WO2015012149A1 - 新規トリアジン誘導体 - Google Patents

新規トリアジン誘導体 Download PDF

Info

Publication number
WO2015012149A1
WO2015012149A1 PCT/JP2014/068752 JP2014068752W WO2015012149A1 WO 2015012149 A1 WO2015012149 A1 WO 2015012149A1 JP 2014068752 W JP2014068752 W JP 2014068752W WO 2015012149 A1 WO2015012149 A1 WO 2015012149A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
substituent
mmol
added
Prior art date
Application number
PCT/JP2014/068752
Other languages
English (en)
French (fr)
Inventor
亘 川畑
斉子 浅見
匡明 澤
優子 朝光
隆行 入江
隆弘 三宅
孝夫 清位
Original Assignee
カルナバイオサイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020167004910A priority Critical patent/KR101742550B1/ko
Priority to AU2014294225A priority patent/AU2014294225B2/en
Priority to US14/907,396 priority patent/US9656995B2/en
Priority to CA2919068A priority patent/CA2919068C/en
Priority to JP2015528238A priority patent/JP6156953B2/ja
Priority to CN201480051531.1A priority patent/CN105683178B/zh
Priority to EP14828654.5A priority patent/EP3026050B1/en
Priority to ES14828654T priority patent/ES2699452T3/es
Application filed by カルナバイオサイエンス株式会社 filed Critical カルナバイオサイエンス株式会社
Priority to DK14828654.5T priority patent/DK3026050T3/en
Priority to SG11201600497VA priority patent/SG11201600497VA/en
Publication of WO2015012149A1 publication Critical patent/WO2015012149A1/ja
Priority to PH12016500152A priority patent/PH12016500152A1/en
Priority to IL243737A priority patent/IL243737B/en
Priority to NO20160292A priority patent/NO20160292A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/53Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings

Definitions

  • the present invention relates to a pharmaceutical, particularly a novel triazine derivative having a BTK inhibitory action, a prodrug thereof, or a pharmaceutically acceptable salt thereof.
  • Bruton's tyrosine kinase is a member of the Tec family of non-receptor tyrosine kinases and is an important expression expressed in all hematopoietic cell types except T lymphocytes and natural killer cells. It is a signaling enzyme. BTK is an important regulator of B cell survival, differentiation, proliferation, activation, and the like, and plays an important role in B cell signal transduction (Non-patent Documents 1 and 2).
  • B-cell receptor (BCR) on the cell surface transmits a signal into the cell via BTK existing downstream thereof, and thus abnormal activation of the signal transduction pathway of B cell is It is thought to promote the growth and survival of cancer cells such as B cell lymphoma and chronic lymphocytic leukemia (Non-patent Document 3).
  • BTK is also known to play an important role in the signal pathways of many other cells and is said to be involved in allergic diseases, autoimmune diseases and inflammatory diseases.
  • Non-Patent Document 1 For example, BTK plays an important role in high-affinity IgE receptor (Fc ⁇ RI) signaling in mast cells. BTK-deficient mast cells have reduced degranulation and production of pro-inflammatory cytokines.
  • Fc ⁇ RI high-affinity IgE receptor
  • Non-patent Document 5 systemic lupus erythematosus
  • BTK mutant mice are resistant to the development of collagen-induced arthritis
  • a compound having BTK inhibitory activity is useful for the treatment of diseases involving BTK signals, such as cancer, B cell lymphoma and chronic lymphocytic leukemia, as well as allergic diseases, autoimmune diseases and inflammation. It is also useful for the treatment of sexual diseases.
  • diseases involving BTK signals such as cancer, B cell lymphoma and chronic lymphocytic leukemia, as well as allergic diseases, autoimmune diseases and inflammation. It is also useful for the treatment of sexual diseases.
  • Various compounds having the above BTK inhibitory action have been reported (Patent Document 1).
  • An object of the present invention is to provide a novel triazine derivative having a BTK inhibitory action, a prodrug thereof, or a pharmaceutically acceptable salt thereof.
  • the present invention is achieved by the following (1) to (2).
  • R 1 represents a lower alkyl group which may have a substituent
  • R 2 represents a hydrogen atom or a lower alkyl group which may have a substituent
  • A represents a nitrogen atom or C —R 3
  • R 3 represents a hydrogen atom, a cyano group, an acyl group which may have a substituent, a sulfonyl group which may have a substituent, or a carbamoyl group which may have a substituent.
  • R 4 represents a lower alkyl group which may have a substituent or a cycloalkyl group which may have a substituent.
  • the novel triazine derivative represented by the above formula (I), a prodrug thereof, or a pharmaceutically acceptable salt thereof is excellent.
  • the present invention has been completed by finding that it has a BTK inhibitory action and shows a particularly excellent inhibitory effect in a collagen-induced arthritis animal model.
  • the compounds provided by the present invention against diseases known to be associated with abnormal cellular responses mediated by BTK such as autoimmune diseases, inflammatory diseases, bone diseases, cancers such as lymphoma, etc. It is useful as a prophylactic or therapeutic drug (pharmaceutical composition) or a prodrug thereof. Further, it is useful as a BTK inhibitor in reagents for experiments and research.
  • Example 3 It shows that the compound of Example 1 inhibits BCR signal in Ramos cells in a concentration-dependent manner and suppresses calcium influx into cells (Test Example 3). It shows that the compound of Example 1 suppressed significantly the leakage of the blood pigment
  • novel triazine derivative of the present invention is a compound represented by the following formula (I).
  • R 1 represents a lower alkyl group which may have a substituent
  • R 2 represents a hydrogen atom or a lower alkyl group which may have a substituent
  • A represents a nitrogen atom or C —R 3
  • R 3 represents a hydrogen atom, a cyano group, an acyl group which may have a substituent, a sulfonyl group which may have a substituent, or a carbamoyl group which may have a substituent
  • R 4 represents a lower alkyl group which may have a substituent or a cycloalkyl group which may have a substituent.
  • the lower alkyl group part of the lower alkyl group which may have a substituent may be any of linear, branched or cyclic alkyl groups having 1 to 3 carbon atoms, specifically, a methyl group, An isopropyl group etc. can be mentioned.
  • the cycloalkyl group portion of the cycloalkyl group which may have a substituent may be any of a cyclic alkyl group having 3 to 6 carbon atoms, and specific examples thereof include a cyclopropyl group and a cyclobutyl group. it can.
  • the acyl group part of the acyl group which may have a substituent may be any of linear, branched and cyclic groups bonded to a carbonyl group, for example, a formyl group, an acetyl group, a propionyl group. , Octanoyl group, dodecanoyl group, pivaloyl group, cyclopropylcarbonyl group, benzoyl group and the like.
  • Examples of the sulfonyl group which may have a substituent include a methylsulfonyl group and an ethylsulfonyl group.
  • Examples of the carbamoyl group that may have a substituent include a methylcarbamoyl group, an ethylcarbamoyl group, and a dimethylcarbamoyl group.
  • substituent of “may have a substituent” of the carbamoyl group that may be optionally substituted one or two or more arbitrary types of substituents may be used as long as they are chemically possible.
  • Each of the substituents may be the same or different, for example, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group.
  • the compound (I) of the present invention may have an isomer depending on, for example, the type of substituent.
  • the chemical structure of only one form of those isomers may be described, but the present invention includes all isomers (geometric isomers, optical isomers, tautomers) that can occur structurally. Etc.) and also includes isomers alone or a mixture thereof.
  • Examples of the pharmaceutically acceptable salt of the compound (I) of the present invention include inorganic acid salts with hydrochloric acid, sulfuric acid, carbonic acid, phosphoric acid, fumaric acid, maleic acid, methanesulfonic acid, ptoluenesulfonic acid, and the like. And organic acid salts. Also, alkali metal salts with sodium, potassium, etc., alkaline earth metal salts with magnesium, calcium, etc., organic amine salts with lower alkyl amines, lower alcohol amines, etc., basic amino acid salts with lysine, arginine, ornithine, etc. In addition, ammonium salts and the like are also included in the present invention.
  • compound (I) of the present invention includes prodrugs unless otherwise specified.
  • Compound (I) of the present invention and a pharmaceutically acceptable salt thereof can be produced, for example, by the following method.
  • a method usually used in organic synthetic chemistry for example, a functional group Protection, deprotection [T. W. Greene, Protective Groups in Organic Synthesis 3rd Edition, John Wiley & Sons, Inc. , 1999] can be easily manufactured. Further, the order of reaction steps such as introduction of substituents can be changed as necessary.
  • R 1 , R 2 , R 4 , and A are as defined above, and W represents a boronyl group or a boronic ester group.
  • the compound (I) of the present invention can be produced by a cross-coupling reaction such as a Suzuki coupling reaction using the compound (II) and the compound (III) (for example, known conditions for the conditions of the Suzuki coupling reaction) (See N. Miyaura, et al, J. Am. Chem. Soc., 107, 972 (1985), N. Miyaura, A. Suzuki, Chem. Rev. 95, 2457 (1995))). That is, it can be carried out using a base and an additive as necessary in the presence of a metal catalyst such as palladium or nickel.
  • a cross-coupling reaction such as a Suzuki coupling reaction using the compound (II) and the compound (III) (for example, known conditions for the conditions of the Suzuki coupling reaction) (See N. Miyaura, et al, J. Am. Chem. Soc., 107, 972 (1985), N. Miyaura, A. Suzuki, Chem. Rev. 95, 2457 (1995)). That is,
  • Examples of the solvent used for the reaction include THF, dioxane, toluene, dimethoxyethane, methanol, ethanol, acetonitrile and the like. It is also suitable to use a mixture of two or more of these solvents, or a mixture of these with water. Preferred is a mixed solvent of THF and water, a mixed solvent of toluene, methanol and water, or dioxane.
  • Compound (II) is preferably used in an equivalent amount or an excess amount relative to compound (III), more preferably 1 equivalent to 10 equivalents.
  • a base may be added to accelerate the reaction, and sodium carbonate, cesium carbonate, potassium carbonate, etc. are usually used as the base.
  • the amount of the base to be used is 1 to 10 equivalents, preferably 1 to 5 equivalents, relative to compound (III).
  • a commercially available palladium catalyst used for cross coupling for example, PdCl 2 (dppf), Pd 2 (dba) 3 , Pd (PPh 3 ) 4, etc.
  • a catalytic amount that is, 0.1 equivalent to 0.5 equivalent relative to compound (III).
  • an additive can be added as necessary.
  • the additive include rac-BINAP and the like, and 0.01 to 1 equivalent can be used with respect to compound (III).
  • the reaction can be synthesized by reacting between 0 ° C. and 200 ° C. for several minutes to several days, preferably between 10 ° C. and 100 ° C. for 1 hour to 36 hours.
  • the synthesis can also be performed by using a microwave synthesizer, for example, by reacting for several minutes to several hours under a temperature condition of 60 ° C. to 150 ° C.
  • the compound (II) used as a raw material of Scheme 1 can be produced by, for example, the method shown in Scheme 2. [Scheme 2]
  • R 1 , R 4 and W are as defined above, and X represents halogen.
  • Compound (II) can be produced by activating compound (IV) with n-butyllithium or the like and then reacting with borate ester. That is, compound (II) is lithiated by treating compound (IV) with 1 to 5 molar equivalents, preferably 1 to 1.5 molar equivalents of n-butyllithium, and 1 to 5 molar equivalents, preferably 1 to 5 molar equivalents. It can be obtained by reacting with 1.5 molar equivalent borate ester.
  • the solvent may be any solvent as long as it is inert to the reaction, and is not particularly limited, but preferably THF can be used.
  • the reaction temperature is usually ⁇ 100 ° C. to ⁇ 30 ° C., preferably ⁇ 80 ° C. to ⁇ 60 ° C.
  • reaction time is not specifically limited, Usually, 0.1 to 12 hours are illustrated, and 0.2 to 6 hours are mentioned as a preferable example.
  • compound (II) has a boiling point of a solvent using 1 to 5 molar equivalents, preferably 1 to 1.5 molar equivalents of metal magnesium and a catalytic amount of iodine in an ether solvent from ⁇ 10 ° C. It can also be obtained by reacting at a temperature between 1 to 5 molar equivalents, preferably 1 to 1.5 molar equivalents of boric acid ester.
  • the reaction temperature is generally ⁇ 30 ° C. to ⁇ 100 ° C., preferably ⁇ 60 ° C. to ⁇ 80 ° C.
  • reaction time is not specifically limited, Usually, 0.1 to 12 hours are illustrated, and 0.2 to 6 hours are mentioned as a preferable example.
  • compound (II) is coupled with 1 to 5 molar equivalents, preferably 1 to 3 molar equivalents of a diboron ester in an organic solvent in the presence of a metal catalyst such as palladium or nickel and a base. It can be obtained by reacting.
  • a metal catalyst such as palladium or nickel and a base.
  • a commercially available palladium catalyst for example, PdCl 2 (dppf), Pd 2 (dba) 3 , Pd (PPh 3 ) 4 etc.
  • potassium acetate or the like is usually used. With respect to the dose of the base used, it can be 1 to 10 equivalents, preferably 1 to 5 equivalents, relative to compound (IV).
  • the solvent is not particularly limited as long as it is inert to the reaction, but dioxane can be preferably used.
  • reaction temperature is usually 0 ° C. to 200 ° C., preferably 10 ° C. to 100 ° C.
  • reaction time is not specifically limited, Usually, 0.2 to 48 hours are illustrated, and 1 to 36 hours are preferable examples.
  • These reactions are desirably carried out under an inert gas (argon, nitrogen, etc.) atmosphere under anhydrous conditions.
  • Compound (IV) used as a raw material of Scheme 2 can be produced, for example, by the method shown in Scheme 3.
  • Compound (IV) is obtained by reacting Compound (V) with 1 to 5 molar equivalents, preferably 1.5 to 3 molar equivalents of Compound (VI) in a polar solvent in the presence of a metal catalyst. Is obtained.
  • the solvent is not particularly limited as long as it is inert to the reaction, but dioxane can be preferably used.
  • compound (IV) can also be produced by protecting and deprotecting R 1 of compound (VI) by appropriately combining methods usually used in organic synthetic chemistry as necessary. .
  • protecting and deprotection of the functional group of the hydroxyl group and amino group of compound (VI) [T. W. Greene, Protective Groups in Organic Synthesis 3rd Edition, John Wiley & Sons, Inc. , 1999] or an aldehyde derivative which is a hydroxyl precursor of compound (VI).
  • the reaction is usually carried out by reacting at 80 to 200 ° C. for 0.5 to 200 hours, preferably 100 to 150 ° C. for 1 to 100 hours.
  • the reaction is also preferably carried out under microwave irradiation conditions.
  • metal catalyst to be used a commercially available palladium catalyst (for example, PdCl 2 (dppf), Pd 2 (dba) 3 , Pd (PPh 3 ) 4 etc.) or copper iodide (I) can be used. It is preferable to add 0.01 equivalent to 2 equivalents relative to compound (V).
  • Examples of the base to be used include potassium carbonate, sodium carbonate, cesium carbonate, and sodium hydrogen carbonate.
  • cesium carbonate and sodium hydrogen carbonate can be used, and 1 to 10 molar equivalents relative to compound (V), preferably Examples are 2 to 5 molar equivalents.
  • it is compoundable even if 0.1 equivalent of 0.5 equivalent of xanthophos is added as needed.
  • Compound (VI) can be obtained as a commercial product, or by a known method or a method analogous thereto.
  • Compound (III) requires 1 to 5 molar equivalents, preferably 1 to 1.5 molar equivalents of 2-amino-4,6-dichloro-1,3,5-triazine and amine (VII) in a polar solvent. Depending on the reaction, it is obtained by reacting in the presence of a base catalyst.
  • the solvent is not particularly limited as long as it is inert to the reaction, and DMF and THF can be preferably used.
  • the reaction temperature is usually 0 ° C. to 200 ° C., preferably 10 ° C. to 100 ° C. Although reaction time is not specifically limited, Usually, 0.2 to 48 hours are illustrated, and 1 to 36 hours are preferable examples.
  • 2-Amino-4,6-dichloro-1,3,5-triazine which is the starting material of Scheme 4, is a commercially available product
  • amine (VII) is a commercially available product or can be obtained by a known method or a method analogous thereto. it can.
  • the compound (V) used as the raw material of Scheme 3 can be produced, for example, by the method shown in Scheme 5.
  • R 4 , X and W are as defined above, and R ′ represents lower alkyl.
  • the compound (V) is obtained by converting the carboxylic acid of the compound (VIII) into a carbamoyl group, and then introducing the R 4 group by a cross-coupling reaction such as a Suzuki coupling reaction.
  • -It can be produced by subjecting it to a cyclization reaction using dimethylformamide dimethyl acetal.
  • R 4 group is a tertiary alkyl group can be introduced by cross-coupling reactions such as Kumada coupling reaction [for example, Amruta Joshi-Pangu et al. J. Am. Chem. Soc., 133, 8478-8481 (2011)]. That is, compound (XI) obtained by esterifying the carboxylic acid of compound (VIII) and tertiary alkyl Grignard reagent (R 4 MgBr) are mixed with divalent nickel such as nickel (II) chloride and 1,3-dicyclohexyl-1H-imidazole.
  • divalent nickel such as nickel (II) chloride and 1,3-dicyclohexyl-1H-imidazole.
  • the tertiary alkyl compound (XII) can be synthesized by stirring at room temperature under ice cooling in the presence of an N-heterocyclic carbene catalyst such as -3-ium. After the compound (XII) is hydrolyzed, it can be converted to a carbamoyl group to lead to the compound (X).
  • the boronyl group represented by W may be in the form of an alkali metal or alkaline earth metal salt.
  • boronic acid ester groups include boronic acid dimethyl ester group, boronic acid diethyl ester group, boron Acid dibutyl ester group, boronic acid dicyclohexyl group, boronic acid ethylene glycol ester group, boronic acid propylene glycol ester group (boronic acid 1,2-propanediol ester group, boronic acid 1,3-propanediol ester group), boronic acid neo Boronic acid ester groups such as pentyl glycol ester group, boronic acid catechol ester group, boronic acid glycerin ester group, boronic acid trimethylolethane ester group, boronic acid diethanolamine ester group, boronic acid triethanolamine ester group; Group, and the like.
  • the above methods are appropriately combined, and methods commonly used in organic synthetic chemistry (for example, alkylation reaction of amino group, reaction of oxidizing alkylthio group to sulfoxide group or sulfone group, alkoxy group to hydroxyl group, or vice versa)
  • alkylation reaction of amino group for example, alkylation reaction of amino group, reaction of oxidizing alkylthio group to sulfoxide group or sulfone group, alkoxy group to hydroxyl group, or vice versa
  • the compound (I) of the present invention having a desired functional group at a desired position can be obtained.
  • prodrugs can be synthesized by synthetic organic chemistry while protecting or deprotecting functional groups of the compound (I) of the present invention or synthetic intermediates as necessary. It can be obtained by esterification that is usually used.
  • the compound (I) of the present invention can be prepared in the form of a conventional pharmaceutical preparation (pharmaceutical composition) suitable for oral administration, parenteral administration or topical administration.
  • Preparations for oral administration include solid preparations such as tablets, granules, powders and capsules, and liquid preparations such as syrups. These formulations can be prepared by conventional methods. Solid preparations can be prepared by using conventional pharmaceutical carriers such as lactose, starch such as corn starch, crystalline cellulose such as microcrystalline cellulose, hydroxypropylcellulose, calcium carboxymethylcellulose, talc, magnesium stearate, etc. it can. Capsules can be prepared by wrapping the granules or powders thus prepared in capsules. A syrup can be prepared by dissolving or suspending the compound (I) of the present invention or a pharmaceutically acceptable salt thereof in an aqueous solution containing sucrose, carboxymethylcellulose and the like.
  • Preparations for parenteral administration include infusions such as instillation.
  • Injectable formulations can also be prepared by conventional methods, including isotonic agents (eg, mannitol, sodium chloride, glucose, sorbitol, glycerol, xylitol, fructose, maltose, mannose), stabilizers (eg, sodium sulfite, Albumin) and preservatives (eg, benzyl alcohol, methyl p-oxybenzoate).
  • isotonic agents eg, mannitol, sodium chloride, glucose, sorbitol, glycerol, xylitol, fructose, maltose, mannose
  • stabilizers eg, sodium sulfite, Albumin
  • preservatives eg, benzyl alcohol, methyl p-oxybenzoate
  • the dose of the compound (I) of the present invention, or a pharmaceutically acceptable salt thereof can be varied according to the severity of the disease, the age and weight of the patient, the dosage form, etc. It is in the range of 1 mg to 1,000 mg, which can be administered once or divided into 2 or 3 doses by the oral or parenteral route.
  • the compound (I) of the present invention or a pharmaceutically acceptable salt thereof can also be used as a BTK inhibitor, as a reagent for experiment or research.
  • reaction mixture was concentrated to about 50 mL under reduced pressure, 6M hydrochloric acid (30 mL) was added, and the mixture was extracted with ethyl acetate (2 ⁇ 100 mL). The obtained organic layers were combined, washed successively with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain 4-bromo-2-fluoro-6-methylbenzamide (11.0 g).
  • the reaction mixture was diluted with ethyl acetate (200 mL), the insoluble material was filtered off, the filtrate was washed successively with water and saturated brine, and dried over anhydrous sodium sulfate.
  • the solvent was distilled off under reduced pressure, and the resulting residue was purified by column chromatography (silica gel, hexane / ethyl acetate) to give 2-chloro-6- (6-cyclopropyl-8-fluoro-1-oxoisoquinoline-2). (1H) -yl) benzaldehyde (2.7 g) was obtained.
  • the reaction mixture was added to cold water (200 mL), adjusted to pH 2 with concentrated hydrochloric acid (about 5 mL), and extracted with ethyl acetate.
  • the obtained organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure.
  • the obtained residue was purified by column chromatography (silica gel, hexane / ethyl acetate) to obtain methyl 4- (tert-butyl) -2-fluoro-6-methylbenzoate (0.45 g).
  • Example compounds [Table 1-1] to [Table 1-3] were prepared by using the corresponding starting materials (commercially available products, or compounds derivatized from commercially available compounds by a known method or a method analogous thereto). According to the method described in the examples, the methods usually used in organic synthetic chemistry were appropriately combined as necessary.
  • Example 34 [Production Example of Compound (I) Corresponding to Prodrug of Example 1] Octanoic acid 2- ⁇ 4-amino-6-[(1-methyl-1H-pyrazol-4-yl) amino] -1,3,5-triazin-2-yl ⁇ -6- (6-cyclopropyl-8) -Fluoro-1-oxoisoquinolin-2 (1H) -yl) benzyl
  • Example compounds (I) described in [Table 3-1] to [Table 3-6] corresponding to the prodrugs of Example 1 listed below are known from the corresponding raw materials (commercial products or commercially available compounds). Or a compound derivatized by a method analogous thereto) according to the method described in Example 34 above, and optionally combining methods commonly used in organic synthetic chemistry as necessary.
  • Test example 1 BTK activity inhibition test (adjustment of dephosphorylated BTK)
  • Dephosphorylated BTK is 10 U / ⁇ g and 2 mM of biotinylated BTK protein BTN-BTK (manufactured by Carna Biosciences), ⁇ protein phosphate (manufactured by New England BioLabs, Code No. P0753S) and MnCl 2 respectively.
  • the mixture was reacted at 4 ° C. overnight, and after removing ⁇ protein phosphate by anti-DYKDDDDK-tag antibody agarose gel chromatography, the buffer was exchanged using 10DG Desalting Column.
  • the kinase activity was measured by a mobility shift assay (MSA) method using QuickScct Screening Assist TM (trademark) MSA (commercially available kit manufactured by Carna Biosciences).
  • MSA mobility shift assay
  • Assay buffer [20 mM HEPES, 0.01% Triton X-100 TM, 2 mM dithiothreitol, pH 7.5], adjusting to be substrate (4 ⁇ M), MgCl 2 (20 mM), ATP (200 ⁇ M), A substrate mixture was prepared.
  • an enzyme solution was prepared by diluting dephosphorylated BTK with an assay buffer so as to be 0.6 nM. From 10 mM DMSO solution of test compound to 10 concentrations (0.00003 mM, 0.0001 mM, 0.0003 mM, 0.001 mM, 0.003 mM, 0.01 mM, 0.03 mM, 0.1 mM, 0.3 mM, 1 mM) Further diluted with DMSO, each was diluted 25-fold with assay buffer to give a drug solution (4% DMSO solution).
  • Test example 2 Inhibition test of autophosphorylation activity of intracellular BTK
  • Ramos cells (2G6.4C10, ATCC No. CRL-1923) were used in RPMI-1640 medium (GIBCO, # A10491) supplemented with 10% FBS (AusGene) and 5% penicillin streptomycin (Nacalai) in a T75 flask. -01) (hereinafter referred to as growth medium) in a 5% CO 2 incubator.
  • the cultured Ramos cells were diluted with RPM-1640 medium (hereinafter referred to as medium) excluding serum so that the cell density was 7.5 ⁇ 10 6 cells / mL, and incubated at 37 ° C. for 45 minutes. After subdividing the cell suspension into 1 mL portions in a 2.0 mL tube, dilute a 0.3 mM DMSO solution of the test compound with the medium, add 500 ⁇ L of the test compound solution adjusted to 0.9 ⁇ M, and the final concentration of the test compound is Incubation was performed at 37 ° C. for 1 hour under the condition of 0.3 ⁇ M. Thereafter, anti-IgM antibody (Invitrogen, H15100) diluted in medium was added to a final concentration of 10 ⁇ g / mL and incubated at 37 ° C. for 10 minutes.
  • medium RPM-1640 medium
  • serum excluding serum
  • the pellets obtained by collecting the cells by centrifugation were added to a Lysis buffer [RIPA Buffer ( ⁇ 1) (Cell Signaling Technology), 1% Phosphase Inhibitor Cocktail 3 (Sigma, No. P0044), 1% Phosphaitase 100 ⁇ L of (Nacalai Co., No. 07575) and 1 mM phenylmethylsulfonyl fluoride (PMSF) added] was added, stirred gently, and allowed to stand for 10 minutes. The supernatant was collected by centrifugation (15,000 rpm, 15 minutes), and the amount of protein was quantified. The sample was mixed with SDS-sample buffer and reacted at 95 ° C.
  • RIPA Buffer ( ⁇ 1) Cell Signaling Technology
  • Phosphase Inhibitor Cocktail 3 Sigma, No. P0044
  • PMSF phenylmethylsulfonyl fluoride
  • the detected band was quantified by densitometry (ATTO CS Analyzer ver3.0), and the luminescence of the phosphorylated BTK band with no compound added and IgM-stimulated group was 100%, phosphorylated with no compound added and IgM-unstimulated group
  • the inhibition rate was calculated from the intensity of the band in each group, assuming that the emission of the BTK band was 0%.
  • Each phosphorylated BTK band was corrected by total BTK.
  • the combinations and dilution concentrations of the primary antibody and the secondary antibody used in this test are as follows.
  • Intracellular BTK autophosphorylation inhibitory activity is indicated by ** for 70% or more, ** for 50% or more and less than 70%, and * for 30% or more and less than 50%.
  • the compound of the present invention strongly inhibited the autophosphorylation activity of intracellular BTK at a concentration of 0.3 ⁇ M.
  • Test Example 2 shows that the compound of the present invention also has a strong inhibitory action on “autophosphorylation activity of intracellular BTK”.
  • Test example 3 Ramos Intracellular Calcium Ion Fluctuation Inhibition Test Intracellular BTK inhibition by the compound of the present invention was verified by measuring the effect of the compound of the present invention on “intracellular calcium influx by BCR stimulation of anti-IgM antibody”.
  • Ramos cells were resuspended and cultured in fresh growth medium (the same growth medium as in Test Example 2) to a cell density of 1.0 ⁇ 10 6 cells / mL, and centrifuged the next day.
  • the cells were recovered by washing with RPMI-1640 medium (medium 1) supplemented with 5% penicillin streptomycin (Nacalai).
  • RPMI-1640 medium medium (medium) supplemented with 1% Ultra Low IgG FBS (GIBCO, # 16250) and 5% penicillin streptomycin (Nacalai) so that the cell density becomes 2.0 ⁇ 10 6 cells / mL.
  • the cell suspension Poly Lysine Coated microplate (BD BioCoat TM, was added in 100 ⁇ L per well of # 356692), after centrifugation (700 rpm, 3 min), 5 of 37 ° C. Incubated for 1 hour in% CO 2 incubator. 100 ⁇ L of calcium indicator Fluo-8NW dye-loading solution (AAT Bioquest, # 36315) was added to each well and incubated for another 30 minutes in a 37 ° C. 5% CO 2 incubator.
  • test compound A 10 mM DMSO stock solution of the test compound is further diluted with DMSO to 6 concentrations (1, 0.3, 0.1, 0.03, 0.01, 0.003 mM), and a DMSO solution containing no test compound is diluted. As controls, each was diluted 47.6-fold with Medium 2, and 10 ⁇ L was added to each well of the plate, followed by incubation at 37 ° C. for 10 minutes (final concentration of test compound, 1, 0.3, 0.00). 1, 0.03, 0.01, 0.003, 0 ⁇ M).
  • FIG. 1 shows the results of the compound of Example 1 as a representative example.
  • the compound of the present invention suppresses “intracellular calcium ion fluctuation by BCR stimulation of anti-IgM antibody” in a concentration-dependent manner from a low concentration, and effectively inhibits BCR signal. I can understand that.
  • PCA passive cutaneous anaphylaxis reaction
  • test compound solution preparation of test compound solution
  • the test compounds were DMSO, polyethylene glycol 400 (PEG # 400, Nacalai Tesque, # 28215-95), 30% (w / v) hydroxypropyl- ⁇ -cyclodextrin aqueous solution (HP- ⁇ -CD, Sigma, # 332607) -500) were added in order and mixed well to prepare a test compound solution (solvent composition: 5% test compound DMSO solution, 30% PEG # 400, 65% HP- ⁇ -CD [30% (w / v) aqueous solution) ]).
  • solvent administration group a DMSO solution was used instead of the test compound DMSO solution.
  • Figure 2 shows the results. As shown in FIG. 2, as compared with the solvent group, the compound of Example 1 significantly suppressed dye leakage into the auricle. That is, the inhibitory effect on the passive skin anaphylactic reaction (PCA reaction) was confirmed.
  • PCA reaction passive skin anaphylactic reaction
  • Test Example 5 Action in mouse collagen-induced arthritis model
  • Incomplete Freund's Adjuvant (Chondrex, # 7002) Tubelucosis H37 Ra, Desiccated (Becton Dickinson, # 2311141) added to 2.5 mg / mL and Bovine Type II Collagen, 2 mg / mL Solution (Chondrex, # 20022) were mixed 1: 1.
  • an emulsified emulsion was prepared.
  • Three groups of DBA / 1J mice (10 mice / group) (6 weeks old, male) were injected on days 0 and 21 with 0.1 mL of emulsion per mouse divided into ridge skins. And immunized.
  • the solvent or the test compound solution was orally administered twice daily from the 18th day to the 36th day (test compound dose to each group: 0 mg / kg, 30 mg / kg, 60 mg / kg).
  • the preparation of the administration liquid was similarly performed using the same solvent as in Test Example 4.
  • the onset of arthritis in each limb was visually scored according to the criteria shown in Table 7.
  • the scores of all the limbs were summed for each mouse, and the average value of 10 mice in each group was used as the arthritis score (normal 0 to maximum 16).
  • Example 1 which is a compound of the present invention suppressed the onset of arthritis in a dose-dependent manner as shown in FIG. Moreover, at this time, it did not show toxicity such as weight loss. From these results, it was confirmed that the compound of the present invention has an excellent anti-inflammatory action and is highly likely to be excellent in safety.
  • Test Example 6 Action in rat collagen-induced arthritis model
  • the preparation of the administration liquid was similarly performed using the same solvent as in Test Example 4. After the 7th day of booster immunization, the arthritis development state of each limb was visually scored twice a week according to the criteria shown in Table 8. The scores of all the limbs were summed for each rat, and the average value of 10 animals in each group was used as the arthritis score (normal 0 to maximum 16).
  • Example 1 which is a compound of the present invention suppressed the onset of arthritis in a dose-dependent manner as shown in FIG. Moreover, at this time, it did not show toxicity such as weight loss. From these results, it was confirmed that the compound of the present invention has an excellent anti-inflammatory action and is highly likely to be excellent in safety.
  • Test Example 7 Measurement of blood concentration in mice by oral administration (prodrug metabolism confirmation test)
  • a prodrug is desirably metabolized rapidly in the body after being absorbed from the digestive tract to produce an active drug. Therefore, it was examined whether compound (I) corresponding to the prodrug of the present invention is rapidly metabolized into an active drug in the body.
  • a test compound solution suspended in a solvent (0.5% aqueous methylcellulose solution) was orally administered to ICR mice (3 mice / group) (6 weeks old, male) at a test dose of 30 mg / kg. .
  • a blood sample collected from the heart of a mouse under general anesthesia using a heparin-coated syringe was centrifuged (4 ° C., 10,000 rpm, 10 minutes), and a plasma sample was collected.
  • a methanol solution containing 5 ⁇ L of the plasma sample and 495 ⁇ L of the internal standard compound was added and mixed.
  • the denatured protein was removed by centrifugation (4 ° C., 3000 rpm, 3 minutes), and the filtrate (extract) was recovered.
  • a methanol solution of a metabolite containing an internal standard compound was prepared, mixed with plasma collected from an untreated mouse, and processed similarly using a plate with a filter.
  • a calibration curve standard solution prepared by mixing a methanol solution of the prodrug and a methanol solution of the internal standard compound was used.
  • the concentration of the prodrug and its metabolite compound of Example 1 in the extract was determined from the calibration curve using the peak area ratio with the internal standard substance using LC / MS (liquid chromatograph mass spectrometry). The concentration was quantified.
  • the prodrug compound of the present invention was not observed in the blood after oral administration, and the compound of Example 1 as a metabolite was observed. From this, it was confirmed that the prodrug form of the present invention was rapidly metabolized in the body and converted into an active form.
  • the compounds provided by the present invention against diseases known to be associated with abnormal cellular responses mediated by BTK such as autoimmune diseases, inflammatory diseases, bone diseases, cancers such as lymphoma, etc. It is useful as a prophylactic or therapeutic drug (pharmaceutical composition) or a prodrug thereof. Further, it is useful as a BTK inhibitor in reagents for experiments and research.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Pulmonology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 下記式(I)で表されるトリアジン誘導体又はその薬学的に許容される塩を提供することを目的とする。 (式中、Rは、置換基を有してもよい低級アルキル基を表し、Rは、水素原子、置換基を有してもよい低級アルキル基を表し、Aは、窒素原子もしくはC-Rを表し、Rは、水素原子、シアノ基、置換基を有してもよいアシル基、置換基を有してもよいスルホニル基、置換基を有してもよいカルバモイル基を表し、Rは、置換基を有してもよい低級アルキル基、置換基を有してもよいシクロアルキル基を表す。)

