WO2015014877A1 - Verfahren zur steigerung der reichweite von drallstabilisierten projektilen und ebensolches projektil - Google Patents

Verfahren zur steigerung der reichweite von drallstabilisierten projektilen und ebensolches projektil Download PDF

Info

Publication number
WO2015014877A1
WO2015014877A1 PCT/EP2014/066341 EP2014066341W WO2015014877A1 WO 2015014877 A1 WO2015014877 A1 WO 2015014877A1 EP 2014066341 W EP2014066341 W EP 2014066341W WO 2015014877 A1 WO2015014877 A1 WO 2015014877A1
Authority
WO
WIPO (PCT)
Prior art keywords
projectile
transverse channels
tail
longitudinal channel
boundary layer
Prior art date
Application number
PCT/EP2014/066341
Other languages
English (en)
French (fr)
Inventor
Martin Ziegler
Original Assignee
Alpha Velorum Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpha Velorum Ag filed Critical Alpha Velorum Ag
Priority to US14/908,488 priority Critical patent/US10094644B2/en
Priority to EP14744849.2A priority patent/EP3028002B1/de
Priority to ES14744849T priority patent/ES2699433T3/es
Publication of WO2015014877A1 publication Critical patent/WO2015014877A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/32Range-reducing or range-increasing arrangements; Fall-retarding means
    • F42B10/38Range-increasing arrangements

