WO2015014875A1 - Procédé permettant de produire un élément convertisseur et un composant optoélectronique, élément convertisseur et composant optoélectronique - Google Patents

Procédé permettant de produire un élément convertisseur et un composant optoélectronique, élément convertisseur et composant optoélectronique Download PDF

Info

Publication number
WO2015014875A1
WO2015014875A1 PCT/EP2014/066338 EP2014066338W WO2015014875A1 WO 2015014875 A1 WO2015014875 A1 WO 2015014875A1 EP 2014066338 W EP2014066338 W EP 2014066338W WO 2015014875 A1 WO2015014875 A1 WO 2015014875A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
optoelectronic
semiconductor chip
converter element
plates
Prior art date
Application number
PCT/EP2014/066338
Other languages
German (de)
English (en)
Inventor
Boris Eichenberg
Herbert Brunner
Simon Jerebic
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Priority to CN201480042969.3A priority Critical patent/CN105409014B/zh
Priority to JP2016530507A priority patent/JP6442504B2/ja
Priority to US14/908,257 priority patent/US20160181483A1/en
Publication of WO2015014875A1 publication Critical patent/WO2015014875A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a method for herstel ⁇ len of a converter element according to claim 1, a Ver ⁇ drive for producing an optoelectronic component according to claim 6, a converter element according to patent applica ⁇ demanding 8 and an optoelectronic component according Pa ⁇ tent labor. 13
  • optoelectronic components for example light-emitting diode components
  • converter elements which are intended to convert a wavelength of an electromagnetic radiation emitted by an optoelectronic semiconductor chip of the optoelectronic component.
  • light from the blue spectral range can be converted into different-colored or white light.
  • Optoelectronic components are known from the prior art, which have a plurality of optoelectronic semiconductor chips, for example a plurality of light-emitting diode chips (LED chips).
  • LED chips light-emitting diode chips
  • a possibility can be provided for controlling an optical output power to control the optoelectronic semiconductor chips separately from one another and to turn them on or off individually.
  • An object of the present invention is to provide a method for producing a converter element for an optoelectronic component. This task will solved by a method having the features of claim 1.
  • Another object of the present invention is as ⁇ rin to provide a method for producing an optoelectronic component. This object is achieved by a method having the features of claim 6.
  • Another Aufga ⁇ be the present invention is to provide a converter element for an optoelectronic component calmzu ⁇ . This object is achieved by a converter element having the features of claim 8.
  • Another object of the present invention is to provide an optoelectronic device. This object is achieved by an optoelectronic device with the features of at ⁇ entitlement. 13 In the dependent claims various developments are given.
  • a method for producing a converter element for an optoelectronic component comprises steps for arranging a plurality of converter platelets on a carrier, for forming a shaped body, wherein the converter platelets are embedded in the shaped body, the tops and bottoms of the converter platelets remaining at least partially uncovered by the shaped body, and for dividing the shaped body to obtain a converter element.
  • the converter elements obtainable by the method are suitable for use in optoelectronic components having more than one optoelectronic semiconductor chip.
  • Another advantage of the converter elements obtainable by the process may be that the individual NEN converter plate of a converter element are optically separated from each other by the shaped body, which can prevent an outshining of light between the individual converter plates of the converter element.
  • the converter plates are arranged in a regular arrangement on the carrier.
  • the molding can then be special ⁇ DERS simply split into converter elements.
  • the converter plates then also have a regular arrangement in the converter elements obtainable by the method.
  • the carrier has receiving areas on a surface for receiving the converter plates .
  • the converter plates are arranged on top of the carrier.
  • the Trä ⁇ ger is set in motion, to at least some of the converter ⁇ platelet, preferably all, are arranged in the receiving areas.
  • the receiving portions may for example be formed as Ver ⁇ depressions on the upper side of the carrier and have a size that substantially corresponds to the size of the converter plate.
  • the carrier may be vibrated to move the converter plates into the receiving areas.
  • this facilitates the arrangement of the converter plates on the upper side of the carrier.
  • the shaped body is formed by injection molding, compression molding or transfer molding, preferably by film-assisted transfer molding. Before ⁇ geous enough, the method thereby allows a cost- effective mass production.
  • film-assisted transfer molding advantageously makes it possible to use Especially light, the tops and bottoms
  • the dividing of the shaped body is carried out by sawing, cutting, punching or laser cutting.
  • the dividing of the shaped body is carried out by sawing, cutting, punching or laser cutting.
  • the shaped body is divided so that the converter element comprises at least two Kon ⁇ verterplättchen.
  • the converter element obtainable by the process can then be used in an optoelectronic component with at least two optoelekt ⁇ tronic semiconductor chips.
  • the use of the converter element obtainable by the method is simpler and less expensive than the use of a plurality of converter elements, each with only one converter plate.
  • a further step is performed to ⁇ n ⁇ countries a thickness of at least oneificatbet ⁇ ended in the molding converter plate after forming the molded article.
  • a color locus of the converter wafer of the converter element obtainable by the process can thereby be adapted.
  • a method for producing an optoelectronic component comprises steps for producing a converter element according to a method of the aforementioned type, for providing an optoelectronic semiconductor chip, and for arranging the converter element over a radiation emission surface of the optoelectronic semiconductor chip.
  • the optoelectronic semiconductor chip can be, for example, a light-emitting diode chip (LED chip).
  • the converter element of the optoelectronic component obtainable by the method can be provided to set a wavelength of a light emitted by the optoelectronic component. see semiconductor chip to convert emitted electromagnetic radiation.
  • the converter element is produced such that it has a first converter plate and a second converter plate.
  • a first optoelectronic semiconductor chip and a second optoelectronic semiconductor chip are provided.
  • the converter element is arranged so that the first Kon ⁇ verterplättchen is arranged a radiation emitting surface of the f th ⁇ optoelectronic semiconductor chip and the second converter plate is disposed over a surface of the second Strahlungsemissionsflä ⁇ optoelectronic semiconductor chips.
  • this method allows the Her ⁇ position of an optoelectronic component with two opto-electronic ⁇ semiconductor chips. In this case, only one converter element is required for both opto ⁇ electronic semiconductor chips together. As a result, the method advantageously requires only one operation for arranging the converter element over the radiation emission surfaces of the optoelectronic semiconductor chips.
