WO2015015762A1 - 有機発光素子、有機発光表示パネルおよび有機発光表示装置 - Google Patents

有機発光素子、有機発光表示パネルおよび有機発光表示装置 Download PDF

Info

Publication number
WO2015015762A1
WO2015015762A1 PCT/JP2014/003865 JP2014003865W WO2015015762A1 WO 2015015762 A1 WO2015015762 A1 WO 2015015762A1 JP 2014003865 W JP2014003865 W JP 2014003865W WO 2015015762 A1 WO2015015762 A1 WO 2015015762A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
electrode
organic light
film thickness
Prior art date
Application number
PCT/JP2014/003865
Other languages
English (en)
French (fr)
Other versions
WO2015015762A9 (ja
Inventor
恵子 倉田
宗治 佐藤
哲郎 近藤
真一郎 石野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2015529373A priority Critical patent/JP6111468B2/ja
Priority to US14/908,337 priority patent/US9698382B2/en
Priority to CN201480042637.5A priority patent/CN105594304B/zh
Publication of WO2015015762A1 publication Critical patent/WO2015015762A1/ja
Publication of WO2015015762A9 publication Critical patent/WO2015015762A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present disclosure relates to an organic light emitting device that emits light using an electroluminescence phenomenon of an organic material, and more particularly to an organic light emitting device that emits blue light.
  • a driving circuit for example, including a TFT (Thin Film Transistor) element
  • a driving circuit for example, including a TFT (Thin Film Transistor) element
  • an insulating layer is provided on the driving circuit
  • a plurality of organic light emitting elements are further provided. What is arranged is generally known.
  • Each organic light emitting element includes an anode provided on an insulating layer on a substrate, a light emitting layer made of an organic light emitting material provided on the anode and a laminate of functional layers, and a transparent conductive material provided thereon.
  • the cathode is provided as a basic structure.
  • a transparent conductive material represented by ITO Indium Tin Oxide
  • ITO Indium Tin Oxide
  • the functional layer a hole injection layer, a hole transport layer, and the like are provided between the light emitting layer and the anode, and an electron injection layer, an electron transport layer, and the like are provided between the light emitting layer and the cathode.
  • Such an organic light-emitting element is a current-driven light-emitting element, and when driven, a voltage is applied between the anode and the cathode, and the holes and electrons injected into the light-emitting layer are recombined. Emits light.
  • such an organic light emitting element forms RGB subpixels, and one pixel is formed by a combination of adjacent RGB subpixels.
  • the organic light emitting panel it is also desired to improve the light extraction efficiency from each light emitting element from the viewpoint of reducing power consumption and extending the life.
  • Patent Document 1 a technique that employs a resonator structure for each color organic light emitting element is also known.
  • the adoption of the resonator structure is effective in increasing the light extraction efficiency in the organic light emitting device.
  • This disclosure provides a blue light emitting organic light emitting device that can reduce the sheet resistance value of a transparent cathode (transparent electrode) and can extract blue light with good chromaticity with high extraction efficiency.
  • An organic light emitting device includes a first electrode that reflects incident light, a second electrode that is disposed to face the first electrode, and that transmits incident light, and a first electrode.
  • An organic light-emitting layer disposed between the second electrode and emitting at least blue light; a first functional layer including one or more layers disposed between the first electrode and the organic light-emitting layer; A second functional layer that is disposed between the light emitting layer and the second electrode and that includes one or more layers.
  • the first optical path emitted to the outside through the layer and the remaining part of the blue light emitted from the organic light emitting layer are emitted to the outside through the second functional layer and the second electrode without proceeding to the first electrode side.
  • a second optical path is formed.
  • the first functional layer has an optical film thickness set in the range of 48 nm to 62 nm.
  • the second electrode is configured by laminating a first conductive layer made of a transparent conductive material, a metal layer, and a second conductive layer made of a transparent conductive material in this order from the side close to the organic light emitting layer.
  • the first conductive layer has a refractive index of 2.0 to 2.4 and a film thickness of 85 nm to 97 nm
  • the metal layer has a refractive index difference of 0 to 2 with respect to the first conductive layer. 0.0 or less
  • the film thickness is 2 nm or more and 22 nm or less.
  • the blue light emitted from the organic light emitting layer is emitted to the outside through the first optical path and the second optical path.
  • the first functional layer has an optical film thickness set in a range of 48 nm to 62 nm, and the light passing through the two optical paths resonates, and blue light with good chromaticity is extracted with high efficiency. It can be taken out.
  • the second electrode on the light extraction side has a structure in which a first conductive layer made of a transparent conductive material, a metal layer, and a second conductive layer made of a transparent conductive material are laminated.
  • the sheet resistance value can be reduced as compared with the case where is made of only a transparent conductive material.
  • the light extraction efficiency of blue light can be further increased.
  • FIG. 1 is a cross-sectional view schematically showing a pixel structure of the organic display panel according to the first embodiment.
  • FIG. 2 is a diagram showing direct light and reflected light in the optical resonator structure formed in the light emitting element.
  • FIG. 3 is a diagram illustrating functional blocks of the display device according to the embodiment.
  • FIG. 4 is a diagram illustrating the appearance of the display device according to the embodiment.
  • 5A to 5D are diagrams for explaining a method of manufacturing a display device according to the embodiment.
  • 6A to 6C are diagrams for explaining a method of manufacturing a display device according to the embodiment.
  • 7A is a graph showing the light extraction efficiency extracted from the blue light-emitting element when the film thickness of the hole injection layer 4 is changed, and FIG.
  • FIG. 7B is a graph showing the light extraction efficiency of the hole injection layer 4. It is a graph which shows a mode that the chromaticity of the light taken out from a blue light emitting element changes when a film thickness is changed.
  • FIG. 8 is a diagram showing the relationship between the film thickness of each layer and the sheet resistance in the ITO / Ag / ITO electrode.
  • FIG. 9 is a diagram showing the refractive index, film thickness, and optical path length of each layer of the blue light-emitting element according to Example 1a and Comparative Example 1a used in the simulation.
  • 10A and 10B are both luminance / y value mapping diagrams created based on the simulation results for the blue light-emitting element according to Example 1a.
  • FIG. 11 is a luminance / y value mapping diagram created based on the simulation results for the blue light emitting element according to Example 1a in any of (a) to (e).
  • FIG. 12A is a mapping diagram showing the film thickness ranges of the first transparent conductive layer 81 and the metal layer 82 that have a luminance / y value of 70 or more in common in Example 1a, and FIG. These are the figures which fitted the range with the ellipse.
  • FIG. 13 is a diagram showing the refractive index, the film thickness, and the optical path length of each layer of the blue light emitting element according to Example 1b and Comparative Example 1b used in the simulation.
  • FIG. 12A is a mapping diagram showing the film thickness ranges of the first transparent conductive layer 81 and the metal layer 82 that have a luminance / y value of 70 or more in common in Example 1a
  • FIG. 13 is a diagram showing the refractive index, the film thickness, and the optical path length of each layer of the blue light emit
  • FIG. 14A is a luminance / y value mapping diagram created based on the simulation results for the blue light-emitting element according to Example 1b, and FIG. 14B is a diagram in which the range is fitted with an ellipse. is there.
  • FIG. 15 is a cross-sectional view schematically showing a pixel structure according to the second embodiment.
  • FIG. 16 is a diagram illustrating the refractive index, film thickness, and optical path length of each layer of the organic light-emitting device according to Example 2.
  • FIG. 17A is a graph showing the light extraction efficiency extracted from the blue light-emitting element when the film thickness of the hole injection layer 37 is changed in Example 2, and FIG.
  • FIG. 18 is a luminance / y value mapping diagram created based on the simulation results for the blue light-emitting device of Example 2 in any of (a) to (c).
  • FIG. 19A is a mapping diagram showing the film thickness ranges of the first transparent conductive layer 321 and the metal layer 322 that have a luminance / y value of 100 or more in common in Example 2, and FIG. These are the figures which fitted the range with the ellipse.
  • FIG. 20 is a diagram showing the relationship between the film thickness of the ITO film and the sheet resistance.
  • the transparent cathode when the transparent cathode is made of a transparent conductive material such as ITO, the sheet resistance value becomes high, and the applied voltage drops in the center of the panel compared to the surroundings, resulting in uneven brightness. There are things to do. Therefore, lowering the sheet resistance value of the transparent cathode is also a problem.
  • the present disclosure has further intensively studied to suppress the voltage drop at the center of the panel and to improve the light extraction efficiency of blue light extracted from the light emitting element.
  • a bus bar having a line width of 5 to 10 ⁇ m made of a metal having low electric resistance may be provided between adjacent pixels. Conceivable.
  • the aperture ratio of the pixel is lowered, which causes a reduction in light extraction efficiency from the light emitting element.
  • the horizontal width of one pixel size is as small as 30 to 80 ⁇ m.
  • the present inventor examined a method of reducing the resistance of the transparent cathode in consideration of achieving both suppression of voltage drop and improvement of light extraction efficiency in a high-definition organic display element of over 500 ppi.
  • the ITO film has a resistance value (hereinafter referred to as a sheet resistance value) of 80 to 100 ⁇ / ⁇ when the film thickness is about 50 nm ( ⁇ indicates Sq.). In that case, a voltage drop that causes luminance unevenness is generated depending on the position of the pixel arranged on the panel.
  • a sheet resistance value 80 to 100 ⁇ / ⁇ when the film thickness is about 50 nm ( ⁇ indicates Sq.). In that case, a voltage drop that causes luminance unevenness is generated depending on the position of the pixel arranged on the panel.
  • the film resistance and the sheet resistance value are in an inversely proportional relationship. Therefore, if the film thickness is set large, the sheet resistance is reduced. It can be reduced to some extent. However, as can be seen from FIG. 20, even when the film thickness of the transparent cathode made of ITO is set to 200 nm or more, it is difficult to lower the sheet resistance value to 40 ⁇ / ⁇ or less.
  • a transparent conductive film is formed on the organic layer. Therefore, if the transparent conductive film is formed thick, the heating time becomes long and the element is damaged. Moreover, if the film thickness of the transparent cathode is increased, the transmittance generally decreases, and a decrease in light extraction efficiency is inevitable. Therefore, there is an upper limit to the thickness of the transparent cathode that can be actually formed from ITO.
  • Patent Document 3 discloses a laminated transparent conductive material in which a first ITO layer (A1), a metal layer (M), and a second ITO layer (A2) are laminated in this order on a transparent plastic. A film is disclosed.
  • the sheet resistance value is lowered at the expense of light extraction efficiency (low extraction efficiency), or conversely, the sheet resistance value is increased by giving priority to the light extraction efficiency (the screen unevenness occurs).
  • the sheet resistance value is increased by giving priority to the light extraction efficiency (the screen unevenness occurs).
  • the present disclosure employs a three-layer laminated structure of a first transparent conductive layer, a metal layer, and a second transparent conductive layer as a transparent cathode in a blue light-emitting element, while ensuring a low sheet resistance value, Further, studies were made to improve the blue light extraction efficiency from the blue light emitting element. Specifically, the luminance and chromaticity of the extracted blue light were calculated by changing the film thickness of each layer of the transparent conductive electrode having a three-layer structure by simulation.
  • FIG. 8 is a diagram showing the relationship between the layer configuration of the transparent cathode, the sheet resistance value, and the light transmittance.
  • FIG. No. 1 (Sample 1) is a case where the transparent cathode is composed of a single layer of ITO.
  • 2 to No. 7 shows a three-layer structure in which the thickness of the first and second transparent conductive layers (ITO) and the thickness of the metal layer (Ag) are changed.
  • a transparent cathode having a laminated structure such as ITO-Ag-ITO alone has a reduced light transmittance as the thickness of the metal layer (Ag layer) increases.
  • the light extraction efficiency is improved even when the thickness of the metal layer is increased to some extent when the transparent cathode having this laminated structure is incorporated in the blue light emitting element. Knowledge was obtained. And it came to this indication based on the acquired knowledge.
  • the present disclosure does not focus only on the thickness of each of the metal layer and the transparent conductive layer constituting the laminated structure of the transparent cathode, which is known as conventional knowledge, and the metal layer constituting the transparent cathode and The refractive index difference and the film thickness of the first transparent conductive layer (first conductive layer) arranged on the functional layer side in the laminated structure of the transparent cathode are set to a predetermined value.
  • the range in which the optical extraction of the functional layer on the first electrode side is within a predetermined range and the metal layer has a certain thickness so that the light extraction is good. , What I found.
  • An organic light emitting device includes a first electrode that reflects incident light, a second electrode that is disposed to face the first electrode, and that transmits incident light, and a first electrode.
  • An organic light emitting layer disposed between the second electrode and emitting at least blue light; a first functional layer composed of one or more layers disposed between the first electrode and the organic light emitting layer; A second functional layer that is disposed between the organic light-emitting layer and the second electrode and includes one or more layers.
  • the second electrode on the light extraction side has a structure in which a first conductive layer made of a transparent conductive material, a metal layer, and a second conductive layer made of a transparent conductive material are laminated in this order from the side close to the organic light emitting layer. It has become. Thereby, compared with the case where the 2nd electrode is comprised only with a transparent conductive material, since the electroconductive improvement by a metal layer is obtained, a sheet resistance value can be reduced.
  • the optical film thickness of the first functional layer is such that the light passing through the two optical paths is resonated. Considering taking out blue light with a good degree with high extraction efficiency, it is set in the following ranges (1) to (3).
  • the refractive index and film thickness of the first conductive layer and the refractive index and film thickness of the metal layer in the second electrode are set as described separately for each of (1) to (3).
  • the light extraction efficiency of blue light with good chromaticity can be further increased.
  • the optical film thickness of the first functional layer is set to 48 nm or more and 62 nm or less. This optical film thickness corresponds to 0.5 cav described later, and blue light with good chromaticity can be extracted with high extraction efficiency.
  • the first conductive layer has a refractive index of 2.0 or more and 2.4 or less and a film thickness of 85 nm or more and 97 nm or less
  • the metal layer has a refractive index difference of 0 or more with respect to the first conductive layer.
  • the film thickness is 2 nm or more and 22 nm or less.
  • is a variable parameter that varies in the range of 0 ⁇ ⁇ ⁇ 2 ⁇
  • Rx 5.6
  • the optical film thickness of the first functional layer is set to 272 nm or more and 286 nm or less. This optical film thickness is equivalent to 1.5 cav described later, and blue light with good chromaticity can be extracted with high extraction efficiency.
  • the first conductive layer has a refractive index of 2.0 to 2.4 and a film thickness of 86 nm to 97 nm, and the metal layer has a refractive index difference of 0 or more with respect to the first conductive layer. 2.0 or less, and the film thickness is 8 nm or more and 16 nm or less. By setting this range, the light extraction efficiency of blue light with good chromaticity can be further increased.
  • the optical film thickness of the first functional layer is set to 17 nm or more and 33 nm or less. This optical film thickness is also equivalent to 0.5 cav described later, and blue light with good chromaticity can be extracted with high extraction efficiency.
  • the first conductive layer has a refractive index of 2.0 or more and 2.4 or less and a film thickness of 35 nm or more and 65 nm or less, and the metal layer has a refractive index difference of 0 or more with respect to the first conductive layer. 2.0 or less, and the film thickness is 8 nm or more and 22 nm or less. By setting this range, the light extraction efficiency of blue light with good chromaticity can be further increased.
  • the thickness of the metal layer is preferably 10 nm or more in order to reduce the sheet resistance value.
  • a blue color filter that transmits this light may be provided.
  • the blue light extracted from the organic light emitting element has already good chromaticity, even when a chromaticity correction is performed by providing a color filter, a target chromaticity is obtained using a color filter having a high light transmittance. be able to.
  • An organic light emitting display panel includes the organic light emitting element according to each of the above aspects.
  • the organic light-emitting display panel according to this aspect can be an organic light-emitting display panel that further improves the light extraction efficiency of blue light with good chromaticity.
  • an organic light emitting display device includes the organic light emitting display panel according to the above aspect.
  • the organic light-emitting display device can be an organic light-emitting display device that further improves the light extraction efficiency of blue light with good chromaticity.
  • Embodiment 1 In Embodiment 1, an organic display panel having a top emission structure will be described.
  • FIG. 1 is a cross-sectional view schematically showing a pixel structure of the organic display panel according to the first embodiment.
  • light emitting elements of R (red), G (green), and B (blue) colors are regularly arranged in a matrix in the row direction and the column direction.
  • the blue light emitting element includes a substrate 1, a reflective electrode (hereinafter referred to as a reflective anode) 2, a transparent conductive layer 3, a hole injection layer 4, a hole transport layer 5, an organic light emitting layer 6 b, an electron transport layer 7, and a transparent electrode (hereinafter referred to as “transparent electrode”). , Transparent cathode) 8, thin film sealing layer 9, resin sealing layer 10, and substrate 11.
  • the green light emitting device has the same configuration as the blue light emitting device except for the organic light emitting layer 6g.
  • the red light emitting element also has the same configuration as the blue light emitting element except for the organic light emitting layer 6r.
  • the substrate 1, the electron transport layer 7, the transparent cathode 8, the thin film sealing layer 9, and the resin sealing layer 10 are common in the light emitting elements of each color, and the other layers are divided by the bank 12. .
  • the organic light emitting layers 6b, 6g, and 6r are collectively referred to as the organic light emitting layer 6.
  • color filters 13b, 13g, and 13r are provided.
  • the substrate 1 is, for example, a TFT (Thin Film Transistor) substrate.
  • Examples of the material of the substrate 1 include glass plates and quartz plates such as soda glass, non-fluorescent glass, phosphate glass, and borate glass, and acrylic resins, styrene resins, polycarbonate resins, epoxy resins, polyethylene, Examples thereof include plastic plates or plastic films such as polyester and silicone resin, and metal plates or foils such as alumina.
  • the bank 12 only needs to be formed of an insulating material and may have organic solvent resistance. Moreover, since the bank 12 may be subjected to an etching process, a baking process, or the like, the bank 12 may be formed of a material having high resistance to these processes.
  • the material of the bank 12 may be an organic material such as resin or an inorganic material such as glass.
  • An acrylic resin, a polyimide resin, a novolac type phenol resin, or the like can be used as the organic material, and silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), or the like can be used as the inorganic material. it can.
  • the reflective anode 2 is electrically connected to the TFT disposed on the substrate 1, functions as a positive electrode of the light emitting element, and emits light emitted from the organic light emitting layers 6b, 6g, and 6r toward the reflective anode 2.
  • the reflective function may be exhibited by the constituent material of the reflective anode 2 or may be exhibited by applying a reflective coating to the surface portion of the reflective anode 2.
  • the reflective anode 2 includes, for example, Al (aluminum), Ag (silver), APC (silver, palladium, copper alloy), ARA (silver, rubidium, gold alloy), MoCr (molybdenum and chromium alloy), NiCr ( Nickel and chromium alloy).
  • the transparent conductive layer 3 functions as a protective layer that prevents the reflective anode 2 from being naturally oxidized during the manufacturing process.
  • the material of the transparent conductive layer 3 may be formed of a conductive material having sufficient translucency with respect to light generated in the organic light emitting layers 6b, 6g, and 6r.
  • ITO or IZO may be used. good. This is because good conductivity can be obtained even if the film is formed at room temperature.