Definitions

  • the invention relates to a method for increasing the range of spin-stabilized projectiles and a similar projectile.
  • Swirl-stabilized projectiles are fired from drawn or smooth gun barrels that put the bullet either via spiral-shaped trains or appropriate design of aerodynamically effective surfaces in rapid rotation, which stabilizes its trajectory by centrifugal forces.
  • the projectile is braked along its trajectory by resistance forces that depend on the shape of the projectile and its velocity: ⁇ In the front bow area of the projectile, the forces of impact resistance and wave resistance are the main factors.
  • the projectile At the rear of the rear, forces from the pressure drop mainly act in the so-called dead water of the blunt base of the projectile.
  • the projectile must have a high initial velocity, preferably supersonic velocity, and the resistance forces must be minimized so that the energy loss of the projectile is minimized along the trajectory.
  • the nose of the projectile is formed with optimized resistance, preferably as an ogive, and the tail slightly retracted, which is known as the boat tail or "boat tail", so that the cross section of the pressure reduction is reduced at the base of the projectile.
  • a further increase of the base pressure can be achieved by the additional outflow of gas at the projectile base as so-called "base bleed", whereby the range can be significantly increased.
  • the object of the invention is to find a method and a projectile which reduces the energy loss of the projectile along the trajectory without additional propellant charge and thus can increase its range and target effect.
  • Figure 2 is a schematic representation of the flow field to a supersonic projectile with Mach cone at the bow and the rear of the projectile, energy transfer to the boundary layer, NachstromMech with dead water and turbulent wake.
  • a spin stabilized projectile 1 according to the prior art with ogivalem bug and projectile tip la, cylindrical middle part lb and retracted projectile tail lc is shown, as well as for smaller caliber ammunition up to and including caliber .50 BMG, ie 12,7x99 mm, typical is.
  • the swirl stabilization is usually by achieved the shooting of drawn runs, but can also be achieved by other means, such as inclined aerodynamically effective surfaces. With regard to the effect according to the invention, only the occurrence of a rotation is necessary with a sufficiently large angular frequency, depending on the specific projectile design.
  • the energy loss e of the projectile 1 is energy gain of the boundary layer 8.
  • the energy loss of the projectile 1 along its path can be reduced by filling the velocity profile of the boundary layer 8 by feeding medium already moving at projectile velocity, which is the result Wall friction reduced.
  • the rotation of the projectile 1 and the radial or centrifugal acceleration generated thereby is used to convey fluid particles or particles of the medium from the dead water 5 of the projectile 1 into the boundary layer 8.
  • the range of a spin stabilized projectile can be increased or the projectile drop per distance interval can be reduced, so that a flatter trajectory with increased hit probability and a higher energy result in the target.
  • Fig 3a-b the representation of a first embodiment of the projectile according to the invention in side and sectional view takes place.
  • the spin-stabilized projectile 1 with an outer surface, a projectile tip and a projectile tail will be so formed, that the outer surface has at least one circumferential groove 9, which are connected via radial transverse channels 10 with at least one longitudinal channel 11 in the interior of the projectile 1, which in turn is connected to an opening in Pro ektilheck.
  • this longitudinal channel 11 is, for example, formed as an axial or longitudinal bore from the base or the projectile tail to the height of the circumferential groove 9 in its outer wall, from which the transverse channels 10 substantially at right angles, ie in the radial direction branch off, which can also be realized by appropriate drilling.
  • other types of manufacturing method according to the invention can be used.
  • the groove is in this case as close as possible to the bow region, so that a large part of the outer surface can be influenced by the generated flow with respect to the flow field.
  • the groove 9 can be arranged directly on the front part of the substantially cylindrical central part of the projectile.
  • the transition of the longitudinal channel 11 to the projectile base or the projectile tail is aerodynamically shaped, for example by a rounding r4 of the transition edge.
  • the flow that forms there increases the base pressure at the rear of the projectile, which reduces its resistance.
  • the diameter d4 of the longitudinal channel depends on various factors, such as the dimensions of the projectile, its internal structure and the expected Mach number or flight or muzzle velocity.
  • the cross section of the longitudinal channel 11 can be formed round and constant in the simplest case be, according to the invention, however, other geometries are used.
  • the channel can also be performed polygonal or star-shaped and with a length-dependent variable cross-section. Due to the swirl stabilization, however, a symmetrical mass distribution is to be ensured with respect to the swirl axis.
  • a multiplicity or multiplicity of such channels can also be formed.
  • the longitudinal channel 11 is in contact with a plurality of uniformly radially distributed transverse channels 10, which connect the longitudinal channel 11 as an inner conveyor channel with the outer wall of the projectile 1 and terminate in the circumferential groove 9.
  • transverse forces 10 which are executed as bores, produce a centrifugal force and therefrom the desired conveying effect, which conveys the fluid or surrounding medium from the dead water into the longitudinal channel 11 and finally into the boundary layer.
  • the number of cross channels 10 may be adapted to the corresponding projectile geometries and flow conditions, and may be both even and odd, e.g. 2, 3, 4, 5, 6 or 8. Due to the imbalance avoidance for the
  • the transverse channels 10 are uniform, ie distributed equidistantly over the circumference or with the same angular division.
  • the longitudinal channel 11 and the transverse channels 10 may have the various and mentioned in the local context geometries to take into account the production and fluidic conditions.
  • the radial transverse channels 10 can be a sickle-shaped or curved in or against the Have direction pointing in the direction of twist, so that the flow behavior of the conveyed medium can be influenced by a component acting in or counter to the direction of rotation.
  • the radial transverse channels 10 with a tapering in or against the radial direction course, in particular, the cross section d2 can be extended in the outlet region of the groove 9.
  • the length of the radial transverse channels 10 and thus the proportion of the projectile diameter available for the centrifugal acceleration of the medium depends on the specific configuration of the projectile 1 and its flight or rotation speed. In particular, however, this can amount to at least one third of the diameter of the projectile 1 in each case.
  • the transverse channels 10 terminate in a circumferential groove 9 as a collecting channel for the fluid flowing out of the transverse channels 10, wherein the flowing surrounding medium or its boundary layer is relined out of the groove 9. It is advantageous to perform the groove 9 forward relatively sharp-edged to force a stall of the inflowing boundary layer, and provided at the rear with a shallow transition to promote the pumped fluid evenly under the front inflowing boundary layer flow and the velocity profile wall side fill.
  • the circumferential groove 9 has a profile whose projectile tip facing edge 9a is steeper than the projectile tail facing edge 9b is formed.
  • the projectile 1 according to the invention can be designed both as a full storey, but also as a jacketed projectile or as a projectile with a more complex internal structure, as is the case, for example, with artillery projectiles. Accordingly, the method according to the invention and the projectiles according to the invention are also not restricted to specific projectile types or calibers. In particular, small or medium calibers, e.g. common sports or hunting ammunition or anti-aircraft gun ammunition in the caliber 35mm or 40mm, but also artillery shells in the caliber 155mm, 175mm or 203mm are designed according to the invention.
  • small or medium calibers e.g. common sports or hunting ammunition or anti-aircraft gun ammunition in the caliber 35mm or 40mm, but also artillery shells in the caliber 155mm, 175mm or 203mm are designed according to the invention.
  • a projectile 1 according to the invention can have a sabot or a sabot or can also be designed as a flange projectile.
  • the boundary layer flowing in over the bow of the projectile 1 is underfloated with fluid originating in the dead water zone and having the same velocity as the projectile 1.
  • the flow around the projectile 1 changes, as in FIG 4a-b shown.
  • the inflowing boundary layer separates from the wall and is underflowed by the fluid pumped from the interior into the groove.
  • the boundary layer near the wall is filled up with fluid which essentially has the velocity of the projectile (B2).
  • the base pressure of the projectile is increased by centrifugal forces in the inlet, which causes the Resistance component from the reduction of the base pressure without additional propellant gases reduces.
  • the pressure increase at the base comes here from the circulation flow.
  • 5 shows the schematic representation of the flow around at supersonic speed for the first embodiment of the projectile according to the invention. From the changed compared to Figure 2 flow field around the projectile is seen that a portion of the fluid from the dead water circulates around the rear of the projectile and does not get into the turbulent wake. As a result, the energy loss of the projectile along the trajectory decreases.
  • the circulation leads to a detachment bladder 12 in the middle region, which there reduces the wall shear stress, and to an increase in pressure in the inflow of the base or the projectile tail, which reduces the resistance component from the flow around the blunt stern.
  • the reduction of the resistance forces corresponds to the reduction of energy loss. As a result, range and target energy or target effect of the projectile are increased.
  • a second embodiment of the projectile according to the invention which in particular has manufacturing advantages, is shown in Figures 6a-c.
  • bores are disadvantageous for cost reasons, so that it makes sense to manufacture projectiles from at least two parts 13 and 14, in which the required channels are formed as initially open flutes or hollow webs 15.
  • a projectile according to the invention is thus composed in this case of at least two parts 13 and 14, wherein at least one of the two parts 13 and 14 has a plurality of evenly distributed on the circumference of hollow webs 15, preferably two to eight, wherein these after assembly in the interaction of the two Parts 13 and 14, the radial transverse channels 10 ' and / or the at least one longitudinal channel 11 'form.
  • the several recesses can be uniformly let into the circumference. They connect the base of the projectile through an opening with its side wall or outer surface and rear opening and, together with the inner cone, form a system of channel-like tubes, which enable the transport of fluid from the dead water into the wall boundary layer.
  • the projectile tip forming part 13 peg-shaped projecting into the projectile tail forming part 14. As a result, the at least two parts 13 and 14 centered by conical seat and joined by friction, positive engagement, gluing, soldering or welding and connected to each other, wherein the parts 13 and 14 may also consist of different materials.
  • the channels are formed as a recess in one of the first of the two parts 13 and 14, wherein the second part 14 during assembly covers the open channel side, so that a total again longitudinally effetströmbare tubes and thus the inventive channels 10 'and 11' are formed.
  • the second embodiment of the projectile according to the invention consists of two parts 13 and 14, which can be centered over a conical seat and joined by frictional engagement in a press fit.
  • the parts may be joined together by positive locking, gluing, welding, soldering or another joining method.
  • Particularly advantageous here are the flow-favorable rounding of the channels, ie the transition from the longitudinal channel 11 'to the transverse channels 10' and the transition to the lateral wall opening shapable, whereby the radial transverse channels 10 'and the at least one longitudinal channel 11 'have a common curved course. This allows a continuous and streamlined course of the entire channel can be realized.
  • the hollow paths required in front of the channels can be embedded both alone in the first part 13 and only in the second part 14 or in both parts 13 and 14. They may be parallel to the longitudinal axis or spiral, wherein at least two channels are required to avoid imbalance, but preferably, depending on the caliber two to eight channels evenly distributed around the circumference.
  • the two parts 13 and 14 can be made from cylindrical solid material and from tubes by cold forming, which allows a simple and cost-effective production. It is also advantageous here that the two parts can be made of different materials.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Toys (AREA)
  • Earth Drilling (AREA)
  • Powder Metallurgy (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

Zur Erhöhung der Reichweite eines sich in einem Umgebungsmedium bewegenden drallstabilisierten Projektils wird das Umgebungsmedium aus einem Totwasserbereich des Projektils vermittels eines Teils der Rotationsenergie des Projektils unter die zuströmende Grenzschicht an der Aussenfläche des Projektils gefördert und so der Geschwindigkeitsgradient der Grenzschicht in Wandnähe gesenkt. Hierzu weist die Aussenfläche wenigstens eine umlaufende Hohlkehle (9) auf, welche über radiale Querkanäle (10) mit wenigstens einem Längskanal (11) im Inneren des Projektils verbunden ist, welcher seinerseits mit einer Öffnung im Projektilheck verbunden ist.