  • a converter element for an optoelectronic component comprises a plurality of converter plates, which are embedded in a common molded body.
  • this converter element is suitable for use in an optoelectronic component with more than one optoelectronic ⁇ African semiconductor chip.
  • the converter element is suitable for the conversion of wavelengths of the electromagnetic radiation emitted by a plurality of optoelectronic semiconductor chips. This advantageously does not require a separate converter element for each optoelectronic semiconductor chip.
  • the converter plates have wavelength-converting particles.
  • the wavelength-converting particles can comprise, for example, an organic phosphor or a Anorga ⁇ African phosphor.
  • the wavelength-converting particles may also comprise quantum dots.
  • the wavelength-genkonvert Schlierenden particles are designed to absorb electromagnetic radiation of a first wavelength and to emit electromagnetic radiation with a different, typi cally ⁇ larger wavelength.
  • the converter element has the
  • the form ⁇ body is characterized simple and inexpensive to produce and easy to edit.
  • the shaped body can thereby advantageously have diffuse reflection properties.
  • the converter element of the mold body has embedded light-scattering particles, in particular ⁇ sondere particles Ti0 2, ZrO 2, AI2O3, S1O2 A1N or aufwei- sen.
  • the shaped body is optically diffusely reflective.
  • the shaped body has an underside which terminates substantially flush with the undersides of the converter plates.
  • the undersides of the shaped body and the converter plates can then form a planar upper side of the converter element, when the converter element is inserted in an opto ⁇ electronic component.
  • the shaped body has an upper side which terminates substantially flush with the upper sides of the converter plates.
  • the converter element is thereby particularly easy to produce.
  • the shaped body has an upper side which extends over the upper sides the converter plate is sublime.
  • the raised parts of the shaped body of the converter element can serve as anchors in order to anchor the converter element to a casting of an optoelectronic component.
  • a layer of an optically reflective material is arranged on the upper side or the lower side of at least one converter plate.
  • the layer of optically reflective mate rials ⁇ is preferably formed so thin that it can penetrate the layer in Wesent ⁇ union unhindered from the converter platelets exiting light.
  • the layer may impart an approximately white appearance to the converter plate of the converter element.
  • An optoelectronic component comprises an optoelectronic ⁇ African semiconductor chip having a radiation emission surface, and a converter element of the aforementioned type, which is arranged over the radiation emission surface of the optoelectronic semiconductor chip.
  • the converter element can be used to convert a wavelength of an electromagnetic radiation emitted by the optoelectronic semiconductor chip of the optoelectronic component and thereby, for example, to convert light from the blue spectral range into white light.
  • the converter element has a first converter plate and a second converter plate.
  • the opto ⁇ electronic component further comprises a first optoelectronic semiconductor chip and a second optoelectronic semiconductor chip.
  • the converter element is so arranged that the first converter platelets to radiation semis ⁇ sion face of the first optoelectronic semiconductor chip on ⁇ ordered and the second converter plate is disposed on a radiation emitting surface of the second optoelectronic semiconductor chips.
  • this optoelectronic component only one convergence terelement provided, which is provided for both optoelectronic semiconductor chips.
  • the two converter plates of the converter element are separated by the space formed between the converter plate form body of the converter element optically from each other, whereby an irradiating light of an optoelectronic semiconductor chip in the associated one optoelectronic semiconductor chip converter plate is advantageously mini ⁇ mized.
  • the first optoelectronic semiconductor chip and the two ⁇ te optoelectronic semiconductor chip arranged on a surface ei ⁇ nes chip carrier.
  • a potting material is arranged on the surface of the chip carrier between the first optoelectronic semiconductor chip and the second optoelectronic semiconductor chip.
  • the molding material may serve as ⁇ at a protection of the optoelectronic semiconductor chips from damage by external mechanical influences.
  • the potting material may advantageously serve or contribute to the attachment of the converter element.
  • FIG. 1 shows a plan view of a carrier with a plurality of converter plates.
  • FIG. 2 shows a plan view of a first shaped body into which the converter flakes have been embedded
  • Fig. 3 is a sectional side view of the first Formkör ⁇ pers; 4 shows a sectional side view of a first opto ⁇ electronic device.
  • Fig. 5 is a sectional side view of a second Formkör ⁇ pers; and
  • Fig. 6 is a sectional side view of a second opto ⁇ electronic device.
  • the carrier 100 may also be referred to as a substrate.
  • the carrier 100 may, for example, be formed as a foil or comprise a foil.
  • the carrier 100 may form part of a molding tool (mold) provided for injection molding, compression molding, transfer molding, or other molding process (molding process).
  • the upper side 101 of the carrier 100 is preferably substantially planar. In the illustrated in Fig. 1, 101, the top surface of the carrier 100 to a circular discs ⁇ form.
  • the carrier 100 and its top 101 could ever ⁇ but also have a different geometric shape, such as a rectangular shape.
  • the Kon ⁇ verterplättchen 200 disposed on the top 101 of the carrier 100 may also be referred to as a converter layer.
  • Each converter plate 200 has an upper side 201 and a lower side 202 opposite the upper side 201.
  • the converter plates 200 are each formed approximately square.
  • the Kon ⁇ verterplättchen 200 could also have a different shape.
  • the converter plates 200 may be rectangular or circular disk-shaped.
  • Each converter plate 200 is adapted to convert a Wel ⁇ lenus of electromagnetic radiation.
  • the converter plates 200 may be configured to at least partially convert light having a wavelength from the blue spectral range into light having a wavelength from the yellow spectral range. An overlay of an unconverted part of the blue light with the yellow light produced by conversion can then, for example, convey a white color impression.
  • Each converter plate 200 has a matrix material with embedded wavelength-converting particles.
  • the matrix material may comprise, for example, glass, silicone or a ceramic.
  • the embedded wavelength-converting particles can be, for example, an organic
  • the wavelength-converting particles may also comprise quantum dots.
  • the matrix material is preferably optically substantially transparent.
  • the Lucasbet ⁇ ended in the matrix material wavelength-converting particles are formed to convert a wavelength of electromagnetic radiation.
  • the converter plates 200 are preferably in a PERIODIC ⁇ gene arrangement on the upper surface 101 of the carrier 100 angeord ⁇ net.
  • the converter plates 200 may be arranged in the form of a rectangular grid with regular rows and columns on the upper side 101 of the carrier 100. In this case, the individual converter plates 200 are spaced apart from each other.
