WO2015015616A1 - スイッチング電源装置、半導体装置、及びac/dcコンバータ - Google Patents

スイッチング電源装置、半導体装置、及びac/dcコンバータ Download PDF

Info

Publication number
WO2015015616A1
WO2015015616A1 PCT/JP2013/070885 JP2013070885W WO2015015616A1 WO 2015015616 A1 WO2015015616 A1 WO 2015015616A1 JP 2013070885 W JP2013070885 W JP 2013070885W WO 2015015616 A1 WO2015015616 A1 WO 2015015616A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
pwm
signal
pulse width
switching
Prior art date
Application number
PCT/JP2013/070885
Other languages
English (en)
French (fr)
Inventor
典里 竹屋
雅史 大柴
哲 熊木
康敬 堀越
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to US14/904,052 priority Critical patent/US9837902B2/en
Priority to JP2015529286A priority patent/JP6234461B2/ja
Priority to PCT/JP2013/070885 priority patent/WO2015015616A1/ja
Publication of WO2015015616A1 publication Critical patent/WO2015015616A1/ja
Priority to US15/799,726 priority patent/US10199938B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/168Modifications for eliminating interference voltages or currents in composite switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0029Circuits or arrangements for limiting the slope of switching signals, e.g. slew rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a switching power supply device and a semiconductor device for controlling a switching element constituting the switching power supply device, and more particularly to a technology effective when applied to a switching power supply device including a PFC (Power Factor Correction) circuit.
  • PFC Power Factor Correction
  • a switching power supply device that constitutes an AC / DC converter that converts an AC voltage into a DC voltage suppresses power factor deterioration and generation of harmonic noise caused by a phase difference between an input voltage and an input current supplied from the AC power supply. Therefore, PFC circuits are widely used.
  • Patent Literature 1 and Patent Literature 2 disclose the conventional technology of a switching power supply device including an analog-controlled PFC circuit.
  • Patent Document 3 discloses a conventional technique of an AC / DC converter having a digital control type PFC circuit.
  • the control unit in the PFC circuit described above detects various voltages and currents in the PFC circuit, and generates a PWM (pulse width modulation) signal having a predetermined period based on the detection result.
  • a PWM signal having a desired duty ratio (pulse width) is generated based on an output voltage of an error amplifier and a predetermined periodic signal (triangular wave, sawtooth wave, etc.), and a digital control PFC
  • a PWM signal with a duty ratio corresponding to a setting condition of the CPU is generated by a PWM timer in a microcomputer.
  • this switching power supply device controls the current flowing in the coil by turning on and off the switching element by PWM control, and obtains a desired DC voltage.
  • the first period immediately after the start of the PWM on period has a period shorter than the PWM period and the pulse width is stepwise. Switching of the switching element is enabled by the first pulse signal that is increased. Further, in the switching power supply device, the switching element can be switched by the PWM signal based on the PWM control after the first period in the PWM ON period.
  • FIG. 1 is a block diagram illustrating a digital control switching power supply device as an AC / DC converter according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an internal configuration of the PWM timer unit according to the first embodiment.
  • FIG. 3 illustrates a timing chart of various signals generated by the PWM timer unit 13A.
  • FIG. 4 is a diagram illustrating a timing chart of the pulse signal VPLS_1 generated by the PWM timer unit according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of the harmonic noise reduction effect of the switching power supply according to the first embodiment.
  • FIG. 6 is a block diagram illustrating a digital control switching power supply device as an AC / DC converter according to the second embodiment.
  • FIG. 7 is a block diagram illustrating an internal configuration of the PWM timer unit according to the second embodiment.
  • FIG. 8 is a diagram illustrating a timing chart of the pulse signal VPLS_1 generated by the PWM timer unit according to the second embodiment.
  • the switching power supply (100, 200) controls the current flowing through the coils (L1A, L2A) by turning on and off the switching elements (SW1, SW2) by PWM control, A DC voltage (VOUT) is obtained.
  • the present switching power supply apparatus has a PWM period (TC) based on PWM control in a first period (T1) immediately after the start of the PWM on period in the PWM on period (TON) for turning on the switching element by PWM control.
  • the switching power supply device can perform switching control of the switching element by a PWM signal (VPWM) based on the PWM control after the first period has elapsed (T2, (T3)).
  • the switching element is controlled so that the time for which the switching element is turned on is gradually increased. Therefore, as compared with the conventional control in which the switching element is simply turned on / off by the PWM signal. Thus, rapid current fluctuation of the coil at the start timing of the PWM on period can be suppressed. Thereby, the harmonic noise generated at the start timing of the PWM on period can be reduced.
  • the harmonic noise generated at the start timing of the PWM ON period by the PWM control can be further reduced.
  • the pulse width of the first pulse signal is determined based on the immediately preceding switching noise
  • the pulse width of the first pulse signal to be output is made smaller than a reference pulse width.
  • the switching power supply device makes the pulse width of the first pulse signal to be output next larger than the reference pulse width.
  • the amount of noise is determined by the length of the period during which the output voltage is outside the predetermined range
  • the length of the period during which the DC voltage is out of the predetermined voltage range (W) is set as the magnitude of the switching noise.
  • the switching control of the switching element by the PWM signal is enabled in the second period (T2) after the elapse of the first period in the PWM ON period.
  • the third period (T3) from the end of the second period to the end of the PWM on period is a period shorter than the PWM period, and the pulse width is gradually reduced.
  • the switching control of the switching element by the second pulse signal (VPLS) is enabled.
  • the switching element is controlled so that the time for which the switching element is turned on is gradually reduced, so that the switching element is simply turned on / off by the PWM signal as in the prior art.
  • a rapid current fluctuation of the coil at the end timing of the PWM ON period can be suppressed.
  • harmonic noise generated at the end timing of the PWM on period can be reduced.
  • the rate of decrease of the pulse width of the second pulse signal in the third period is controlled to be small when switching noise superimposed on the DC voltage is larger than a reference value, The switching noise is controlled so as to increase when the switching noise is smaller than a reference value.
  • the pulse width of the second pulse signal is determined based on the immediately preceding switching noise
  • the switching power supply device outputs next when the switching noise generated by switching the switching element by the second pulse signal output immediately before in the third period is larger than a reference value.
  • the pulse width of the second pulse signal to be set is made larger than a reference pulse width. Further, when the switching noise is smaller than the reference value, the switching power supply device makes the pulse width of the second pulse signal to be output next smaller than the reference pulse width.
  • a semiconductor device (5, 7) is a switching power supply (100, 200) for converting an input voltage (VIN) into a target DC voltage (VOUT) and improving a power factor.
  • This is a semiconductor device for controlling on / off of the switching elements (SW1, SW2).
  • This semiconductor device has timer sections (13A, 13B, 23A, 23B) that generate control signals (VGD1, VGD2) for controlling on / off of the switching elements.
  • the semiconductor device further turns on the switching element so that the output voltage is equal to the target DC voltage and the phase difference between the input voltage and the input current input to the switching power supply device is small.
  • a data processing control unit (10) that calculates a PWM ON period (TON) and controls the timer unit based on the calculation result.
  • the data processing control unit controls the timer unit so that a first period (T1) immediately after the start of the calculated PWM on period is greater than a PWM signal (VPWM) corresponding to the calculated PWM on period.
  • the first pulse signal (VPLS_1) having a short cycle and a gradually increasing pulse width can be output as the control signal.
  • the data processing control unit enables the PWM signal to be output as the control signal after the first period has elapsed.
  • a control signal is generated so that the time for which the switching element is turned on gradually increases, so that the switching element is controlled as in the conventional case.
  • a semiconductor device that simply generates a PWM signal for this purpose, it is possible to suppress rapid current fluctuations in the coil at the start timing of the PWM on period. As a result, harmonic noise generated at the start timing of the PWM ON period can be reduced.
  • the switching element is driven by a pulse signal whose duty ratio decreases stepwise in a cycle shorter than the PWM cycle
  • the data processing control unit controls the timer unit so that the cycle is shorter than the PWM signal and stepwise in the second period immediately before the end of the calculated PWM ON period.
  • the second pulse signal (VPLS_2) having a small pulse width can be output as the control signal.
  • the drive signal is generated so that the time for which the switching element is turned on gradually decreases, so the PWM signal is simply generated as in the conventional case.
  • the PWM signal is simply generated as in the conventional case.
  • the semiconductor device (7) includes a comparator unit (142) for determining whether or not the DC voltage is out of a predetermined voltage range (W), and the DC voltage is out of the predetermined voltage range. And a time measuring unit (143) for measuring a period of time.
  • the data processing control unit outputs the next time when the timing result by the timing unit when the switching element is switched by the first pulse signal output immediately before in the first period is larger than a reference value.
  • the pulse width of the first pulse signal to be made is made smaller than a reference pulse width. Further, the data processing control unit makes the pulse width of the first pulse signal to be output next larger than the reference pulse width when the time measurement result is smaller than the reference value.
  • the data processing control unit has a time measurement result by the time measuring unit when the switching element is switched by the second pulse signal output immediately before in the second period is larger than a reference value.
  • the pulse width of the second pulse signal to be output next is set larger than the reference pulse width.
  • the data processing control unit makes the pulse width of the second pulse signal to be output next smaller than the reference pulse width when the time measurement result is smaller than the reference value.
  • the timer unit (23A, 23B) includes a first signal generation unit (130) that generates the PWM signal according to the PWM on period calculated by the data processing control unit. And a second signal generator (136) for generating the first pulse signal and the second pulse signal. The timer unit further outputs the first pulse signal generated by the second signal generation unit during the first period, and the second pulse signal generated by the second signal generation unit during the second period. And a signal selection unit (140) for outputting the PWM signal generated by the first signal generation unit in a period other than the first period and the second period.
  • the AC / DC converter (100, 200) according to the representative embodiment includes a rectifier circuit (3) that rectifies and outputs an alternating voltage (VAC).
  • the AC / DC converter further inputs the voltage (VIN) rectified by the rectifier circuit, and controls the current flowing through the coils (L1A, L2A) by the switching elements (SW1, SW2).
  • a voltage converter circuit (3) for converting the voltage into a target DC voltage (VTGT) and outputting the voltage is provided.
  • the AC / DC converter further includes a control unit (5, 7).
  • the control unit is configured so that the output voltage (VOUT) of the voltage converter circuit is equal to the target DC voltage and the phase difference between the input voltage (VIN) and the input current (IIN) of the voltage converter circuit is small.
  • a PWM on period (TON) for turning on the switching element is calculated.
  • the control unit generates control signals (VGD1, VGD2) for controlling on / off of the switching element based on the calculation result of the PWM on period.
  • the controller further has a shorter period and a stepwise larger pulse width in the first period (T1) immediately after the start of the PWM on period than the PWM signal (VPWM) corresponding to the calculated PWM on period.
  • the first pulse signal (VPLS_1) can be output as the control signal.
  • the control unit can output the PWM signal as the control signal after the first period has elapsed.
  • the switching element is controlled so that the ON time is gradually increased. Compared with the control to turn off, the rapid current fluctuation of the coil at the start timing of the PWM on period can be suppressed. Thereby, the harmonic noise generated at the start timing of the PWM ON period of the AC / DC converter can be reduced.
  • the control unit (7) causes the switching noise generated by switching the switching element with the first pulse signal output immediately before in the first period. If it is larger than the reference value, the pulse width of the first pulse signal to be output next is made smaller than the reference pulse width. When the switching noise is smaller than the reference value, the control unit makes the pulse width of the first pulse signal to be output next larger than the reference pulse width.
  • the drive signal is generated so that the time for which the switching element is turned on gradually decreases, so the PWM signal is simply generated as in the conventional case.
  • the PWM signal is simply generated as in the conventional case.
  • the pulse width of the second pulse signal is determined based on the switching noise generated immediately before).
  • the control unit (6) causes the switching noise generated by switching the switching element by the second pulse signal output immediately before in the second period to be greater than a reference value. Is larger, the pulse width of the second pulse signal to be output next is made larger than the reference pulse width.
  • the control unit makes the pulse width of the second pulse signal to be output next smaller than the reference pulse width.
  • FIG. 1 is a block diagram illustrating a digital control switching power supply device as an AC / DC converter according to the first embodiment.
  • the switching power supply device 100 shown in the figure converts the AC power supplied from the AC power supply 20 into a desired DC voltage and improves the power factor by turning on and off the switching elements SW1 and SW2 by PWM control.
  • the switching power supply apparatus 100 can be applied to, for example, an air conditioner or an automobile as part of a motor control system.
  • the pulse width changes in a stepwise manner with a period shorter than the PWM period between the first and last short periods of the PWM on period for turning on the switching elements SW1 and SW2 by PWM control.
  • the harmonic noise is reduced by controlling the switching elements SW1 and SW2 by the pulse signal to be transmitted.
  • the switching power supply device 100 includes a rectifying unit 2 and a PFC circuit 1.
  • AC power supply 20 is not particularly limited, but is a commercial AC power supply, and outputs a 50 Hz or 60 Hz sine wave AC voltage VAC (for example, 100 V).
  • the rectifying unit 2 rectifies and outputs the AC voltage VAC supplied from the AC power supply 20.
  • the rectification unit 2 includes a diode bridge circuit 21 and a capacitor CRCT.
  • the diode bridge circuit 21 is a full-wave rectifier circuit configured by combining a plurality of diodes, for example.
  • the positive voltage rectified by the diode bridge circuit 21 is smoothed by the capacitor CRCT.
  • the PFC circuit 1 is a critical mode PFC circuit and includes, for example, a voltage converter circuit 3, an output voltage detection unit 4, and a control unit 5.
  • the voltage converter circuit 3 receives the voltage rectified by the rectifier circuit 2 and controls the current flowing through the coil by the switching element, thereby converting the input voltage VIN into a target DC voltage and outputting it.
  • the voltage converter circuit 3 is not particularly limited, and is configured to realize an interleaved step-up type PFC circuit in which a coil, a switching element, etc. are doubled.
  • the coils L1A, L1B, L2A, L2B, switching elements SW1, SW2, rectifying elements D1, D2, and an output capacitor COUT are included.
  • the voltage converter circuit 3 converts a rectified voltage of 100 V into a DC voltage of 300 V.
  • the input voltage of the voltage converter circuit 3 is denoted by reference numeral VIN
  • the output voltage is denoted by reference numeral VOUT
  • the input current of the voltage converter circuit 3 is denoted by reference numeral INN.
  • Reference numerals representing voltages such as reference VIN and VOUT also represent nodes to which the voltages are supplied.
  • the coil L1A has one end connected to the node VIN and the other end connected to the node NSW1.
  • the coil L1B is a circuit element for detecting a current flowing through the coil L1A, and is arranged so as to be magnetically coupled to the coil L1A.
  • Coil L2A has one end connected to node VIN and the other end connected to node NSW2.
  • the coil L2B is a circuit element for detecting a current flowing through the coil L2A, and is arranged so as to be magnetically coupled to the coil L2A.
  • Switching element SW1 is provided between node NSW1 and the ground node, and controls the current flowing through coil L1A.
  • Switching element SW2 is provided between node NSW2 and the ground node, and controls a current flowing through coil L2A.
  • the switching elements SW1 and SW2 are, for example, high breakdown voltage MOS transistors or IGBTs (Insulated Gate Bipolar Transistors). In the figure, as an example, a case where the switching elements SW1 and SW2 are realized by N-channel MOS transistors is illustrated.
  • the switching element SW1 is controlled to be turned on / off by the control voltage VGD1 output from the control unit 5.
  • the switching element SW ⁇ b> 2 is controlled to be turned on / off by the control voltage VGD ⁇ b> 2 output from the control unit 5.