  • the hole injection layer 4 has a function of injecting holes into the organic light emitting layers 6b, 6g, 6r.
  • it is formed of an oxide of a transition metal such as tungsten oxide (WO x ), molybdenum oxide (MoO x ), molybdenum tungsten oxide (Mo x W y O z ).
  • tungsten oxide WO x
  • MoO x molybdenum oxide
  • Mo x W y O z molybdenum tungsten oxide
  • metal compounds such as nitrides of transition metals can also be applied.
  • Materials for the hole transport layer 5 include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene.
  • Derivatives Fluorenone derivatives, hydrazone derivatives, stilbene derivatives, porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, butadiene compounds, polystyrene derivatives, triphenylmethane derivatives, and tetraphenylbenzine derivatives.
  • a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound may be used.
  • the materials of the organic light emitting layers 6b, 6g, 6r are, for example, oxinoid compounds, perylene compounds, coumarin compounds, azacoumarin compounds, oxazole compounds, oxadiazole compounds, perinone compounds, pyrrolopyrrole compounds, naphthalene compounds, anthracene compounds, fluorene compounds, Fluoranthene compound, tetracene compound, pyrene compound, coronene compound, quinolone compound and azaquinolone compound, pyrazoline derivative and pyrazolone derivative, rhodamine compound, chrysene compound, phenanthrene compound, cyclopentadiene compound, stilbene compound, diphenylquinone compound, styryl compound, butadiene compound, Dicyanomethylenepyran compound, dicyanomethylenethiopyran compound, fluorescein compound, pyrylium compound, thia Lilium compound
  • Examples of the material for the electron transport layer 7 include nitro-substituted fluorenone derivatives, thiopyrandioxide derivatives, diphequinone derivatives, perylenetetracarboxyl derivatives, anthraquinodimethane derivatives, fluorenylidenemethane derivatives, anthrone derivatives, oxadiazole derivatives, perinones. Derivatives, quinoline complex derivatives.
  • the material constituting the electron transport layer may be doped with an alkali metal such as Na, Ba, or Ca or an alkaline earth metal.
  • the transparent cathode 8 functions as a negative electrode of the organic EL element. It is formed of a conductive material that is transparent to the light generated in the organic light emitting layers 6b, 6g, 6r.
  • the transparent cathode 8 is configured by sequentially laminating a first transparent conductive layer 81 made of a transparent conductive material, a metal layer 82, and a second transparent conductive layer 83 made of a transparent conductive material.
  • the material (transparent conductive material) of the first transparent conductive layer 81 and the second transparent conductive layer 83 is ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), or the like.
  • the material of the metal layer 82 includes Ag (silver), Au (gold), Pt (platinum), Pd (palladium), Ni (nickel), Cu (copper), Al (aluminum), or an alloy of these metals. Can be mentioned.
  • the thin film sealing layer 9 has a function of preventing each layer sandwiched between the substrate 1 from being exposed to moisture and air.
  • the material of the thin film sealing layer 9 is, for example, silicon nitride (SiN), silicon oxynitride (SiON), resin, or the like.
  • the resin sealing layer 10 bonds the back panel composed of the layers from the substrate 1 to the thin film sealing layer 9 and the substrate 11 on which the color filters 13b, 13g, and 13r are formed, and exposes each layer to moisture and air. It has a function to prevent
  • the material of the resin sealing layer 10 is, for example, a resin adhesive.
  • the color filters 13b, 13g, and 13r have a function of transmitting light emitted from the light emitting elements of each color and correcting the chromaticity.
  • the organic light emitting layers 6b, 6g, 6r of each color exist between the transparent cathode 8 and the reflective anode 2, and the light from the organic light emitting layers 6b, 6g, 6r resonates as follows.
  • an optical resonator structure that emits light from the transparent cathode 8 side is formed.
  • the light generated in the organic light emitting layers 6b, 6g, 6r is emitted to the outside from the transparent cathode 8, and the light is directly emitted from the organic light emitting layers 6b, 6g, 6r toward the transparent cathode 8.
  • Both components of “direct light” and “reflected light” emitted from the organic light emitting layers 6 b, 6 g, 6 r toward the reflective anode 2, reflected by the reflective anode 2, and then directed to the transparent cathode 8 are included.
  • FIG. 2 is a diagram showing direct light and reflected light in the optical resonator structure formed in the light emitting element.
  • the blue element which has the blue organic light emitting layer 6b is shown in this figure, the same may be said of the red element which has the red organic light emitting layer 6r, and the green element which has the green organic light emitting layer 6g.
  • the following two optical paths are formed.
  • a part of the light emitted from the organic light emitting layer 6 does not travel to the reflective anode 2 side but travels to the transparent cathode 8 side and is emitted to the outside of the light emitting element through the transparent cathode 8.
  • the remaining part of the light emitted from the organic light emitting layer 6 travels to the reflective anode 2 side and is reflected by the reflective anode 2, and then passes outside the light emitting element through the organic light emitting layer 6 and the transparent cathode 8.
  • An outgoing second optical path C1 is formed.
  • the optical film thickness L between the organic light emitting layers 6b, 6g, 6r and the reflective anode 2 is set so that the light components corresponding to the respective colors are intensified by the interference between the direct light and the reflected light.
  • This optical film thickness L is the total of three functional layers (transparent conductive layer 3, hole injection layer 4, and hole transport layer 5) sandwiched between the organic light emitting layers 6b, 6g, 6r and the reflective anode 2.
  • the optical distance (expressed by the product of the film thickness and the refractive index, the unit is [nm]).
  • the light extraction efficiency is a maximum value in the blue light emitting element, it cannot be said that the chromaticity of the extracted blue light is close to the target chromaticity, and the light extraction efficiency is the maximum. It tends to be preferable to take out blue light having a small chromaticity y value by shifting from the optical film thickness L that takes a value close to the target chromaticity.
  • the optical film thickness L is not determined based only on the light extraction efficiency, but is also set with an emphasis on the chromaticity y value. That is, the luminance / y value is used as an index, and the optical film thickness L is set so that this index becomes higher.
  • FIG. 3 is a diagram illustrating functional blocks of the display device according to the embodiment.
  • FIG. 4 is a diagram illustrating the appearance of the display device.
  • the organic display device (organic light emitting display device) 15 includes an organic display panel 16 and a drive control unit 17 connected thereto.
  • the organic display panel (organic light emitting display panel) 16 is a display panel including the above-described blue, green, and red light emitting elements, and a plurality of light emitting elements are arranged in a matrix in the X direction and the Y direction on the display surface.
  • the drive control unit 17 includes four drive circuits 18 to 21 and a control circuit 22.
  • the arrangement of the drive control unit 17 with respect to the organic display panel 16 is not limited to this.
  • the control circuit 22 receives a video signal from the outside, and outputs a control signal based on the video signal to the drive circuits (scanning line drive circuits) 20 and 21 and the drive circuits (signal line drive circuits) 18 and 19.
  • the drive circuits 20 and 21 are connected to a plurality of scanning lines arranged in the X direction. By outputting scanning signals to the plurality of scanning lines, the light emitting element according to the first embodiment described above. It is a circuit which drives conduction and non-conduction of a switch transistor provided correspondingly.
  • the drive circuits 18 and 19 are connected to a plurality of data lines arranged in the Y direction, and are drive circuits that output the data voltage based on the video signal described above to the light emitting element according to the first embodiment.
  • the organic display panel 16 includes a plurality of blue, green, and red light emitting elements arranged in a matrix in the X direction and the Y direction, and displays an image based on a video signal input from the outside to the organic display device 15. To do.
  • the organic light emitting display panel configured as described above includes the organic light emitting element according to each aspect of the present disclosure. Thereby, as will be clarified from the description of the following embodiment, an organic light emitting display panel with further improved light extraction efficiency of blue light with good chromaticity can be realized.
  • the organic light emitting display device configured as described above includes an organic light emitting display panel including the organic light emitting element according to each aspect of the present disclosure. Thereby, as will be clarified from the following description of the embodiment, it is possible to realize an organic light emitting display device that further improves the light extraction efficiency of blue light with good chromaticity.
  • the reflective anode 2 is formed on the substrate 1 by vapor deposition or sputtering (FIG. 5A).
  • the transparent conductive layer 3 is formed on the reflective anode 2 by vapor deposition or sputtering (FIG. 5B). At this time, the film thickness of the transparent conductive layer 3 is appropriately adjusted within the above-described range.
  • the hole injection layer 4 is formed on the transparent conductive layer 3 by, for example, sputtering, and the bank 12 is formed. Further, on the hole injection layer 4, hole transport is performed by, for example, the ink jet method. Layer 5 is formed (FIG. 5C).
  • organic light emitting layers 6b, 6g and 6r are formed on the hole transport layer 5 (FIG. 5D).
  • the electron transport layer 7 is formed on the organic light emitting layers 6b, 6g, 6r (FIG. 6A).
  • the transparent cathode 8 is formed by sequentially laminating the first transparent conductive layer 81, the metal layer 82, and the second transparent conductive layer 83 on the electron transport layer 7 (FIG. 6B).
  • the first transparent conductive layer 81 and the second transparent conductive layer 83 are made of, for example, ITO by a vacuum deposition method, a sputtering method, a reactive sputtering method, an ion plating method, a plasma CVD method, a laser CVD method, a thermal CVD method, or the like. It is formed by filming.
  • Examples of the metal constituting the metal layer 82 include silver, gold, platinum, copper, palladium, tin, nickel, and aluminum. In particular, silver, gold, platinum, palladium, nickel, bismuth, copper, aluminum, or an alloy containing one or more of these metals may be used.
  • Examples of the method for forming the metal film include vapor deposition and sputtering.
  • the film thicknesses of the first transparent conductive layer 81, the metal layer 82, and the second transparent conductive layer 83 constituting the transparent cathode 8 are appropriately adjusted within the above-described range.
  • the thin film sealing layer 9 is formed on the transparent cathode 8, and the substrate 11 on which the color filters 13b, 13g, and 13r are formed is bonded using the resin sealing layer 10 (FIG. 6C).
  • the optical film thickness L of the first functional layer is adjusted so that the light extraction efficiency shows a maximum value.
  • the resonator structure in which the light extraction efficiency has a maximum value is described in the order of decreasing the film thickness of the first functional layer, 1st cavity (hereinafter described as 1st cav.), 2nd cavity (hereinafter referred to as 2nd cav. ). That is, 1st cav. Corresponds to the smallest film thickness among the film thicknesses at which the extraction efficiency has the maximum value, and 2nd cav. Corresponds to the second smallest film thickness at which the extraction efficiency has the maximum value.
  • the light extraction efficiency is higher at 1st cav. Than at 2nd cav.
  • FIG. 7A is a graph showing an example of simulating light extraction efficiency extracted from a blue light emitting element (without a color filter) by changing the thickness of the hole injection layer 4 in the range of 0 to 200 nm.
  • the horizontal axis represents the film thickness of the hole injection layer 4, and the vertical axis represents the light extraction efficiency.
  • This simulation is known as an optical simulation using a matrix method, and was performed with the film thickness other than the hole injection layer 4 being constant in the blue light emitting device of Example 1a shown in FIG. Is.
  • the graph of FIG. 7A shows the optical film thickness L of the first functional layer, the extraction efficiency, The relationship will be shown.
  • FIG. 7B similarly shows the chromaticity (CIE) of light extracted from the blue light emitting element by changing the film thickness of the hole injection layer 4 (which also changes the optical film thickness of the first functional layer). It is a graph which shows the result of having simulated how a chromaticity type x value and y value) change.
  • the horizontal axis represents the film thickness of the hole injection layer 4, and the vertical axis represents the chromaticity of light extracted from the blue light emitting element.
  • a chromaticity of the blue light finally extracted from the blue light emitting element a general chromaticity target is that the y value is about 0.08 or less. Therefore, if the chromaticity y value of the blue light extracted from the blue light emitting element is far from the target chromaticity, it is necessary to largely correct the chromaticity with the color filter (CF). In that case, since a color filter having a low light transmittance must be used, even if the light extraction efficiency from the original blue light emitting element is large, the light extraction efficiency after passing through the color filter is greatly reduced.
  • the film thickness (optical film thickness L) of the hole injection layer 4 is shifted from the film thickness corresponding to 1st cav., 2nd cav. To the smaller one.
  • a film thickness having a sufficiently small chromaticity y value exists. This film thickness is referred to as a film thickness corresponding to 0.5 cav.
  • the film thickness is larger than the film thickness corresponding to the 1st cav. And smaller than the film thickness corresponding to the 2nd cav., And the chromaticity y value is sufficiently small (the chromaticity y value is 0. 0).
  • the optical film thickness L of the first functional layer is set to 0.5 cav. Or 1.5 cav. Rather than to the film thickness corresponding to 1st cav. Or 2nd cav. There is a tendency that the light extraction efficiency after passing through the color filter can be increased by extracting blue light having a small chromaticity y value in accordance with the corresponding film thickness.
  • the optical film thickness L of the first functional layer between the organic light emitting layer 6 and the reflective anode 2 is set to 0.5 cav. Or 1.5 cav.
  • a combined resonator structure is adopted.
  • the blue light emitting element has a resonator structure in which blue light having a small chromaticity y value is extracted from the blue light emitting element as described above.
  • the light emitted to the outside (optical path C1, optical path C2 in FIG. 2) passes through the transparent cathode 8 as it is and exits to the outside (optical path C3) as shown in FIG.
  • multiple reflection of the light traveling along the optical path C1 and the optical path C2 is performed in each of the first transparent conductive layer 81, the metal layer 82, and the second transparent conductive layer 83 constituting the transparent cathode 8.
  • the interference effect when multiple reflections cause optical interference with each other is affected by the film thicknesses of the first transparent conductive layer 81, the metal layer 82, and the second transparent conductive layer 83 constituting the transparent cathode 8. Therefore, the light extraction efficiency of blue light is also affected by the film thickness of each of the first transparent conductive layer 81, the metal layer 82, and the second transparent conductive layer 83 constituting the transparent cathode 8.
  • the film thicknesses of the first transparent conductive layer 81, the metal layer 82, and the second transparent conductive layer 83 constituting the transparent cathode 8 are such that the extraction efficiency of blue light extracted from the blue light emitting element is high. It is set to be enhanced. This point will be described in detail later based on simulation.
  • the sheet resistance value and the light transmittance at a wavelength of 525 nm were measured.
  • the sheet resistance value and transmittance of each sample are as shown in FIG.
  • the sheet resistance value of the transparent cathode 8 is almost determined by the film thickness of the metal layer 82 and does not depend much on the film thicknesses of the first transparent conductive layer 81 and the second transparent conductive layer 83 on both sides. .
  • the sheet resistance value of the transparent cathode 8 can be made 10 ⁇ / ⁇ or less by setting the thickness of the metal layer 82 to about 10 nm or more.
  • the voltage drop can be suppressed without providing a bus bar, which contributes to both the suppression of the voltage drop and the improvement of the light extraction efficiency.
  • the transparent cathode 8 has a three-layer structure of ITO-Ag-ITO, and is a film of each layer of the first transparent conductive layer 81, the metal layer 82, and the second transparent conductive layer 83. Simulation was performed for blue light emission emitted from the element while changing the thickness.
  • the reflective anode 2 was aluminum
  • the transparent conductive layer 3 was IZO
  • the organic light emitting layer 6b was BP105 manufactured by Summation.
  • Example 1a a simulation was performed for blue light emission emitted from the element with respect to the blue light-emitting element similar to Example 1a except that the transparent cathode 8 was made of only ITO.
  • FIG. 9 shows the refractive index, film thickness (nm), and optical film thickness (nm) of each layer of the blue light emitting device according to Example 1a and Comparative Example 1a used in the simulation.
  • the optical path length is the optical film thickness of each layer, and is a value obtained by multiplying the refractive index and film thickness of each layer.
  • the thickness of the hole injection layer 4 in the resonator structure is basically set to a thickness corresponding to 0.5 cav.
  • the thickness of the hole injection layer 4 is changed within a range of 10 to 20 nm corresponding to 0.5 cav. By changing within this range, the first functional layer (the positive injection layer 4 and the positive hole injection layer 4 are positively connected).
  • the optical film thickness L of the hole transport layer 5 and the transparent conductive layer 3) varies in the range of 48 to 62 nm.
  • the total thickness of the first functional layer is set to 30 nm, and the thickness of each of the hole injection layer 4, the hole transport layer 5, and the transparent conductive layer 3 is changed while keeping the total thickness constant.
  • the first functional layer changes between 48 nm and 62 nm.
  • Luminance / y value was calculated from the luminance and chromaticity of blue light obtained by simulation, and evaluation was performed based on the obtained “luminance / y value”.
  • the “luminance / y value” is used to evaluate the blue light emitting element is that, as described above, the blue light emitted from the blue light emitting element has both high extraction efficiency and small chromaticity y value. Because it is necessary. That is, the “luminance / y value” of the blue light emitted from the blue light emitting element is an index for evaluating the balance between the extraction efficiency and the chromaticity (y value), and the larger this index “luminance / y value” is, Thus, blue light with good chromaticity can be extracted efficiently.
  • FIGS. 10A, 10B, and 11A to 11E are mapping diagrams created based on the results of the simulation, and divide the region for each range of luminance / y values. Each will be described below.
  • the film thickness of the first transparent conductive layer 81 and the film thickness of the second transparent conductive layer 83 are changed at an interval of 5 nm, and the luminance / y value is mapped to the orthogonal coordinates. It is the figure divided into the area
  • FIG. 10B shows the brightness / y value by mapping the brightness / y value to orthogonal coordinates while changing the thickness of the second transparent conductive layer 83 at 5 nm intervals and the thickness of the metal layer 82 at 1 nm intervals. Is divided into regions having a brightness / y value of 80 or more and less than 100.
  • the luminance / y value does not depend much on the film thickness of the second transparent conductive layer 83, but tends to depend on the film thickness of the metal layer 82. .
  • the brightness / y value is obtained by changing the film thickness of the first transparent conductive layer 81 and the film thickness of the metal layer 82 at intervals of 5 nm and 1 nm, respectively.
  • the luminance / y value is less than 45
  • the luminance / y value is 45 or more and less than 70
  • the luminance / y value is 70 or more and less than 80
  • the luminance / y value is 80.
  • the area is divided into the above areas.
  • the thickness of the hole injection layer 4 increases in the order of (a) to (e). Therefore, the optical film thickness L of the first functional layer also increases in this order.
  • FIG. 11C shows the case where the film thickness of the hole injection layer 4 is at the center (about 15 nm) of the 0.5 cav. Film thickness range shown in FIGS. 7A and 7B.
  • the film thickness of the hole injection layer 4, the hole transport layer 5, and the transparent conductive layer 3 is changed while satisfying this condition with the film thickness of the first functional layer being constant (30 nm).
  • FIG. 11C is a mapping diagram at this time.
  • FIG. 11A shows that the hole injection layer 4 has a thickness of 0.5 cav.
  • 11 (b) shows that the thickness of the hole injection layer 4 is -5 nm (ie, 10 nm) in the thickness range of 0.5 cav.
  • FIG. 11D shows the case where the thickness of the hole injection layer 4 is the center of the thickness range of 0.5 cav. + 5 nm (ie, 20 nm), and FIG.
  • the film thickness is 0.5 cav. It is a mapping figure at the time of the center +10 nm (namely, 25 nm) of the film thickness range.
  • the brightness / y value depends on both the film thickness of the first transparent conductive layer 81 and the film thickness of the metal layer 82. Therefore, based on these mapping diagrams, the range of the film thickness of the first transparent conductive layer 81 and the film thickness of the metal layer 82 with good luminance / y values was obtained as follows.
