WO2015014024A1 - 液晶面板、显示装置及其制造和驱动方法 - Google Patents

液晶面板、显示装置及其制造和驱动方法 Download PDF

Info

Publication number
WO2015014024A1
WO2015014024A1 PCT/CN2013/085355 CN2013085355W WO2015014024A1 WO 2015014024 A1 WO2015014024 A1 WO 2015014024A1 CN 2013085355 W CN2013085355 W CN 2013085355W WO 2015014024 A1 WO2015014024 A1 WO 2015014024A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
thin film
film transistor
color filter
liquid crystal
Prior art date
Application number
PCT/CN2013/085355
Other languages
English (en)
French (fr)
Inventor
吴昊
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/386,190 priority Critical patent/US9513517B2/en
Publication of WO2015014024A1 publication Critical patent/WO2015014024A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136204Arrangements to prevent high voltage or static electricity failures
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0434Flat panel display in which a field is applied parallel to the display plane
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • Liquid crystal panel Liquid crystal panel, display device, and manufacturing and driving method thereof
  • Embodiments of the present invention relate to a liquid crystal panel, a display device, and a method of fabricating and driving the same. Background technique
  • Planar field mode refers to the main parallel electric field that drives the rotation orientation of the liquid crystal, including In-Plane Switching (IPS) and Advanced-Super Dimensional Switching (ADS).
  • IPS In-Plane Switching
  • ADS Advanced-Super Dimensional Switching
  • the ADS mode forms a multi-dimensional electric field by a parallel electric field generated by the pixel electrode or the common electrode edge in the same plane and a longitudinal electric field generated between the pixel electrode and the common electrode, so that the liquid crystal molecules in the liquid crystal cell can be rotated and converted, thereby improving the plane orientation system.
  • LCD work efficiency and increase light transmission efficiency.
  • an ADS liquid crystal display is formed by opposing the ADS array substrate 20 and the color filter substrate 10, and a liquid crystal layer 30 is disposed between the ADS array substrate 20 and the color filter substrate 10.
  • the ADS array substrate 20 includes: a substrate, a gate metal layer sequentially disposed on the substrate, a gate insulating layer, an active layer, a source/drain metal layer, a resin layer, a second electrode 22, an insulating protective layer, and a first An electrode 21, wherein the first electrode 21 is a strip electrode of a regular micron-sized level, the plate electrodes of the first electrode 21 and the second electrode 22 together form a parallel electric field, and the liquid crystal is driven to deflect, thereby realizing a display function.
  • Embodiments of the present invention provide a liquid crystal panel, a display device, and a method of fabricating and driving the same, which can improve the difference in liquid crystal distribution due to a vertical electric field at a pixel edge, and improve optical display characteristics of the product.
  • An aspect of the invention provides a liquid crystal panel comprising an array substrate, a color filter substrate, and a liquid crystal layer disposed between the two substrates, wherein the array substrate is provided with a first electrode and a second electrode in a different layer, the color a third electrode and a fourth electrode are disposed on the film substrate, the first electrode and the third electrode are oppositely disposed, the first electrode and the third electrode are slit electrodes, and the second electrode and the fourth electrode are The electrode is a plate electrode, and the first electrode and the third electrode are respectively located near the second electrode and the fourth electrode One side of the liquid crystal layer.
  • the variation trend of the slit width of the third electrode is opposite to the tendency of the slit width of the first electrode.
  • the material of the third electrode and the first electrode and the process parameters at the time of preparation are the same, and are processed using the same mask and the same equipment.
  • a passivation layer is disposed between the first electrode and the second electrode on the array substrate, and a second passivation layer is disposed between the third electrode and the fourth electrode on the color filter substrate;
  • the material of the passivation layer of the two passivation layers and the array substrate and the process parameters during preparation are the same, and the same equipment is used for the work.
  • the material of the fourth electrode and the second electrode and the process parameters at the time of preparation are the same, and are processed by using the same equipment.
  • the array substrate further includes: a thin film transistor, a gate line, and a data line, a gate of the thin film transistor is connected to the gate line, a source of the thin film transistor is connected to the data line, and the thin film transistor a drain connected to the first electrode or the second electrode;
  • the color filter substrate further includes: a second thin film transistor, a second gate line and a second data line, a gate of the second thin film transistor is connected to the second gate line, and a source of the second thin film transistor Connected to the second data line, a drain of the second thin film transistor is connected to the third electrode or the fourth electrode.
  • the thin film transistor and the second thin film transistor each include: a gate, a gate insulating layer, a semiconductor layer, a source and a drain; a gate of the second thin film transistor and a gate of the thin film transistor
  • the material and the process parameters at the time of preparation are identical, and are processed by the same device, and the gate insulating layer of the second thin film transistor and the gate insulating layer of the thin film transistor have the same material parameters and process parameters at the time of preparation, and Processed using the same equipment;
  • the semiconductor layer of the second thin film transistor is exactly the same as the material of the semiconductor layer of the thin film transistor and the process parameters at the time of preparation, and is processed by the same device, the source and the drain of the second thin film transistor, The material of the source and the drain of the thin film transistor and the process parameters at the time of preparation are exactly the same, and are processed using the same equipment.
  • the layer in which the fourth electrode is located also has an antistatic effect.
  • the display device may further include: a compensation driving circuit for each frame of the frame, Calculating and acquiring an average value of pixel voltages loaded to the respective pixel electrodes when the frame picture is presented, and loading the average value to the third electrode or the fourth electrode; when the first electrode is a pixel electrode, the second electrode When the electrode is a common electrode, the compensation driving circuit is connected to the third electrode of the color filter substrate, and the average value is applied to the third electrode; or, when the second electrode is a pixel electrode, the first electrode is In the case of the common electrode, the compensation driving circuit is connected to the fourth electrode of the color filter substrate, and the average value is applied to the fourth electrode.
  • the present invention provides a method of manufacturing a display device, including: a process of forming an array substrate, wherein a first electrode and a second electrode are disposed on a different layer of the array substrate, and the first electrode is narrow a slit electrode, wherein the second electrode is a plate electrode, the first electrode is located on a side of the second electrode adjacent to the liquid crystal layer; and the step of forming a color filter substrate, wherein the third electrode is sequentially disposed on the color filter substrate a fourth electrode, wherein the third electrode is a slit electrode, the fourth electrode is a plate electrode, and the third electrode is respectively located at a side of the fourth electrode near the liquid crystal layer;
  • the array substrate is a pair of boxes.
  • the step of forming a color filter substrate includes: forming the third electrode using the same material and the same process parameters as the first electrode of the array substrate, and using the same mask and the same device. .
  • a passivation layer is disposed between the first electrode and the second electrode on the array substrate, and a second passivation layer is disposed between the third electrode and the fourth electrode on the color filter substrate;
  • the process of forming a color filter substrate comprises: forming the passivation layer of the second passivation layer and the array substrate by using the same material and the same process parameters.
  • the step of forming a color filter substrate includes: forming the fourth electrode using the same material and the same process parameters as the second electrode of the array substrate.
  • the array substrate further includes: a thin film transistor, a gate line, and a data line, a gate of the thin film transistor is connected to the gate line, a source of the thin film transistor is connected to the data line, and the thin film transistor a drain connected to the first electrode or the second electrode;
  • the color filter substrate further includes: a second thin film transistor, a second gate line and a second data line, a gate of the second thin film transistor is connected to the second gate line, and a source of the second thin film transistor Connected to the second data line, the drain of the second thin film transistor is connected to the third electrode or the fourth electrode; and the step of forming a color filter substrate further includes:
  • the device forms a gate of the second thin film transistor
  • the source and drain of the second thin film transistor are formed using the same material and the same process parameters as the source and drain of the array substrate.
  • Still another aspect of the present invention provides a driving method of the display device, wherein the first electrode is a pixel electrode, and when the second electrode is a common electrode, the method includes: acquiring a common voltage, and The fourth electrode of the film substrate is loaded with a common voltage, and for each frame of the picture, an average value of the pixel voltages applied to each of the pixel electrodes when the frame picture is presented is calculated and acquired, and loaded onto the third electrode of the color filter substrate.
  • the method includes: acquiring a common voltage, and applying a common voltage to the third electrode of the color filter substrate, For each frame of the picture, an average value of the pixel voltages applied to the respective pixel electrodes when the frame picture is presented is calculated and acquired, and the average value is loaded to the fourth electrode of the color filter substrate.
  • Still another aspect of the present invention provides a driving method of the display device, wherein the color film substrate of the display device is provided with a second thin film transistor, a second gate line and a second data line, the second film a gate of the transistor is connected to the second gate line, a source of the second thin film transistor is connected to the second data line, a drain of the second thin film transistor and the third electrode or the first
  • the four electrodes are connected.
  • the method includes: in any pixel region, the third electrode loads the same signal as the first electrode, and the fourth electrode loads the same signal as the second electrode.
  • Embodiments of the present invention provide a liquid crystal panel, a display device, and a manufacturing and driving method thereof, which can weaken a vertical portion in a driving electric field, and improve a difference in liquid crystal distribution caused by a vertical electric field at a pixel edge of an existing product, thereby making a liquid crystal cell
  • the liquid crystal molecules in the arrangement are more regular, thereby solving a series of visual defects caused by the difference in arrangement of individual liquid crystal molecules, and improving the optical display characteristics of the product.
  • FIG. 1 is a schematic structural view of a conventional ADS display
  • FIG. 2 is a schematic structural diagram of a liquid crystal panel according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of a pair of boxes of an array substrate and a color filter substrate according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of a pair of boxes of an array substrate and a color filter substrate according to Embodiment 1 of the present invention
  • FIG. 5B is an enlarged schematic view of a pixel region;
  • FIG. 6 is a schematic structural diagram of a display panel according to an embodiment of the present invention.
  • the inventors have found that the conventional technique shown in FIG. 1 has at least the following problems: in the array substrate production process, in a different area on a glass substrate (motherboard) for simultaneously preparing a plurality of array substrates, although each layer is designed
  • the characteristic parameters (such as layer thickness, line width, etc.) are the same, but due to the limitation of the process conditions, the characteristic parameters of each layer are not guaranteed to be completely consistent, especially the central area and the corner area are compared with other areas. Large differences, poor distribution.
  • the size of the first electrode 21 is difficult to be completely uniform, which results in different display panels (the array substrate used corresponds to the same sheet)
  • the circuit adjustment codes used by different display panels are consistent, which results in differences in transmittance at the center and corner regions of the same glass substrate, and the reaction appears as different display panels on the product. There has been a mixed change in transmission rates.
  • Embodiments of the present invention provide a liquid crystal panel, a display device, and a manufacturing and driving method thereof, which can improve the difference in liquid crystal distribution due to a vertical electric field at a pixel edge, and improve optical display characteristics of the product.
  • the embodiments of the present invention are described in detail below with reference to the accompanying drawings. The specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the embodiment provides a liquid crystal panel including an array substrate 20, a color filter substrate 10, and a liquid crystal layer 30 disposed between the two substrates.
  • a first electrode 21 and a second electrode 22 are disposed on the array substrate 20 in different layers, and the third electrode 12 and the fourth electrode 11 are disposed on the color filter substrate 10 in a different layer.
  • the first electrode 21 and the third electrode 12 are disposed opposite to each other, and the first electrode 21 and the third electrode 12 are both slit-shaped electrodes; the second electrode 22 and the fourth electrode 11 are plate-shaped electrodes.