  • the switching element SW1 is turned on when the control voltage VGD1 is at the first logic level (for example, high level), and the control voltage VGD1 is at the second logic level (for example, low level). If off.
  • the same applies to the switching element SW2. 1 illustrates a configuration in which the switching elements SW1 and SW2 perform direct switching control using the control voltages VGD1 and VGD2 from the control unit 5, but a gate driver is provided between the switching elements SW1 and SW2 and the control unit 5.
  • a circuit may be provided and the switching elements SW1 and SW2 may be controlled to be switched through the gate driver circuit.
  • the rectifying element D1 is provided between the node NSW1 and the output node VOUT, and forms a current path between the node NSW1 and the output node VOUT while the switching element SW1 is off.
  • the rectifying element D2 is provided between the node NSW2 and the output node VOUT, and forms a current path between the node NSW2 and the output node VOUT while the switching element SW2 is off.
  • the rectifying elements D1 and D2 are diodes, for example, and have an anode connected to the node NSW1 (NSW2) side and a cathode connected to the output node VOUT side.
  • the output capacitor COUT is connected between the output node VOUT and the ground node, and stabilizes the output voltage VOUT.
  • the output voltage detection unit 4 detects the output voltage VOUT and supplies the detection voltage VSEN to the control unit 5.
  • the output voltage detection unit 4 includes, for example, resistors R1 and R2 connected in series between the output node VOUT and a ground node, and detects a voltage obtained by dividing the output voltage VOUT by the resistors R1 and R2. Let it be VSEN. By setting the resistance ratio R1 / R2 to, for example, “1/59”, the detection voltage VSEN of “5V” is generated from the output voltage VOUT of “300V”.
  • the output voltage detection unit 4 is provided outside the control unit 5, but may be included inside the control unit 5.
  • the control unit 5 generates the control voltages VGD1 and VGD2 so that the output voltage VOUT of the voltage converter circuit 3 is equal to the target voltage and the phase difference between the input voltage VIN and the input current IIN is small.
  • the control unit 5 is not particularly limited, and is configured by a semiconductor integrated circuit formed on a single semiconductor substrate such as single crystal silicon by a known CMOS integrated circuit manufacturing technique.
  • the control unit 5 is a program processing device such as a microcomputer (MCU) or a DSP (Digital Signal Processor), for example.
  • the control unit 5 may be realized with a one-chip configuration as described above, or may be realized with a multi-chip configuration, and the configuration is not particularly limited.
  • the control unit 5 includes, for example, A / D conversion units (ADC) 14 to 16, a data processing control unit (CNT) 10, PWM timer units (PWM_TMR) 13A and 13B, an external interface circuit (not shown), and the like.
  • ADC A / D conversion units
  • CNT data processing control unit
  • PWM_TMR PWM timer units
  • the A / D conversion unit 16 samples the detection voltage VSEN in accordance with, for example, the A / D conversion start signal output from the PWM timer units 13A and 13B, and performs the sampling according to the conditions set by the data processing control unit 10
  • the conversion result DVS is generated by converting the voltage into a digital signal. Thereby, information of the output voltage VOUT is obtained.
  • the A / D conversion unit 14 samples the current flowing through the coil L1B magnetically coupled to the coil L1A, for example, in accordance with the A / D conversion start signal output from the PWM timer unit 13A, and the data processing control unit 10
  • the conversion result DIS1 is generated by converting the sampled current into a digital signal in accordance with the condition set by (1). Thereby, information on the current flowing through the coil L1A is obtained.
  • the A / D conversion unit 15 samples the current flowing through the coil L1B, for example, in accordance with the A / D conversion start signal output from the PWM timer unit 13B, and converts it into a digital signal, thereby converting the conversion result DIS2 into a digital signal. Generate. Thereby, information on the current flowing through the coil L2A is obtained.
  • the data processing control unit 10 performs various arithmetic processes and performs overall control of each functional unit in the control unit 5.
  • the data processing control unit 10 includes, for example, a CPU 11 and a memory unit (MRY) 12.
  • the memory unit 12 includes a non-volatile memory (for example, a ROM (Read Only Memory) or a flash memory), a volatile memory (RAM: Random Access Memory), various registers, and the like in which a program is stored.
  • Various arithmetic processes and controls are realized by the CPU 11 executing a program stored in a RAM or the like.
  • the data processing control unit 10 executes arithmetic processing for determining the pulse widths of the control signals VGD1 and VGD2 based on the conversion results DIS1, DIS2, and DVS by the A / D conversion units 14 to 16, and based on the processing results By controlling the PWM timer unit 13, desired control signals VGD1 and VGD2 are generated. Specifically, the data processing control unit 10 performs PWM for turning on the switching elements SW1 and SW2 so that the output voltage VOUT is equal to the target voltage VTGT and the phase difference between the input voltage VIN and the input current IIN is small. The ON period is calculated, and a control condition corresponding to the calculation result is set in the PWM timer unit 13.
  • the data processing control unit 10 calculates the difference between the current value of the output voltage VOUT and the target voltage VTGT based on the conversion result DVS by the A / D conversion unit 16 so that the difference becomes smaller.
  • a PWM on period TON for turning on the switch elements SW1 and SW2 is determined. For example, when the output voltage VOUT is smaller than the target voltage VTGT, the output voltage VOUT is increased by extending the PWM ON period TON. On the other hand, when the output voltage VOUT is higher than the target voltage VTGT, the output voltage VOUT is lowered by shortening the PWM ON period of the switch elements SW1 and SW2.
  • the data processing control unit 10 monitors the current flowing through the coil L1A based on the conversion result DIS1 by the A / D conversion unit 14, detects the timing when the current becomes zero (0), and sets the switching element SW1. Decide when to turn on. Similarly, the current flowing through the coil L2A is monitored based on the conversion result DIS2 by the A / D conversion unit 15, the timing at which the current becomes zero is detected, and the timing at which the switching element SW2 is turned on is determined.
  • the data processing control unit 10 sets a control condition for generating a desired PWM signal based on the PWM ON period TON calculated as described above and the timing for turning on the switch elements SW1 and SW2 determined as described above. Determine and set the PWM timer unit 13A, 13B.
  • the PWM timer unit 13A generates the control signal VGD1 according to the control conditions set by the data processing control unit 10.
  • the PWM timer unit 13B generates the control signal VGD2 in accordance with the control conditions set by the data processing control unit 10.
  • the PWM timer unit 13A and the PWM timer unit 13B have the same circuit configuration, and each operation (counting operation by a counter, updating various registers, etc.) is shifted by a half cycle (phase is different). (timing shifted by ⁇ ). As a result, the generated control signal VGD1 and control signal VGD2 are signals whose phases are shifted by “ ⁇ ”.
  • FIG. 2 illustrates the internal configuration of the PWM timer unit 13A. Since the PWM timer 13B has the same configuration as the PWM timer 13A as described above, the PWM timer 13A will be typically described in detail.
  • the PWM timer unit 13A includes a basic PWM signal generation unit 130, a pulse signal generation unit 136, and a selection unit (SEL) 140 as functional units for generating the control signal VGD1.
  • SEL selection unit
  • the basic PWM signal generation unit 130 generates a pulse width modulated signal VPWM according to the control conditions set by the data processing control unit 10.
  • the basic PWM signal generation unit 130 includes, for example, a signal generation circuit (PWM_GEN) 131, a compare register (REG_CMPA) 132, a compare register (REG_CMPB) 133, a PWM cycle setting register (REG_TC) 135, and a counter circuit (CNTR_A) 134.
  • PWM_GEN signal generation circuit
  • REG_CMPA compare register
  • REG_CMPB compare register
  • REG_TC PWM cycle setting register
  • CNTR_A counter circuit
  • the data processing control unit 10 sets a specified value of the PWM cycle TC based on the PWM control.
  • the PWM cycle TC is several tens ⁇ s to several hundreds ⁇ s
  • the basic PWM signal VPWM is, for example, a signal of several kHz to several tens kHz.
  • the counter circuit 134 performs a counting operation for counting the input reference clock signal according to the set value of the PWM cycle setting register 135.
  • the start and stop of the counting operation by the counter circuit 134 is controlled by an instruction from the data processing control unit 10.
  • the counter circuit 134 operates, for example, as an up / down counter that repeatedly executes up-counting and down-counting at a cycle TC (several tens ⁇ s to several hundreds ⁇ s) designated by the PWM cycle setting register 135. It becomes a triangular wave with a constant period.
  • the reference clock signal to be counted by the counter circuit 134 is supplied from, for example, a clock signal generation unit (not shown) provided inside or outside the control unit 5, and the oscillation frequency is set to, for example, several MHz to several tens MHz.
  • the compare register 132 a specified value of the PWM on period TON calculated by the data processing control unit 10, that is, a specified value of the duty ratio of the basic PWM signal VPWM is set.
  • the compare register 133 is set with a designated value representing the length of periods T1 and T3 during which a pulse signal VPLS described later is output.
  • the set value of the compare register 132 is expressed as “CA”
  • the set value of the compare register 133 is expressed as “CB”. Note that CA ⁇ CB.
  • the signal generation circuit 131 generates the basic PWM signal VPWM by comparing the count value 30 of the counter circuit 134 with the set values of the various registers 132, 133, and 134, and also selects the selection signal VSEL and the A / D converter 14. , 16 output an A / D conversion start signal.
  • the signal generation circuit 131 sets the basic PWM signal VPWM to, for example, a low level during a period in which the count value 30 of the counter circuit 134 is smaller than the set value CA of the compare register 132, and the count value 30 is set to the compare register 132.
  • the basic PWM signal VPWM is set to a high level during a period larger than the value CA.
  • a basic PWM signal VPWM having a duty ratio (PWM on period TON) corresponding to the set value CA of the compare register 132 is generated.
  • the signal generation circuit 131 asserts the selection signal VSEL (for example, high level) during a period in which the count value 30 of the counter circuit 134 is larger than the set value CA of the compare register 132 and smaller than the set value CB of the compare register 133.
  • the selection signal VSEL is negated (for example, at a low level) during a period when the count value 30 is larger than the set value CB of the compare register 133.
  • the pulse signal generation unit 136 generates a pulse signal VPLS whose cycle is shorter than the PWM cycle TC and whose pulse width changes stepwise in accordance with the control conditions set by the data processing control unit 10.
  • the pulse signal generation unit 136 includes, for example, a counter circuit (CNTR_B) 137, a pulse width setting register (REG_PW) 138, and a signal generation circuit (PLS_GEN) 139.
  • the counter circuit 137 performs a counting operation to count the input reference clock signal in accordance with the setting conditions by the data processing control unit 10.
  • the counter circuit 137 operates, for example, as an up counter that repeats an operation of counting up to a designated value again when the count value is counted up to a designated value set by the data processing control unit 10, and the count value is a period. Becomes a certain sawtooth shape.
  • the count cycle of the counter circuit 137 is made smaller than the count cycle (PWM cycle TC) of the counter circuit 134 described above. Note that the reference clock signal to be counted by the counter circuit 137 is supplied from a clock signal generation unit (not shown), similarly to the counter circuit 134.
  • the pulse width setting register 138 a value indicating the pulse width (duty ratio) of the pulse signal VPLS is set.
  • the setting value of the pulse width setting register 138 is expressed as “CC”.
  • the signal generation circuit 139 generates the pulse signal VPLS by comparing the count value 40 of the counter circuit 137 with the set value CC of the pulse width setting register 138. For example, the signal generation circuit 139 sets the pulse signal VPLS to, for example, a high level when the count value 40 of the counter circuit 137 is smaller than the set value CC, and the pulse signal VPLS when the count value 40 is larger than the set value CC. For example, a low level is set. Thereby, a pulse signal VPLS having a duty ratio corresponding to the set value CC of the pulse width setting register 138 is generated.
  • the set value CC of the pulse width setting register 138 is sequentially updated by the data processing control unit 10 every count cycle of the counter circuit 137.
  • the selection unit 140 selects either the basic PWM signal VPWM or the pulse signal VPLS based on the selection signal VSEL, and outputs it as the control signal VGD1.
  • the pulse signal VPLS is output as the control signal VGD1 while the selection signal VSEL is asserted
  • the basic PWM signal VPWM is output as the control signal VGD1 while the selection signal VSEL is negated.
  • FIG. 3 illustrates a timing chart of various signals generated by the PWM timer unit 13A.
  • the figure shows a control signal VGD1 for two cycles.
  • the duty ratio of the basic PWM signal PWM on period TON based on PWM control
  • the duty ratio of the basic PWM signal is 70%. ing.
  • the data processing control unit 10 gives an instruction to start the count operation to the counter circuit 134, so that the counter circuit 134 starts up-counting.
  • the count value 30 of the counter circuit 134 matches the set value CA of the compare register 132 (for example, a value corresponding to the duty ratio of 70% of the basic PWM signal VPWM) at time t1
  • the signal generation circuit 131 generates the basic PWM signal VPWM.
  • the selection signal VSEL is asserted (for example, set to the high level).
  • the signal generation circuit 131 negates the selection signal VSEL while holding the high level of the basic PWM signal VPWM. (For example, low level).
  • this figure illustrates the case where the set value CB of the compare register 133 is set to a duty ratio 72% larger than the set value CA (duty ratio 70%).
  • the set value CB of the compare register 133 can be variously changed according to the assumed magnitude of switching noise. For example, when the switching noise is assumed to be large, the set value CB is set to a value corresponding to a duty ratio of 73%, for example. When the switching noise is assumed to be small, the set value CB is set to a duty ratio, for example. It is also possible to set a value corresponding to 71%.
  • the pulse signal VPLS is generated by the pulse signal generation unit 136 in the period T1 from the time t1 to the time t2.
  • the counter circuit 137 repeatedly executes the up-count operation, and the set value of the pulse width setting register 138 is updated every count cycle.
  • the set value CC of the pulse width setting register 138 is updated every count cycle so that the duty ratio of the pulse signal VPLS increases stepwise as 10%, 30%, 50%, 70%,.
  • FIG. 4 is a diagram illustrating a timing chart of the pulse signal VPLS_1 generated by the PWM timer unit according to the first embodiment. This figure illustrates the update timing of various signals and registers in a period T1 from time t1 to time t2 in FIG. In the figure, it is assumed that a value indicating a duty ratio of 10% is set as an initial value as the setting value CC of the pulse width setting register 138.
  • the counter circuit 137 starts the count operation.
  • the pulse signal VPLS becomes high level.
  • the pulse signal VPLS is switched to the low level.
  • the count value of the counter circuit 137 reaches the maximum value at time t13, the count value of the counter circuit 137 is cleared, and the counter circuit 137 starts counting up again.
  • the pulse signal VPLS_1 having the same cycle as the count cycle of the counter circuit 137 and a duty ratio of 10% is generated.
  • the set value CC of the pulse width setting register 138 is updated, for example, at the timing when the count value of the counter circuit 137 is cleared.
  • a method of updating the set value CC of the pulse width setting register 138 for example, the following two control methods are conceivable.
  • the data processing control unit 10 directly changes the set value CC of the pulse width setting register 138 in synchronization with the timing t13 when the count value of the counter circuit 137 is reset.
  • a buffer register (not shown) capable of temporarily storing data is provided in the pulse signal generation unit 136, and a value is stored in the pulse width setting register 138 via the buffer register. Is a method of setting.
  • the data processing control unit 10 sets a specified value of the pulse width (for example, a duty ratio of 30%) in the buffer register. Then, at the timing t13 when the count value 40 is reset, the value of the buffer register is loaded into the pulse width setting register 138.
  • a predetermined timing for example, a timing at which the count value 40 of the counter circuit 137 coincides with an intermediate value (a count value corresponding to 50% duty of the pulse signal VPLS_1) CM can be cited as an example. According to the control method as described above, it is possible to change the duty ratio of each cycle of the pulse signal VPLS.
  • the pulse signal VPLS is switched to the high level again. Thereafter, when the count value 40 of the counter circuit 137 coincides with the set value CC (duty ratio 30%) of the pulse width setting register 138 at time t14, the pulse signal VPLS is switched to the low level. As a result, a pulse signal VPLS_1 having a duty ratio of 30% is generated.
  • the set value CC of the pulse width setting register 138 is updated from the duty ratio 30% to the duty 50%. The subsequent operation is the same as the operation from time t13 to t16.
  • the pulse signal generation unit 136 By controlling the pulse signal generation unit 136 as described above, in the period T1 immediately after the start of the PWM on period TC in the PWM period TC, the period is shorter than the PWM period TC, and the pulse width increases stepwise. A pulse signal VPLS_1 can be generated.
