許文献1では、窒化ケイ素を主成分として、酸化物換算で酸化カルシウムを2~15wt%、酸化マグネシウムを0.01~10wt%、酸化アルミニウムを0~15wt%を含有した焼結体からなる内燃機関用スパークプラグが提案されている。
特開平5-36464号公報
 ところで、このような窒化珪素質焼結体は、腐食環境下で使用されることにより、機械的強度および破壊靱性が低下する場合がある。それゆえ、腐食環境下における腐食が少なく、かつ腐食環境下に曝されても高い機械的特性を有する窒化珪素質焼結体が求められている。
 本発明は上述のような課題を解決するために提案されたものであって、その目的は、腐食環境下における腐食が少なく、腐食環境下に曝されても高い機械的特性を有する窒化珪素質焼結体およびこれを用いた耐食性部材、摺動部材ならびに製紙機械用部材を提供するものである。
 本発明の窒化珪素質焼結体は、窒化珪素の結晶間である粒界相に、カルシウム、アルミニウムおよびシリコンを含む酸窒化物の結晶を有してなり、前記酸窒化物の結晶を構成する前記カルシウム、前記アルミニウムおよび前記シリコンにおけるそれぞれの質量比率は、前記カルシウムが1.3~32.0%、前記アルミニウムが0.1~25.0%、残部が前記シリコンであることを特徴とするものである。
 本発明の耐食性部材、摺動部材ならびに製紙機械用部材は、上記窒化珪素質焼結体を用いてなることを特徴とするものである。
 本発明の窒化珪素質焼結体によれば、腐食環境下における腐食が少なく、かつ、腐食環境下に曝されても高い機械的特性を有する。
 また、本発明の耐食性部材、摺動部材ならびに製紙機械用部材によれば、腐食環境下における高い信頼性を有する。
 本実施形態の窒化珪素質焼結体は、窒化珪素が主結晶相であり、窒化珪素の結晶間である粒界相に、カルシウム、アルミニウムおよびシリコンを含む酸窒化物の結晶(以下、単に酸窒化物の結晶ともいう。)を有してなり、酸窒化物の結晶を構成するカルシウム、アルミニウムおよびシリコンにおけるそれぞれの質量比率は、カルシウムが1.3~32.0%、アルミニウムが0.1~25.0%、残部がシリコンである。
 ここで、主結晶相とは、窒化珪素質焼結体を構成する結晶のうち最も存在比率が高いものであり、X線回折装置(XRD)を用いて得られたX線回折チャートにおいて、主結晶相である窒化珪素は、最も高いピーク(回折強度の値が大きい)を示す。また、粒界相とは、窒化珪素質焼結体において、主結晶相である窒化珪素の結晶の間に存在する相であり、粒界相には、窒化珪素以外の結晶および非晶質相が存在する。また、上述した酸窒化物の結晶とは、カルシウム、アルミニウムおよびシリコンを含む酸化物の結晶の酸素の一部が窒素に置換されているものである。
 そして、カルシウム、アルミニウムおよびシリコンを含む酸化物の結晶の酸素の一部が窒素に置換された酸窒化物の結晶は、酸窒化物の結晶を構成する各元素同士の共有結合性が高く、各元素同士の結合力が強いことから、本実施形態の窒化珪素質焼結体は、当該酸窒化物の結晶を粒界相に有していることにより、腐食環境下における腐食が少ない。
 また、酸窒化物の結晶を構成するカルシウム、アルミニウムおよびシリコンにおけるそれぞれの質量比率が上記範囲を満たしていることにより、腐食環境下に曝されても高い機械的特性を有する。具体的には、高い機械的強度および高い破壊靱性を有する。
 なお、カルシウムの質量比率が1.3%より小さいまたはアルミニウムの質量比率が0.1%より小さいときには、機械的強度および破壊靱性が低くなる。また、カルシウムの質量比率が32.0%より大きいときには、機械的強度が低くなる。さらに、アルミニウムの質量比率が25.0%より大きいときには、機械的強度が低くなり、熱伝導率も低くなる。
 ここで、酸窒化物の結晶とは、例えば、X線回折チャートにおいて、第1ピークが回折角2θ=30.4°~32.4°、第2ピークが回折角2θ=51.0°~53.0°に現れる酸窒化物の結晶や第1ピークおよび第2ピークがいずれも回折角2θ=27.0°~29.0°に現れる酸窒化物の結晶のことである。なお、第1ピークが回折角2θ=30.4°~32.4°、第2ピークが回折角2θ=51.0°~53.0°に現れる酸窒化物の結晶の組成式は、例えば、Ca(Al2-ySi1+y)(O7-y)(0.032≦x≦1.3,1.073≦y≦1.996)で表される。また、第1ピークおよび第2ピークがいずれも回折角2θ=27.0°~29.0°に現れる酸窒化物の結晶の組成式は、例えば、Ca(Al2-ySi2+y)(O8-y)(0.032≦x≦1.3,1.073≦y≦1.996)で表される。
 次に、酸窒化物の結晶の有無を確認する方法および酸窒化物の結晶を構成するカルシウム、アルミニウムおよびシリコンのそれぞれの質量比率を算出する方法について説明する。
 まず、XRDにより得られたX線回折チャートを用いて、窒化珪素質焼結体に存在する窒化珪素以外の結晶を確認する。次に、エネルギー分散型X線分光器(EDS)または波長分散型X線分光器(WDS)を備えた透過型電子顕微鏡(TEM)を用いて、窒化珪素以外の結晶が粒界相に存在することおよびその結晶を構成する元素を確認するとともに、各元素の含有量を確認する。
 具体的には、まず、XRDにより得られたX線回折チャートを用いて窒化珪素以外の結晶の存在を確認し、その結晶が、カルシウム、アルミニウムおよびシリコンを含む酸化物の結晶であるかを確認する。次に、TEMにより窒化珪素質焼結体の粒界相に結晶が存在するか否かを確認する。そして、TEMに付設のEDSまたはWDSにより、粒界相に存在する結晶を構成する元素が、カルシウム、アルミニウム、シリコン、酸素、窒素であるか否かを確認し、最後に、各元素の含有量が上述した範囲内であるか否かを確認すればよい。
 また、酸窒化物の結晶は、X線回折チャートにおいて、第1ピークが回折角2θ=30.4°~32.4°、第2ピークが回折角2θ=51.0°~53.0°に現れる結晶であることが好適である。酸窒化物の結晶が、このようなピークに現れる結晶であることによって、他のピークに現れる酸窒化物の結晶よりも共有結合性が高いことから、窒化珪素質焼結体の機械的強度がさらに高まる。