  • the first electrode 21 and the third electrode 12 are located on the side of the second electrode 22 and the fourth electrode 11 which are adjacent to the liquid crystal layer 30, respectively.
  • the line is the gap between the color film substrate 10 and the array substrate 20 (Cell)
  • the third electrode 12 is located at the mirror position of the first electrode 21
  • the second passivation layer 13 is located at the mirror position of the passivation layer 23
  • the fourth electrode 11 is located at the mirror position of the second electrode 22, and
  • the electric field generated by the third electrode 12 and the fourth electrode 11 has an opposite direction to the electric field generated by the first electrode 21 and the second electrode 22 in the direction perpendicular to the substrate (i.e., the longitudinal direction in Fig. 2).
  • the fourth electrode 11 of the color filter substrate 10 corresponds to the second electrode 22 on the array substrate 20, and the fourth electrode 11 is located at the mirror position of the second electrode 22; the third electrode 12 of the color filter substrate 10 Corresponding to the first electrode 21 on the array substrate 20, and the third electrode 12 is located at the mirror position of the first electrode 21.
  • the electric field generated by the third electrode 12 and the fourth electrode 11 has a vertical component in the opposite direction to the electric field generated by the first electrode 21 and the second electrode 22, which can better weaken the driving electric field.
  • the vertical part improves the difference in liquid crystal distribution and further enhances the visual effect of the product.
  • the liquid crystal panel in this embodiment is suitable for the planar field mode.
  • the planar field mode means that the driving electric field for driving the liquid crystal is mainly a parallel electric field, and the pixel electrode and the common electrode forming the driving electric field are both disposed on the array substrate 20, which may be an IPS mode. It can be in ADS mode.
  • the fourth electrode 11 and the third electrode 12 are disposed on the color filter substrate 10 of the cartridge opposite to the array substrate 20, and the first electrode 21 and the second electrode 22 are disposed on the array substrate 20 in different layers.
  • the electric field between the third electrode 12 and the fourth electrode 11 has a vertical component in the opposite direction to the electric field formed between the first electrode 21 and the second electrode 22, which can weaken the vertical portion of the driving electric field and improve the existing product due to the pixel.
  • the difference in liquid crystal distribution caused by the vertical electric field at the edge causes liquid crystal molecules in the liquid crystal cell The arrangement is more regular, thereby solving a series of visual defects caused by the difference in arrangement of individual liquid crystal molecules, and improving the optical display characteristics of the product.
  • the variation trend of the slit width of the third electrode 12 is opposite to the tendency of the slit width of the first electrode 21.
  • the characteristic parameters of the third electrode 12 and the first electrode 21 are uniformly distributed, and the distribution of characteristic parameters (including but not limited to slit width) is also consistent.
  • the characteristic parameters of the third electrode 12 and the characteristic parameters of the first electrode 21 have opposite trends. For example, representatively, the variation trend of the slit width of the third electrode 12 is opposite to the tendency of the slit width of the first electrode 21.
  • the third electrode 12 and the first electrode 21 exhibit a phenomenon in which the electrode is too large or too small (correspondingly, the slit width also exhibits a wide or narrow phenomenon), for example, as shown in FIG. 3 and As shown in Fig. 4, the electrode region of the array substrate 20 and the ruthenium region of the color filter substrate 10 are both excessively large, and the electrode region of the two regions of the array substrate 20 and the color filter substrate 10 are slightly smaller.
  • the first method is as shown in FIG. 3, along a broken line parallel to the short side of the array substrate 20.
  • the array substrate 20 and the color filter substrate 10 are aligned in the direction of the dotted line AA', the 1st area of the array substrate 20 corresponds to the 2' area of the color filter substrate 10, and the 2 areas of the array substrate 20 correspond to the color filter substrate 10.
  • the 3 regions of the array substrate 20 correspond to the 4' region of the color filter substrate 10
  • the 4 regions of the array substrate 20 correspond to the 3 regions of the color filter substrate 10.
  • the distribution of the characteristic parameters of the third electrode 12 and the first electrode 21 is opposite, and the complementary effect shown in Fig. 2 is obtained. That is, when the first electrode 21 is large or small in any one of the array substrate 20, the third electrode 12 of the corresponding region of the color filter substrate 10 is bound to be the opposite result, and the integrated array substrate 20 and the color filter substrate 10 are integrated. After the electric field effect, as shown in the ⁇ region and B in Fig.
  • the electric field between the third electrode 12 and the fourth electrode has a vertical component in the opposite direction to the electric field of the first electrode 21 and the second electrode 22, thereby weakening the vertical portion of the driving electric field, improving the existing product due to the pixel edge
  • the difference in liquid crystal distribution caused by the vertical electric field causes the liquid crystal molecules in the liquid crystal cell to be arranged more regularly, thereby solving a series of visual defects caused by the difference in arrangement of individual liquid crystal molecules, and improving the optical display characteristics of the product.
  • the array substrate 20 and the color filter substrate 10 have two pairs of the liquid crystal cell shown in FIG. 3 and FIG.
  • the box mode for example, the 2 on the color filter substrate 10 has the same trend as the characteristic parameter of the 2 regions on the array substrate 20, 4.
  • the change trend of the characteristic parameters of the region and the 4 region is the same, and the box mode shown in FIG. 3 is
  • the right end of the region 2 and the region 4 is opposite to the right end of the array substrate 20 where the 2 regions and the 4 regions are located.
  • the 2 area is opposite to the 1' area
  • the 1st area is opposite to the 2' area
  • the 3rd area is opposite to the 4th area
  • the 4th area is opposite to the 3rd area, which can compensate the distribution of the process parameters along the length direction.
  • the reasons for the poor distribution of the process parameters are many and difficult to determine.
  • the variation trend of the process parameters of the array substrate 20 along the length direction and the width direction is generally determined by experiments. If the result is that the distribution of the process parameters is more poor along the length direction, the boxing method shown in FIG. 3 is used to cancel (or compensate) the poor distribution of the process parameters in the longitudinal direction; if the result is a process in the width direction If the parameter distribution is more poor, the boxing method shown in Fig. 4 is used to cancel (or compensate) the poor distribution of the process parameters in the width direction.
  • the layer in which the fourth electrode is located also has an antistatic effect, or the layer in which the fourth electrode is located is directly disposed as an original antistatic layer.
  • a transparent conductive film is generally disposed on the color filter substrate as an antistatic layer to function as an electrostatic shield.
  • the fourth electrode in this embodiment can directly use the existing antistatic layer to process the production process of the color filter substrate.
  • a fourth electrode may be disposed on the color filter substrate, and the layer where the fourth electrode is located is connected to a constant voltage source, so that the layer where the fourth electrode is located also has an antistatic effect.
  • the liquid crystal panel of the embodiment is used for a planar field mode display device, and the fourth electrode and the third electrode are disposed on the color filter substrate to improve the electric field distribution difference caused by the production process, so that the display of the corner area of the corresponding glass substrate is performed.
  • the electric field of the panel is more stable and easy to control; this also weakens the vertical part of the driving electric field, improves the difference of liquid crystal distribution caused by the vertical electric field at the edge of the pixel, and makes the liquid crystal molecules in the liquid crystal cell more regular. , thereby solving a series of visual defects caused by differences in arrangement of individual liquid crystal molecules, and improving the optical display characteristics of the product.
  • the present embodiment provides a liquid crystal panel, which is different from the first embodiment in that a passivation layer 23 is further disposed between the first electrode 21 and the second electrode 22 on the array substrate 20, as shown in FIG.
  • a second passivation layer 13 is further disposed between the third electrode 12 and the fourth electrode 11 on the color filter substrate 10.
  • the second passivation layer 13 on the color filter substrate 10 and the 20 passivation layer 23 on the array substrate have the same material and process parameters at the time of preparation, and are processed by the same device, so that the second passivation layer 13 has a tendency to be poorly distributed with the passivation layer 23 (mainly a change in the thickness of the passivation layer).
  • the second passivation layer 13 and the passivation layer 23 have opposite fabric properties (refer to the first embodiment and FIG. 3 and FIG. 4 for the cartridge mode), and the first electrode 21 on the array substrate can be compensated for
  • the passivation layer 23 is used, the distribution of the electric field is poor due to the poor distribution of the process parameters, and the display effect of the product is improved.
  • the present embodiment provides a liquid crystal panel, which is different from the first embodiment in that, as shown in FIG. 2, the materials of the fourth electrode 11 and the second electrode 22 of the array substrate 20 and the process parameters during preparation are the same, and The same apparatus is used to process, so that the fourth electrode 11 is prepared to have a poor distribution tendency with the second electrode 22. As shown in FIG. 2 after the cartridge, the distribution tendency of the fourth electrode 11 and the second electrode 22 is opposite, and the difference in electric field distribution due to the poor distribution of the process parameters of the first electrode 21 and the second electrode 22 can be compensated for. Improve the display of the product.
  • the present embodiment provides a liquid crystal panel, which is different from the first embodiment in that the material and preparation of the second passivation layer 13 on the color filter substrate 10 and the passivation layer 23 of the array substrate 20 are shown in FIG.
  • the process parameters are the same, and are processed by the same device, and the material of the fourth electrode 11 on the color filter substrate 10 and the second electrode 22 of the array substrate 20 and the process parameters during preparation are the same, and are used.
  • the same equipment is processed to compensate for the difference in electric field distribution caused by the poor distribution of the process parameters of the second electrode 22, the passivation layer 23, and the first electrode 21, thereby improving the display effect of the product.
  • a first indium tin oxide (ITO) layer (fourth electrode 11), an insulating protective layer (second passivation layer 13), and a second ITO layer (third electrode 12) are also designed on the color filter substrate 10.
  • a pattern whose structure is consistent with the first ITO layer (second electrode 22), the insulating protective layer (passivation layer 23), and the second ITO layer (first electrode 21) on the array substrate 20 below (including materials) , thickness, design size, etc.) the color film substrate 10 and the array substrate 20 can form a liquid crystal cell by injecting liquid crystal after the box, and the process is mature, and will not be described herein.
  • the column substrate 20 further includes: a thin film transistor 212, a gate line 210, and a data line 211, and the gate line 210 and the data line 211 intersect to define a plurality of pixel regions.
  • the gate 2121 of the thin film transistor 212 in each pixel region is connected to the corresponding gate line 210
  • the source 2122 of the thin film transistor is connected to the corresponding data line 211
  • the first electrode or the second electrode of the region is connected, whereby the first electrode or the second electrode can be applied with a pixel voltage from the data line.
  • the color filter substrate 10 further includes: a second thin film transistor, a second gate line and a second data line, wherein the second gate line and the second data line intersect to define a plurality of second pixel regions, each second pixel a gate of the second thin film transistor in the region is connected to the second gate line, a source of the second thin film transistor is connected to the second data line, a drain of the second thin film transistor and a third electrode of the second pixel region Or the fourth electrode is connected, whereby the third electrode or the fourth electrode can be applied with a pixel voltage from the second data line.
  • the pixel region on the array substrate 20 and the second pixel region on the color filter substrate 10 correspond to each other in the vertical direction.
  • the third electrode can load the same signal as the first electrode, and the fourth electrode can load the same signal as the second electrode, thereby improving the difference in electric field distribution caused by the production process, and making the corresponding glass substrate corner
  • the electric field of the display panel of the area is more stable and easy to control; at the same time, the vertical part of the driving electric field can be greatly weakened, and the difference of liquid crystal distribution caused by the vertical electric field at the edge of the pixel is improved, and the liquid crystal molecules in the liquid crystal cell are made.
  • the arrangement is more regular, thereby solving a series of visual defects caused by the difference in arrangement of individual liquid crystal molecules, and improving the optical display characteristics of the product.