Description

新規トリアジン誘導体
 本発明は、医薬、特にBTK阻害作用を有する新規なトリアジン誘導体、そのプロドラッグまたはそれらの薬学的に許容される塩に関する。
 ブルトンチロシンキナーゼ(Bruton’s tyrosine kinase; BTK)は、非受容体チロシンキナーゼのTecファミリーの一つであり、Tリンパ球およびナチュラルキラー細胞以外のすべての造血系細胞型において発現している重要なシグナル伝達酵素である。BTKは、B細胞の生存、分化、増殖および活性化等にかかる重要な制御因子であり、B細胞のシグナル伝達に重要な役割を担っている(非特許文献1、2)。細胞表面のB細胞受容体(B‐cell receptor;BCR)は、その下流に存在するBTKを介して細胞内にシグナルを伝達しており、そのためB細胞のシグナル伝達経路の異常な活性化は、B細胞リンパ腫、慢性リンパ性白血病等のがん細胞の増殖と生存を促進すると考えられている(非特許文献3)。また、BTKは、他の数多くの細胞のシグナル経路においても重要な役割を果たしていることが知られており、アレルギー疾患、自己免疫疾患および炎症性疾患などにも関与していると言われている(非特許文献1)。例えば、BTKはマスト細胞において、高親和性IgEレセプター(FcεRI)のシグナル伝達に重要な役割を果たしており、BTKが欠損するマスト細胞は、脱顆粒の減少や炎症誘発性サイトカインの産生が減少していることが知られている(非特許文献4)。また、BTK欠損マウスの実験において、全身性エリテマトーデス(SLE)にBTKが関与していることが示唆されている(非特許文献5)。更にBTK変異マウスはコラーゲン誘導関節炎の発症に抵抗性を示す(非特許文献6)。従って、BTK阻害活性を有する化合物は、BTKのシグナルが関与している疾患、例えば、癌、B細胞リンパ腫および慢性リンパ性白血病等の治療に有用であり、さらにはアレルギー疾患、自己免疫疾患および炎症性疾患等の治療にも有用である。
 上記BTK阻害作用を有する化合物が種々報告されている(特許文献1)。
WO2013/133367号公報
Satterthwaite,A.B.and Witte,O.N.,Immunol.Rev.,2000,175,120-127 Kurosaki,T.,Curr.Opin.Immunol.,2000,12,276-281 Davis,R.E.,et al.,Nature,2010,463,88-92 Ellmeier,W.,et al.,FEBS J.,2011),278,1990-2000 Halcomb,K.E.,Mol.Immunol.、2008,46(2)、233-241 Jansson,L.and Holmdahl,R.,Clin.Exp.Immunol.,1993,94,459-465
 本発明は、医薬、特にBTK阻害作用を有する新規なトリアジン誘導体、そのプロドラッグ、またはそれらの薬学的に許容される塩を提供することを課題とする。
 本発明は、以下の(1)から(2)によって達成される。
(1)下式(I)で示されるトリアジン誘導体、その薬学的に許容される塩。
Figure JPOXMLDOC01-appb-C000002
 
(式中、Rは、置換基を有してもよい低級アルキル基を表し、Rは、水素原子、置換基を有してもよい低級アルキル基を表し、Aは、窒素原子もしくはC-Rを表し、Rは、水素原子、シアノ基、置換基を有してもよいアシル基、置換基を有してもよいスルホニル基、置換基を有してもよいカルバモイル基を表し、Rは、置換基を有してもよい低級アルキル基、置換基を有してもよいシクロアルキル基を表す。)
(2)Rが、式-CHOR5を示し、式中R5は、置換基を有してもよいアシル基である、(1)に記載のトリアジン誘導体、またはその薬学的に許容される塩。
 本発明者らは、上記の課題を解決するために種々検討を重ねた結果、前記式(I)で示される新規なトリアジン誘導体、そのプロドラッグまたはそれらの薬学的に許容される塩が、優れたBTK阻害作用を有し、また、コラーゲン誘導関節炎動物モデルに特に優れた抑制効果を示すことを見出し、本発明を完成させた。
 本発明により提供される化合物は、BTKを介した異常な細胞応答に関連していることが知られている疾患、例えば、自己免疫疾患、炎症性疾患、骨疾患、リンパ腫のような癌等に対する予防または治療用医薬品(医薬組成物),またはそのプロドラッグとして有用である。また、BTK阻害剤として、実験用、研究用の試薬に有用である。
実施例1の化合物が、濃度依存的にRamos細胞内においてBCRシグナルを阻害し、細胞内へのカルシウム流入を抑制していることを示す(試験例3)。 実施例1の化合物が、PCA反応試験において、溶媒群と比較して有意に血中色素の耳介への漏出を抑制したことを示す(試験例4)。 実施例1の化合物のマウスコラーゲン誘発関節炎モデルに対する作用を示す(試験例5)。 実施例1の化合物のラットコラーゲン誘発関節炎モデルに対する作用を示す(試験例6)。
 以下、本発明を詳細に説明する。
 本発明の新規なトリアジン誘導体は、下式(I)で示される化合物である。
Figure JPOXMLDOC01-appb-C000003
 
(式中、Rは、置換基を有してもよい低級アルキル基を表し、Rは、水素原子、置換基を有してもよい低級アルキル基を表し、Aは、窒素原子もしくはC-Rを表し、Rは、水素原子、シアノ基、置換基を有してもよいアシル基、置換基を有してもよいスルホニル基、置換基を有してもよいカルバモイル基を表し、Rは、置換基を有してもよい低級アルキル基、置換基を有してもよいシクロアルキル基を表す。)
 前記式(I)において、
 置換基を有してもよい低級アルキル基の低級アルキル基部分としては、炭素数1から3の直鎖状、分枝状もしくは環状のアルキル基のいずれでもよく、具体的には、メチル基、イソプロピル基等を挙げることができる。
 置換基を有してもよいシクロアルキル基のシクロアルキル基部分としては、炭素数3から6の環状のアルキル基のいずれでもよく、具体的には、シクロプロピル基、シクロブチル基等を挙げることができる。
 置換基を有してもよいアシル基のアシル基部分としては、直鎖状、分岐鎖状及び環状のいずれの基がカルボニル基に結合したものでもよく、例えば、ホルミル基、アセチル基、プロピオニル基、オクタノイル基、ドデカノイル基、ピバロイル基、シクロプロピルカルボニル基、ベンゾイル基等を挙げることができる。
 置換基を有してもよいスルホニル基としては、例えば、メチルスルホニル基、エチルスルホニル基等を挙げることができる。
 置換基を有してもよいカルバモイル基としては、例えば、メチルカルバモイル基、エチルカルバモイル基、ジメチルカルバモイル基等を挙げることができる。
 置換基を有してもよい低級アルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアシル基、置換基を有してもよいスルホニル基、置換基を有してもよいカルバモイル基の「置換基を有しても良い」の置換基としては、特に記載のない限り、1または2個以上の任意の種類の置換基を、化学的に可能な任意の位置に有してもよく、置換基が2個以上の場合、それぞれの置換基は同一であっても異なっていてもよく、例えば、ハロゲン原子、置換もしくは非置換アルキル基、置換もしくは非置換アルコキシ基、置換もしくは非置換アミノ基、ニトロ基、シアノ基、ヒドロキシ基、置換もしくは非置換アルキルアミノ基、置換もしくは非置換カルバモイル基、カルボキシル基、ホルミル基、アセチル基、メシル基、ベンゾイル基、置換もしくは非置換アシルアミノ基、置換もしくは非置換アシルオキシ基などが挙げられる。
 本発明の化合物(I)は、例えば、置換基の種類によって、異性体が存在する場合がある。本明細書において、それらの異性体の一形態のみの化学構造で記載することがあるが、本発明には、構造上生じ得るすべての異性体(幾何異性体、光学異性体、互変異性体など)も含有し、異性体単体、またはそれらの混合物も含有する。
 また、本発明の化合物(I)の薬学的に許容される塩としては、塩酸、硫酸、炭酸、リン酸等との無機酸塩、フマル酸、マレイン酸、メタンスルホン酸、pトルエンスルホン酸等との有機酸塩等が挙げられる。また、ナトリウム、カリウム等とのアルカリ金属塩、マグネシウム、カルシウム等とのアルカリ土類金属塩、低級アルキルアミン、低級アルコールアミン等との有機アミン塩、リジン、アルギニン、オルニチン等との塩基性アミノ酸塩の他、アンモニウム塩等も本発明に包含される。
 また、「本発明の化合物(I)」と記載する場合には、特に断りの無い限り、プロドラッグも包含される。
 本発明の化合物(I)およびその薬学的に許容される塩は、例えば以下の方法によって製造することができる。なお、以下に示した製造法において、定義した基が実施方法の条件下で変化するか、または当該方法を実施するのに不向きな場合、有機合成化学で通常用いられる方法、例えば、官能基の保護、脱保護[T.W.Greene,Protective Groups in Organic Synthesis 3rd Edition, John Wiley&Sons,Inc.,1999]等の手段を付すことにより容易に製造することができる。また、必要に応じて置換基導入等の反応工程の順序を変えることもできる。
 以下の説明で使用される略語、記号の意味は次の通りである。
DCM : ジクロロメタン
THF : テトラヒドロフラン
DIEA : N,N-ジイソプロピルエチルアミン
DMF : ジメチルホルムアミド
DMSO : ジメチルスルホキシド
CDCl : 重クロロホルム
[本発明の化合物(I)の製法]
 式(I)で表される本発明の化合物は、例えばスキーム1によって製造することができる。
[スキーム1]
Figure JPOXMLDOC01-appb-C000004
 