 また、回折角2θ=30.4°~32.4°に現れる第1ピークの半値幅が0.1°以上0.9°以下であることが好適である。第1ピークの半値幅が0.1°以上0.9°以下であるときには、結晶面の広がりが大きく、結晶性が高く、酸窒化物の結晶は、微細かつ歪みが小さいものであるため、高い耐磨耗性と、高い熱伝導性と、高い剛性を有する。特に、第1ピークの半値幅は、0.15°以上0.3°以下であることが好適である。ここで、X線回折チャートにおける第1ピークの半値幅とは、バックグラウンドを基準とした第1ピークの1/2の高さにおける強度の幅のことである。
 また、酸窒化物の結晶の含有量は、窒化珪素質焼結体を構成する結晶の合計100質量%のうち、1~10質量%であることが好適である。酸窒化物の結晶の含有量が上記範囲を満たしているときには、粒界相における酸窒化物の結晶相の占有面積率の増加により、さらに機械的強度が高まる。酸窒化物の結晶の含有量は、XRDを用いて得られたデータからリートベルト解析により定量化することで算出できる。
 また、本実施形態の窒化珪素質焼結体は、粒界相に、円相当径が0.05μm以上5μm以下の鉄および珪素を含む化合物が存在し、1mm当たりにおけるこの化合物の個数が2.0×10個以上2.0×10個以下であることが好適である。
 鉄および珪素を含む化合物は、熱力学的に安定した化合物であるため、1mm当たりにおける円相当径が0.05μm以上5μm以下の鉄および珪素を含む化合物の個数が2.0×10個以上2.0×10個以下であるときには、耐酸化性に優れつつ、優れた耐熱衝撃性を有する。
 ここで、鉄および珪素を含む化合物とは、例えば、鉄および珪素からなる化合物、または、鉄および珪素と、酸素、タングステン、アルミニウム、マグネシウム、カルシウム、ナトリウムおよびカリウムの少なくともいずれか1種とからなる化合物である。
 鉄および珪素からなる化合物としては、例えば、組成式がFeSi,FeSi,FeSi,FeSi,FeSi,FeSi,FeSi,FeSi,FeSiまたはFeSiで表されるものである。
 ここで、粒界相における鉄および珪素を含む化合物の存在は、XRDによる同定や、EDSまたはWDSを備えるTEMを用いることにより確認することができる。また、走査型電子顕微鏡(SEM)での観察と併せて、電子線マイクロアナライザ(EPMA)を用いたカラーマッピングにより、粒界相において鉄が存在する部分に、珪素が存在していることによっても、粒界相における鉄および珪素を含む化合物の存在を確認することができる。
 また、鉄および珪素を含む化合物は、他の化合物(結晶)と色調の異なるものであるため、円相当径が0.05μm以上5μm以下の化合物の1mm当たりの個数は、以下の方法で確認することができる。まず、SEMを用いて倍率を1000倍として、例えば、面積が10.8×10μm(横方向の長さが127μm、縦方向の長さが85.3μm)となるように範囲を設定し、CCDカメラでこの範囲の画像を取り込む。そして、画像解析ソフト「A像くん」(登録商標、旭化成エンジニアリング(株)製)を用いて、粒子解析という手法で、この手法の設定条件を、明度を明、2値化の方法を手動、画像の明暗を示す指標であるしきい値を、画像内の各点(各ピクセル)が有する明るさを示すヒストグラムのピーク値の0.8倍以上2倍以下に設定して解析すればよい。なお、SEMの代わりに光学顕微鏡を用いても構わない。
 また、本実施形態の窒化珪素質焼結体は、粒界相に希土類金属の酸化物を1種以上含んでなり、窒化珪素質焼結体を構成する全成分の合計100質量%のうち、希土類金属の酸化物換算での合計の含有量が0.1質量%以上1.0質量%以下であることが好適である。このような構成を満たしているときには、窒化珪素質焼結体の機械的強度が高まる。
 また、本実施形態の窒化珪素質焼結体において、粒界相にマグネシウムの酸化物を含んでなり、窒化珪素質焼結体を構成する全成分の合計100質量%のうち、マグネシウムの酸化物換算での含有量が0.1質量%以上6.0質量%以下であることが好適である。
 このような構成を満たしているときには、粒界相におけるマグネシウムの酸化物の存在により、窒化珪素質焼結体の破壊靱性が高まるとともに、主結晶相は緻密に存在することとなるため、窒化珪素質焼結体の機械的強度が高まる。
 また、本実施形態の窒化珪素質焼結体によれば、粒界相にナトリウムの酸化物を含んでなり、窒化珪素質焼結体を構成する全成分の合計100質量%のうち、ナトリウムの酸化物換算での含有量が0.2質量%以上1.0質量%以下であることが好適である。
 このような構成を満たしているときには、アルカリに対する耐食性が高いナトリウムの酸化物の存在により、窒化珪素質焼結体のアルカリに対する耐食性が高まるとともに、腐食環境下における機械的強度および破壊靱性が高まる。
 なお、窒化珪素質焼結体を構成する全成分の合計100質量%のうち、希土類金属、マグネシウムおよびナトリウムの酸化物換算での含有量は、ICP(Inductively Coupled Plasma)発光分光分析装置を用いて測定すればよい。また、希土類金属、マグネシウムおよびナトリウムの酸化物の粒界相における有無は、TEM若しくはEPMAによるカラーマッピングで確認すればよい。
 また、本実施形態の窒化珪素質焼結体は、粒界相に、アルミン酸マグネシウムを含むことが好適である。粒界相に、アルミン酸マグネシウムを含むときには、アルミン酸マグネシウムが主結晶相である窒化珪素よりもアルカリに対する耐食性が高いため、アルカリに対する耐食性がさらに高まる。
 本実施形態の耐食性部材は、本実施形態の窒化珪素質焼結体を用いてなるものであることから、腐食環境下における腐食が少なく、かつ腐食環境下に曝されても高い機械的強度および破壊靱性を有するため、腐食環境下において高い信頼性を有する。特に、アルカリ成分、例えば、ナトリウムまたはカリウムが含まれる成分と接する部材に好適である。
 ナトリウムまたはカリウムが含まれる成分と接する部材としては、例えば、冷却材として液体ナトリウムや液体カリウムが使用される高速炉用部材、アルカリ金属塩を含む溶湯金属中で使用されるヒーターチューブ、アルカリ性である海水に接する釣り糸用案内部材等がある。
 本実施形態の摺動部材および製紙機械用部材は、本実施形態の窒化珪素質焼結体を用いてなるものであることから、耐食性部材と同様の効果を有しているため、高い信頼性を有する。摺動部材としては、例えば、シールリング、ベアリング用転動体およびロータリ式圧縮機用部材(ベーン、ローラおよびシリンダ等)等があり、製紙機械用部材としては、例えば、抄紙機用フォイルおよび耐磨耗性ライナー等がある。
 次に、本実施形態の窒化珪素質焼結体の製造方法について説明する。