  • the counter circuit 134 switches from up-counting to down-counting. Thereafter, when the count value 30 of the counter circuit 134 again matches the set value CB of the compare register 133 at time t4, the signal generation circuit 131 reasserts the selection signal VSEL while holding the high level of the basic PWM signal VPWM. Yes (set to high level).
  • the signal generation circuit 131 switches the basic PWM signal VPWM from the high level to the low level and also selects the selection signal VSEL. Is negated (low level).
  • the pulse signal VPLS is generated in a period T3 from time t4 to time t5. Specifically, when the data processing control unit 10 gives an instruction to start counting to the counter circuit 137 at time t4, the counter circuit 137 starts the counting operation. Further, the data processing control unit 10 sets a value (for example, a duty ratio of 70%) indicating the pulse width in the pulse width setting register 138 at time t4. The signal generation circuit 139 compares the count value 40 of the counter circuit 137 with the setting value CC of the pulse width setting register 138, and during the period when the count value 40 is smaller than the setting value CC of the pulse width setting register 138, the pulse signal VPLS.
  • a value for example, a duty ratio of 70%
  • the pulse signal VPLS is set to a low level, for example, during a period when the count value 40 is greater than the set value CC.
  • the pulse signal VPLS corresponding to the set value CC (for example, duty ratio 70%) of the pulse width setting register 138 is generated.
  • the data processing control unit 10 repeats updating the set value CC of the pulse width setting register 138 at a timing according to the count cycle of the counter circuit 137.
  • the value indicating the pulse width of the pulse signal VPLS is updated for each count cycle so that the duty ratio of the pulse signal VPLS decreases stepwise to 70%, 50%, 30%, 10%,.
  • a pulse signal VPLS_2 is generated in a period T3 from time t4 to time t5, which has a period shorter than the PWM period TC and whose pulse width is reduced stepwise.
  • a specific method for generating the pulse signal VPLS_2 is the same as the method for generating the pulse signal VPLS_1 described above (FIG. 4).
  • the selection unit 140 outputs the pulse signal VPLS as the control signal VGD1 in the period T1 from the time t1 to the time t2 and the period T3 from the time t4 to the time t5 when the selection signal VSEL is asserted, and the selection signal VSEL is negated.
  • the basic PWM signal VPWM is output as the control signal VGD1.
  • VPLS_1 and VPLS_2 are output as the control signal VGD1
  • the basic PWM signal VPWM is output as the control signal VGD1 in the other period T2 in the PWM ON period TON.
  • the PWM timer unit 13B has the same control content as the PWM timer unit 13A except that the control timing is different. Therefore, the control signal VGD2 is also generated in the same manner as the control signal VGD1.
  • FIG. 5 illustrates the effect of reducing switching noise by the switching power supply apparatus 100 according to the present embodiment.
  • A shows a waveform example of the output voltage VOUT when the switching element is simply driven by the PWM signal as in the conventional switching power supply apparatus.
  • B shows the waveform example of the output voltage VOUT of the switching power supply apparatus 100 which concerns on this Embodiment.
  • switching is performed by a pulse signal VPLS in which the pulse width is switched stepwise between the beginning and end of the PWM on period TON in the PWM cycle TC.
  • switching noise can be reduced, and harmonic noise in the switching power supply device can be reduced.
  • FIG. 6 is a block diagram illustrating a digital control switching power supply device as an AC / DC converter according to the second embodiment.
  • the switching power supply apparatus 200 shown in the figure has a function of changing the pulse width of the pulse signal VPLS according to the magnitude of noise superimposed on the output voltage VOUT, and is in phase with the switching power supply apparatus 100 according to the first embodiment. Different.
  • symbol is attached
  • the PWM timers 23 ⁇ / b> A and 23 ⁇ / b> B in the control unit 7 further have a function of monitoring the detection voltage VSEN and detecting noise superimposed on the output voltage VOUT of the switching power supply device 200.
  • the PWM timer unit 23A and the PWM timer unit 23B have the same circuit configuration, and the PWM timer unit 23A will be described in detail as a representative.
  • FIG. 7 is a block diagram illustrating the internal configuration of the PWM timer unit 23A.
  • the PWM timer unit 23A is a functional unit for generating the control signal VGD1, in addition to the basic PWM signal generation unit 130, the pulse signal generation unit 136, and the selection unit (SEL) 140, as well as noise.
  • a detection unit 141 is provided.
  • the noise detection unit 141 includes a window comparator unit (WND_CMP) 142, a counter circuit (CNTR_C) 143, and a noise detection result register (REG_NS) 144.
  • WND_CMP window comparator unit
  • CNTR_C counter circuit
  • REG_NS noise detection result register
  • the window comparator unit 142 determines whether or not the detection voltage VSEN is within a predetermined voltage range W, and outputs a determination result signal VNS. Specifically, the window comparator unit 142 determines that noise is not superimposed on the output voltage VOUT when the detection voltage VSEN is within the predetermined voltage range W, and the determination result that the signal level becomes, for example, a low level The signal VNS is output. On the other hand, when the detection voltage VSEN is out of the predetermined voltage range W, it is determined that noise is superimposed on the output voltage VOUT, and a determination result signal VNS whose signal level becomes, for example, a high level is output.
  • the voltage range W is, for example, a voltage range centered on a target voltage (for example, 300 V) of the output voltage VOUT of the switching power supply apparatus 200, and serves as an index for determining whether noise is superimposed on the output voltage VOUT.
  • the voltage range W can be changed in a programmable manner, and is determined, for example, based on a variation amount of the output voltage VOUT allowed in a system to which the switching power supply device 200 is applied.
  • the counter circuit 143 measures a period in which noise is superimposed on the output voltage VOUT. Specifically, the counter circuit 143 starts up-counting when a determination result indicating that noise is superimposed is output from the window comparator unit 142 (for example, when the determination result signal VNS becomes high level), When a determination result indicating that is not superimposed is output (for example, when the determination result signal VNS becomes low level), the up-count is stopped and the count value is cleared. As a result, the magnitude of the noise can be expressed by the length of the period in which the noise is superimposed on the output voltage VOUT.
  • the noise detection result register (REG_NS) 144 stores the count value of the counter 143. For example, when the determination result signal VNS of the window comparator unit 142 is switched from the high level to the low level as a trigger, the count value of the counter circuit 143 at that time is written into the noise detection result register 144.
  • the data processing control unit 10 sets basic control conditions in the basic PWM signal generation unit 130 so that the output voltage VOUT is equal to the target voltage VTGT and the phase difference between the input voltage VIN and the input current IIN is small.
  • a PWM signal VPWM is generated.
  • the control contents for the basic PWM signal generation unit 130 are the same as those in the first embodiment. For example, the basic PWM signal VPWM and the selection signal VSEL are generated at the same timing as in FIG.
  • the data processing control unit 10 controls the pulse signal generation unit 136 to generate the pulse signal VPLS. Specifically, the data processing control unit 10 generates a desired pulse signal VPLS by determining the pulse width of the pulse signal VPLS based on the magnitude of noise detected by the noise detection unit 141.
  • a desired pulse signal VPLS by determining the pulse width of the pulse signal VPLS based on the magnitude of noise detected by the noise detection unit 141.
  • FIG. 8 is a diagram illustrating a timing chart of the pulse signal VPLS_1 according to the second embodiment.
  • the PWM cycle TC and the PWM on period TON are the same as those in FIG.
  • FIG. 8 representatively shows the update timing of various signals and registers in the period T1 according to the second embodiment.
  • a value indicating a duty ratio of 10% is set as an initial value as the setting value CC of the pulse width setting register 138.
  • the count operation of the counter circuit 137 is started when the data processing control unit 10 gives an instruction to start the count operation to the counter circuit 137 as in the first embodiment.
  • the pulse signal VPLS_1 (control signal VGD1) becomes high level.
  • the switching element SW1 is turned on, and the current flowing through the coil L1 and the switching element SW1 varies, so that the output voltage VOUT varies.
  • the window comparator unit 142 of the noise detection unit 141 sets the detection result signal VNS to the high level, and the counter circuit 143 starts measuring time.
  • the window comparator unit 142 switches the detection result signal VNS from the high level to the low level.
  • the counter circuit 143 stops timing and the count value of the counter circuit 143 is written to the noise detection result register 144.
  • the ground comparator unit 142 further issues an interrupt request INT to the data processing control unit 10 (CPU 11).
  • the issued interrupt request INT is input to an interrupt control circuit (not shown), and when the interrupt control circuit outputs an interrupt signal to the data processing control unit 10, the data processing control unit 10 executes interrupt processing.
  • the data processing control unit 10 takes in the data of the noise detection result register 144 (noise amount superimposed on the output voltage VOUT) in the periods T1 and T3, and based on the data, the pulse width (duty) of the pulse signal VPLS_1. Ratio) is set in the pulse width setting register 138. More specifically, the data processing control unit 10 determines the pulse width of the next pulse signal VPLS so that the increase rate of the pulse width of the pulse signal VPLS_1 is small if the amount of noise is larger than the assumed value, and the noise If the amount is smaller than the assumed value, the pulse width of the next pulse signal VPLS is determined so that the increasing rate of the pulse width of the pulse signal VPLS_1 is increased.
  • the reference pulse width of the pulse signal VPLS_1 to be output for the first time is “10%”
  • the reference pulse width of the pulse signal VPLS_1 to be output for the second time is “30%”
  • should be output for the third time Assume that the reference pulse width of the pulse signal VPLS_1 is initially set so that the pulse width increases stepwise, such as “50%”,.
  • the data processing control unit 10 determines that the amount of noise when the switching element SW1 is driven by the pulse signal VPLS_1 (duty ratio 10%) output for the first time in the period T1 is larger than the reference value.
  • a value (for example, 28%) smaller than the reference pulse width “30%” initially set as the pulse width of the pulse signal VPLS_1 to be output for the second time is set in the pulse width setting register 138.
  • the data processing control unit 10 determines that the noise amount of the first pulse signal VPLS_1 is smaller than the reference value, uses the reference pulse width “30%” initially set as the pulse width of the second pulse signal VPLS_1.
  • a larger value (for example, 32%) is set in the pulse width setting register 138.
  • the timing for updating the pulse width setting register 138 is not particularly limited as long as it is a timing before the next one-cycle pulse signal VPLS_1 is generated.
  • FIG. 8 illustrates a case where the pulse width setting register 138 is updated at a timing t23 and a value indicating the duty “28%” is set.
  • the counter circuit 143 stops timing and the count value of the counter circuit 143 is written to the noise detection result register 144.
  • the interrupt request INT is issued, and the data processing control unit 10 starts calculating the pulse width (duty ratio) of the pulse signal VPLS_1. For example, if the amount of noise when the switching element SW1 is driven by the pulse signal VPLS_1 (duty ratio 28%) output for the second time in the period T1 is larger than the reference value, the data processing control unit 10 performs the third time. A value (for example, 48%) smaller than the reference pulse width “50%” initially set as the pulse width of the pulse signal VPLS_1 is set in the pulse width setting register 138.
  • FIG. 8 illustrates a case where the pulse width setting register 138 is updated at a timing t27 and a value indicating the duty ratio “52%” is set. Thereby, after timing t28, a signal having a duty ratio of “52%” is output as the third pulse signal VPLS_1 in the period T1.
  • the subsequent processing is the same as the processing content from timing t24 to t28, and a pulse signal VPLS_1 having a pulse width determined based on the amount of noise is generated until time t2.
  • the pulse signal VPLS_2 is generated by the same control method as in the period T1 described above. For example, in the period T2, if the amount of noise detected by the noise detection unit 141 is larger than the assumed value, the pulse width of the next pulse signal VPLS is calculated so that the rate of decrease of the pulse width of the pulse signal VPLS_2 is reduced, If the amount of noise is smaller than the assumed value, the pulse width of the next pulse signal VPLS_2 is calculated so that the reduction rate of the pulse width of the pulse signal VPLS_2 is increased.
  • the reference pulse width of the pulse signal VPLS_2 to be output the first time is “70%”
  • the reference pulse width of the pulse signal VPLS_2 to be output the second time is “50%”
  • should be output the third time Consider a case where the reference pulse width of the pulse signal VPLS_2 is initially set so that the pulse width decreases stepwise, such as “30%”,.
  • the second time A value (for example, 51%) larger than the reference pulse width “50%” that is initially set as the pulse width of the pulse signal VPLS_2 to be output to is set in the pulse width setting register 138.
  • the data processing control unit 10 determines that the noise amount of the first pulse signal VPLS_2 is smaller than the reference value, the data processing control unit 10 sets a value (for example, 49%) smaller than the reference pulse width “50%” to the pulse width setting register 138. Set to. According to this, it is possible to approach normal PWM control while suppressing the amount of noise.
  • the pulse width reduction rate of the control signals VGD1 and VGD2 (pulse signal VPLS_2) is changed according to the magnitude of the actually measured switching noise.
  • switching noise can be further reduced.
  • the switching element is generated by the pulse signal VPLS whose pulse width changes stepwise in the first period T1 and the last period T3 of the PWM on period TON in the PWM cycle TC.
  • the switching noise can be further reduced by changing the amount of increase and decrease of the pulse width according to the actually measured noise amount, and further reduce the harmonic noise in the switching power supply device. Is possible.
  • the pulse signal VPLS whose pulse width changes stepwise in the first period T1 and the last period T3 of the PWM on period TON in the PWM cycle TC.
  • the configuration for performing the switching control is illustrated, only one of the periods T1 and T3 may be configured to perform the switching control by the pulse signal VPLS.
  • the first period T1 may be driven by the pulse signal VPLS
  • the intermediate period T2 and the last period T3 may be driven by the basic PWM signal VPWM.
  • the first period T1 and the intermediate period T2 may be configured to be switched by the basic PWM signal VPWM and to be switched by the pulse signal VPLS only for the last period T3.
  • the pulse signals VPLS_1 and VPLS_2 may be any signals as long as the period during which the switching elements SW1 and SW2 are turned on in the periods T1 and T3 can be changed in a stepwise manner. It is not limited to changing signals. For example, the switching noise can be reduced even if the pulse signals VPLS_1 and VPLS_2 are signals whose pulse period is increased or decreased in stages.
  • the configuration in which the pulse widths of the pulse signals VPLS_1 and VPLS_2 are updated for each pulse according to the amount of noise is illustrated.
  • the configuration in which the pulse widths of the pulse signals VPLS_1 and VPLS_2 are updated for each PWM cycle TC It may be.
  • the second time based on the amount of noise (for example, the maximum value or average value of the amount of noise during the same period) measured in the period T1 between times t1 and t2 in the first PWM cycle TC.
  • the pulse width of the pulse signal PLS_1 output during the period from time t7 to t8 in the PWM cycle TC is determined.
  • the times t7 to t8 Control may be performed such that the duty ratio of the pulse signal PLS_1 in the period is 5%, 15%, 35%, 55%, and the number of pulses output during the same period is increased by decreasing the duty ratio. According to this, the switching noise generated in the PWM ON period TON in the second PWM cycle TC can be reduced.
  • the case where the PFC circuits 1 and 6 are critical mode PFC circuits is illustrated, but a continuous mode PFC circuit may be used.
  • the voltage converter circuit 3 constituting the PFC circuits 1 and 6 may be a synchronous rectification type, and the rectifier elements D1 and D2 may be constituted by synchronous rectification MOS transistors.
  • the present invention can be widely applied not only to AC / DC converters that convert AC voltage to DC voltage, but also to various switching power supply devices that constitute DC / DC converters.
  • Switching power supply (AC / DC converter) 20 AC power supply VAC AC voltage 1 PFC circuit 2 Rectifier 21 Diode bridge circuit CRCT capacity VIN Input voltage IIN Input current 3 Voltage converter circuit L1A, L1B, L2A, L2B Coil SW1, SW2 Switching element D1, D2 Rectifier COUT Output capacity NSW1 , NSW2 Node 4 Output voltage detection unit R1, R2 Resistance VOUT Output voltage VSEL Detection voltage 5 Control unit 10 Data processing control unit 11 CPU 12 Memory unit 13A, 13B PWM timer unit 14-16 A / D conversion unit DIS1, DIS2, DVS Conversion result VGD1, VGD2 Control signal 130 Basic PWM signal generation unit 131 Signal generation circuit 132, 133 Compare register 134 Counter circuit 135 PWM cycle Setting register 136 Pulse signal generation unit 137 Counter circuit 138 Pulse width setting register 139 Signal generation circuit (PLS_GEN) 140 selection unit VPWM basic PWM signal VPLS, VPLS_1, VPLS_2