  • the thin film transistor and the second thin film transistor may each include: a gate, a gate insulating layer, a semiconductor layer, a source and a drain; a gate of the second thin film transistor and a gate of the thin film transistor
  • the material of the electrode and the process parameters during preparation are identical and processed by the same device; the gate insulating layer of the second thin film transistor is identical to the material of the gate insulating layer of the thin film transistor and the process parameters during preparation.
  • the semiconductor layer of the second thin film transistor and the semiconductor layer of the thin film transistor have the same material and process parameters at the time of preparation, and are processed by using the same device;
  • the source and the drain of the two thin film transistors are exactly the same as the materials of the source and drain of the thin film transistor and the process parameters at the time of preparation, and are processed using the same equipment.
  • the color film layer includes, for example, a color film unit corresponding to each pixel region, and each color film unit may be a red (R), green (G), and blue (B) color film unit.
  • an electrode and a thin film transistor are disposed on the color filter substrate, which can improve the electric field distribution difference caused by the production process, weaken the vertical portion in the driving electric field, and improve the liquid crystal distribution of the existing product due to the vertical electric field at the edge of the pixel.
  • the difference is that the liquid crystal molecules in the liquid crystal cell are arranged more regularly, thereby solving a series of visual defects caused by the difference in arrangement of individual liquid crystal molecules, and improving the optical display characteristics of the product.
  • the present embodiment provides a liquid crystal panel, which is different from the first embodiment in that, in addition to the color filter substrate 10 and the array substrate 20, the liquid crystal panel 100 further includes: a compensation driving circuit 300, For calculating, for each frame of the picture, calculating and acquiring an average value of the pixel voltages applied to the respective pixel electrodes when the frame picture is presented, and loading an average value to the third electrode or the fourth electrode of the color filter substrate.
  • a compensation driving circuit 300 For calculating, for each frame of the picture, calculating and acquiring an average value of the pixel voltages applied to the respective pixel electrodes when the frame picture is presented, and loading an average value to the third electrode or the fourth electrode of the color filter substrate.
  • the compensation driving circuit 300 When the first electrode is a pixel electrode and the second electrode is a common electrode, the compensation driving circuit 300 is connected to the third electrode of the color filter substrate 10, and the average value is loaded to the third electrode;
  • the second electrode is a pixel electrode, and when the first electrode is a common electrode, the compensation driving circuit 300 is connected to the fourth electrode of the color filter substrate 10, and the average value is applied to the fourth electrode.
  • the compensation driving circuit displays a certain frame picture and calculates that most of the pixel voltage in the panel is about 5V, and then the signal of the fourth electrode on the color filter substrate is added to 5V.
  • the liquid crystal molecules in the cell are affected by the upper and lower electric fields, and the directions of the two electric fields are the same in the horizontal direction, which can enhance the driving effect of the liquid crystal molecules, and the two electric fields in the vertical direction.
  • There is a counteracting effect thereby reducing the phenomenon that the vertical electric field appearing in the conventional product causes the distribution of the edge liquid crystal molecules to be disordered.
  • the embodiment further provides a display device comprising any of the liquid crystal panels of any of the above embodiments.
  • the display device may be: a product or a component having a display function such as a liquid crystal panel, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, or the like.
  • the display device of the embodiment can improve the difference in electric field distribution caused by the production process, so that The electric field of the display panel corresponding to the corner area of the glass substrate is more stable and easy to control; at the same time, the vertical part of the driving electric field is weakened, and the difference of liquid crystal distribution caused by the vertical electric field at the edge of the pixel is improved in the existing product, so that the liquid crystal cell is The arrangement of the liquid crystal molecules is more regular, thereby solving a series of visual defects caused by the difference in arrangement of individual liquid crystal molecules, and improving the optical display characteristics of the product.
  • the embodiment further provides a method of manufacturing a display device, which can be performed as follows.
  • the step of forming an array substrate wherein the array substrate is provided with a first electrode and a second electrode in different layers, the first electrode is a slit electrode, and the second electrode is a plate electrode.
  • the first electrode is located on a side of the second electrode adjacent to the liquid crystal layer;
  • the step of forming a color filter substrate wherein a third electrode and a fourth electrode are sequentially disposed on the color filter substrate, wherein the third electrode is a slit electrode, and the fourth electrode is a plate electrode.
  • the third electrodes are respectively located on a side of the fourth electrode adjacent to the liquid crystal layer;
  • Step 101 of this embodiment may be the same as the step of preparing the array substrate in the conventional art, and is not described again.
  • Step 102 further includes sequentially disposing a fourth electrode, a second passivation layer, and a third electrode on the color filter substrate.
  • the fourth electrode, the second passivation layer, and the third electrode are formed, the array substrate and the color filter substrate perform the entire process such as exposure, development, etching, etc., and both experience the same Equipment, the distribution of the bad trend is basically the same.
  • the step 103 can be substantially the same as the conventional technology, but the box mode shown in FIG. 3 or FIG. 4 is used, which has been described in detail in the first embodiment, and details are not described herein again.
  • the step of forming a color filter substrate in step 102 includes: forming the third electrode using the same material and the same process parameters as the first electrode of the array substrate, and using the same mask and the same device. .
  • a passivation layer is disposed between the first electrode and the second electrode on the array substrate, and a second passivation layer is disposed between the third electrode and the fourth electrode on the color filter substrate;
  • the forming of the color filter substrate may include: forming the passivation layer of the second passivation layer and the array substrate by using the same material and the same process parameters.
  • the step of forming a color filter substrate in step 102 may further include: forming a fourth electrode using the same material and the same process parameters as the second electrode of the array substrate, and using the same device.
  • the array substrate may further include: a thin film transistor, a gate line and a data line, a gate of the thin film transistor being connected to the gate line, a source of the thin film transistor being connected to the data line, the film a drain of the transistor is connected to the first electrode or the second electrode (specifically, a drain of the thin film transistor is connected to a pixel electrode of the first electrode and the second electrode);
  • the method further includes: using the same material and the same process parameters as the gate of the array substrate, and forming the gate of the second thin film transistor using the same device; using the same gate insulating layer as the array substrate Material and the same process parameters, and the same device is used to form the gate insulating layer of the second thin film transistor; using the same material
  • the color film substrate and the array substrate are paired with the array substrate, and the method may include: aligning the color filter substrate with the array substrate, and aligning one end in the longitudinal direction of the color filter substrate with the length of the array substrate after the box is The other end is opposite.
  • the color filter substrate is disposed opposite to the array substrate, and the periphery is bonded to each other by the sealant, and a spacer may be formed or provided therebetween. After the two are paired, the cutting process can be performed if necessary.
  • the manufacturing method of the display device can improve the electric field distribution difference caused by the production process, and make the electric field of the display panel corresponding to the corner area of the glass substrate more stable and easy to control; and weaken the vertical part of the driving electric field at the same time
  • the liquid crystal distribution difference caused by the vertical electric field at the edge of the pixel is improved, and the liquid crystal molecules in the liquid crystal cell are arranged more regularly, thereby solving a series of visual defects caused by the difference in arrangement of individual liquid crystal molecules, thereby improving the product.
  • the present embodiment further provides a driving method of a display device, which comprises the display panel according to any one of Embodiments 1 to 4 and Embodiment 6.
  • the method includes: acquiring a common voltage, and loading a common voltage to the fourth electrode 11 of the color filter substrate; calculating and acquiring the image for each frame of the picture The average value of the pixel voltages applied to the respective pixel electrodes at the time of the frame picture is applied to the third electrode 12 of the color filter substrate.
  • the third electrodes 12 of the color filter substrate are connected to each other so that each of the third electrodes 12 can be loaded with the average value described above.
  • the mask used in the preparation of the third electrode is slightly different from the mask used in forming the first electrode (pixel electrode) of the array substrate.
  • the first electrode 21 is a common electrode
  • the second electrode 22 is a pixel electrode.
  • the method includes: acquiring a common voltage, and loading a common voltage to the third electrode of the color filter substrate; And calculating and acquiring an average value of pixel voltages loaded to the pixel electrodes when the frame picture is presented, and loading the average value to the fourth electrode of the color filter substrate.
  • the method does not need to provide a thin film transistor on the color film substrate, but the fourth electrode of the color filter substrate is also required to be connected to each other, and each of the fourth electrodes can be loaded with the average value, so that the fourth electrode can directly use the color
  • the conventional antistatic layer of the film substrate, or the mask used in the preparation of the fourth electrode, is slightly different from the mask used for forming the first electrode (pixel electrode) of the array substrate.
  • the fourth electrode and the third electrode on the color filter substrate can be theoretically designed to pass through the gate source line and the first electrode and the second electrode of the array substrate (one of which forms a common electrode and one of which forms a pixel electrode)
  • Each pixel signal composed of a TFT device is controllable, but in view of the current process realization and convenience, this embodiment sets it to a uniform voltage.
  • the fourth electrode 11 is loaded with a common voltage; the third electrode 12 of each color filter substrate is connected together, and the signal is uniformly applied through the compensation driving circuit, and the voltage value of the signal is calculated according to the compensation driving circuit, and the principle is to make
  • the most pixels can satisfy the signal level of the first electrode of the array substrate and the third electrode of the color filter substrate.
  • the compensation driving circuit calculates that most of the pixel voltage in the panel is about 5 V while giving a frame picture, and then the signal of the third electrode 12 on the color filter substrate is added to 5 V.
  • the liquid crystal molecules in the cell are affected by the upper and lower electric fields, and the directions of the two electric fields are the same in the horizontal direction, which can enhance the driving effect of the liquid crystal molecules, and the two electric fields in the vertical direction.
  • There is a counteracting effect thereby reducing the phenomenon that the vertical electric field appearing in the conventional product causes the distribution of the edge liquid crystal molecules to be disordered.
  • the embodiment further provides a driving method of the display device, the display device comprising the liquid crystal panel of the sixth embodiment, the method comprising: loading, in any pixel region, the third electrode is the same as the first electrode a signal, the fourth electrode loading the same signal as the second electrode.
  • the third electrode and the fourth electrode are disposed on the color filter substrate of the liquid crystal panel of the embodiment, and the third electrode and the fourth electrode are designed to form a common electrode with the first electrode and the second electrode of the array substrate.
  • the electric field generated between the third electrode and the fourth electrode has an opposite vertical component to the electric field generated by the first electrode and the second electrode (regardless of poor distribution of process parameters)
  • the strength of the electric field is also uniform), which can improve the electric field distribution difference caused by the production process, and make the electric field of the display panel corresponding to the corner area of the glass substrate more stable and easy to control; at the same time, the vertical part of the driving electric field can be greatly weakened.
  • a thin film transistor, a second data line, a second gate line, and the like are disposed, and the second data line can be connected to the same driver or driver IC as the data line of the array substrate, and the second gate line can be connected to the array substrate.
  • the gate line is connected to the same driver or driver IC, so the embodiment does not need to additionally provide a compensation driving circuit, and the driving method described in Embodiment 9 requires an additional compensation driving circuit.
  • the former is a better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