 まず、金属シリコン粉末と、β化率が20%以下である窒化珪素粉末とを準備して、(金属シリコン粉末)/(窒化珪素粉末)の質量比が1以上10以下となるように混合して混合粉末を得る。
 β化率が20%以下の窒化珪素粉末を用いるのは、機械的強度および破壊靱性を高くすることができるからである。特に、β化率が10%以下の窒化珪素粉末を用いるのが好適である。
 次に、焼結助剤として、炭酸カルシウム粉末および酸化アルミニウム粉末と、添加剤として、アルミン酸マグネシウム粉末を準備する。
 なお、本実施形態においては、金属シリコン粉末を用いて窒化工程により窒化珪素とするが、金属シリコンの窒化による質量増加が生じるものであるため原料粉末における質量比率と、窒化珪素質焼結体における質量比率とでは差が生じる。したがって、各粉末の秤量時においては、窒化工程における金属シリコンの質量増加を考慮して秤量する。
 例えば、原料粉末の合計100質量%において、金属シリコン粉末と窒化珪素粉末との混合粉末(質量比5.4)を88質量%、焼結助剤として、炭酸カルシウム粉末を6.4質量%および酸化アルミニウム粉末を3.1質量%、添加剤としてアルミン酸マグネシウム粉末を2.5質量%とする。このとき、作製された窒化珪素質焼結体は、窒化珪素質焼結体を構成する全成分の合計100質量%のうち、カルシウムが酸化物換算で3.9質量%、アルミニウムが酸化物換算で2.7質量%、マグネシウムが酸化物換算で2.1質量%となり、不可避不純物を除く残りが窒化珪素となる。
 また、粒界相に希土類金属の酸化物を含んでなり、窒化珪素質焼結体を構成する全成分の合計100質量%のうち、希土類金属の酸化物換算での合計含有量を0.1質量%以上1.0質量%以下にするには、希土類金属の酸化物粉末を、窒化工程における金属シリコンの質量増加を考慮して適宜秤量して原料粉末として用いればよい。
 また、粒界相にマグネシウムの酸化物を含んでなり、窒化珪素質焼結体を構成する全成分の合計100質量%のうち、マグネシウムの酸化物換算での含有量を0.1質量%以上6.0質量%以下にするには、例えば、酸化マグネシウム粉末を用いる場合には、窒化工程における金属シリコンの質量増加を考慮して適宜秤量して原料粉末として用いればよい。なお、アルミン酸マグネシウム粉末を用いる場合には、アルミン酸マグネシウム中におけるマグネシウムの質量比を考慮し、アルミン酸マグネシウム粉末の量を調整すればよい。
 また、粒界相にナトリウムの酸化物を含んでなり、窒化珪素質焼結体を構成する全成分の合計100質量%のうち、ナトリウムの酸化物換算での含有量を0.2質量%以上1.0質量%以下にするには、酸化ナトリウム粉末を、窒化工程における金属シリコンの質量増加を考慮して適宜秤量して原料粉末として用いればよい。
 そして、上述した焼結助剤や添加剤を用いることによって、焼結性が向上し、緻密質な窒化珪素質焼結体が得られ、機械的特性を高めることができる。
 次に、所定量秤量した混合粉末および添加剤を溶媒とともに、公知のバレルミル、回転ミル、振動ミル、ビーズミル、サンドミル、アジテーターミルなどを用いて粉砕することによりスラリーを作製する。この粉砕で用いるメディアとしては、窒化珪素質焼結体、酸化ジルコニウム質焼結体または酸化アルミニウム質焼結体等からなるものが使用可能であるが、混入したときに不純物となる影響を少なくするため、作製する窒化珪素質焼結体と同じ材料組成または近似組成の窒化珪素質焼結体からなるメディアを用いることが好適である。
 なお、このスラリーの作製にあたっては、焼結性向上の観点から、粒径(D90)が3μm以下となるまで粉砕することが好適であり、粒径(D90)を3μm以下とするには、メディアの外径や量、さらには粉砕時間等を調整すればよい。粒径(D90)が3μm以下のスラリーの作製を短時間で行なうには、予め累積体積の50%である粒径(D50)が1μm以下の粉末を用いることが好適である。
 また、混合粉末および添加剤とは別に、焼結助剤を、上述した公知のミルのいずれかを用いて、焼結助剤の比表面積が50.0cm/g以上となるまで粉砕する。なお、焼結助剤の比表面積を50.0cm/g以上とすることにより、窒化工程時において焼結助剤と窒素ガス(N)との接触面積が増えることとなり、粒界相に酸窒化物の結晶が生じる。
 そして、粉砕した焼結助剤を、混合粉末および添加剤を含むスラリーに加えて混合する。また、成形性等を向上させるため、パラフィンワックス、ポリビニルアルコール(PVA)またはポリエチレングリコール(PEG)などの有機バインダを成形方法にあわせて適宜選択する。そして、混合粉末、添加剤および焼結助剤の合計100質量部に対して1質量部以上10質量部以下の有機バインダをスラリーに添加して混合する。さらに、増粘安定剤、分散剤、pH調整剤および消泡剤等を添加してもよい。
 次に、噴霧乾燥装置を用いてスラリーを噴霧乾燥させて、造粒された顆粒を得る。そして、得られた顆粒をプレス成形またはCIP成形(Cold Isostatic Pressing)によって所望の形状を有する成形体を作製する。なお、鋳込み成形、射出成形、テープ成形などによって成形体を作製してもよい。また、成形後においては、成形体を切削したり、積層したり、または接合したりすることによって所望の形状としてもよい。
 次に、炭化珪素製または表面が窒化珪素質の結晶粒子で覆われたカーボン製のこう鉢中に得られた成形体を載置して、窒素または真空中などで脱脂する。なお、脱脂温度は、添加した有機バインダの種類によって異なるが900℃以下であることが好適であり、特に、好ましくは450℃以上800℃以下である。
 次に、窒素雰囲気中において、脱脂したときの温度からさらに温度を上げて焼成する。この焼成においては、窒化工程を含み、この窒化工程において、金属シリコンが窒素ガスと窒化反応することで窒化珪素となる。また、比表面積の大きい焼結助剤を用いることにより、この窒化工程において、カルシウム、アルミニウムおよびシリコンを含む酸窒化物の結晶が粒界相に生じる。
 なお、上述した窒化反応は、以下のように進行させるのがよい。脱脂された金属シリコンを含む脱脂体は、窒化工程において脱脂体の表面に存在する金属シリコンから窒化が始まり、時間の経過とともに脱脂体の内部に存在する金属シリコンが窒化される。そのため、特に脱脂体の内部における窒化不足を生じさせないためには、低温での窒化(第1の窒化工程)の後、高温での窒化(第2の窒化工程)を行なうことが好適である。