(式中、R、R、R、Aは前記と同義であり、Wはボロニル基またはボロン酸エステル基を表す。)
 本発明の化合物(I)は、化合物(II)と化合物(III)を用いて鈴木カップリング反応などのクロスカップリング反応により製造することができる(例えば、鈴木カップリング反応の条件については公知文献(N.Miyaura,et al,J.Am.Chem.Soc.,107,972(1985).,N.Miyaura,A.Suzuki,Chem.Rev.95,2457(1995))などを参照)。すなわち、パラジウムやニッケルなどの金属触媒の存在下、必要に応じて塩基および添加剤を使用して実施することができる。反応に用いる溶媒としてはTHF、ジオキサン、トルエン、ジメトキシエタン、メタノール、エタノール、アセトニトリルなどが挙げられる。また、これらの溶媒を2種以上混合して、或いはそれらを更に水と混合して用いても好適である。好ましくは、THFと水の混合溶媒、トルエンとメタノールおよび水との混合溶媒、またはジオキサンである。化合物(II)は化合物(III)に対し当量または過剰量用いることが好ましく、より好ましくは1当量から10当量である。必要に応じて反応を加速させるために塩基を添加してもよく、塩基としては炭酸ナトリウム、炭酸セシウム、炭酸カリウムなどが通常用いられる。使用する塩基の用量は化合物(III)に対し1当量から10当量が挙げられ、好ましくは1当量から5当量である。金属触媒としては、クロスカップリングに用いられている市販で入手容易なパラジウム触媒(例えば、PdCl(dppf)、Pd(dba)、Pd(PPhなど)を用いることができ、化合物(III)に対して触媒量、すなわち0.1当量から0.5当量を添加することが好ましい。
 反応を加速させるために必要に応じて添加剤を加えることができ、例えば、添加剤としrac-BINAPなどが挙げられ、化合物(III)に対して0.01当量から1当量用いることができる。反応は0℃から200℃の間で数分間から数日間、好ましくは10℃から100℃の間で、1時間から36時間反応させることにより合成することができる。もしくは、マイクロウェーブ合成装置を用い、例えば60℃から150℃の温度条件下で、数分から数時間反応させることによっても合成することができる。
 また、スキーム1の原料として用いられる化合物(II)は、例えばスキーム2に表す方法によって製造することができる。
[スキーム2]
Figure JPOXMLDOC01-appb-C000005
 
(式中、R、RおよびWは前記と同義であり、Xはハロゲンを表す。)
 化合物(II)は、化合物(IV)をn-ブチルリチウムなどで活性化したのち、ホウ酸エステルと反応させることにより製造することができる。すなわち、化合物(II)は、化合物(IV)を1~5モル当量、好ましくは1~1.5モル当量のn-ブチルリチウムで処理してリチウム化し、1~5モル当量、好ましくは1~1.5モル当量のホウ酸エステルと反応させることにより得ることができる。
 溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、好ましくはTHFを用いることができる。
 反応温度は、通常-100℃から-30℃、好ましくは-80℃から-60℃である。反応時間は特に限定されないが、通常、0.1時間から12時間が例示され、0.2時間から6時間が好ましい例として挙げられる。
 また、化合物(II)は、化合物(IV)と1~5モル当量、好ましくは1~1.5モル当量の金属マグネシウムと触媒量のヨウ素をエーテル系溶媒中、-10℃から用いる溶媒の沸点の間の温度で反応させてグリニヤール試薬とし、1~5モル当量、好ましくは1~1.5モル当量のホウ酸エステルと反応させることでも得ることができる。反応温度は、通常-30℃から-100℃、好ましくは-60℃から-80℃である。反応時間は、特に限定されないが、通常、0.1時間から12時間が例示され、0.2時間から6時間が好ましい例として挙げられる。
 さらに、化合物(II)は、化合物(IV)とパラジウムやニッケルなどの金属触媒および塩基の存在下、有機溶媒中、1~5モル当量、好ましくは1~3モル当量のジボロンエステルとカップリング反応させることにより得ることができる。
 金属触媒としては、クロスカップリングに用いられる市販で入手容易なパラジウム触媒(例えば、PdCl(dppf)、Pd(dba)、Pd(PPhなど)を用いることができ、化合物(IV)に対して触媒量、すなわち0.1当量から0.5当量を添加することが好ましい。塩基としては酢酸カリウムなどが通常用いられる。使用する塩基の用量は、化合物(IV)に対し1当量から10当量が挙げられ、好ましくは1当量から5当量である。
 溶媒は反応に不活性なものであればいずれでもよく、特に限定されるものではないが、好ましくはジオキサンを用いることができる。
 反応温度は、通常0℃から200℃、好ましくは10℃から100℃である。反応時間は、特に限定されないが、通常、0.2時間から48時間が例示され、1時間から36時間が好ましい例として挙げられる。
これらの反応は、いずれも不活性ガス(アルゴン、窒素等)雰囲気下、無水条件で行うことが望ましい。
 スキーム2の原料として用いられる化合物(IV)は、例えばスキーム3に表す方法によって製造することができる。
[スキーム3]
Figure JPOXMLDOC01-appb-C000006
 
(式中、R、RおよびXは前記と同義である。)
 化合物(IV)は、化合物(V)と1~5モル当量、好ましくは1.5~3モル当量の化合物(VI)を極性溶媒中、金属触媒の存在下、塩基を使用して反応させることにより得られる。
 溶媒は反応に不活性なものであればいずれでもよく、特に限定されるものではないが、好ましくはジオキサンを用いることができる。
 本カップリング反応を実施するにあたり、必要に応じて化合物(VI)のRを有機合成化学で通常用いられる方法を適宜組み合わせて保護、脱保護することでも化合物(IV)を製造することができる。例えば、化合物(VI)の水酸基やアミノ基の官能基の保護、脱保護[T.W.Greene,Protective Groups in Organic Synthesis 3rd Edition, John Wiley&Sons,Inc.,1999]や化合物(VI)の水酸基前駆体であるアルデヒド誘導体を用いることができる。
 反応は、通常80℃から200℃の間で、0.5時間から200時間が例示され、好ましくは100℃から150℃で、1時間から100時間反応させることにより実施できる。反応はマイクロウェーブ照射条件下において実施しても好適である。
 使用する金属触媒としては市販で入手容易なパラジウム触媒(例えば、PdCl(dppf)、Pd(dba)3、Pd(PPh3など)もしくは、ヨウ化銅(I)を用いることができ、化合物(V)に対して0.01当量から2当量を添加することが好ましい。
 使用する塩基としては炭酸カリウム、炭酸ナトリウム、炭酸セシウム、炭酸水素ナトリウムが例示され、好ましくは炭酸セシウム、炭酸水素ナトリウムを用いることができ、化合物(V)に対して1~10モル当量、好ましくは2~5モル当量が例示される。また必要に応じて0.1当量から0.5当量のキサントホスを添加しても合成できる。
 化合物(VI)は市販品として、または公知の方法もしくはそれに準じた方法により得ることができる。
 スキーム1の原料として用いられる化合物(III)は、例えばスキーム4に表す方法によって製造することができる。
[スキーム4]
Figure JPOXMLDOC01-appb-C000007
 
(式中、R、Aは前記と同義である。)
 化合物(III)は、アミン(VII)と1~5モル当量、好ましくは1~1.5モル当量の2-アミノ-4,6-ジクロロ-1,3,5-トリアジンを極性溶媒中、必要に応じて塩基触媒存在下、反応させることにより得られる。
 溶媒は反応に不活性なものであればいずれでもよく、特に限定されるものではないが、好ましくはDMFおよびTHFを用いることができる。
 反応温度は、通常0℃から200℃、好ましくは10℃から100℃である。反応時間は特に限定されないが、通常、0.2時間から48時間が例示され、1時間から36時間が好ましい例として挙げられる。
 スキーム4の出発原料である2-アミノ-4,6-ジクロロ-1,3,5-トリアジンは市販品として、アミン(VII)は、市販品または公知の方法もしくはそれに準じた方法により得ることができる。
スキーム3の原料として用いられる化合物(V)は、例えばスキーム5に表す方法によって製造することができる。
[スキーム5]
Figure JPOXMLDOC01-appb-C000008
 
(式中、R、XおよびWは前記と同義であり、R’は低級アルキルを表す。)
 化合物(V)は、化合物(VIII)のカルボン酸をカルバモイル基に変換したのち、R基を鈴木カップリング反応などのクロスカップリング反応で導入して得られた化合物(X)をN,N‐ジメチルホルムアミドジメチルアセタールを使用した環化反応に供することにより製造することができる。
 また、R基が3級アルキル基である場合は、熊田カップリング反応などのクロスカップリング反応でも導入することができる[例えば、Amruta Joshi-Pangu et al. J. Am. Chem. Soc., 133, 8478-8481 (2011)参照]。すなわち、化合物(VIII)のカルボン酸をエステル化した化合物(XI)と3級アルキルグリニャール試薬(RMgBr)を、塩化ニッケル(II)等の二価ニッケルならびに1、3-ジシクロヘキシル-1H-イミダゾール-3-イウム等のN-ヘテロ環状カルベン触媒存在下、氷冷下から室温条件にて攪拌することで、3級アルキル化合物(XII)を合成することができる。化合物(XII)を加水分解後、カルバモイル基に変換することで化合物(X)に導くことができる。
 スキーム5の出発原料である(VIII)は市販品または公知の方法もしくはそれに準じた方法により得ることができる。
 上記スキーム中、Wで示されるボロニル基は、アルカリ金属やアルカリ土類金属の塩の形でもよく、またボロン酸エステル基の具体例としては、ボロン酸ジメチルエステル基、ボロン酸ジエチルエステル基、ボロン酸ジブチルエステル基、ボロン酸ジシクロヘキシル基、ボロン酸エチレングリコールエステル基、ボロン酸プロピレングリコールエステル基(ボロン酸1,2-プロパンジオールエステル基、ボロン酸1,3-プロパンジオールエステル基)、ボロン酸ネオペンチルグリコールエステル基、ボロン酸カテコールエステル基、ボロン酸グリセリンエステル基、ボロン酸トリメチロールエタンエステル基、ボロン酸ジエタノールアミンエステル基、ボロン酸トリエタノールアミンエステル基等のボロン酸エステル基;ボロン酸無水物基等が挙げられる。
 なお、上記の方法を適宜組み合わせ、有機合成化学で通常用いられる方法(例えば、アミノ基のアルキル化反応、アルキルチオ基をスルホキシド基もしくはスルホン基へ酸化する反応、アルコキシ基をヒドロキシル基、もしくはその逆へ変換する反応)を実施することにより、所望の位置に所望の官能基を有する本発明の化合物(I)を得ることができる。
 また、本発明の化合物(I)のうち、プロドラッグは、本発明の化合物(I)あるいはその合成中間体を、必要に応じて官能基の保護、脱保護を実施しながら、有機合成化学で通常用いられるエステル化することにより得ることができる。
[本発明の化合物(I)の用途]
 本発明の化合物(I)、またはその薬学的に許容される塩は、経口投与、非経口投与または局所的投与に適した従来の薬学製剤(医薬組成物)の形態に調製することができる。
 経口投与のための製剤は、錠剤、顆粒、粉末、カプセルなどの固形剤、およびシロップなどの液体製剤を含む。これらの製剤は従来の方法によって調製することができる。固形剤は、ラクトース、コーンスターチなどのデンプン、微結晶性セルロースなどの結晶セルロース、ヒドロキシプロピルセルロース、カルシウムカルボキシメチルセルロース、タルク、ステアリン酸マグネシウムなどのような従来の薬学的担体を用いることによって調製することができる。カプセルは、このように調製した顆粒または粉末をカプセルに包むことによって調製することができる。シロップは、ショ糖、カルボキシメチルセルロースなどを含む水溶液中で、本発明の化合物(I)またはその薬学的に許容される塩を溶解または懸濁することによって調製することができる。
 非経口投与のための製剤は、点滴注入などの注入物を含む。注入製剤もまた従来の方法によって調製することができ、等張化剤(例えば、マンニトール、塩化ナトリウム、グルコース、ソルビトール、グリセロール、キシリトール、フルクトース、マルトース、マンノース)、安定化剤(例えば、亜硫酸ナトリウム、アルブミン)、防腐剤(例えば、ベンジルアルコール、p-オキシ安息香酸メチル)中に適宜組み入れることができる。
 本発明の化合物(I)、またはその薬学的に許容される塩の用量は、疾患の重症度、患者の年齢および体重、投薬形態などに従って変化させることができるが、通常は成人において1日あたり1mg~1,000mgの範囲であり、それは経口経路または非経口経路によって、1回、または2回もしくは3回に分割して投与することができる。
 また、本発明の化合物(I)、またはその薬学的に許容される塩は、BTK阻害剤として、実験用、研究用の試薬として用いることもできる。
 以下に実施例および試験例などを挙げて本発明をさらに具体的に説明するが、これらの実施例により本発明が限定されるものではない。
 化合物の同定は水素核磁気共鳴スペクトル(1H-NMR)およびマススペクトル(MS)により行った。1H-NMRは、特に指示のないかぎりは400MHzで測定されたものであり、また化合物および測定条件によっては交換性水素が明瞭に観測されない場合がある。なお、br.は幅広いシグナル(ブロード)を意味する。
 HPLC分取クロマトグラフィーは、市販のODSカラムを用い、特に記載のない限りは水/メタノール(ギ酸を含む)を溶出液としてグラジェントモードにて分取した。
参考例1
 酢酸 2-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)-6-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンジル
Figure JPOXMLDOC01-appb-C000009
 