Description

Verfahren zur Steigerung der Reichweite von drallstabilisierten Projektilen und ebensolches
Projektil
Die Erfindung betrifft ein Verfahren zur Steigerung der Reichweite von drallstabilisierten Projektilen und ein ebensolches Projektil.
Drallstabilisierte Projektile werden aus gezogenen oder glatten Waffenläufen verschossen, die das Geschoss entweder über spiralförmige Züge oder aber entsprechende Ausgestaltung aerodynamisch wirksamer Flächen in schnelle Rotation versetzen, was dessen Flugbahn durch Kreiselkräfte stabilisiert. Beim Verschuss aus gezogenen Läufen werden je nach Spiralwinkel der Züge einige tausend Umdrehungen pro Sekunde erreicht. Nach Verlassen der Mündung wird das Projektil entlang seiner Bahn durch Widerstandskräfte gebremst, die von der Form des Projektils und von seiner Geschwindigkeit abhängen: · Im vorderen Bugbereich des Projektils wirken hauptsächlich Formwiderstandskräfte aus Staudruck und Wellenwiderstand .
• Im mittleren, zumeist zylindrisch geformten Bereich des Projektils wirken hauptsächlich Reibungskräfte aus der turbulenten Grenzschicht.
• Im hinteren Heckbereich wirken hauptsächlich Kräfte aus der Drucksenkung im sogenannten Totwasser der stumpfen Basis des Projektils. Um eine grosse Reichweite zu erzielen, muss das Geschoss eine hohe Anfangsgeschwindigkeit besitzen, vorzugsweise Überschallgeschwindigkeit, und die Widerstandskräfte müssen möglichst gering gehalten werden, so dass der Energieverlust des Projektils entlang der Geschossbahn minimiert wird. Hierzu wird der Bug des Projektils widerstandsoptimiert geformt, vorzugsweise als Ogive, und das Heck etwas eingezogen, was als Bootsheck bzw. „boat tail" bekannt ist, so dass der Wirkungsquerschnitt der Drucksenkung an der Basis des Projektils reduziert wird. Eine weitere Anhebung des Basisdruckes kann durch zusätzliches Ausströmen von Gas an der Geschossbasis als sog. „base bleed" erzielt werden, wodurch die Reichweite erheblich gesteigert werden kann.
Nachteilig bei allen Projektilen ist der Verlust an kinetischer Energie durch Widerstandskräfte, was die Reichweite und Zielwirkung des Geschosses reduziert. Bei „base-bleed" Geschossen ist der zusätzliche Aufwand an Treibgas, welches vom Projektil mitgeführt und entlang der Geschossbahn ausgestossen werden muss ebenso ein Problem wie der ggf- ungleichmässige Abbrand entsprechender gaserzeugender Abbrandsätze .
Aufgabe der Erfindung ist ein Verfahren und ein Projektil zu finden, das den Energieverlust des Projektils entlang der Geschossbahn ohne zusätzliche Treibgasladung reduziert und damit dessen Reichweite und Zielwirkung steigern kann.
Diese Aufgaben werden durch die Gegenstände des Anspruchs 1 bzw. 3 oder der abhängigen Ansprüche gelöst bzw. die Lösungen weitergebildet.
Das erfindungsgemässe Verfahren bzw. das erfindungsgemässe Projektil werden nachfolgend anhand von in der Zeichnung schematisch dargestellten Ausführungsbeispielen rein beispielhaft näher beschrieben oder erläutert. Im einzelnen zeigen Fig.l die Darstellung eines drallstabilisierten
Projektils nach dem Stand der Technik mit ogivalem Bug, zylindrischer Mitte und eingezogenem Heck;
Fig.2 die schematische Darstellung des Strömungsfelds um ein Überschallproj ektil mit Mach-Kegel am Bug und am Heck des Projektils, Energieübertragung an die Grenzschicht, Nachstromkörper mit Totwasser und turbulentem Nachlauf;
Fig.3a-b die Darstellung eines ersten Ausführungsbeispiels des erfindungsgemäßen Projektils in Seiten- und Schnittansieht ;
Fig.4a-b die schematische Darstellung des erfindungsgemäßen Verfahrens mit Beeinflussung des Grenzschichtprofils durch eine Zirkulationsströmung anhand des ersten
Ausführungsbeispiels des erfindungsgemäßen Projektils;
Fig.5 die schematische Darstellung der Umströmung bei
Überschallgeschwindigkeit für das erste Ausführungsbeispiels des erfindungsgemäßen Projektils und Fig.6a-c die Darstellung eines zweiten Ausführungsbeispiels des erfindungsgemäßen Projektils.
In Fig.l wird ein drallstabilisiertes Projektil 1 nach dem Stand der Technik mit ogivalem Bug und Projektilspitze la, zylindrischem Mittelteil lb und eingezogenem Projektilheck lc dargestellt, wie es auch für kleinkalibrigere Munition bis einschliesslich Kaliber .50 BMG, d.h. 12,7x99 mm, typisch ist. Die Drallstabilisierung wird im Regelfall durch das Verschießen aus gezogenen Läufen erreicht, kann aber auch durch andere Mittel, wie z.B. schräggestellte aerodynamisch wirksame Flächen erreicht werden. In Hinblick auf die erfindungsgemässe Wirkung ist lediglich das Auftreten einer Rotation mit je nach konkreter Projektilauslegung hinreichend großer Kreisfrequenz erforderlich .
Projektile bzw. Geschosse des Stands der Technik weisen häufig eine Form auf, deren zugehörige Gesamtlänge 10 sich in die in Fig. 1 dargestellten drei Bereiche Vorderteil der Länge 11 mit Bug und Projektilspitze la, Mittelteil lb der Länge 12 und Projektilheck lc oder Projektilbasis der Länge 13 unterteilen läßt. Bei der gezeigten Form mit Bootsheck ist der Heckdurchmesser d3 gegenüber dem Kaliber bzw. Mittelteildurchmesser dl verringert, so dass sich eine strömungsgünstige Form ergibt. Die durch die Bewegung im mit Luft als zu durchdringendem Medium gefüllten Raum bewirkten Widerstandskräfte führen zu einem Verlust an kinetischer Energie. Hierbei trägt jedes Teil des Projektils 1 mit Bug, Mitte und Heck einen spezifischen Anteil bei, wobei dessen Energieverlust wegen der Energieerhaltung einem Energiegewinn seiner Umströmung entsprechen muss. Die beim Flug durch das Medium resultierenden Einflüsse werden in Fig.2 anhand des Strömungsfelds um ein im Überschallbereich bei ca. 1,8 Mach fliegendes Projektil 1 mit Bug-Mach-Kegel 2 und Heck-Mach-Kegel 3,