 具体的には、第1の窒化工程として、窒素分圧を10~200kPaとし、1000~1200℃の温度で15~50時間保持することで、脱脂体中の金属シリコンの10~90質量%を窒化する。
 次に、第2の窒化工程として、第1の窒化工程の温度よりも高く1400℃までの間の温度で5~20時間保持することで第1の窒化工程で窒化されなかった残りの金属シリコンを窒化させる。なお、第1の窒化工程と第2の窒化工程とは連続して実施することが好適である。
 そして、第2の窒化工程後、窒素の圧力を50kPa以上160kPa以下、最高温度を1700℃以上1800℃未満とし、6時間以上14時間以下保持することにより焼成する。
 また、X線回折チャートにおいて、第1ピークが回折角2θ=30.4°~32.4°、第2ピークが回折角2θ=51.0°~53.0°に現れる酸窒化物の結晶を粒界相に含む窒化珪素質焼結体を得るには、最高温度から400℃までの降温条件を、時間当たり150℃以上250℃以下とすればよい。
 さらに、窒化珪素質焼結体を構成する結晶の合計100質量%のうち、第1ピークが回折角2θ=30.4°~32.4°、第2ピークが回折角2θ=51.0°~53.0°に現れる酸窒化物の結晶の含有量を1~10質量%とするには、最高温度から400℃までの降温条件を、時間当たり180℃以上240℃以下とすればよい。
 また、X線回折チャートにおいて、第1ピークおよび第2ピークがいずれも回折角2θ=27.0°~29.0°に現れる酸窒化物の結晶を粒界相に含む窒化珪素質焼結体を得るには、最高温度から400℃までの降温条件を、時間当たり250℃以上350℃以下とすればよい。
 さらに、窒化珪素質焼結体を構成する結晶の合計100質量%のうち、第1ピークおよび第2ピークがいずれも回折角2θ=27.0°~29.0°に現れる酸窒化物の結晶の含有量を1~10質量%とするには、最高温度から400℃までの降温条件を、時間当たり260℃以上320℃以下とすればよい。
 また、第1ピークの半値幅が0.1°以上0.9°以下である窒化珪素質焼結体を得るには、焼結助剤の比表面積を200cm/g以上500cm/g以下となるまで粉砕すればよい。
 また、粒界相に、円相当径が0.05μm以上5μm以下の鉄および珪素を含む化合物が存在し、1mm当たりにおける化合物の個数が2.0×10個以上2.0×10個以下である窒化珪素質焼結体を得るには、原料粉末として、酸化第2鉄粉末を用いる。そして、混合粉末、焼結助剤、添加剤および酸化第2鉄粉末の合計100質量%における酸化第2鉄粉末を1質量%以上1.7質量%添加し、粉砕時間を調整することにより、粉砕後の酸化第2鉄粉末の比表面積が0.5m/g以上50m/g以下であるスラリーを得る。そして、このスラリーを噴霧乾燥することによって得られる顆粒を上述した方法で成形して得られた成形体を順次窒化および焼成すればよい。
 また、上述した製造方法によって得られた窒化珪素質焼結体は、必要に応じて研削や研磨等の加工を施して所望の形状や表面性状とすることにより、本実施形態の耐食性部材、摺動部材または製紙機械用部材とすることができる。
 以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 まず、金属シリコン粉末と、β化率が10%(即ち、α化率が90%)の窒化珪素粉末とを準備して、(金属シリコン粉末)/(窒化珪素粉末)の質量比が5.4(84.4:15.6)となるように混合して混合粉末を得た。
 また、表1に示す焼結助剤および添加剤を準備し、表1に示す調合組成となるように秤量した。そして、所定量秤量した混合粉末および添加剤を、メディアおよび水とともにバレルミルに入れて粉砕することによりスラリーを得た。また、同様にミルを用いて、焼結助剤の比表面積が表1に示す値となるよう粉砕し、粉砕後、上記スラリーと混合した。なお、表1に示す比表面積は、JIS R 1626-1996に準拠して得られた測定値である。
 その後、混合粉末、焼結助剤および添加剤の各粉末の合計100質量部に対して5質量部のPVAを添加して混合した。そして、噴霧乾燥装置を用いてスラリーを噴霧乾燥させて造粒された顆粒を得た。次に、得られた顆粒を用いてCIP成形し、さらに切削加工を施して、外径が173mm、内径が150mmであり、長さが1152mmの有底筒形状の成形体を得た。
 そして、炭化珪素製のこう鉢中に成形体を載置し、窒素雰囲気中500℃で5時間保持することにより脱脂した。続けて、さらに温度を上げて、実質的に窒素からなる150kPaの窒素分圧中にて、1050℃で20時間、1250℃で10時間順次保持することにより窒化させた。そして、さらに昇温して常圧の窒素雰囲気において1730℃で10時間保持して焼成することにより、窒化珪素質焼結体からなり、外径が150mm、内径が130mm、長さが1000mmの有底筒状体の試料No.1~15を得た。なお、各試料における1730℃から400℃までの降温条件(冷却速度)は、表1に示した通りとした。
 次に、各試料から試験片を切り出し、XRDを用いて測定し、得られたX線回折チャートを確認したところ、全ての試料において、最も高いピークを示したのは、窒化珪素を示すピークであり、各試料の主結晶相は窒化珪素であった。
 また、X線回折チャートを用いて、カルシウム、アルミニウムおよびシリコンを含む酸化物の結晶の有無を確認した。次に、窒化珪素の結晶間である粒界相に結晶が存在するか否かをTEMで確認するとともに、確認された結晶の構成元素および元素の質量比率をTEMに付設のWDSを用いて測定した。そして、カルシウム、アルミニウムおよびシリコンの質量比率および窒素の有無について表2に示した。
 また、X線回折チャートから、カルシウム、アルミニウムおよびシリコンを含む酸化物の結晶のピークの位置を確認し、第1ピークが回折角2θ=30.4°~32.4°、第2ピークが回折角2θ=51.0°~53.0°に現れる結晶を確認できた試料は「A」、第1ピークおよび第2ピークがいずれも回折角2θ=27.0°~29.0°に現れる結晶を確認できた試料は「B」、第1ピークおよび第2ピークともいずれの結晶とも一致しない試料は「-」として表2に示した。
 次に、各試料から、耐食性、機械的強度、破壊靭性および熱伝導率の測定に用いるサイズの試験片を切り出し、温度が90℃の30質量%水酸化ナトリウム溶液に100時間浸漬した。そして、耐食性の試験片における浸漬前後の単位面積当たりの質量の減少量を表2に示した。そして、上記溶液に浸漬した後の各試料を十分洗浄し、以下の方法により、機械的強度、破壊靱性および熱伝導率を測定した。