(第1工程)
 窒素雰囲気下、0℃に冷却した4-ブロモ-2-フルオロ-6-メチル安息香酸(13.0g,55.8mmol)のTHF溶液(100mL)に、1,1’-カルボニルジイミダゾール(11.8g,72.5mmol)を加え、0℃で2時間攪拌した。本反応液に、28%アンモニア水溶液(10mL)を5分間かけて滴加し、室温でさらに2日間攪拌した。反応混合物を減圧下で約50mLになるまで濃縮したのち、6M塩酸(30mL)を加え、酢酸エチル(2×100mL)で抽出した。得られた有機層を合わせ、飽和炭酸水素ナトリウム水溶液および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、4-ブロモ-2-フルオロ-6-メチルベンズアミド(11.0g)を得た。
1H  NMR (400 MHz, CDCl3) δ7.22 (dt, J = 1.8, 0.8 Hz, 1H), 7.15 (dd, J = 9.0, 1.9 Hz, 1H), 6.06 - 5.60 (m, 2H), 2.44 (s, 3H);LCMS (m/z): 231.9 [M+H] +
(第2工程)
 窒素雰囲気下、4-ブロモ-2-フルオロ-6-メチルベンズアミド(11.0g)のトルエン(110mL)および水(11mL)の混合溶液に、シクロプロピルボロン酸(6.11g,71.1mmol)、トリシクロヘキシルホスフィン(0.80g,2.84mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.43g,0.47mmol)及び炭酸カリウム(19.65g,142.0mmol)を加え、115℃で14時間攪拌した。室温まで冷却後、析出した固体をろ取し、得られた固体をエーテル及び水で洗浄し、4-シクロプロピル-2-フルオロ-6-メチルベンズアミド(3.3g)を得た。更に、ろ液を酢酸エチル(2×200mL)で抽出し、得られた有機層を合わせ、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、得られた残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、4-シクロプロピル-2-フルオロ-6-メチルベンズアミド(5.3g)を得た。
1H  NMR (400 MHz, CDCl3) 6.80 - 6.70 (m, 1H), 6.60 (dd, J = 11.3, 1.6 Hz, 1H), 5.99 - 5.59 (m, 2H), 2.43 (s, 3H), 1.89 - 1.80 (m, 1H), 1.03 - 0.98 (m, 2H), 0.73 - 0.65 (m, 2H);LCMS (m/z): 194.0 [M+H] +
(第3工程)
 窒素雰囲気下、4-シクロプロピル-2-フルオロ-6-メチルベンズアミド(8.6g,44.5mmol)の2-メチルテトラヒドロフラン溶液(100mL)に、N,N-ジメチルホルムアミドジメチルアセタール(7.0g,58.8mmol)を加え、60℃で2時間攪拌した。反応溶液を減圧濃縮したのち、得られた残渣に2-メチルテトラヒドロフラン(10mL)を加えた。この溶液に、1mol/Lのカリウム tert-ブトキシドのTHF溶液(68.1mL、68.1mmol)を滴下して加え、65℃で1日間攪拌した。室温まで冷却したのち、反応混合物を1M塩酸水溶液(200mL)に加えた。この溶液に、イソプロピルアルコール(300mL)を加え、溶媒を減圧留去した。得られた固体をろ取し、6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(7.7g)を得た。
1H  NMR (400 MHz, DMSO-d6) δ11.06 (s, 1H), 7.16 (d, J = 1.6 Hz, 1H), 7.11 (dd, J = 7.1, 5.7 Hz, 1H), 6.88 (dd, J = 13.3, 1.7 Hz, 1H), 6.41 (dd, J = 7.1, 2.3 Hz, 1H), 2.07 - 1.95 (m, 1H), 1.08 - 1.01 (m, 2H), 0.86 - 0.79 (m, 2H);LCMS (m/z): 204.1 [M+H] +
(第4工程)
 窒素雰囲気下、6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(2.6g,12.8mmol)のDMF溶液(25mL)に、2-ブロモ-6-クロロベンズアルデヒド(3.65g,16.63mmol)、炭酸カリウム(3.54g,25.6mmol)及びヨウ化銅(I)(0.49g、2.56mmol)を加え、110℃で1日間攪拌した。反応混合物を酢酸エチル(200mL)で希釈したのち、不溶物をろ過し、ろ液を水及び飽和食塩水で順に洗浄後、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、得られた残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、2-クロロ-6-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)ベンズアルデヒド(2.7g)を得た。
1H  NMR (400 MHz, DMSO-d6) δ10.18 (s, 1H), 7.84 - 7.78 (m, 1H), 7.75 (dd, J = 8.2, 1.3 Hz, 1H), 7.49 (dd, J = 7.8, 1.2 Hz, 1H), 7.41 (d, J = 7.5 Hz, 1H), 7.27 (d, J = 1.6 Hz, 1H), 7.00 (dd, J = 13.3, 1.6 Hz, 1H), 6.64 (dd, J = 7.5, 2.2 Hz, 1H), 2.14 - 2.01 (m, 1H), 1.14 - 1.06 (m, 2H), 0.92 - 0.83 (m, 2H);LCMS (m/z): 342.1 [M+H] +
(第5工程)
 窒素雰囲気下、0℃に冷却した2-クロロ-6-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)ベンズアルデヒド(2.5g,7.32mmol)のDCM(26mL)及びイソプロピルアルコール(13mL)の混合溶液に、水素化ホウ素ナトリウム(0.42g,11.0mmol)を加え、0℃で2時間攪拌した。反応溶液に水(50mL)を加え、酢酸エチル(2×50mL)で抽出した。得られた有機層を合わせ、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、2-[3-クロロ-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(2.3g)を得た。
1H  NMR (400 MHz, CDCl3) δ7.55 (dd, J = 8.1, 1.2 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.15 (dd, J = 8.0, 1.2 Hz, 1H), 7.08 - 7.00 (m, 2H), 6.82 (dd, J = 12.7, 1.7 Hz, 1H), 6.51 (dd, J = 7.4, 2.1 Hz, 1H), 4.71 - 4.61 (m, 1H), 4.46 (d, J = 11.9 Hz, 1H), 3.43 - 3.29 (m, 1H), 2.03 - 1.97 (m, 1H), 1.18 - 1.10 (m, 2H), 0.88 - 0.81 (m, 2H);LCMS (m/z): 343.9 [M+H] +
(第6工程)
 窒素雰囲気下、2-[3-クロロ-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(2.26g,6.59mmol)のDCM溶液(30mL)に、ピリジン(2.36mL,29.3mmol)及び塩化アセチル(1.56mL,21.95mmol)を加え、室温で1日間攪拌した。反応混合物に水(50mL)を加え、酢酸エチル(2×50mL)で抽出した。得られた有機層を合わせ、水および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、得られた残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、酢酸 2-クロロ-6-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)ベンジル(2.3g)を得た。
1H  NMR (400 MHz, CDCl3) δ7.53 (dd, J = 8.2, 1.2 Hz, 1H), 7.46 - 7.39 (m, 1H), 7.22 (dd, J = 7.9, 1.3 Hz, 1H), 7.04 - 6.98 (m, 2H), 6.80 (dd, J = 12.6, 1.7 Hz, 1H), 6.43 (dd, J = 7.4, 2.1 Hz, 1H), 5.25 (d, J = 12.5 Hz, 1H), 4.98 (d, J = 12.4 Hz, 1H), 2.02 - 1.96 (m, 1H), 1.96 (s, 3H), 1.16 - 1.10 (m, 2H), 0.86 - 0.81 (m, 2H);LCMS (m/z): 386.0 [M+H] +
(第7工程)
 窒素雰囲気下、酢酸 2-クロロ-6-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)ベンジル(4.8g,12.44mmol)のジオキサン溶液(180mL)に、ビス(ピナコラト)ジボロン(9.48g,37.3mmol)、ビス(ジベンジリデンアセトン)パラジウム(0)(0.36g,0.62mmol)、2,4,6-トリイソプロピル-2'-(ジシクロヘキシルホスフィノ)ビフェニル(0.59g,1.24mmol)、および酢酸カリウム(3.66g,37.3mmol)を加え、65℃で16時間加熱した。反応混合物を酢酸エチル(200mL)で希釈したのち、不溶物をセライトろ過した。ろ液に水(200mL)を加え、酢酸エチル(2×200mL)で抽出した。得られた有機層を合わせ、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、得られた残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製した。得られた油状の残渣にヘキサンを加え、析出した固体をろ取して、標記化合物(3.05g)を得た。
1H  NMR (400 MHz, CDCl3) δ7.93 (dd, J = 7.4, 1.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.35 (dd, J = 7.8, 1.5 Hz, 1H), 7.02 (d, J = 7.4 Hz, 1H), 7.00 (d, J = 1.6 Hz, 1H), 6.78 (dd, J = 12.7, 1.7 Hz, 1H), 6.40 (dd, J = 7.4, 2.1 Hz, 1H), 5.45 (d, J = 11.8 Hz, 1H), 5.03 (d, J = 11.9 Hz, 1H), 2.03 - 1.93 (m, 1H), 1.92 (s, 3H), 1.34 (s, 12H), 1.15 - 1.08 (m, 2H), 0.87 - 0.80 (m, 2H);LCMS (m/z): 478.2 [M+H] +
参考例2
 酢酸 2-[6-(tert-ブチル)-8-フルオロ-1-オキソイソキノリン-2(1H)-イル]-6-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンジル
Figure JPOXMLDOC01-appb-C000010
 
(第1工程)
 窒素雰囲気下、0℃に冷却した4-ブロモ-2-フルオロ-6-メチル安息香酸メチル(1.0g,4.05mmol)、塩化ニッケル(II)(0.13g,0.81mmol)、1、3-ジシクロヘキシル-1H-イミダゾール-3-イウム(0.26g,0.81mmol)のTHF溶液(10mL)に1M tert-ブチルマグネシウムブロミド(THF溶液、12.1mL,12.1mmol)を10分間かけて滴下し、その後、室温で24時間攪拌した。本反応液を冷水(200mL)へ加え、濃塩酸(約5mL)でpH2に調節し、酢酸エチルで抽出した。得られた有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。得られた残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、4-(tert-ブチル)-2-フルオロ-6-メチル安息香酸メチル(0.45g)を得た。
 得られた4-(tert-ブチル)-2-フルオロ-6-メチル安息香酸メチル(0.35g)をTHF-メタノール混合溶液(1:1、10mL)に溶解し、4M水酸化リチウム水溶液(2mL)を加え、60℃で6時間攪拌した。
 反応溶液を冷水で希釈したのち、有機溶媒を減圧下に留去して水溶液とした。この水溶液を濃塩酸でpH2に調整し、酢酸エチルで抽出した。得られた有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧留去し、4-(tert-ブチル)-2-フルオロ-6-メチル安息香酸の粗生成物(0.35g)を得た。
LCMS (m/z): 211.0 [M+H] +
(第2工程)
 窒素雰囲気下、0℃に冷却した4-(tert-ブチル)-2-フルオロ-6-メチル安息香酸(0.21g,1.0mmol)のTHF溶液(10mL)に、1,1’-カルボニルジイミダゾール(0.21g,1.30mmol)を加え、0℃で2時間攪拌した。本反応液に、28%アンモニア水溶液(10mL)を滴加し、室温でさらに2日間攪拌した。反応混合物を減圧下で濃縮したのち、6M塩酸を加え、酢酸エチルで2回抽出した。得られた有機層を合わせ、飽和炭酸水素ナトリウム水溶液および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、4-(tert-ブチル)-2-フルオロ-6-メチルベンズアミド(0.20g)を得た。
1H  NMR (400 MHz, DMSO-d6)δ 7.85 (s, 1H), 7.58 (s, 1H), 7.10 - 7.07 (m, 1H), 7.05 - 7.00 (m, 1H), 2.29 (s, 3H), 1.26 (s, 9H);LCMS (m/z): 210.1 [M+H] +
(第3工程)
 窒素雰囲気下、4-(tert-ブチル)-2-フルオロ-6-メチルベンズアミド(150mg,0.72mmol)の2-メチルテトラヒドロフラン溶液(10mL)に、N,N-ジメチルホルムアミドジメチルアセタール(113mg,0.95mmol)を加え、60℃で2時間攪拌した。反応溶液を減圧濃縮したのち、得られた残渣に2-メチルテトラヒドロフラン(10mL)を加えた。この溶液に、1Mカリウム tert-ブトキシド(THF溶液、1.1mL、1.1mmol)を滴下して加え、65℃で1日間攪拌した。室温まで冷却したのち、反応混合物を1M塩酸水溶液(10mL)に加え、酢酸エチルで2回抽出した。得られた有機層を合わせ、水および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、得られた残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、6-(tert-ブチル)-8-フルオロイソキノリン-1(2H)-オン(85mg)を得た。
1H  NMR (400 MHz, CDCl3) δ 10.84 (s, 1H), 7.28 (d, J = 1.8 Hz, 1H), 7.18 (dd, J = 13.8, 1.8 Hz, 1H), 6.51 - 6.43 (m, 2H), 1.37 (s, 9H);LCMS (m/z): 220.1 [M+H] +
(第4工程)
 窒素雰囲気下、第3工程と同様の方法で製造した6-(tert-ブチル)-8-フルオロイソキノリン-1(2H)-オン(220mg,1.00mmol)のDMF溶液(10mL)に、2-ブロモ-6-クロロベンズアルデヒド(330mg,1.50mmol)、炭酸カリウム(277mg,2.01mmol)及びヨウ化銅(I)(382mg、2.01mmol)を加え、110℃で1日間攪拌した。反応混合物を酢酸エチルで希釈したのち、不溶物をろ過し、ろ液を水及び飽和食塩水で順に洗浄後、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、得られた残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、2-クロロ-6-[6-(tert-ブチル)-8-フルオロ-1-オキソイソキノリン-2(1H)-イル]ベンズアルデヒド(223mg)を得た。
1H  NMR (400 MHz, DMSO-d6) δ 10.20 (s, 1H), 7.87 - 7.79 (m, 1H), 7.76 (dd, J = 8.2, 1.3 Hz, 1H), 7.54 (d, J = 1.8 Hz, 1H), 7.49 (dd, J = 7.6, 1.2 Hz, 1H), 7.43 (d, J = 7.3 Hz, 1H), 7.38 - 7.26 (m, 1H), 6.74 (dd, J = 7.5, 2.2 Hz, 1H), 1.35 (s, 9H);LCMS (m/z): 358.1 [M+H] +
(第5工程)
 窒素雰囲気下、0℃に冷却した2-クロロ-6-[6-(tert-ブチル)-8-フルオロ-1-オキソイソキノリン-2(1H)-イル]ベンズアルデヒド(200mg,0.56mmol)のDCM(3.7mL)及びイソプロピルアルコール(1.9mL)の混合溶液に、水素化ホウ素ナトリウム(32mg,0.84mmol)を加え、室温に戻し2時間攪拌した。反応混合物に水を加え、酢酸エチルで2回抽出した。得られた有機層を合わせ、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、得られた残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、2-[3-クロロ-2-(ヒドロキシメチル)フェニル]-6-(tert-ブチル)-8-フルオロイソキノリン-1(2H)-オン(160mg)を得た。
1H  NMR (400 MHz, CDCl3) δ 7.55 (dd, J = 8.1, 1.2 Hz, 1H), 7.43 - 7.36 (m, 1H), 7.32 (d, J = 1.8 Hz, 1H), 7.23 (dd, J = 13.5, 1.8 Hz, 1H), 7.17 - 7.11 (m, 1H), 7.05 (d, J = 7.4, 1.7 Hz, 1H), 6.58 (dd, J = 7.4, 2.1 Hz, 1H), 4.75 - 4.61 (m, 1H), 4.54 - 4.34 (m, 1H), 3.35 (dd, J = 10.8, 2.5 Hz, 1H), 1.39 (s, 9H);LCMS (m/z): 360.2 [M+H] +.(第6工程)
 窒素雰囲気下、2-[3-クロロ-2-(ヒドロキシメチル)フェニル]-6-(tert-ブチル)-8-フルオロイソキノリン-1(2H)-オン(160mg,0.44mmol)のDCM溶液(5mL)に、ピリジン(180μL,2.24mmol)及び塩化アセチル(119μL,1.68mmol)を加え、室温で1日間攪拌した。反応混合物に水を加え、酢酸エチルで2回抽出した。得られた有機層を合わせ、水および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、得られた残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、酢酸 2-クロロ-6-[6-(tert-ブチル)-8-フルオロ-1-オキソイソキノリン-2(1H)-イル]ベンジル(157mg)を得た。
1H  NMR (400 MHz, CDCl3) δ 7.72 - 7.64 (m, 1H), 7.63 - 7.57 (m, 1H), 7.54 (d, J = 1.8 Hz, 1H), 7.44 - 7.38 (m, 1H), 7.38 - 7.30 (m, 2H), 6.71 (dd, J = 7.4, 2.1 Hz, 1H), 5.08 (d, J = 12.4, 2.4 Hz, 1H), 4.93 (d, J = 12.4, 2.5 Hz, 1H), 1.87 (s, 3H), 1.35 (s, 9H);LCMS (m/z): 402.2 [M+H] +
(第7工程)
 窒素雰囲気下、酢酸 2-クロロ-6-[6-(tert-ブチル)-8-フルオロ-1-オキソイソキノリン-2(1H)-イル]ベンジル(150mg,0.37mmol)のジオキサン溶液(5.3mL)に、ビス(ピナコラト)ジボロン(284mg,1.12mmol)、ビス(ジベンジリデンアセトン)パラジウム(0)(10.7mg,19.0μmol)、2,4,6-トリイソプロピル-2'-(ジシクロヘキシルホスフィノ)ビフェニル(17.8mg,37.0μmol)、および酢酸カリウム(110mg,1.12mmol)を加え、65℃で16時間加熱した。反応混合物を酢酸エチルで希釈したのち、不溶物をセライトろ過した。ろ液に水を加え、酢酸エチルで2回抽出した。得られた有機層を合わせ、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、得られた残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、標記化合物(105mg)を得た。
1H  NMR (400 MHz, CDCl3) δ 7.97 - 7.87 (m, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.34 (dd, J = 7.9, 1.4 Hz, 1H), 7.27 (d, J = 1.9 Hz, 1H), 7.18 (dd, J = 13.5, 1.8 Hz, 1H), 7.04 (d, J = 7.4 Hz, 1H), 6.46 (dd, J = 7.4, 2.1 Hz, 1H), 5.46 (d, J = 11.8 Hz, 1H), 5.02 (d, J = 11.8 Hz, 1H), 1.92 (s, 3H), 1.38 (s, 9H), 1.34 (s, 12H);LCMS (m/z): 494.3 [M+H] +
実施例1
 2-(3-{4-アミノ-6-[(1-メチル-1H-ピラゾール-4-イル)アミノ]-1,3,5-トリアジン-2-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン
Figure JPOXMLDOC01-appb-C000011
 