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

 本スイッチング電源装置は、PWM制御によってスイッチング素子をオン・オフさせることでコイルに流れる電流を制御し、所望の直流電圧を得る。本スイッチング電源装置は、PWM制御によってスイッチング素子をオンさせるためのPWMオン期間において、当該PWMオン期間の開始直後の第1期間に、PWM周期よりも短い周期であって、パルス幅が段階的に大きくされる第1パルス信号によってスイッチング素子のスイッチングが可能にされる。また、本スイッチング電源装置は、PWMオン期間における第1期間の経過後に、PWM制御に基づくPWM信号によってスイッチング素子のスイッチングが可能にされる。これにより、高調波ノイズを低減させることができる。

Description

スイッチング電源装置、半導体装置、及びAC/DCコンバータ
 本発明は、スイッチング電源装置及びスイッチング電源装置を構成するスイッチング素子を制御するための半導体装置に関し、特にPFC(Power Factor Correction)回路を含むスイッチング電源装置に適用して有効な技術に関する。
 交流電圧を直流電圧に変換するAC/DCコンバータを構成するスイッチング電源装置は、交流電源から供給される入力電圧及び入力電流の位相差に起因する力率の悪化や高調波ノイズの発生を抑制するため、PFC回路が広く用いられている。
 従来、PFC回路を含む種々のスイッチング電源装置は、主にアナログ制御によって実現されていた。例えば、アナログ制御のPFC回路を備えたスイッチング電源装置の従来技術として、特許文献1及び特許文献2に開示がある。
 しかしながら、近年、低コスト化やチューニングの容易化等の要求から、PFC回路を含む種々のスイッチング電源回路は、ディジタル制御を主とした制御方式に代わりつつある。具体的には、PFC回路におけるコイルに流れる電流を制御するためのスイッチング素子(MOSFET等)のオン・オフを制御するコントロール部が、従来のエラーアンプを備えたアナログIC(Integrated Circuit)からマイクロコントローラ(以下、単にマイコンと称する。)等のプログラム処理装置に置き換わりつつある。例えば、ディジタル制御方式のPFC回路を備えたAC/DCコンバータの従来技術として、特許文献3に開示がある。
特開2001-327166号公報 特開2008-312355号公報 特開2008-99440号公報
 上述したPFC回路におけるコントロール部は、PFC回路内の各種の電圧や電流を検出し、その検出結果に基づいて所定の周期のPWM(pulse width modulation)信号を生成する。例えば、アナログ制御方式のPFC回路では、エラーアンプの出力電圧と所定の周期信号(三角波や鋸波等)に基づいて所望のデューティ比(パルス幅)のPWM信号が生成され、ディジタル制御方式のPFC回路では、例えばマイコンにおけるPWMタイマによってCPUの設定条件に応じたデューティ比のPWM信号が生成される。このように生成されたPWM信号に基づいてスイッチング素子のオン・オフが制御されることにより、所望の直流電圧が生成されるとともに力率が改善される。
 上述のようにPWM信号に基づいてスイッチング素子のオン・オフを切り替えたとき、PWM信号の急峻な立ち上がり又は立ち下がりにより、スイッチング素子のオン・オフの切替りタイミングで大きな電流変動が生じ、高調波ノイズが発生する。この高調波ノイズの発生は、力率の低下を招き、AC/DC変換における電力の変換効率を低下させる一因となっている。特に、AC/DCコンバータの扱う電力が大きくなる程、電力の変換効率の低下は顕著となる。
 このような課題を解決するための手段等を以下に説明するが、その他の課題と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
 本願において開示される実施の形態のうち代表的なものの概要を簡単に説明すれば下記のとおりである。
 すなわち、本スイッチング電源装置は、PWM制御によってスイッチング素子をオン・オフさせることでコイルに流れる電流を制御し、所望の直流電圧を得る。本スイッチング電源装置は、PWM制御によってスイッチング素子をオンさせるためのPWMオン期間において、当該PWMオン期間の開始直後の第1期間に、PWM周期よりも短い周期であって、パルス幅が段階的に大きくされる第1パルス信号によってスイッチング素子のスイッチングが可能にされる。また、本スイッチング電源装置は、PWMオン期間における第1期間の経過後に、PWM制御に基づくPWM信号によってスイッチング素子のスイッチングが可能にされる。
 本願において開示される実施の形態のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。
 すなわち、本スイッチング電源装置によれば、高調波ノイズを低減させることができる。
図1は、実施の形態1に係るAC/DCコンバータとしてのディジタル制御方式のスイッチング電源装置を例示するブロック図である。 図2は、実施の形態1に係るPWMタイマ部の内部構成を例示するブロック図である。 図3は、PWMタイマ部13Aによって生成される各種信号のタイミングチャートを例示する。 図4は、実施の形態1に係るPWMタイマ部によって生成されるパルス信号VPLS_1のタイミングチャートを例示する図である。 図5は、実施の形態1に係るスイッチング電源装置による高調波ノイズの低減効果の一例を示す図である。 図6は、実施の形態2に係るAC/DCコンバータとしてのディジタル制御方式のスイッチング電源装置を例示するブロック図である。 図7は、実施の形態2に係るPWMタイマ部の内部構成を例示するブロック図である。 図8は、実施の形態2に係るPWMタイマ部によって生成されるパルス信号VPLS_1のタイミングチャートを例示する図である。
1.実施の形態の概要
 先ず、本願において開示される代表的な実施の形態について概要を説明する。代表的な実施の形態についての概要説明で括弧を付して参照する図面中の参照符号はそれが付された構成要素の概念に含まれるものを例示するに過ぎない。
 〔1〕(PWMオン期間の開始直後に、PWM周期より短い周期で段階的にデューティ比が増加するパルス信号によってスイッチング制御するスイッチング電源装置)
 代表的な実施の形態に係るスイッチング電源装置(100、200)は、PWM制御によってスイッチング素子(SW1、SW2)をオン・オフさせることでコイル(L1A、L2A)に流れる電流を制御し、所望の直流電圧(VOUT)を得る。本スイッチング電源装置は、PWM制御によってスイッチング素子をオンさせるためのPWMオン期間(TON)において、当該PWMオン期間が開始された直後の第1期間(T1)に、PWM制御に基づくPWM周期(TC)よりも短い周期であって、パルス幅が段階的に大きくされる第1パルス信号(VPLS_1)による前記スイッチング素子のスイッチング制御が可能にされる。また、前記スイッチング電源装置は、前記第1期間の経過後(T2、(T3))に、前記PWM制御に基づくPWM信号(VPWM)による前記スイッチング素子のスイッチング制御が可能にされる。
 これによれば、PWMオン期間の開始タイミングにおいて、スイッチング素子のオンする時間が徐々に大きくなるように制御されるので、従来のようにPWM信号によって単純にスイッチング素子をオン・オフさせる制御に比べて、上記PWMオン期間の開始タイミングにおけるコイルの急激な電流変動を抑えることができる。これにより、上記PWMオン期間の開始タイミングにおいて発生する高調波ノイズを小さくすることができる。
 〔2〕(第1パルス信号のパルス幅の増加率をノイズ量によって可変させる)
 項1のスイッチング電源装置(200)において、前記第1期間における前記第1パルス信号のパルス幅の増加率は、前記直流電圧に重畳されるスイッチングノイズが基準値よりも大きい場合に小さくなるように制御され、前記スイッチングノイズが基準値よりも小さい場合に大きくなるように制御される。
 これによれば、PWM制御によるPWMオン期間の開始タイミングにおいて発生する高調波ノイズを更に小さくすることができる。
 〔3〕(第1パルス信号のパルス幅を直前のスイッチングノイズに基づいて決定する)
 項2のスイッチング電源装置は、前記第1期間において直前に出力された前記第1パルス信号によって前記スイッチング素子をスイッチングすることで生じた前記スイッチングノイズが前記基準値よりも大きい場合には、次に出力すべき前記第1パルス信号のパルス幅を基準のパルス幅よりも小さくする。また、本スイッチング電源装置は、前記スイッチングノイズが前記基準値よりも小さい場合には、次に出力すべき前記第1パルス信号のパルス幅を前記基準のパルス幅よりも大きくする。
 これによれば、スイッチングノイズが小さくなるように第1パルス信号のパルス幅の増加率を変更する制御を容易に実現することができる。
 〔4〕(出力電圧が所定範囲外にある期間の長さでノイズ量を判定する)
 項2又は3のスイッチング電源装置は、前記直流電圧が所定の電圧範囲(W)から外れている期間の長さを前記スイッチングノイズの大きさとする。
 これによれば、スイッチングノイズの大きさを測定することが容易となる。
 〔5〕(PWMオン期間の終了直前に、PWM周期より短い周期で段階的にデューティ比が増加するパルス信号によってスイッチング制御する)
 項1乃至4の何れかのスイッチング電源装置は、前記PWMオン期間における前記第1期間の経過後の第2期間(T2)に、前記PWM信号による前記スイッチング素子のスイッチング制御が可能にされる。本スイッチング電源装置は、前記第2期間が経過してから前記PWMオン期間が終了するまでの第3期間(T3)に、前記PWM周期よりも短い周期であって、段階的にパルス幅が小さくされる第2パルス信号(VPLS)による前記スイッチング素子のスイッチング制御が可能にされる。
 これによれば、PWM制御による前記PWMオン期間の終了タイミングにおいて、スイッチング素子のオンする時間が徐々に小さくなるように制御されるので、従来のようにPWM信号によって単純にスイッチング素子をオン・オフさせる制御に比べて、上記PWMオン期間の終了タイミングにおけるコイルの急激な電流変動を抑えることができる。これにより、上記PWMオン期間の終了タイミングにおいて発生する高調波ノイズを小さくすることができる。
 〔6〕(第2パルス信号のパルス幅の減少率をノイズ量によって可変にする)
 項5のスイッチング電源装置において、前記第3期間における前記第2パルス信号のパルス幅の減少率は、前記直流電圧に重畳されるスイッチングノイズが基準値よりも大きい場合に小さくなるように制御され、前記スイッチングノイズが基準値よりも小さい場合に大きくなるように制御される。
 これによれば、PWM制御に係る前記PWMオン期間の終了タイミングにおいて発生する高調波ノイズを更に小さくすることが可能となる。
 〔7〕(第2パルス信号のパルス幅を直前のスイッチングノイズに基づいて決定する)
 項6のスイッチング電源装置は、前記第3期間において直前に出力された前記第2パルス信号によって前記スイッチング素子をスイッチングすることで生じた前記スイッチングノイズが基準値よりも大きい場合には、次に出力すべき前記第2パルス信号のパルス幅を基準とされるパルス幅よりも大きくする。更に、本スイッチング電源装置は、前記スイッチングノイズが前記基準値よりも小さい場合には、次に出力すべき前記第2パルス信号のパルス幅を前記基準とされるパルス幅よりも小さくする。
 これによれば、スイッチングノイズが小さくなるように第2パルス信号のパルス幅の減少率を変化させる制御を容易に実現することができる。
 〔8〕(PWMオン期間の開始直後に、PWM周期より短い周期で段階的にデューティ比が増加するパルス信号を出力する半導体装置)
 代表的な実施の形態に係る半導体装置(5、7)は、入力電圧(VIN)を目標とする直流電圧(VOUT)に変換するとともに力率を改善するためのスイッチング電源装置(100、200)におけるスイッチング素子(SW1、SW2)のオン・オフを制御するための半導体装置である。本半導体装置は、前記スイッチング素子のオン・オフを制御するための制御信号(VGD1、VGD2)を生成するタイマ部(13A、13B、23A、23B)を有する。本半導体装置は更に、前記出力電圧が前記目標とする直流電圧と等しく且つ前記入力電圧と前記スイッチング電源装置に入力される入力電流との位相差が小さくなるように前記スイッチング素子をオンさせるためのPWMオン期間(TON)を算出するとともに、前記算出結果に基づいて前記タイマ部を制御するデータ処理制御部(10)を有する。前記データ処理制御部は、前記タイマ部を制御することにより、前記算出したPWMオン期間の開始直後の第1期間(T1)に、前記算出したPWMオン期間に応じたPWM信号(VPWM)よりも周期が短く且つ段階的にパルス幅が大きくなる第1パルス信号(VPLS_1)を前記制御信号として出力可能にする。更に、前記データ処理制御部は、前記第1期間の経過後に、前記制御信号として前記PWM信号を出力可能にする。
 これによれば、PWM制御によるスイッチング素子のPWMオン期間の開始タイミングにおいて、スイッチング素子のオンする時間が徐々に大きくなるような制御信号が生成されるので、従来のように、スイッチング素子を制御するためのPWM信号を単純に生成する半導体装置に比べて、PWMオン期間の開始タイミングにおけるコイルの急激な電流変動を抑えることができる。これにより、PWMオン期間の開始タイミングにおいて発生する高調波ノイズを小さくすることが可能となる。
 〔9〕(PWMオン期間の終了直前に、PWM周期より短い周期で段階的にデューティ比が減少するパルス信号によってスイッチング素子を駆動する)
 項8の半導体装置において、前記データ処理制御部は、前記タイマ部を制御することにより、前記算出したPWMオン期間の終了直前の第2期間に、前記PWM信号よりも周期が短く且つ段階的にパルス幅が小さくなる第2パルス信号(VPLS_2)を前記制御信号として出力可能にする。
 これによれば、PWM制御によるスイッチング素子のPWMオン期間の終了タイミングにおいて、スイッチング素子のオンする時間が徐々に小さくなるように駆動信号を生成するので、従来のように、PWM信号を単純に生成する半導体装置に比べて、PWMオン期間の終了タイミングにおけるコイルの急激な電流変動を抑えることができる。これにより、PWMオン期間の終了タイミングにおいて発生する高調波ノイズを小さくすることができる。
 〔10〕(出力電圧が所定範囲外にある期間をカウントし、カウント値に基づいて次の第1パルス信号のパルス幅を決定する)
 項8又は9の半導体装置(7)は、前記直流電圧が所定の電圧範囲(W)から外れているか否かを判定するコンパレータ部(142)と、前記直流電圧が前記所定の電圧範囲から外れている期間を計時する計時部(143)と、を更に有する。前記データ処理制御部は、前記第1期間において直前に出力された前記第1パルス信号によって前記スイッチング素子をスイッチングしたときの前記計時部による計時結果が基準値よりも大きい場合には、次に出力すべき前記第1パルス信号のパルス幅を基準とされるパルス幅よりも小さくする。また、前記データ処理制御部は、前記計時結果が基準値よりも小さい場合には、次に出力すべき前記第1パルス信号のパルス幅を当該基準とされるパルス幅よりも大きくする。
 これによれば、PWMオン期間の開始タイミングにおいて発生する高調波ノイズを更に小さくすることが可能となる。
 〔11〕(出力電圧が所定範囲外にある期間をカウントし、カウント値に基づいて次の第2パルス信号のパルス幅を決定する)
 項10の半導体装置において、前記データ処理制御部は、前記第2期間において直前に出力された前記第2パルス信号によって前記スイッチング素子をスイッチングしたときの前記計時部による計時結果が基準値よりも大きい場合には、次に出力すべき前記第2パルス信号のパルス幅を基準とされるパルス幅よりも大きくする。また、前記データ処理制御部は、前記計時結果が基準値よりも小さい場合には、次に出力すべき前記第2パルス信号のパルス幅を当該基準とされるパルス幅よりも小さくする。
 これによれば、PWMオン期間の終了タイミングにおいて発生する高調波ノイズを更に小さくすることが可能となる。
 〔12〕(基本PWM信号と第1及び第2パルス信号を期間に応じて切り替えて出力する)
 項11の半導体装置(7)において、前記タイマ部(23A、23B)は、前記データ処理制御部によって前記算出されたPWMオン期間に応じて前記PWM信号を生成する第1信号生成部(130)と、前記第1パルス信号及び前記第2パルス信号を生成する第2信号生成部(136)と、を有する。前記タイマ部は更に、前記第1期間に前記第2信号生成部によって生成された前記第1パルス信号を出力し、前記第2期間に前記第2信号生成部によって生成された前記第2パルス信号を出力し、前記第1期間及び前記第2期間以外の期間に、前記第1信号生成部によって生成された前記PWM信号を出力する信号選択部(140)を有する。