 まず、機械的強度については、JIS R 1604-2008に準拠して4点曲げ強度を測定した。また、破壊靱性については、JIS R 1607-1995に規定される圧子圧入法(IF法)に準拠して測定した。
 また、熱伝導率κ(W/(m・K))は、熱定数測定装置(アルバック理工(株)製、TC-7000)を用い、レーザフラッシュによる2次元法によって試験片の厚み方向における熱拡散率αを測定し、また、超高感度型示差走査熱量計(セイコーインスツルメンツ(株)製、DSC-6200)を用い、示唆走査熱量法(DSC法)によって試験片の比熱容量Cを測定した。また、JIS R 1634-1998に準拠して試料片のかさ密度ρ(kg/m)を測定した。そして、得られたそれぞれの測定値を、κ=α・C・ρに代入して、各試料の厚み方向における熱伝導率κ(W/(m・K))を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、調合組成、確認された結晶および結晶中における質量比率が同じである試料No.3および4、試料No.10および11を比べると、試料No3,10の方が、試料No.4,11より、水酸化ナトリウム溶液に浸漬した後の単位面積当たりの質量の減少量が少なくなっている。また、4点曲げ強度および破壊靭性の値が大きかった。
 また、試料No.1,7,8は、酸窒化物の結晶を有しているものの、カルシウムが1.3~32.0%、アルミニウムが0.1~25.0%、残部がシリコンであるという質量比率を満たしていないため、4点曲げ強度、破壊靭性の少なくともいずれかの値が小さかった。さらに、カルシウム、アルミニウムおよびシリコンを含む酸化物の結晶が存在せず、アルミニウムおよび窒素を含んでいない試料No.14は、4点曲げ強度、破壊靭性のいずれもの値が小さかった。
 これに対し、試料No.2,3,5,6,9,10,12,13および15は、質量減少量が0.28mg/cm、4点曲げ強度が745MPa以上、破壊靱性が6.2MPa√m以上であり、窒化珪素の結晶間である粒界相に、カルシウム、アルミニウムおよびシリコンを含む酸窒化物の結晶を粒界相に有してなり、酸窒化物の結晶を構成するカルシウム、アルミニウムおよびシリコンにおけるそれぞれの質量比率が、カルシウムが1.3~32.0%、アルミニウムが0.1~25.0%、残部がシリコンであることにより、腐食環境下における腐食が少なく、腐食環境下に曝されても高い機械的特性を有することがわかった。また、これらの試料は、試料No.1,4,7,8,11,14よりも高い熱伝導率を有していた。
 また、調合組成や結晶中における質量比率が同じである試料No.3および15を比べると、試料No.3の方が、4点曲げ強度および破壊靭性ともに大きな値が得られており、酸窒化物の結晶としては、X線回折チャートにおいて、第1ピークが回折角2θ=30.4°~32.4°、第2ピークが回折角2θ=51.0°~53.0°に現れる酸窒化物の結晶を有していることが好適であることがわかった。
 焼成において、焼結助剤の比表面積を表3に示す値にしたこと以外は、実施例1の試料No.2を得た方法と同じ方法により試料No.16~23を作製した。また、同じ顆粒を用いて、直径が38mm、厚みが3mmの円板状の滑り磨耗試験用の試験片を作製した。
 次に、各試料から試験片を切り出し、XRDを用いて測定し、得られたX線回折チャートを確認し、いずれの試料も、第1ピークが回折角2θ=30.4°~32.4°、第2ピークが回折角2θ=51.0°~53.0°に現れる結晶が存在することを確認した。そして、各試料の第1ピークの半値幅を算出し、その値を表3に示した。
 また、TEMで観察することにより、窒化珪素の結晶間である粒界相に結晶が存在することを確認した。また、TEMに付設のWDSを用いて測定し、確認された結晶の構成元素が、カルシウム、アルミニウム、シリコン、酸素および窒素であることを確認した。
 次に、滑り磨耗試験にあたり、耐磨耗性試験用の試験片の一主面をダイヤモンド砥粒で算術平均粗さRaが0.05μm以下となるまで研磨し、JIS R 1691-2011に準拠して、滑り磨耗試験を実施し、円板状の試験片の比磨耗量を測定した。
 なお、滑り磨耗試験において、円板状の試験片と摺接する球状試験片は、直径が10mmのSUS440C製の球とし、潤滑流体にはイオン交換水を用いた。また、荷重は10N、円板状の試験片の摺動速度は0.37m/s、摺動円直径は14mm、摺動距離は2000mとした。
また、各試験片の熱伝導率κ(W/(m・K))は、実施例1で示した方法と同じ方法により測定した。さらに、各試験片の剛性は、JIS R 1602-1995に準拠して剛性の尺度である静的弾性率を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、試料No.17~21は、第1ピークの半値幅が0.1°以上0.9°以下であることにより、耐磨耗性、熱伝導性および剛性のいずれもが高い窒化珪素質焼結体であることがわかった。
 次に、焼成において、1730℃から400℃までの降温条件を表4に示す値にしたこと以外は、実施例1の試料No.10を得た方法と同じ方法により試料No.23~30を作製した。
 次に、実施例1と同様にして、XRD、TEM、TEMに付設のWDSを用いることにより、カルシウム、アルミニウムおよびシリコンを含む酸窒化物の結晶が粒界相に存在し、この酸窒化物の結晶の第1ピークが回折角2θ=30.4°~32.4°、第2ピークが回折角2θ=51.0°~53.0°に現れる結晶であることを確認した。
 また、各試料に含まれる酸窒化物の結晶の含有量を、XRDを用いて得られたデータからリートベルト解析により定量化することで算出し、その値を表4に示した。
 そして、実施例1と同様にして、各試料を温度が90℃の30質量%水酸化ナトリウム溶液に100時間浸漬した後、4点曲げ強度および破壊靱性を測定し、その値を表4に示した。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、試料No.24~29は、4点曲げ強度が800MPa以上、破壊靱性が6.5MPa√m以上であり、窒化珪素質焼結体を構成する結晶の合計100質量%のうち、酸窒化物の結晶の含有量が1~10質量%であることにより、高い機械的強度および高い破壊靱性を有することがわかった。