(第1工程)
 氷冷下、2-アミノ-4,6-ジクロロ-1,3,5-トリアジン(513mg,3.11mmol)のTHF溶液(10.3mL)に、DIEA(1.08mL,6.22mmol)および1-メチル-1H-ピラゾール-4-アミン(332mg,3.42mmol)のTHF溶液(5.18mL)をゆっくり加え、室温で2.5時間攪拌した。析出した固体を濾取し、酢酸エチル、水、エタノールで洗浄、乾燥させて、6-クロロ-N2-(1-メチル-1H-ピラゾール-4-イル)-1,3,5-トリアジン-2,4-ジアミン(420mg)を得た。
1H  NMR (400 MHz, DMSO-d6) δ 9.89 (s, 1H), 7.91 (s, 1H), 7.56 - 7.49 (m, 3H), 3.79 (s, 3H). ;LCMS (m/z): 225.9 [M+H] +.
(第2工程)
 参考例1で製造した酢酸 2-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)-6-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンジル(141mg,0.29mmol)および6-クロロ-N2-(1-メチル-1H-ピラゾール-4-イル)-1,3,5-トリアジン-2,4-ジアミン(66.7mg,0.29mmol)のジメトキシエタン溶液(5mL)に、テトラキス(トリフェニルホスフィン)パラジウム(0)(17mg,0.015mmol)および炭酸カリウム(82mg,0.59mmol)の水溶液(1.67mL)を加え、マイクロウェーブ反応装置を用いて110℃で20分間反応させた。反応混合物に水を加え、酢酸エチルで抽出した。得られた有機層を、飽和炭酸水素ナトリウム水溶液および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去して得られた残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、2-(3-{4-アミノ-6-[(1-メチル-1H-ピラゾール-4-イル)アミノ]-1,3,5-トリアジン-2-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オンとそのアセチル保護体の混合物を得た。得られた混合物をメタノール(5mL)に溶解し、炭酸カリウム(100mg,0.724mmol)を加え、室温で2時間攪拌した。反応混合物を水で希釈し、析出した固体をろ取し、水及びジエチルエーテルで順に洗浄した。得られた固体を乾燥して、標記化合物(85mg)を得た。
1H  NMR (400 MHz, DMSO-d6) δ 9.71 (s, 1H), 8.00 (s, 1H), 7.94 - 7.82 (m, 1H), 7.61 - 7.42 (m, 3H), 7.37 - 7.26 (m, 4H), 7.00 (dd, J = 13.3, 1.7 Hz, 1H), 6.62 (dd, J = 7.5, 2.1 Hz, 1H), 5.25 - 5.13 (m, 1H), 4.55 - 4.44 (m, 1H), 4.16 - 4.02 (m, 1H), 3.84 - 3.75 (m, 3H), 2.12 - 2.04 (m, 1H), 1.14 - 1.06 (m, 2H), 0.91 - 0.84 (m, 2H); LCMS (m/z): 499.2 [M+H] +.
実施例2
 4-({4-アミノ-6-[3-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)-2-(ヒドロキシメチル)フェニル]-1,3,5-トリアジン-2-イル}アミノ)-1-メチル-1H-ピロール-2-カルボニトリル
Figure JPOXMLDOC01-appb-C000012
 
(第1工程)
 氷冷下、4-アミノ-1-メチル-1H-ピロール-2-カルボキサミド塩酸塩(350mg,1.99mmol)およびDIEA(0.7mL,3.99mmol)のTHF縣濁液(5mL)に、DMF(2.5mL)、2-アミノ-4,6-ジクロロ-1,3,5-トリアジン(299mg,1.81mmol)を順次加え、室温で5時間攪拌した。析出した固体を濾取し、酢酸エチルおよび水で洗浄、乾燥させて、4-[(4-アミノ-6-クロロ-1,3,5-トリアジン-2-イル)アミノ]-1-メチル-1H-ピロール-2-カルボキサミド(436mg)を得た。
1H  NMR (400 MHz, DMSO-d6) δ 10.00 - 9.43 (m, 1H), 7.46 (s, 1H), 7.40 (s, 1H), 7.29 (d, J = 1.9 Hz, 1H), 7.21 - 6.79 (m, 2H), 6.77 - 6.65 (m, 1H), 3.80 (s, 3H). ;LCMS (m/z): 268.1 [M+H] +.
(第2工程)
 氷冷下、4-[(4-アミノ-6-クロロ-1,3,5-トリアジン-2-イル)アミノ]-1-メチル-1H-ピロール-2-カルボキサミド(130mg,0.49mmol)のDCM溶液(5mL)にTEA(0.1mL,0.73mmol)および無水トリフルオロ酢酸(0.075mL,0.53mmol)を加え、室温で2時間攪拌した。反応溶液にTEA(0.1mL,0.73mmol)および無水トリフルオロ酢酸(0.075mL,0.53mmol)を追加し、室温でさらに24時間攪拌した。反応混合物に水を加え、酢酸エチルで抽出した。得られた有機層を、水および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去して得られた残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、4-[(4-アミノ-6-クロロ-1,3,5-トリアジン-2-イル)アミノ]-1-メチル-1H-ピロール-2-カルボニトリル(100mg)を得た。
1H  NMR (400 MHz, DMSO-d6) δ 10.05 - 9.71 (m, 1H), 7.55 (s, 2H), 7.46 - 7.23 (m, 1H), 7.03 - 6.76 (m, 1H), 3.72 (s, 3H); LCMS (m/z): 250.1 [M+H] +.
(第3工程)
 参考例1で製造した酢酸 2-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)-6-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンジル(45mg,0.094mmol)および4-[(4-アミノ-6-クロロ-1,3,5-トリアジン-2-イル)アミノ]-1-メチル-1H-ピロール-2-カルボニトリル(23.5mg,0.094mmol)のジメトキシエタン溶液(2mL)に、テトラキス(トリフェニルホスフィン)パラジウム(0)(5.4mg,0.0047mmol)および炭酸カリウム(26mg,0.19mmol)の水溶液(0.67mL)を加え、マイクロウェーブ反応装置を用いて110℃で20分間反応させた。反応混合物に水を加え、酢酸エチルで抽出した。得られた有機層を、水および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去して得られた残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、4-({4-アミノ-6-[3-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)-2-(ヒドロキシメチル)フェニル]-1,3,5-トリアジン-2-イル}アミノ)-1-メチル-1H-ピロール-2-カルボニトリルとそのアセチル保護体の混合物を得た。得られた混合物をメタノール(5mL)に溶解し、炭酸カリウム(100mg,0.724mmol)を加え、60℃で1時間攪拌した。反応混合物を水で希釈し、析出した固体をろ取し、水及びヘキサンで順に洗浄した。得られた固体を乾燥して、標記化合物(18mg)を得た。
1H  NMR (400 MHz, DMSO-d6) δ 10.15 - 9.19 (m, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.65 - 7.50 (m, 2H), 7.49 - 7.41 (m, 1H), 7.40 - 7.30 (m, 3H), 7.28 (d, J = 1.7 Hz, 1H), 7.04 (d, J = 1.7 Hz, 1H), 7.00 (dd, J = 13.3, 1.6 Hz, 1H), 6.62 (dd, J = 7.5, 2.1 Hz, 1H), 5.23 - 4.91 (m, 1H), 4.50 (d, J = 9.5 Hz, 1H), 4.19 - 3.94 (m, 1H), 3.74 (s, 3H), 2.16 - 2.00 (m, 1H), 1.15 - 1.03 (m, 2H), 0.95 - 0.77 (m, 2H); LCMS (m/z): 523.2 [M+H] +.
実施例3~33
以下の実施例化合物[表1-1]~[表1-3]は、それぞれ対応する原料(市販品、または市販化合物から公知の方法もしくはそれに準じた方法により誘導体化した化合物)を用い、上述の実施例記載の方法に従い、必要に応じて、有機合成化学で通常用いられる方法を適宜組み合わせて製造した。
 また、各々の化合物の物理化学データを[表2-1]~[表2-2]に示した。
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000014
  
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000016
 
Figure JPOXMLDOC01-appb-T000017
 
実施例34
[実施例1のプロドラッグに相当する化合物(I)の製造例]
オクタン酸 2-{4-アミノ-6-[(1-メチル-1H-ピラゾール-4-イル)アミノ]-1,3,5-トリアジン-2-イル}-6-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)ベンジル
Figure JPOXMLDOC01-appb-C000018
 
 実施例1にて製造した2-(3-{4-アミノ-6-[(1-メチル-1H-ピラゾール-4-イル)アミノ]-1,3,5-トリアジン-2-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(0.2g,0.4mmol)のDMF溶液(8mL)にピリジン(0.13mL,1.6mmol)およびn-オクタノイルクロリド(0.14mL,0.8mmol)を滴下し、室温で16時間攪拌した。反応混合物に水(50mL)を加え、酢酸エチル(3×50mL)で抽出した。得られた有機層を合わせ、水、1M塩酸水溶液、飽和炭酸水素ナトリウム水溶液および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、得られた残渣をカラムクロマトグラフィー(シリカゲル、クロロホルム/メタノール)で精製して、標記化合物(201mg)を得た。
1H  NMR (400 MHz, DMSO-d6) δ 9.58 (s, 1H), 7.99 (s, 1H), 7.88 - 7.73 (m, 1H), 7.69 - 7.55 (m, 2H), 7.52 - 7.42 (m, 1H), 7.37 (dd, J = 20.5, 7.4 Hz, 1H), 7.26 (d, J = 1.6 Hz, 1H), 7.20 - 7.10 (m, 2H), 6.99 (dd, J = 13.2, 1.6 Hz, 1H), 6.60 (dd, J = 7.5, 2.0 Hz, 1H), 5.51 - 5.37 (m, 1H), 5.17 - 5.04 (m, 1H), 3.79 (s, 3H), 2.12 - 2.02 (m, 1H), 1.94 (t, J = 7.5 Hz, 2H), 1.27 - 1.00 (m, 10H), 1.02 - 0.90 (m, 2H), 0.91 - 0.76 (m, 5H) ;LCMS (m/z): 625.15 [M+H] +.
 