 これによれば、PWMオン期間における最初と最後の期間のみ、PWM周期よりも短い周期でデューディ比が変化するような制御信号を生成することが容易となる。
 〔13〕(AC/DCコンバータ)
 代表的な実施の形態に係るAC/DCコンバータ(100、200)は、交流電圧(VAC)を整流して出力する整流回路(3)を有する。前記AC/DCコンバータは更に、前記整流回路によって整流された電圧(VIN)を入力し、スイッチング素子(SW1、SW2)によってコイル(L1A、L2A)に流れる電流を制御することにより、前記入力された電圧を目標とする直流電圧(VTGT)に変換して出力するための電圧コンバータ回路(3)を有する。本AC/DCコンバータは更に、制御部(5、7)を有する。前記制御部は、前記電圧コンバータ回路の出力電圧(VOUT)が前記目標とする直流電圧と等しく且つ前記電圧コンバータ回路の入力電圧(VIN)と入力電流(IIN)との位相差が小さくなるように前記スイッチング素子をオンさせるためのPWMオン期間(TON)を算出する。前記制御部は、前記PWMオン期間の算出結果に基づいて前記スイッチング素子のオン・オフを制御するための制御信号(VGD1、VGD2)を生成する。前記制御部は、更に、前記PWMオン期間の開始直後の第1期間(T1)に、前記算出したPWMオン期間に応じたPWM信号(VPWM)よりも周期が短く且つ段階的にパルス幅が大きくなる第1パルス信号(VPLS_1)を前記制御信号として出力することが可能にされる。また、前記制御部は、前記第1期間の経過後に、前記制御信号として前記PWM信号を出力することが可能にされる。
 これによれば、AC/DCコンバータのPWMオン期間の開始タイミングにおいて、スイッチング素子のオンする時間が徐々に大きくなるように制御されるので、従来のようにPWM信号によって単純にスイッチング素子をオン・オフさせる制御に比べて、PWMオン期間の開始タイミングにおけるコイルの急激な電流変動を抑えることができる。これにより、AC/DCコンバータのPWMオン期間の開始タイミングにおいて発生する高調波ノイズを小さくすることができる。
 〔14〕(第1パルス信号のパルス幅を直前に生じたスイッチングノイズに基づいて決定する)
 項13のAC/DCコンバータ(200)において、前記制御部(7)は、前記第1期間において直前に出力された前記第1パルス信号によって前記スイッチング素子をスイッチングすることで生じた前記スイッチングノイズが基準値よりも大きい場合には、次に出力すべき前記第1パルス信号のパルス幅を基準とされるパルス幅よりも小さくする。前記制御部は、前記スイッチングノイズが前記基準値よりも小さい場合には、次に出力すべき前記第1パルス信号のパルス幅を当該基準とされるパルス幅よりも大きくする。
 これによれば、PWMオン期間の開始タイミングにおいて発生する高調波ノイズを更に小さくすることが可能となる。
 〔15〕(PWMオン期間の終了直前に、PWM周期より短い周期で段階的にデューティ比が増加するパルス信号によってスイッチング制御する)
 項13又は14のAC/DCコンバータにおいて、前記制御部(5、7)は、前記算出したPWMオン期間の終了直前の第2期間(T3)に、前記PWM信号よりも周期が短く且つ段階的にパルス幅が小さくなる第2パルス信号(VPLS_2)を前記制御信号として出力することが可能にされる。
 これによれば、PWM制御によるスイッチング素子のPWMオン期間の終了タイミングにおいて、スイッチング素子のオンする時間が徐々に小さくなるように駆動信号を生成するので、従来のように、PWM信号を単純に生成する半導体装置に比べて、PWMオン期間の終了タイミングにおけるコイルの急激な電流変動を抑えることができる。これにより、PWMオン期間の終了タイミングにおいて発生する高調波ノイズを小さくすることができる。
 〔16〕(第2パルス信号のパルス幅を直前に生じたスイッチングノイズに基づいて決定する)
 項15のAC/DCコンバータにおいて、前記制御部(6)は、前記第2期間において直前に出力された前記第2パルス信号によって前記スイッチング素子をスイッチングすることで生じた前記スイッチングノイズが基準値よりも大きい場合には、次に出力すべき前記第2パルス信号のパルス幅を基準とされるパルス幅よりも大きくする。前記制御部は、前記スイッチングノイズが前記基準値よりも小さい場合には、次に出力すべき前記第2パルス信号のパルス幅を当該基準とされるパルス幅よりも小さくする。
 これによれば、PWMオン期間の終了タイミングにおいて発生する高調波ノイズを更に小さくすることが可能となる。
 〔17〕(マイクロコントローラ)
 項13乃至16のAC/DCコンバータにおいて、前記制御部は、マイクロコントローラを含んで構成される。
 2.実施の形態の詳細
 実施の形態について更に詳述する。なお、発明を実施するための形態を説明するための全図において、同一の機能を有する要素には同一の符号を付して、その繰り返しの説明を省略する。
 ≪実施の形態1≫
 図1は、実施の形態1に係るAC/DCコンバータとしてのディジタル制御方式のスイッチング電源装置を例示するブロック図である。同図に示されるスイッチング電源装置100は、PWM制御によってスイッチング素子SW1、SW2をオン・オフさせることにより、交流電源20から供給された交流電力を所望の直流電圧に変換するとともに力率を改善する。スイッチング電源装置100は、例えば、モータ制御システムの一部として、エアコンや自動車等に適用することができる。
 前述したように、PWM制御によってスイッチング素子のオン・オフを単純に切り替えた場合、スイッチング素子のオン・オフの切り替り時に大きな電流変動が生じ、高調波ノイズが発生する。そこで、本スイッチング電源装置100では、PWM制御によってスイッチング素子SW1、SW2をオンさせるためのPWMオン期間の最初と最後の短期間に、PWM周期よりも短い周期であってパルス幅が段階的に変化するパルス信号によってスイッチング素子SW1、SW2を制御することにより、高調波ノイズを低減させる。以下、スイッチング電源装置100の具体的な構成について詳細に説明する。
 図1に示されるように、スイッチング電源装置100は、整流部2とPFC回路1を含んで構成される。
 交流電源20は、特に制限されないが、商用交流電源であり、50Hz又は60Hzの正弦波の交流電圧VAC(例えば100V)を出力する。整流部2は、交流電源20から供給された交流電圧VACを整流して出力する。具体的に、整流部2は、ダイオードブリッジ回路21と、容量CRCTとを含んで構成される。ダイオードブリッジ回路21は、例えば複数のダイオードを組み合わせて構成される全波整流回路である。ダイオードブリッジ回路21によって整流された正の電圧は、容量CRCTによって平滑化される。
 PFC回路1は、臨界モードのPFC回路であって、例えば、電圧コンバータ回路3と、出力電圧検出部4と、制御部5とを含んで構成される。
 電圧コンバータ回路3は、整流回路2によって整流された電圧を入力し、スイッチング素子によってコイルに流れる電流を制御することにより、入力電圧VINを目標とする直流電圧に変換して出力する。電圧コンバータ回路3は、特に制限されないが、コイルやスイッチング素子等を2重化したインターリーブ方式の昇圧型のPFC回路を実現するように構成され、例えば、コイルL1A、L1B、L2A、L2B、スイッチング素子SW1、SW2、整流素子D1、D2、及び出力容量COUTを含んで構成される。電圧コンバータ回路3は、例えば100Vの整流電圧を300Vの直流電圧に変換する。
 以下、電圧コンバータ回路3の入力電圧を参照符号VINと表記し、出力電圧を参照符号VOUTと表記し、電圧コンバータ回路3の入力電流を参照符号INNと表記する。また、参照VINやVOUT等の電圧を表す参照符号は、その電圧が供給されるノードをも表すものとする。
 コイルL1Aは、その一端がノードVINに接続され、その他端がノードNSW1に接続される。コイルL1Bは、コイルL1Aに流れる電流を検出するための回路素子であり、コイルL1Aと磁気的に結合するように配置される。コイルL2Aは、その一端がノードVINに接続され、その他端がノードNSW2に接続される。コイルL2Bは、コイルL2Aに流れる電流を検出するための回路素子であり、コイルL2Aと磁気的に結合するように配置される。
 スイッチング素子SW1は、ノードNSW1とグラウンドノードとの間に設けられ、コイルL1Aに流れる電流を制御する。スイッチング素子SW2は、ノードNSW2とグラウンドノードとの間に設けられ、コイルL2Aに流れる電流を制御する。特に制限されないが、スイッチング素子SW1、SW2は、例えば高耐圧のMOSトランジスタやIGBT(Insulated Gate Bipolar Transistor)等である。同図には、一例としてNチャネル型のMOSトランジスタによってスイッチング素子SW1、SW2を実現した場合が例示される。
 スイッチング素子SW1は、制御部5から出力された制御電圧VGD1によってオン・オフが制御される。スイッチング素子SW2は、制御部5から出力された制御電圧VGD2によってオン・オフが制御される。例えば、スイッチング素子SW1は、制御電圧VGD1が第1論理レベル(例えば、ハイ(High)レベル)である場合にオンし、制御電圧VGD1が第2論理レベル(例えば、ロー(Low)レベル)である場合にオフする。スイッチング素子SW2についても同様である。なお、図1では、スイッチング素子SW1、SW2が制御部5からの制御電圧VGD1、VGD2によって直接スイッチング制御する構成が例示されているが、スイッチング素子SW1、SW2と制御部5との間にゲートドライバ回路を設け、当該ゲートドライバ回路を介してスイッチング素子SW1、SW2をスイッチング制御する構成としても良い。
 整流素子D1は、ノードNSW1と出力ノードVOUTの間に設けられ、スイッチング素子SW1がオフしている期間にノードNSW1と出力ノードVOUTとの間に電流経路を形成する。整流素子D2は、ノードNSW2と出力ノードVOUTの間に設けられ、スイッチング素子SW2がオフしている期間にノードNSW2と出力ノードVOUTの間に電流経路を形成する。整流素子D1、D2は、例えばダイオードであり、アノードがノードNSW1(NSW2)側に接続され、カソードが出力ノードVOUT側に接続される。出力容量COUTは、出力ノードVOUTとグラウンドノードとの間に接続され、出力電圧VOUTを安定させる。
 出力電圧検出部4は、出力電圧VOUTを検出し、検出電圧VSENを制御部5に供給する。出力電圧検出部4は、例えば、出力ノードVOUTとグラウンドノードとの間に直列に接続された抵抗R1、R2を含んで構成され、出力電圧VOUTを抵抗R1、R2によって分圧した電圧を検出電圧VSENとする。抵抗比R1/R2を例えば“1/59”とすることで、“300V”の出力電圧VOUTから“5V”の検出電圧VSENを生成する。なお、同図では、出力電圧検出部4を制御部5の外部に設けているが、制御部5の内部に含めても良い。
 制御部5は、電圧コンバータ回路3の出力電圧VOUTが目標電圧と等しく、且つ入力電圧VINと入力電流IINとの位相差が小さくなるように、制御電圧VGD1、VGD2を生成する。制御部5は、特に制限されないが、公知のCMOS集積回路の製造技術によって1個の単結晶シリコンのような半導体基板に形成された半導体集積回路によって構成される。制御部5は、例えば、マイコン(MCU)やDSP(Digital Signal Processor)等のプログラム処理装置である。なお、制御部5は、上記のように1チップ構成で実現しても良いし、マルチチップ構成で実現しても良く、その構成に特に制限はない。
 制御部5は、例えば、A/D変換部(ADC)14~16、データ処理制御部(CNT)10、PWMタイマ部(PWM_TMR)13A、13B、及び図示されない外部インタフェース回路等を含んで構成される。
 A/D変換部16は、例えばPWMタイマ部13A、13Bから出力されたA/D変換開始信号に応じて、検出電圧VSENをサンプリングし、データ処理制御部10によって設定された条件に従って当該サンプリングした電圧をディジタル信号に変換することで、変換結果DVSを生成する。これにより、出力電圧VOUTの情報が得られる。
 A/D変換部14は、例えばPWMタイマ部13Aから出力されたA/D変換開始信号に応じて、コイルL1Aと磁気的に結合されたコイルL1Bに流れる電流をサンプリングし、データ処理制御部10によって設定された条件に従って当該サンプリングした電流をディジタル信号に変換することで変換結果DIS1を生成する。これにより、コイルL1Aに流れる電流の情報が得られる。同様に、A/D変換部15は、例えばPWMタイマ部13Bから出力されたA/D変換開始信号に応じて、コイルL1Bに流れる電流をサンプリングし、ディジタル信号に変換することで変換結果DIS2を生成する。これにより、コイルL2Aに流れる電流の情報が得られる。
 データ処理制御部10は、各種の演算処理を行い、制御部5内の各機能部の統括的な制御を行う。データ処理制御部10は、例えば、CPU11とメモリ部(MRY)12とを含んで構成される。メモリ部12は、プログラムが格納された不揮発性のメモリ(例えば、ROM(Read Only Memory)やフラッシュメモリ等)や揮発性のメモリ(RAM:Random Access Memory)、各種レジスタ等を含む。CPU11がRAM等に格納されたプログラムを実行することにより、各種の演算処理及び制御が実現される。
 データ処理制御部10は、A/D変換部14~16による変換結果DIS1、DIS2、DVSに基づいて制御信号VGD1、VGD2のパルス幅を決定するための演算処理を実行し、その処理結果に基づいてPWMタイマ部13を制御することにより、所望の制御信号VGD1、VGD2を生成する。具体的には、データ処理制御部10は、出力電圧VOUTが目標電圧VTGTと等しく且つ入力電圧VINと入力電流IINとの位相差が小さくなるように、スイッチング素子SW1、SW2をオンさせるためのPWMオン期間を算出し、算出結果に応じた制御条件をPWMタイマ部13に設定する。
 より具体的には、データ処理制御部10は、A/D変換部16による変換結果DVSに基づいて、出力電圧VOUTの現在値と目標電圧VTGTとの差分を算出し、その差分が小さくなるように、スイッチ素子SW1、SW2をオンさせるためのPWMオン期間TONを決定する。例えば、出力電圧VOUTが目標電圧VTGTより小さい場合、PWMオン期間TONを長くすることで出力電圧VOUTを上昇させる。一方、出力電圧VOUTが目標電圧VTGTよりも大きい場合、スイッチ素子SW1、SW2のPWMオン期間を短くすることで出力電圧VOUTを低下させる。また、データ処理制御部10は、A/D変換部14による変換結果DIS1に基づいてコイルL1Aに流れる電流を監視し、その電流がゼロ(0)になるタイミングを検出して、スイッチング素子SW1をオンさせるタイミングを決定する。同様に、A/D変換部15による変換結果DIS2に基づいてコイルL2Aに流れる電流を監視し、その電流がゼロになるタイミングを検出して、スイッチング素子SW2をオンさせるタイミングを決定する。
 データ処理制御部10は、上記のように算出したPWMオン期間TONと上記のように決定したスイッチ素子SW1、SW2をオンさせるタイミングとに基づいて、所望のPWM信号を生成するための制御条件を決定し、PWMタイマ部13A、13Bに設定する。
 PWMタイマ部13Aは、データ処理制御部10によって設定された制御条件に従って制御信号VGD1を生成する。同様に、PWMタイマ部13Bは、データ処理制御部10によって設定された制御条件に従って制御信号VGD2を生成する。
 なお、本実施の形態では、PWMタイマ部13AとPWMタイマ部13Bとは同一の回路構成とされ、夫々の動作(カウンタによるカウント動作や各種レジスタの更新等)が半周期ずれたタイミング(位相がπずれたタイミング)で制御される。これにより、生成された制御信号VGD1と制御信号VGD2とは、位相が“π”ずれた信号となる。
 図2に、PWMタイマ部13Aの内部構成を例示する。なお、上述したように、PWMタイマ13BはPWMタイマ13Aと同一の構成とされるため、代表的にPWMタイマ13Aについて詳細に説明する。
 同図に示されるように、PWMタイマ部13Aは、制御信号VGD1を生成するための機能部として、基本PWM信号生成部130、パルス信号生成部136、及び選択部(SEL)140を備える。
 基本PWM信号生成部130は、データ処理制御部10によって設定された制御条件に従って、パルス幅変調された信号VPWMを生成する。基本PWM信号生成部130は、例えば、信号生成回路(PWM_GEN)131、コンペアレジスタ(REG_CMPA)132、コンペアレジスタ(REG_CMPB)133、PWM周期設定レジスタ(REG_TC)135、及びカウンタ回路(CNTR_A)134を含む。