 まず、実施例1で用いた混合粉末および焼結助剤と、添加剤として、アルミン酸マグネシウム粉末と、酸化第2鉄粉末とを準備し、炭酸カルシウム粉末を11.3質量%、酸化アルミニウム粉末を3.7質量%、アルミン酸マグネシウム粉末を2.6質量%、酸化第2鉄粉末を1.4質量%、残部が混合粉末となるように秤量した。そして、以降の工程については、窒化後の焼成条件を、最高温度を1775℃、窒素の圧力を表5に示す値、保持時間を12時間、1775℃から400℃までの降温条件を時間当たり時間当たり225℃にしたこと以外は、実施例1と同様の方法により試料No.31~42を得た。なお、焼結助剤の粉砕後の比表面積は50.0cm/gであった。
 そして、各試料について、XRDを用いて測定を行なった。その結果、すべての試料に組成式がFeSiの珪化鉄が存在していることを確認した。次に、EPMAを用いたカラーマッピングにより、粒界相において鉄が存在する部分に、珪素が存在していることによって、粒界相に珪化鉄が分散して存在していることを確認した。
 そして、SEMを用いて倍率を1000倍として、面積が10.8×10μm(横方向の長さが127μm、縦方向の長さが85.3μm)となるように範囲を設定し、CCDカメラでこの範囲の画像を取り込んだ。そして、画像解析ソフト「A像くん」(登録商標、旭化成エンジニアリング(株)製)を用いて、円相当径が0.05μm以上5μm以下の化合物の個数を粒子解析することにより求めた。なお、この手法の設定条件を、明度を明、2値化の方法を手動、画像の明暗を示す指標であるしきい値を、画像内の各点(各ピクセル)が有する明るさを示すヒストグラムのピーク値の1.2倍に設定して解析した。結果を表5に示す。
 次に、熱衝撃試験を行なった。具体的には、各試料の外周側から厚み3mm、軸線方向に40mm、軸線に垂直な方向に4mmとなる試験片を切り出し、試験片を820℃に保持した後、20℃の水中に投下し、投下後の試験片の表面におけるクラックの有無を目視で観察した。また、同様の試験を保持する温度を920℃として行なった。結果を表5に示す。
 次に、試料の酸化試験を行なった。具体的には、大気雰囲気中、900℃の温度に200時間曝した。そして、空冷した後、表面を目視で観察した。表面が赤色に変色している試料には赤色と記入し、表面が変色していない試料は棒線で示した。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、窒化珪素質焼結体の表面において、1mm当たりにおける円相当径が0.05μm以上5μm以下の鉄および珪素を含む化合物の個数が2.0×10個以上2.0×10個以下であることにより、耐酸化性に優れつつ、優れた耐熱衝撃性を有することがわかった。特に、1mm当たりにおける円相当径が0.05μm以上5μm以下の鉄および珪素を含む化合物の個数が5.1×10個以上2.0×10個以下であることにより、さらに、耐熱衝撃性が向上することがわかった。
 次に、実施例1で用いた混合粉末および焼結助剤に加えて、添加剤として、アルミン酸マグネシウム粉末、酸化マグネシウム粉末および酸化ナトリウム粉末と、表6に示す希土類金属酸化物の各粉末とを準備し、表6に示す調合組成となるように秤量した。そして、以降の工程については、実施例1と同様の方法により試料No.43~58を得た。なお、焼結助剤の粉砕後の比表面積は50.0cm/gであった。
 次に、実施例1と同様にして、XRD、TEM、TEMに付設のWDSを用いることにより、カルシウム、アルミニウムおよびシリコンを含む酸窒化物の結晶が粒界相に存在し、この酸窒化物の結晶の第1ピークが回折角2θ=30.4°~32.4°、第2ピークが回折角2θ=51.0°~53.0°に現れる結晶であることを確認した。なお、質量比率は、カルシウムが10.2%であり、アルミニウムが11.2%であり、シリコンが78.6%であった。
 また、TEMに付設のWDSによる粒界相を測定したところ、試料No.53以外にはマグネシウムの酸化物が確認され、試料No.58以外には、ナトリウムの酸化物が確認された。さらに、試料No.43,45,46には、イットリウムの酸化物が確認され、試料No.43,44には、イッテルビウムの酸化物が確認された。
 そして、ICP発光分光分析装置を用いて測定を行ない、窒化珪素質焼結体を構成する全成分の合計100質量%における、マグネシウム、ナトリウム、イットリウム、イッテルビウムの酸化物換算での含有量を算出した。また、イットリウムおよびイッテルビウムの酸化物換算した結果を基に希土類金属の酸化物換算での含有量の合計を算出した。
 次に、実施例1と同様に、各試料を温度が90℃の30質量%水酸化ナトリウム溶液に100時間浸漬した後、各試料の単位面積当たりの質量の減少量、4点曲げ強度、破壊靱性を測定するとともに、熱伝導率κ(W/(m・K))を算出した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、粒界相に希土類金属の酸化物を含んでいることにより、機械的特性が高まり、特に、窒化珪素質焼結体を構成する全成分の合計100質量%のうち、希土類金属の酸化物換算での合計の含有量が0.1質量%以上1.0質量%以下であれば、高い機械的特性を備える窒化珪素質焼結体となることがわかった。
 また、粒界相にマグネシウムの酸化物を含んでいることにより、機械的特性が高まり、特に、窒化珪素質焼結体を構成する全成分の合計100質量%のうち、マグネシウムの酸化物換算での含有量が0.1質量%以上6.0質量%以下であれば、高い機械的特性を備える窒化珪素質焼結体となることがわかった。また、粒界相に存在するマグネシウムの酸化物源としては、酸化マグネシウム粉末を用いることが好適であることがわかった。
 さらに、粒界相にマグネシウムの酸化物を含んでいることにより、耐食性が高まり、特に、窒化珪素質焼結体を構成する全成分の合計100質量%のうち、ナトリウムの酸化物換算での含有量が0.2質量%以上1.0質量%以下であれば、耐食性に優れつつ、機械的特性に優れた窒化珪素質焼結体となることがわかった。

Claims (11)

  1.  窒化珪素の結晶間である粒界相に、カルシウム、アルミニウムおよびシリコンを含む酸窒化物の結晶を有してなり、前記酸窒化物の結晶を構成する前記カルシウム、前記アルミニウムおよび前記シリコンにおけるそれぞれの質量比率は、前記カルシウムが1.3~32.0%、前記アルミニウムが0.1~25.0%、残部が前記シリコンであることを特徴とする窒化珪素質焼結体。