  • the luminance / y value is 1.2 times or more compared to 57, ie, a range of 70 or more (ie, a range of 70 to 80 and a range of 80 to 100 ) Is regarded as a range in which the effect of improving light extraction is achieved.
  • the film thickness range of the metal layer 82 in which the luminance / y value is 70 or more does not change much, but the first transparent in which the luminance / y value is 70 or more.
  • the film thickness range of the conductive layer 81 changes little by little in the order of decreasing film thickness (leftward in FIG. 11) in the order of (a) to (e).
  • the optical film thickness L of the first functional layer is 0.5 cav.
  • the film thickness range of the first transparent conductive layer 81 having a luminance / y value of 70 or more is slightly larger (the right direction in FIG. 11). It shows that it changes.
  • the film thickness of the hole injection layer 4 shown in FIG. 11 corresponds to the ranges shown in FIGS. 11B, 11C, and 11D, that is, the thickness of the hole injection layer 4 is 0.5 cav. This corresponds to a range of ⁇ 5 nm in the center of the film thickness range.
  • a mapping diagram (FIG. 11 (b)) when the thickness of the hole injection layer 4 is in the middle of the thickness range of 0.5 cav and ⁇ 5 nm, and the thickness of the hole injection layer 4 is 0.5 cav.
  • FIG. 12A is a mapping diagram showing the result, and in the film thickness range (center ⁇ 5 nm range) in which the first functional layer corresponds to 0.5 cav, the luminance / y value is about 70 or more in common. This corresponds to the film thickness range of the first transparent conductive layer 81 and the metal layer 82.
  • the film thickness range of the first transparent conductive layer 81 having a brightness / y value of 70 or more is 85 nm or more and 97 nm or less, and the film thickness of the metal layer 82 having a brightness / y value of 70 or more.
  • the range is 2 nm or more and 22 nm or less.
  • the thickness of the hole injection layer 4 (the optical thickness of the first functional layer) is 0.5 cav.
  • the film thickness of the first transparent conductive layer 81 may be set in the range of 85 nm to 97 nm and the film thickness of the metal layer 82 may be set in the range of 2 nm to 22 nm. At this time, blue light with good chromaticity can be efficiently extracted, and the luminance / y value can be improved as compared with Comparative Example 1a.
  • X is the film thickness of the first transparent conductive layer 81
  • Y is the film thickness of the metal layer 82.
  • the optical film thickness L of the first functional layer corresponds to 0.5 cav.
  • the film thickness X of the first transparent conductive layer 81 and the film thickness Y of the metal layer 82 are surrounded by an ellipse represented by the above equation 4. If it is within the range, the luminance / y value becomes 70 or more, which is more preferable in taking out blue light with good chromaticity with high efficiency.
  • the thickness of the hole injection layer 4 is 1.5 cav.
  • the configuration is the same as that of Example 1a except that the film thickness corresponds to (see FIG. 9).
  • the optical film thickness L of the first functional layer is 1.5 cav by adding 224 nm to the optical film thickness L range (48 nm to 62 nm) corresponding to 0.5 cav. It corresponds to the range of the corresponding optical film thickness L.
  • Example 1b and Comparative Example 1b which is the same as Example 1b except that the transparent cathode is made of only ITO, a blue light emitting element was also simulated for blue light emission emitted from the element.
  • FIG. 13 shows the refractive index, film thickness (nm), and optical film thickness (nm) of each layer of the blue light-emitting element according to Example 1b and Comparative Example 1b used in the simulation.
  • FIG. 14A shows that the optical film thickness L is 1.5 cav.
  • the blue light emitting element of Example 1b which exists in the range, it is a mapping figure which shows the film thickness range of the 1st transparent conductive layer 81 and the metal layer 82 from which a luminance / y value is 45-70.
  • Comparative Example 1b Since the luminance / y value of Comparative Example 1b was 41, if the luminance / y value was 45 or more in Example 1b, the luminance / y value was sufficiently improved as compared with Comparative Example 1b.
  • FIG. 14A is a mapping diagram when the optical film thickness L is 279 nm in the center corresponding to 1.5 cav.
  • the optical film thickness L is 1.5 cav. In the range corresponding to (272 nm to 286 nm), substantially the same mapping diagram is obtained.
  • the optical film thickness L is 1.5 cav.
  • the range where the luminance / y value shown in FIG. 14A is 45 to 70 can be regarded as a range where the effect of improving the luminance / y value can be obtained.
  • the range where the luminance / y value is 45 to 70 is that the thickness of the first transparent conductive layer 81 is 86 nm or more and 97 nm or less, and the thickness of the metal layer 82 is 8 nm or more. 16 nm or less.
  • Example 1b the film thickness of the first transparent conductive layer 81 and the film thickness of the metal layer 82 may be set within this range. At this time, the luminance / y value can be improved as compared with Comparative Example 1b.
  • FIG. 12A when FIG. 12A is compared with FIG. 14A, the film thickness ranges of the first transparent conductive layer 81 and the metal layer 82 in which the effect of improving the luminance / y value is recognized in FIG.
  • the film thickness range shown in FIG. 14A in which the effect of improving the luminance / y is recognized is almost the same. Accordingly, the range in which the effect of improving the luminance / y value is recognized is almost common between 1.5 cav and 0.5 cav.
  • the simulation results described above show the case where the first transparent conductive layer 81 is ITO and the metal layer 82 is Ag. However, the refractive indexes of the first transparent conductive layer 81 and the second transparent conductive layer 83 are about ITO. A similar simulation result is obtained if the refractive index is in a range close to the refractive index (2.1) (a range of refractive index of 2.0 or more and 2.4 or less).
  • the difference between the refractive index of the first transparent conductive layer 81 and the second transparent conductive layer 83 and the refractive index of the metal layer 82 the refractive index of ITO (2.1) and the refractive index of Ag (0.1) If the difference is within the range of 2.0 or less, a similar simulation result is obtained.
  • the material of the metal layer 82 is not limited to ITO, and may be IZO (refractive index 2.0).
  • the material of the metal layer 82 is not limited to Ag, but Au, Pt, Pd, Ni, Cu, Al or an alloy of these metals may be used.
  • the refractive index of the first transparent conductive layer 81 and the second transparent conductive layer 83 is 2.0 or more and 2.4 or less, and the refractive index of the first transparent conductive layer 81 and the second transparent conductive layer 83 and the metal layer 82. If the difference between the refractive index of the first transparent conductive layer 81 and the metal layer 82 is within the above-described range, the luminance / y value can be improved.
  • the resonator structure is set to 0.5 cav or 1.5 cav, and the film thicknesses of the first transparent conductive layer 81 and the metal layer 82 constituting the transparent cathode 8 are It turns out that the effect which improves a luminance / y value is acquired by setting in said range.
  • the functional layer (second functional layer) of the difference in refractive index between the metal layer constituting the transparent cathode and the transparent conductive layer adjacent thereto, or the laminated structure constituting the transparent cathode In this embodiment, the functional layer (second functional layer) of the difference in refractive index between the metal layer constituting the transparent cathode and the transparent conductive layer adjacent thereto, or the laminated structure constituting the transparent cathode.
  • the blue light emitting element can be driven with low power consumption.
  • the ability to drive the blue light emitting element with low power consumption leads to a long life of the element.
  • the film thickness of the metal layer 82 is set to about 10 nm or more, the sheet resistance value of the transparent cathode 8 can be reduced to 10 ⁇ / ⁇ or less, so that a voltage drop at the center of the panel can be sufficiently suppressed without providing a bus bar. . Accordingly, it is possible to improve the aperture ratio by reducing the area of the bus bar or eliminating the bus bar (less bus bar).
  • the blue light emitting device of this embodiment is effective in achieving both suppression of voltage drop and improvement of light extraction efficiency.
  • the thickness of each layer and the optical thickness are generally allowed to vary by an average value of about ⁇ 10%. Therefore, in an actual blue light emitting element, the average value (ave) of the film thickness of the layers may be set so as to correspond to the range of the film thickness of each layer obtained based on the simulation.
  • Embodiment 2 In Embodiment 1 described above, an organic display panel having a top emission structure has been described. In Embodiment 2, an organic display panel having a bottom emission structure will be described as an example.
  • Embodiment 1 The same as in Embodiment 1 in that light emitting elements of R, G, B colors are regularly arranged in a matrix on the organic display panel.
  • FIG. 15 is a diagram showing one blue light emitting element in the organic display panel according to the second embodiment.
  • Each light emitting element in the organic display panel has a transparent cathode 32, an electron transport layer 34, an organic light emitting layer 35, a hole transport layer 36, a hole injection layer 37, and a reflective anode 38 stacked in order on the surface of the substrate 31.
  • a bank 33 is formed between adjacent EL light emitting elements.
  • each light-emitting element light is emitted from the substrate 31 side to the outside (downward in the drawing of FIG. 15).
  • the first functional layer is composed of the transparent conductive layer 3, the hole injection layer 4, and the hole transport layer 5, but in the second embodiment, the first functional layer is formed. Is composed of two layers, a hole injection layer 37 and a hole transport layer 36, and no transparent conductive layer exists between the reflective anode 38 and the hole injection layer 37.
  • the second embodiment is different in layer configuration from the first embodiment, but the other layers are the same as those described in the first embodiment.
  • the substrate 31 has the same configuration as that of the substrate 1 described in the first embodiment, and the electron transport layer 34, the organic light emitting layer 35, the hole transport layer 36, the hole injection layer 37, and the reflective anode 38 are also implemented.
  • the electron transport layer 7, the organic light emitting layer 6, the hole transport layer 5, the hole injection layer 4, and the reflective anode 2 described in the first embodiment are formed of the same material.
  • the organic light emitting layer 35 of each color exists between the transparent cathode 32 and the reflective anode 38, and the light from the organic light emitting layer 35 is resonated.
  • An optical resonator structure that emits light from the transparent cathode 32 side is formed. That is, in the optical resonator structure, a part of the light emitted from the organic light emitting layer 35 travels to the transparent cathode 32 side and is emitted from the substrate 31 to the outside of the organic light emitting element, and the organic light emission.
  • the remaining part of the light emitted from the layer 35 travels to the reflective anode 38 side, is reflected by the reflective anode 38, passes through the organic light emitting layer 35 and the transparent cathode 32, and is emitted to the outside of the organic light emitting element.
  • the second optical path C6 is formed.
  • FIG. 16 shows the refractive index, film thickness (nm), and optical film thickness (nm) of each layer of the bottom emission type blue light-emitting element according to the second embodiment.
  • FIG. 17A simulates the light extraction efficiency extracted from the blue light emitting device by changing the film thickness of the hole injection layer 37 in the range of 0 to 200 nm for the blue light emitting device according to the second embodiment. It is a graph which shows a result. The horizontal axis represents the film thickness of the hole injection layer 4, and the vertical axis represents the light extraction efficiency. This simulation was performed in the blue light-emitting element shown in FIG. 16 with the layers other than the hole injection layer 37 having a constant film thickness.
  • the graph of FIG. 17A shows the optical film thickness L of the first functional layer, the extraction efficiency, The relationship will be shown.
  • FIG. 17B shows the chromaticity of light extracted from the blue light emitting element by changing the film thickness of the hole injection layer 37 (the optical film thickness L of the first functional layer) (the x value of the CIE chromaticity system). It is a graph which shows the result of having simulated how y value) changes.
  • the horizontal axis represents the film thickness of the hole injection layer 4, and the vertical axis represents the chromaticity of light extracted from the blue light emitting element.
  • the hole injection layer 37 has a film thickness corresponding to 0.5 cav. With this 0.5 cav. Film thickness, the light extraction efficiency is lower than the film thickness corresponding to the 1st cav. As shown in FIG. 17A, but the y value as shown in FIG. 17B. Is small, the luminance / y value is maximized.
  • the optical film thickness L of the first functional layer corresponding to 0.5 cav. In the first embodiment was 48 nm to 62 nm, the first functional layer corresponding to 0.5 cav. In the second embodiment.
  • the optical film thickness L is a range with a smaller film thickness (from 17 nm to 33 nm).
  • the optical film thickness L of the first functional layer corresponding to 0.5 cav. is different between the first embodiment and the second embodiment because there is a difference in the layer configuration between them as described above. it is conceivable that.
  • the film thickness of the hole transport layer 36 is 10 nm, that is, the first functional layer (hole transport layer 36 And the hole injection layer 37), the film thickness is 15 nm.
  • the hole transport layer 36 is kept constant (10 nm), and the thickness of the hole injection layer 37 is changed in the range of 0 to 10 nm corresponding to 0.5 cav.
  • the optical film thickness L of the first functional layer changes in the range of 17 to 33 nm.
  • the transparent cathode 32 includes a first transparent conductive layer 321 made of a transparent conductive material, a metal layer 322, and a second transparent conductive layer 323 made of a transparent conductive material, from the organic light emitting layer 35 side to the substrate 31. It is constructed by laminating sequentially on the side.
  • the material (transparent conductive material) of the first transparent conductive layer 321 and the second transparent conductive layer 323 is ITO, IZO or the like, similar to the material of the first transparent conductive layer 81 and the second transparent conductive layer 83 of the first embodiment. is there.
  • the material of the metal layer 322 is also Ag, Au, Pt, Pd, Ni, Cu, Al, or an alloy of these metals, like the metal layer 82 of the first embodiment.
  • the thickness of the metal layer 322 in the transparent cathode 32 may be set to 10 nm or more, whereby the sheet resistance value can be lowered to 10 ⁇ / ⁇ or less.
  • the film thicknesses of the first transparent conductive layer 321, the metal layer 322, and the second transparent conductive layer 323 constituting the transparent cathode 32 are also high in luminance / y value in the blue light emitting element. It is set to be.
  • the optical film thickness L of the first functional layer corresponds to 0.5 cav.
  • the transparent cathode 32 has a three-layer structure of ITO-Ag-ITO.
  • the luminance / y value does not depend much on the film thickness of the second transparent conductive layer 323, and the film thickness of the first transparent conductive layer 321; The result that it depends on the film thickness of the metal layer 322 was obtained.
  • 18A to 18C are diagrams in which the luminance / y value is mapped to orthogonal coordinates by changing the film thickness of the first transparent conductive layer 321 and the film thickness of the metal layer 322.
  • the display is divided into an area where the y value is less than 100 and an area where the luminance / y value is 100 or more.
  • the thickness of the hole injection layer 37 increases in the order of (a) to (c). Therefore, the optical film thickness L of the first functional layer also increases in this order.
  • the hole injection layer 37 has a thickness of 0.5 cav. As shown in FIGS. 17A and 17B. It is a mapping figure at the time of the center (5 nm) of the film thickness range (When the optical film thickness L of a 1st functional layer is 25 nm).
  • FIG. 18A shows a case where the thickness of the hole injection layer 37 is in the middle of the thickness range of 0.5 cav, ie, 5 nm.
  • FIG. 18C shows a case where the thickness of the hole injection layer 37 is 0.5 cav. It is a mapping figure at the time of the center + 5nm of the film thickness range.
  • the range in which the thickness of the hole injection layer 37 shown in FIG. 17A corresponds to 0.5 cav. Is the range shown in FIGS. 18A, 18B, and 18C, that is, the hole injection layer.
  • the film thickness of 37 corresponds to a median range of ⁇ 5 nm.
  • the luminance / y value of the blue EL light emitting device of Comparative Example 2 is 42, the light extraction effect is improved more than twice in the range where the luminance / y value is 100 or more. be able to.
  • the range where the luminance / y value is 100 or more depends on both the film thickness of the first transparent conductive layer 321 and the film thickness of the metal layer 322.
  • the optical film thickness L of the first functional layer is 0.5 cav. It can be seen that when the optical film thickness L is changed in a considerable vicinity, the film thickness range of the first transparent conductive layer 321 in which the luminance / y is 100 or more is also changed.
  • a mapping diagram (FIG. 18 (a)) when the thickness of the hole injection layer 37 is in the middle of the thickness range of 0.5 cav.
  • the first transparent conductive layer 321 and the metal layer 322 that have a luminance / y value of 100 or more are superimposed by superimposing the mapping diagram (FIG. 18C) when the center of the 5 cav film thickness is +5 nm.
  • the range of film thickness was determined.
  • FIG. 19A is a mapping diagram showing the result, and the luminance / y value is approximately 90 or more in common in the film thickness range (center ⁇ 5 nm range) corresponding to 0.5 cav for the first functional layer. This corresponds to the film thickness range of the first transparent conductive layer 321 and the metal layer 322.
  • the film thickness range of the first transparent conductive layer 321 having a luminance / y value of 90 or more is 35 nm or more and 65 nm or less, and the film thickness of the metal layer 322 having a brightness / y value of 90 or more.
  • the range is 7 nm or more and 22 nm or less.
  • the film thickness of the hole injection layer 37 (the optical film thickness of the first functional layer) is equivalent to 0.5 cav
  • the film thickness of the first transparent conductive layer 321 is set within the range of 35 nm to 65 nm, and the metal It is preferable to set the film thickness of the layer 322 within a range of 2 nm to 22 nm in order to efficiently extract blue light with good chromaticity.
  • the element can be driven with low power consumption, leading to a longer life of the element.
  • the film thickness of the metal layer 322 is set to about 10 nm or more, the sheet resistance value of the transparent cathode 32 can be reduced to 10 ⁇ / ⁇ or less, so that a voltage drop can be suppressed without providing a bus bar.
  • the blue light emitting device can achieve both the suppression of the voltage drop at the center of the panel and the improvement of the light extraction efficiency.
  • the first embodiment and the second embodiment are different in the range of the film thickness of the first transparent conductive layer and the metal layer in which the luminance / y value is increased. This is considered because the optical film thickness L of the first functional layer is different from each other.
  • the simulation results described above show the case where the first transparent conductive layer 321 is ITO and the metal layer 322 is Ag. However, the refractive indexes of the first transparent conductive layer 321 and the second transparent conductive layer 323 are about ITO. A similar simulation result is obtained if the refractive index is in a range close to the refractive index (2.1) (a range of refractive index of 2.0 or more and 2.4 or less).
  • the refractive index of the first transparent conductive layer 321 and the second transparent conductive layer 323 and the refractive index of the metal layer 322 the refractive index of ITO (2.1) and the refractive index of Ag (0.1) If the difference is within the range of 2.0 or less, a similar simulation result is obtained.
  • the material of the metal layer 322 is not limited to ITO, and may be IZO (refractive index 2.0).
  • the material of the metal layer 322 is not limited to Ag, but Au, Pt, Pd, Ni, Cu, Al or an alloy of these metals may be used.
  • the refractive index of the first transparent conductive layer 321 and the second transparent conductive layer 323 is 2.0 or more and 2.4 or less, and the refractive index of the first transparent conductive layer 321 and the second transparent conductive layer 323 and the metal layer 322. If the difference between the refractive index of the first transparent conductive layer 321 and the metal layer 322 is set in the above-described range, an effect of improving the luminance / y value can be obtained.
  • the first functional layer includes the hole injection layer and the hole transport layer.
  • the first functional layer is not limited to this configuration.
  • either the hole transport layer or the hole transport layer may be omitted, or a functional layer other than this may be included.
  • the second functional layer is composed of the electron transport layer.
  • the form of the second functional layer is not limited to this, and may further include an electron injection layer.
  • the anode is provided on the side closer to the substrate on which the TFT is provided, and the cathode is provided on the far side. Conversely, the cathode is provided on the side closer to the substrate on which the TFT is provided. The same can be done when an anode is provided on the far side.
  • the color filter is not necessarily required.
  • a color filter may be provided on the light emission side.
  • the present invention is not limited to the above embodiment except for its essential characteristic components. Not receive.
  • it is realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or the form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
  • the organic light-emitting element of the present disclosure can be widely used in organic light-emitting devices including organic EL display panels and organic EL light-emitting devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)