  • the converter plates 200 are arranged on the upper side 101 of the carrier 100 such that the lower sides 202 of the Kon ⁇ verterplättchen 200 the top 101 of the carrier 100 are facing and are in contact with it.
  • the converter plates 200 may, for example, one by one at their respective intended positions on the Be arranged top 101 of the carrier 100. However, it is also possible to form 100 receiving areas for the converter plates 200 on the upper side 101 of the carrier. For example, at each position provided for a converter plate 200, a depression may be formed on the upper side 101 of the carrier 100, the shape and size of which correspond approximately to those of a converter wafer 200. In this case, it is possible to arrange the converter plates 200 at the upper side 101 of the carrier 100 in a first step with only a low positioning accuracy.
  • the support 100 may be such in motion, for example, vibratos ⁇ ones, are added, that are arranged on the upper side 101 of the Trä ⁇ gers 100 converter plates 200 move independently on the measures provided for them recording areas by the example in the wells at Slip top 101 of the carrier 100.
  • FIG. 2 shows a schematic plan view of the upper side 101 of the carrier 100 in a representation of FIG.
  • a first molded body 300 has been formed at the top 101 of the carrier 100.
  • the converter plates 200 have been embedded in the first molded body 300.
  • Fig. 3 shows a schematic ⁇ side sectional view of the carrier 100 with the top 101 formed over the first mold body 300 and the embedded converter platelets 200th
  • the converter plates 200 have been embedded in the first molded body 300 in such a way that the upper sides 201 and the lower sides 202 of the converter plates 200 are substantially not covered by the material of the first molded body 300.
  • the first mold body 300 has a planar top surface 301 and one of the flat upper side 301 opposite Untersei ⁇ te 302.
  • the upper sides 201 of the converter plates 200 terminate substantially flush with the planar upper side 301 of the first shaped body 300.
  • the undersides 202 of the converter plates 200 terminate substantially flush with the underside 302 of the first molded body 300.
  • the bottom 302 of the first molded body 300 is the top 101 of Trä ⁇ gers 100 faces.
  • the first molded body 300 may have been formed, for example, by injection molding, compression molding, transfer molding or by another moling process (molding process).
  • the first molded body 300 was formed by film-assisted transfer molding.
  • the carrier 100 preferably forms part of a molding tool (molding tool) used to produce the first molded body 300.
  • the first mold body 300 may comprise for example a synthetic material ⁇ , a silicone or an epoxy resin. However, the first shaped body could also have a ceramic or a metal.
  • the first molded body 300 preferably has a diffusely reflecting material.
  • the material of the first molded body 300 may be filled, for example, with a diffusely re ⁇ inflecting filler, such as with a filling ⁇ material having light-scattering particles, in particular particles Ti0 2 , Zr0 2 , A1 2 0 3 , A1N or Si0 2 have ,
  • the first molded body 300 has a rectangular shape. However, it is also possible to form the ⁇ ers th moldings 300 with a different form.
  • the converter plates 200 are embedded in the first molded body 300 in a preferably regular arrangement.
  • the first molded body 300 fills the spaces between the individual converter plates 200 and forms an edge which extends around the arrangement of the converter plates 200.
  • the number of converter plates 200 embedded in the first molded body 300 can be selected as desired and can be varied. be considerably higher than in the exemplary representation of FIG. 2.
  • a further processing of the first molded body 300 and / or the embedded converter flakes 200 can take place.
  • a reduction of the thickness 203 can take place. This allows for embedding ⁇ hne ung of an experienced with each converter plates 200 attainable color location.
  • one or more functional layers can be applied to the converter plate 200. Applying additional functional layers to the converter platelets 200 would also be possible before or during the embedding of the converter platelets 200 in the first mold body 300. Additional functional layers may optionally be applied to the topsides 201 and / or (after removal of the carrier 100) the bottoms 202 of the converter wafers 200. For example, a thin layer of white material can be applied to the upper sides 201 or the undersides 202 of the converter platelets 200, which serves to conceal a color impression of the converter platelets 200 that arises when the converter platelets 200 are illuminated with ambient light.
  • This thin layer of white material is preferably applied to that side 201, 202 of the converter plate 200, which is remote from a surface of an optoelectronic semiconductor chip in an optoelectronic component comprising the respective converter plate 200.
  • these are the undersides 202 of the converter plates 200.
  • the first molded body 300 with the embedded converter plates 200 can be divided in a subsequent processing step to obtain a plurality of converter elements.
  • the converter elements which can be obtained by dividing the first shaped body 300 can each comprise any desired number of converter plates 200 in any desired arrangement. For example, by separating the first molded body 300 in FIG.
  • a first converter element 310 comprising a first converter wafer 210, a second converter wafer 220 and a third converter wafer 230 of the converter wafer 200 embedded in the first mold body 300.
  • the three converter plates 210, 220, 230 of the first converter element 310 are arranged in one row.
  • converter elements can also be formed from the first shaped body 300, in which converter plates 200 are arranged in more than one row.
  • the first optoelectronic component 400 may be, for example, a light-emitting diode component.
  • the first optoelectronic component 400 comprises a chip carrier 410 with an upper side 411.
  • the chip carrier 410 can also be referred to as a substrate.
  • the upper side 411 of the chip carrier 410 is essentially planar.
  • a frame 420 is arranged, which encloses a cavity 421.
  • the cavity 421 is formed by an area bounded laterally by the frame 420 on the upper side 411 of the chip carrier 410.
  • the frame 420 may have been formed, for example, a plastic material aufwei ⁇ sen and, for example, by a molding process (forming process) on the upper surface 411 of the chip carrier 410th , n
  • a plurality of optoelectronic semiconductor chip 500 assigns 400 is ⁇ at the top 411 of the Chipträ ⁇ gers 410 of the first optoelectronic component.
  • the optoelectronic semiconductor chips 500 may, for example, be light-emitting diode chips (LED chips).
  • Each optoelectronic semiconductor chip 500 has a Strah ⁇ lung emitting surface 501 and one of the Strahlungsemissionsflä ⁇ surface 501 opposite bottom 502nd
  • the undersides 502 of the optoelectronic semiconductor chips 500 face the upper side 411 of the chip carrier 410.
  • the optoelectronic rule ⁇ semiconductor chip 500 are arranged to emit radiation at its emitting surfaces 501 of electromagnetic radiation.
  • electrical contacts of the opto ⁇ electronic semiconductor chips 500 may be arranged, which serve to apply electrical voltages to the optoelectronic semiconductor chips 500.