実施例35~84
以下に挙げる実施例1のプロドラッグに相当する、[表3-1]~[表3-6]に記載の実施例化合物(I)は、それぞれ対応する原料(市販品、または市販化合物から公知の方法もしくはそれに準じた方法により誘導体化した化合物)を用い、上述の実施例34記載の方法に従い、必要に応じて、有機合成化学で通常用いられる方法を適宜組み合わせて製造した。
 また、各々の化合物の物理化学データを[表4-1]~[表4-4]に示した。
Figure JPOXMLDOC01-appb-T000019
 
Figure JPOXMLDOC01-appb-T000020
 
Figure JPOXMLDOC01-appb-T000021
 
Figure JPOXMLDOC01-appb-T000022
 
Figure JPOXMLDOC01-appb-T000023
  
Figure JPOXMLDOC01-appb-T000024
 
Figure JPOXMLDOC01-appb-T000025
 
Figure JPOXMLDOC01-appb-T000026
 
Figure JPOXMLDOC01-appb-T000027
 
Figure JPOXMLDOC01-appb-T000028
 
試験例1
BTKに対する活性阻害試験
(脱リン酸化BTKの調整)
 脱リン酸化BTKは、ビオチン化BTK蛋白質BTN-BTK(カルナバイオサイエンス社製)酵素溶液にλ protein phosphatase(New England BioLabs社製、Code No.P0753S)とMnClをそれぞれ10U/μg、2mMとなるように添加し、4℃で一晩反応させた後、抗DYKDDDDK-tag抗体アガロースゲルクロマトグラフィーによりλ protein phosphataseを除去したのち、10DG Desalting Columnを用いてバッファー交換を行うことによって得た。
(キナーゼ活性の測定方法)
 キナーゼ活性の測定は、QuickScout Screening Assist(商標) MSA(カルナバイオサイエンス社製市販キット)を用い、モビリティシフトアッセイ(MSA)法により行った。キナーゼ反応の基質は、キット付属のFITC標識SRCtideペプチドを用いた。アッセイバッファー[20mM HEPES、0.01% Triton X-100(商標)、2mM dithiothreitol、pH7.5]を用い、基質(4μM)、MgCl(20mM)、ATP(200μM)となるように調整し、基質混合液を作成した。また脱リン酸化BTKを0.6nMとなるようアッセイバッファーで希釈して酵素溶液を調製した。被験化合物の10mM DMSO溶液から、10濃度(0.00003mM、0.0001mM、0.0003mM、0.001mM、0.003mM、0.01mM、0.03mM、0.1mM、0.3mM、1mM)にDMSOでさらに希釈し、それぞれをアッセイバッファーで25倍希釈して、薬物溶液とした(4%DMSO溶液)。薬物溶液もしくはコントロール溶液(4%DMSO-アッセイバッファー)5μL、基質混合液5μL、および酵素溶液10μLをポリプロピレン製384穴プレートのウェル中で混合し、1時間室温で反応させた後、60μLのキット付属のターミネーションバッファーを添加し反応を停止させた。ついで、反応溶液中の基質(S)およびリン酸化された基質(P)の量をLabChip EZ Reader IIシステム(Caliper Life Sciences社製)を用い、アッセイキットのプロトコールに従って測定した。
(BTK阻害活性の評価方法)
 分離された基質およびリン酸化された基質の各ピークの高さをそれぞれSおよびPとし、またブランクとして酵素溶液の代わりにアッセイバッファーを添加したものを測定した。
被験化合物の阻害率(%)は、次の式に従って算出した。
阻害率(%)=(1-(C-A)/(B-A))×100
ただし、A、B、Cは、それぞれブランクウェルのP/(P+S)、コントロール溶液ウェルのP/(P+S)、化合物添加ウェルのP/(P+S)を示す。
 また、IC50値は、阻害率と被験化合物濃度(対数)の回帰分析により算出した。
(評価結果)
 実施例の化合物群は、脱リン酸化BTKに対して10nM以下のIC50値を示したことから、本発明の化合物(I)が、強いBTK阻害活性を有することを示している。
試験例2
細胞内BTKの自己リン酸化活性阻害試験
(使用する細胞の培養)
 Ramos細胞(2G6.4C10、ATCC社No.CRL-1923)は、T75フラスコ中、10%FBS(AusGene社)および5%ペニシリンストレプトマイシン(ナカライ社)を添加したRPMI-1640培地(GIBCO社、#A10491-01)(以下、増殖培地)を用いて5%COインキュベーター内で培養した。
(被験化合物の添加)
 培養したRamos細胞を細胞密度7.5×10cells/mLになるように、血清を除いたRPM-1640培地(以後、培地)で希釈して、45分間37℃で保温した。細胞懸濁液を2.0mLチューブに1mLずつ小分けした後、被験化合物の0.3mM DMSO溶液を培地で希釈し、0.9μMとした被験化合物溶液を、500μL添加し、被験化合物の最終濃度が0.3μMの条件下で1時間37℃インキュベーションした。その後、培地で希釈した抗IgM抗体(Invitrogen、 H15100)を最終濃度が10μg/mLになるように添加して、10分間37℃でインキュベーションした。
(タンパク質の抽出)
 遠心操作により細胞を回収して得られたペレットにLysisバッファー[RIPA Buffer(×1)(Cell Signaling Technology社)に、1% Phosphatase inhibitor Cacktail 3(Sigma社、No.P0044)、1% Phosphatase inhibitor Cacktail (ナカライ社、No.07575)および1mM フッ化フェニルメチルスルホニル(PMSF)を添加したもの]を100μL添加し、軽く攪拌したのち10分間静置した。遠心操作(15,000rpm、15分間)により上清を回収し、タンパク質量を定量した。SDS-サンプルバッファーと混合し、95℃5分間反応させてタンパク質を変性させて、サンプル溶液とした。4-20%のグラジエントアクリルアミドゲル(コスモバイオ社、No.414879)の各ウェルにサンプル溶液を5μLずつアプライし、電気泳動を行った。その後、iBlotゲルトランスファーシステム(ライフテクノロジーズ社)を用いてPVDF膜にゲル中のタンパク質を転写した。
(BTKまたはリン酸化BTKの検出)
 転写したPVDF膜を2%ECL prime blocking Reagent(GEヘルスケア社)でブロッキング処理した後、一次抗体として抗BTKマウス抗体(BDtransduction laboratory社、No.611116)もしくは抗リン酸化BTKウサギ抗体(pY223、EPITOMICS社、No.2207-1)を用い、4℃で1晩反応させた。未反応の一次抗体をTBSTバッファー(10mM Tris-HCl(pH7.5)、150mM NaCl、0.1% Tween20)で洗浄後、二次抗体としてHRPラベルした抗マウスIgGヤギ抗体(ライフテクノロジーズ社、No.62-6520)あるいは抗ウサギIgGヤギ抗体(ライフテクノロジーズ社、No.65-6120)を用い、2%ECL prime blocking Reagentを添加したTBSTバッファー中で、室温で1時間反応させた。未反応の二次抗体をTBSTバッファーで洗浄後、ECL Prime Western Blotting Detection System(GEヘルスケア社)を用いて添付のプロトコールどおりに反応させた後、CCDカメラ(ATTO、Light-CaptureII)を用いて、それぞれのバンドを化学発光で検出した。検出されたバンドをデンシトメトリー(ATTO CS Analyzer ver3.0)により数値化し、化合物非添加かつIgM刺激群のリン酸化BTKのバンドの発光を100%、化合物非添加かつIgM無刺激群のリン酸化BTKのバンドの発光を0%として、各群におけるバンドの強度から阻害率を算出した。なお、それぞれのリン酸化BTKのバンドは、総BTKにより補正を行なった。
 本試験で用いた一次抗体と二次抗体の組み合わせおよび希釈濃度は以下の通りである。
Figure JPOXMLDOC01-appb-T000029
 
 被験化合物濃度0.3μMの濃度における結果を、表6に示す。細胞内BTKの自己リン酸化阻害活性は、70%以上のものは***印、50%以上70%未満のものは**印、30%以上50%未満のものは*印で示した。
 本試験において、表6に示すとおり、本発明化合物は0.3μMの濃度で細胞内BTKの自己リン酸化活性を強く阻害した。
Figure JPOXMLDOC01-appb-T000030
 
 試験例2の結果は、本発明の化合物が、“細胞内BTKの自己リン酸化活性作用”についても、強い阻害作用を有することを示している。
試験例3
Ramos細胞内カルシウムイオン変動阻害試験
 本発明の化合物による細胞内BTK阻害を、本発明の化合物の、「抗IgM抗体のBCR刺激による細胞内カルシウム流入」に及ぼす作用を測定することにより検証した。
(細胞懸濁液、およびカルシウム指示薬の添加)
 測定の1日前に、Ramos細胞を細胞密度1.0×10cells/mLになるように、新鮮な増殖培地(試験例2と同じ増殖培地)に再懸濁して培養し、翌日、遠心操作により細胞を回収し、5%ペニシリンストレプトマイシン(ナカライ社)を添加したRPMI-1640培地(培地1)で洗浄した。この細胞を、細胞密度2.0×10cells/mLになるように、1%Ultra Low IgG FBS(GIBCO、#16250)と5%ペニシリンストレプトマイシン(ナカライ社)を添加したRPMI-1640培地(培地2)に再懸濁したのち、細胞懸濁液をPoly Lysine coatedマイクロプレート(BD BioCoatTM、#356692)の各ウェルに100μLずつ添加し、遠心操作(700rpm、3分間)後、37℃の5%COインキュベーター内において1時間インキュベーションした。カルシウム指示薬Fluo-8NW dye-loading溶液(AAT Bioquest、#36315)を各ウェルに100μLずつ添加し、37℃の5%COインキュベーター内で、さらに30分間インキュベーションした。
(被験化合物の添加)
 被験化合物の10mM DMSOストック溶液から、DMSOでさらに6濃度(1、0.3、0.1、0.03、0.01、0.003mM)に希釈し、また被験化合物を含まないDMSO溶液を対照とし、それぞれを培地2で47.6倍希釈して、上記のプレートの各ウェルに10μLずつ添加後、10分間37℃でインキュベーションした(被験化合物の最終濃度、1、0.3、0.1、0.03、0.01、0.003、0μM)。
(カルシウムイオン濃度の測定)
 Ramos細胞内カルシウムイオン濃度は、カルシウム指示薬Fluo-8NWの蛍光強度を、マイクロプレートリーダー(SynergyH1)を用いて測定した(Ex/Em=490/525nm)。15秒間ベースラインを測定した後、上述の各ウェルに、培地2で10.4μg/mLに希釈した抗IgM抗体(Invitrogen、#H15100)を50μL添加(最終濃度2.0μg/mL)してBCR刺激し、さらに150秒間測定した。
 図1に、代表例として実施例1の化合物の結果を示す。図1に示されるように本発明の化合物は、低濃度から濃度依存的に、「抗IgM抗体のBCR刺激による細胞内カルシウムイオン変動」を抑制しており、BCRシグナルを効果的に阻害していることが理解できる。
試験例4
マウス受動的皮膚アナフィラキシー反応試験
 BTKは、マスト細胞においてFcεRIのシグナル伝達に重要な役割を果たしていることから、マスト細胞が関与する即時型アレルギー反応である受動的皮膚アナフィラキシー反応(passive cutaneous anaphylaxis reaction:PCA反応)が、化合物投与により、抑制されるかを検討した。
(被験化合物溶液の調製)
 被験化合物にDMSO、ポリエチレングリコール400(PEG#400、ナカライテスク社、#28215-95)、30%(w/v)ヒドロキシプロピル-β-シクロデキストリン水溶液(HP-β-CD、シグマ社、#332607-500)を順に加えてよく混合し、被験化合物溶液を調整した(溶媒組成:5%被験化合物DMSO溶液、30%PEG#400、65%HP-β-CD[30%(w/v)水溶液])。また、溶媒投与群は、被験化合物DMSO溶液の代わりにDMSO溶液を用いた。
(PCA反応)
 全身麻酔下、ICRマウス(6週齢、雄)に抗DNP-IgEモノクローナル抗体(50μg/mL、Santa Cruz社、#sc-69695)を両側耳介に皮内投与した(10μL/site)。46時間後、溶媒または、試験投与用量になるように溶媒に溶解させた被験化合物溶液(3.0mg/mL)を経口投与した(10mL/マウス体重(kg))。2時間後、0.5%エバンスブルー色素(和光純薬株式会社、#054-04062)を含むDNP-BSA(1mg/mL、エル・エス・エル社、#LG-3017)を静脈内投与し(0.25mL/マウス)、アレルギー反応を惹起した。30分後、全身麻酔下、頚椎脱臼により動物を安楽死させ、両耳介を採取した。採取した耳介一対に1M KOH溶液(0.7mL)を加え、37℃で一晩放置し、耳介を溶解させた。この懸濁液にアセトン-0.2M リン酸(13:5)混合液を9.3mL添加したのち、生じた不溶物を遠心分離(3000rpm、10分)および0.2μmフィルターで除去した。得られたろ液の620nmにおける吸光度を測定し、色素漏出量の指標とした。上記実験は各群5匹のマウスを用いて行い、色素漏出量の評価はこれらマウスについて得られた値の平均値をとった。
 図2に結果を示す。図2に示すように溶媒群と比較して、実施例1の化合物では有意に耳介への色素漏出を抑えた。すなわち受動的皮膚アナフィラキシー反応(PCA反応)に対する抑制作用が確認された。
試験例5
マウスコラーゲン誘発関節炎モデルでの作用
 Incomplete Freund’s Adjuvant(Chondrex社、#7002)にM.Tuberculosis H37 Ra、Desiccated(ベクトンディッキンソン社、#231141)を2.5mg/mLとなるように添加したものと、Bovine TypeII Collagen,2mg/mL Solution(Chondrex社、#20022)とを1対1で混合して乳化させたエマルジョンを作製した。
DBA/1Jマウス3群(10匹/群)(6週齢、雄)に、0日目と21日目に、マウス1匹あたり0.1mLのエマルジョンを尾根部皮内に少量ずつ分けて注入して免疫した。溶媒または、被験化合物溶液を、18日目から36日目まで毎日1日2回経口投与した(各群への被験化合物投与量:0mg/kg,30mg/kg,60mg/kg)。投与液の調整は、試験例4と同じ溶媒を用いて同様に行った。
21日目の追加免疫以降、2~3日に1回、表7に示す基準に従って、四肢各々の関節炎発症状態を目視でスコア化した。四肢すべてのスコアを各マウス毎に合計し、各群10匹の平均値を関節炎スコアとした(正常0から最高16)。
Figure JPOXMLDOC01-appb-T000031
 
 本発明の化合物である実施例1の化合物は、図3に示すように関節炎の発症を用量依存的に抑制した。しかもこの時、体重減少などの毒性を示さなかった。この結果より、本発明の化合物が優れた抗炎症作用を有するとともに、安全性にも優れている可能性が高いことが確認された。
試験例6
ラットコラーゲン誘発関節炎モデルでの作用
 Incomplete とFreund’s Adjuvant(Sigma-Aldrich社、#F5506)と、Bovine TypeII Collagen,4mg/mL Solution(Sichuan University、Lot.08H0497)とを1対1で混合して乳化したエマルジョンを作製した。Lewisラット3群(10匹/群)(5-6週齢、雌)に、0日目と7日目に、ラット1匹あたり0.5mLのエマルジョンを尾根部(0.1mL)および尾根部に近い背部皮内2箇所(各0.2mL)の合計3箇所に分けて注入して免疫した。溶媒または、被験化合物溶液を0日目から20日目まで毎日1日2回経口投与した(各群への被験化合物投与量:0mg/kg,30mg/kg,60mg/kg)。投与液の調整は、試験例4と同じ溶媒を用いて同様に行った。
7日目の追加免疫以降、1週間に2回、表8に示す基準に従って、四肢各々の関節炎発症状態を目視でスコア化した。四肢すべてのスコアを各ラット毎に合計し、各群10匹の平均値を関節炎スコアとした(正常0から最高16)
Figure JPOXMLDOC01-appb-T000032
 