Abstract

 青色発光素子は、反射陽極(2)、透明陰極(8)、反射陽極(2)と透明陰極(8)との間に有機発光層(6b)、有機発光層(6b)と反射陽極(2)との間に第1機能層、有機発光層(6b)と透明陰極(8)の間に第2機能層を備え、共振器構造を有する。第1機能層は、光学膜厚が48nm~62nmである。透明陰極(8)は、第1透明導電層(81)と、金属層(82)と、第2透明導電層(83)とが、第2機能層側からこの順に積層されてなる。第1透明導電層(81)は屈折率が2.0~2.4、膜厚が85nm~97nmである。金属層(82)は、第1透明導電層(81)との屈折率の差が0~2.0であり、膜厚が2nm~22nmである。

Description

有機発光素子、有機発光表示パネルおよび有機発光表示装置
 本開示は、有機材料の電界発光現象を利用して発光する有機発光素子に関し、特に青色光を発光する有機発光素子に関する。
 近年、発光型のディスプレイとして、基板上に有機発光素子を行列方向に複数配列した有機EL発光パネルが実用化されている。
 この有機ELパネルの構成として、基板の上に駆動回路(例えば、TFT(Thin Film Transistor)素子を含む)が設けられ、その駆動回路の上に絶縁層が設けられ、さらに複数の有機発光素子が配列されてなるものが一般的に知られている。
 そして各有機発光素子は、基板上の絶縁層の上に設けられた陽極、この陽極上に設けられた有機発光材料からなる発光層及び機能層の積層体、その上に設けられた透明導電性の陰極を基本構造として備えている。
 透明導電性の陰極としては、従来から一般的に、ITO(Indium Tin Oxide)に代表される透明導電材料が用いられている。また、機能層としては、発光層と陽極との間に、ホール注入層、ホール輸送層などが設けられ、発光層と陰極との間に、電子注入層、電子輸送層などが設けられている。
 このような有機発光素子は、電流駆動型の発光素子であって、駆動時には、陽極と陰極との間に電圧が印加され、発光層に注入されるホールと電子が再結合するのに伴って発光する。
 フルカラー表示の有機発光パネルにおいては、このような有機発光素子が、RGB各色のサブピクセルを形成し、隣り合うRGBのサブピクセルの組み合わせで一画素が形成されている。
 このような有機発光パネルにおいて、高精細化に適した製品の開発が望まれ、そのための開発が進められている。
 また、有機発光パネルにおいて、消費電力の低減や長寿命化の観点から、各発光素子からの光取り出し効率を向上させることも望まれている。
 この光取り出し効率を向上させるために、例えば特許文献1に示されるように、各色の有機発光素子に共振器構造を採用する技術も知られている。共振器構造の採用は、有機発光素子における光取り出し効率を高める上で有効である。
国際公開第2012/020452号 特開2010-34030号公報 特開2012-9148号公報
 本開示は、青色発光の有機発光素子において、透明陰極(透明電極)のシート抵抗値を低減することができ、且つ、色度が良好な青色発光を高い取り出し効率で取り出せるものを提供する。
 本開示の一態様にかかる有機発光素子は、入射された光を反射する第1電極と、第1電極に対向して配置され、入射された光を透過する第2電極と、第1電極と第2電極との間に配置され、少なくとも青色光を出射する有機発光層と、第1電極と有機発光層との間に配置され、1または2以上の層からなる第1機能層と、有機発光層と第2電極との間に配置され、1または2以上の層からなる第2機能層と、を備えている。
 そして、有機発光層から出射された青色光の一部が、第1機能層を通じて第1電極に入射され、第1電極により反射された後、第1機能層、有機発光層、前記第2機能層を通じて外部に出射される第1光路と、有機発光層から出射された青色光の残りの一部が、第1電極側に進行することなく、第2機能層、第2電極を通じて外部に出射される第2光路と、が形成される。
 第1機能層は、光学膜厚が48nm以上62nm以下の範囲内に設定されている。
 第2電極は、透明導電材料からなる第1導電層と、金属層と、透明導電材料からなる第2導電層とが有機発光層に近い側からこの順に積層されて構成されている。そして、第1導電層は、屈折率が2.0以上2.4以下であり且つ膜厚が85nm以上97nm以下であり、金属層は、第1導電層との屈折率の差が0以上2.0以下であり、且つ膜厚が2nm以上22nm以下である。
 上記一態様にかかる有機発光素子においては、有機発光層から出射される青色光は、第1光路及び第2光路を通って外部に出射される。ここで、第1機能層は、光学膜厚が48nm以上62nm以下の範囲内に設定されており、上記2つの光路を通る光が共振し、色度が良好な青色光を、高い取り出し効率で取り出すことができる。
 また、光取り出し側の第2電極は、透明導電材料からなる第1導電層と、金属層と、透明導電材料からなる第2導電層とが積層された構造となっているので、第2電極を透明導電材料だけで構成した場合と比べて、そのシート抵抗値を低減できる。
 また、第1透明導電層及び金属層の膜厚を上記の範囲に設定していることによって、青色光の光取り出し効率をさらに高めることができる。
図1は、実施の形態1に係る有機表示パネルの画素構造を模式的に示す断面図である。 図2は、発光素子に形成された光共振器構造における直接光と反射光を示す図である。 図3は、実施の形態に係る表示装置の機能ブロックを示す図である。 図4は、実施の形態に係る表示装置の外観を例示する図である。 図5は、(a)~(d)のいずれも、実施の形態に係る表示装置の製造方法を説明する図である。 図6は、(a)~(c)のいずれも、実施の形態に係る表示装置の製造方法を説明する図である。 図7は、(a)は、正孔注入層4の膜厚を変化させたときに、青色発光素子から取り出される光取り出し効率を示すグラフであり、(b)は、正孔注入層4の膜厚を変化させたときに、青色発光素子から取り出される光の色度が変化する様子を示すグラフである。 図8は、ITO/Ag/ITO電極における各層の膜厚とシート抵抗との関係を示す図である。 図9は、シミュレーションに用いた実施例1a,比較例1aにかかる青色発光素子の各層の屈折率、膜厚および光路長を示す図である。 図10は、(a),(b)ともに、実施例1aにかかる青色発光素子について、シミュレーションの結果に基づいて作成した輝度/y値のマッピング図である。 図11は、(a)~(e)のいずれも、実施例1aにかかる青色発光素子について、シミュレーションの結果に基づいて作成した輝度/y値のマッピング図である。 図12は、(a)は、実施例1aにおいて、共通して輝度/y値が70以上となる第1透明導電層81と金属層82の膜厚範囲を示すマッピング図であり、(b)は、その範囲を楕円でフィッティングした図である。 図13は、シミュレーションに用いた実施例1b、比較例1bにかかる青色発光素子の各層の屈折率、膜厚および光路長を示す図である。 図14は、(a)は実施例1bにかかる青色発光素子について、シミュレーションの結果に基づいて作成した輝度/y値のマッピング図であり、(b)は、その範囲を楕円でフィッティングした図である。 図15は、実施の形態2に係る画素構造を模式的に示す断面図である。 図16は、実施例2にかかる有機発光素子の各層の屈折率、膜厚および光路長を示す図である。 図17は、(a)は、実施例2において、正孔注入層37の膜厚を変化させたときに、青色発光素子から取り出される光取り出し効率を示すグラフであり、(b)は、正孔注入層37の膜厚を変化させたときに、青色発光素子から取り出される光の色度が変化する様子を示すグラフである。 図18は、(a)~(c)のいずれも、実施例2にかかる青色発光素子について、シミュレーションの結果に基づいて作成した輝度/y値のマッピング図である。 図19は、(a)は、実施例2において、共通して輝度/y値が100以上となる第1透明導電層321と金属層322の膜厚範囲を示すマッピング図であり、(b)は、その範囲を楕円でフィッティングした図である。 図20は、ITO膜の膜厚とシート抵抗との関係を示す図である。
 [本開示の基礎となった知見]
 有機発光パネルにおいて、良好な画質で画像表示をするために、特に青色の有機発光素子においては、色度が良好で且つ光取り出し効率が高い青色光を得ることが望まれている。従って、上記のように共振器構造を採用した青色の有機発光素子においても、色度が良好な青色光の取り出し効率をさらに向上させることが望まれている。
 また、有機発光パネルにおいて、透明陰極をITOのような透明導電材料で形成すると、そのシート抵抗値が高くなり、パネルの中央部においては周囲と比べて印加電圧が降下して、輝度ムラが発生することがある。従って、透明陰極のシート抵抗値を低くすることも課題である。
 上述したように、青色発光素子において、共振器構造を採用することによって、青色光の光取り出し効率及び色度Y値(CIE色度系)を良好にすることができる。しかしながら、本開示者は、さらに、パネルの中央部における電圧降下を抑えるべく、また、発光素子から取り出される青色光の光取り出し効率を向上させるべく鋭意検討を行った。
 電圧降下を抑制するには、例えば特許文献2に開示されているように、有機ELパネルにおいて、電気抵抗の低い金属からなる線幅5~10μmのバスバーを、隣接する画素の間に設けることも考えられる。
 しかし、高精細の有機ELパネルにおいては、バスバーを設けると、画素の開口率が低下するので、発光素子からの光取出し効率が低下する要因になる。特に、15インチの300~500ppi超の高精細パネルにおいては、1画素サイズの横幅の大きさは30~80μmと小さくなる。長寿命化のために開口率を40~50%以上に維持することを考えると、線幅5~10μmのスペースを確保することは非常に困難であることが判明した。
 そこで、本開示者は、500ppi超の高精細化した有機表示素子において、電圧降下の抑制と光取出し効率向上の両立を図ることを考慮して、透明陰極を低抵抗とする方法を検討した。
 ITO膜は、膜厚が50nm程度では、抵抗値(以下、シート抵抗値)が80~100Ω/□となる(なお、□はSq.を意味する)。その場合、パネル上に配置された画素の位置により輝度ムラを生じるほどの電圧降下を発生させる。
 ここで、図20に示されるように、一般的にITOのような透明導電膜においては、その膜厚とシート抵抗値とは反比例の関係にあるので、膜厚を大きく設定すればシート抵抗をある程度低減することは可能である。しかし、図20からもわかるように、ITOからなる透明陰極の膜厚を200nm以上に設定しても、シート抵抗値を40Ω/□以下に下げることは困難である。
 また、トップエミッション構造では、有機層の上に透明導電膜を形成するので、透明導電膜を厚く形成すると加熱時間が長くなり、素子にダメージを与えることになる。また、透明陰極の膜厚を厚くすると、総じて透過率が低下し、光取り出し効率の低下が避けられない。従って、実際にITOで製膜できる透明陰極の膜厚には上限がある。
 そこで、透明陰極をITO-金属層-ITOによる積層構造とし、ITOの間に金属層を配置することで、低抵抗化を実現することが考えられる。このような構成に関しては、例えば特許文献3に、透明プラスチック上に、第1のITO層(A1),金属層(M)、第2のITO層(A2)を順に積層した積層型透明導電性フィルムが開示されている。
 このような3層構造の透明陰極においては、金属層の膜厚が厚くなると、金属層の膜厚に比例してシート抵抗値が低下する。表示装置の高精細化に向けては、表示装置のパネル上に配置された画素の位置による輝度ムラを抑制するためにも、シート抵抗の低抵抗化が必要となる。このため、ある程度の膜厚の金属層が必要になる。しかしながら、金属層が厚くなると光の透過率が低下してしまい、光取り出し効率が低下してしまう。このように、シート抵抗値と光取り出し効率とはトレードオフの関係にある。したがって、従来は、光取り出し効率を犠牲(取り出し効率が小)にしてシート抵抗値を下げるか、これとは逆に、光取り出し効率を優先してシート抵抗値を高くする(画面ムラが生じる)かを、製品仕様等に応じて選択せざるを得ないという課題があった。
 そこで、本開示者は、青色発光素子において、透明陰極として、第1透明導電層-金属層-第2透明導電層の3層積層構造を採用しつつ、低いシート抵抗値を確保した上で、さらに、青色発光素子からの青色光取り出し効率を向上させるための検討を行った。具体的には、シミュレーションによって、3層構造の透明導電電極の各層の膜厚を変えて、取り出される青色光の輝度及び色度を算出した。
 図8は、透明陰極の層構成と、シート抵抗値、光の透過率との関係を示す図である。この図8において、サンプルのNo.1(サンプル1)は、ITOの単層で透明陰極を構成した場合であり、その他のNo.2乃至No.7は、第1、第2の透明導電層(ITO)の膜厚と金属層(Ag)の膜厚を変化させて3層積層構造としたものである。
 図8に示されるように、ITO-Ag-ITOのような積層構造の透明陰極は、単独では金属層(Ag層)の膜厚が厚くなると光透過率は低下するが、後述するシミュレーションの結果(図11など)からわかるように、この積層構造の透明陰極を青色発光素子に組み入れた場合、金属層の膜厚がある程度厚くても、光取り出し効率が良好となるような場合が存在するといった知見が得られた。そして、得られた知見に基づいて本開示に至った。すなわち、本開示は、従来の知見として知られていた、透明陰極の積層構造を構成する金属層と透明導電層の各々の膜厚のみに着眼したのではなく、透明陰極を構成する金属層とこれに隣接する透明導電層との屈折率の差や、透明陰極の積層構造のうち機能層側に配置された第1の透明導電層(第1導電層)の屈折率と膜厚を所定の範囲とし、かつ第1電極側の機能層の光学膜厚を所定の範囲にすることで、金属層がある程度の膜厚を有していても光取り出しが良好となる範囲を、鋭意検討の結果、見い出したものである。
 [発明の態様]
 本開示の一態様にかかる有機発光素子は、入射された光を反射する第1電極と、第1電極に対向して配置され、入射された光を透過する第2電極と、第1電極と前記第2電極との間に配置され、少なくとも青色光を出射する有機発光層と、第1電極と有機発光層との間に配置され、1または2以上の層からなる第1機能層と、有機発光層と第2電極との間に配置され、1または2以上の層からなる第2機能層と、を備えている。
 そして、有機発光層から出射された青色光の一部が、第1機能層を通じて第1電極に入射され、第1電極により反射された後、第1機能層、有機発光層、前記第2機能層、第2電極を通じて外部に出射される第1光路と、有機発光層から出射された青色光の残りの一部が、第1電極側に進行することなく、第2機能層、第2電極を通じて外部に出射される第2光路と、が形成される。
 また、光取り出し側の第2電極は、透明導電材料からなる第1導電層と、金属層と、透明導電材料からなる第2導電層とが有機発光層に近い側からこの順に積層された構造となっている。これにより、第2電極を透明導電材料だけで構成した場合と比べて、金属層による導電性向上が得られるので、シート抵抗値を低減できる。
 このように共振構造を有し且つ光取り出し側に積層構造の第2電極を有する有機発光素子において、その第1機能層の光学膜厚は、上記2つの光路を通る光を共振させて、色度が良好な青色光を、高い取り出し効率で取り出すことを考慮して、下記(1)~(3)の各範囲に設定されている。
 また、第2電極における第1導電層の屈折率及び膜厚、並びに金属層の屈折率及び膜厚は、(1)~(3)ごとに、別途記載したように設定されており、それによって色度の良好な青色光の光取り出し効率をさらに高めることができる。
 (1)第1機能層の光学膜厚を48nm以上62nm以下に設定する。この光学膜厚は後述する0.5cavに相当する膜厚であり、色度が良好な青色光を、高い取り出し効率で取り出すことができる。
 この場合、第1導電層は、屈折率が2.0以上2.4以下であり且つ膜厚が85nm以上97nm以下であり、金属層は、第1導電層との屈折率の差が0以上2.0以下であり、且つ膜厚が2nm以上22nm以下である。
 この範囲に設定することよって、色度の良好な青色光の光取り出し効率をさらに高めることができる。
 また、第2電極において、第1導電層の膜厚をX3、金属層の膜厚をY3とするとき、X3,Y3が、下記式1の関係式で囲まれた範囲内の値を取ることによって、より確実に青色光の光取り出し向上効果を得ることができる。
 [式1]
 X3=Rxcosθcosφ-Rysinθsinφ+X0
 Y3=Rxcosθsinφ+Rysinθcosφ+Y0
 ただし、θは、0≦θ≦2πの範囲で変化する変数パラメータ,
 Xo=91.4Yo=10.7, Rx=5.6, Ry=9.6,φ=0
 (2)第1機能層の光学膜厚を272nm以上286nm以下に設定する。この光学膜厚は後述する1.5cavに相当する膜厚であり、色度が良好な青色光を、高い取り出し効率で取り出すことができる。
 この場合、第1導電層は、屈折率が2.0以上2.4以下であり且つ膜厚が86nm以上97nm以下であり、金属層は、第1導電層との屈折率の差が0以上2.0以下であり、且つ膜厚が8nm以上16nm以下である。この範囲に設定することによって、色度の良好な青色光の光取り出し効率をさらに高めることができる。
 また第2電極において、第1導電層の膜厚をX3、金属層の膜厚をY3とするとき、X3,Y3は、下記式2の関係式で囲まれた範囲内の値を取ることによって、より確実に青色光の光取り出し効率を得ることができる。
 [式2]
 X3=Rxcosθcosφ-Rysinθsinφ+X0