  • the optoelectronic semiconductor chip 500 may be removablebil ⁇ det example as a flip chip.
  • the first optoelectronic component 400 also includes the first converter element 310, which is formed from a part of the first molded body 300.
  • the first converter element 310 is such over the optoelectronic semiconductor chips 510, 520, 530 of the first opto-electronic device 400 is ⁇ arranged that the first converter plate 210 of the first converter element 310 is disposed over the radiation emitting surface 501 of the first optoelectronic semiconductor chip 510, the second converter plate 220 of the first Konverterele ⁇ ment 310 is disposed over the radiation emitting surface 501 of the second optoelectronic semiconductor chip 520 and the third converter plate 230 of the first converter element 310 is disposed above the radiation emission surface 501 of the third opto ⁇ electronic semiconductor chip 530.
  • the shape and size of the converter plates 210, 220, 230 of the first converter element 310 preferably correspond to those of the radiation emission surfaces 501 of the respectively associated optoelectronic semiconductor chips 510, 520, 530. However, this is not absolutely necessary.
  • the first converter element 310 is such over the optoelectronic semiconductor chips 510, 520, 530 of the first optoelekt ⁇ tronic device arranged 400, that the tops 201 of the converter plates 210, 220, 230 of the first Konverterele ⁇ ments 310 the radiation emission surfaces 501 of the optoelectronic semiconductor chip 510 , 520, 530 of the first optoelectronic component 400.
  • the converter plates 210, 220, 230 of the first converter element 310 may, for example, be connected to the radiation emission surfaces 501 of the optoelectronic semiconductor chips 510, 520, 530 by means of an adhesive bond.
  • a casting 430 is arranged in an area of the cavity 421 surrounding the optoelectronic semiconductor chips 510, 520, 530 of the first optoelectronic component 400.
  • the optoelectronic semiconductor chips 510, 520, 530 are embedded in the encapsulation 430.
  • the encapsulation 430 extends preferably from the top surface 411 of the chip carrier 410 to the first converter element 310.
  • the cavity 421 is completely filled by the grout 430 We ⁇ sentlichen.
  • the encapsulation 430, the components of the first opto-electronic device 400 are mechanically fixed and, ei ⁇ ner damage from external mechanical influences ge ⁇ protects.
  • the potting 430 can serve as an optical reflector of the first optoelectronic component 400.
  • the casting 430 preferably has an optically reflecting material.
  • the encapsulation 430 may, for example, comprise silicone, which is filled with an optically reflecting filler.
  • the converter plates 210, 220, 230 of the first Konverterele ⁇ ments 310 of the first opto-electronic component 400 are provided to wavelengths by the optoelectronic see semiconductor chips 510, 520, 530 of the first optoelectronic ⁇ rule component 400 emitted electromagnetic radiation to convert.
  • the optoelectronic semiconductor chips 510, 520, 530 of the first optoelectronic component 400 may be formed, for example, at their radiation emission surfaces 501 electromagnetic radiation with a
  • the converter plates 210, 220, 230 of the first converter element 310 of the first optoelectronic component 400 may be configured to convert the electromagnetic radiation emitted by the optoelectronic semiconductor chips 510, 520, 530 into white light.
  • the optoelectronic semiconductor chips 510, 520, 530 of the first optoelectronic component 400 could also be designed differently in order to emit electromagnetic radiation of respectively different wavelengths.
  • the converter plates 210, 220, 230 of the first converter element 310 of the first opto-electronic device 400 could be configured differently in order to produce light differing ⁇ cher colors of light.
  • the first opto-electronic device 400 may be so madebil ⁇ det that the optoelectronic semiconductor chips 510, 520, 530 are separately controlled from each other. Located by the between the converter plates 210, 220, 230 of the first con- verterelements 310 portions of the first shape ⁇ body 300 is prevented in the first opto-electronic device 400, that emitted from one of the opto-electronic semiconductor chips 510, 520, 530 electromagnetic
  • the first optoelectronic component 400 could comprise a different number of optoelectronic semiconductor chips 500.
  • the optoelectronic semiconductor chips 500 of the first opto ⁇ electronic component 400 could also be arranged in more than one row.
  • the first Kon ⁇ verterelement 310 of the first opto-electronic device 400 should have a corresponding number of converter plates 200 in an appropriate arrangement.
  • Fig. 5 shows a schematic sectional side view of egg ⁇ nes second mold body 1300.
  • the second body 1300 includes shape matches with that in FIGS. 2 and 3 shown first molded body 300. Corresponding components are therefore provided with the same reference numerals and will not be described again in detail below. In the following, only the differences between the first molded body 300 and the second molded body 1300 will be explained.
  • the second shaped body 1300 has a plurality of embedded converter plates 200 and was produced according to a method analogous to the production of the first shaped body 300.
  • the second shaped body 1300 has a con ⁇ vexe top 1301, which extends in the areas between the individual embedded converter plate 200 on the upper sides 201 of the converter plate 200.
  • the parts of the convex upper surface 1301 of the second molded body 1300 which extend over the upper sides 201 of the converter platelets 200 may have a rounded, an angular, a pointed or another cross section.
  • the second molded body 1300 may be divided to obtain a plurality of converter elements each having an arbitrary number of embedded converter wafers 200.
  • a second converter element 1310 can be obtained, which is a first converter plate 210, a second converter plate 220 and a third converter plate 230, which are arranged in a row next to each other.
  • Fig. 6 shows a schematic sectional side view of egg ⁇ nes second optoelectronic component 1400.
  • the second opto-electronic device 1400 includes a match to the first opto-electronic device 400 of FIG. 4 in. Matching components are shown in Figs. 4 and 6 are provided with the same reference numerals and will not be described again in detail below. In the following, only the differences between the first optoelectronic component 400 and the second optoelectronic component 1400 will be explained.
  • the second optoelectronic component 1400 has the second converter element 1310 instead of the first converter element 310.
  • the second converter element 1310 is arranged on the optoelectronic semiconductor chips 510, 520, 530 of the second opto-electronic device 1400 that the kon ⁇ vexe upper surface 1301 which extends over the tops 201 of the converter plate 200 extending portions of the second magnetic body 1300 of the second converter element 1310 the potting 430 of the second optoelectronic component 1400 are facing.
  • the convex sections extend over the topsides
  • the convex upper surface 1301 of the second Konverterele ⁇ ments 1310 may also have a positioning of the second converter element 1310 via the radiation emission surfaces 501 of the Optoelectronic semiconductor chips 510, 520, 530 of the second optoelectronic device 1400 facilitate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