Energieübertragung e an die Grenzschicht 8, Nachstromkörperkontur 4 mit sogenanntem Totwasser 5 als unmittelbar hinter dem Projektil bestehendem aerodynamischen Schatten und turbulentem Nachlauf 6 schematisch dargestellt. Erläutert wird der Energiefluss e in die Grenzschicht 8 des Projektils 1, die ein nichtlineares Geschwindigkeitsprofil in Wandnähe ausbildet und nach einer laminaren Anlaufphase turbulent anwächst, bis sie sich am stumpfen Projektilheck ablöst. Die Grenzschicht 8 ist in bodenfesten Koordinaten dargestellt, wobei Luft- bzw. Fluidteilchen nahe der Wand in Flugrichtung mitgerissen werden. Solche Teilchen sammeln sich im Totwasser 5 des Nachstromkörpers , der einen freien Staupunkt 7 ausbildet. Bei Überschallgeschossen beginnt dort der Heck-Mach-Kegel 3 der Heckstosswelle . Im dann folgenden Nachlauf 6 wird die an die Grenzschicht 8 übertragene Energie turbulent dissipiert.
Diese Beobachtungen können anhand von
Hochgeschwindigkeitsaufnahmen validiert werden. Bei der Modellierung sind folgende Mechanismen von Bedeutung: · Der Energieverlust e des Projektils 1 ist Energiegewinn der Grenzschicht 8.
• Der Geschwindigkeitsgradient in der Grenzschicht 8 bewirkt eine Scherung, dadurch entstehen Reibungskräfte und Widerstand.
• Im Totwasser 5 ist nachfolgendes Fluid so schnell wie das Projektil 1. Die kinetische Energie des Totwassers 5 stammt aus der Grenzschicht 8.
• Energie aus dem Totwasser 5 wandert in den turbulenten Nachlauf 6 als Nachstromfeld .
Gemäss der erfindungsgemäßen Lehre kann der Energieverlust des Projektils 1 entlang seiner Bahn vermindert werden, indem das Geschwindigkeitsprofil der Grenzschicht 8 durch Zuführung von sich bereits mit Projektilgeschwindigkeit bewegendem Medium aufgefüllt wird, was die Wandreibungskräfte reduziert. Hierzu wird die Rotation des Projektils 1 und die hierdurch erzeugte Radial- bzw. Zentrifugalbeschleunigung genutzt, um Fluidpartikel bzw. Partikel des Mediums aus dem Totwasser 5 des Projektils 1 in die Grenzschicht 8 zu fördern. Durch diesen Ansatz werden also Anteile des im dem Totwasserbereich 5 des Projektils 1 angesammelten und sich mit Projektilgeschwindigkeit bewegenden Mediums vermittels eines Teils der Rotationsenergie des Projektils 1 unter die zuströmende Grenzschicht 8 an der Aussenfläche des Projektils 1 gefördert und so der Geschwindigkeitsgradient der Grenzschicht 8 in Wandnähe gesenkt. Insgesamt gesehen wird das Umgebungsmedium somit zunächst axial in
Bewegungsrichtung des Projektils 1 und anschließend zentrifugalbeschleunigt radial zu dessen Außenfläche gefördert .
Durch dieses Verfahren kann die Reichweite eines drallstabilisierten Projektils erhöht bzw. der Geschoßabfall pro Distanzintervall verringert werden, so dass eine flachere Flugbahn mit erhöhter TreffWahrscheinlichkeit und eine höhere Energie im Ziel resultieren.
In Fig.3a-b erfolgt die Darstellung eines ersten Ausführungsbeispiels des erfindungsgemäßen Projektils in Seiten- und Schnittansicht.
Zur Verwirklichung des erfindungsgemässen Ansatzes kann ein Projektil des Stands der Technik rein beispielhaft wie folgt verändert werden.
Das drallstabilisierte Projektil 1 mit einer Außenfläche, einer Projektilspitze und einem Projektilheck wird so ausgebildet, dass die Aussenfläche wenigstens eine umlaufende Hohlkehle 9 aufweist, welche über radiale Querkanäle 10 mit wenigstens einem Längskanal 11 im Inneren des Projektils 1 verbunden sind, welcher seinerseits mit einer Öffnung im Pro ektilheck verbunden ist. In das Projektil wird dieser Längskanal 11 bspw. als eine axiale bzw. Längsbohrung von der Basis bzw. dem Projektilheck bis zur Höhe der in seiner Aussenwand umlaufenden Hohlkehle 9 ausgebildet, von welcher die Querkanäle 10 im wesentlichen rechtwinklig, d.h. in radialer Richtung, abzweigen, was sich ebenfalls durch entsprechende Bohrungen realisieren lässt. Alternativ sind jedoch auch andersartige Fertigungsverfahren erfindungsgemäß nutzbar. Die Hohlkehle befindet sich hierbei möglichst nahe am Bugbereich, so dass ein Grossteil der Aussenfläche durch die erzeugte Strömung hinsichtlich des Strömungsfeldes beeinflusst werden kann. Insbesondere kann die Hohlkehle 9 unmittelbar am vorderen Teil des im wesentlichen zylindrischen Mittelteils des Projektils angeordnet sein. Je nach Projektiltyp und Projektillänge können jedoch auch mehrere Hohlkehlen in die Aussenwand bzw. Aussenfläche des Projektils eingearbeitet sein.
Vorteilhafterweise ist der Übergang des Längskanals 11 zur Geschossbasis bzw. dem Projektilheck strömungsgünstig geformt, beispielsweise durch eine Ausrundung r4 der Übergangskante. Die sich dort ausbildende Strömung erhöht den Basisdruck am Heck des Projektils, was dessen Widerstand verringert. Der Durchmesser d4 des Längskanals ist von verschiedenen Faktoren abhängig, wie z.B. von der Dimensionierung des Projektils, dessen innerem Aufbau sowie der zu erwartenden Machzahl bzw. Flug- oder Mündungsgeschwindigkeit. Der Querschnitt des Längskanals 11 kann im einfachsten Fall rund und konstant ausgebildet werden, allerdings sind erfindungsgemäss auch andere Geometrien verwendbar. So kann der Kanal auch polygonal oder sternförmig sowie mit längenabhängig variablem Querschnitt ausgeführt werden. Aufgrund der Drallstabilisierung ist jedoch eine bzgl. der Drallachse symmetrische Masseverteilung sicherzustellen. Ebenso kann erfindungsgemäss anstelle eines einzigen Längskanals 11 auch eine Mehr- oder Vielzahl von solchen Kanälen ausgebildet werden .