 PWM周期設定レジスタ135は、データ処理制御部10によって、PWM制御に基づくPWM周期TCの指定値が設定される。特に制限されないが、PWM周期TCは数十μs~数百μsとされ、基本PWM信号VPWMは、例えば数kHz~数十kHzの信号とされる。
 カウンタ回路134は、PWM周期設定レジスタ135の設定値に従って、入力された基準クロック信号をカウントするカウント動作を行う。カウンタ回路134によるカウント動作の開始及び停止は、データ処理制御部10からの指示によって制御される。カウンタ回路134は、例えば、アップカウントとダウンカウントをPWM周期設定レジスタ135で指定された周期TC(数十μs~数百μs)で繰り返し実行するアップ・ダウンカウンタとして動作し、そのカウント値30は周期が一定の三角波状になる。なお、カウンタ回路134によるカウント対象の基準クロック信号は、例えば、制御部5の内部又は外部に設けられた図示されないクロック信号生成部から供給され、その発振周波数は例えば数MHz~数十MHzとされる。
 コンペアレジスタ132は、データ処理制御部10によって算出されたPWMオン期間TONの指定値、すなわち基本PWM信号VPWMのデューティ比の指定値が設定される。コンペアレジスタ133は、後述するパルス信号VPLSを出力させる期間T1、T3の長さを表す指定値が設定される。コンペアレジスタ132の設定値を“CA”、コンペアレジスタ133の設定値を“CB”と表記する。なお、CA<CBである。
 信号生成回路131は、カウンタ回路134のカウント値30と各種レジスタ132、133、134の設定値とを比較することにより、基本PWM信号VPWMを生成するとともに、選択信号VSELやA/D変換部14、16に対するA/D変換開始信号を出力する。
 具体的には、信号生成回路131は、カウンタ回路134のカウント値30がコンペアレジスタ132の設定値CAよりも小さい期間に基本PWM信号VPWMを例えばローレベルにし、カウント値30がコンペアレジスタ132の設定値CAよりも大きい期間に基本PWM信号VPWMを例えばハイレベルにする。これにより、コンペアレジスタ132の設定値CAに応じたデューティ比(PWMオン期間TON)の基本PWM信号VPWMが生成される。また、信号生成回路131は、カウンタ回路134のカウント値30がコンペアレジスタ132の設定値CAよりも大きくコンペアレジスタ133の設定値CBよりも小さい期間に、選択信号VSELをアサート(例えばハイレベル)し、カウント値30がコンペアレジスタ133の設定値CBよりも大きい期間に、選択信号VSELをネゲート(例えばローレベル)する。
 パルス信号生成部136は、データ処理制御部10によって設定された制御条件に従って、PWM周期TCよりも短い周期であってパルス幅が段階的に変化するパルス信号VPLSを生成する。パルス信号生成部136は、例えば、カウンタ回路(CNTR_B)137、パルス幅設定レジスタ(REG_PW)138、及び信号生成回路(PLS_GEN)139を含む。
 カウンタ回路137は、データ処理制御部10による設定条件に従って、入力された基準クロック信号をカウントするカウント動作を行う。カウンタ回路137は、例えば、データ処理制御部10によって設定された指定値までカウントアップしたらカウント値をクリアするとともに、再度指定値までカウントアップする動作を繰り返すアップカウンタとして動作し、そのカウント値は周期が一定の鋸波状になる。カウンタ回路137のカウント周期は、前述のカウンタ回路134のカウント周期(PWM周期TC)よりも小さくされる。なお、カウンタ回路137によるカウント対象の基準クロック信号は、カウンタ回路134と同様に、図示されないクロック信号生成部から供給される。
 パルス幅設定レジスタ138は、パルス信号VPLSのパルス幅(デューティ比)を指示する値が設定される。以下、パルス幅設定レジスタ138の設定値を“CC”と表記する。
 信号生成回路139は、カウンタ回路137のカウント値40とパルス幅設定レジスタ138の設定値CCとを比較することにより、パルス信号VPLSを生成する。例えば、信号生成回路139は、カウンタ回路137のカウント値40が設定値CCよりも小さい場合にパルス信号VPLSを例えばハイレベルにし、カウント値40が設定値CCよりも大きい場合に、パルス信号VPLSを例えばローレベルにする。これにより、パルス幅設定レジスタ138の設定値CCに応じたデューティ比のパルス信号VPLSが生成される。詳細は後述するが、パルス幅設定レジスタ138の設定値CCは、データ処理制御部10によってカウンタ回路137のカウント周期毎に逐次更新される。
 選択部140は、選択信号VSELに基づいて、基本PWM信号VPWMとパルス信号VPLSの何れか一方を選択し、制御信号VGD1として出力する。例えば、選択信号VSELがアサートされている期間はパルス信号VPLSを制御信号VGD1として出力し、選択信号VSELがネゲートされている期間は基本PWM信号VPWMを制御信号VGD1として出力する。
 図3に、PWMタイマ部13Aによって生成される各種信号のタイミングチャートを例示する。同図には、2周期分の制御信号VGD1が示される。最初の一周期では、基本PWM信号のデューティ比(PWM制御に基づくPWMオン期間TON)が70%とされ、次の一周期では、基本PWM信号のデューティ比が65%とされる場合が例示されている。
 同図に示されるように、時刻t0において、データ処理制御部10がカウンタ回路134に対してカウント動作開始の指示を与えることにより、カウンタ回路134がアップカウントを開始する。時刻t1において、カウンタ回路134のカウント値30がコンペアレジスタ132の設定値CA(例えば基本PWM信号VPWMのデューティ比70%に対応する値)と一致したら、信号生成回路131は、基本PWM信号VPWMをローレベルからハイレベルに切り替えるとともに、選択信号VSELをアサートする(例えばハイレベルにする)。
 次に、時刻t2において、カウンタ回路134のカウント値30がコンペアレジスタ133の設定値CBと一致したら、信号生成回路131は、基本PWM信号VPWMのハイレベルを保持したまま、選択信号VSELをネゲートする(例えばローレベルにする)。なお、特に制限されないが、同図では、コンペアレジスタ133の設定値CBを設定値CA(デューティ比70%)よりも大きいデューティ比72%に設定した場合が例示されている。コンペアレジスタ133の設定値CBは、想定されるスイッチングノイズの大きさに応じて種々変更可能である。例えば、スイッチングノイズが大きいと想定される場合には、設定値CBを例えばデューティ比73%に対応する値に設定し、スイッチングノイズが小さいと想定される場合には、設定値CBを例えばデューティ比71%に対応する値に設定することも可能である。
 一方、時刻t1から時刻t2までの期間T1において、パルス信号生成部136によってパルス信号VPLSが生成される。
 具体的には、期間T1において、カウンタ回路137がアップカウント動作を繰り返し実行し、そのカウント周期毎にパルス幅設定レジスタ138の設定値が更新される。例えば、パルス信号VPLSのデューティ比が10%、30%、50%、70%・・・と段階的に大きくなるように、パルス幅設定レジスタ138の設定値CCがカウント周期毎に更新される。これにより、期間T1において、PWM周期TCよりも短い周期であってパルス幅が段階的に大きくされるパルス信号VPLS_1が生成される。
 ここで、パルス信号VPLSの具体的な生成方法について図4を用いて詳細に説明する。
 図4は、実施の形態1に係るPWMタイマ部によって生成されるパルス信号VPLS_1のタイミングチャートを例示する図である。同図には、図3における時刻t1から時刻t2までの期間T1における各種信号及びレジスタの更新タイミングが例示されている。なお、同図では、パルス幅設定レジスタ138の設定値CCとして、デューティ比10%を指示する値が初期値として設定されているものとする。
 同図に示されるように、時刻t1において、データ処理制御部10がカウンタ回路137に対してカウント動作開始の指示を与えることにより、カウンタ回路137がカウント動作を開始する。このとき、カウンタ回路137のカウント値40がパルス幅設定レジスタ138の設定値CCよりも低いため、パルス信号VPLSはハイレベルとなる。その後、時刻t11において、カウンタ回路137のカウント値40がパルス幅設定レジスタ138の設定値CCと一致すると、パルス信号VPLSがローレベルに切り替わる。その後、時刻t13においてカウンタ回路137のカウント値が最大値に到達すると、カウンタ回路137のカウント値がクリアされ、カウンタ回路137は再度アップカウントを開始する。これにより、時刻t1から時刻t3までの期間に、カウンタ回路137のカウント周期と同一の周期であって、デューティ比が10%のパルス信号VPLS_1が生成される。
 パルス幅設定レジスタ138の設定値CCは、例えばカウンタ回路137のカウント値がクリアされるタイミングで更新される。パルス幅設定レジスタ138の設定値CCを更新する方法として、例えば以下の2つの制御方法が考えられる。第1の制御方法としては、例えば、データ処理制御部10が、カウンタ回路137のカウント値がリセットされるタイミングt13に同期して、パルス幅設定レジスタ138の設定値CCを直接変更する方法である。第2の制御方法としては、例えば、パルス信号生成部136内に一時的にデータの格納が可能なバッファレジスタ(図示せず)を設けておき、バッファレジスタを介してパルス幅設定レジスタ138に値を設定する方法である。例えば、先ず、カウンタ回路137のカウント値がリセットされる前の所定のタイミングにおいて、データ処理制御部10がパルス幅の指定値(例えばデューティ比30%)をバッファレジスタに設定する。そして、カウント値40がリセットされたタイミングt13で、バッファレジスタの値をパルス幅設定レジスタ138にロードする。前記所定のタイミングとしては、例えば、カウンタ回路137のカウント値40が中間値(パルス信号VPLS_1のデューティ50%に対応するカウント値)CMと一致するタイミングが一例として挙げられる。以上のような制御方法によれば、パルス信号VPLSの一周期毎のデューティ比の変更が可能となる。
 時刻t13においてカウント値40がリセットされ、パルス幅設定レジスタ138の設定値が更新されると、パルス信号VPLSが再びハイレベルに切り替わる。その後、時刻t14においてカウンタ回路137のカウント値40がパルス幅設定レジスタ138の設定値CC(デューティ比30%)と一致すると、パルス信号VPLSがローレベルに切り替わる。これにより、デューティ比30%のパルス信号VPLS_1が生成される。そして、時刻t15においてカウント値40がリセットされると、パルス幅設定レジスタ138の設定値CCがデューティ比30%からデューティ50%に更新される。その後の動作は時刻t13~t16の動作と同様である。
 以上のようにパルス信号生成部136を制御することで、PWM周期TCにおけるPWMオン期間TCの開始直後の期間T1において、PWM周期TCよりも短い周期であって、パルス幅が段階的に大きくなるパルス信号VPLS_1を生成することができる。
 ここで、再び図3に戻り、時刻t3以降の制御について説明する。
 時刻t3において、カウンタ回路134のカウント値30が最大値CMAXに到達すると、カウンタ回路134はアップカウントからダウンカウントに切り替える。その後、時刻t4において、カウンタ回路134のカウント値30がコンペアレジスタ133の設定値CBと再び一致したら、信号生成回路131は、基本PWM信号VPWMのハイレベルを保持したまま、選択信号VSELを再びアサートする(ハイレベルにする)。時刻t5において、カウンタ回路134のカウント値30がコンペアレジスタ132の設定値CA(=a1)と一致したら、信号生成回路131は、基本PWM信号VPWMをハイレベルからローレベルに切り替えるとともに、選択信号VSELをネゲートする(ローレベルにする)。
 一方、時刻t4から時刻t5までの期間T3において、パルス信号VPLSが生成される。具体的には、データ処理制御部10が、時刻t4においてカウント開始の指示をカウンタ回路137に与えることにより、カウンタ回路137はカウント動作を開始する。また、データ処理制御部10は、時刻t4においてパルス幅設定レジスタ138にパルス幅を指示する値(例えばデューティ比70%)を設定する。信号生成回路139は、カウンタ回路137のカウント値40とパルス幅設定レジスタ138の設定値CCとを比較し、カウント値40がパルス幅設定レジスタ138の設定値CCよりも小さい期間に、パルス信号VPLSを例えばハイレベルにし、カウント値40が設定値CCよりも大きい期間に、パルス信号VPLSを例えばローレベルにする。これにより、パルス幅設定レジスタ138の設定値CC(例えばデューティ比70%)に応じたパルス信号VPLSが生成される。その後、カウンタ回路134のカウント値30とコンペアレジスタ132の設定値CA(=b1)とが一致するタイミング(時刻t5)までカウンタ回路137はカウント動作を繰り返す。その間、データ処理制御部10は、カウンタ回路137のカウント周期に応じたタイミングでパルス幅設定レジスタ138の設定値CCを更新することを繰り返す。例えば、パルス信号VPLSのデューティ比が70%、50%、30%、10%・・・と段階的に小さくなるように、パルス信号VPLSのパルス幅を指示する値をカウント周期毎に更新する。これにより、時刻t4から時刻t5までの期間T3にPWM周期TCよりも短い周期であって、パルス幅が段階的に小さくされるパルス信号VPLS_2が生成される。なお、パルス信号VPLS_2の具体的な生成方法は、前述したパルス信号VPLS_1の生成方法(図4)と同様である。
 選択部140は、選択信号VSELがアサートされている、時刻t1からt2までの期間T1と時刻t4からt5までの期間T3においてパルス信号VPLSを制御信号VGD1として出力し、選択信号VSELがネゲートされている時刻t2からt4までの期間T2において、基本PWM信号VPWMを制御信号VGD1として出力する。
 時刻t6においてカウント値30が最小値CMIN(=0)になると、一周期の制御信号VGD1の生成が完了する。そして、再びカウンタ回路134がカウント動作を開始することで、次の一周期の制御信号VGD1の生成が開始される。時刻t6以降の制御は、コンペアレジスタ132、133の夫々の設定値が、基本PWM信号VPWMのデューティ比65%、66%に設定される点を除いて、時刻t1~t5までの制御内容と同様である。
 以上のようにPWMタイマ部13Aを制御することで、PWMオン期間TONの最初と最後の短い期間T1、T3では、PWM周期TCよりも短い周期であってパルス幅が段階的に変化するパルス信号VPLS_1、VPLS_2が制御信号VGD1として出力され、PWMオン期間TONにおけるそれ以外の期間T2では、基本PWM信号VPWMが制御信号VGD1として出力される。なお、PWMタイマ部13Bは、PWMタイマ部13Aと制御のタイミングが相異するだけで制御内容は同様である。したがって、制御信号VGD2も制御信号VGD1と同様に生成される。
 図5に、本実施の形態に係るスイッチング電源装置100によるスイッチングノイズの低減効果を例示する。同図の(a)には、従来のスイッチング電源装置のようにPWM信号によって単純にスイッチング素子を駆動した場合の出力電圧VOUTの波形例が示される。同図の(b)には、本実施の形態に係るスイッチング電源装置100の出力電圧VOUTの波形例が示される。
 同図に示されるように、本実施の形態に係るスイッチング電源装置によれば、PWM周期TCにおけるPWMオン期間TONの最初と最後に短期間に、パルス幅が段階的に切り替わるパルス信号VPLSによってスイッチング素子を駆動することで、スイッチングノイズを小さくすることでき、スイッチング電源装置における高調波ノイズを低減することが可能となる。
 ≪実施の形態2≫
 図6は、実施の形態2に係るAC/DCコンバータとしてのディジタル制御方式のスイッチング電源装置を例示するブロック図である。
 同図に示されるスイッチング電源装置200は、パルス信号VPLSのパルス幅を出力電圧VOUTに重畳されたノイズの大きさによって変化させる機能を備える点で、実施の形態1に係るスイッチング電源装置100と相異する。なお、スイッチング電源装置200の構成要素のうちスイッチング電源装置100と同一の構成要素には、同一の符号を付してその詳細な説明を省略する。
 図6に示されるPFC回路6において、制御部7内のPWMタイマ23A、23Bは、検出電圧VSENを監視し、スイッチング電源装置200の出力電圧VOUTに重畳したノイズを検出する機能を更に備える。なお、本実施の形態では、PWMタイマ部23AとPWMタイマ部23Bとは同一の回路構成を有するものとし、代表的にPWMタイマ部23Aについて詳細に説明する。
 図7は、PWMタイマ部23Aの内部構成を例示するブロック図である。同図に示されるように、PWMタイマ部23Aは、制御信号VGD1を生成するための機能部として、基本PWM信号生成部130、パルス信号生成部136、及び選択部(SEL)140に加え、ノイズ検出部141を備える。