L'invention concerne un procédé permettant de produire un élément convertisseur pour un composant optoélectronique. Ce procédé comprend des étapes consistant à disposer une pluralité de petites plaques de conversion (200) sur un support (100), à former un corps moulé (300), les petites plaques de conversion étant encapsulées dans le corps moulé, les faces supérieures et les faces inférieures des petites plaques de conversion restant au moins en partie non recouvertes par le corps moulé, et à distribuer le corps moulé, afin d'obtenir un élément convertisseur.
PCT/EP2014/066338 2013-07-30 2014-07-30 Procédé permettant de produire un élément convertisseur et un composant optoélectronique, élément convertisseur et composant optoélectronique WO2015014875A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480042969.3A CN105409014B (zh) 2013-07-30 2014-07-30 用于生产转换器元件和光电组件的方法、转换器元件以及光电组件
JP2016530507A JP6442504B2 (ja) 2013-07-30 2014-07-30 変換要素およびオプトエレクトロニクス部品の製造方法
US14/908,257 US20160181483A1 (en) 2013-07-30 2014-07-30 Method of producing a converter element and an optoelectronic component, converter element and optoelectronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013214896.8 2013-07-30
DE102013214896.8A DE102013214896B4 (de) 2013-07-30 2013-07-30 Verfahren zum Herstellen eines Konverterelements und eines optoelektronischen Bauelements, Konverterelement und optoelektronisches Bauelement