提供了一种液晶面板、显示装置及其制造和驱动方法,液晶面板包括阵列基板(20)、彩膜基板(10)和设置在两基板之间的液晶层(30),阵列基板(20)上异层设置有第一电极(21)和第二电极(22),彩膜基板(10)上异层设置有第三电极(12)和第四电极(11),第一电极(21)和第三电极(12)相对设置,第一电极(21)和第三电极(12)为狭缝状电极,第二电极(22)和第四电极(11)为板状电极,第一电极(21)和第三电极(12)分别位于第二电极(22)和第四电极(11)靠近液晶层的一侧。显示装置的驱动方法包括针对每一帧画面,计算并获得这一帧画面呈现时加载到各像素电极的像素电压的平均值,并向彩膜基板(10)的第三电极(12)或第四电极(11)加载这一平均值,或者,在任一像素区域内,第三电极(12)加载与第一电极(21)相同的信号,第四电极(11)加载与第二电极(22)相同的信号。

Description

液晶面板、 显示装置及其制造和驱动方法 技术领域
本发明的实施例涉及一种液晶面板、 显示装置及其制造和驱动方法。 背景技术
平面场模式指驱动液晶旋转取向的主要是平行电场, 包括平面转换模式 ( In-Plane Switching , IPS ) 和高级超维场开关模式 ( Advanced-Super Dimensional Switching, ADS ) 。 ADS模式通过同一平面内像素电极或公共 电极边缘所产生的平行电场以及像素电极与公共电极间产生的纵向电场形成 多维电场, 使液晶盒内取向液晶分子都能够产生旋转转换, 从而提高平面取 向系液晶工作效率并增大透光效率。
如图 1所示, ADS液晶显示器由 ADS阵列基板 20和彩膜基板 10相对 设置而形成, ADS阵列基板 20和彩膜基板 10之间设置有液晶层 30。 一般 而言, ADS阵列基板 20包括: 基板, 依次设置在基板上的栅极金属层、 栅 绝缘层、 有源层、 源漏极金属层、 树脂层、 第二电极 22、 绝缘保护层和第一 电极 21 , 在第一电极 21为规则的微米尺寸级别的条形电极, 第一电极 21和 第二电极 22的板状电极一起形成平行电场,驱动液晶发生偏转,进而实现显 示功能。 发明内容
本发明的实施例提供一种液晶面板、 显示装置及其制造和驱动方法, 可 改善由于像素边缘垂直电场导致的液晶分布差异性, 提高产品的光学显示特 性。
本发明的一个方面提供了一种液晶面板, 包括阵列基板、 彩膜基板和设 置在两基板之间的液晶层,所述阵列基板上异层设置有第一电极和第二电极, 所述彩膜基板上异层设置有第三电极和第四电极, 所述第一电极和第三电极 相对设置, 所述第一电极和第三电极为狭缝状电极, 所述第二电极和第四电 极为板状电极, 所述第一电极和第三电极分别位于第二电极和第四电极靠近 液晶层的一侧。
例如, 所述第三电极的狭缝宽度的变化趋势, 与所述第一电极的狭缝宽 度的变化趋势相反。
例如,所述第三电极与所述第一电极的材质及制备时的工艺参数均相同, 且使用相同的掩膜板和相同的设备加工而成。
例如, 所述阵列基板上的第一电极和第二电极之间设置有钝化层, 所述 彩膜基板上的第三电极和第四电极之间设置有第二钝化层; 所述第二钝化层 与所述阵列基板的钝化层的材质及制备时的工艺参数均相同, 且使用相同的 设备力口工而成。
例如,所述第四电极与所述第二电极的材质及制备时的工艺参数均相同, 且使用相同的设备加工而成。
例如, 所述阵列基板还包括: 薄膜晶体管、 栅线和数据线, 所述薄膜晶 体管的栅极与所述栅线相连, 所述薄膜晶体管的源极与所述数据线相连, 所 述薄膜晶体管的漏极与所述第一电极或者所述第二电极相连;
所述彩膜基板还包括: 第二薄膜晶体管、 第二栅线和第二数据线, 所述 第二薄膜晶体管的栅极与所述第二栅线相连, 所述第二薄膜晶体管的源极与 所述第二数据线相连, 所述第二薄膜晶体管的漏极与所述第三电极或者所述 第四电极相连。
例如, 所述薄膜晶体管和所述第二薄膜晶体管均包括: 栅极、栅绝缘层、 半导体层、 源极和漏极; 所述第二薄膜晶体管的栅极与所述薄膜晶体管的栅 极的材质及制备时的工艺参数完全相同, 且使用相同的设备加工而成, 所述 第二薄膜晶体管的栅绝缘层与所述薄膜晶体管的栅绝缘层的材质及制备时的 工艺参数完全相同, 且使用相同的设备加工而成;
所述第二薄膜晶体管的半导体层与所述薄膜晶体管的半导体层的材质及 制备时的工艺参数完全相同, 且使用相同的设备加工而成, 所述第二薄膜晶 体管的源极和漏极, 与所述薄膜晶体管的源极和漏极的材质及制备时的工艺 参数完全相同, 且使用相同的设备加工而成。
例如, 所述第四电极所在层还具有防静电的效果。
本发明的另一个方面还提供一种显示装置,包括任一项所述的液晶面板。 例如, 所述显示装置还可以包括: 补偿驱动电路, 用于针对每一帧画面, 计算并获取呈现该帧画面时加载到各像素电极的像素电压的平均值, 并向第 三电极或第四电极加载所述平均值; 当所述第一电极为像素电极, 所述第二 电极为公共电极时, 所述补偿驱动电路与所述彩膜基板的第三电极相连, 向 第三电极加载所述平均值; 或者, 当所述第二电极为像素电极, 所述第一电 极为公共电极时, 所述补偿驱动电路与所述彩膜基板的第四电极相连, 向第 四电极加载所述平均值。
另一方面, 本发明还提供一种显示装置的制造方法, 包括: 形成阵列基 板的工序, 其中, 所述阵列基板上异层设置有第一电极和第二电极, 所述第 一电极为狭缝状电极, 所述第二电极为板状电极, 所述第一电极位于第二电 极靠近液晶层的一侧; 形成彩膜基板的工序, 其中, 在彩膜基板上依次设置 第三电极及第四电极, 且所述第三电极为狭缝状电极, 所述第四电极为板状 电极, 所述第三电极分别位于第四电极靠近液晶层的一侧; 将所述彩膜基板 与所述阵列基板对盒。
例如, 所述进行形成彩膜基板的工序, 包括: 采用与所述阵列基板的第 一电极相同的材质及相同的工艺参数, 且使用相同的掩膜板和相同的设备形 成所述第三电极。
例如, 所述阵列基板上的第一电极和第二电极之间设置有钝化层, 所述 彩膜基板上的第三电极和第四电极之间设置有第二钝化层; 所述进行形成彩 膜基板的工序, 包括: 采用相同的材质及相同的工艺参数, 且使用相同的设 备形成所述第二钝化层与所述阵列基板的钝化层。
例如, 所述进行形成彩膜基板的工序, 包括: 采用与所述阵列基板的第 二电极相同的材质及相同的工艺参数,且使用相同的设备形成所述第四电极。
例如, 所述阵列基板还包括: 薄膜晶体管、 栅线和数据线, 所述薄膜晶 体管的栅极与所述栅线相连, 所述薄膜晶体管的源极与所述数据线相连, 所 述薄膜晶体管的漏极与所述第一电极或者所述第二电极相连;
所述彩膜基板还包括: 第二薄膜晶体管、 第二栅线和第二数据线, 所述 第二薄膜晶体管的栅极与所述第二栅线相连, 所述第二薄膜晶体管的源极与 所述第二数据线相连, 所述第二薄膜晶体管的漏极与所述第三电极或者所述 第四电极相连; 所述进行形成彩膜基板的工序, 还包括:
采用与所述阵列基板的栅极相同的材质及相同的工艺参数, 且使用相同 的设备形成第二薄膜晶体管的栅极;
采用与所述阵列基板的栅绝缘层相同的材质及相同的工艺参数, 且使用 相同的设备形成所述第二薄膜晶体管的栅绝缘层;
采用与所述阵列基板的半导体层相同的材质及相同的工艺参数, 且使用 相同的设备形成所述第二薄膜晶体管的半导体层;
采用与所述阵列基板的源极和漏极相同的材质及相同的工艺参数, 且使 用相同的设备形成所述第二薄膜晶体管的源极和漏极。
本发明的再一个方面还提供一种所述显示装置的驱动方法, 所述第一电 极为像素电极, 所述第二电极为公共电极时, 该方法包括: 获取公共电压, 并向所述彩膜基板的第四电极加载公共电压, 针对每一帧画面, 计算并获取 该帧画面呈现时加载到各所述像素电极的像素电压的平均值, 并向所述彩膜 基板的第三电极加载所述平均值; 或者, 所述第一电极为公共电极, 所述第 二电极为像素电极时, 该方法包括: 获取公共电压, 并向所述彩膜基板的第 三电极加载公共电压, 针对每一帧画面, 计算并获取该帧画面呈现时加载到 各所述像素电极的像素电压的平均值, 并向所述彩膜基板的第四电极加载所 述平均值。
本发明的再一个方面还提供另一种所述显示装置的驱动方法, 所述显示 装置的彩膜基板上设置有第二薄膜晶体管、 第二栅线和第二数据线, 所述第 二薄膜晶体管的栅极与所述第二栅线相连, 所述第二薄膜晶体管的源极与所 述第二数据线相连, 所述第二薄膜晶体管的漏极与所述第三电极或者所述第 四电极相连, 该方法包括: 在任一像素区域内, 所述第三电极加载与所述第 一电极相同的信号, 所述第四电极加载与所述第二电极相同的信号。
本发明实施例提供一种液晶面板、 显示装置及其制造和驱动方法, 可消 弱驱动电场中的垂直部分, 改善现有产品由于像素边缘因出现垂直电场导致 的液晶分布差异性, 使液晶盒内的液晶分子排布更加规则, 从而解决一系列 由于个别液晶分子排布差异导致的视觉性不良, 提高产品的光学显示特性。 附图说明
为了更清楚地说明本公开实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例, 而非对本公开的限制。
图 1为传统 ADS显示器的结构示意图;
图 2为本发明实施例一提供的液晶面板的结构示意图;
图 3为本发明实施例一中阵列基板与彩膜基板的对盒示意图一; 图 4为本发明实施例一中阵列基板与彩膜基板的对盒示意图二; 图 5A为本发明实施例的一种阵列基板的结构示意图,图 5B为一个像素 区域的放大示意图;
图 6为本发明实施例的一种显示面板的结构示意图。
附图标记说明
10-彩膜基板, 11-第四电极, 12-第三电极, 13-第二钝化层,
20-阵列基板, 21-第一电极, 22-第二电极, 23-钝化层, 30-液晶层, 210-栅线, 211-数据线, 212-薄膜晶体管, 100-显示面板,
300-补偿驱动电路。 具体实施方式