 Y3=Rxcosθsinφ+Rysinθcosφ+Y0
 ただし、0≦θ≦2π, X0=91.3、Y0=11.9、Rx=5.3、Ry=4.4、φ=0(rad)
 (3)第1機能層の光学膜厚を17nm以上33nm以下に設定する。この光学膜厚も後述する0.5cavに相当する膜厚であり、色度が良好な青色光を、高い取り出し効率で取り出すことができる。
 この場合、第1導電層は、屈折率が2.0以上2.4以下であり且つ膜厚が35nm以上65nm以下であり、金属層は、第1導電層との屈折率の差が0以上2.0以下であり、且つ膜厚が8nm以上22nm以下である。この範囲に設定することによって、色度の良好な青色光の光取り出し効率をさらに高めることができる。
 また第2電極において、第1導電層の膜厚をX3、金属層の膜厚をY3とするとき、X3,Y3は、下記式3の関係式で囲まれた範囲内の値を取ることによって、より確実に青色光の光取り出し効率を得ることができる。
 [式3]
 X3=Rxcosθcosφ-Rysinθsinφ+Xo
 Y3=Rxcosθsinφ+Rysinθcosφ+Yo
 ただし、0≦θ≦2π, Xo=50、Yo=15、Rx=15、Ry=5、φ=-9.7(rad)
 上記各態様の有機発光素子において、金属層の膜厚は10nm以上であることが、シート抵抗値を低くする上で好ましい。
 上記各態様の有機発光素子において、さらに、第2電極を通じて外部に出射される光の色度を補正するために、この光を透過させる青色のカラーフィルタを設けてもよい。上記のように有機発光素子から取り出される青色光はすでに色度が良好なので、カラーフィルタを設けて色度補正をする場合でも、光透過率の高いカラーフィルタを用いて目標とする色度を得ることができる。
 本開示の別態様に係る有機発光表示パネルは、上記各態様に係る有機発光素子を備える。本態様に係る有機発光表示パネルは、色度の良好な青色光の光取り出し効率をさらに高めた有機発光表示パネルとすることができる。
 また、本開示の別態様に係る有機発光表示装置は、上記態様に係る有機発光表示パネルを備える。本態様に係る有機発光表示装置は、色度の良好な青色光の光取り出し効率をさらに高めた有機発光表示装置とすることができる。
 以下、実施の形態について説明する。
 (実施の形態1)
 実施の形態1ではトップエミッション構造の有機表示パネルに関して説明する。
 [有機表示パネル]
 図1は、実施の形態1に係る有機表示パネルの画素構造を模式的に示す断面図である。
 この有機表示パネルにおいては、R(赤),G(緑),B(青)各色の発光素子が行方向及び列方向にマトリックス状に規則的に配置されている。
 青色の発光素子は、基板1、反射電極(以下、反射陽極)2、透明導電層3、正孔注入層4、正孔輸送層5、有機発光層6b、電子輸送層7、透明電極(以下、透明陰極)8、薄膜封止層9、樹脂封止層10、基板11を含む。緑色の発光素子は、有機発光層6gを除き、青色の発光素子と同様の構成を有する。赤色の発光素子も、有機発光層6rを除き、青色の発光素子と同様の構成を有する。この例では、各色の発光素子において、基板1、電子輸送層7、透明陰極8、薄膜封止層9、樹脂封止層10が共通であり、それ以外の層はバンク12で区分されている。以下、有機発光層6b、6g、6rを合わせて、有機発光層6と記述する。
 そして、カラーフィルタ13b,13g,13rが設けられている。
 [各層の具体例]
 <基板>
 基板1は、例えば、TFT(Thin Film Transistor)基板である。
 基板1の材料は、例えば、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラスなどのガラス板及び石英板、並びに、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコーン系樹脂などのプラスチック板又はプラスチックフィルム、並びに、アルミナなどの金属板又は金属ホイルなどである。
 <バンク>
 バンク12は、絶縁性材料により形成されていれば良く、有機溶剤耐性を有していてもよい。また、バンク12はエッチング処理、ベーク処理などされることがあるので、それらの処理に対する耐性の高い材料で形成されても良い。バンク12の材料は、樹脂などの有機材料であっても、ガラスなどの無機材料であっても良い。有機材料として、アクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂などを使用することができ、無機材料として、シリコンオキサイド(SiO2)、シリコンナイトライド(Si34)などを使用することができる。
 <反射陽極>
 反射陽極2は、基板1に配されたTFTに電気的に接続されており、発光素子の正極として機能すると共に、有機発光層6b,6g,6rから反射陽極2に向けて出射された光を反射する機能を有する。反射機能は、反射陽極2の構成材料により発揮されるものでもよいし、反射陽極2の表面部分に反射コーティングを施すことにより発揮されるものでもよい。反射陽極2は、例えば、Al(アルミニウム)、Ag(銀)、APC(銀、パラジウム、銅の合金)、ARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)等で形成されている。
 <透明導電層>
 透明導電層3は、製造過程において反射陽極2が自然酸化するのを防止する保護層として機能する。透明導電層3の材料は、有機発光層6b,6g,6rで発生する光に対して十分な透光性を有する導電性材料により形成されればよく、例えば、ITOやIZOなどであっても良い。室温で成膜しても良好な導電性を得ることができるからである。
 <正孔注入層>
 正孔注入層4は、正孔を有機発光層6b,6g,6rに注入する機能を有する。例えば、酸化タングステン(WOx)、酸化モリブデン(MoOx)、酸化モリブデンタングステン(Moxyz)などの遷移金属の酸化物で形成される。遷移金属の酸化物で形成することで、電圧-電流密度特性を向上させ、また、電流密度を高めて発光強度を高めることができる。なお、これ以外に、遷移金属の窒化物などの金属化合物も適用できる。
 <正孔輸送層>
 正孔輸送層5の材料としては、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、ブタジエン化合物、ポリスチレン誘導体、トリフェニルメタン誘導体、テトラフェニルベンジン誘導体が挙げられる。ポリフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物であっても良い。
 <有機発光層>
 有機発光層6b,6g,6rの材料は、例えば、オキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物及びアザキノロン化合物、ピラゾリン誘導体及びピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、アンスラセン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体等の蛍光物質である。
 <電子輸送層>
 電子輸送層7の材料は、例えば、ニトロ置換フルオレノン誘導体、チオピランジオキサイド誘導体、ジフェキノン誘導体、ペリレンテトラカルボキシル誘導体、アントラキノジメタン誘導体、フレオレニリデンメタン誘導体、アントロン誘導体、オキサジアゾール誘導体、ペリノン誘導体、キノリン錯体誘導体である。
 なお、電子注入性を更に向上させる点から、上記電子輸送層を構成する材料に、Na,Ba,Caなどのアルカリ金属またはアルカリ土類金属をドーピングしてもよい。
 <透明陰極>
 透明陰極8は、有機EL素子の負極として機能する。有機発光層6b,6g,6rで発生した光に対して透光性を有する導電性材料で形成される。
 透明陰極8は、透明導電材料からなる第1透明導電層81、金属層82、透明導電材料からなる第2透明導電層83が順に積層されて構成されている。
 第1透明導電層81及び第2透明導電層83の材料(透明導電材料)は、ITO(Indium Tin Oxide),IZO(Indium Zinc Oxide)などである。
 金属層82の材料は、Ag(銀)をはじめとして、Au(金),Pt(白金),Pd(パラジウム),Ni(ニッケル),Cu(銅),Al(アルミニウム)、あるいはこれら金属の合金を挙げることができる。
 <薄膜封止層>
 薄膜封止層9は、基板1との間に挟まれた各層が水分や空気に晒されることを防止する機能を有する。薄膜封止層9の材料は、例えば、窒化シリコン(SiN)、酸窒化シリコン(SiON)や樹脂等である。
 <樹脂封止層>
 樹脂封止層10は、基板1から薄膜封止層9までの各層からなる背面パネルと、カラーフィルタ13b,13g,13rが形成された基板11とを貼り合わせるとともに、各層が水分や空気に晒されることを防止する機能を有する。樹脂封止層10の材料は、例えば、樹脂接着剤等である。
 <カラーフィルタ(CF)>
 カラーフィルタ13b,13g,13rは、各色の発光素子から出射された光を透過させて、その色度を矯正する機能を有する。
 <光共振器構造>
 RGB各色の発光素子において、透明陰極8と反射陽極2との間に各色の有機発光層6b,6g,6rが存在し、以下のように、有機発光層6b,6g,6rからの光を共振させて透明陰極8側から出射させる光共振器構造が形成されている。
 有機発光層6b,6g,6rにおいて発生した光は、透明陰極8から外部に出射されるが、その光には、有機発光層6b,6g,6rから透明陰極8に向けて直接出射される「直接光」と、有機発光層6b,6g,6rから反射陽極2に向けて出射され、反射陽極2で反射されてから透明陰極8に向かう「反射光」の両方の成分が含まれる。
 図2は、発光素子に形成された光共振器構造における直接光と反射光を示す図である。
 なお、当図では青色の有機発光層6bを有する青色素子を示しているが、赤色の有機発光層6rを有する赤色素子、緑色の有機発光層6gを有する緑色素子においても同様である。
 発光素子の光共振器構造においては、以下の2つの光路が形成される。一方は、有機発光層6から出射された光の一部が、反射陽極2側に進行することなく、透明陰極8側に進行し、透明陰極8を通じて発光素子の外部に出射される第1光路C2である。他方は、有機発光層6から出射された光の残りの一部が、反射陽極2側に進行し、反射陽極2により反射された後、有機発光層6および透明陰極8を通じて発光素子の外部に出射される第2光路C1とが形成される。
 基本的には、この直接光と反射光との干渉によって各色に対応する光成分が強め合うように、有機発光層6b、6g、6rと反射陽極2との間の光学膜厚Lが設定される。
 この光学膜厚Lは、有機発光層6b,6g,6rと反射陽極2との間に挟まれた3つの機能層(透明導電層3、正孔注入層4、正孔輸送層5)の合計の光学距離(膜厚と屈折率との積で表され、単位は[nm])である。
 ただし、本開示者らの研究によれば、青色発光素子において、光取り出し効率が極大値のときに、取り出される青色光の色度が目標色度に近いとはいえず、光取り出し効率が極大値をとる光学膜厚Lからずらして色度y値の小さい青色光を取る出す方が目標色度に近く好ましい傾向がある。
 そこで本実施形態においては、後述するように、この光学膜厚Lを、光取り出し効率だけに基づいて決めるのではなく、色度y値も重要視して設定している。すなわち、輝度/y値を指標とし、この指標が高くなるように光学膜厚Lを設定している。
 [表示装置の全体構成および外観]
 図3は、実施の形態に係る表示装置の機能ブロックを示す図である。図4は、この表示装置の外観を例示する図である。
 有機表示装置(有機発光表示装置)15は、有機表示パネル16と、これに接続された駆動制御部17とを有する。有機表示パネル(有機発光表示パネル)16は、上述した青色、緑色、赤色の発光素子を備えた表示パネルであって、その表示面に複数の発光素子がX方向、Y方向にマトリクス状に配列されている。駆動制御部17は、4つの駆動回路18~21と制御回路22とから構成されている。ただし、有機表示装置15では、有機表示パネル16に対する駆動制御部17の配置については、これに限られない。
 制御回路22は、外部から映像信号を入力し、この映像信号に基づいた制御信号を駆動回路(走査線駆動回路)20、21及び駆動回路(信号線駆動回路)18、19へ出力する。
 駆動回路20、21は、X方向に配置されている複数の走査線に接続されており、これらの複数の走査線に走査信号を出力することにより、上述した実施の形態1に係る発光素子に対応して設けられるスイッチトランジスタの導通及び非導通を駆動する回路である。
 駆動回路18、19は、Y方向に配置されている複数のデータ線に接続されており、上述した映像信号に基づいたデータ電圧を実施の形態1に係る発光素子へ出力する駆動回路である。
 有機表示パネル16は、X方向およびY方向へマトリクス状に配置された青色、緑色、赤色を有する複数の発光素子を備え、外部から有機表示装置15へ入力された映像信号に基づいて画像を表示する。
 以上のように構成された有機発光表示パネルは、本開示の各態様に係る有機発光素子を備える。これにより、以下の実施形態の説明から明らかにされるように、色度の良好な青色光の光取り出し効率をさらに高めた有機発光表示パネルを実現することができる。
 また、以上のように構成された有機発光表示装置は、本開示の各態様に係る有機発光素子を備えた有機発光表示パネルを備える。これにより、以下の実施形態の説明から明らかにされるように、色度の良好な青色光の光取り出し効率をさらに高めた有機発光表示装置を実現することができる。
 [有機表示パネルの製造方法]
 有機表示パネルの製造方法を図5,図6を参照しながら説明する。
 まず、基板1上に反射陽極2を蒸着法やスパッタ法等によって形成する(図5(a))。次に、反射陽極2上に、蒸着法やスパッタ法等により透明導電層3を形成する(図5(b))。このとき、透明導電層3の膜厚を上述した範囲内に適宜調整する。
 次に、透明導電層3上に、例えば、スパッタ法等により正孔注入層4を形成し、バンク12を形成し、さらに、正孔注入層4上に、例えば、インクジェット法等により正孔輸送層5を形成する(図5(c))。
 次に、正孔輸送層5上に、有機発光層6b,6g,6rを形成する(図5(d))。
 次に、有機発光層6b,6g,6r上に電子輸送層7を形成する(図6(a))。
 次に、電子輸送層7上に、第1透明導電層81、金属層82、第2透明導電層83を順に積層形成することによって透明陰極8を形成する(図6(b))。
 第1透明導電層81及び第2透明導電層83は、例えばITOを、真空蒸着法、スパッタリング法、反応性スパッタリング法、イオンプレーティング法、プラズマCVD法、レーザーCVD法、熱CVD法などで製膜することによって形成する。
 金属層82を構成する金属としては、例えば、銀、金、白金、銅、パラジウム、スズ、ニッケル、アルミニウム、等を挙げることができる。特に、銀、金、白金、パラジウム、ニッケル、ビスマス、銅、アルミニウム、あるいはこれらの金属を1種以上含む合金としてもよい。
 金属膜の形成方法としては、蒸着法、スパッタ法等を挙げることができる。
 ここで、透明陰極8を構成する第1透明導電層81、金属層82、第2透明導電層83の膜厚は、上述した範囲内に適宜調整する。
 次に、透明陰極8上に薄膜封止層9を形成し、カラーフィルタ13b,13g,13rが形成された基板11を、樹脂封止層10を用いて貼り合わせる(図6(c))。
 [有機発光層6と反射陽極2との間の光学膜厚Lについて]
 上記のような青色発光素子の共振器構造において、有機発光層6と反射陽極2との間の光学膜厚Lを変化させると、取り出される青色光の光取り出し効率が変化すると共に色度も変化する。
 通常は、共振器構造において、光取り出し効率が極大値を示すように第1機能層の光学膜厚Lが調整される。説明の便宜上、光取り出し効率が極大値を示す共振器構造を、第1機能層の膜厚が小さい順に、1st cavity(以下、1st cav.と記述),2nd cavity(以下、2nd cav.と記述)と呼ぶこととする。すなわち、1st cav.は取り出し効率が極大値を示す膜厚の中で最小の膜厚に相当し、2nd cav.は取り出し効率が極大値を示す2番目に小さい膜厚に相当する。
 光取り出し効率は2nd cav.のときよりも1st cav.のときの方が高い。
 図7(a)は、正孔注入層4の膜厚を0~200nmの範囲で変化させて、青色発光素子(カラーフィルタはなし)から取り出される光取り出し効率をシミュレーションした一例を示すグラフである。横軸は正孔注入層4の膜厚、縦軸は光取り出し効率を表している。このシミュレーションは、マトリックス法を用いた光学シミュレーションとして知られているものであって、図9に示す実施例1aの青色発光素子において、正孔注入層4の以外の膜厚を一定にして行ったものである。
 正孔注入層4の膜厚変化に比例して第1機能層の光学膜厚Lも変化するので、図7(a)のグラフは、第1機能層の光学膜厚Lと、取り出し効率との関係を示すことになる。
 図7(b)は、同様に正孔注入層4の膜厚を変化させて(これにより、第1機能層の光学膜厚も変化する)、青色発光素子から取り出される光の色度(CIE色度系のx値及びy値)がどのように変化するかをシミュレーションした結果を示すグラフである。横軸は正孔注入層4の膜厚、縦軸は青色発光素子から取り出される光の色度である。
 1st cav.及び2nd cav.のときには、図7(a)に示すように光取り出し効率は高いが、図7(b)に示すように色度y値が大きい。