 ノイズ検出部141は、ウインドコンパレータ部(WND_CMP)142と、カウンタ回路(CNTR_C)143と、ノイズ検出結果レジスタ(REG_NS)144とを備える。
 ウインドコンパレータ部142は、検出電圧VSENが所定の電圧範囲Wに収まっているか否かを判定し、判定結果信号VNSを出力する。具体的には、ウインドコンパレータ部142は、検出電圧VSENが所定の電圧範囲Wに収まっている場合に出力電圧VOUTにノイズが重畳されていないと判定し、信号レベルが例えばローレベルとなる判定結果信号VNSを出力する。一方、検出電圧VSENが所定の電圧範囲Wから外れている場合に、出力電圧VOUTにノイズが重畳されていると判定し、信号レベルが例えばハイレベルとなる判定結果信号VNSを出力する。電圧範囲Wは、例えばスイッチング電源装置200の出力電圧VOUTの目標電圧(例えば300V)を中心とする電圧範囲とされ、出力電圧VOUTにノイズが重畳しているか否かを判定する指標となる。電圧範囲Wはプログラマブルに変更可能とされ、例えばスイッチング電源装置200を適用するシステムにおいて許容される出力電圧VOUTの変動量に基づいて決定される。
 カウンタ回路143は、出力電圧VOUTにノイズが重畳している期間を計時する。具体的には、カウンタ回路143は、ウインドコンパレータ部142からノイズが重畳されていることを示す判定結果が出力されたら(例えば判定結果信号VNSがハイレベルになったら)アップカウントを開始し、ノイズが重畳されていないことを示す判定結果が出力されたら(例えば判定結果信号VNSがローレベルになったら)アップカウントを停止するとともにカウント値をクリアする。これにより、出力電圧VOUTにノイズが重畳されている期間の長さによってノイズの大きさを表すことができる。
 ノイズ検出結果レジスタ(REG_NS)144は、カウンタ143のカウント値が格納される。例えば、ウインドコンパレータ部142の判定結果信号VNSのハイレベルからローレベルへの切り替わりをトリガとして、そのときのカウンタ回路143のカウント値がノイズ検出結果レジスタ144に書き込まれる。
 データ処理制御部10は、出力電圧VOUTが目標電圧VTGTと等しく、且つ入力電圧VINと入力電流IINとの位相差が小さくなるように、基本PWM信号生成部130に制御条件を設定することで基本PWM信号VPWMを生成させる。基本PWM信号生成部130に対する制御内容は、実施の形態1と同様であり、例えば前述の図3と同様のタイミングで、基本PWM信号VPWM及び選択信号VSELが生成される。
 また、データ処理制御部10は、パルス信号生成部136を制御することにより、パルス信号VPLSを生成させる。具体的に、データ処理制御部10は、ノイズ検出部141によって検出されたノイズの大きさに基づいてパルス信号VPLSのパルス幅を決定することで、所望のパルス信号VPLSを生成させる。以下、パルス信号VPLSのパルス幅を決定するための具体的な制御内容について、図8を用いて詳細に説明する。
 図8は、実施の形態2に係るパルス信号VPLS_1のタイミングチャートを例示する図である。前述したように、基本PMW信号VPWM及び選択信号VSELを生成するための制御方法は実施の形態1と同様であるため、PWM周期TC及びPWMオン期間TONは図3と同様である。一方、図3における時刻t1から時刻t2までの期間T1と時刻t3からt4までの期間T3における各種信号及びレジスタの更新タイミングは、実施の形態1と相異する。そこで、図8には、実施の形態2に係る期間T1における各種信号及びレジスタの更新タイミングを代表的に図示している。なお、同図では、パルス幅設定レジスタ138の設定値CCとして、デューティ比10%を指示する値が初期値として設定されているものとする。
 図8に示されるように、時刻t1において、実施の形態1と同様にデータ処理制御部10がカウンタ回路137に対してカウント動作開始の指示を与えることにより、カウンタ回路137のカウント動作が開始され、パルス信号VPLS_1(制御信号VGD1)がハイレベルとなる。これにより、スイッチング素子SW1がオン状態となり、コイルL1やスイッチング素子SW1に流れる電流が変動するため、出力電圧VOUTが変動する。その電圧変動より、時刻t21において出力電圧VOUTが電圧範囲Wから外れると、ノイズ検出部141のウインドコンパレータ部142が検出結果信号VNSをハイレベルにし、カウンタ回路143が計時を開始する。その後、時刻t22において出力電圧VOUTが電圧範囲Wに収まったら、ウインドコンパレータ部142が検出結果信号VNSをハイレベルからローレベルに切り替える。これにより、カウンタ回路143が計時を停止するとともに、カウンタ回路143のカウント値がノイズ検出結果レジスタ144に書き込まれる。このとき、ウンドコンパレータ部142は更に、データ処理制御部10(CPU11)に対して割り込み要求INTを発行する。発行された割り込み要求INTは、図示されない割り込み制御回路に入力され、当該割り込み制御回路がデータ処理制御部10に対して割り込み信号を出力することにより、データ処理制御部10が割り込み処理を実行する。具体的に、データ処理制御部10は、期間T1、T3において、ノイズ検出結果レジスタ144のデータ(出力電圧VOUTに重畳したノイズ量)を取り込み、そのデータに基づいてパルス信号VPLS_1のパルス幅(デューティ比)をパルス幅設定レジスタ138に設定する。より具体的には、データ処理制御部10は、ノイズ量が想定値よりも大きければ、パルス信号VPLS_1のパルス幅の増加率が小さくなるように次のパルス信号VPLSのパルス幅を決定し、ノイズ量が想定値よりも小さければ、パルス信号VPLS_1のパルス幅の増加率が大きくなるように次のパルス信号VPLSのパルス幅を決定する。
 例えば、期間T1において、一回目に出力すべきパルス信号VPLS_1の基準パルス幅が“10%”、二回目に出力すべきパルス信号VPLS_1の基準パルス幅が“30%”、三回目に出力すべきパルス信号VPLS_1の基準パルス幅を“50%”、・・・というように、パルス幅が段階的に大きくなるように初期設定されていた場合を考える。
 この場合、例えば、データ処理制御部10は、期間T1において一回目に出力されたパルス信号VPLS_1(デューティ比10%)によってスイッチング素子SW1を駆動したときのノイズ量が基準値よりも大きいと判断したら、二回目に出力すべきパルス信号VPLS_1のパルス幅として初期設定された基準パルス幅“30%”よりも小さい値(例えば28%)をパルス幅設定レジスタ138に設定する。これにより、二回目のパルス信号VPLS_1によってスイッチング素子SW1をオンさせる期間が短くなるので、スイッチング素子のオン時の電流変化量を小さくすることができる。一方、データ処理制御部10は、一回目のパルス信号VPLS_1のノイズ量が基準値よりも小さいと判断したら、二回目のパルス信号VPLS_1のパルス幅として初期設定された基準パルス幅“30%”よりも大きい値(例えば32%)をパルス幅設定レジスタ138に設定する。これにより、ノイズ量を抑えつつ、通常のPWM制御に近づけることができる。なお、パルス幅設定レジスタ138を更新するタイミングは、次の一周期のパルス信号VPLS_1が生成される前のタイミングであれば良く、特に限定されない。図8では、タイミングt23においてパルス幅設定レジスタ138が更新され、デューティ“28%”を示す値が設定される場合が例示されている。
 その後、タイミングt24において、次の一周期のパルス信号VPLS_1(デューティ比28%)の生成が開始される。これにより、スイッチング素子SW1がオン状態となり、コイルL1やスイッチング素子SW1に流れる電流が変動するため、出力電圧VOUTも変動する。その電圧変動より、時刻t25において出力電圧VOUTが電圧範囲Wから外れたとすると、ノイズ検出部141のウインドコンパレータ部142が検出結果信号VNSをハイレベルにし、カウンタ回路143が計時を開始する。その後、時刻t26において出力電圧VOUTが電圧範囲Wに収まったら、ウインドコンパレータ部142が検出結果信号VNSをハイレベルからローレベルに切り替える。これにより、カウンタ回路143が計時を停止するとともに、カウンタ回路143のカウント値がノイズ検出結果レジスタ144に書き込まれる。このとき、前述のタイミングt22と同様に、割り込み要求INTが発行され、データ処理制御部10がパルス信号VPLS_1のパルス幅(デューティ比)の算出を開始する。例えば、データ処理制御部10は、期間T1において二回目に出力されたパルス信号VPLS_1(デューティ比28%)によってスイッチング素子SW1を駆動したときのノイズ量が基準値よりも大きい場合には、三回目のパルス信号VPLS_1のパルス幅として初期設定された基準パルス幅“50%”よりも小さい値(例えば48%)をパルス幅設定レジスタ138に設定する。一方、ノイズ量が基準値よりも小さい場合には、初期設定された基準パルス幅“50%”よりも大きい値(例えば52%)をパルス幅設定レジスタ138に設定する。なお、図8では、タイミングt27においてパルス幅設定レジスタ138が更新され、デューティ比“52%”を示す値が設定される場合が例示されている。これにより、タイミングt28以降に、期間T1における三回目のパルス信号VPLS_1としてデューティ比“52%”の信号が出力される。その後の処理は、タイミングt24からt28までの処理内容と同様であり、ノイズ量に基づいて決定されたパルス幅のパルス信号VPLS_1が時刻t2まで生成される。
 このように、PWM周期TCにおけるPWMオン期間TONの最初の期間T1において、制御信号VGD1、VGD2(パルス信号VPLS)のパルス幅を段階的に増加させる制御を行う場合に、そのパルス幅の増加率を実際に測定したスイッチングノイズの大きさによって変化させることで、スイッチングノイズを更に小さくすることできる。
 また、PWMオン期間TONの最後の期間T2においても、上述した期間T1と同様の制御方法によってパルス信号VPLS_2を生成する。例えば、期間T2において、ノイズ検出部141によって検出されたノイズ量が想定値よりも大きければ、パルス信号VPLS_2のパルス幅の減少率が小さくなるように次のパルス信号VPLSのパルス幅を算出し、ノイズ量が想定値よりも小さければ、パルス信号VPLS_2のパルス幅の減少率が大きくなるように次のパルス信号VPLS_2のパルス幅を算出する。例えば、期間T2において、一回目に出力すべきパルス信号VPLS_2の基準パルス幅が“70%”、二回目に出力すべきパルス信号VPLS_2の基準パルス幅が“50%”、三回目に出力すべきパルス信号VPLS_2の基準パルス幅を“30%”、・・・というように、パルス幅が段階的に減少するように初期設定されていた場合を考える。
 例えば、データ処理制御部10は、期間T2において一回目に出力されたパルス信号VPLS_2(デューティ比70%)によってスイッチング素子SW1を駆動したときのノイズ量が基準値よりも大きいと判断したら、二回目に出力すべきパルス信号VPLS_2のパルス幅として初期設定された基準パルス幅“50%”よりも大きい値(例えば51%)をパルス幅設定レジスタ138に設定する。これにより、二回目のパルス信号VPLS_2によってスイッチング素子SW1をオフさせる期間が短くなるので、スイッチング素子のオフ時の電流変化量を小さくすることができる。一方、データ処理制御部10は、一回目のパルス信号VPLS_2のノイズ量が基準値よりも小さいと判断したら、基準パルス幅“50%”よりも小さい値(例えば49%)をパルス幅設定レジスタ138に設定する。これによれば、ノイズ量を抑えつつ、通常のPWM制御に近づけることができる。
 このように、PWM周期TCにおけるPWMオン期間TONの最後の期間T2においても、制御信号VGD1、VGD2(パルス信号VPLS_2)のパルス幅の減少率を実際に測定したスイッチングノイズの大きさによって変化させることで、スイッチングノイズを更に小さくすることできる。
 以上、実施の形態2に係るスイッチング電源装置200によれば、PWM周期TCにおけるPWMオン期間TONの最初の期間T1と最後の期間T3に、パルス幅が段階的に変化するパルス信号VPLSによってスイッチング素子を駆動するとともに、そのパルス幅の増加量及び減少量を実際に測定したノイズ量に応じて変化させることで、スイッチングノイズを更に小さくすることでき、スイッチング電源装置における高調波ノイズを更に低減することが可能となる。
 以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
 例えば、実施の形態1、2に係るスイッチング電源装置100、200において、PWM周期TCにおけるPWMオン期間TONの最初の期間T1と最後の期間T3に、パルス幅が段階的に変化するパルス信号VPLSによってスイッチング制御する構成を例示したが、期間T1、T3の何れか一方のみ、パルス信号VPLSによってスイッチング制御する構成としても良い。例えば、最初の期間T1だけパルス信号VPLSによって駆動し、中間の期間T2と最後の期間T3は基本PWM信号VPWMによって駆動する構成としても良い。また、最初の期間T1と中間の期間T2は基本PWM信号VPWMによってスイッチング制御し、最後の期間T3だけパルス信号VPLSによってスイッチング制御する構成としても良い。
 パルス信号VPLS_1、VPLS_2は、期間T1、T3においてスイッチング素子SW1、SW2がオンする期間を段階的に変化させることができる信号であれば良く、上述したようなパルス周期が固定であってデューティ比の変化する信号に限定されるものではない。例えば、パルス信号VPLS_1、VPLS_2が、段階的にパルス周期が大きく又は小さくなるような信号であっても、スイッチングノイズを低減することができる。
 実施の形態2において、パルス信号VPLS_1、VPLS_2のパルス幅をノイズ量に応じて1パルス毎に更新する構成を例示したが、PWM周期TC毎に、パルス信号VPLS_1、VPLS_2のパルス幅を更新する構成であっても良い。具定的には、図3において、一回目のPWM周期TCにおける時刻t1~t2の期間T1に測定したノイズ量(例えば同期間におけるノイズ量の最大値や平均値等)に基づいて、二回目のPWM周期TCにおける時刻t7~t8の期間に出力するパルス信号PLS_1のパルス幅を決定する。例えば、時刻t1~t2の期間T1におけるパルス信号PLS_1のデューティ比を10%、30%、50%と変化させた場合に、期間T1におけるノイズ量が想定値よりも大きければ、時刻t7~t8の期間におけるパルス信号PLS_1のデューティ比を5%、15%、35%、55%のように、デューティ比を小さくして同期間に出力するパルス数を増加させるように制御しても良い。これによれば、二回目のPWM周期TCにおけるPWMオン期間TONに発生するスイッチングノイズを小さくすることができる。
 実施の形態1、2では、PFC回路1、6が臨界モードのPFC回路である場合を例示したが、連続モードのPFC回路であっても良い。また、PFC回路1、6を構成する電圧コンバータ回路3を同期整流方式とし、整流素子D1、D2を同期整流用のMOSトランジスタで構成することも可能である。
 本発明は、交流電圧を直流電圧に変換するAC/DCコンバータのみならず、DC/DCコンバータを構成する各種スイッチング電源装置に広く適用することができる。
 100 スイッチング電源装置(AC/DCコンバータ)
 20 交流電源
 VAC 交流電圧
 1 PFC回路
 2 整流部
 21 ダイオードブリッジ回路
 CRCT 容量
 VIN 入力電圧
 IIN 入力電流
 3 電圧コンバータ回路
 L1A、L1B、L2A、L2B コイル
 SW1、SW2 スイッチング素子
 D1、D2 整流素子
 COUT 出力容量
 NSW1、NSW2 ノード
 4 出力電圧検出部
 R1、R2 抵抗
 VOUT 出力電圧
 VSEL 検出電圧
 5 制御部
 10 データ処理制御部
 11 CPU
 12 メモリ部
 13A、13B PWMタイマ部
 14~16 A/D変換部
 DIS1、DIS2、DVS 変換結果
 VGD1,VGD2 制御信号
 130 基本PWM信号生成部
 131 信号生成回路
 132、133 コンペアレジスタ
 134 カウンタ回路
 135 PWM周期設定レジスタ
 136 パルス信号生成部
 137 カウンタ回路
 138 パルス幅設定レジスタ
 139 信号生成回路(PLS_GEN)
 140 選択部
 VPWM 基本PWM信号
 VPLS、VPLS_1、VPLS_2 パルス信号
 VSEL 選択信号
 30、40 カウント値
 200 スイッチング電源装置(AC/DCコンバータ)
 6 PFC回路
 7 制御部
 23A,23B PWMタイマ部
 141 ノイズ検出部
 142 ウインドコンパレータ部
 143 カウンタ回路
 144 ノイズ検出結果レジスタ
 VNS 検出結果信号
 INT 割り込み要求