发明人发现图 1所示的传统技术至少存在如下问题: 在阵列基板生产过 程中, 在一张用于同时制备多个阵列基板的玻璃基板 (母板)上的不同区域, 虽然设计时各层的特征参数(如层的厚度、 线宽等)相同, 但由于工艺条件 的限制最终制成时各层的特征参数 4艮难保证完全一致, 尤其是中心区域和边 角区域与其它区域有较大的差异, 出现分布性不良。 上述分布性不良的主要 表现之一是: 在同一张玻璃基板上, 第一电极 21 (条形电极)的尺寸很难完 全一致, 这样就会造成不同显示面板(其采用的阵列基板对应同一张玻璃基 板不同区域) 的电场分布存在差异。 为了经济和大批量生产的需要, 不同显 示面板使用的电路调节代码又是一致的, 这导致在同一张玻璃基板的中心和 角落区域处透过率的差异, 反应在产品上表现为不同显示面板出现透过率上 参差不齐的变化。 另一方面, 由于第二电极和第一电极存在高度上的端差, 使得液晶盒内两层电极间不可避免的存在竖直电场, 影响像素边缘区域的液 晶分布。 以上两方面都会严重影响产品的光学显示特性。
本发明实施例提供一种液晶面板、 显示装置及其制造和驱动方法, 可改 善由于像素边缘垂直电场导致的液晶分布差异性,提高产品的光学显示特性。 下面结合附图对本发明实施例进行详细描述。 此处所描述的具体实施方 式仅仅用以解释本发明, 并不用于限定本发明。
实施例一
如图 2所示, 本实施例提供一种液晶面板, 包括阵列基板 20、 彩膜基板 10和设置在两基板之间的液晶层 30。阵列基板 20上异层设置有第一电极 21 和第二电极 22,彩膜基板 10上异层设置有第三电极 12和第四电极 11。第一 电极 21和第三电极 12相对设置, 第一电极 21和第三电极 12均为狭缝状电 极; 第二电极 22和第四电极 11均为板状电极。 第一电极 21和第三电极 12 分别位于第二电极 22和第四电极 11靠近液晶层 30的一侧。
当彩膜基板 10与阵列基板 20相对设置以形成液晶盒后 (对盒) , 以液 晶层 30的中分线 CC,线为参考, CC,线即彩膜基板 10与阵列基板 20间隙( Cell gap ) 的中分线, 第三电极 12位于第一电极 21的镜像位置, 第二钝化层 13 位于钝化层 23的镜像位置, 第四电极 11位于第二电极 22的镜像位置, 且, 第三电极 12和第四电极 11产生的电场, 与第一电极 21和第二电极 22产生 的电场在垂直基板方向 (即图 2中的纵向)其分量具有相反方向。
在任一像素区域内,彩膜基板 10的第四电极 11与阵列基板 20上的第二 电极 22对应, 且第四电极 11位于第二电极 22的镜像位置; 彩膜基板 10的 第三电极 12与阵列基板 20上的第一电极 21对应, 且第三电极 12位于第一 电极 21 的镜像位置。 这样在任一像素区域内, 第三电极 12和第四电极 11 产生的电场, 与第一电极 21和第二电极 22产生的电场具有相反方向的垂直 分量, 可更好地消弱驱动电场中的垂直部分, 改善液晶分布差异性, 进一步 提高产品的视觉效果。
本实施例中的液晶面板适用于平面场模式, 平面场模式指驱动液晶的驱 动电场主要为平行电场, 形成驱动电场的像素电极和公共电极均设置在阵列 基板 20上, 可以是 IPS模式, 也可以是 ADS模式。
本实施例与阵列基板 20相对盒的彩膜基板 10上异层设置有第四电极 11 以及第三电极 12, 阵列基板 20上异层设置有第一电极 21以及第二电极 22。 第三电极 12、 第四电极 11间的电场, 与第一电极 21、 第二电极 22间形成的 电场有相反方向的垂直分量, 可消弱驱动电场中的垂直部分, 改善现有产品 由于像素边缘出现垂直电场导致的液晶分布差异性, 使液晶盒内的液晶分子 排布更加规则, 从而解决一系列由于个别液晶分子排布差异导致的视觉性不 良, 提高产品的光学显示特性。
进一步优选地, 例如, 第三电极 12的狭缝宽度的变化趋势, 与第一电极 21的狭缝宽度的变化趋势相反。
一种优选的实施方式中, 形成第三电极 12与第一电极 21的特征参数具 有一致的分布趋势, 特征参数(包括但不限于狭缝宽度)分布性不良也具有 一致性。 对盒后, 使第三电极 12的特征参数与第一电极 21的特征参数具有 相反的变化趋势。例如, 代表性地, 第三电极 12的狭缝宽度的变化趋势与第 一电极 21的狭缝宽度的变化趋势相反。
例如, 由于制备工艺的问题, 第三电极 12与第一电极 21出现电极偏大 或偏小的现象(对应地, 狭缝宽度也呈现偏宽或偏窄的现象) , 例如, 如图 3和图 4所标示,阵列基板 20的 1区与彩膜基板 10的 Γ 区均出现电极偏大 的现象, 阵列基板 20的 2区与彩膜基板 10的 2, 区均出现电极偏小的现象。
阵列基板 20与彩膜基板 10对盒形成液晶盒时, 存在图 3和图 4所示的 两种方法,第一种方法如图 3所示,沿平行于阵列基板 20的短边的虚线 ΑΑ, 进行对盒, 阵列基板 20与彩膜基板 10沿虚线 AA'方向对盒后, 阵列基板 20 的 1区对应彩膜基板 10的 2' 区,阵列基板 20的 2区对应彩膜基板 10的 Γ 区, 阵列基板 20的 3区对应彩膜基板 10的 4' 区, 阵列基板 20的 4区对应 彩膜基板 10的 3, 区。 对盒后, 第三电极 12与第一电极 21特征参数的分布 性不良趋势恰相反, 具有图 2所示的互补效果。 即, 当阵列基板 20任何一个 区出现第一电极 21偏大或偏小的情况时, 彩膜基板 10对应区域的第三电极 12必将是相反的结果, 综合阵列基板 20和彩膜基板 10的电场效应后, 如图 2中的 Α区和 B , 最终液晶分子的偏转将更加稳定, 不会因为工艺参数分 布性不良而产生大的电场差异,优化产品的分布特性和视觉显示效果; 同时, 第三电极 12与第四电极间的电场,与第一电极 21与第二电极 22的电场有相 反方向的垂直分量, 从而消弱了驱动电场中的垂直部分, 改善现有产品由于 像素边缘出现垂直电场导致的液晶分布差异性, 使液晶盒内的液晶分子排布 更加规则, 从而解决一系列由于个别液晶分子排布差异导致的视觉性不良, 提高产品的光学显示特性。
阵列基板 20与彩膜基板 10对盒形成液晶盒有图 3和图 4所示的两种对 盒方式: 例如彩膜基板 10上的 2, 区与阵列基板 20上的 2区的特征参数变 化趋势一致, 4, 区与 4区的特征参数变化趋势一致, 以图 3所示对盒方式为 例, 彩膜基板 10上 2, 区和 4, 区所在的右端与阵列基板 20上 2区和 4区所 在的右端相对。 沿虚线 AA'对盒后, 2区与 1' 区相对, 1区与 2' 区相对, 3区与 4, 区相对, 4区与 3, 区相对, 这样可补偿沿长度方向工艺参数的分 布性不良。
需要说明的是, 影响工艺参数分布性不良的原因多且不容易确定, 具体 实施时,一般先通过实验分别测定阵列基板 20沿长度方向和沿宽度方向上工 艺参数的变化趋势。 若结果是沿长度方向上工艺参数分布性不良更大些, 则 采用图 3所示的对盒方式, 抵消 (或补偿)长度方向上工艺参数的分布性不 良; 若结果是沿宽度方向上工艺参数分布性不良更大些, 则采用图 4所示的 对盒方式, 抵消 (或补偿) 宽度方向上工艺参数的分布性不良。 当然, 也可 以通过实验直接测试按图 3和图 4所示对盒方式形成的液晶盒, 哪一种显示 效果更好, 后期批量生产时, 即可采用相同的对盒方式。
优选地, 例如, 所述第四电极所在层还具有防静电的效果, 或者, 所述 第四电极所在层直接设置成原有的防静电层。
一般而言, 为避免静电影响显示效果, 彩膜基板上一般设置有一层透明 导电膜, 作为防静电层, 起静电屏蔽作用。 本实施例中的第四电极可直接使 用现有的防静电层, 可筒化彩膜基板的生产工序。
或者说, 例如, 也可以在彩膜基板上设置第四电极, 将第四电极所在层 与一恒压电压源相连, 使第四电极所在层同时还具有防静电的效果。
本实施例所述液晶面板, 用于平面场模式显示装置, 在彩膜基板设置第 四电极和第三电极, 用以改善由于生产工艺导致的电场分布差异, 使对应玻 璃基板边角区域的显示面板的电场更加稳定和容易控制; 这同时消弱了驱动 电场中的垂直部分, 改善了现有产品由于像素边缘出现垂直电场导致的液晶 分布差异性, 使液晶盒内的液晶分子排布更加规则, 从而解决一系列由于个 别液晶分子排布差异导致的视觉性不良, 提高产品的光学显示特性。
实施例二
本实施例提供一种液晶面板, 与实施例一的区别之处在于, 参照图 2所 示, 阵列基板 20上的第一电极 21和第二电极 22之间还设置有钝化层 23 , 彩膜基板 10上的第三电极 12和第四电极 11之间还设置有第二钝化层 13。 而且, 彩膜基板 10上的第二钝化层 13与阵列基板上的 20钝化层 23的材质 及制备时的工艺参数均相同, 且使用相同的设备加工而成, 从而第二钝化层 13具有与钝化层 23分布性不良(主要是钝化层厚度的变化) 的趋势一致。 对盒后, 第二钝化层 13与钝化层 23分的布性不良则相反(对盒方式参照实 施例一及图 3、 图 4 ) , 可补偿由于制备阵列基板上第一电极 21及钝化层 23 时工艺参数的分布性不良导致的电场分布差异, 提高产品的显示效果。
实施例三
本实施例提供一种液晶面板, 与实施例一的区别之处在于, 参照图 2所 示,第四电极 11与阵列基板 20的第二电极 22的材质及制备时的工艺参数均 相同,且使用相同的设备加工而成,从而使制备出第四电极 11具有与第二电 极 22—致的分布性不良趋势。 对盒后如图 2所示, 使第四电极 11与第二电 极 22的分布性不良趋势相反, 可补偿由于第一电极 21、 第二电极 22工艺参 数的分布性不良导致的电场分布差异, 提高产品的显示效果。
实施例四
本实施例提供一种液晶面板, 与实施例一的区别之处在于, 参照图 2所 示, 彩膜基板 10上的第二钝化层 13与阵列基板 20的钝化层 23的材质及制 备时的工艺参数均相同, 且使用相同的设备加工而成, 并且, 彩膜基板 10 上的第四电极 11与阵列基板 20的第二电极 22的材质及制备时的工艺参数均 相同, 且使用相同的设备加工而成, 可补偿由于第二电极 22、钝化层 23、 第 一电极 21 工艺参数的分布性不良导致的电场分布差异, 提高产品的显示效 果。
本实施例在彩膜基板 10上也设计出第一铟锡氧化物(ITO )层(第四电 极 11 ) 、 绝缘保护层(第二钝化层 13 )和第二 ITO层(第三电极 12 ) 的图 形, 其结构和下面的阵列基板 20上的第一 ITO层(第二电极 22 ) 、 绝缘保 护层(钝化层 23 )和第二 ITO层(第一电极 21 )保持一致(包括材料、 厚 度、 设计尺寸等) , 彩膜基板 10和阵列基板 20对盒后滴注液晶即可形成液 晶盒, 此过程工艺成熟, 在此不进行赘述。
实施例五