Publications (1)

Publication Number Publication Date
WO2015014875A1 true WO2015014875A1 (fr) 2015-02-05

Family

ID=51266310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/066338 WO2015014875A1 (fr) 2013-07-30 2014-07-30 Procédé permettant de produire un élément convertisseur et un composant optoélectronique, élément convertisseur et composant optoélectronique

Country Status (5)

Country Link
US (1) US20160181483A1 (fr)
JP (1) JP6442504B2 (fr)
CN (1) CN105409014B (fr)
DE (1) DE102013214896B4 (fr)
WO (1) WO2015014875A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425355A (zh) * 2016-01-05 2016-03-23 信利光电股份有限公司 一种贴合用夹具及其应用
EP3012878A1 (fr) * 2014-09-30 2016-04-27 Nichia Corporation Dispositif d'émission lumineuse et son procédé de fabrication
JP2016225273A (ja) * 2015-05-29 2016-12-28 鴻海精密工業股▲ふん▼有限公司 有機発光表示装置及びその製造方法
JP2017073477A (ja) * 2015-10-08 2017-04-13 日亜化学工業株式会社 発光装置
WO2017093262A1 (fr) * 2015-12-01 2017-06-08 Osram Opto Semiconductors Gmbh Procédé de fabrication d'un composant optoélectronique et composant optoélectronique
JP2021068917A (ja) * 2021-01-20 2021-04-30 三菱電機株式会社 発光装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374134B2 (en) 2015-05-29 2019-08-06 Nichia Corporation Light emitting device, method of manufacturing covering member, and method of manufacturing light emitting device
KR102553630B1 (ko) * 2016-08-11 2023-07-10 삼성전자주식회사 발광소자 패키지 및 이를 이용한 디스플레이 장치
JP6662322B2 (ja) 2017-02-09 2020-03-11 日亜化学工業株式会社 発光装置
JP6966691B2 (ja) 2017-05-31 2021-11-17 日亜化学工業株式会社 発光装置及び発光装置の製造方法
JP7235944B2 (ja) 2018-02-21 2023-03-09 日亜化学工業株式会社 発光装置及び発光装置の製造方法
WO2019179630A1 (fr) * 2018-03-23 2019-09-26 Osram Opto Semiconductors Gmbh Dispositif optoélectronique et procédé de fabrication de dispositif optoélectronique
US11043621B2 (en) 2018-07-09 2021-06-22 Nichia Corporation Light emitting device and method of manufacturing light emitting device
KR102653015B1 (ko) 2018-07-18 2024-03-29 삼성전자주식회사 발광 장치, 운송 수단용 헤드램프, 및 그를 포함하는 운송 수단
JP6793899B1 (ja) 2019-11-14 2020-12-02 ヌヴォトンテクノロジージャパン株式会社 発光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179684A (ja) * 2004-12-22 2006-07-06 Matsushita Electric Works Ltd 発光装置
WO2009136351A1 (fr) * 2008-05-07 2009-11-12 Koninklijke Philips Electronics N.V. Dispositif d’éclairage à led doté d’une grille autoportante contenant un matériau luminescent et procédé de fabrication de la grille autoportante
US20100059771A1 (en) * 2008-09-10 2010-03-11 Chris Lowery Multi-layer led phosphors
US20100129598A1 (en) * 2008-11-27 2010-05-27 Lighthouse Technology Co., Ltd Optical film
US20120033402A1 (en) * 2010-08-05 2012-02-09 Mitsunori Harada Semiconductor light emitting device
US20130001597A1 (en) * 2011-06-28 2013-01-03 Osram Sylvania Inc. Lighting Device Having a Color Tunable Wavelength Converter