 
 本発明の化合物である実施例1の化合物は、図4に示すように関節炎の発症を用量依存的に抑制した。しかもこの時、体重減少などの毒性を示さなかった。この結果より、本発明の化合物が優れた抗炎症作用を有するとともに、安全性にも優れている可能性が高いことが確認された。
試験例7
マウスでの経口投与による血中濃度測定(プロドラッグの代謝確認試験)
 一般にプロドラッグは、経口投与後には、消化管から吸収されたのちに体内で速やかに代謝されて活性型の薬剤に生じることが望ましい。そこで、本発明のプロドラッグに相当する化合物(I)が、体内で速やかに活性型の薬剤に代謝されるかを検討した。
 ICRマウス(3匹/群)(6週齢、雄)に、溶媒(0.5%メチルセルロース水溶液)に懸濁させた被験化合物溶液を、30mg/kgの試験投与用量になるように経口投与した。1時間後、全身麻酔下のマウスの心臓からヘパリンコートした注射器を用いて採取した血液サンプルを、遠心分離(4℃、10000rpm、10分)し、血漿サンプルを回収した。フィルター付きプレートの各ウェルに、5μLの血漿サンプルと495μLの内部標準化合物を含むメタノール溶液を添加し混合した。遠心分離(4℃、3000rpm、3分)により変性タンパク質を除去し、ろ液(抽出液)を回収した。検量線用として、内部標準化合物を含む代謝物のメタノール溶液を調整し、未処置のマウスから採取した血漿と混合し、フィルター付きプレートを用いて同様に処理した。またプロドラッグ(未変化体)の検量線に関しては、プロドラッグのメタノール溶液と内部標準化合物のメタノール溶液を混合して検量線用標準液を調製したものを用いた。
 抽出液中の、プロドラッグおよびその代謝物である実施例1の化合物の濃度は、LC/MS(液体クロマトグラフ質量分析)を用い、内部標準物質とのピーク面積比を用いた検量線から化合物濃度を定量した。
Figure JPOXMLDOC01-appb-T000033
 
ND:未検出
 表9に示すように、本発明のプロドラッグ化合物は、経口投与後、血中に観測されず、代謝物である実施例1の化合物が観察された。このことから、本発明のプロドラッグ体は、体内で迅速に代謝され、活性型に変換されることが確認された。
 本発明により提供される化合物は、BTKを介した異常な細胞応答に関連していることが知られている疾患、例えば、自己免疫疾患、炎症性疾患、骨疾患、リンパ腫のような癌等に対する予防または治療用医薬品(医薬組成物),またはそのプロドラッグとして有用である。また、BTK阻害剤として、実験用、研究用の試薬に有用である。

Claims (2)

  1. 下式(I)で示されるトリアジン誘導体、またはその薬学的に許容される塩。
    Figure JPOXMLDOC01-appb-C000001
     
    (式中、Rは、置換基を有してもよい低級アルキル基を表し、Rは、水素原子、置換基を有してもよい低級アルキル基を表し、Aは、窒素原子もしくはC-Rを表し、Rは、水素原子、シアノ基、置換基を有してもよいアシル基、置換基を有してもよいスルホニル基、置換基を有してもよいカルバモイル基を表し、Rは、置換基を有してもよい低級アルキル基、置換基を有してもよいシクロアルキル基を表す。)
  2. が、式-CHOR5を示し、式中R5は、置換基を有してもよいアシル基である、請求項1に記載のトリアジン誘導体、またはその薬学的に許容される塩。
PCT/JP2014/068752 2013-07-26 2014-07-15 新規トリアジン誘導体 WO2015012149A1 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
EP14828654.5A EP3026050B1 (en) 2013-07-26 2014-07-15 Novel triazine derivative
US14/907,396 US9656995B2 (en) 2013-07-26 2014-07-15 Triazine derivative
CA2919068A CA2919068C (en) 2013-07-26 2014-07-15 Triazine derivative
JP2015528238A JP6156953B2 (ja) 2013-07-26 2014-07-15 新規トリアジン誘導体
CN201480051531.1A CN105683178B (zh) 2013-07-26 2014-07-15 三嗪衍生物
KR1020167004910A KR101742550B1 (ko) 2013-07-26 2014-07-15 신규 트리아진 유도체
ES14828654T ES2699452T3 (es) 2013-07-26 2014-07-15 Nuevo derivado de triazina
AU2014294225A AU2014294225B2 (en) 2013-07-26 2014-07-15 Novel triazine derivative
DK14828654.5T DK3026050T3 (en) 2013-07-26 2014-07-15 NEW TRIAZINE DERIVATIVE
SG11201600497VA SG11201600497VA (en) 2013-07-26 2014-07-15 Novel triazine derivative
PH12016500152A PH12016500152A1 (en) 2013-07-26 2016-01-22 Novel triazine derivative
IL243737A IL243737B (en) 2013-07-26 2016-01-24 History of -2amino-4-[3-(-7 fluoro-2-oxo-isoquinolin-1-yl)phenyl]-6-azoloamino-5,3,1-triazine and pharmaceutical preparations containing them
NO20160292A NO20160292A1 (en) 2013-07-26 2016-02-19 Novel triazine derivative

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013155331 2013-07-26
JP2013-155331 2013-07-26
JP2013187987 2013-09-11
JP2013-187987 2013-09-11
JP2014-073227 2014-03-31
JP2014073227 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015012149A1 true WO2015012149A1 (ja) 2015-01-29

Family

ID=52393193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068752 WO2015012149A1 (ja) 2013-07-26 2014-07-15 新規トリアジン誘導体

Country Status (15)

Country Link
US (1) US9656995B2 (ja)
EP (1) EP3026050B1 (ja)
JP (1) JP6156953B2 (ja)
KR (1) KR101742550B1 (ja)
CN (1) CN105683178B (ja)
AU (1) AU2014294225B2 (ja)
CA (1) CA2919068C (ja)
CR (1) CR20160082A (ja)
DK (1) DK3026050T3 (ja)
ES (1) ES2699452T3 (ja)
IL (1) IL243737B (ja)
NO (1) NO20160292A1 (ja)
PH (1) PH12016500152A1 (ja)
SG (1) SG11201600497VA (ja)
WO (1) WO2015012149A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015041155A1 (ja) * 2013-09-20 2017-03-02 カルナバイオサイエンス株式会社 新規トリアジン誘導体
WO2018097234A1 (ja) 2016-11-25 2018-05-31 カルナバイオサイエンス株式会社 新規オキソイソキノリン誘導体
WO2021157650A1 (ja) 2020-02-05 2021-08-12 カルナバイオサイエンス株式会社 抗がん剤組成物
WO2022034914A1 (ja) * 2020-08-13 2022-02-17 カルナバイオサイエンス株式会社 易溶性固形製剤およびその製法
WO2022102715A1 (ja) * 2020-11-13 2022-05-19 カルナバイオサイエンス株式会社 組み合わせ医薬組成物および治療方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526279A (ja) * 2008-07-02 2011-10-06 エフ.ホフマン−ラ ロシュ アーゲー キナーゼ阻害剤としての新規なフェニルピラジノン
JP2012519200A (ja) * 2009-03-02 2012-08-23 エフ.ホフマン−ラ ロシュ アーゲー ブルトン型チロシンキナーゼの阻害剤
WO2013133367A1 (ja) 2012-03-09 2013-09-12 カルナバイオサイエンス株式会社 新規トリアジン誘導体
WO2013161848A1 (ja) * 2012-04-27 2013-10-31 カルナバイオサイエンス株式会社 新規1,2,4-トリアジン誘導体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012296888A1 (en) 2011-08-17 2014-01-23 F. Hoffmann-La Roche Ag Inhibitors of Bruton's Tyrosine Kinase
WO2013083666A1 (en) * 2011-12-09 2013-06-13 F. Hoffmann-La Roche Ag Inhibitors of bruton's tyrosine kinase

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526279A (ja) * 2008-07-02 2011-10-06 エフ.ホフマン−ラ ロシュ アーゲー キナーゼ阻害剤としての新規なフェニルピラジノン
JP2012519200A (ja) * 2009-03-02 2012-08-23 エフ.ホフマン−ラ ロシュ アーゲー ブルトン型チロシンキナーゼの阻害剤
WO2013133367A1 (ja) 2012-03-09 2013-09-12 カルナバイオサイエンス株式会社 新規トリアジン誘導体
WO2013161848A1 (ja) * 2012-04-27 2013-10-31 カルナバイオサイエンス株式会社 新規1,2,4-トリアジン誘導体

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
DAVIS R. E. ET AL., NATURE, vol. 463, 2010, pages 88 - 92
ELLMEIER W. ET AL., FEBS J., vol. 278, 2011, pages 1990 - 2000
HALCOMB K. E., MOL. IMMUNOL., vol. 46, no. 2, 2008, pages 233 - 241
JANSSON L.; HOLMDAHL R., CLIN. EXP. IMMUNOL., vol. 94, 1993, pages 459 - 465
JOSHI-PANGU ET AL., J. AM. CHEM. SOC., vol. 133, 2011, pages 8478 - 8481
KUROSAKI T., CURR. OPIN. IMMUNOL., vol. 12, 2000, pages 276 - 281
N. MIYAURA ET AL., J. AM. CHEM. SOC., vol. 107, 1985, pages 972
N. MIYAURA; A. SUZUKI, CHEM. REV., vol. 95, 1995, pages 2457
SATTERTHWAITE, A. B.; WITTE, 0. N., IMMUNOL. REV., vol. 175, 2000, pages 120 - 127
See also references of EP3026050A4
T. W. GREENE: "Protective Groups in Organic Synthesis", 1999, JOHN WILEY&SONS, INC.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015041155A1 (ja) * 2013-09-20 2017-03-02 カルナバイオサイエンス株式会社 新規トリアジン誘導体
WO2018097234A1 (ja) 2016-11-25 2018-05-31 カルナバイオサイエンス株式会社 新規オキソイソキノリン誘導体
CN109963852A (zh) * 2016-11-25 2019-07-02 卡尔那生物科学株式会社 新型氧代异喹啉衍生物
KR20190104142A (ko) 2016-11-25 2019-09-06 카나 바이오사이언스, 인코포레이션 신규 옥소이소퀴놀린 유도체
JPWO2018097234A1 (ja) * 2016-11-25 2019-10-17 カルナバイオサイエンス株式会社 新規オキソイソキノリン誘導体
US10793575B2 (en) 2016-11-25 2020-10-06 Carna Biosciences, Inc. Oxoisoquinoline derivatives
CN109963852B (zh) * 2016-11-25 2021-12-03 卡尔那生物科学株式会社 氧代异喹啉衍生物
JP7015060B2 (ja) 2016-11-25 2022-02-02 カルナバイオサイエンス株式会社 新規オキソイソキノリン誘導体
WO2021157650A1 (ja) 2020-02-05 2021-08-12 カルナバイオサイエンス株式会社 抗がん剤組成物
EP4101468A4 (en) * 2020-02-05 2024-02-28 Carna Biosciences, Inc. COMPOSITION OF ANTI-CANCER AGENT
WO2022034914A1 (ja) * 2020-08-13 2022-02-17 カルナバイオサイエンス株式会社 易溶性固形製剤およびその製法
WO2022102715A1 (ja) * 2020-11-13 2022-05-19 カルナバイオサイエンス株式会社 組み合わせ医薬組成物および治療方法

Also Published As

Publication number Publication date
CN105683178B (zh) 2019-04-12
EP3026050B1 (en) 2018-11-07
US9656995B2 (en) 2017-05-23
CN105683178A (zh) 2016-06-15
AU2014294225B2 (en) 2017-02-23
ES2699452T3 (es) 2019-02-11
JP6156953B2 (ja) 2017-07-05
JPWO2015012149A1 (ja) 2017-03-02
CA2919068C (en) 2018-03-20
US20160168122A1 (en) 2016-06-16
DK3026050T3 (en) 2019-02-18
IL243737B (en) 2019-09-26
EP3026050A1 (en) 2016-06-01
NO20160292A1 (en) 2016-02-19
CR20160082A (es) 2016-06-08
AU2014294225A1 (en) 2016-03-03
IL243737A0 (en) 2016-04-21
KR20160041946A (ko) 2016-04-18
EP3026050A4 (en) 2016-12-14
PH12016500152A1 (en) 2016-04-25
SG11201600497VA (en) 2016-02-26
KR101742550B1 (ko) 2017-06-01
CA2919068A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP6156953B2 (ja) 新規トリアジン誘導体
WO2013133367A1 (ja) 新規トリアジン誘導体
EP3707126A1 (en) Ire1 small molecule inhibitors
EP3162801B1 (en) Salt of halogen-substituted heterocyclic compound
CN114127072B (zh) Prmt5抑制剂及其用途
IL314025A (en) NLRP3 inflammasome inhibitor and uses thereof
TW201718583A (zh) 新的表皮生長因子受體抑制劑及其應用
KR20190104142A (ko) 신규 옥소이소퀴놀린 유도체
CN114437116A (zh) 杂环化合物及其制备方法、药物组合物和应用
WO2015033888A1 (ja) 新規2,6-ジアミノピリミジン誘導体
JP7329052B2 (ja) フッ素含有置換ベンゾチオフェン化合物ならびにその医薬組成物および応用
WO2015041155A1 (ja) 新規トリアジン誘導体
CN112209933B (zh) 含有4-氮杂螺庚烷的btk抑制剂
WO2022152140A1 (zh) 桥杂环基取代的嘧啶类化合物及其制备方法和医药用途
WO2024217449A1 (zh) 作为tyk2抑制剂的杂环化合物及合成和应用
BE1026602B1 (fr) Inhibiteurs d’a2a ne penetrant pas dans le cerveau et methodes d’utilisation dans le traitement de cancers
TW202237101A (zh) Ctla-4小分子降解劑及其應用
CN110494435A (zh) 氮杂环丁烷衍生物的固体形式及其制备方法和用途
BR112016030018B1 (pt) Sal composto de heterocíclico substituído com halogênio, antagonista do receptor de lpa, composição farmacêutica e uso do referido sal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14828654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2919068

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12016500152

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 243737

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2015528238

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14907396

Country of ref document: US

Ref document number: MX/A/2016/001105

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: P94/2016

Country of ref document: AE

Ref document number: 000110-2016

Country of ref document: PE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016001610

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: CR2016-000082

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 16046096

Country of ref document: CO

Ref document number: 2014828654

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167004910

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201690290

Country of ref document: EA

Ref document number: A201601759

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2014294225

Country of ref document: AU

Date of ref document: 20140715

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016001610

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160125