Der Längskanal 11 ist mit mehreren gleichmässig radial verteilten Querkanälen 10 in Kontakt, die den Längskanal 11 als inneren Förderkanal mit der Aussenwand des Projektils 1 verbinden und in der umlaufenden Hohlkehle 9 enden. Durch die Rotation des Projektils 1 entsteht in diesen bspw. als Bohrungen ausgeführten Querkanälen 10 eine Zentrifugalkraft und daraus die gewünschte Förderwirkung, welche das Fluid bzw. Umgebungsmedium aus dem Totwasser in den Längskanal 11 und schliesslich in die Grenzschicht fördert. Die Zahl der Querkanäle 10 kann an die entsprechenden Projektilgeometrien und Strömungsverhältnisse angepasst werden und kann sowohl gerad- als auch ungeradzahlig sein, z.B. 2, 3, 4, 5, 6 oder 8. Aufgrund der Unwuchtvermeidung für die
Drallstabilisierung und eines gleichmässigen Unterfütterungsvorgangs für die Grenzschicht sind die Querkanäle 10 gleichmässig, d.h. äquidistant über den Umfang oder aber mit gleicher Winkelteilung verteilt. Ebenso wie der Längskanal 11 können auch die Querkanäle 10 die verschiedenen und im dortigen Zusammenhang erwähnten Geometrien aufweisen, um den fertigungs- und strömungstechnischen Gegebenheiten Rechnung zu tragen. Insbesondere können die radialen Querkanäle 10 einen sichelförmig bzw. gekrümmt in oder entgegen der Drallrichtung weisenden Verlauf aufweisen, so dass das Strömungsverhalten des geförderten Mediums durch eine in oder entgegen der Rotationsrichtung wirkende Komponente beeinflußt werden kann. Ausserdem ist es möglich, die radialen Querkanäle 10 mit einen sich in oder entgegen der radialen Richtung verjüngenden Verlauf auszugestalten, insbesondere kann der Querschnitt d2 im Auslaßbereich der Hohlkehle 9 erweitert werden. Die Länge der radialen Querkanäle 10 und damit der für die Zentrifugalbeschleunigung des Mediums zur Verfügung stehende Anteil des Projektildurchmessers ist von der konkreten Gestaltung des Projektils 1 und dessen Flug- bzw. Rotationsgeschwindigkeit abhängig. Insbesondere kann diese aber jeweils wenigstens ein Drittel des Durchmessers des Projektils 1 betragen.
Die Querkanäle 10 enden in einer umlaufenden Hohlkehle 9 als Sammelkanal für das aus den Querkanälen 10 strömende Fluid, wobei aus der Hohlkehle 9 heraus das strömende Umgebungsmedium bzw. dessen Grenzschicht unterfüttert wird. Von Vorteil ist es, die Hohlkehle 9 nach vorne vergleichsweise scharfkantig auszuführen, um einen Strömungsabriss der zufliessenden Grenzschicht zu erzwingen, und nach hinten mit einem flachen Übergang zu versehen, um das geförderte Fluid gleichmässig unter die von vorne zufliessende Grenzschichtströmung zu befördern und deren Geschwindigkeitsprofil wandseitig aufzufüllen. Damit weist die umlaufende Hohlkehle 9 ein Profil auf, dessen zur Projektilspitze weisende Flanke 9a steiler als die zum Projektilheck weisende Flanke 9b ausgebildet ist. Für grosse Kaliber oder lange Geschosse kann es vorteilhaft sein, mehr als eine Hohlkehle mit den dazugehörigen Querkanälen anzuordnen, die axial aufeinander folgen und über ihre jeweiligen Querkanäle mit dem Längskanal zum Projektilheck verbunden sind.
Das erfindungsgemässe Projektil 1 kann sowohl als Vollgeschoß, aber auch als Mantelgeschoß oder als Projektil mit komplexerem Innenaufbau ausgebildet werden, wie dies bspw. bei Artilleriegeschossen möglich ist. Dementsprechend sind das erfindungsgemäße Verfahren und die erfindungsgemässen Projektile auch nicht spezielle Projektiltypen oder Kaliber beschränkt. Insbesondere können auch Klein- oder Mittelkaliber, wie z.B. gängige Sport- oder Jagdmunition oder aber Flugabwehrkanonenmunition in den Kalibern 35mm oder 40mm, aber auch Artilleriegeschosse in den Kalibern 155mm, 175mm oder 203mm erfindungsgemäss ausgestaltet werden. Je nach Verwendungszweck können dann die Nutz- bzw. Wirkladungen im vorderen Geschoßteil oder aber im inneren Mantelbereich angeordnet sein, wie dies in ähnlicher Weise bereits bei Sub-Munition aus dem Stand der Technik bekannt ist. Insbesondere kann ein erfindungsgemäßes Projektil 1 zum Verschuss einen Treibspiegel oder einen Treibkäfig aufweisen oder auch als Flanschgeschoß ausgebildet sein.
Die Beeinflussung des Grenzschichtprofils durch eine Zirkulationsströmung anhand des ersten Ausführungsbeispiels des erfindungsgemäßen Projektils wird in Fig.4a-b in schematischer Darstellung näher erläutert.
Durch die erwähnten erfindungsgemäßen Massnahmen wird die über den Bug des Projektils 1 zufliessende Grenzschicht im Bereich der Hohlkehle 9 mit Fluid unterströmt, das aus dem Totwasserbereich stammt und die gleiche Geschwindigkeit besitzt wie das Projektil 1. Dadurch verändert sich die Umströmung des Projektils 1, wie in Fig.4a-b dargestellt. Hier sind Grenzschichtprofile Bl, B2 und B3 in körperfesten Koordinaten dargestellt.
• Über den Bug des Projektils bildet sich eine Grenzschicht mit nichtlinearem Geschwindigkeitsprofil und hohem Gradienten nahe der Wand aus (Bl) .