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999736B2 (en) * 2003-07-04 2015-04-07 Epistar Corporation Optoelectronic system
DE102006024165A1 (de) * 2006-05-23 2007-11-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Optoelektronischer Halbleiterchip mit einem Wellenlängenkonversionsstoff sowie optoelektronisches Halbleiterbauelement mit einem solchen Halbleiterchip und Verfahren zur Herstellung des optoelektronischen Halbleiterchips
EP2080235B1 (fr) * 2006-10-12 2013-12-04 Panasonic Corporation Dispositif électroluminescent
DE102008017071A1 (de) * 2008-01-31 2009-08-06 Osram Opto Semiconductors Gmbh Optoelektronisches Modul und Projektionsvorrichtung mit dem optoelektronischen Modul
KR20100110389A (ko) * 2008-02-08 2010-10-12 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 광학 소자 및 그 제조 방법
JP4808244B2 (ja) * 2008-12-09 2011-11-02 スタンレー電気株式会社 半導体発光装置およびその製造方法
DE102009005907A1 (de) 2009-01-23 2010-07-29 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil
JP2011142254A (ja) * 2010-01-08 2011-07-21 Citizen Holdings Co Ltd Led光源装置の色度調整方法
JP2011249573A (ja) * 2010-05-27 2011-12-08 三菱電機照明株式会社 発光装置及び波長変換シート及び照明装置
US8795817B2 (en) * 2010-08-25 2014-08-05 Samsung Electronics Co., Ltd. Phosphor film, method of manufacturing the same, coating method of phosphor layer, method of manufacturing LED package, and LED package manufactured thereby
KR20120066973A (ko) * 2010-12-15 2012-06-25 삼성엘이디 주식회사 발광 디바이스 및 그 제조방법
CN103396665B (zh) * 2011-01-28 2016-01-20 可乐丽股份有限公司 反射板用聚酰胺组合物、反射板、具备该反射板的发光装置、以及具备该发光装置的照明装置和图像显示装置
WO2012121287A1 (fr) * 2011-03-10 2012-09-13 シャープ株式会社 Substrat à luminophores et dispositif d'affichage
JP5730680B2 (ja) * 2011-06-17 2015-06-10 シチズン電子株式会社 Led発光装置とその製造方法
JP2013026485A (ja) * 2011-07-22 2013-02-04 Stanley Electric Co Ltd 発光装置
JP2013026590A (ja) * 2011-07-26 2013-02-04 Toyoda Gosei Co Ltd 発光装置の製造方法
US9064979B2 (en) * 2011-09-14 2015-06-23 Mtek-Smart Corporation Method for manufacturing LED
US8921130B2 (en) * 2012-03-14 2014-12-30 Osram Sylvania Inc. Methods for producing and placing wavelength converting structures
JP2014067774A (ja) * 2012-09-25 2014-04-17 Citizen Holdings Co Ltd 波長変換部材及び波長変換部材を用いた半導体発光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179684A (ja) * 2004-12-22 2006-07-06 Matsushita Electric Works Ltd 発光装置
WO2009136351A1 (fr) * 2008-05-07 2009-11-12 Koninklijke Philips Electronics N.V. Dispositif d’éclairage à led doté d’une grille autoportante contenant un matériau luminescent et procédé de fabrication de la grille autoportante
US20100059771A1 (en) * 2008-09-10 2010-03-11 Chris Lowery Multi-layer led phosphors
US20100129598A1 (en) * 2008-11-27 2010-05-27 Lighthouse Technology Co., Ltd Optical film
US20120033402A1 (en) * 2010-08-05 2012-02-09 Mitsunori Harada Semiconductor light emitting device
US20130001597A1 (en) * 2011-06-28 2013-01-03 Osram Sylvania Inc. Lighting Device Having a Color Tunable Wavelength Converter