本实施例提供一种液晶面板, 与实施例四的区别之处在于, 如图 5A, 阵 列基板 20还包括: 薄膜晶体管 212、 栅线 210和数据线 211 , 栅线 210和数 据线 211相交叉界定了多个像素区域。 如图 5B所示, 每个像素区域中的薄 膜晶体管 212的栅极 2121与相应的栅线 210相连, 薄膜晶体管的源极 2122 与相应的数据线 211相连,薄膜晶体管的漏极 2123与该像素区域的第一电极 或者第二电极相连, 由此该第一电极或者第二电极可以被施加来自数据线的 像素电压。
类似地,彩膜基板 10还包括:第二薄膜晶体管、第二栅线和第二数据线, 第二栅线和第二数据线相交叉界定了多个第二像素区域, 每个第二像素区域 中的第二薄膜晶体管的栅极与所述第二栅线相连, 第二薄膜晶体管的源极与 第二数据线相连, 第二薄膜晶体管的漏极与该第二像素区域的第三电极或者 第四电极相连, 由此该第三电极或者第四电极可以被施加来自第二数据线的 像素电压。 并且, 当阵列基板 20和彩膜基板 10彼此对盒之后, 阵列基板 20 上的像素区域与彩膜基板 10上的第二像素区域在垂直方向彼此对应。
在任一像素区域内, 第三电极可加载与第一电极相同的信号, 第四电极 可加载与第二电极相同的信号,即可改善由于生产工艺导致的电场分布差异, 使对应玻璃基板边角区域的显示面板的电场更加稳定和容易控制; 同时还可 大大消弱驱动电场中的垂直部分, 改善了现有产品由于像素边缘出现垂直电 场导致的液晶分布差异性, 使液晶盒内的液晶分子排布更加规则, 从而解决 一系列由于个别液晶分子排布差异导致的视觉性不良, 提高产品的光学显示 特性。
进一步地, 所述薄膜晶体管和所述第二薄膜晶体管均可以包括: 栅极、 栅绝缘层、 半导体层、 源极和漏极; 所述第二薄膜晶体管的栅极与所述薄膜 晶体管的栅极的材质及制备时的工艺参数完全相同, 且使用相同的设备加工 而成; 所述第二薄膜晶体管的栅绝缘层与所述薄膜晶体管的栅绝缘层的材质 及制备时的工艺参数完全相同, 且使用相同的设备加工而成; 所述第二薄膜 晶体管的半导体层与所述薄膜晶体管的半导体层的材质及制备时的工艺参数 完全相同,且使用相同的设备加工而成;所述第二薄膜晶体管的源极和漏极, 与所述薄膜晶体管的源极和漏极的材质及制备时的工艺参数完全相同, 且使 用相同的设备加工而成。
除可能存在的彩膜层外, 彩膜基板上其余各层与阵列基板上的各层完全 一致, 彩膜基板上的第四电极设计成(与阵列基板的第一电极一样)通过栅 极源极线以及 TFT器件组成的每个像素信号可控的方式,对每个像素进行补 偿, 补偿效果更好。 彩膜层例如包括对应于每个像素区域的彩膜单元, 每个 彩膜单元可以为红(R ) 、 绿(G )和蓝(B )彩膜单元。
本实施例在彩膜基板上设置有电极及薄膜晶体管, 可改善由于生产工艺 导致的电场分布差异, 消弱驱动电场中的垂直部分, 改善了现有产品由于像 素边缘出现垂直电场导致的液晶分布差异性, 使液晶盒内的液晶分子排布更 加规则, 从而解决一系列由于个别液晶分子排布差异导致的视觉性不良, 提 高产品的光学显示特性。
实施例六
本实施例提供一种液晶面板,与实施例一的区别之处在于,如图 6所示, 所述的液晶面板 100除彩膜基板 10和阵列基板 20之外还包括: 补偿驱动电 路 300, 用于针对每一帧画面, 计算并获取呈现该帧画面时加载到各像素电 极的像素电压的平均值, 并向彩膜基板的第三电极或第四电极加载平均值。
当所述第一电极为像素电极, 所述第二电极为公共电极时, 所述补偿驱 动电路 300与所述彩膜基板 10的第三电极相连,向第三电极加载所述平均值; 当所述第二电极为像素电极, 所述第一电极为公共电极时, 所述补偿驱动电 路 300与所述彩膜基板 10的第四电极相连, 向第四电极加载所述平均值。
例如, 补偿驱动电路在显示某帧画面的同时, 通过计算发现面板中大部 分像素电压为 5V左右, 则此时将彩膜基板上第四电极的信号加为 5V。 此时 如图 2, 在盒内的液晶分子受到上下两个电场的影响, 在水平方向上两个电 场的方向是相同的, 能够加强液晶分子的驱动效果, 而在竖直方向上两个电 场有抵消的作用, 从而减少在传统产品中出现的竖直电场导致边缘液晶分子 分布紊乱的现象。
实施例七
本实施例还提供了一种显示装置, 其包括上述任意实施例中的任一种液 晶面板。 所述显示装置可以为: 液晶面板、 电子纸、 手机、 平板电脑、 电视 机、 显示器、 笔记本电脑、 数码相框、 导航仪等任何具有显示功能的产品或 部件。
本实施例所述显示装置, 可改善由于生产工艺导致的电场分布差异, 使 对应玻璃基板边角区域的显示面板的电场更加稳定和容易控制; 同时消弱了 驱动电场中的垂直部分, 改善了现有产品由于像素边缘出现垂直电场导致的 液晶分布差异性, 使液晶盒内的液晶分子排布更加规则, 从而解决一系列由 于个别液晶分子排布差异导致的视觉性不良, 提高产品的光学显示特性。
实施例八
本实施例还提供一种显示装置的制造方法, 该方法可以如下进行。
101、进行形成阵列基板的工序, 其中, 所述阵列基板上异层设置有第一 电极和第二电极, 所述第一电极为狭缝状电极, 所述第二电极为板状电极, 所述第一电极位于第二电极靠近液晶层的一侧;
102、进行形成彩膜基板的工序, 其中, 在彩膜基板上依次设置第三电极 及第四电极, 且所述第三电极为狭缝状电极, 所述第四电极为板状电极, 所 述第三电极分别位于第四电极靠近液晶层的一侧;
103、 将彩膜基板与阵列基板对盒。
本实施例步骤 101可以与传统技术中制备阵列基板的步骤相同, 不再赘 述; 步骤 102还包括在彩膜基板上还依次设置第四电极、 第二钝化层以及第 三电极。 在一个示范性的工艺制造过程中, 形成第四电极、 第二钝化层以及 第三电极时, 阵列基板和彩膜基板共同进行如曝光、显影、刻蚀等整个过程, 两者经历同样的设备, 则制作出的分布性不良趋势基本一样。 步骤 103可以 与传统技术大致相同, 只不过采用图 3或图 4所示对盒方式, 在实施例一中 已做过详细描述, 在此不再赘述。
例如, 步骤 102进行形成彩膜基板的工序, 包括: 采用与所述阵列基板 的第一电极相同的材质及相同的工艺参数, 且使用相同的掩膜板和相同的设 备形成所述第三电极。
例如, 所述阵列基板上的第一电极和第二电极之间设置有钝化层, 所述 彩膜基板上的第三电极和第四电极之间设置有第二钝化层; 步骤 102进行形 成彩膜基板的工序, 可以包括: 采用相同的材质及相同的工艺参数, 且使用 相同的设备形成所述第二钝化层与述阵列基板的钝化层。
例如, 步骤 102进行形成彩膜基板的工序, 还可包括: 采用与所述阵列 基板的第二电极相同的材质及相同的工艺参数, 且使用相同的设备形成第四 电极。 例如, 所述阵列基板还可包括: 薄膜晶体管、 栅线和数据线, 所述薄膜 晶体管的栅极与所述栅线相连, 所述薄膜晶体管的源极与所述数据线相连, 所述薄膜晶体管的漏极与所述第一电极或者所述第二电极相连(具体地, 薄 膜晶体管的漏极与第一电极和第二电极中的像素电极相连) ; 步骤 102进行 形成彩膜基板的工序, 例如还可包括: 采用与所述阵列基板的栅极相同的材 质及相同的工艺参数, 且使用相同的设备形成第二薄膜晶体管的栅极; 采用 与所述阵列基板的栅绝缘层相同的材质及相同的工艺参数, 且使用相同的设 备形成第二薄膜晶体管的栅绝缘层; 采用与阵列基板的半导体层相同的材质 及相同的工艺参数, 且使用相同的设备形成第二薄膜晶体管的半导体层; 采 用与所述阵列基板的源极和漏极相同的材质及相同的工艺参数, 且使用相同 的设备形成所述第二薄膜晶体管的源极和漏极。
例如, 步骤 103将彩膜基板与阵列基板对盒, 可以包括: 将彩膜基板与 阵列基板对盒, 且对盒后使彩膜基板长度方向上的一端与阵列基板长度方向 上不相对应的另一端相对。 彩膜基板与阵列基板相对设置, 周边通过封框胶 彼此结合, 而且二者之间可以形成或提供有隔垫物。 在二者对盒之后, 如果 需要, 还可以进行切割工艺。
本实施例所述显示装置的制造方法, 可改善由于生产工艺导致的电场分 布差异, 使对应玻璃基板边角区域的显示面板的电场更加稳定和容易控制; 同时消弱了驱动电场中的垂直部分, 改善了现有产品由于像素边缘出现垂直 电场导致的液晶分布差异性, 使液晶盒内的液晶分子排布更加规则, 从而解 决一系列由于个别液晶分子排布差异导致的视觉性不良, 提高产品的光学显 示特性。
实施例九
本实施例还提供一种显示装置的驱动方法, 该显示装置包括实施例一至 四和实施例六任一项所述的显示面板。 当第一电极 21为像素电极,第二电极 22 为公共电极时, 方法包括: 获取公共电压, 并向彩膜基板的第四电极 11 加载公共电压; 针对每一帧画面, 计算并获取呈现该帧画面时加载到各像素 电极的像素电压的平均值, 并向彩膜基板的第三电极 12加载平均值。
此方法中无需在彩膜基板上设置薄膜晶体管, 不过彩膜基板的第三电极 12需相互连接在一起, 以便各个第三电极 12均能加载上所述的平均值, 因 此, 制备第三电极时所使用的掩膜版, 与形成阵列基板的第一电极(像素电 极 )所使用的掩膜版稍有不同。
当然, 也可以第一电极 21为公共电极, 第二电极 22为像素电极, 此时 该方法包括: 获取公共电压, 并向所述彩膜基板的第三电极加载公共电压; 针对每一帧画面, 计算并获取该帧画面呈现时加载到各所述像素电极的像素 电压的平均值, 并向所述彩膜基板的第四电极加载所述平均值。
此方法无需在彩膜基板上设置薄膜晶体管, 但同样要求彩膜基板的第四 电极相互连接在一起, 各个第四电极均能加载上所述的平均值, 因此, 第四 电极可直接使用彩膜基板现有的防静电层, 或者, 制备第四电极时所使用的 掩膜版, 与形成阵列基板的第一电极(像素电极 )所使用的掩膜版稍有不同。
彩膜基板上的第四电极、 第三电极理论上可设计成与阵列基板的第一电 极和第二电极(其一形成公共电极, 其一形成像素电极)一样, 通过栅极源 极线以及 TFT器件组成的每个像素信号可控的方式,但考虑到目前工艺的实 现性和便捷性, 本实施例将其设定为统一的一个电压。 具体地, 第四电极 11 加载公共电压;每个彩膜基板的第三电极 12连在一起,统一通过补偿驱动电 路给信号, 其信号的电压值根据补偿驱动电路计算得出, 原则是尽量使最多 的像素能够满足阵列基板的第一电极和彩膜基板的第三电极的信号水平趋 近。 例如补偿驱动电路在给某帧画面的同时, 通过计算发现面板中大部分像 素电压为 5V左右, 则此时将彩膜基板上第三电极 12的信号加为 5V。 此时 如图 2, 在盒内的液晶分子受到上下两个电场的影响, 在水平方向上两个电 场的方向是相同的, 能够加强液晶分子的驱动效果, 而在竖直方向上两个电 场有抵消的作用, 从而减少在传统产品中出现的竖直电场导致边缘液晶分子 分布紊乱的现象。