  2.  前記酸窒化物の結晶が、X線回折チャートにおいて、第1ピークが回折角2θ=30.4°~32.4°、第2ピークが回折角2θ=51.0°~53.0°に現れる結晶であることを特徴とする請求項1に記載の窒化珪素質焼結体。
  3.  前記第1ピークにおける半値幅が0.1°以上0.9°以下であることを特徴とする請求項2に記載の窒化珪素質焼結体。
  4.  前記酸窒化物の結晶の含有量が、窒化珪素質焼結体を構成する結晶の合計100質量%のうち、1~10質量%であることを特徴とする請求項1乃至請求項3のいずれかに記載の窒化珪素質焼結体。
  5.  前記粒界相に、円相当径が0.05μm以上5μm以下の鉄および珪素を含む化合物が存在し、1mm当たりにおける前記化合物の個数が2.0×10個以上2.0×10個以下であることを特徴とする請求項1乃至請求項4のいずれかに記載の窒化珪素質焼結体。
  6.  前記粒界相に希土類金属の酸化物を1種以上含んでなり、窒化珪素質焼結体を構成する全成分の合計100質量%のうち、前記希土類金属の酸化物換算での合計の含有量が0.1質量%以上1.0質量%以下であることを特徴とする請求項1乃至請求項5のいずれかに記載の窒化珪素質焼結体。
  7.  前記粒界相にマグネシウムの酸化物を含んでなり、窒化珪素質焼結体を構成する全成分の合計100質量%のうち、前記マグネシウムの酸化物換算での含有量が0.1質量%以上6.0質量%以下であることを特徴とする請求項1乃至請求項6のいずれかに記載の窒化珪素質焼結体。
  8.  前記粒界相にナトリウムの酸化物を含んでなり、窒化珪素質焼結体を構成する全成分の合計100質量%のうち、前記ナトリウムの酸化物換算での含有量が0.2質量%以上1.0質量%以下であることを特徴とする請求項1乃至請求項7のいずれかに記載の窒化珪素質焼結体。
  9.  請求項1乃至請求項8のいずれかに記載の窒化珪素質焼結体を用いてなることを特徴とする耐食性部材。
  10.  請求項1乃至請求項8のいずれかに記載の窒化珪素質焼結体を用いてなることを特徴とする摺動部材。
  11.  請求項1乃至請求項8のいずかに記載の窒化珪素質焼結体を用いてなることを特徴とする製紙機械用部材。
PCT/JP2014/070088 2013-07-31 2014-07-30 窒化珪素質焼結体およびこれを用いた耐食性部材、摺動部材ならびに製紙機械用部材 WO2015016269A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14831783.7A EP3029008B1 (en) 2013-07-31 2014-07-30 Silicon nitride-based sintered body, and corrosion-resistant member, sliding member and member for paper-making machine each manufactured using the same
JP2015529598A JP6023337B2 (ja) 2013-07-31 2014-07-30 窒化珪素質焼結体およびこれを用いた耐食性部材、摺動部材ならびに製紙機械用部材
CN201480042433.1A CN105408289B (zh) 2013-07-31 2014-07-30 氮化硅质烧结体及使用其的耐蚀性部件、滑动构件以及制纸机械用部件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-158979 2013-07-31
JP2013158979 2013-07-31

Publications (1)

Publication Number Publication Date
WO2015016269A1 true WO2015016269A1 (ja) 2015-02-05

Family

ID=52431799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070088 WO2015016269A1 (ja) 2013-07-31 2014-07-30 窒化珪素質焼結体およびこれを用いた耐食性部材、摺動部材ならびに製紙機械用部材

Country Status (4)

Country Link
EP (1) EP3029008B1 (ja)
JP (1) JP6023337B2 (ja)
CN (1) CN105408289B (ja)
WO (1) WO2015016269A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106738A1 (ja) * 2019-11-28 2021-06-03 京セラ株式会社 光学ガラス製造装置用部材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645714B (zh) * 2020-12-28 2022-04-15 中材高新氮化物陶瓷有限公司 一种氮化硅陶瓷脱水元件及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146983A (ja) * 1983-02-10 1984-08-23 東芝タンガロイ株式会社 高靭性窒化硅素焼結体
JPS6259572A (ja) * 1985-09-09 1987-03-16 株式会社豊田中央研究所 窒化けい素質焼結体およびその製造方法
JPH0536464A (ja) 1991-07-30 1993-02-12 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ
JPH0537944B2 (ja) * 1983-10-25 1993-06-07 Toshiba Tungaloy Co Ltd
WO2005019133A1 (ja) * 2003-08-26 2005-03-03 Kyocera Corporation 窒化珪素質焼結体およびその製造方法、並びにそれを用いた耐溶融金属用部材、耐摩耗用部材