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012878A1 (fr) * 2014-09-30 2016-04-27 Nichia Corporation Dispositif d'émission lumineuse et son procédé de fabrication
US9825001B2 (en) 2014-09-30 2017-11-21 Nichia Corporation Light emitting device with light transmissive member and method for manufacturing thereof
US10290607B2 (en) 2014-09-30 2019-05-14 Nichia Corporation Method for manufacturing light emitting device including light emitting element and color conversion material layer
US10636764B2 (en) 2014-09-30 2020-04-28 Nichia Corporation Light emitting device
JP2016225273A (ja) * 2015-05-29 2016-12-28 鴻海精密工業股▲ふん▼有限公司 有機発光表示装置及びその製造方法
JP2017073477A (ja) * 2015-10-08 2017-04-13 日亜化学工業株式会社 発光装置
WO2017093262A1 (fr) * 2015-12-01 2017-06-08 Osram Opto Semiconductors Gmbh Procédé de fabrication d'un composant optoélectronique et composant optoélectronique
US10879427B2 (en) 2015-12-01 2020-12-29 Osram Oled Gmbh Method of producing an optoelectronic component, and optoelectronic component
CN105425355A (zh) * 2016-01-05 2016-03-23 信利光电股份有限公司 一种贴合用夹具及其应用
JP2021068917A (ja) * 2021-01-20 2021-04-30 三菱電機株式会社 発光装置
JP7283489B2 (ja) 2021-01-20 2023-05-30 三菱電機株式会社 発光装置

Also Published As

Publication number Publication date
CN105409014B (zh) 2018-07-20
JP6442504B2 (ja) 2018-12-19
DE102013214896B4 (de) 2021-09-09
JP2016532898A (ja) 2016-10-20
US20160181483A1 (en) 2016-06-23
CN105409014A (zh) 2016-03-16
DE102013214896A1 (de) 2015-02-05

Similar Documents

Publication Publication Date Title
WO2015014875A1 (fr) Procédé permettant de produire un élément convertisseur et un composant optoélectronique, élément convertisseur et composant optoélectronique
EP2382673B1 (fr) Composant semi-conducteur optoélectronique et procédé de sa fabrication
DE102013214877A1 (de) Verfahren zum Herstellen eines Abdeckelements und eines optoelektronischen Bauelements, Abdeckelement und optoelektronisches Bauelement
DE102012002605B4 (de) Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils und optoelektronisches Halbleiterbauteil
EP2474031B1 (fr) Module optoélectronique surmoulé avec plusieurs composants semiconducteurs et procédé de fabrication d'un module optoélectronique
DE102013212928A1 (de) Verfahren zum Herstellen eines optoelektronischen Bauelements
WO2004040661A2 (fr) Procede pour produire une source lumineuse a diodes electroluminescentes comprenant un element de conversion de luminescence
DE102012112149A1 (de) Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
DE102012102420B4 (de) Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils
WO2019145422A1 (fr) Puce semi-conductrice optoélectronique, composant optoélectronique et son procédé de fabrication
WO2013110540A1 (fr) Lampe et procédé de fabrication d'une lampe
DE102019125255A1 (de) Licht-emittierende Vorrichtung und Verfahren zu ihrer Herstellung
WO2014207037A1 (fr) Composant optoélectronique et procédé pour le fabriquer
WO2016202609A1 (fr) Agencement de diodes luminescentes et procédé de fabrication d'un agencement de diodes luminescentes
DE102014113844B4 (de) Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement
DE102015118433A1 (de) Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
DE112018000428T5 (de) Verfahren zum Herstellen eines optoelektronischen Elements
WO2015189285A1 (fr) Procédé de production de plusieurs éléments de conversion, élément de conversion et composant optoélectronique
WO2017198656A1 (fr) Procédé de fabrication d'un composant optoélectronique et composant optoélectronique
WO2015055670A1 (fr) Composant optoélectronique et procédé de fabrication dudit composant
WO2015078857A1 (fr) Procédé pour la fabrication d'un élément semi-conducteur optoélectronique ainsi qu'élément semi-conducteur optoélectronique et disposition optoélectronique
WO2020078809A1 (fr) Dispositif optoélectronique et procédé de fabrication de dispositifs optoélectroniques
WO2015071310A1 (fr) Composant optoélectronique et procédé de production dudit composant
DE102017106274A1 (de) Verfahren zur Herstellung eines Wellenlängenkonversionselements sowie eines Licht emittierenden Bauelements, Wellenlängenkonversionselement und Licht emittierendes Bauelement
WO2019020458A1 (fr) Procédé de fabrication de composants semi-conducteurs optoélectroniques et composant semi-conducteur optoélectronique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042969.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14747591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016530507

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14908257

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14747591

Country of ref document: EP

Kind code of ref document: A1