实施例十
本实施例还提供一种显示装置的驱动方法, 该显示装置包括实施例六所 述的液晶面板, 该方法包括: 在任一像素区域内, 所述第三电极加载与所述 第一电极相同的信号, 所述第四电极加载与所述第二电极相同的信号。
本实施例所述液晶面板的彩膜基板上, 设置有第三电极和第四电极, 且 第三电极、 第四电极设计成与阵列基板的第一电极和第二电极(其一形成公 共电极, 其一形成像素电极)一样, 通过栅极源极线以及 TFT器件组成的每 个像素信号可控的方式, 对于每一像素, 第三电极与第四电极间产生的电场 与第一电极和第二电极产生的电场均具有相反的垂直分量(在不考虑工艺参 数分布性不良的情况下电场的强弱也一致) , 可改善由于生产工艺导致的电 场分布差异, 使对应玻璃基板边角区域的显示面板的电场更加稳定和容易控 制; 同时可大幅削弱驱动电场中的垂直部分, 改善现有产品由于像素边缘出 现垂直电场导致的液晶分布差异性, 使液晶盒内的液晶分子排布更加规则, 从而解决一系列由于个别液晶分子排布差异导致的视觉性不良, 提高产品的 光学显示特性。
本实施例所述液晶面板需设置薄膜晶体管以及第二数据线、第二栅线等, 第二数据线可与阵列基板的数据线接相同的驱动器或驱动 IC,第二栅线可与 阵列基板的栅线接相同的驱动器或驱动 IC, 因此本实施例无需额外设置补偿 驱动电路, 而实施例九所述驱动方法需额外设置补偿驱动电路。
需要注意的是, 本发明实施例所述的技术特征, 在不沖突的情况下, 可 任意相互组合使用。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 发明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过硬件, 但
4艮多情况下前者是更佳的实施方式。
基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献 的部分可以以软件产品的形式体现出来, 该计算机软件产品存储在可读取的 存储介质中, 如计算机的软盘, 硬盘或光盘等, 包括若干指令用以使得一台 计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各 个实施例所述的方法。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种液晶面板, 包括: 阵列基板、 彩膜基板和设置在所述阵列基板与 所述彩膜基板之间的液晶层,
其中, 所述阵列基板上异层设置有第一电极和第二电极, 所述彩膜基板 上异层设置有第三电极和第四电极, 所述第一电极和第三电极相对设置, 所 述第一电极和第三电极为狭缝状电极,所述第二电极和第四电极为板状电极, 所述第一电极和第三电极分别位于第二电极和第四电极靠近液晶层的一侧。
2、 根据权利要求 1所述的液晶面板, 其中,
所述第三电极的狭缝宽度的变化趋势, 与所述第一电极的狭缝宽度的变 化趋势相反。
3、 根据权利要求 1或 2所述的液晶面板, 其中,
所述第三电极与所述第一电极的材质及制备时的工艺参数均相同, 且使 用相同的掩膜板和相同的设备加工而成。
4、 根据权利要求 1-3任一所述的液晶面板, 其中, 所述阵列基板上的第 一电极和第二电极之间设置有钝化层, 所述彩膜基板上的第三电极和第四电 极之间设置有第二钝化层;
所述第二钝化层与所述阵列基板的钝化层的材质及制备时的工艺参数均 相同, 且使用相同的设备加工而成。
5、 根据权利要求 1-4任一所述的液晶面板, 还包括:
所述第四电极与所述第二电极的材质及制备时的工艺参数均相同, 且使 用相同的设备加工而成。
6、 根据权利要求 1-5任一所述的液晶面板, 其中,
所述阵列基板还包括: 薄膜晶体管、 栅线和数据线, 所述薄膜晶体管的 栅极与所述栅线相连, 所述薄膜晶体管的源极与所述数据线相连, 所述薄膜 晶体管的漏极与所述第一电极或者所述第二电极相连;
所述彩膜基板还包括: 第二薄膜晶体管、 第二栅线和第二数据线, 所述 第二薄膜晶体管的栅极与所述第二栅线相连, 所述第二薄膜晶体管的源极与 所述第二数据线相连, 所述第二薄膜晶体管的漏极与所述第三电极或者所述 第四电极相连。
7、 根据权利要求 6所述的液晶面板, 其中,
所述薄膜晶体管和所述第二薄膜晶体管均包括: 栅极、 栅绝缘层、 半导 体层、 源极和漏极;
所述第二薄膜晶体管的栅极与所述薄膜晶体管的栅极的材质及制备时的 工艺参数完全相同, 且使用相同的设备加工而成,
所述第二薄膜晶体管的栅绝缘层与所述薄膜晶体管的栅绝缘层的材质及 制备时的工艺参数完全相同, 且使用相同的设备加工而成,
所述第二薄膜晶体管的半导体层与所述薄膜晶体管的半导体层的材质及 制备时的工艺参数完全相同, 且使用相同的设备加工而成,
所述第二薄膜晶体管的源极和漏极, 与所述薄膜晶体管的源极和漏极的 材质及制备时的工艺参数完全相同, 且使用相同的设备加工而成。
8、 根据权利要求 1-7任一所述的液晶面板, 其中,
所述第四电极所在层还具有防静电的效果。
9、 一种显示装置, 包括权利要求 1-8任一项所述的液晶面板。
10、 根据权利要求 9所述的显示装置, 其中, 所述液晶面板还包括: 补偿驱动电路, 用于针对每一帧画面, 计算并获取呈现该帧画面时加载 到各像素电极的像素电压的平均值, 并向第三电极或第四电极加载所述平均 值;
当所述第一电极为像素电极, 所述第二电极为公共电极时, 所述补偿驱 动电路与所述彩膜基板的第三电极相连, 向第三电极加载所述平均值; 当所 述第二电极为像素电极, 所述第一电极为公共电极时, 所述补偿驱动电路与 所述彩膜基板的第四电极相连, 向第四电极加载所述平均值。
11、 一种显示装置的制造方法, 包括:
形成阵列基板的工序, 其中, 所述阵列基板上异层设置有第一电极和第 二电极, 所述第一电极为狭缝状电极, 所述第二电极为板状电极, 所述第一 电极位于第二电极靠近液晶层的一侧;
形成彩膜基板的工序, 其中, 在彩膜基板上依次设置第三电极及第四电 极, 且所述第三电极为狭缝状电极, 所述第四电极为板状电极, 所述第三电 极分别位于第四电极靠近液晶层的一侧;
将所述彩膜基板与所述阵列基板对盒。
12、根据权利要求 11所述的方法, 其中, 所述进行形成彩膜基板的工序 包括:
采用与所述阵列基板的第一电极相同的材质及相同的工艺参数, 且使用 相同的掩膜板和相同的设备形成所述第三电极。
13、 根据权利要求 11或 12所述的方法, 其中, 所述阵列基板上的第一 电极和第二电极之间设置有钝化层, 所述彩膜基板上的第三电极和第四电极 之间设置有第二钝化层; 所述进行形成彩膜基板的工序包括:
采用相同的材质及相同的工艺参数, 且使用相同的设备形成所述第二钝 化层与所述阵列基板的钝化层。
14、 根据权利要求 11-13任一所述的方法, 其中, 所述进行形成彩膜基 板的工序包括:
采用与所述阵列基板的第二电极相同的材质及相同的工艺参数, 且使用 相同的设备形成所述第四电极。
15、 根据权利要求 11-14任一所述的方法, 其中, 所述阵列基板还包括: 薄膜晶体管、 栅线和数据线, 所述薄膜晶体管的栅极与所述栅线相连, 所述 薄膜晶体管的源极与所述数据线相连, 所述薄膜晶体管的漏极与所述第一电 极或者所述第二电极相连;
所述彩膜基板还包括: 第二薄膜晶体管、 第二栅线和第二数据线, 所述 第二薄膜晶体管的栅极与所述第二栅线相连, 所述第二薄膜晶体管的源极与 所述第二数据线相连, 所述第二薄膜晶体管的漏极与所述第三电极或者所述 第四电极相连; 所述进行形成彩膜基板的工序还包括:
采用与所述阵列基板的栅极相同的材质及相同的工艺参数, 且使用相同 的设备形成第二薄膜晶体管的栅极;
采用与所述阵列基板的栅绝缘层相同的材质及相同的工艺参数, 且使用 相同的设备形成所述第二薄膜晶体管的栅绝缘层;
采用与所述阵列基板的半导体层相同的材质及相同的工艺参数, 且使用 相同的设备形成所述第二薄膜晶体管的半导体层;
采用与所述阵列基板的源极和漏极相同的材质及相同的工艺参数, 且使 用相同的设备形成所述第二薄膜晶体管的源极和漏极。
16、一种权利要求 10所述显示装置的驱动方法, 其中, 所述第一电极为 像素电极, 所述第二电极为公共电极时, 该方法包括:
获取公共电压, 并向所述彩膜基板的第四电极加载公共电压, 针对每一帧画面, 计算并获取该帧画面呈现时加载到各所述像素电极的 像素电压的平均值, 并向所述彩膜基板的第三电极加载所述平均值;
或者, 所述第一电极为公共电极, 所述第二电极为像素电极时, 该方法 包括:
获取公共电压, 并向所述彩膜基板的第三电极加载公共电压, 针对每一帧画面, 计算并获取该帧画面呈现时加载到各所述像素电极的 像素电压的平均值, 并向所述彩膜基板的第四电极加载所述平均值。
17、 一种显示装置的驱动方法, 所述显示装置包括权利要求 6或 7所述 的液晶面板, 该方法包括:
在任一像素区域内, 所述第三电极加载与所述第一电极相同的信号, 所 述第四电极加载与所述第二电极相同的信号。
PCT/CN2013/085355 2013-07-29 2013-10-17 液晶面板、显示装置及其制造和驱动方法 WO2015014024A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/386,190 US9513517B2 (en) 2013-07-29 2013-10-17 Liquid crystal panel, display device, and manufacturing method and driving methods thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310322620.2A CN103412448B (zh) 2013-07-29 2013-07-29 液晶面板、显示装置及其制造和驱动方法
CN201310322620.2 2013-07-29