• An der Hohlkehle löst die zufliessende Grenzschicht von der Wand ab und wird von dem aus dem Inneren in die Hohlkehle geförderten Fluid unterströmt. Dadurch wird die Grenzschicht in Wandnähe mit Fluid aufgefüllt, das im wesentlichen die Geschwindigkeit des Projektils besitzt (B2) .
• Der Grenzschichtgradient wird nach aussen verdrängt, es bildet sich eine Ablöseblase (12, B3)über dem Projektil, wodurch die Wandschubspannung und der Widerstand entsprechend gemindert werden.
• Ein Teil des Fluids aus dem Totwasser zirkuliert in vier Schritten um das Projektil:
1. ZufHessen aus dem Totwasserbereich
2. Fördern in die Hohlkehle über den Längskanal 11 und die Querkanäle 10
3. AbfHessen in der Grenzschicht
4. Sammeln im Totwasser
• Durch diese Zirkulation fliesst weniger kinetische Energie in den turbulenten Nachlauf ab, was die Energieverlustrate insgesamt vermindert.
• Der Basisdruck des Projektils wird durch Zentrifugalkräfte im Zulauf erhöht, was den Widerstandsanteil aus der Senkung des Basisdrucks ohne zusätzliche Treibgase mindert. Die Druckerhöhung an der Basis stammt hierbei aus der Zirkulationsströmung. Fig.5 zeigt die schematische Darstellung der Umströmung bei Überschallgeschwindigkeit für das erste Ausführungsbeispiels des erfindungsgemäßen Projektils. Aus dem gegenüber Fig.2 veränderten Strömungsfeld um das Projektil ist ersichtlich, dass ein Teil des Fluids aus dem Totwassers um den hinteren Teil des Geschosses zirkuliert und nicht in den turbulenten Nachstrom gelangt. Dadurch sinkt der Energieverlust des Projektils entlang der Geschossbahn. Die Zirkulation führt zu einer Ablöseblase 12 im mittleren Bereich, was dort die Wandschubspannung mindert, und zu einer Druckerhöhung im Zufluss der Basis bzw. dem Projektilheck, was den Widerstandsanteil aus der Umströmung des stumpfen Hecks vermindert. Die Minderung der Widerstandskräfte entspricht der Minderung an Energieverlust. Dadurch werden Reichweite und Zielenergie bzw. Zielwirkung des Projektils gesteigert.
Ein zweites Ausführungsbeispiels des erfindungsgemäßen Projektils, welches insbesondere fertigungstechnische Vorteile aufweist, ist in den Fig.6a-c dargestellt. Für die Massenfertigung sind Bohrungen aus Kostengründen nachteilig, so dass es sinnvoll ist, Projektile aus mindestens zwei Teilen 13 und 14 zu fertigen, in denen die erforderlichen Kanäle als zunächst offene Hohlkehlen bzw. Hohlbahnen 15 ausgebildet sind. Ein erfindungsgemässes Projektil wird in diesem Fall somit aus wenigstens zwei Teilen 13 und 14 zusammengesetzt, wobei zumindest eines der zwei Teile 13 und 14 mehrere gleichmässig auf den Umfang verteilte Hohlbahnen 15 aufweist, vorzugsweise zwei bis acht, wobei diese nach dem Zusammenfügen im Zusammenwirken der beiden Teile 13 und 14 die radialen Querkanäle 10' und/oder den wenigstens einen Längskanal 11' bilden. Im vorderen Teil können hierzu die mehrere Ausnehmungen gleichmässig auf den Umfang verteilt eingelassen sein. Sie verbinden die Basis des Projektils durch eine Öffnung mit dessen Seitenwand bzw. Aussenfläche und Hecköffnung und bilden gemeinsam mit dem Innenkonus ein System von kanalartigen Röhren, die den Transport von Fluid aus dem Totwasser in die Wandgrenzschicht ermöglichen. Um eine präzise Zentrierung zu ermöglichen ist es vorteilhaft, wenn das die Projektilspitze bildende Teil 13 zapfenförmig in das das Projektilheck bildende Teil 14 ragt. Hierdurch können die wenigstens zwei Teile 13 und 14 durch Kegelsitz zentriert und über Reibschluß, Formschluß, Kleben, Löten oder Schweissen gefügt und miteinander verbunden werden, wobei die Teile 13 und 14 auch aus unterschiedlichem Materialien bestehen können.
Damit sind die Kanäle als Vertiefung in einem der ersten der beiden Teile 13 und 14 ausgeformt, wobei das zweite Teil 14 beim Zusammenfügen die offene Kanalseite abdeckt, so dass insgesamt wieder längs durchströmbare Röhren und damit die erfindungsgemässen Kanäle 10' und 11' gebildet werden.
Somit besteht das zweite Ausführungsbeispiels des erfindungsgemäßen Projektils aus zwei Teilen 13 und 14, die über einen Kegelsitz zentriert und durch Reibschluss im Presssitz gefügt werden können. Alternativ können die Teile durch Formschluss, Kleben, Schweissen, Löten oder einem anderen Fügeverfahren miteinander verbunden sein. Besonders vorteilhaft sind hier die strömungsgünstige Ausrundung der Kanäle, d.h. der Übergang vom Längskanal 11' zu den Querkanälen 10' und der Übergang zur seitlichen Wandöffnung gestaltbar, wodurch die radialen Querkanäle 10' und der wenigstens eine Längskanal 11' einen gemeinsamen gekrümmten Verlauf aufweisen. Hierdurch kann ein kontinuierlicher und strömungsgünstiger Verlauf des Gesamtkanals realisiert werden .
Grundsätzlich können die vor die Kanäle benötigten Hohlbahnen aber sowohl alleinig im ersten Teil 13 als auch alleinig in zweiten Teil 14 oder aber in beiden Teilen 13 und 14 eingelassen sein. Sie können parallel zur Längsachse oder auch spiralig ausgeführt sein, wobei mindestens zwei Kanäle erforderlich sind um eine Unwucht zu vermeiden, vorzugsweise werden aber je nach Kaliber zwei bis acht Kanäle gleichmässig auf dem Umfang verteilt angeordnet. In fertigungstechnischer Hinsicht besteht der Vorteil, dass die beiden Teile 13 und 14 aus zylindrischem Vollmaterial und aus Rohren durch Kaltumformung hergestellt werden können, was eine einfache und auch kostengünstige Fertigung ermöglicht. Vorteilhaft ist hier ebenfalls, dass die beiden Teile aus unterschiedlichen Materialien hergestellt werden können.