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0087888B1 (en) * 1982-02-26 1986-06-11 LUCAS INDUSTRIES public limited company Method of forming ceramic materials and ceramic products, and ceramic materials and ceramic products formed thereby
CN100406407C (zh) * 2003-08-26 2008-07-30 京瓷株式会社 氮化硅质烧结体及其制造方法,和使用其的耐熔融金属用构件、耐磨损用构件
EP3006420B1 (en) * 2013-05-31 2018-02-21 Kyocera Corporation Ceramic sintered body, and anticorrosion member, filter and antihalation member formed using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146983A (ja) * 1983-02-10 1984-08-23 東芝タンガロイ株式会社 高靭性窒化硅素焼結体
JPH0537944B2 (ja) * 1983-10-25 1993-06-07 Toshiba Tungaloy Co Ltd
JPS6259572A (ja) * 1985-09-09 1987-03-16 株式会社豊田中央研究所 窒化けい素質焼結体およびその製造方法
JPH0536464A (ja) 1991-07-30 1993-02-12 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ
WO2005019133A1 (ja) * 2003-08-26 2005-03-03 Kyocera Corporation 窒化珪素質焼結体およびその製造方法、並びにそれを用いた耐溶融金属用部材、耐摩耗用部材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106738A1 (ja) * 2019-11-28 2021-06-03 京セラ株式会社 光学ガラス製造装置用部材
JPWO2021106738A1 (ja) * 2019-11-28 2021-06-03

Also Published As

Publication number Publication date
JPWO2015016269A1 (ja) 2017-03-02
EP3029008A1 (en) 2016-06-08
JP6023337B2 (ja) 2016-11-09
EP3029008B1 (en) 2020-06-17
EP3029008A4 (en) 2017-04-12
CN105408289B (zh) 2017-08-04
CN105408289A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
JPWO2005113466A1 (ja) 高熱伝導性窒化ケイ素焼結体及び窒化ケイ素構造部材
JP5787722B2 (ja) 溶湯金属用部材およびヒーターチューブ
EP3006420B1 (en) Ceramic sintered body, and anticorrosion member, filter and antihalation member formed using same
US11059753B2 (en) Oriented ALN sintered body and method for producing the same
JP6023337B2 (ja) 窒化珪素質焼結体およびこれを用いた耐食性部材、摺動部材ならびに製紙機械用部材
JP2014129223A (ja) セラミック焼結体およびこれを備える耐磨耗性部材
CN104942555A (zh) 立方晶氮化硼基超高压烧结材料制切削工具
US20230339815A1 (en) Precursor of alumina sintered body, method for producing alumina sintered body, method for producing abrasive grains, and alumina sintered body
JP2016144829A (ja) 溶接用エンドタブ
JP2008297134A (ja) 炭化硼素質焼結体および防護部材
JP5825962B2 (ja) 窒化珪素質焼結体およびこれを用いた溶湯金属用部材ならびに耐磨耗性部材
JP5944996B2 (ja) 窒化珪素質焼結体および熱伝導部材
JP6282943B2 (ja) 窒化珪素質焼結体およびこれを備える耐衝撃磨耗性部材
JP2015086116A (ja) 窒化珪素質焼結体および耐磨耗性部材
JP6374207B2 (ja) 窒化珪素質焼結体およびこれからなる耐衝撃磨耗性部材
JP5275744B2 (ja) 切削インサート、窒化珪素切削工具、切削インサートに用いられる窒化珪素焼結体の製造方法
JP2009091196A (ja) 耐摩耗性にすぐれたアルミナ質セラミックス及びその製造方法
JP2008297135A (ja) 炭化硼素質焼結体およびその製法ならびに防護部材
JP2008273752A (ja) 炭化硼素質焼結体および防護部材
JP2016050137A (ja) 窒化珪素質焼結体およびこれを備える耐磨耗性部材
KR101708826B1 (ko) 알루미나와 산화어비움이 첨가된 질화 실리콘을 방전 플라즈마 소결시킨 절삭공구
JP2007039331A (ja) 窒化けい素焼結体の製造方法、それを用いた耐薬品性部材の製造方法および軸受部材の製造方法
JP2003193169A (ja) 超硬合金
CN117616002A (zh) 生产高纯度致密烧结sic材料的方法
KR20200083041A (ko) 이터븀과 이트륨이 공도핑된 사이알론 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042433.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529598

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014831783

Country of ref document: EP