Publications (1)

Publication Number Publication Date
WO2015014024A1 true WO2015014024A1 (zh) 2015-02-05

Family

ID=49605475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085355 WO2015014024A1 (zh) 2013-07-29 2013-10-17 液晶面板、显示装置及其制造和驱动方法

Country Status (3)

Country Link
US (1) US9513517B2 (zh)
CN (1) CN103412448B (zh)
WO (1) WO2015014024A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570696B (zh) * 2015-03-06 2017-02-11 鈺瀚科技股份有限公司 每個像素區至少有三個電極的液晶顯示器
CN106066557B (zh) * 2016-08-10 2019-06-21 京东方科技集团股份有限公司 显示面板、显示装置
CN115327808B (zh) * 2022-08-31 2024-01-19 厦门天马微电子有限公司 显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000187227A (ja) * 1998-12-22 2000-07-04 Seiko Epson Corp 液晶装置の製造方法
US20040263749A1 (en) * 2003-04-19 2004-12-30 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device and method of manufacturing the same
US7298445B1 (en) * 2003-06-23 2007-11-20 Research Foundation Of The University Of Central Florida Fast response liquid crystal mode
CN102156359A (zh) * 2010-06-13 2011-08-17 京东方科技集团股份有限公司 阵列基板、液晶面板和液晶显示器及驱动方法
CN202563216U (zh) * 2012-04-19 2012-11-28 京东方科技集团股份有限公司 一种彩膜基板、液晶面板和显示设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141693C (zh) * 2001-01-21 2004-03-10 达碁科技股份有限公司 一种低驱动电压的液晶显示器
CN101943829B (zh) * 2010-08-11 2012-05-16 昆山龙腾光电有限公司 面内切换型液晶显示面板及液晶显示器
CN102243401B (zh) * 2011-07-11 2013-05-29 昆山龙腾光电有限公司 液晶显示装置
CN103185993B (zh) * 2011-12-29 2016-06-22 上海天马微电子有限公司 Ips/ffs型液晶显示装置的阵列基板
JP2014081534A (ja) * 2012-10-17 2014-05-08 Toshiba Corp 液晶光学装置及び表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000187227A (ja) * 1998-12-22 2000-07-04 Seiko Epson Corp 液晶装置の製造方法
US20040263749A1 (en) * 2003-04-19 2004-12-30 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device and method of manufacturing the same
US7298445B1 (en) * 2003-06-23 2007-11-20 Research Foundation Of The University Of Central Florida Fast response liquid crystal mode
CN102156359A (zh) * 2010-06-13 2011-08-17 京东方科技集团股份有限公司 阵列基板、液晶面板和液晶显示器及驱动方法
CN202563216U (zh) * 2012-04-19 2012-11-28 京东方科技集团股份有限公司 一种彩膜基板、液晶面板和显示设备

Also Published As

Publication number Publication date
US9513517B2 (en) 2016-12-06
US20160178976A1 (en) 2016-06-23
CN103412448A (zh) 2013-11-27
CN103412448B (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
US7535533B2 (en) Plane switching mode liquid crystal display device having improved contrast ratio
JP6022850B2 (ja) 液晶表示装置
US20130120679A1 (en) Liquid crystal panel and manufacturing method thereof, and liquid crystal display device
US9857620B2 (en) Display device
US9632369B2 (en) Array substrate and manufacturing method thereof, as well as display device
JP2015084017A (ja) 液晶表示装置
US10222639B2 (en) Liquid crystal panel, liquid crystal display device and method for improving liquid crystal rotation obstacle
JP6902110B2 (ja) アレイ基板構造及びアレイ基板の製造方法
WO2018196438A1 (zh) 显示面板及其制作方法、显示装置
JP2009175272A (ja) 液晶表示装置
JP5322059B2 (ja) 液晶表示装置
WO2015014024A1 (zh) 液晶面板、显示装置及其制造和驱动方法
JP3642634B2 (ja) 液晶表示パネル及びその製造方法
US20160005369A1 (en) Display panel and manufacturing method thereof, display device
US20070002236A1 (en) Multi-domain LCD device and method of fabricating the same
CN114185201A (zh) 液晶显示母板及其配向方法、液晶显示面板
JP2011154101A (ja) 液晶表示パネルおよび液晶表示装置
WO2012066988A1 (ja) 液晶表示パネル及び液晶表示装置
KR102133871B1 (ko) 액정 패널 및 액정 장치
WO2013122184A1 (ja) 液晶ディスプレイの製造方法
WO2013139132A1 (zh) 阵列基板和显示装置
KR101888446B1 (ko) 액정 표시 장치 및 이의 제조 방법
US20170299906A1 (en) Curved display panel and fabrication method thereof, and related display apparatus
JP2000066181A (ja) 液晶表示素子
JP2017003899A (ja) 液晶表示装置およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14386190

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.06.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13890824

Country of ref document: EP

Kind code of ref document: A1