 ここで、青色発光素子から最終的に取り出す青色光の色度としては、y値が0.08程度以下であることが一般的な色度目標とされている。従って青色発光素子から取り出される青色光の色度y値がこの目標色度から遠ければ、カラーフィルタ(CF)で大きく色度補正をする必要がある。その場合、光透過率の低いカラーフィルタを用いざるを得ないので、もとの青色発光素子からの光取り出し効率が大きくても、カラーフィルタ通過後の光取り出し効率は大幅に低下してしまう。
 一方、図7(b)に示されるように、正孔注入層4の膜厚(光学膜厚L)を1st cav.,2nd cav.に相当する膜厚から、小さい方に膜厚をずらしたところに、色度y値が十分に小さい膜厚(色度y値が0.08以下となる膜厚)が存在する。この膜厚を0.5cav.に相当する膜厚ということとする。
 この0.5cav.に相当する膜厚では、青色発光素子からの取り出し効率は、1st cav.,2nd cav.と比べて小さいが、色度y値が小さいので、このあたりで輝度/y値が極大となる。
 同様に、1st cav.に相当する膜厚よりも大きく、2nd cav.に相当する膜厚よりも小さい膜厚であって、色度y値が十分に小さい膜厚(色度y値が0.08以下となる膜厚)を、1.5cav.に相当する膜厚とする。
 上記特許文献1に開示されているように、第1機能層の光学膜厚Lは、1st cav.や2nd cav.に相当する膜厚に合わせるよりも、0.5cav.や1.5cav.に相当する膜厚に合わせて、色度y値の小さい青色光を取り出す方が、カラーフィルタ通過後の光取り出し効率を高くできる傾向がある。
 このような理由により、本実施の形態では、青色発光素子において、有機発光層6と反射陽極2との間の第1機能層の光学膜厚Lを、0.5cav.または1.5cav.に合わせた共振器構造を採用することとする。
 [透明陰極8における各層の膜厚設定]
 本実施形態の有機表示パネルでは、青色発光素子において、上記のように青色発光素子から色度y値の小さい青色光が取り出される共振器構造となっている。そして、外部に出射される光(図2の光路C1,光路C2)は、図2に示したように、透明陰極8をそのまま通過して外部に出射される光(光路C3)の他に、透明陰極8において多重反射されて外部に出射される光(光路C4)もある。
 ここで、光路C1及び光路C2を進む光の多重反射は、透明陰極8を構成する第1透明導電層81、金属層82および第2透明導電層83の各層においてなされる。そして、多重反射して互いに光干渉するときの干渉効果は、透明陰極8を構成する第1透明導電層81、金属層82および第2透明導電層83の各層の膜厚によって影響を受ける。したがって、青色光の光取り出し効率も、透明陰極8を構成する第1透明導電層81、金属層82および第2透明導電層83の各層の膜厚による影響を受ける。
 そこで、本実施形態においては、透明陰極8を構成する第1透明導電層81、金属層82および第2透明導電層83の各層の膜厚は、青色発光素子から取り出される青色光の取り出し効率が高められるように設定されている。この点は、後でシミュレーンに基づいて詳しく説明する。
 [透明陰極8を構成する各層の膜厚とシート抵抗値]
 図8に示すように、ITO-Ag-ITOの3層からなる透明陰極を、各層の膜厚をいくつかに変えてガラス基板上に形成し、サンプル1~7を作製した(図8のNo.1~7)。
 そして各サンプル1~7について、シート抵抗値及び波長525nmの光の透過率を測定した。
 各サンプルのシート抵抗値及び透過率は、図8に示す通りである。
 サンプル5~7(NO.5~7)を比較すると、Ag薄膜の両側に位置するITOの膜厚が、50nm、75nm、25nmと変化しているが、シート抵抗の値はほぼ同じ値である。この結果から、シート抵抗値は両側のITO層の膜厚にはそれほど影響されることがなく、Ag層の膜厚によってほほ決まることが判明した。
 これは、透明陰極8のシート抵抗値は、金属層82の膜厚によってほぼ決まり、両側の第1透明導電層81や第2透明導電層83の膜厚にはあまり依存しないことを示している。
 また、図8におけるサンプル2(No.2)とサンプル3(No.3)のAgの膜厚及びシート抵抗値から、金属層82の膜厚を10nm以上にすれば、シート抵抗値を10Ω/□以下にできることがわかる。
 このように、有機表示パネルにおいて、金属層82の厚みを10nm程度以上に設定することで、透明陰極8のシート抵抗値を10Ω/□以下にできる。これにより、バスバーを設けなくても電圧降下が抑制でき、電圧降下の抑制と光取出し効率向上とを両立するのに寄与する。
 [青色発光素子のEL発光シミュレーション]
 図9に示す実施例1aにかかる青色発光素子において、透明陰極8はITO-Ag-ITOの3層構造として、第1透明導電層81、金属層82および第2透明導電層83の各層の膜厚を変更しながら、素子から出射される青色発光についてシミュレーションを行った。
 このシミュレーションにおいて、反射陽極2はアルミニウム、透明導電層3はIZO、有機発光層6bはサメイション(SUMATION)社製のBP105を用いた。
 比較例1aとして、透明陰極8がITOだけからなること以外は、実施例1aと同様の青色発光素子について、素子から出射される青色発光についてシミュレーションを行った。
 図9に、シミュレーションで用いた実施例1a及び比較例1aにかかる青色発光素子の各層の屈折率、膜厚(nm)および光学的膜厚(nm)を示している。図9において、光路長は、各層の光学的膜厚であって、各層の屈折率と膜厚とを掛け合わせた値である。
 また、このシミュレーションにおいて、共振器構造における正孔注入層4の膜厚は、基本的に0.5cav.に相当する膜厚に設定している。図9においては、正孔注入層4と正孔輸送層5と透明導電層3との膜厚の合計を30nmとしたときを例示して記述している。本シミュレーションでは、正孔注入層4の膜厚を0.5cav.に相当する10~20nmの範囲で変化させるが、この範囲で変化させることによって、第1機能層(正孔注入層4と正孔輸送層5と透明導電層3とで構成)の光学的膜厚Lは48~62nmの範囲で変化する。
 この理由を以下に説明する。第1機能層の合計膜厚を30nmとし、この合計膜厚を一定にしながら、正孔注入層4、正孔輸送層5、透明導電層3の各々の膜厚を変化させる。この場合、第1機能層の中で屈折率が最も小さい正孔注入層4が第1機能層の全てであったときは、1.6×30nm=48nmであり、一方、第1機能層の中で屈折率が最も大きい透明導電層3が第1機能層の全てであったときは、2.05×30nm=62nmとなる。したがって、第1機能層の合計膜厚を30nmに維持しながら、正孔注入層4、正孔輸送層5、透明導電層3の各々の膜厚を変化させた場合には、第1機能層の光学的膜厚Lは、48nmから62nmの間で変化することとなる。
 シミュレーションによって得られた青色光の輝度及び色度から、「輝度/y値」を算出し、得られた「輝度/y値」に基づいて評価を行った。
 青色発光素子を評価するのに「輝度/y値」を用いる理由は、上述したように、青色発光素子から出射される青色光は、取り出し効率が高いこと及び色度y値が小さいことの両方が必要だからである。すなわち、青色発光素子から出射される青色光の「輝度/y値」は、取り出し効率と色度(y値)のバランスを評価する指標であって、この指標「輝度/y値」が大きいほど、色度の良好な青色光を効率よく取り出すことができる。
 図10(a),(b)、図11(a)~(e)は、シミュレーションの結果に基づいて作成したマッピング図であって、輝度/y値の範囲ごとに領域を区画している。各々について以下に説明する。
 図10(a)は、第1透明導電層81の膜厚と、第2透明導電層83の膜厚を、5nm間隔で変化させて、輝度/y値を直交座標にマッピングし、輝度/y値が50未満の領域、輝度/y値が50以上80未満の領域、輝度/y値が80以上100未満の領域に区画した図である。
 図10(b)は、第2透明導電層83の膜厚を5nm間隔で、金属層82の膜厚を1nm間隔で変化させて、輝度/y値を直交座標にマッピングし、輝度/y値が50以上80未満の領域、輝度/y値が80以上100未満の領域に区画した図である。
 これらの図10(a),(b)から、輝度/y値は、第2透明導電層83の膜厚にはあまり依存せず、金属層82の膜厚に依存している傾向が見られる。
 次に、図11(a)~(e)は、いずれも、第1透明導電層81の膜厚及び金属層82の膜厚を、各々5nm間隔と1nm間隔で変化させて、輝度/y値を直交座標にマッピングした図であり、輝度/y値が45未満の領域、輝度/y値が45以上70未満の領域、輝度/y値が70以上80未満の領域、輝度/y値が80以上の領域に区画して表示している。
 ただし、正孔注入層4の膜厚は、(a)~(e)の順で大きくなっている。従って、第1機能層の光学膜厚Lもこの順に大きくなっている。
 [第1機能層の光学膜厚Lが0.5cav.のときの考察]
 図11(c)は、正孔注入層4の膜厚が、上記図7(a),(b)に示す0.5cav.の膜厚範囲の中央(約15nm)のときを示している。本シミュレーションでは、第1機能層の膜厚を一定(30nm)にして、この条件を満たしながら、正孔注入層4と正孔輸送層5と透明導電層3との膜厚を変化させている。各層の屈折率を考慮すると、第1機能層の光学膜厚Lは=2.05×5nm+1.6×15nm+1.7×10nm=51nmとなる。図11(c)は、このときのマッピング図である。
 また、図11(a)は、正孔注入層4の膜厚が0.5cav.の膜厚範囲の中央-10nm(すなわち、5nm)のとき、図11(b)は、正孔注入層4の膜厚が0.5cav.の膜厚範囲の中央-5nm(すなわち、10nm)のとき、図11(d)は、正孔注入層4の膜厚が0.5cav.の膜厚範囲の中央+5nm(すなわち、20nm)のとき、図11(e)は、正孔注入層4の膜厚が0.5cav.の膜厚範囲の中央+10nm(すなわち、25nm)のときのマッピング図である。
 これらの各マッピング図を見ると、輝度/y値は、第1透明導電層81の膜厚と金属層82の膜厚の両方に依存している傾向が見られる。そこで、これらのマッピング図に基づいて、以下のように輝度/y値が良好な第1透明導電層81の膜厚と金属層82の膜厚の範囲を求めた。
 図9に記載のように、比較例1aの青色EL発光素子は、輝度/y値が57であるので、輝度/y値がこの57と比べて十分に大きければ、実施例1aにおいて光取り出し効果が向上しているとみなすことができる。
 そこで、図11(a)~(e)のマッピング図において、輝度/y値が57と比べて1.2倍以上である70以上の範囲(すなわち、70~80の範囲及び80~100の範囲)を、光取り出し向上効果を奏する範囲とみなすこととする。
 図11(a)~(e)のマッピング図を比べると、輝度/y値が70以上となる金属層82の膜厚範囲はあまり変わらないが、輝度/y値が70以上となる第1透明導電層81の膜厚範囲は、(a)~(e)の順に、膜厚が小さくなる方向(図11の紙面左方向)に少しづつ変移している。
 このことは、第1機能層の光学膜厚Lが0.5cav.相当の近傍では、その光学膜厚Lを小さい方に変移させると、輝度/y値が70以上となる第1透明導電層81の膜厚範囲は大きい方向(図11で紙面右方向)に若干変移することを示している。
 上記図7(a)に示した正孔注入層4の膜厚が0.5cav.に相当する範囲は、図11(b),(c),(d)に示す範囲、すなわち正孔注入層4の膜厚が0.5cav.の膜厚範囲の中央±5nmの範囲に相当する。
 そこで、正孔注入層4の膜厚が0.5cavの膜厚範囲の中央-5nmであるときのマッピング図(図11(b))と、正孔注入層4の膜厚が0.5cavの膜厚範囲の中央+5nmであるときのマッピング図(図11(d))とを重ね合わせて、輝度/y値がいずれも70以上となるような第1透明導電層81と金属層82の膜厚の範囲を求めた。
 図12(a)はその結果を示すマッピング図であって、第1機能層が0.5cavに相当する膜厚範囲(中央±5nm範囲)において、共通して輝度/y値が略70以上となる第1透明導電層81及び金属層82の膜厚範囲に相当する。
 当図において、輝度/y値が70以上となっている第1透明導電層81の膜厚範囲は85nm以上97nm以下であり、輝度/y値が70以上となっている金属層82の膜厚範囲は2nm以上22nm以下である。
 従って、正孔注入層4の膜厚(第1機能層の光学膜厚)が0.5cav.相当のときには、第1透明導電層81の膜厚を85nm以上97nm以下の範囲内に設定し、金属層82の膜厚を2nm以上22nm以下の範囲内に設定してもよい。このとき、色度が良好な青色光を効率よく取り出すことができ、比較例1aに対して、輝度/y値を向上させることができる。
 また、図12(a)に示した輝度/y値が70以上となる第1透明導電層81及び金属層82の膜厚の範囲を楕円でフィッティングしたところ、図12(b)に示すようになった。このフィッティングした楕円は、下記の式4で表すことができる。
 [式4]
 X=Rxcosθcosφ-Rysinθsinφ+Xo
 Y=Rxcosθsinφ+Rysinθcosφ+Yo
 ただし、Xは第1透明導電層81の膜厚、Yは金属層82の膜厚である。
 またθは、0≦θ≦2πの範囲で変化する変数パラメータ、
 Xo=91.4, Yo=10.7, Rx=5.6, Ry=9.6,φ=0である。
 第1機能層の光学膜厚Lが0.5cav.に相当するときには、第1透明導電層81の膜厚Xと、金属層82の膜厚Yが、上記数4で示される楕円で囲まれる範囲内にあれば、輝度/y値が70以上となるので、色度が良好な青色光を高効率で取り出す上で、より好ましい。
 [第1機能層の光学膜厚Lが1.5cavのときの考察]
 次に、第1機能層の光学膜厚Lが1.5cav.に相当するときについて考察する。
 上記図7(a),(b)に示すように、実施例1bは、正孔注入層4の膜厚が1.5cav.に相当する膜厚である以外は、上記実施例1aと同様の構成である(図9を参照)。
 上記図7(a),(b)に示すように、正孔注入層4の膜厚が0.5cavに相当する膜厚範囲(実施例1a)と、正孔注入層4の膜厚が1.5cav.に相当する膜厚範囲(実施例1b)とは、140nmの差がある。この差は、光学膜厚では140nm×1.6=224nmとなる。
 したがって、第1機能層の光学膜厚Lは、0.5cav.に相当する光学膜厚Lの範囲(48nm~62nm)に、この224nmを加えた範囲(272nm~286nm)が、1.5cavに相当する光学膜厚Lの範囲に相当する。
 この実施例1bと、透明陰極がITOだけからなる以外は実施例1bと同様の比較例1bについて、青色発光素子についても、素子から出射される青色発光についてシミュレーションを行った。
 図13に、シミュレーションで用いた実施例1b及び比較例1bにかかる青色発光素子の各層の屈折率、膜厚(nm)および光学的膜厚(nm)を示している。
 図14(a)は、光学膜厚Lが1.5cav.の範囲にある実施例1bの青色発光素子において、輝度/y値が45以上70未満となる第1透明導電層81及び金属層82の膜厚範囲を示すマッピング図である。
 図14(a)に示される1.5cav.のときの輝度/y値は、図11,12に示される0.5cav.のときの輝度/y値と比べると、全体的に低い値となっている。これは、図7(a)のグラフに示されるように、光学膜厚Lが1.5cav.に相当するときは、0.5cav.に相当するときと比べると、青色光の取り出し効率が低いためである。
 比較例1bの輝度/y値が41であったので、実施例1bにおいて、輝度/y値が45以上であれば、比較例1bと比べて輝度/y値が十分向上することになる。
 なお、図14(a)は、光学膜厚Lが1.5cav.に相当する範囲の中央279nmのときのマッピング図であるが、光学膜厚Lが1.5cav.に相当する範囲(272nm~286nm)においてこれと略同様のマッピング図が得られている。
 よって、光学膜厚Lが1.5cav.相当の範囲のときには、図14(a)に示される輝度/y値が45~70の範囲を、輝度/y値の向上効果が得られる範囲とみなすことができる。
 図14(a)のマッピング図で輝度/y値が45~70となっている範囲は、第1透明導電層81の膜厚が86nm以上97nm以下であり、金属層82の膜厚は8nm以上16nm以下である。
 従って、実施例1bにおいて、第1透明導電層81の膜厚及び金属層82の膜厚をこの範囲内に設定してもよい。このとき、比較例1bに対して、輝度/y値を向上させることができる。
 次に、図14(a)に示す輝度/y値45~70の範囲を楕円でフィッティングした。図14(b)はその結果を示す図である。
 第1透明導電層81の膜厚をX3、金属層82の膜厚をY3とするとき、フィッティングした楕円の式は下記式5で表される。
 [式5]
 X3=Rxcosθcosφ-Rysinθsinφ+Xo
 Y3=Rxcosθsinφ+Rysinθcosφ+Yo
 ただし、0≦θ≦2π, X0=91.3、Y0=11.9、Rx=5.3、Ry=4.4、φ=0(rad)
 従って、この楕円の範囲内に第1透明導電層81の膜厚及び金属層82の膜厚を設定すると、輝度/y値の向上効果をより確実に得ることができる。
 ここで、図12(a)と図14(a)とを比べると、図12(a)において輝度/y値の向上効果が認められる第1透明導電層81及び金属層82の膜厚範囲と、図14(a)に示した輝度/yの向上効果が認められる膜厚範囲とは概ね一致している。従って、1.5cavのときと0.5cavのときとは、輝度/y値の向上効果が認められる範囲が、ほぼ共通していることになる。