Claims (17)

  1.  PWM制御によってスイッチング素子をオン・オフさせることでコイルに流れる電流を制御し、所望の直流電圧を得るスイッチング電源装置であって、
     前記PWM制御によって前記スイッチング素子をオンさせるためのPWMオン期間において、当該PWMオン期間が開始された直後の第1期間に、前記PWM制御に基づくPWM周期よりも短い周期であってパルス幅が段階的に大きくされる第1パルス信号によって前記スイッチング素子のスイッチング制御が可能にされ、前記第1期間の経過後に、前記PWM制御に基づくPWM信号によって前記スイッチング素子のスイッチング制御が可能にされる、スイッチング電源装置。
  2.  請求項1において、
     前記第1期間における前記第1パルス信号のパルス幅の増加率は、前記直流電圧に重畳されるスイッチングノイズが基準値よりも大きい場合に小さくなるように制御され、前記スイッチングノイズが基準値よりも小さい場合に大きくなるように制御される、スイッチング電源装置。
  3.  請求項2において、
     前記第1期間において直前に出力された前記第1パルス信号によって前記スイッチング素子をスイッチングすることで生じた前記スイッチングノイズが基準値よりも大きい場合には、次に出力すべき前記第1パルス信号のパルス幅を基準のパルス幅よりも小さくし、前記スイッチングノイズが前記基準値よりも小さい場合には、次に出力すべき前記第1パルス信号のパルス幅を前記基準のパルス幅よりも大きくする、スイッチング電源装置。
  4.  請求項3において、
     前記直流電圧が所定の電圧範囲から外れている期間の長さを前記スイッチングノイズの大きさとする、スイッチング電源装置。
  5.  請求項3において、
     前記PWMオン期間における前記第1期間の経過後の第2期間に、前記PWM信号によって前記スイッチング素子のスイッチング制御が可能にされ、前記第2期間が経過してから前記PWMオン期間が終了するまでの第3期間に、前記PWM周期よりも短い周期であって段階的にパルス幅が小さくされる第2パルス信号によって前記スイッチング素子のスイッチング制御が可能にされる、スイッチング電源装置。
  6.  請求項5において、
     前記第3期間における前記第2パルス信号のパルス幅の減少率は、前記直流電圧に重畳されるスイッチングノイズが基準値よりも大きい場合に小さくなるように制御され、前記スイッチングノイズが基準値よりも小さい場合に大きくなるように制御される、スイッチング電源装置。
  7.  請求項6において、
     前記第3期間において直前に出力された前記第2パルス信号によって前記スイッチング素子をスイッチングすることで生じた前記スイッチングノイズが基準値よりも大きい場合には、次に出力すべき前記第2パルス信号のパルス幅を基準とされるパルス幅よりも大きく、前記スイッチングノイズが前記基準値よりも小さい場合には、次に出力すべき前記第2パルス信号のパルス幅を当該基準とされるパルス幅よりも小さくする、スイッチング電源装置。
  8.  入力電圧を目標とする直流電圧に変換するとともに力率を改善するためのスイッチング電源装置におけるスイッチング素子のオン・オフを制御するための半導体装置であって、
     前記スイッチング素子のオン・オフを制御するための制御信号を生成するタイマ部と、
     前記出力電圧が前記目標とする直流電圧と等しく且つ前記入力電圧と前記スイッチング電源装置に入力される入力電流との位相差が小さくなるように前記スイッチング素子をオンさせるためのPWMオン期間を算出するとともに、前記算出結果に基づいて前記タイマ部を制御するデータ処理制御部と、を有し、
     前記データ処理制御部は、前記タイマ部を制御することにより、前記算出したPWMオン期間の開始直後の第1期間に、前記算出したPWMオン期間に応じたPWM信号よりも周期が短く且つ段階的にパルス幅が大きくなる第1パルス信号を前記制御信号として出力可能にし、前記第1期間の経過後に、前記制御信号として前記PWM信号を出力可能にする、半導体装置。
  9.  請求項8において、
     前記データ処理制御部は、前記タイマ部を制御することにより、前記算出したPWMオン期間の終了直前の第2期間に、前記PWM信号よりも周期が短く且つ段階的にパルス幅が小さくなる第2パルス信号を前記制御信号として出力可能にする、半導体装置。
  10.  請求項9において、
     前記直流電圧が所定の電圧範囲から外れているか否かを判定するコンパレータ部と、
     前記直流電圧が前記所定の電圧範囲から外れた状態にある期間を計時する計時部と、を更に有し、
     前記データ処理制御部は、前記第1期間において直前に出力された前記第1パルス信号によって前記スイッチング素子をスイッチングしたときの前記計時部による計時結果が基準値よりも大きい場合には、次に出力すべき前記第1パルス信号のパルス幅を基準とされるパルス幅よりも小さくし、前記計時結果が基準値よりも小さい場合には、次に出力すべき前記第1パルス信号のパルス幅を当該基準とされるパルス幅よりも大きくする、半導体装置。
  11.  請求項10において、
     前記データ処理制御部は、前記第2期間において直前に出力された前記第2パルス信号によって前記スイッチング素子をスイッチングしたときの前記計時部による計時結果が基準値よりも大きい場合には、次に出力すべき前記第2パルス信号のパルス幅を基準とされるパルス幅よりも大きくし、前記計時結果が基準値よりも小さい場合には、次に出力すべき前記第2パルス信号のパルス幅を当該基準とされるパルス幅よりも小さくする、半導体装置。
  12.  請求項11において、
     前記タイマ部は、
     前記データ処理制御部によって前記算出されたPWMオン期間に応じて前記PWM信号を生成する第1信号生成部と、
     前記第1パルス信号及び前記第2パルス信号を生成する第2信号生成部と、
     前記第1期間に前記第2信号生成部によって生成された前記第1パルス信号を出力し、前記第2期間に前記第2信号生成部によって生成された前記第2パルス信号を出力し、前記第1期間及び前記第2期間以外の期間に前記第1信号生成部によって生成された前記PWM信号を出力する信号選択部と、を有する、半導体装置。
  13.  交流電圧を整流して出力する整流回路と、
     前記整流回路によって整流された電圧を入力し、スイッチング素子によってコイルに流れる電流を制御することにより、前記入力された電圧を目標とする直流電圧に変換して出力するための電圧コンバータ回路と、
     前記電圧コンバータ回路の出力電圧が前記目標とする直流電圧と等しく、且つ前記電圧コンバータ回路の入力電圧と入力電流との位相差が小さくなるように前記スイッチング素子をオンさせるためのPWMオン期間を算出するとともに、算出結果に基づいて前記スイッチング素子のオン・オフを制御するための制御信号を生成する制御部と、を有し、
     前記制御部は、前記PWMオン期間の開始直後の第1期間は、前記算出したPWMオン期間に応じたPWM信号よりも周期が短く、且つ段階的にパルス幅が大きくなる第1パルス信号を前記制御信号として出力することが可能にされ、前記第1期間の経過後は、前記制御信号として前記PWM信号を出力することが可能にされる、AC/DCコンバータ。
  14.  請求項13において、
     前記制御部は、前記第1期間において直前に出力された前記第1パルス信号によって前記スイッチング素子をスイッチングすることで生じた前記スイッチングノイズが基準値よりも大きい場合には、次に出力すべき前記第1パルス信号のパルス幅を基準とされるパルス幅よりも小さくし、前記スイッチングノイズが前記基準値よりも小さい場合には、次に出力すべき前記第1パルス信号のパルス幅を当該基準とされるパルス幅よりも大きくする、AC/DCコンバータ。
  15.  請求項14において、
     前記制御部は、前記算出したPWMオン期間の終了直前の第2期間は、前記PWM信号よりも周期が短く、且つ段階的にパルス幅が小さくなる第2パルス信号を前記制御信号として出力することが可能にされる、AC/DCコンバータ。
  16.  請求項15において、
     前記制御部は、前記第2期間において直前に出力された前記第2パルス信号によって前記スイッチング素子をスイッチングすることで生じた前記スイッチングノイズが基準値よりも大きい場合には、次に出力すべき前記第2パルス信号のパルス幅を基準とされるパルス幅よりも大きくし、前記スイッチングノイズが前記基準値よりも小さい場合には、次に出力すべき前記第2パルス信号のパルス幅を当該基準とされるパルス幅よりも小さくする、AC/DCコンバータ。
  17.  請求項16において、
     前記制御部は、マイクロコントローラを含んで構成される、AC/DCコンバータ。
PCT/JP2013/070885 2013-08-01 2013-08-01 スイッチング電源装置、半導体装置、及びac/dcコンバータ WO2015015616A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/904,052 US9837902B2 (en) 2013-08-01 2013-08-01 Switching power source device, semiconductor device, and AC/DC converter
JP2015529286A JP6234461B2 (ja) 2013-08-01 2013-08-01 スイッチング電源装置、半導体装置、及びac/dcコンバータ
PCT/JP2013/070885 WO2015015616A1 (ja) 2013-08-01 2013-08-01 スイッチング電源装置、半導体装置、及びac/dcコンバータ
US15/799,726 US10199938B2 (en) 2013-08-01 2017-10-31 Switching power source device, semiconductor device, and AC/DC converter including a switching control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/070885 WO2015015616A1 (ja) 2013-08-01 2013-08-01 スイッチング電源装置、半導体装置、及びac/dcコンバータ

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/904,052 A-371-Of-International US9837902B2 (en) 2013-08-01 2013-08-01 Switching power source device, semiconductor device, and AC/DC converter
US15/799,726 Continuation US10199938B2 (en) 2013-08-01 2017-10-31 Switching power source device, semiconductor device, and AC/DC converter including a switching control

Publications (1)

Publication Number Publication Date
WO2015015616A1 true WO2015015616A1 (ja) 2015-02-05

Family

ID=52431188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070885 WO2015015616A1 (ja) 2013-08-01 2013-08-01 スイッチング電源装置、半導体装置、及びac/dcコンバータ

Country Status (3)

Country Link
US (2) US9837902B2 (ja)
JP (1) JP6234461B2 (ja)
WO (1) WO2015015616A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108498116A (zh) * 2016-12-19 2018-09-07 美国西门子医疗解决公司 多同步电源和具有该多同步电源的超声系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6332080B2 (ja) * 2015-02-27 2018-05-30 株式会社オートネットワーク技術研究所 信号発生回路、電圧変換装置及び信号発生方法
CN110098729B (zh) * 2015-03-17 2021-06-11 意法半导体股份有限公司 用于具有交错的转换器级的开关调节器的控制设备、开关调节器及对应的控制方法
CN106452045B (zh) * 2016-10-10 2018-11-09 广州视源电子科技股份有限公司 交错pfc电路中pwm波形产生方法及装置
CN110603724B (zh) * 2017-04-28 2021-09-07 松下知识产权经营株式会社 电源电路
EP3410589B1 (de) * 2017-05-29 2019-09-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Umrichter, vorrichtung mit einem solchen umrichter, system und verfahren zum steuern einer steuerbaren energiequelle
CN108599108B (zh) * 2018-04-30 2023-11-17 上海晶丰明源半导体股份有限公司 保护电路、驱动系统、芯片及电路保护方法、驱动方法
CN110037736B (zh) * 2019-04-08 2023-11-17 深圳市贝斯曼精密仪器有限公司 一种具有模数转换功能的超声波探测电路
US20230198372A1 (en) * 2021-12-21 2023-06-22 Infineon Technologies Austria Ag Power system and ripple voltage reduction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209130A (ja) * 2006-02-02 2007-08-16 Fuji Electric Device Technology Co Ltd 電力変換装置のpwm制御回路
JP2010200437A (ja) * 2009-02-24 2010-09-09 Fuji Xerox Co Ltd 電源装置
JP2012080739A (ja) * 2010-10-06 2012-04-19 Rohm Co Ltd スイッチング制御装置、電力変換装置および集積回路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327166A (ja) 2000-05-16 2001-11-22 Fuji Electric Co Ltd スイッチング電源回路
JP2008099440A (ja) 2006-10-12 2008-04-24 Omron Corp スイッチング電源装置
JP4239111B2 (ja) 2007-06-14 2009-03-18 サンケン電気株式会社 Ac−dcコンバータ
JP5205974B2 (ja) * 2008-01-08 2013-06-05 ミツミ電機株式会社 直流電源装置、led駆動用電源装置および電源制御用半導体集積回路
JP2009177954A (ja) * 2008-01-24 2009-08-06 Sanken Electric Co Ltd 力率改善コンバータ
JP2010233439A (ja) * 2009-03-03 2010-10-14 Toshiba Corp 電源制御装置、及びそれを用いた電源装置
JP5813347B2 (ja) * 2011-03-24 2015-11-17 株式会社日立製作所 電源装置
JP6115177B2 (ja) * 2013-02-20 2017-04-19 富士通株式会社 制御装置、制御方法および電源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209130A (ja) * 2006-02-02 2007-08-16 Fuji Electric Device Technology Co Ltd 電力変換装置のpwm制御回路
JP2010200437A (ja) * 2009-02-24 2010-09-09 Fuji Xerox Co Ltd 電源装置
JP2012080739A (ja) * 2010-10-06 2012-04-19 Rohm Co Ltd スイッチング制御装置、電力変換装置および集積回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108498116A (zh) * 2016-12-19 2018-09-07 美国西门子医疗解决公司 多同步电源和具有该多同步电源的超声系统
CN108498116B (zh) * 2016-12-19 2021-02-05 美国西门子医疗解决公司 多同步电源和具有该多同步电源的超声系统

Also Published As

Publication number Publication date
US9837902B2 (en) 2017-12-05
US20160172975A1 (en) 2016-06-16
US20180054122A1 (en) 2018-02-22
US10199938B2 (en) 2019-02-05
JPWO2015015616A1 (ja) 2017-03-02
JP6234461B2 (ja) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6234461B2 (ja) スイッチング電源装置、半導体装置、及びac/dcコンバータ
US8026704B2 (en) System and method for controlling a converter
RU2475806C1 (ru) Способ одноциклического управления коррекцией коэффициента мощности
US10491106B2 (en) Digital control of switched boundary mode interleaved power converter
JP4678215B2 (ja) スイッチング電源装置
US20110109283A1 (en) System and method for controlling a converter
US20150048807A1 (en) Power Factor Correction Circuit and Method
US9154030B2 (en) Control device of a switching power supply
CN103683918A (zh) 开关电源装置
US10778088B2 (en) Enhanced power factor correction
JP2013141391A (ja) コンバータの等価抵抗の制御方法および制御装置
US10126792B2 (en) Power converter load current control
US8824180B2 (en) Power conversion apparatus
US20190052168A1 (en) Digital Control Of Switched Boundary Mode Interleaved Power Converter With Reduced Crossover Distortion
JP2014110711A (ja) スイッチング電源装置及び半導体装置
JP7243241B2 (ja) 駆動信号生成回路、電源回路
CN111934557B (zh) 一种同步整流电路及电源转换装置
TWI482976B (zh) 偵測磁性裝置之連續電流模式運作的方法及裝置
TW201721329A (zh) 功率轉換器中之極限-谷值比率電路
JP6398537B2 (ja) Ac−dcコンバータ
JP6487517B2 (ja) スイッチング電源装置
JP2015039261A (ja) 半導体装置及びスイッチング電源装置
US11539282B2 (en) Switching control circuit and power supply circuit
JPWO2018221031A1 (ja) スイッチング電源装置
JP2017077076A (ja) スイッチング電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529286

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14904052

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890589

Country of ref document: EP

Kind code of ref document: A1