Claims

PATENTA SPRÜCHE
1. Verfahren zur Erhöhung der Reichweite eines sich in einem Umgebungsmedium bewegenden drallstabilisierten Projektils (1), dadurch gekennzeichnet, dass das Umgebungsmedium aus einem Totwasserbereich (5) des Projektils (1) vermittels eines Teils der Rotationsenergie des Projektils (1) unter die zuströmende Grenzschicht an der Aussenfläche des Projektils (1) gefördert wird und so der Geschwindigkeitsgradient der Grenzschicht in Wandnähe gesenkt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Umgebungsmedium axial in Bewegungsrichtung des Projektils (1) und anschließend zentrifugalbeschleunigt radial zur Außenfläche gefördert wird.
3. Drallstabilisiertes Projektil (1) mit einer Außenfläche, einer Projektilspitze (la) und einem Projektilheck (lc), dadurch gekennzeichnet, dass die Aussenfläche wenigstens eine umlaufende Hohlkehle (9) aufweist, welche über radiale Querkanäle (10,10') mit wenigstens einem Längskanal (11,11') im Inneren des Projektils (1) verbunden ist, welcher seinerseits mit einer Öffnung im Projektilheck (lc) verbunden ist.
4. Projektil nach Anspruch 3, dadurch gekennzeichnet, dass die wenigstens eine umlaufende Hohlkehle (9) ein Profil aufweist, dessen zur Projektilspitze (la) weisende Flanke (9a) steiler als die zum Projektilheck (lc) weisende Flanke (9b) ausgebildet ist.
5. Projektil nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die radial verlaufenden Querkanäle (10,10') gleichmässig über den Umfang verteilt sind.
6. Projektil nach einem der vorangehenden Ansprüche 3 bis 5, dadurch gekennzeichnet, dass der Übergang zwischen dem Projektilheck (lc) und dem wenigstens einen Längskanal (11,11') strömungsgünstig ausgeformt ist, insbesondere abgerundet ausgebildet ist.
7. Projektil nach einem der vorangehenden Ansprüche 3 bis 6, dadurch gekennzeichnet, dass dieses zum Verschuss einen Treibspiegel oder einen Treibkäfig aufweist.
8. Projektil nach einem der vorangehenden Ansprüche 3 bis 7, dadurch gekennzeichnet, dass dieses aus zwei Teilen (13,14) zusammengesetzt wird, wobei zumindest eines der zwei Teile (13,14) mehrere gleichmässig auf den Umfang verteilte Hohlbahnen (15) aufweist, vorzugsweise zwei bis acht, wobei diese nach dem Zusammenfügen die radialen Querkanäle (10') und/oder den wenigstens einen Längskanal (11') bilden.
9. Projektil nach Anspruch 8, dadurch gekennzeichnet, dass das die Projektilspitze (la) aufweisende Teil (13) zapfenförmig in das das Projektilheck (lc) aufweisende Teil (14) ragt.
10. Projektil nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die wenigstens zwei Teile (13,14) durch Kegelsitz zentriert und über Reibschluß, Formschluß, Kleben, Löten oder Schweissen gefügt und miteinander verbunden sind, insbesondere wobei die Teile (13,14) aus unterschiedlichem Material bestehen.
11. Projektil nach einem der vorangehenden Ansprüche 3 bis 10, dadurch gekennzeichnet, dass die Länge der radialen Querkanäle (10,10') jeweils wenigstens ein Drittel des Durchmessers des Projektils (1) beträgt.
12. Projektil nach einem der vorangehenden Ansprüche 3 bis 11, dadurch gekennzeichnet, dass die radialen Querkanäle (10') und der wenigstens eine Längskanal (11') einen gemeinsamen gekrümmten Verlauf aufweisen.
13. Projektil nach einem der vorangehenden Ansprüche 3 bis 12, dadurch gekennzeichnet, dass die radialen Querkanäle einen sichelförmig in oder entgegen der Drallrichtung weisenden Verlauf aufweisen.
14. Projektil nach einem der vorangehenden Ansprüche 3 bis 13, dadurch gekennzeichnet, dass die radialen Querkanäle einen sich in oder entgegen der radialen Richtung verjüngenden Verlauf aufweisen.
15. Projektil nach einem der vorangehenden Ansprüche 3 bis
14, dadurch gekennzeichnet, dass der Längskanal einen sich in axialer Richtung verändernden Querschnitt aufweist.
PCT/EP2014/066341 2013-07-31 2014-07-30 Verfahren zur steigerung der reichweite von drallstabilisierten projektilen und ebensolches projektil WO2015014877A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/908,488 US10094644B2 (en) 2013-07-31 2014-07-30 Method for increasing the range of spin-stabilized projectiles, and projectile of said type
EP14744849.2A EP3028002B1 (de) 2013-07-31 2014-07-30 Verfahren zur steigerung der reichweite von drallstabilisierten projektilen und ebensolches projektil
ES14744849T ES2699433T3 (es) 2013-07-31 2014-07-30 Procedimiento para aumentar el alcance de proyectiles rotacionalmente estabilizados y proyectil de este tipo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01342/13A CH708412A2 (de) 2013-07-31 2013-07-31 Projektil mit verbesserter Reichweite.
CH01342/13 2013-07-31

Publications (1)

Publication Number Publication Date
WO2015014877A1 true WO2015014877A1 (de) 2015-02-05

Family

ID=51257497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/066341 WO2015014877A1 (de) 2013-07-31 2014-07-30 Verfahren zur steigerung der reichweite von drallstabilisierten projektilen und ebensolches projektil

Country Status (7)

Country Link
US (1) US10094644B2 (de)
EP (1) EP3028002B1 (de)
CH (1) CH708412A2 (de)
ES (1) ES2699433T3 (de)
HU (1) HUE040260T2 (de)
TR (1) TR201816455T4 (de)
WO (1) WO2015014877A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3278054A4 (de) * 2015-04-01 2018-11-07 Nammo Vanäsverken AB Leuchtspurgeschoss und verfahren zur anwendung einer leuchtspurvorrichtung an einem leuchtspurgeschoss
CN114692318A (zh) * 2022-06-01 2022-07-01 中国飞机强度研究所 飞机冲击动力学测试用格栅式燃油箱结构抗毁伤评估方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10317178B2 (en) * 2015-04-21 2019-06-11 The United States Of America, As Represented By The Secretary Of The Navy Optimized subsonic projectiles and related methods
US10928168B2 (en) * 2017-11-10 2021-02-23 Curtis E. Graber Noise control system and method for small caliber ammunition
US10119780B1 (en) * 2018-01-12 2018-11-06 David Wayne Bergeron Light gas gun projectile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2507878A (en) * 1943-10-16 1950-05-16 Jr Thomas A Banning Projectile
FR1246710A (fr) * 1957-04-08 1960-11-25 Mobile aéronautique
GB1019061A (en) * 1961-03-29 1966-02-02 Herbert Harry Pearcey Improvements relating to control of fluid flow past bodies and to reduction of drag of such bodies