 従って、0.5cav、1.5cavのいずれの場合も、上記数4で示される楕円の範囲内に設定すれば、輝度/y値の向上効果が期待できるということもできる。
 (第1透明導電層81及び金属層82の材質に関して)
 上述したシミュレーションの結果は、第1透明導電層81がITO、金属層82がAgである場合について示したが、第1透明導電層81及び第2透明導電層83の屈折率については、ITOの屈折率(2.1)に近い範囲(屈折率2.0以上2.4以下の範囲)にあれば、同様のシミュレーション結果が得られている。
 また、第1透明導電層81及び第2透明導電層83の屈折率と金属層82の屈折率との差についても、ITOの屈折率(2.1)とAgの屈折率(0.1)との差(2.0)以下の範囲にあれば、同様のシミュレーション結果が得られている。
 従って、金属層82の材料はITOに限られず、IZO(屈折率2.0)であってもよいし、金属層82の材料は、Agに限らず、Au,Pt,Pd,Ni,Cu,Al、またはこれら金属の合金であってもよい。そして、第1透明導電層81及び第2透明導電層83の屈折率が2.0以上2.4以下であり、第1透明導電層81及び第2透明導電層83の屈折率と金属層82の屈折率との差が0以上2.0以下であれば、第1透明導電層81及び金属層82の膜厚を上述した範囲に設定することによって輝度/y値の向上効果が得られる。
 [実施の形態1にかかる青色発光素子による効果のまとめ]
 以上のシミュレーション結果に基づくと、青色発光素子において、共振器構造を0.5cavあるいは1.5cavに設定し、透明陰極8を構成する第1透明導電層81と金属層82の各膜厚を、上記の範囲内に設定することによって、輝度/y値を向上する効果が得られることがわかる。
 従来は、陰極に金属層を介在させると光取り出し効率が低下すると考えられていた。これに対して、本実施の形態では、透明陰極を構成する金属層とこれに隣接する透明導電層との屈折率の差や、透明陰極を構成する積層構造のうち機能層(第2機能層)側に配置された第1透明導電層(第1導電層)の屈折率と膜厚を所定の範囲とし、かつ第1電極と有機発光層との間に配置される第1機能層の光学膜厚を所定の範囲にすることで、陰極に金属層を介在させていない比較例1a、1bよりも、光取り出し効率を向上させることができることがわかった。
 そして、輝度/y値を向上することによって、CF通過後の光取り出し効率を向上させることができる。青色発光素子を低消費電力で駆動できることになる。また青色発光素子を低消費電力で駆動できることは、この素子の長寿命化にもつながる。
 また、金属層82の膜厚を10nm程度以上に設定すると、透明陰極8のシート抵抗値を10Ω/□以下にできるので、バスバーを設けなくても、パネル中央部における電圧降下を十分に抑えられる。従って、バスバーの面積を小さくしたり、バスバーを排除(バスバーレス化)して、開口率を向上させることができる。
 このように、本実施形態の青色発光素子は、電圧降下の抑制と光取出し効率向上とを両立させるのに有効である。
 なお、実際の青色発光素子において、各層の膜厚や光学膜厚は、一般的に平均値±10%程度のばらつきは許容されている。従って、実際の青色発光素子においては、層の膜厚の平均値(ave)が、上記シミュレーションに基づいて得られた各層の膜厚の範囲に該当するように設定すればよい。
 (実施の形態2)
 上述した実施の形態1ではトップエミッション構造の有機表示パネルについて説明したが、本実施の形態2では、ボトムエミッション構造の有機表示パネルを例に説明する。
 有機表示パネルに、R,G,B各色の発光素子がマトリックス状に規則的に配置されている点は実施の形態1と同様である。
 図15は、実施の形態2にかかる有機表示パネルにおける1つの青色発光素子を示す図である。
 有機表示パネルにおける各発光素子は、基板31の表面上に、透明陰極32,電子輸送層34,有機発光層35,正孔輸送層36,正孔注入層37,反射陽極38が順に積層され、隣接するEL発光素子との間にバンク33が形成されている。
 そして、各発光素子において、基板31側から外に(図15の紙面下方に)光が出射されるようになっている。
 また、実施の形態1では、第1機能層が透明導電層3,正孔注入層4,正孔輸送層5の3層で構成されていたが、本実施の形態2では、第1機能層が正孔注入層37と正孔輸送層36の2層で構成され、反射陽極38と正孔注入層37との間に透明導電層は存在しない。
 この点で本実施の形態2は、実施の形態1とは層構成が異なっているが、他の層は実施の形態1で説明したものと同様である。
 すなわち、基板31は実施の形態1で説明した基板1と同様の構成であり、電子輸送層34,有機発光層35,正孔輸送層36,正孔注入層37,反射陽極38についても、実施の形態1で説明した電子輸送層7,有機発光層6,正孔輸送層5,正孔注入層4,反射陽極2と同様の材料で形成されている。
 本実施の形態の有機表示パネルにおいても、RGB各色の発光素子において、透明陰極32と反射陽極38との間に各色の有機発光層35が存在し、有機発光層35からの光を共振させて透明陰極32側から出射させる光共振器構造が形成されている。すなわち、光共振器構造において、有機発光層35から出射された光の一部が、透明陰極32側に進行し、基板31から有機発光素子の外部に出射される第1光路C5と、有機発光層35から出射された光の残りの一部が、反射陽極38側に進行し、反射陽極38で反射された後、有機発光層35および透明陰極32を通過して有機発光素子の外部に出射される第2光路C6とが形成される。
 [有機発光層35と反射陽極38との間の光学膜厚Lについて]
 図16に、実施の形態2に基づくボトムエミッション型の青色発光素子の各層の屈折率、膜厚(nm)および光学的膜厚(nm)を示している。
 図17(a)は、この実施の形態2にかかる青色発光素子について、正孔注入層37の膜厚を0~200nmの範囲で変化させて、青色発光素子から取り出される光取り出し効率をシミュレーションした結果を示すグラフである。横軸は正孔注入層4の膜厚、縦軸は光取り出し効率を表している。このシミュレーションは、図16に示す青色発光素子において、正孔注入層37以外の層は膜厚を一定にして行った。
 正孔注入層37の膜厚変化に比例して第1機能層の光学膜厚Lも変化するので、図17(a)のグラフは、第1機能層の光学膜厚Lと、取り出し効率との関係を示すことになる。
 図17(b)は、正孔注入層37の膜厚(第1機能層の光学膜厚L)を変化させて、青色発光素子から取り出される光の色度(CIE色度系のx値及びy値)がどのように変化するかをシミュレーションした結果を示すグラフである。横軸は正孔注入層4の膜厚、縦軸は青色発光素子から取り出される光の色度である。
 実施の形態1と同様に、本実施の形態2においても、正孔注入層37の膜厚には、0.5 cav.に相当する膜厚が存在する。この0.5 cav.の膜厚では、図17(a)に示すように1st cav.に相当する膜厚と比べると、光取り出し効率は低いが、図17(b)に示すようにy値が小さいので、輝度/y値は極大となる。
 そこで、実施の形態2においても、有機発光層35と反射陽極38との間の第1機能層の光学膜厚Lを、0.5cav.相当に設定した共振器構造を採用することとする。
 ただし、実施の形態1における0.5 cav.に相当する第1機能層の光学膜厚Lは48nm~62nmであったが、実施の形態2における0.5 cav.に相当する第1機能層の光学膜厚Lは、より小さい膜厚での範囲(17nm以上33nm)となっている。
 このように実施の形態1と実施の形態2とで、0.5 cav.に相当する第1機能層の光学膜厚Lが異なるのは、上記のように両者の層構成に違いがあるためと考えられる。
 図16においては、正孔注入層4を0.5cav.の中央値に相当する5nmとし、正孔輸送層36の膜厚を10nmとしたとき、すなわち、第1機能層(正孔輸送層36と正孔注入層37とによって構成)の膜厚を15nmとしたときを例示して記述している。本シミュレーションでは、正孔輸送層36を一定(10nm)にして、正孔注入層37の膜厚を0.5cav.に相当する0~10nmの範囲で変化させている。この範囲で変化させることによって、第1機能層の光学的膜厚Lは17~33nmの範囲で変化する。
 [透明陰極32]
 実施の形態1と同様に、透明陰極32は、透明導電材料からなる第1透明導電層321、金属層322、透明導電材料からなる第2透明導電層323が、有機発光層35側から基板31側に順に積層されて構成されている。
 第1透明導電層321及び第2透明導電層323の材料(透明導電材料)は、実施の形態1の第1透明導電層81及び第2透明導電層83の材料と同じく、ITO,IZOなどである。金属層322の材料も、実施の形態1の金属層82と同じく、Ag,Au,Pt,Pd,Ni,Cu,Al、あるいはそれら金属の合金である。
 また、透明陰極32における金属層322の膜厚を10nm以上に設定してもよく、それによってシート抵抗値を10Ω/□以下と低くすることができる。
 また、詳しくは以下に説明するが、透明陰極32を構成する第1透明導電層321、金属層322及び第2透明導電層323の各層の膜厚も、青色発光素子における輝度/y値が高くなるように設定されている。
 [青色発光素子の発光シミュレーション]
 シミュレーションに用いた実施例2にかかる青色発光素子は、第1機能層の光学膜厚Lは0.5 cav.に相当するものである。そして、透明陰極32は、ITO-Ag-ITOの3層構造である。
 この実施例2にかかる青色発光素子において、透明陰極32を構成する第1透明導電層321、金属層322および第2透明導電層323の各層の膜厚を変えながら、素子から取り出される青色発光についてシミュレーションを行い、輝度/y値を求めた。
 その結果、上記実施例1bにおけるシミュレーションの結果と同様に、輝度/y値は、第2透明導電層323の膜厚にはあまり依存することがなく、第1透明導電層321の膜厚と、金属層322の膜厚には依存するという結果が得られた。
 図18(a)~(c)はいずれも、第1透明導電層321の膜厚及び金属層322の膜厚を変化させて、輝度/y値を直交座標にマッピングした図であり、輝度/y値が100未満の領域と、輝度/y値が100以上の領域に区画して表示している。
 ただし、正孔注入層37の膜厚は、(a)~(c)の順で大きくなっている。従って、第1機能層の光学膜厚Lもこの順に大きくなっている。
 図18(b)は、正孔注入層37の膜厚が、上記図17(a),(b)に示す0.5cav.の膜厚範囲の中央(5nm)のとき(第1機能層の光学膜厚Lが25nmのとき)のマッピング図である。
 図18(a)は、正孔注入層37の膜厚が0.5cavの膜厚範囲の中央-5nmのとき、図18(c)は、正孔注入層37の膜厚が0.5cav.の膜厚範囲の中央+5nmのときのマッピング図である。
 上記図17(a)に示した正孔注入層37の膜厚が0.5cav.に相当する範囲は、図18(a),(b),(c)に示す範囲、すなわち正孔注入層37の膜厚が中央値±5nmの範囲に相当する。
 図16に示すように、比較例2の青色EL発光素子は輝度/y値が42であるので、輝度/y値が100以上である範囲では、光取り出し効果が2倍以上向上しているということができる。
 そして、図18(a)~(c)の各マッピング図を見ると、輝度/y値が100以上の範囲は、第1透明導電層321の膜厚と金属層322の膜厚の両方に依存している傾向が見られ、また、第1機能層の光学膜厚Lが0.5cav.相当の近傍で、その光学膜厚Lを変移させると、輝度/yが100以上となる第1透明導電層321の膜厚範囲も変移することがわかる。
 次に、正孔注入層37の膜厚が0.5cav.の膜厚範囲の中央-5nmであるときのマッピング図(図18(a))と、正孔注入層37の膜厚が0.5cavの膜厚範囲の中央+5nmであるときのマッピング図(図18(c))とを重ね合わせて、いずれも輝度/y値が100以上となるような第1透明導電層321と金属層322の膜厚の範囲を求めた。
 図19(a)はその結果を示すマッピング図であって、第1機能層が0.5cavに相当する膜厚範囲(中央±5nmの範囲)において、共通して輝度/y値が略90以上となる第1透明導電層321及び金属層322の膜厚範囲に相当する。
 当図において、輝度/y値が90以上となっている第1透明導電層321の膜厚範囲は35nm以上65nm以下であり、輝度/y値が90以上となっている金属層322の膜厚範囲は7nm以上22nm以下である。
 従って、正孔注入層37の膜厚(第1機能層の光学膜厚)が0.5cav相当のときには、第1透明導電層321の膜厚を35nm以上65nm以下の範囲内に設定し、金属層322の膜厚を2nm以上22nm以下の範囲内に設定することが、色度が良好な青色光を効率よく取り出す上で好ましい。
 また、図19(a)に示した輝度/y値が90以上となる第1透明導電層321及び金属層322の膜厚の範囲を楕円でフィッティングしたところ、図19(b)に示すようになった。このフィッティングした楕円は、下記の式6で表すことができる。
 [式6]
 X3=Rxcosθcosφ-Rysinθsinφ+Xo
 Y3=Rxcosθsinφ+Rysinθcosφ+Yo
 ただし、0≦θ≦2π, Xo=50、Yo=15、Rx=15、Ry=6、φ=25(rad)
 シミュレーションの結果から、実施例2の青色発光素子において、第1透明導電層321の膜厚と金属層322の膜厚を、上記数6で示される楕円の範囲内に設定すれば、得られる輝度/y値が比較例の2倍以上に高くなること、すなわち色度の良好な青色光の取り出し効率が大幅に向上することがわかる。
 そして、青色発光素子の光取り出し効率が向上すると、低消費電力で素子を駆動でき、素子の長寿命化にもつながる。
 また、金属層322の膜厚を10nm程度以上に設定すると、透明陰極32のシート抵抗値を10Ω/□以下にできるので、バスバーを設けなくても電圧降下を抑えることができる。
 このように、本実施形態にかかる青色発光素子も、パネル中央部における電圧降下の抑制と光取出し効率の向上とを両立させることができる。
 なお、実施の形態1と実施の形態2とでは、輝度/y値が高くなる第1透明導電層の膜厚と金属層の膜厚の範囲が異なっている。これは、第1機能層の光学的膜厚Lが互いに異なるためと考えられる。
 [第1透明導電層321及び金属層322の材質に関して]
 上述したシミュレーションの結果は、第1透明導電層321がITO、金属層322がAgである場合について示したが、第1透明導電層321及び第2透明導電層323の屈折率については、ITOの屈折率(2.1)に近い範囲(屈折率2.0以上2.4以下の範囲)にあれば、同様のシミュレーション結果が得られている。
 また、第1透明導電層321及び第2透明導電層323の屈折率と金属層322の屈折率との差についても、ITOの屈折率(2.1)とAgの屈折率(0.1)との差(2.0)以下の範囲にあれば、同様のシミュレーション結果が得られている。
 従って、金属層322の材料はITOに限られず、IZO(屈折率2.0)であってもよいし、金属層322の材料は、Agに限らず、Au,Pt,Pd,Ni,Cu,Al、またはこれら金属の合金であってもよい。そして、第1透明導電層321及び第2透明導電層323の屈折率が2.0以上2.4以下であり、第1透明導電層321及び第2透明導電層323の屈折率と金属層322の屈折率との差が0以上2.0以下であれば、第1透明導電層321及び金属層322の膜厚を上述した範囲に設定することによって輝度/y値の向上効果が得られる。
 (変形例)
 (1)上記実施の形態1,2では、第1機能層が、正孔注入層と正孔輸送層とを含んでいたが、第1機能層は、この構成に限られず、正孔注入層および正孔輸送層の何れかが無くてもよいし、これ以外の機能層が含まれていてもよい。
 また、上記実施形態1,2では、第2機能層が電子輸送層から構成されているが、第2機能層の形態はこれに限られず、さらに電子注入層が含まれていてもよい。
 (2)上記実施の形態1,2では、TFTが設けられた基板に近い側に陽極、遠い側に陰極が設けられていたが、逆に、TFTが設けられた基板に近い側に陰極、遠い側に陽極が設けられている場合も、同様に実施できる。
 (3)上記実施の形態1の有機表示パネルにおいて、カラーフィルタは必ずしもなくてもよい。一方、実施の形態2の有機表示パネルにおいて、光出射側にカラーフィルタを設けてもよい。
 以上、本発明の一態様に係る有機発光素子、有機発光表示パネルおよび有機発光表示装置を説明したが、本発明は、その本質的な特徴的構成要素を除き、以上の実施の形態に何ら限定を受けるものではない。例えば、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 本開示の有機発光素子は、有機EL表示パネル、有機EL発光装置をはじめとして、有機発光装置に広く利用可能である。
 1,11,31 基板
 2,38 反射陽極
 3 透明導電層
 4,37 正孔注入層
 5,36 正孔輸送層
 6,6b,6g,6r,35 有機発光層
 7,34 電子輸送層
 8,32 透明陰極
 9 薄膜封止層
 10 樹脂封止層
 12,33 バンク
 13b,13g,13r カラーフィルタ
 15 有機表示装置
 16 有機表示パネル
 17 駆動制御部
 18~21 駆動回路
 22 制御回路
 81,321 第1透明導電層
 82,322 金属層
 83,323 第2透明導電層

Claims (10)

  1.  入射された光を反射する第1電極と、
     前記第1電極に対向して配置され、入射された光を透過する第2電極と、
     前記第1電極と前記第2電極との間に配置され、少なくとも青色光を出射する有機発光層と、
     前記第1電極と前記有機発光層との間に配置され、1または2以上の層からなる第1機能層と、
     前記有機発光層と前記第2電極との間に配置され、1または2以上の層からなる第2機能層と、
     を備え、
     前記有機発光層から出射された前記青色光の一部が、前記第1機能層を通じて前記第1電極に入射され、前記第1電極で反射された後、前記第1機能層、前記有機発光層、前記第2機能層、前記第2電極を通じて外部に出射される第1光路と、
     前記有機発光層から出射された前記青色光の残りの一部が、前記第1電極側に進行することなく、前記第2機能層を通じて前記第2電極に進行し、前記第2電極を通じて外部に出射される第2光路と、が形成される有機発光素子であって、
     前記第1機能層は、光学膜厚が48nm以上62nm以下の範囲内に設定され、
     前記第2電極は、
     透明導電材料からなる第1導電層と、金属層と、透明導電材料からなる第2導電層とが前記有機発光層に近い側からこの順に積層されて構成され、
     前記第1導電層は、
     屈折率が2.0以上2.4以下であり且つ膜厚が85nm以上97nm以下であり、
     前記金属層は、
     前記第1導電層との屈折率の差が0以上2.0以下であり、且つ膜厚が2nm以上22nm以下である、
     有機発光素子。
  2.  前記第2電極において、
     第1導電層の膜厚をX3、前記金属層の膜厚をY3とするとき、
     X3,Y3は、下記の関係式で囲まれた範囲内の値を取る、
     請求項1記載の有機発光素子。
      X3=Rxcosθcosφ-Rysinθsinφ+Xo
      Y3=Rxcosθsinφ+Rysinθcosφ+Yo
      ただし、θは、0≦θ≦2πの範囲で変化する変数パラメータ
     Xo=91.4, Yo=10.7, Rx=5.6, Ry=9.6, φ=0(rad)
  3.  入射された光を反射する第1電極と、
     前記第1電極に対向して配置され、入射された光を透過する第2電極と、
     前記第1電極と前記第2電極との間に配置され、少なくとも青色光を出射する有機発光層と、
     前記第1電極と前記有機発光層との間に配置され、1または2以上の層からなる第1機能層と、
     前記有機発光層と前記第2電極との間に配置され、1または2以上の層からなる第2機能層と、
     を備え、
     前記有機発光層から出射された前記青色光の一部が、前記第1機能層を通じて前記第1電極に入射され、前記第1電極で反射された後、前記第1機能層、前記有機発光層、前記第2機能層、前記第2電極を通じて外部に出射される第1光路と、
     前記有機発光層から出射された前記青色光の残りの一部が、前記第1電極側に進行することなく、前記第2機能層を通じて前記第2電極に進行し、前記第2電極を通じて外部に出射される第2光路と、が形成される有機発光素子であって、
     前記第1機能層は、光学膜厚が272nm以上286nm以下に設定され、
     前記第2電極は、
     透明導電材料からなる第1導電層と、金属層と、透明導電材料からなる第2導電層とが前記有機発光層に近い側からこの順に積層されて構成され、
     前記第1導電層は、
     屈折率が2.0以上2.4以下であり且つ膜厚が86nm以上97nm以下であり、
     前記金属層は、
     前記第1導電層との屈折率の差が0以上2.0以下であり、且つ膜厚が8nm以上16nm以下である、
     有機発光素子。
  4.  前記第2電極において、
     第1導電層の膜厚をX3、前記金属層の膜厚をY3とするとき、
     X3,Y3は、下記の関係式で囲まれた範囲内の値を取る、
     請求項3記載の有機発光素子。
      X3=Rxcosθcosφ-Rysinθsinφ+Xo
      Y3=Rxcosθsinφ+Rysinθcosφ+Yo
      ただし、θは、0≦θ≦2πの範囲で変化する変数パラメータ
     X0=91.3、Y0=11.9、Rx=5.3、Ry=4.4、φ=0(rad)
  5.  入射された光を反射する第1電極と、
     前記第1電極に対向して配置され、入射された光を透過する第2電極と、
     前記第1電極と前記第2電極との間に配置され、少なくとも青色光を出射する有機発光層と、
     前記第1電極と前記有機発光層との間に配置され、1または2以上の層からなる第1機能層と、
     前記有機発光層と前記第2電極との間に配置され、1または2以上の層からなる第2機能層と、
     を備え、
     前記有機発光層から出射された前記青色光の一部が、前記第1機能層を通じて前記第1電極に入射され、前記第1電極で反射された後、前記第1機能層、前記有機発光層、前記第2機能層、前記第2電極を通じて外部に出射される第1光路と、
     前記有機発光層から出射された前記青色光の残りの一部が、前記第1電極側に進行することなく、前記第2機能層を通じて前記第2電極に進行し、前記第2電極を通じて外部に出射される第2光路と、が形成される有機発光素子であって、
     前記第1機能層は、光学膜厚が17nm以上33nm以下に設定され、
     透明導電材料からなる第1導電層と、金属層と、透明導電材料からなる第2導電層とが前記第2機能層側からこの順に積層されて構成され、
     前記第1導電層は、
     屈折率が2.0以上2.4以下であり且つ膜厚が35nm以上65nm以下であり、
     前記金属層は、
     前記第1導電層との屈折率の差が0以上2.0以下であり、且つ膜厚が7nm以上22nm以下である、
     有機発光素子。
  6.  前記第2電極において、
     第1導電層の膜厚をX3、前記金属層の膜厚をY3とするとき、
     X3,Y3は、下記の関係式で囲まれた範囲内の値を取る、
     請求項5記載の有機発光素子。
      X3=Rxcosθcosφ-Rysinθsinφ+Xo
      Y3=Rxcosθsinφ+Rysinθcosφ+Yo
     ただし、θは、0≦θ≦2πの範囲で変化する変数パラメータ
    Xo=50、Yo=15、Rx=15、Ry=6、φ=25(rad)
  7.  前記金属層の膜厚が10nm以上である、
     請求項1~6のいずれかに記載の有機発光素子。
  8.  さらに、前記第2電極を通じて外部に出射される光を透過させる青色のカラーフィルタを備える請求項1~7のいずれかに記載の有機発光素子。
  9.  請求項1から請求項8のいずれかに記載の有機発光素子を備えた有機発光表示パネル。
  10.  請求項9の有機発光表示パネルを備えた、有機発光表示装置。
PCT/JP2014/003865 2013-08-01 2014-07-23 有機発光素子、有機発光表示パネルおよび有機発光表示装置 WO2015015762A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015529373A JP6111468B2 (ja) 2013-08-01 2014-07-23 有機発光素子、有機発光表示パネルおよび有機発光表示装置
US14/908,337 US9698382B2 (en) 2013-08-01 2014-07-23 Organic light emitting element with increased efficiency of extracting blue light
CN201480042637.5A CN105594304B (zh) 2013-08-01 2014-07-23 有机发光元件、有机发光显示面板及有机发光显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013160596 2013-08-01
JP2013-160596 2013-08-01

Publications (2)

Publication Number Publication Date
WO2015015762A1 true WO2015015762A1 (ja) 2015-02-05
WO2015015762A9 WO2015015762A9 (ja) 2016-01-21

Family

ID=52431322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003865 WO2015015762A1 (ja) 2013-08-01 2014-07-23 有機発光素子、有機発光表示パネルおよび有機発光表示装置

Country Status (4)

Country Link
US (1) US9698382B2 (ja)
JP (1) JP6111468B2 (ja)
CN (1) CN105594304B (ja)
WO (1) WO2015015762A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180919A (zh) * 2017-06-21 2017-09-19 上海天马有机发光显示技术有限公司 有机发光显示器件及包含其的有机发光显示装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459677B (zh) * 2014-08-01 2022-11-22 正交公司 有机电子装置的光刻法图案化
JP2017526177A (ja) 2014-08-01 2017-09-07 オーソゴナル,インコーポレイテッド 素子のフォトリソグラフパターン化方法
JP6653316B2 (ja) 2014-08-01 2020-02-26 オーソゴナル,インコーポレイテッド 有機el素子のフォトリソグラフィによるパターン形成
EP3175495B1 (en) 2014-08-01 2020-01-01 Orthogonal Inc. Photolithographic patterning of devices
KR102552276B1 (ko) 2015-02-24 2023-07-07 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
JP2017220528A (ja) * 2016-06-06 2017-12-14 株式会社Joled 有機el表示パネル
CN107275502B (zh) * 2017-06-29 2019-11-12 上海天马有机发光显示技术有限公司 有机发光显示面板和显示装置
CN111834549B (zh) * 2020-07-09 2023-02-07 云谷(固安)科技有限公司 显示面板及显示装置
CN113140686B (zh) * 2021-04-01 2022-09-09 吉林奥来德光电材料股份有限公司 一种改善大视角色偏显示器件及含有其的显示装置
CN114335386B (zh) * 2021-12-29 2024-01-30 湖北长江新型显示产业创新中心有限公司 显示面板和显示装置
CN115332420B (zh) * 2022-10-13 2023-01-31 季华实验室 一种植入式μLED光电极

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086357A (ja) * 2001-09-07 2003-03-20 Matsushita Electric Ind Co Ltd 発光素子及びその製造方法
JP2003168571A (ja) * 2001-11-29 2003-06-13 Ulvac Japan Ltd 有機el素子
JP2011165664A (ja) * 2010-02-12 2011-08-25 Samsung Mobile Display Co Ltd 有機発光ディスプレイ装置
JP2012212691A (ja) * 2004-09-23 2012-11-01 Three M Innovative Properties Co 有機エレクトロルミネセンスデバイス
JP2013235690A (ja) * 2012-05-08 2013-11-21 Sumitomo Chemical Co Ltd 表示装置の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007450A (ja) 2001-06-20 2003-01-10 Matsushita Electric Ind Co Ltd 発光素子、表示装置及び照明装置
JP4651884B2 (ja) * 2001-09-06 2011-03-16 株式会社エンプラス 電気部品用ソケット
TWI255669B (en) * 2003-09-19 2006-05-21 Sony Corp Display device, manufacturing method thereof, organic light emitting device, and manufacturing method thereof
JP2006269387A (ja) 2005-03-25 2006-10-05 Aitesu:Kk 有機el素子
JP4625869B2 (ja) 2008-06-24 2011-02-02 パナソニック株式会社 表示装置
JP2012009148A (ja) 2010-06-22 2012-01-12 Konica Minolta Holdings Inc 積層型透明導電性フィルム
WO2012020452A1 (ja) 2010-08-10 2012-02-16 パナソニック株式会社 有機発光素子、有機発光装置、有機表示パネル、有機表示装置および有機発光素子の製造方法
WO2012070086A1 (ja) * 2010-11-24 2012-05-31 パナソニック株式会社 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
WO2013065213A1 (ja) * 2011-11-02 2013-05-10 パナソニック株式会社 有機発光パネルおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086357A (ja) * 2001-09-07 2003-03-20 Matsushita Electric Ind Co Ltd 発光素子及びその製造方法
JP2003168571A (ja) * 2001-11-29 2003-06-13 Ulvac Japan Ltd 有機el素子
JP2012212691A (ja) * 2004-09-23 2012-11-01 Three M Innovative Properties Co 有機エレクトロルミネセンスデバイス
JP2011165664A (ja) * 2010-02-12 2011-08-25 Samsung Mobile Display Co Ltd 有機発光ディスプレイ装置
JP2013235690A (ja) * 2012-05-08 2013-11-21 Sumitomo Chemical Co Ltd 表示装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180919A (zh) * 2017-06-21 2017-09-19 上海天马有机发光显示技术有限公司 有机发光显示器件及包含其的有机发光显示装置

Also Published As

Publication number Publication date
CN105594304A (zh) 2016-05-18
US20160164040A1 (en) 2016-06-09
JP6111468B2 (ja) 2017-04-12
JPWO2015015762A1 (ja) 2017-03-02
WO2015015762A9 (ja) 2016-01-21
US9698382B2 (en) 2017-07-04
CN105594304B (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
JP6111468B2 (ja) 有機発光素子、有機発光表示パネルおよび有機発光表示装置
JP5574450B2 (ja) 有機発光素子、有機発光装置、有機表示パネル、有機表示装置および有機発光素子の製造方法
JP6379347B2 (ja) 有機発光パネルおよびその製造方法
JP5303036B2 (ja) 発光素子およびそれを用いた表示装置
JP5607654B2 (ja) 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
JP5600752B2 (ja) 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
JP5753191B2 (ja) 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
JP6019375B2 (ja) 発光素子およびそれを用いた表示装置
JP5879613B2 (ja) 表示装置
US8853716B2 (en) Organic EL panel, display device using same, and method for producing organic EL panel
JP6111478B2 (ja) 発光素子及び表示装置
WO2012070088A1 (ja) 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
WO2012168978A1 (ja) 有機発光パネルおよびその製造方法
JP5778799B2 (ja) 有機発光素子
JP6983391B2 (ja) 有機el素子、有機el表示パネル、および、有機el表示パネルの製造方法
WO2011021373A1 (ja) 表示パネル、表示装置
JP2016100073A (ja) 発光素子およびそれを備えた表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529373

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14908337

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831484

Country of ref document: EP

Kind code of ref document: A1