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB374091A (en) * 1929-12-24 1932-05-30 Hermann Gerlich Improvements in or relating to fire-arms or other projectile propelling apparatus and projectiles therefor
US2624281A (en) * 1947-09-10 1953-01-06 James A Mcnally Projectile
US2793592A (en) * 1952-02-28 1957-05-28 William J Kroeger Reaction means for rotating ammunition projectiles at low speeds
US4379531A (en) * 1970-11-18 1983-04-12 Manis John R Projectile
US4176487A (en) * 1970-11-18 1979-12-04 Manis John R Firearm barrels and projectiles
US3890902A (en) * 1973-12-04 1975-06-24 Us Army Projectile
US3913489A (en) * 1973-12-19 1975-10-21 Us Army Projectile
PT77697B (fr) * 1982-11-24 1986-02-12 Ladriere Serge Projectile perfectionne destine a etre decharge par des armes a feu
US5381736A (en) * 1994-01-24 1995-01-17 Kalcic; Frank Recoil reducing bullet
US8267015B2 (en) * 2005-10-21 2012-09-18 Liberty Ammunition, Inc. Multi-component projectile rotational interlock
US8082850B2 (en) * 2005-10-21 2011-12-27 Liberty Ammunition, Inc. Synchronized spin multi-component projectile
AU2013101363B4 (en) * 2013-07-31 2014-03-13 Techventure Investments Pty Ltd A projectile body and corresponding ammunition round for small arms or a light firearm

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2507878A (en) * 1943-10-16 1950-05-16 Jr Thomas A Banning Projectile
FR1246710A (fr) * 1957-04-08 1960-11-25 Mobile aéronautique
GB1019061A (en) * 1961-03-29 1966-02-02 Herbert Harry Pearcey Improvements relating to control of fluid flow past bodies and to reduction of drag of such bodies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VISWANATH P R ET AL: "EFFECTIVENESS OF PASSIVE DEVICES FOR AXISYMMETRIC BASE DRAG REDUCTION AT MACH 2", JOURNAL OF SPACECRAFT AND ROCKETS, AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS,REASTON,VA, US, vol. 27, no. 3, 1 May 1990 (1990-05-01), pages 234 - 237, XP000134711, ISSN: 0022-4650 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3278054A4 (de) * 2015-04-01 2018-11-07 Nammo Vanäsverken AB Leuchtspurgeschoss und verfahren zur anwendung einer leuchtspurvorrichtung an einem leuchtspurgeschoss
CN114692318A (zh) * 2022-06-01 2022-07-01 中国飞机强度研究所 飞机冲击动力学测试用格栅式燃油箱结构抗毁伤评估方法
CN114692318B (zh) * 2022-06-01 2022-08-26 中国飞机强度研究所 飞机冲击动力学测试用格栅式燃油箱结构抗毁伤评估方法

Also Published As

Publication number Publication date
EP3028002B1 (de) 2018-08-29
ES2699433T3 (es) 2019-02-11
EP3028002A1 (de) 2016-06-08
TR201816455T4 (tr) 2018-11-21
HUE040260T2 (hu) 2019-02-28
US20160169644A1 (en) 2016-06-16
US10094644B2 (en) 2018-10-09
CH708412A2 (de) 2015-02-13

Similar Documents

Publication Publication Date Title
EP3028002B1 (de) Verfahren zur steigerung der reichweite von drallstabilisierten projektilen und ebensolches projektil
EP3060875B1 (de) Patrone
DE69511789T2 (de) Leitwerk für Geschosse, insbesondere für Überschallunterkalibergeschosse
DE2951904A1 (de) Abschussvorrichtung fuer ein unterkalibergeschoss
DE2731093A1 (de) Geschoss, insbesondere zum verschiessen aus einem glatten rohr
EP0006874A1 (de) Geschoss mit drall erzeugenden strömungskanälen
CH628978A5 (de) Unterkalibriges pfeilgeschoss mit einem widerstandsstabilisierenden heckteil.
WO2015022377A1 (de) Verfahren zur verringerung des wellenwiderstandes eines aus rohrwaffen verschossenen überschallschnellen projektils und ebensolches projektil
EP2719993A2 (de) Expansions-Jagdgeschoss
EP0066715A2 (de) Drallstabilisierter Übungsflugkörper
CH662646A5 (de) Geschoss mit einem rohrfoermigen koerper.
DE2336904C2 (de) Treibkäfiggeschoß
DE3785844T2 (de) Loesbarer treibkaefig.
DE69401794T2 (de) Reduzierung des Geschwindigkeitzerfalls eines flügelstabilisierten Unterkalibergeschosses
EP3317607B1 (de) Aus einem gezogenen waffenrohr verschiessbares, flügelstabilisiertes unterkalibergeschoss und verfahren zu seiner herstellung
EP1757899B1 (de) Weitreichendes Vollkalibergeschoss für Glattrohrkanonen
EP4031829B1 (de) Treibkäfig vom push-pull-typ mit von einander getrennten teilen für die push- und pull-funktion
EP2326910B1 (de) Treibkäfiggeschoss
WO2015162254A1 (de) Überschallflugkörper und verfahren zur verringerung des wellenwiderstandes eines solchen überschallflugkörpers
DE2454584A1 (de) Rohrfoermiges geschoss
DE102006056662A1 (de) Geschosskörper mit integriertem Treibspiegel und Lauf einer Feuerwaffe zum Abfeuern eines solchen Geschosskörpers
DE10157563A1 (de) Vollkalibriges Geschoss
EP0389845B1 (de) Treibtopf für drallstabilisierte Unterkalibergeschosse
EP3011258B1 (de) Leitwerkstabilisiertes vollkalibergeschoss
DE1428690C (de) Gewehrgeschoß

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14744849

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014744849

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14908488

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE