WO2018097234A1 - 新規オキソイソキノリン誘導体 - Google Patents

新規オキソイソキノリン誘導体 Download PDF

Info

Publication number
WO2018097234A1
WO2018097234A1 PCT/JP2017/042172 JP2017042172W WO2018097234A1 WO 2018097234 A1 WO2018097234 A1 WO 2018097234A1 JP 2017042172 W JP2017042172 W JP 2017042172W WO 2018097234 A1 WO2018097234 A1 WO 2018097234A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
phenyl
amino
cyclopropyl
hydroxymethyl
Prior art date
Application number
PCT/JP2017/042172
Other languages
English (en)
French (fr)
Inventor
亘 川畑
孝夫 清位
隆行 入江
斉子 浅見
匡明 澤
茂樹 柏本
Original Assignee
カルナバイオサイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルナバイオサイエンス株式会社 filed Critical カルナバイオサイエンス株式会社
Priority to JP2018552969A priority Critical patent/JP7015060B2/ja
Priority to FIEP17874560.0T priority patent/FI3546462T3/fi
Priority to RU2019119374A priority patent/RU2772226C2/ru
Priority to ES17874560T priority patent/ES2968023T3/es
Priority to MX2019006079A priority patent/MX2019006079A/es
Priority to EP17874560.0A priority patent/EP3546462B1/en
Priority to DK17874560.0T priority patent/DK3546462T3/da
Priority to CN201780072975.7A priority patent/CN109963852B/zh
Priority to BR112019010617A priority patent/BR112019010617A2/pt
Priority to CA3044933A priority patent/CA3044933A1/en
Priority to AU2017364720A priority patent/AU2017364720B2/en
Priority to US16/463,493 priority patent/US10793575B2/en
Priority to KR1020197018178A priority patent/KR102565546B1/ko
Publication of WO2018097234A1 publication Critical patent/WO2018097234A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a pharmaceutical, particularly a novel oxoisoquinoline derivative having a BTK inhibitory action or a pharmaceutically acceptable salt thereof.
  • Bruton's tyrosine kinase is a member of the Tec family of non-receptor tyrosine kinases and is an important expression expressed in all hematopoietic cell types except T lymphocytes and natural killer cells. It is a signaling enzyme. BTK is an important regulator of B cell survival, differentiation, proliferation, activation, and the like, and plays an important role in B cell signal transduction (Non-patent Documents 1 and 2).
  • B-cell receptor (BCR) on the cell surface transmits a signal into the cell via BTK present downstream thereof, and thus abnormal activation of the B cell signal transduction pathway is It is thought to promote the growth and survival of cancer cells such as B cell lymphoma and chronic lymphocytic leukemia (Non-patent Document 3).
  • BTK is also known to play an important role in the signal pathways of many other cells and is said to be involved in allergic diseases, autoimmune diseases and inflammatory diseases.
  • Non-Patent Document 1 For example, BTK plays an important role in high-affinity IgE receptor (Fc ⁇ RI) signaling in mast cells. BTK-deficient mast cells have reduced degranulation and production of pro-inflammatory cytokines.
  • Fc ⁇ RI high-affinity IgE receptor
  • Non-patent Document 5 systemic lupus erythematosus
  • BTK mutant mice are resistant to the development of collagen-induced arthritis
  • ibrutinib an irreversible BTK inhibitor
  • ibrutinib resistance is caused by C481S mutation of BTK during ibrutinib treatment (Non-patent Document 7).
  • Non-patent Document 8 a compound having BTK inhibitory activity is useful for the treatment of diseases involving BTK signals, such as cancer, B-cell lymphoma, chronic lymphocytic leukemia, etc., and solid tumors expressing p65BTK It is thought that it is useful also for the treatment of this. Furthermore, it is useful for the treatment of allergic diseases, autoimmune diseases, inflammatory diseases and the like. There is also a need for BTK inhibitors that are effective against cancers with mutations in BTK that are resistant to irreversible BTK inhibitors such as ibrutinib.
  • Triazine derivatives have been reported by the present inventors as compounds having a BTK inhibitory action (Patent Documents 1 and 2).
  • Patent Document 3 and Patent Document 4 are also disclosed as similar in structure to the compound of the present invention.
  • the novel oxoisoquinoline derivative of the present invention is not disclosed.
  • An object of the present invention is to provide a pharmaceutical, particularly a novel oxoisoquinoline derivative having a BTK inhibitory action or a pharmaceutically acceptable salt thereof.
  • R 1 represents a lower alkyl group which may have a substituent
  • Q represents a structure selected from the following structures (a), (b) or (c)
  • R 2 and R 3 are each independently a hydrogen atom, a lower alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, It represents a heteroaryl group which may have a substituent or a heterocyclic group which may have a substituent.
  • An oxoisoquinoline derivative represented by or a pharmaceutically acceptable salt thereof (2) The oxoisoquinoline derivative or a pharmaceutically acceptable salt thereof according to (1), wherein Q is the structure (a) and R 1 is a hydroxymethyl group;
  • the present inventors have found that the oxoisoquinoline derivative represented by the formula (I) or a pharmaceutically acceptable salt thereof has an excellent BTK inhibitory action. I found out. Furthermore, in a tumor-bearing mouse model using the OCI-Ly10 cell line, it was confirmed that the oxoisoquinoline derivative or a pharmaceutically acceptable salt thereof exhibited a strong antitumor effect by oral administration, and the present invention was Completed.
  • the compounds provided by the present invention are against diseases known to be associated with abnormal cell responses mediated by BTK, such as autoimmune diseases, inflammatory diseases, bone diseases, cancers such as lymphoma, etc.
  • a pharmaceutical composition which is useful as a pharmaceutical for prevention or treatment and contains the compound as an active ingredient is particularly preferably used by oral administration.
  • the compounds provided by the present invention are useful as experimental and research reagents as BTK inhibitors.
  • the novel oxoisoquinoline derivative of the present invention has the following formula (I): [Wherein R 1 represents a lower alkyl group which may have a substituent, Q represents a structure selected from the following structures (a), (b) or (c); R 2 and R 3 are each independently a hydrogen atom, a lower alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an aryl group that may have a substituent, The heteroaryl group which may have a substituent, and the heterocyclic group which may have a substituent are represented. ] It is a compound shown by these. Q is preferably the structure (a).
  • the lower alkyl group portion of the lower alkyl group which may have a substituent may be any one of a linear or branched alkyl group having 1 to 3 carbon atoms, specifically, A methyl group, an ethyl group, an isopropyl group, etc. can be mentioned.
  • the cycloalkyl group portion of the cycloalkyl group which may have a substituent may be any of a cyclic alkyl group having 3 to 6 carbon atoms, and specifically includes a cyclopropyl group, a cyclobutyl group, a cyclohexyl group, and the like. Can be mentioned.
  • the aryl group part of the aryl group which may have a substituent may be either a monocyclic or bicyclic aryl group having 6 to 14 carbon atoms, and the bicyclic aryl group is partially hydrogenated. Also good. Specific examples include a phenyl group, a naphthyl group, a tetrahydronaphthyl group, an indenyl group, and the like.
  • heteroaryl group part of the heteroaryl group which may have a substituent examples include a monocyclic aromatic heterocyclic group and a heterocyclic aromatic condensed ring group.
  • monocyclic aromatic heterocyclic group examples thereof include a 5- or 6-membered monocyclic aromatic heterocyclic group containing at least one heteroatom selected from a nitrogen atom, a sulfur atom and an oxygen atom.
  • Specific examples include pyrrolyl, imidazolyl, pyrazolyl, thienyl, thiazolyl, furanyl, pyridyl, pyrimidyl, pyridazyl and the like.
  • heterocyclic aromatic condensed ring examples include a bicyclic ring in which a 3- to 8-membered ring is condensed. And a condensed heterocyclic group containing at least one heteroatom selected from a nitrogen atom, a sulfur atom and an oxygen atom.
  • Specific examples include tetrahydroisoquinolyl, benzothiophenyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, indolyl, isoquinolyl and the like.
  • the heterocyclic group part of the heterocyclic group which may have a substituent is a 4- to 6-membered monocyclic saturated heterocyclic group containing at least one heteroatom selected from a nitrogen atom, a sulfur atom and an oxygen atom And may have a partially unsaturated bond in the ring.
  • Specific examples include a dihydrothiopyranyl group, a 1,1-dioxo-dihydrothiopyranyl group, a tetrahydropyridyl group, and a tetrahydropyridyl group is particularly preferable.
  • substituent of “optionally substituted” of the heterocyclic group which may be present one or more arbitrary types of substituents may be chemically possible unless otherwise specified. You may have in arbitrary positions, and when there are two or more substituents, each substituent may be the same or different.
  • Examples of the substituent of the lower alkyl group which may have a substituent include, for example, a halogen atom, a C1-C4 alkoxy group, an amino group optionally substituted with one or two C1-C4 alkyl groups, and a nitro group , A cyano group, a hydroxy group, a carbamoyl group optionally substituted by one or two C1-C4 alkyl groups, a carboxyl group, a formyl group, an acetyl group, a mesyl group, a benzoyl group, a C1-C6 acylamino group, a C1- And C6 acyloxy group.
  • a hydroxymethyl group can be exemplified.
  • substituent of ⁇ may have '', a halogen atom, an oxygen atom, a C1-C4 alkyl group, a C1-C4 alkoxy group, an amino group optionally substituted by one or two C1-C4 alkyl groups , A nitro group, a cyano group, a hydroxy group, a carbamoyl group optionally substituted with one or two C1-C4 alkyl groups, a sulfonyl group optionally substituted with a C1-C4 alkyl group, a carboxyl group, a formyl group Acetyl group, mesyl group, benzoyl group, oxetanyl group, C1-C6 acyla
  • the compound (I) of the present invention may have an isomer depending on, for example, the type of substituent.
  • the chemical structure of only one form of those isomers may be described, but the present invention includes all isomers (geometric isomers, optical isomers, tautomers) that can occur structurally. Etc.) and also includes isomers alone or a mixture thereof.
  • the pharmaceutically acceptable salts of the compound (I) of the present invention include inorganic acid salts with hydrochloric acid, sulfuric acid, carbonic acid, phosphoric acid, fumaric acid, maleic acid, methanesulfonic acid, p-toluenesulfonic acid. And organic acid salts.
  • alkali metal salts with sodium, potassium, etc. alkaline earth metal salts with magnesium, calcium, etc.
  • organic amine salts with triethylamine, ethanolamine, etc., basic amino acid salts with lysine, arginine, ornithine, etc. Ammonium salts and the like are also included in the present invention.
  • the compound (I) of the present invention and pharmaceutically acceptable salts thereof can be produced, for example, by the following method.
  • a method usually used in organic synthetic chemistry for example, a functional group Protection, deprotection [T. W. Greene, Protective Groups in Organic Synthesis 3rd Edition, John Wiley & Sons, Inc. , 1999] can be easily manufactured. Further, the order of reaction steps such as introduction of substituents can be changed as necessary.
  • the compound (I) of the present invention can be produced by a cross-coupling reaction such as a Suzuki coupling reaction using the compound (II) and the compound (III) (for example, known conditions for the conditions of the Suzuki coupling reaction) (See N. Miyaura, et al., J. Am. Chem. Soc., 107, 972 (1985), N. Miyaura, A. Suzuki, Chem. Rev. 95, 2457 (1995))). That is, it can be carried out using a base and an additive as necessary in the presence of a metal catalyst such as palladium or nickel.
  • a cross-coupling reaction such as a Suzuki coupling reaction using the compound (II) and the compound (III) (for example, known conditions for the conditions of the Suzuki coupling reaction) (See N. Miyaura, et al., J. Am. Chem. Soc., 107, 972 (1985), N. Miyaura, A. Suzuki, Chem. Rev. 95, 2457 (1995))).
  • Examples of the solvent used in the reaction include THF, dioxane, toluene, dimethoxyethane, methanol, ethanol, acetonitrile and the like. It is also suitable to use a mixture of two or more of these solvents, or a mixture of these with water. Preferred is a mixed solvent of THF and water, a mixed solvent of toluene, methanol and water, or dioxane.
  • Compound (II) is preferably used in an equivalent amount or an excess amount relative to compound (III), more preferably 1 equivalent to 5 equivalents.
  • a base may be added to accelerate the reaction, and sodium carbonate, cesium carbonate, potassium carbonate, etc. are usually used as the base.
  • the amount of the base to be used is 1 to 10 equivalents, preferably 1 to 5 equivalents, relative to compound (III).
  • a commercially available palladium catalyst used for cross coupling for example, PdCl 2 (dppf), Pd 2 (dba) 3 , Pd (PPh 3 ) 4, etc.
  • a catalytic amount that is, 0.1 equivalent to 0.5 equivalent relative to compound (III).
  • an additive can be added as necessary.
  • rac-BINAP can be used as the additive, and 0.01 to 1 equivalent can be used with respect to compound (III).
  • the reaction can be synthesized by reacting between 0 ° C. and 200 ° C. for several minutes to several days, preferably between 10 ° C. and 100 ° C. for 1 hour to 36 hours.
  • the synthesis can also be performed by using a microwave synthesizer, for example, by reacting for several minutes to several hours under a temperature condition of 60 to 150 ° C.
  • the compounds (II) and (III) can also be obtained by protecting the functional group as necessary using a method commonly used in organic synthetic chemistry and deprotecting after the coupling reaction. ) Can be obtained.
  • the compound (II) used as the raw material of Scheme 1 can be produced by, for example, the method described in Patent Document 2.
  • Compound (III-a) is obtained by cyclization condensation of 2,4-diamino-6-hydroxypyrimidine and compound (IV), followed by chlorination reaction with phosphorus oxychloride. That is, the compound (V) comprises 2,4-diamino-6-hydroxypyrimidine and 1 to 5 molar equivalents, preferably 1 to 1.5 molar equivalents of compound (IV) in a polar solvent, if necessary, as a basic catalyst. It is obtained by reacting in the presence.
  • the solvent is not particularly limited as long as it is inert to the reaction, but water and DMF can be preferably used.
  • the reaction temperature is generally 0 ° C. to 200 ° C., preferably room temperature to 150 ° C. Although reaction time is not specifically limited, Usually, 0.2 to 48 hours are illustrated, and 1 to 24 hours are preferable examples.
  • Compound (III-a) can be obtained by reacting compound (V) with 1 to 50 molar equivalents, preferably 5 to 20 molar equivalents of phosphorus oxychloride.
  • the reaction temperature is usually room temperature to 200 ° C, preferably 50 ° C to 150 ° C.
  • reaction time is not specifically limited, Usually, 1 to 48 hours are illustrated, and 5 to 24 hours are mentioned as a preferable example.
  • 2,4-Diamino-6-hydroxypyrimidine which is the starting material of Scheme 2, is a commercially available product, and compound (IV) can be obtained by a commercially available product, a known method or a method analogous thereto.
  • Compound (III-b) is obtained by condensing 2,5,6-triaminopyrimidin-4 (3H) -one and acid chloride (VI), followed by dehydration cyclization reaction and chlorination reaction with phosphorus oxychloride. . That is, the compound (VII) comprises 2,5,6-triaminopyrimidin-4 (3H) -one in the presence of a base in a solvent in an amount of 1 to 10 molar equivalents, preferably 1 to 3 molar equivalents of acid chloride ( Obtained by reacting with VI).
  • organic bases such as DIEA and triethylamine and inorganic bases such as sodium hydroxide and potassium carbonate are usually used.
  • the dosage of the base to be used is 1 to 10 equivalents, preferably 1 to 5 equivalents, relative to the acid chloride (VI).
  • the solvent is not particularly limited as long as it is inert to the reaction, but water, DMF and THF can be preferably used.
  • the reaction temperature is usually ⁇ 20 ° C. to 100 ° C., preferably 0 ° C. to 80 ° C. Although reaction time is not specifically limited, Usually, 0.2 to 48 hours are illustrated, and 1 to 24 hours are preferable examples.
  • Compound (III-b) can be obtained by reacting compound (VII) with 1 to 100 molar equivalents, preferably 10 to 50 molar equivalents of phosphorus oxychloride.
  • the reaction temperature is usually room temperature to 200 ° C, preferably 50 ° C to 150 ° C.
  • reaction time is not specifically limited, Usually, 1 to 48 hours are illustrated, and 5 to 24 hours are mentioned as a preferable example.
  • 2,5,6-Triaminopyrimidin-4 (3H) -one which is the starting material of Scheme 3 is a commercially available product, and compound (VI) can be obtained by a commercially available product, a known method or a method analogous thereto. .
  • Compound (III-c) is obtained by condensing 2 -amino-4,6-dichloropyrimidine-5-carbaldehyde with R 2 MgX, followed by oxidation reaction and cyclization reaction with hydrazine monohydrate. That is, compound (VIII) is obtained by reacting 2-amino-4,6-dichloropyrimidine-5-carbaldehyde with 1 to 10 molar equivalents, preferably 1 to 5 molar equivalents of R 2 MgX in a solvent. It is done.
  • the solvent may be any solvent as long as it is inert to the reaction, and is not particularly limited, but preferably THF can be used.
  • the reaction temperature is generally ⁇ 100 ° C. to ⁇ 30 ° C., preferably ⁇ 80 ° C. to ⁇ 60 ° C. Although reaction time is not specifically limited, Usually, 0.1 to 12 hours are illustrated, and 0.2 to 6 hours are mentioned as a preferable example.
  • Compound (IX) can be obtained by oxidizing compound (VIII) with an oxidizing agent of 1 to 50 molar equivalents, preferably 2 to 20 molar equivalents.
  • an oxidizing agent metallic oxidizing agents such as chromium (VI) oxide and manganese dioxide, and hypervalent iodine oxidizing agents such as Dess-Martin periodinane can be used.
  • the solvent is not particularly limited as long as it is inert to the reaction, and preferably acetone, DCM and 1,2-dichloroethane can be used.
  • the reaction temperature is usually ⁇ 20 ° C. to 100 ° C., preferably 0 ° C. to 80 ° C. Although reaction time is not specifically limited, Usually, 0.2 to 24 hours are illustrated, and preferable examples are 1 to 12 hours.
  • Compound (III-c) is obtained by reacting compound (IX) with 1 to 10 molar equivalents, preferably 1 to 5 molar equivalents of hydrazine monohydrate in a solvent in the presence of a base catalyst as necessary. It is done.
  • the solvent is not particularly limited as long as it is inert to the reaction, but 1,4-dioxane and THF can be preferably used.
  • the reaction temperature is generally 0 ° C. to 100 ° C., preferably room temperature to 60 ° C. Although reaction time is not specifically limited, Usually, 0.2 to 48 hours are illustrated, and 0.5 to 24 hours are preferable examples.
  • 2-amino-4,6-dichloropyrimidine-5-carbaldehyde which is the starting material of Scheme 4 is a commercially available product, and R 2 MgX can be obtained by a commercially available product, a known method or a method analogous thereto.
  • the compound (III-a ′) in which the structure of Q is (a) and R 2 is a hydrogen atom can be produced by, for example, the method shown in Scheme 5. It can.
  • Scheme 5 (Wherein R 3 is as defined above, PG represents a protecting group, Y represents a bromine atom, an iodine atom or a trifluoromethanesulfonyl group.)
  • Compound (III-a ′) is obtained by subjecting compound (XII) obtained by Sonogashira coupling reaction of diaminopyrimidine (X) and compound (XI) to a cyclization reaction with a base.
  • compound (XII) comprises diaminopyrimidine (X) and 1 to 10 molar equivalents, preferably 2 to 5 molar equivalents of compound (XI) in a polar solvent in the presence of copper iodide, a palladium catalyst and a base. After the reaction, it is obtained by treating with an aqueous sodium hydroxide solution and tetra-n-butylammonium fluoride.
  • the dose of copper iodide to be used is 0.01 equivalent to 2 equivalents, preferably 0.05 equivalent to 0.5 equivalent, relative to diaminopyrimidine (X).
  • a zerovalent palladium catalyst such as Pd (PPh 3 ) 4 or PdCl 2 (PPh 3 ) 2 is usually used.
  • the dosage of the palladium catalyst to be used is 0.01 to 2 equivalents, preferably 0.05 to 0.5 equivalents relative to diaminopyrimidine (X).
  • an organic base such as DIEA or triethylamine is usually used.
  • the dosage of the base to be used is 1 to 10 equivalents, preferably 1 to 5 equivalents relative to diaminopyrimidine (X).
  • the solvent is not particularly limited as long as it is inert to the reaction, but 1,4-dioxane and DMF can be preferably used.
  • the reaction temperature is generally 0 ° C. to 200 ° C., preferably room temperature to 80 ° C. Although reaction time is not specifically limited, Usually, 0.2 to 5 hours are illustrated, and 0.5 to 2 hours are mentioned as a preferable example.
  • Compound (III-a ′) can be obtained by subjecting compound (XII) to a cyclization reaction with 1 to 50 molar equivalents, preferably 2 to 20 molar equivalents of a base.
  • the base potassium tert-butoxide, cesium carbonate or the like can be used.
  • the solvent is not particularly limited as long as it is inert to the reaction, but N-methylpyrrolidone, 1,4-dioxane and DMF can be preferably used.
  • the reaction temperature is usually ⁇ 20 ° C. to 100 ° C., preferably 0 ° C. to 80 ° C.
  • reaction time is not specifically limited, Usually, 0.2 hours to 10 hours are illustrated, and 0.5 hours to 2 hours are mentioned as a preferable example.
  • compound (XII) in scheme 5 is obtained by adding compound (XIV) to Sonogashira coupling reaction to compound (XIII) obtained by Sonogashira coupling reaction and deprotection reaction between diaminopyrimidine (X) and terminal-protected acetylene.
  • compound (XIII) comprises diaminopyrimidine (X) and 1 to 10 molar equivalents, preferably 2 to 5 molar equivalents of a terminally protected acetylene such as trimethylsilylacetylene in a polar solvent in the presence of copper iodide, a palladium catalyst and a base. After the reaction, it is obtained by treating with an aqueous sodium hydroxide solution and tetra-n-butylammonium fluoride.
  • the dose of copper iodide to be used is 0.01 equivalent to 2 equivalents, preferably 0.05 equivalent to 0.5 equivalent, relative to diaminopyrimidine (X).
  • a zerovalent palladium catalyst such as Pd (PPh 3 ) 4 or PdCl 2 (PPh 3 ) 2 is usually used.
  • the dosage of the palladium catalyst to be used is 0.01 to 2 equivalents, preferably 0.05 to 0.5 equivalents relative to diaminopyrimidine (X).
  • an organic base such as DIEA or triethylamine is usually used.
  • the dosage of the base to be used is 1 to 10 equivalents, preferably 1 to 5 equivalents relative to diaminopyrimidine (X).
  • the solvent is not particularly limited as long as it is inert to the reaction, but 1,4-dioxane and DMF can be preferably used.
  • the reaction temperature is generally 0 ° C. to 200 ° C., preferably room temperature to 80 ° C. Although reaction time is not specifically limited, Usually, 0.2 to 5 hours are illustrated, and 0.5 to 2 hours are mentioned as a preferable example.
  • Compound (XII) is obtained by reacting compound (XIII) with 1 to 10 molar equivalents, preferably 1 to 5 molar equivalents of compound (XIV) in a polar solvent in the presence of copper iodide, a palladium catalyst and a base. It is done.
  • the dose of copper iodide to be used is 0.01 equivalent to 2 equivalents, preferably 0.05 equivalent to 0.5 equivalent, relative to compound (XIII).
  • a zerovalent palladium catalyst such as Pd (PPh 3 ) 4 or PdCl 2 (PPh 3 ) 2 is usually used.
  • the amount of the palladium catalyst to be used is 0.01 equivalent to 2 equivalents, preferably 0.05 equivalent to 0.5 equivalent, relative to compound (XIII).
  • the base an organic base such as DIEA or triethylamine is usually used. With respect to the dose of the base used, it can be 1 to 10 equivalents, preferably 1 to 5 equivalents, relative to compound (XIII).
  • the solvent is not particularly limited as long as it is inert to the reaction, but 1,4-dioxane and DMF can be preferably used.
  • the reaction temperature is generally 0 ° C. to 200 ° C., preferably room temperature to 120 ° C. Although reaction time is not specifically limited, Usually, 0.2 to 5 hours are illustrated, and 0.5 to 2 hours are mentioned as a preferable example.
  • Diaminopyrimidine (X), terminal-protected acetylene (XI), and compound (XIV), which are starting materials in Scheme 5, can be obtained by a commercially available method, a known method or a method analogous thereto.
  • the boronyl group represented by W may be in the form of an alkali metal or alkaline earth metal salt.
  • boronic acid ester groups include boronic acid dimethyl ester group, boronic acid diethyl ester group, boron Acid dibutyl ester group, boronic acid dicyclohexyl group, boronic acid ethylene glycol ester group, boronic acid propylene glycol ester group (boronic acid 1,2-propanediol ester group, boronic acid 1,3-propanediol ester group), boronic acid neo Boronic acid ester groups such as pentyl glycol ester group, boronic acid catechol ester group, boronic acid glycerin ester group, boronic acid trimethylolethane ester group, boronic acid diethanolamine ester group, boronic acid triethanolamine ester group; Group, and the like.
  • the above methods are appropriately combined, and methods commonly used in organic synthetic chemistry (for example, alkylation reaction of amino group, reaction of oxidizing alkylthio group to sulfoxide group or sulfone group, alkoxy group to hydroxyl group, or vice versa)
  • alkylation reaction of amino group for example, alkylation reaction of amino group, reaction of oxidizing alkylthio group to sulfoxide group or sulfone group, alkoxy group to hydroxyl group, or vice versa
  • the compound (I) of the present invention having a desired functional group at a desired position can be obtained.
  • the compound (I) of the present invention can be prepared in the form of a conventional pharmaceutical preparation (pharmaceutical composition) suitable for oral administration, parenteral administration or topical administration.
  • Preparations for oral administration include solid preparations such as tablets, granules, powders and capsules, and liquid preparations such as syrups. These formulations can be prepared by conventional methods. Solid preparations can be prepared by using conventional pharmaceutical carriers such as lactose, starch such as corn starch, crystalline cellulose such as microcrystalline cellulose, hydroxypropylcellulose, calcium carboxymethylcellulose, talc, magnesium stearate, etc. it can. Capsules can be prepared by wrapping the granules or powders thus prepared in capsules. A syrup can be prepared by dissolving or suspending the compound (I) of the present invention or a pharmaceutically acceptable salt thereof in an aqueous solution containing sucrose, carboxymethylcellulose and the like.
  • Preparations for parenteral administration include infusions such as instillation.
  • Injectable formulations can also be prepared by conventional methods, including isotonic agents (eg, mannitol, sodium chloride, glucose, sorbitol, glycerol, xylitol, fructose, maltose, mannose), stabilizers (eg, sodium sulfite, Albumin) and preservatives (eg, benzyl alcohol, methyl p-oxybenzoate).
  • isotonic agents eg, mannitol, sodium chloride, glucose, sorbitol, glycerol, xylitol, fructose, maltose, mannose
  • stabilizers eg, sodium sulfite, Albumin
  • preservatives eg, benzyl alcohol, methyl p-oxybenzoate
  • the dose of the compound (I) of the present invention, or a pharmaceutically acceptable salt thereof can be varied according to the severity of the disease, the age and weight of the patient, the dosage form, etc. It is in the range of 1 mg to 1,000 mg, which can be administered once or divided into 2 or 3 doses by the oral or parenteral route.
  • the compound (I) of the present invention or a pharmaceutically acceptable salt thereof can also be used as a BTK inhibitor, as a reagent for experiment or research.
  • HPLC preparative chromatography uses a commercially available ODS column, and unless otherwise stated, fractionated in gradient mode with water / methanol (including formic acid) or water / acetonitrile (including ammonium bicarbonate) as the eluent. did.
  • Example 1 2- [3- (2-Amino-6-phenyl-7H-pyrrolo [2,3-d] pyrimidin-4-yl) -2- (hydroxymethyl) phenyl] -6-cyclopropyl-8-fluoroisoquinoline- 1 (2H) -on (First step) Sodium acetate (0.65 g, 7.93 mmol) was added to an aqueous solution (20 mL) of 2,4-diamino-6-hydroxypyrimidine (1.0 g, 7.93 mmol), and the mixture was heated and stirred at 100 ° C. for 1 hour. 2-Bromoacetophenone (1.89 g, 9.51 mmol) was added, and the mixture was heated with stirring at 100 ° C. for 8 hours.
  • Example 2 2- [3- (2-Amino-8-phenyl-9H-purin-6-yl) -2- (hydroxymethyl) phenyl] -6-cyclopropyl-8-fluoroisoquinolin-1 (2H) -one (First step) Under ice cooling, 2,5,6-triaminopyrimidin-4 (3H) -one (1 g, 7.092 mmol) and benzoyl chloride (1.63 mL, 14.18 mmol) were added to 2M aqueous sodium hydroxide solution (25 mL). Stir for 1 hour.
  • Example 3 2- [3- (6-Amino-3-phenyl-1H-pyrazolo [3,4-d] pyrimidin-4-yl) -2- (hydroxymethyl) phenyl] -6-cyclopropyl-8-fluoroisoquinoline- 1 (2H) -on (First step) To a THF solution (100 mL) of 2-amino-4,6-dichloropyrimidine-5-carbaldehyde (1.0 g, 5.2 mmol) was slowly added phenylmagnesium bromide (1M THF solution, 26 mL, 26 mmol) at ⁇ 78 ° C. The mixture was further stirred for 2 hours.
  • Acetic acid 2- (6-cyclopropyl-8-fluoro-1-oxoisoquinolin-2 (1H) -yl) -6- (4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2- Yl) benzyl (0.193 g, 0.4 mmol), 4-chloro-3-phenyl-1H-pyrazolo [3,4-d] pyrimidin-6-amine (0.1 g, 0.4 mmol) and potassium carbonate (0 .11 g, 0.8 mmol) was added with a DME-water mixed solution (4: 1, 10 mL), and degassed for 30 minutes in an argon gas atmosphere.
  • Example compounds [Table 1-1] and [Table 1-2] were prepared using the corresponding starting materials (commercially available products, or compounds derivatized from commercially available compounds by a known method or a method analogous thereto). According to the method described in the examples, the methods usually used in organic synthetic chemistry were appropriately combined as necessary. The physicochemical data of each compound are shown in [Table 2-1] and [Table 2-2].
  • Example 23 2- (3- ⁇ 2-Amino-6- [1- (oxetane-3-yl) -1,2,3,6-tetrahydropyridin-4-yl] -7H-pyrrolo [2,3-d] pyrimidine -4-yl ⁇ -2- (hydroxymethyl) phenyl) -6-cyclopropyl-8-fluoroisoquinolin-1 (2H) -one (First step) To a DMF solution (52.5 mL) of 6-chloro-5-iodopyrimidine-2,4-diamine (7.1 g, 26.3 mmol), copper iodide (0.25 g, 1.31 mmol), PdCl 2 (PPh 3 ) 2 (0.92 g, 1.31 mmol), trimethylsilylacetylene (3.87 g, 39.4 mmol) and triethylamine (7.32 mL, 52.5 mmol) were added, and the mixture was heated and stirred at 45 ° C
  • Acetic acid 2- (6-cyclopropyl-8-fluoro-1-oxoisoquinolin-2 (1H) -yl) -6- (4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2- Yl) benzyl (3.96 g, 8.29 mmol), 4- (2-amino-4-chloro-7H-pyrrolo [2,3-d] pyrimidin-6-yl) -5,6-dihydropyridine-1 (2H ) -Carboxylic acid tert-butyl (2.9 g, 8.29 mmol) and tripotassium phosphate (3.52 g, 16.6 mmol) were added to a DMF-water mixed solution (5: 1, 165 mL), and a nitrogen gas atmosphere was added.
  • Oxetan-3-one (1.25 g, 17.3 mmol) and sodium triacetoxyborohydride (3.67 g, 17.3 mmol) were added to the reaction solution, and the mixture was further stirred at room temperature for 1 hour.
  • Water was added to the reaction solution, and the mixture was extracted with ethyl acetate. The obtained organic layer was washed successively with water, 1M aqueous sodium hydroxide solution and saturated brine, and dried over anhydrous sodium sulfate.
  • Test example 1 BTK activity inhibition test (adjustment of dephosphorylated BTK)
  • Dephosphorylated BTK is 10 U / ⁇ g and 2 mM of biotinylated BTK protein BTN-BTK (manufactured by Carna Biosciences), ⁇ protein phosphate (manufactured by New England BioLabs, Code No. P0753S) and MnCl 2 at 2 mM, respectively.
  • the mixture was reacted at 4 ° C. overnight, and after removing ⁇ protein phosphate by anti-DYKDDDDK-tag antibody agarose gel chromatography, the buffer was exchanged using 10DG Desalting Column.
  • the kinase activity was measured by a mobility shift assay (MSA) method using QuickScct Screening Assist TM (trademark) MSA (commercially available kit manufactured by Carna Biosciences).
  • MSA mobility shift assay
  • Assay buffer [20mM HEPES, 0.01% Triton X -100 ( TM), 2 mM dithiothreitol, pH 7.5] using a substrate (4 ⁇ M), MgCl 2 (20mM ), adjusted to ATP (200 [mu] M), A substrate mixture was prepared.
  • an enzyme solution was prepared by diluting dephosphorylated BTK with an assay buffer so as to be 0.46 nM. From 10 mM DMSO solution of test compound to 10 concentrations (0.00003 mM, 0.0001 mM, 0.0003 mM, 0.001 mM, 0.003 mM, 0.01 mM, 0.03 mM, 0.1 mM, 0.3 mM, 1 mM) Further diluted with DMSO, each was diluted 25-fold with assay buffer to give a drug solution (4% DMSO solution).
  • Inhibition rate (%) (1 ⁇ (CA) / (BA)) ⁇ 100
  • A, B, and C represent P / (P + S) in the blank well, P / (P + S) in the control solution well, and P / (P + S) in the compound addition well, respectively.
  • IC 50 value was calculated by regression analysis of inhibition rate and test compound concentration (logarithm).
  • the compound groups of the examples showed IC 50 values of 10 nM or less to 100 nM or less for dephosphorylated BTK, indicating that the compound (I) of the present invention has a strong BTK inhibitory activity.
  • Table 3 shows the inhibitory activity of the representative compounds of the present invention on dephosphorylated BTK. BTK inhibitory activity was indicated by ** for IC 50 values less than 0.01 ⁇ M, ** for 0.01 ⁇ M or more and less than 0.1 ⁇ M, and * for 0.1 ⁇ M or more and less than 1 ⁇ M.
  • Test example 2 Intracellular BTK autophosphorylation activity inhibition test (culture of cells used) Ramos cells (2G6.4C10, ATCC No. CRL-1923) were used in RPMI-1640 medium (GIBCO, # A10491) supplemented with 10% FBS (AusGene) and 1% penicillin streptomycin (Nacalai) in a T75 flask. -01) (hereinafter referred to as growth medium) in a 5% CO 2 incubator.
  • the cultured Ramos cells were diluted with RPMI-1640 medium (hereinafter, medium) from which serum was removed so that the cell density was 7.5 ⁇ 10 6 cells / mL, and incubated at 37 ° C. for 45 minutes.
  • medium RPMI-1640 medium
  • a 0.03 mM DMSO solution of the test compound is diluted with a medium, and 500 ⁇ L of a test compound solution adjusted to 0.09 ⁇ M is added, so that the final concentration of the test compound is Incubation was performed at 37 ° C. for 1 hour under the condition of 0.03 ⁇ M.
  • an anti-IgM antibody Invitrogen, No. H15100
  • diluted in a medium was added to a final concentration of 10 ⁇ g / mL, and incubated at 37 ° C. for 10 minutes.
  • the pellets obtained by collecting the cells by centrifugation were added to a Lysis buffer [RIPA Buffer ( ⁇ 1) (Cell Signaling Technology), 1% Phosphase Inhibitor Cocktail 3 (Sigma, No. P0044), 1% Phosphaitase 100 ⁇ L of (Nacalai Co., No. 07575) and 1 mM phenylmethylsulfonyl fluoride (PMSF) added] was added, stirred gently, and allowed to stand for 10 minutes. The supernatant was collected by centrifugation (15,000 rpm, 15 minutes), and the amount of protein was quantified. The sample was mixed with SDS-sample buffer and reacted at 95 ° C.
  • RIPA Buffer ( ⁇ 1) Cell Signaling Technology
  • Phosphase Inhibitor Cocktail 3 Sigma, No. P0044
  • PMSF phenylmethylsulfonyl fluoride
  • the luminescence of the phosphorylated BTK band with no compound added and IgM-stimulated group was 100%, and the phosphorous of the compound-free group and IgM unstimulated group was phosphorylated.
  • the inhibition rate was calculated from the intensity of the band in each group, assuming that the emission of the oxidized BTK band was 0%.
  • Each phosphorylated BTK band was corrected by total BTK.
  • the combinations and dilution concentrations of the primary antibody and the secondary antibody used in this test are as follows.
  • the results at a test compound concentration of 0.03 ⁇ M are shown in Table 5.
  • Intracellular BTK autophosphorylation inhibitory activity was indicated by ** for those with 90% or more, ** for those with 70% or more but less than 90%, and * for those with 50% or more but less than 70%.
  • Test example 3 C481S Mutant BTK Inhibitory Activity Test (Method for Measuring Kinase Activity)
  • the kinase activity was measured by a mobility shift assay (MSA) method using QuickScct Screening Assist TM (trademark) MSA (commercially available kit manufactured by Carna Biosciences).
  • MSA mobility shift assay
  • MSA QuickScct Screening Assist TM (trademark) MSA (commercially available kit manufactured by Carna Biosciences).
  • the substrate for the kinase reaction the FITC-labeled SRCtide peptide attached to the kit was used.
  • assay buffer [20 mM HEPES, 0.01% Triton X-100 TM, 2 mM dithiothreitol, pH 7.5], substrate (4 ⁇ M), MgCl 2 (20 mM), ATP (120 ⁇ M or 100 ⁇ M (wild type or C481S, respectively)
  • substrate mixture was prepared by adjusting the ATP concentration in the vicinity of the Km value of the mutant BTK)).
  • an enzyme solution was prepared by diluting wild-type BTK or C481S mutant BTK with an assay buffer to a concentration of 0.28 nM.
  • Inhibition rate (%) (1 ⁇ (CA) / (BA)) ⁇ 100
  • A, B, and C represent P / (P + S) in the blank well, P / (P + S) in the control solution well, and P / (P + S) in the compound addition well, respectively.
  • IC 50 value was calculated by regression analysis of inhibition rate and test compound concentration (logarithm).
  • Table 6 shows the inhibitory activities of the representative compounds of the present invention against wild-type BTK (BTK (WT)) and C481S mutant BTK (BTK (C481S)).
  • BTK wild-type BTK
  • C481S mutant BTK BTK (C481S)
  • IC 50 [BTK (C481S)] / IC 50 [BTK (WT)] was described.
  • the results of Test Example 3 indicate that the compound (I) of the present invention has a strong inhibitory action against C481S mutant BTK.
  • Test example 4 Proliferation inhibition test for diffuse large B-cell lymphoma
  • OCI-Ly10 cell line OCI-Ly10 cells are IMDM medium containing 20% Fetal bovine serum and 1% penicillin streptomycin (Nacalai) (Iscove's Modified Dulbecco's Medcoums , Thermo Fisher Scientific Inc.) (hereinafter referred to as “medium”) in a 5% CO 2 incubator.
  • OCI-Ly10 (20000 cells / well) was seeded in a 96-well plate, and a compound diluted with a medium was added thereto to a final concentration of 0.9 nM to 30000 nM (final DMSO concentration, 0.3%) for 96 hours.
  • Table 7 shows the growth inhibitory activity of the representative compound (I) of the present invention against the OCI-Ly10 cell line.
  • the results of Test Example 4 indicate that the compound (I) of the present invention has a growth inhibitory activity against the OCI-Ly10 cell line.
  • the compounds provided by the present invention against diseases known to be associated with abnormal cellular responses mediated by BTK such as autoimmune diseases, inflammatory diseases, bone diseases, cancers such as lymphoma, etc. It is useful as a preventive or therapeutic drug (pharmaceutical composition). Further, it is useful as a BTK inhibitor in reagents for experiments and research.

Abstract

下式(I)(式中、QおよびRは明細書参照) で示されるオキソイソキノリン誘導体またはその薬学的に許容される塩は、ブルトンチロシンキナーゼ阻害剤として、癌、B細胞リンパ腫および慢性リンパ性白血病等の治療に有用である。

Description

新規オキソイソキノリン誘導体
 本発明は、医薬、特にBTK阻害作用を有する新規なオキソイソキノリン誘導体またはその薬学的に許容される塩に関する。
 ブルトンチロシンキナーゼ(Bruton’s tyrosine kinase;BTK)は、非受容体チロシンキナーゼのTecファミリーの一つであり、Tリンパ球およびナチュラルキラー細胞以外のすべての造血系細胞型において発現している重要なシグナル伝達酵素である。
 BTKは、B細胞の生存、分化、増殖および活性化等にかかる重要な制御因子であり、B細胞のシグナル伝達に重要な役割を担っている(非特許文献1、2)。細胞表面のB細胞受容体(B‐cell receptor;BCR)は、その下流に存在するBTKを介して細胞内にシグナルを伝達しており、そのためB細胞のシグナル伝達経路の異常な活性化は、B細胞リンパ腫、慢性リンパ性白血病等のがん細胞の増殖と生存を促進すると考えられている(非特許文献3)。また、BTKは、他の数多くの細胞のシグナル経路においても重要な役割を果たしていることが知られており、アレルギー疾患、自己免疫疾患および炎症性疾患などにも関与していると言われている(非特許文献1)。例えば、BTKはマスト細胞において、高親和性IgEレセプター(FcεRI)のシグナル伝達に重要な役割を果たしており、BTKが欠損するマスト細胞は、脱顆粒の減少や炎症誘発性サイトカインの産生が減少していることが知られている(非特許文献4)。また、BTK欠損マウスの実験において、全身性エリテマトーデス(SLE)にBTKが関与していることが示唆されている(非特許文献5)。更にBTK変異マウスはコラーゲン誘導関節炎の発症に抵抗性を示す(非特許文献6)。また、不可逆的なBTK阻害薬であるイブルチニブ(ibrutinib)は、B細胞性腫瘍の治療に用いられている抗がん剤である。近年、イブルチニブ治療中に、BTKのC481S 変異により、イブルチニブ耐性が生じることが明らかになっている(非特許文献7)。また最近になって、血液がん以外の固形がんでもアイソフォームであるp65BTKがRASシグナルの下流に発現しており、結腸癌細胞などの固形がんにおける増殖に深く影響しているとの報告もある(非特許文献8)。従って、BTK阻害活性を有する化合物は、BTKのシグナルが関与している疾患、例えば、癌、B細胞リンパ腫および慢性リンパ性白血病等の治療に有用であり、またp65BTKが発現している固形がんの治療にも有用であると考えられる。さらにはアレルギー疾患、自己免疫疾患および炎症性疾患等の治療にも有用である。また、イブルチニブのような不可逆的BTK阻害剤に抵抗性のBTKに変異のあるがんに効果があるBTK阻害薬が求められている。
 BTK阻害作用を有する化合物として、本発明者により、トリアジン誘導体が報告されている(特許文献1および特許文献2)。
 本発明化合物に構造が類似するものとして、特許文献3および特許文献4も開示されている。しかしながら、本発明新規オキソイソキノリン誘導体については、開示されていない。
WO2013/133367号公報 WO2015/012149号公報 WO2013/157022号公報 中国104211703号公報
Satterthwaite,A.B.and Witte,O.N.,Immunol.Rev.,2000,175,120-127 Kurosaki,T.,Curr.Opin.Immunol.,2000,12,276-281 Davis,R.E.,et al.,Nature,2010,463,88-92 Ellmeier,W.,et al.,FEBS J.,2011),278,1990-2000 Halcomb,K.E.,Mol.Immunol.、2008,46(2)、233-241 Jansson,L.and Holmdahl,R.,Clin.Exp.Immunol.,1993,94,459-465 Cheng,S., et al., Leukemia,2015,29,895-900 Grassili.E.,et al.,Oncogene,2016,35,4368-4378
 本発明は、医薬、特にBTK阻害作用を有する新規なオキソイソキノリン誘導体またはその薬学的に許容される塩を提供することを課題とする。
 本発明の目的は、以下の(1)から(6)によって達成することができる。
(1)下式(I):
Figure JPOXMLDOC01-appb-C000005
〔式中、Rは、置換基を有してもよい低級アルキル基を表し、Qは以下の構造(a)、(b)もしくは(c)から選択される構造を示し、
Figure JPOXMLDOC01-appb-C000006
およびR3は、それぞれ独立して、水素原子、置換基を有してもよい低級アルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、または置換基を有してもよいヘテロ環基を表す。〕
で示されるオキソイソキノリン誘導体またはその薬学的に許容される塩;
(2)Qが構造(a)であり、Rがヒドロキシメチル基である(1)に記載のオキソイソキノリン誘導体またはその薬学的に許容される塩;
(3)下式(Ia):
Figure JPOXMLDOC01-appb-C000007
(式中、R3aは置換基を有してもよいテトラヒドロピリジル基を表す。)
で表される化合物またはその薬学的に許容される塩;
(4)該テトラヒドロピリジル基の置換基が、オキセタニル基、アセチル基、プロピオニル基、モルホリノアセチル基、ジメチルカルバモイル基、ピロリジンカルボニル基、メチルスルホニル基およびイソプロピルスルホニル基よりなる群から選択される、式(Ia)のオキソイソキノリン誘導体またはその薬学的に許容される塩;
(5)下式(Ib):
Figure JPOXMLDOC01-appb-C000008
(式中、R3bは低級アルキル基が置換してもよいフェニル基を表す。)
で表される、請求項1に記載のオキソイソキノリン誘導体またはその薬学的に許容される塩;
(6)下記の群から選択される化合物またはその薬学的に許容される塩;
 2-[3-(2-アミノ-6-フェニル-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例1)
 2-[3-(2-アミノ-8-フェニル-9H-プリン-6-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例2)
 2-[3-(6-アミノ-3-フェニル-1H-ピラゾロ[3,4-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例3)
 2-[3-(2-アミノ-9H-プリン-6-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例4)
 2-[3-(6-アミノ-1H-ピラゾロ[3,4-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例5)
 2-[3-(2-アミノ-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例6)
 2-[3-(2-アミノ-6-メチル-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例7)
 2-[3-(2-アミノ-6-{4-[(4-メチルピペラジン-1-イル)メチル]フェニル}-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例8)
 2-[3-(2-アミノ-6-シクロプロピル-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例9)
 2-[3-(6-アミノ-3-メチル-1H-ピラゾロ[3,4-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例10)
 2-{3-[2-アミノ-6-(ヒドロキシメチル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例11)
 2-[3-(2-アミノ-8-シクロプロピル-9H-プリン-6-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例12)
 2-{3-[2-アミノ-6-(1-メチル-1H-ピラゾール-4-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例13)
 2-{3-[2-アミノ-6-(2-メトキシフェニル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例14)
 2-{3-[2-アミノ-6-(3-メトキシフェニル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例15)
 2-{3-[2-アミノ-6-(4-メトキシフェニル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例16)
 2-{3-[2-アミノ-6-(ピリジン-3-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例17)
 2-{3-[2-アミノ-8-(3-メトキシフェニル)-9H-プリン-6-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例18)
 2-{3-[2-アミノ-6-(ピリジン-4-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例19)
 2-{3-[6-アミノ-3-(4-メトキシフェニル)-1H-ピラゾロ[3,4-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例20)
 2-{3-[6-アミノ-3-(2-メトキシフェニル)-1H-ピラゾロ[3,4-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例21)
 2-{3-[6-アミノ-3-(3-メトキシフェニル)-1H-ピラゾロ[3,4-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例22)
 2-(3-{2-アミノ-6-[1-(オキセタン-3-イル)-1,2,3,6-テトラヒドロピリジン-4-イル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例23)
 2-{3-[2-アミノ-8-(2-メトキシフェニル)-9H-プリン-6-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例24)
 2-{3-[2-アミノ-8-(ピリジン-3-イル)-9H-プリン-6-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例25)
 2-(3-{2-アミノ-6-[4-(モルホリノメチル)フェニル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例26)
 4-{2-アミノ-4-[3-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)-2-(ヒドロキシメチル)フェニル]-7H-ピロロ[2,3-d]ピリミジン-6-イル}ベンゾニトリル(実施例27)
 2-[3-(2-アミノ-5-フェニル-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例28)
 2-{3-[2-アミノ-6-(3-フルオロフェニル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例29)
 N-({2-アミノ-4-[3-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)-2-(ヒドロキシメチル)フェニル]-7H-ピロロ[2,3-d]ピリミジン-6-イル}メチル)アクリルアミド(実施例30)
 2-{3-[2-アミノ-8-(1-メチル-1H-ピラゾール-4-イル)-9H-プリン-6-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例31)
 2-{3-[2-アミノ-6-(チオフェン-3-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例32)
 2-{3-[2-アミノ-6-(2-フルオロフェニル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例33)
 2-{3-[2-アミノ-6-(4-フルオロフェニル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例34)
 2-{3-[2-アミノ-6-(2,4-ジフルオロフェニル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例35)
 2-{3-[2-アミノ-6-(3,4-ジフルオロフェニル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例36)
 2-(3-{2-アミノ-6-[4-(トリフルオロメチル)フェニル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例37)
 2-(3-{2-アミノ-6-[4-(トリフルオロメトキシ)フェニル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例38)
 2-{3-[2-アミノ-6-(アミノメチル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例39)
 2-(3-{2-アミノ-6-[3-(トリフルオロメチル)フェニル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例40)
 2-(3-{2-アミノ-6-[4-(メチルスルホニル)フェニル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例41)
 2-{3-[2-アミノ-6-(6-フルオロピリジン-2-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例42)
 2-{3-[2-アミノ-6-(2-フルオロピリジン-4-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例43)
 2-{3-[2-アミノ-6-(3,5-ジフルオロフェニル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例44)
 2-{3-[2-アミノ-6-(5-フルオロピリジン-2-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例45)
 2-{3-[2-アミノ-6-(5-フルオロピリジン-3-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例46)
 2-(3-{2-アミノ-6-[6-(メチルアミノ)ピリジン-3-イル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例47)
 2-{3-[2-アミノ-6-(6-モルホリノピリジン-3-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例48)
 2-{3-[2-アミノ-6-(2-メトキシピリジン-4-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例49)
 2-(3-{2-アミノ-6-[2-(メチルアミノ)ピリジン-4-イル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例50)
 2-[3-(2-アミノ-6-{4-[(ジメチルアミノ)メチル]フェニル}-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例51)
 2-[3-(2-アミノ-6-{4-[(ジエチルアミノ)メチル]フェニル}-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例52)
 2-(3-{2-アミノ-6-[4-(ピロリジン-1-イルメチル)フェニル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例53)
 2-(3-{2-アミノ-6-[4-(ピペリジン-1-イルメチル)フェニル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例54)
 2-[3-(2-アミノ-6-{4-[(4-メチル-3-オキソピペラジン-1-イル)メチル]フェニル}-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例55)
 2-{3-[2-アミノ-6-(p-トリル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例56)
 2-{3-[2-アミノ-6-(tert-ブチル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例57)
 2-{3-[2-アミノ-6-(1-ベンジル-1H-ピラゾール-4-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例58)
 2-(3-{2-アミノ-6-[6-(ジメチルアミノ)ピリジン-3-イル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例59)
 2-[3-(2-アミノ-6-{5-[(2-メトキシエチル)アミノ]ピリジン-3-イル}-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例60)
 2-{3-[2-アミノ-6-(4-{[4-(2-ヒドロキシエチル)ピペラジン-1-イル]メチル}フェニル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例61)
 2-{3-[2-アミノ-6-(1-エチル-1H-ピラゾール-4-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例62)
 2-{3-[2-アミノ-6-(1-イソプロピル-1H-ピラゾール-4-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン
(実施例63)
 2-{3-[2-アミノ-6-(1-フェニル-1H-ピラゾール-4-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例64)
 2-{3-[2-アミノ-6-(6-メトキシピリジン-3-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例65)
 2-[3-(2-アミノ-6-{4-[(3-オキソピペラジン-1-イル)メチル]フェニル}-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例66)
 2-(3-{2-アミノ-6-[4-(チアゾリジン-3-イルメチル)フェニル]-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例67)
 4-{2-アミノ-4-[3-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)-2-(ヒドロキシメチル)フェニル]-7H-ピロロ[2,3-d]ピリミジン-6-イル}-5,6-ジヒドロピリジン-1(2H)-カルボン酸 tert-ブチル(実施例68)
 2-{3-[6-(1-アセチル-1,2,3,6-テトラヒドロピリジン-4-イル)-2-アミノ-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例69)
 2-(3-{2-アミノ-6-[1-(モルホリン-4-カルボニル)-1,2,3,6-テトラヒドロピリジン-4-イル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例70)
 2-(3-{2-アミノ-6-[1-(4-メチルピペラジン-1-カルボニル)-1,2,3,6-テトラヒドロピリジン-4-イル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例71)
 2-(3-{2-アミノ-6-[1-(tert-ブチル)-1H-ピラゾール-4-イル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例72)
 2-[3-(2-アミノ-6-{4-[(4-ヒドロキシピペリジン-1-イル)メチル]フェニル}-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例73)
 2-[3-(2-アミノ-6-{4-[(4-メトキシピペリジン-1-イル)メチル]フェニル}-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例74)
 2-[3-(6-{4-[(4-アセチルピペラジン-1-イル)メチル]フェニル}-2-アミノ-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例75)
 2-[3-(2-アミノ-6-{4-[(2,6-ジメチルモルホリノ)メチル]フェニル}-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例76)
 2-[3-(2-アミノ-6-{4-[(4,4-ジフルオロピペリジン-1-イル)メチル]フェニル}-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例77)
 2-{3-[2-アミノ-6-(1-メチル-1H-ピラゾール-3-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例78)
 2-{3-[2-アミノ-6-(4-{[4-(2,2,2-トリフルオロエチル)ピペラジン-1-イル]メチル}フェニル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例79)
 2-[3-(2-アミノ-6-{4-[(3,3-ジメチルピペリジン-1-イル)メチル]フェニル}-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例80)
 2-{3-[2-アミノ-6-(シクロヘキサ-1-エン-1-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例81)
 2-{3-[2-アミノ-6-(3,6-ジヒドロ-2H-チオピラン-4-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例82)
 2-{3-[2-アミノ-6-(1,1-ジオキシド-3,6-ジヒドロ-2H-チオピラン-4-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例83)
 2-{3-[2-アミノ-6-(1-プロピオニル-1,2,3,6-テトラヒドロピリジン-4-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例84)
 2-[3-(2-アミノ-6-{1-[2-(ジメチルアミノ)アセチル]-1,2,3,6-テトラヒドロピリジン-4-イル}-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例85)
 2-(3-{2-アミノ-6-[1-(2-モルホリノアセチル)-1,2,3,6-テトラヒドロピリジン-4-イル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例86)
 4-{2-アミノ-4-[3-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)-2-(ヒドロキシメチル)フェニル]-7H-ピロロ[2,3-d]ピリミジン-6-イル}-N,N-ジメチル-5,6-ジヒドロピリジン-1(2H)-カルボキサミド(実施例87)
 2-(3-{2-アミノ-6-[1-(ピロリジン-1-カルボニル)-1,2,3,6-テトラヒドロピリジン-4-イル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例88)
 2-(3-{2-アミノ-6-[1-(メチルスルホニル)-1,2,3,6-テトラヒドロピリジン-4-イル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例89)
 2-(3-{2-アミノ-6-[1-(イソプロピルスルホニル)-1,2,3,6-テトラヒドロピリジン-4-イル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例90)
 2-{3-[2-アミノ-6-(1-エチル-1,2,3,6-テトラヒドロピリジン-4-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例91)
 2-(3-{2-アミノ-6-[1-(シクロプロピルメチル)-1,2,3,6-テトラヒドロピリジン-4-イル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例92)、および
 2-{3-[2-アミノ-6-(1,2,3,6-テトラヒドロピリジン-4-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-2-(ヒドロキシメチル)フェニル}-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン(実施例93)
 本発明者らは、上記の課題を解決するために種々検討を重ねた結果、前記式(I)で示されるオキソイソキノリン誘導体またはその薬学的に許容される塩が、優れたBTK阻害作用を有することを見出した。
 さらには、OCI-Ly10細胞株を用いた担癌マウスモデルにおいて、該オキソイソキノリン誘導体またはその薬学的に許容される塩が経口投与により強力な抗腫瘍効果を示すことを確認して、本発明を完成させた。
 本発明により提供される化合物は、BTKを介した異常な細胞応答に関連していることが知られている疾患、例えば、自己免疫疾患、炎症性疾患、骨疾患、リンパ腫のような癌等に対する予防または治療用の医薬として有用であり、当該化合物を有効成分とする医薬組成物は、特に、経口投与により好適に使用される。
 また、本発明により提供される化合物は、BTK阻害剤として、実験用、研究用の試薬に有用である。
 以下、本発明を詳細に説明する。
 本発明の新規なオキソイソキノリン誘導体は、下式(I):
Figure JPOXMLDOC01-appb-C000009
〔式中、Rは、置換基を有してもよい低級アルキル基を表し、Qは以下の構造(a)、(b)もしくは(c)から選択される構造を示し、
Figure JPOXMLDOC01-appb-C000010
およびR3は、それぞれ独立して、水素原子、置換基を有してもよい低級アルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、置換基を有してもよいヘテロ環基を表す。〕
で示される化合物である。
 Qとしては構造(a)が好ましい。
 本願明細書において、置換基を有してもよい低級アルキル基の低級アルキル基部分としては、炭素数1から3の直鎖状、分枝状のアルキル基のいずれでもよく、具体的には、メチル基、エチル基、イソプロピル基等を挙げることができる。
 置換基を有してもよいシクロアルキル基のシクロアルキル基部分としては、炭素数3から6の環状のアルキル基のいずれでもよく、具体的には、シクロプロピル基、シクロブチル基、シクロヘキシル基等を挙げることができる。
 置換基を有してもよいアリール基のアリール基部分としては、炭素数6から14の単環性若しくは二環性アリール基のいずれでもよく、二環性アリール基は一部水素化されていてもよい。具体的には、フェニル基、ナフチル基、テトラヒドロナフチル基、インデニル基、等を挙げることができる。
 置換基を有してもよいヘテロアリール基のヘテロアリール基部分としては、単環性芳香族複素環基および複素環式芳香族縮合環基が挙げられ、単環性芳香族複素環基としては、例えば、窒素原子、硫黄原子および酸素原子から選ばれる少なくとも1個のヘテロ原子を含む5または6員の単環性芳香族複素環基などが挙げられる。具体的には、ピロリル、イミダゾリル、ピラゾリル、チエニル、チアゾリル、フラニル、ピリジル、ピリミジル、ピリダジルなどが挙げられ、複素環式芳香族縮合環としては、例えば、3から8員の環が縮合した二環性で、窒素原子、硫黄原子および酸素原子から選ばれる少なくとも1個のヘテロ原子を含む縮合複素環基などが挙げられる。具体的には、テトラヒドロイソキノリル、ベンゾチオフェニル、ベンズイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、インドリル、イソキノリルなどが挙げられる。
 置換基を有してもよいヘテロ環基のヘテロ環基部分としては、窒素原子、硫黄原子および酸素原子から選ばれる少なくとも1個のヘテロ原子を含む4から6員の単環性飽和複素環基であり、環内に一部不飽和結合を有していてもよい。具体的には、ジヒドロチオピラニル基、1,1-ジオキソ-ジヒドロチオピラニル基、テトラヒドロピリジル基などが挙げられ、特に好ましくは、テトラヒドロピリジル基が挙げられる。
 置換基を有してもよい低級アルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、置換基を有してもよいヘテロ環基の「置換基を有してもよい」の置換基としては、特に記載のない限り、1または2個以上の任意の種類の置換基を、化学的に可能な任意の位置に有してもよく、置換基が2個以上の場合、それぞれの置換基は同一であっても異なっていてもよい。
 置換基を有してもよい低級アルキル基の置換基としては、例えば、ハロゲン原子、C1-C4アルコキシ基、1または2個のC1-C4アルキル基で置換されていてもよいアミノ基、ニトロ基、シアノ基、ヒドロキシ基、1または2個のC1-C4アルキル基で置換されていてもよいカルバモイル基、カルボキシル基、ホルミル基、アセチル基、メシル基、ベンゾイル基、C1-C6アシルアミノ基、C1-C6アシルオキシ基などが挙げられる。
 置換基を有してもよい低級アルキル基としては、ヒドロキシメチル基を例示することができる。
 置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、置換基を有してもよいヘテロ環基の「置換基を有してもよい」の置換基としては、ハロゲン原子、酸素原子、C1-C4アルキル基、C1-C4アルコキシ基、1または2個のC1-C4アルキル基で置換されていてもよいアミノ基、ニトロ基、シアノ基、ヒドロキシ基、1または2個のC1-C4アルキル基で置換されていてもよいカルバモイル基、C1-C4アルキル基で置換されていてもよいスルホニル基、カルボキシル基、ホルミル基、アセチル基、メシル基、ベンゾイル基、オキセタニル基、C1-C6アシルアミノ基、C1-C6アシルオキシ基などが挙げられる。
 本発明の化合物(I)は、例えば、置換基の種類によって、異性体が存在する場合がある。本明細書において、それらの異性体の一形態のみの化学構造で記載することがあるが、本発明には、構造上生じ得るすべての異性体(幾何異性体、光学異性体、互変異性体など)も含有し、異性体単体、またはそれらの混合物も含有する。
 また、本発明の化合物(I)の薬学的に許容される塩としては、塩酸、硫酸、炭酸、リン酸等との無機酸塩、フマル酸、マレイン酸、メタンスルホン酸、p-トルエンスルホン酸等との有機酸塩等が挙げられる。また、ナトリウム、カリウム等とのアルカリ金属塩、マグネシウム、カルシウム等とのアルカリ土類金属塩、トリエチルアミン、エタノールアミン等との有機アミン塩、リジン、アルギニン、オルニチン等との塩基性アミノ酸塩の他、アンモニウム塩等も本発明に包含される。
 また、「本発明の化合物(I)」と記載する場合には、特に断りの無い限り、プロドラッグも包含される。
 本発明の化合物(I)およびその薬学的に許容される塩は、例えば以下の方法によって製造することができる。なお、以下に示した製造法において、定義した基が実施方法の条件下で変化するか、または当該方法を実施するのに不向きな場合、有機合成化学で通常用いられる方法、例えば、官能基の保護、脱保護[T.W.Greene,Protective Groups in Organic Synthesis 3rd Edition, John Wiley&Sons,Inc.,1999]等の手段を付すことにより容易に製造することができる。また、必要に応じて置換基導入等の反応工程の順序を変えることもできる。
 以下の説明で使用される略語、記号の意味は次の通りである。
DCM : ジクロロメタン
THF : テトラヒドロフラン
DIEA : N,N-ジイソプロピルエチルアミン
DMF : ジメチルホルムアミド
DMSO : ジメチルスルホキシド
Pd(PPh:テトラキス(トリフェニルホスフィン)パラジウム(0)
[本発明の化合物(I)の製法]
 式(I)で表される本発明の化合物は、例えばスキーム1によって製造することができる。
[スキーム1]
Figure JPOXMLDOC01-appb-C000011
(式中、RおよびQは前記と同義であり、Wはボロニル基またはボロン酸エステル基を表す。)
 本発明の化合物(I)は、化合物(II)と化合物(III)を用いて鈴木カップリング反応などのクロスカップリング反応により製造することができる(例えば、鈴木カップリング反応の条件については公知文献(N.Miyaura,et al,J.Am.Chem.Soc.,107,972(1985).,N.Miyaura,A.Suzuki,Chem.Rev.95,2457(1995))などを参照)。すなわち、パラジウムやニッケルなどの金属触媒の存在下、必要に応じて塩基および添加剤を使用して実施することができる。
 反応に用いる溶媒としてはTHF、ジオキサン、トルエン、ジメトキシエタン、メタノール、エタノール、アセトニトリルなどが挙げられる。また、これらの溶媒を2種以上混合して、或いはそれらを更に水と混合して用いても好適である。好ましくは、THFと水の混合溶媒、トルエンとメタノールおよび水との混合溶媒、またはジオキサンである。
 化合物(II)は化合物(III)に対し等量または過剰量用いることが好ましく、より好ましくは1当量から5当量である。必要に応じて反応を加速させるために塩基を添加してもよく、塩基としては炭酸ナトリウム、炭酸セシウム、炭酸カリウムなどが通常用いられる。使用する塩基の用量は化合物(III)に対し1当量から10当量が挙げられ、好ましくは1当量から5当量である。金属触媒としては、クロスカップリングに用いられている市販で入手容易なパラジウム触媒(例えば、PdCl(dppf)、Pd(dba)、Pd(PPhなど)を用いることができ、化合物(III)に対して触媒量、すなわち0.1当量から0.5当量を添加することが好ましい。
 反応を加速させるために必要に応じて添加剤を加えることができ、例えば、添加剤としrac-BINAPなどが挙げられ、化合物(III)に対して0.01当量から1当量用いることができる。反応は0℃から200℃の間で数分間から数日間、好ましくは10℃から100℃の間で、1時間から36時間反応させることにより合成することができる。もしくは、マイクロウェーブ合成装置を用い、例えば60℃から150℃の温度条件下で、数分から数時間反応させることによっても合成することができる。
 また、化合物(II)および(III)は、有機合成化学で通常用いられる手法を用い、必要に応じて官能基の保護をおこない、カップリング反応後に脱保護することでも、本発明の化合物(I)を得ることができる。
 また、スキーム1の原料として用いられる化合物(II)は、例えば特許文献2に記載の方法によって製造することができる。
 スキーム1の原料として用いられる化合物(III)のうちQの構造が(a)である化合物(III-a)は、例えばスキーム2に表す方法によって製造することができる。
[スキーム2]
Figure JPOXMLDOC01-appb-C000012
(式中、R、Rは前記と同義であり、Xはハロゲンを表す。)
 化合物(III-a)は、2,4-ジアミノ-6-ヒドロキシピリミジンと化合物(IV)を環化縮合させ、続くオキシ塩化リンによる塩素化反応により得られる。すなわち、化合物(V)は、2,4-ジアミノ-6-ヒドロキシピリミジンと1~5モル当量、好ましくは1~1.5モル当量の化合物(IV)を極性溶媒中、必要に応じて塩基触媒存在下、反応させることにより得られる。
 溶媒は反応に不活性なものであればいずれでもよく、特に限定されるものではないが、好ましくは水およびDMFを用いることができる。反応温度は、通常0℃から200℃、好ましくは室温から150℃である。反応時間は特に限定されないが、通常、0.2時間から48時間が例示され、1時間から24時間が好ましい例として挙げられる。
 化合物(III-a)は、化合物(V)と1~50モル当量、好ましくは5~20モル当量のオキシ塩化リンと反応させることにより得られる。反応温度は、通常室温から200℃、好ましくは50℃から150℃である。反応時間は特に限定されないが、通常、1時間から48時間が例示され、5時間から24時間が好ましい例として挙げられる。
 スキーム2の出発原料である2,4-ジアミノ-6-ヒドロキシピリミジンは市販品として、化合物(IV)は、市販品または公知の方法もしくはそれに準じた方法により得ることができる。
 スキーム1の原料として用いられる化合物(III)のうちQの構造が(b)である化合物(III-b)は、例えばスキーム3に表す方法によって製造することができる。
[スキーム3]
Figure JPOXMLDOC01-appb-C000013
(式中、Rは前記と同義である。)
 化合物(III-b)は、2,5,6-トリアミノピリミジン-4(3H)-オンと酸クロリド(VI)を縮合させ、続くオキシ塩化リンによる脱水環化反応および塩素化反応により得られる。すなわち、化合物(VII)は、2,5,6-トリアミノピリミジン-4(3H)-オンを塩基の存在下、溶媒中、1~10モル当量、好ましくは1~3モル当量の酸クロリド(VI)と反応させることにより得られる。
 塩基としてはDIEA、トリエチルアミン等の有機塩基および水酸化ナトリウム、炭酸カリウム等の無機塩基が通常用いられる。使用する塩基の用量は、酸クロリド(VI)に対し1当量から10当量が挙げられ、好ましくは1当量から5当量である。溶媒は反応に不活性なものであればいずれでもよく、特に限定されるものではないが、好ましくは水、DMFおよびTHFを用いることができる。反応温度は、通常-20℃から100℃、好ましくは0℃から80℃である。反応時間は特に限定されないが、通常、0.2時間から48時間が例示され、1時間から24時間が好ましい例として挙げられる。
 化合物(III-b)は、化合物(VII)と1~100モル当量、好ましくは10~50モル当量のオキシ塩化リンと反応させることにより得られる。反応温度は、通常室温から200℃、好ましくは50℃から150℃である。反応時間は特に限定されないが、通常、1時間から48時間が例示され、5時間から24時間が好ましい例として挙げられる。
 スキーム3の出発原料である2,5,6-トリアミノピリミジン-4(3H)-オンは市販品として、化合物(VI)は、市販品または公知の方法もしくはそれに準じた方法により得ることができる。
 スキーム1の原料として用いられる化合物(III)のうちQの構造が(c)である化合物(III-c)は、例えばスキーム4に表す方法によって製造することができる。
[スキーム4]
Figure JPOXMLDOC01-appb-C000014
(式中、RおよびXは前記と同義である。)
 化合物(III-c)は、2-アミノ-4,6-ジクロロピリミジン-5-カルバルデヒドとRMgXを縮合させ、続く酸化反応およびヒドラジン一水和物による環化反応により得られる。すなわち、化合物(VIII)は、2-アミノ-4,6-ジクロロピリミジン-5-カルバルデヒドと1~10モル当量、好ましくは1~5モル当量のRMgXと溶媒中、反応させることにより得られる。
 溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、好ましくはTHFを用いることができる。反応温度は、通常-100℃から-30℃、好ましくは-80℃から-60℃である。反応時間は特に限定されないが、通常、0.1時間から12時間が例示され、0.2時間から6時間が好ましい例として挙げられる。
 化合物(IX)は、化合物(VIII)を1~50モル当量、好ましくは2~20モル当量の酸化剤にて酸化させることにより得られる。酸化剤としては酸化クロム(VI)、二酸化マンガン等の金属性酸化剤およびデス-マーチンペルヨージナン等の超原子価ヨウ素酸化剤などが使用できる。溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、好ましくはアセトン、DCMおよび1,2-ジクロロエタンを用いることができる。反応温度は、通常-20℃から100℃、好ましくは0℃から80℃である。反応時間は特に限定されないが、通常、0.2時間から24時間が例示され、1時間から12時間が好ましい例として挙げられる。
 化合物(III-c)は、化合物(IX)を必要に応じて塩基触媒存在下、溶媒中、1~10モル当量、好ましくは1~5モル当量のヒドラジン一水和物と反応させることにより得られる。溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、好ましくは1,4-ジオキサンおよびTHFを用いることができる。反応温度は、通常0℃から100℃、好ましくは室温から60℃である。反応時間は特に限定されないが、通常、0.2時間から48時間が例示され、0.5時間から24時間が好ましい例として挙げられる。
 スキーム4の出発原料である2-アミノ-4,6-ジクロロピリミジン-5-カルバルデヒドは市販品として、RMgXは、市販品または公知の方法もしくはそれに準じた方法により得ることができる。
 スキーム1の原料として用いられる化合物(III)のうちQの構造が(a)でありかつRが水素原子である化合物(III-a’)は、例えばスキーム5に表す方法によって製造することができる。
[スキーム5]
Figure JPOXMLDOC01-appb-C000015
(式中、Rは前記と同義であり、PGは保護基、Yは臭素原子、ヨウ素原子またはトリフルオロメタンスルホニル基を表す。)
 化合物(III-a’)は、ジアミノピリミジン(X)と化合物(XI)の薗頭カップリング反応により得られる化合物(XII)を、塩基によって環化反応させることにより得られる。
具体的には、化合物(XII)は、ジアミノピリミジン(X)と1~10モル当量、好ましくは2~5モル当量の化合物(XI)を極性溶媒中、ヨウ化銅とパラジウム触媒および塩基存在下、反応させた後、水酸化ナトリウム水溶液およびフッ化テトラ-n-ブチルアンモニウムで処理することにより得られる。
 使用するヨウ化銅の用量は、ジアミノピリミジン(X)に対し0.01当量から2当量が挙げられ、好ましくは0.05当量から0.5当量である。パラジウム触媒としてはPd(PPh、PdCl(PPh等の0価パラジウム触媒が通常用いられる。使用するパラジウム触媒の用量は、ジアミノピリミジン(X)に対し0.01当量から2当量が挙げられ、好ましくは0.05当量から0.5当量である。塩基としてはDIEA、トリエチルアミン等の有機塩基が通常用いられる。使用する塩基の用量は、ジアミノピリミジン(X)に対し1当量から10当量が挙げられ、好ましくは1当量から5当量である。溶媒は反応に不活性なものであればいずれでもよく、特に限定されるものではないが、好ましくは1,4-ジオキサンおよびDMFを用いることができる。反応温度は、通常0℃から200℃、好ましくは室温から80℃である。反応時間は特に限定されないが、通常、0.2時間から5時間が例示され、0.5時間から2時間が好ましい例として挙げられる。
化合物(III-a’)は、化合物(XII)を1~50モル当量、好ましくは2~20モル当量の塩基にて環化反応させることにより得られる。塩基としてはカリウムtert-ブトキシド、炭酸セシウムなどが使用できる。溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、好ましくはN-メチルピロリドン、1,4-ジオキサンおよびDMFを用いることができる。反応温度は、通常-20℃から100℃、好ましくは0℃から80℃である。反応時間は特に限定されないが、通常、0.2時間から10時間が例示され、0.5時間から2時間が好ましい例として挙げられる。
またスキーム5の化合物(XII)は、ジアミノピリミジン(X)と末端保護アセチレンとの薗頭カップリング反応と脱保護反応により得た化合物(XIII)に、さらに化合物(XIV)を薗頭カップリング反応によりRを導入することでも合成できる。
すなわち、化合物(XIII)は、ジアミノピリミジン(X)と1~10モル当量、好ましくは2~5モル当量のトリメチルシリルアセチレンなどの末端保護アセチレンを極性溶媒中、ヨウ化銅とパラジウム触媒および塩基存在下、反応させた後、水酸化ナトリウム水溶液およびフッ化テトラ-n-ブチルアンモニウムで処理することにより得られる。
 使用するヨウ化銅の用量は、ジアミノピリミジン(X)に対し0.01当量から2当量が挙げられ、好ましくは0.05当量から0.5当量である。パラジウム触媒としてはPd(PPh、PdCl(PPh等の0価パラジウム触媒が通常用いられる。使用するパラジウム触媒の用量は、ジアミノピリミジン(X)に対し0.01当量から2当量が挙げられ、好ましくは0.05当量から0.5当量である。塩基としてはDIEA、トリエチルアミン等の有機塩基が通常用いられる。使用する塩基の用量は、ジアミノピリミジン(X)に対し1当量から10当量が挙げられ、好ましくは1当量から5当量である。溶媒は反応に不活性なものであればいずれでもよく、特に限定されるものではないが、好ましくは1,4-ジオキサンおよびDMFを用いることができる。反応温度は、通常0℃から200℃、好ましくは室温から80℃である。反応時間は特に限定されないが、通常、0.2時間から5時間が例示され、0.5時間から2時間が好ましい例として挙げられる。
 化合物(XII)は、化合物(XIII)と1~10モル当量、好ましくは1~5モル当量の化合物(XIV)を極性溶媒中、ヨウ化銅とパラジウム触媒および塩基存在下、反応させることにより得られる。使用するヨウ化銅の用量は、化合物(XIII)に対し0.01当量から2当量が挙げられ、好ましくは0.05当量から0.5当量である。パラジウム触媒としてはPd(PPh、PdCl(PPh等の0価パラジウム触媒が通常用いられる。使用するパラジウム触媒の用量は、化合物(XIII)に対し0.01当量から2当量が挙げられ、好ましくは0.05当量から0.5当量である。塩基としてはDIEA、トリエチルアミン等の有機塩基が通常用いられる。使用する塩基の用量は、化合物(XIII)に対し1当量から10当量が挙げられ、好ましくは1当量から5当量である。溶媒は反応に不活性なものであればいずれでもよく、特に限定されるものではないが、好ましくは1,4-ジオキサンおよびDMFを用いることができる。反応温度は、通常0℃から200℃、好ましくは室温から120℃である。反応時間は特に限定されないが、通常、0.2時間から5時間が例示され、0.5時間から2時間が好ましい例として挙げられる。
 スキーム5の出発原料であるジアミノピリミジン(X)、末端保護アセチレン(XI)、および化合物(XIV)は、市販品または公知の方法もしくはそれに準じた方法により得ることができる。
 上記スキーム中、Wで示されるボロニル基は、アルカリ金属やアルカリ土類金属の塩の形でもよく、またボロン酸エステル基の具体例としては、ボロン酸ジメチルエステル基、ボロン酸ジエチルエステル基、ボロン酸ジブチルエステル基、ボロン酸ジシクロヘキシル基、ボロン酸エチレングリコールエステル基、ボロン酸プロピレングリコールエステル基(ボロン酸1,2-プロパンジオールエステル基、ボロン酸1,3-プロパンジオールエステル基)、ボロン酸ネオペンチルグリコールエステル基、ボロン酸カテコールエステル基、ボロン酸グリセリンエステル基、ボロン酸トリメチロールエタンエステル基、ボロン酸ジエタノールアミンエステル基、ボロン酸トリエタノールアミンエステル基等のボロン酸エステル基;ボロン酸無水物基等が挙げられる。
 なお、上記の方法を適宜組み合わせ、有機合成化学で通常用いられる方法(例えば、アミノ基のアルキル化反応、アルキルチオ基をスルホキシド基もしくはスルホン基へ酸化する反応、アルコキシ基をヒドロキシル基、もしくはその逆へ変換する反応)を実施することにより、所望の位置に所望の官能基を有する本発明の化合物(I)を得ることができる。
[本発明の化合物(I)の用途]
 本発明の化合物(I)、またはその薬学的に許容される塩は、経口投与、非経口投与または局所的投与に適した従来の薬学製剤(医薬組成物)の形態に調製することができる。
 経口投与のための製剤は、錠剤、顆粒、粉末、カプセルなどの固形剤、およびシロップなどの液体製剤を含む。これらの製剤は従来の方法によって調製することができる。固形剤は、ラクトース、コーンスターチなどのデンプン、微結晶性セルロースなどの結晶セルロース、ヒドロキシプロピルセルロース、カルシウムカルボキシメチルセルロース、タルク、ステアリン酸マグネシウムなどのような従来の薬学的担体を用いることによって調製することができる。カプセルは、このように調製した顆粒または粉末をカプセルに包むことによって調製することができる。シロップは、ショ糖、カルボキシメチルセルロースなどを含む水溶液中で、本発明の化合物(I)またはその薬学的に許容される塩を溶解または懸濁することによって調製することができる。
 非経口投与のための製剤は、点滴注入などの注入物を含む。注入製剤もまた従来の方法によって調製することができ、等張化剤(例えば、マンニトール、塩化ナトリウム、グルコース、ソルビトール、グリセロール、キシリトール、フルクトース、マルトース、マンノース)、安定化剤(例えば、亜硫酸ナトリウム、アルブミン)、防腐剤(例えば、ベンジルアルコール、p-オキシ安息香酸メチル)中に適宜組み入れることができる。
 本発明の化合物(I)、またはその薬学的に許容される塩の用量は、疾患の重症度、患者の年齢および体重、投薬形態などに従って変化させることができるが、通常は成人において1日あたり1mg~1,000mgの範囲であり、それは経口経路または非経口経路によって、1回、または2回もしくは3回に分割して投与することができる。
 また、本発明の化合物(I)またはその薬学的に許容される塩は、BTK阻害剤として、実験用、研究用の試薬として用いることもできる。
 以下に実施例および試験例などを挙げて本発明をさらに具体的に説明するが、これらの実施例により本発明が限定されるものではない。
 化合物の同定は水素核磁気共鳴スペクトル(1H-NMR)およびマススペクトル(MS)により行った。1H-NMRは、特に指示のないかぎりは400MHzもしくは500MHzで測定されたものであり、また化合物および測定条件によっては交換性水素が明瞭に観測されない場合がある。なお、br.は幅広いシグナル(ブロード)を意味する。
 HPLC分取クロマトグラフィーは、市販のODSカラムを用い、特に記載のない限りは水/メタノール(ギ酸を含む)もしくは水/アセトニトリル(炭酸水素アンモニウムを含む)を溶出液としてグラジェントモードにて分取した。
実施例1
 2-[3-(2-アミノ-6-フェニル-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン
Figure JPOXMLDOC01-appb-C000016
(第1工程)
 2,4-ジアミノ-6-ヒドロキシピリミジン(1.0g,7.93mmol)の水溶液(20mL)に、酢酸ナトリウム(0.65g,7.93mmol)を加え、100℃で1時間加熱撹拌したのち、2-ブロモアセトフェノン(1.89g,9.51mmol)を加え、100℃で8時間加熱撹拌した。析出した固体を濾取し、粗生成物として2-アミノ-6-フェニル-7H-ピロロ[2,3-d]ピリミジン-4-オール(1.5g)を得た。
LCMS (m/z): 227.11 [M+H] +
(第2工程)
 2-アミノ-6-フェニル-7H-ピロロ[2,3-d]ピリミジン-4-オール(1.5g,6.64mmol)とピバル酸無水物(5mL)の混合物を190℃で5時間加熱撹拌した。反応混合物にn-ペンタンを加え、室温で30分間撹拌した。析出した固体を濾取し、粗生成物としてN-(4-ヒドロキシ-6-フェニル-7H-ピロロ[2,3-d]ピリミジン-2-イル)ピバルアミド(1.4g)を得た。
LCMS (m/z): 311.33 [M+H] +
(第3工程)
 N-(4-ヒドロキシ-6-フェニル-7H-ピロロ[2,3-d]ピリミジン-2-イル)ピバルアミド(1.4g,4.52mmol)とオキシ塩化リン(5mL)の混合物を100℃で10時間加熱撹拌した。過剰のオキシ塩化リンを減圧留去し、得られた残渣に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。得られた有機層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、得られた残渣をカラムクロマトグラフィー(シリカゲル、石油エーテル/酢酸エチル)で精製し、N-(4-クロロ-6-フェニル-7H-ピロロ[2,3-d]ピリミジン-2-イル)ピバルアミド(0.4g)を得た。
1H NMR (500MHz, DMSO-d6) δ = 12.93 (s, 1H), 10.06 (s, 1H), 7.99 - 7.97 (m, 2H), 7.53 - 7.47 (m, 2H), 7.41 - 7.38 (m, 1H), 7.04 (d, J = 2.0 Hz, 1H), 1.25 (s, 9H);LCMS (m/z): 329.26 [M+H]+.
(第4工程)
 酢酸 2-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)-6-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンジル(0.392g,0.82mmol)およびN-(4-クロロ-6-フェニル-7H-ピロロ[2,3-d]ピリミジン-2-イル)ピバルアミド(0.27g,0.82mmol)、炭酸カリウム(0.227g,1.65mmol)にDME-水混合溶液(5:1,12mL)を加え、アルゴンガス雰囲気下、30分間脱気をおこなった。Pd(PPh(95mg,0.08mmol)を加え、マイクロウェーブ反応装置を用いて100℃で10分間反応させた。反応溶液をセライトろ過し、ろ液に水を加え、酢酸エチルで抽出した。得られた有機層を、水および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去して酢酸 2-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)-6-(6-フェニル-2-ピバルアミド-7H-ピロロ[2,3-d]ピリミジン-4-イル)ベンジルの粗生成物を得た。得られた粗生成物をメタノール(2mL)に溶解し、5%水酸化ナトリウム水溶液を加え、70℃で30分間撹拌した。溶媒を減圧留去し、得られた残渣をHPLC分取クロマトグラフィーにて精製し、標記化合物(35mg)を得た。
1H NMR (400 MHz, DMSO-d6) δ 11.89 (s, 1H), 7.91 - 7.83 (m, 2H), 7.80 (dd, J = 7.7, 1.3 Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H), 7.52 - 7.33 (m, 4H), 7.34 - 7.25 (m, 2H), 7.00 (dd, J = 13.3, 1.7 Hz, 1H), 6.76 (s, 1H), 6.63 (dd, J = 7.5, 2.1 Hz, 1H), 6.42 (s, 2H), 5.18 (s, 1H), 4.33 - 4.25 (m, 1H), 4.12 - 4.04 (m, 1H), 2.14 - 2.02 (m, 1H), 1.15 - 1.01 (m, 2H), 0.96 - 0.81 (m, 2H);LCMS (m/z): 518.42 [M+H] +
実施例2
 2-[3-(2-アミノ-8-フェニル-9H-プリン-6-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン
Figure JPOXMLDOC01-appb-C000017
(第1工程)
 氷冷下、2M水酸化ナトリウム水溶液(25mL)に2,5,6-トリアミノピリミジン-4(3H)-オン(1g,7.092mmol)および塩化ベンゾイル(1.63mL,14.18mmol)を加え、1時間撹拌した。反応混合物に酢酸をpH5になるまで加え、析出した固体をろ取して、N-(2,4-ジアミノ-6-ヒドロキシピリミジン-5-イル)ベンズアミド(1.7g)を得た。
1H NMR (400MHz, DMSO-d6) δ 10.07 (s, 1H), 8.74 (s, 1H), 7.96 - 7.92 (m, 2H), 7.53 - 7.43 (m, 3H), 6.18 (br. s, 2H), 5.79 (br. s, 2H);LCMS (m/z): 246.08 [M+H] +
(第2工程)
 N-(2,4-ジアミノ-6-ヒドロキシピリミジン-5-イル)ベンズアミド(2.5g,10.2mmol)とオキシ塩化リン(50mL)の混合物を還流下で24時間撹拌した。過剰のオキシ塩化リンを減圧留去し、得られた残渣にアンモニア水溶液を加えアルカリ性にし、10%メタノール―DCMで抽出した。得られた有機層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、得られた残渣をカラムクロマトグラフィー(シリカゲル、DCM/メタノール)で精製し、6-クロロ-8-フェニル-9H-プリン-2-アミン(0.25g)を得た。
LCMS (m/z): 245.87 [M+H] +
(第3工程)
 酢酸 2-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)-6-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンジル(0.25g,0.52mmol)、6-クロロ-8-フェニル-9H-プリン-2-アミン(0.128g,0.524mmol)および炭酸カリウム(0.216g,1.57mmol)にDME-水混合溶液(3:1,13mL)を加え、アルゴンガス雰囲気下、30分間脱気をおこなった。Pd(PPh(60mg,0.05mmol)を加え、マイクロウェーブ反応装置を用いて110℃で30分間反応させた。反応溶液を酢酸エチルで希釈し、水および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、得られた残渣をHPLC分取クロマトグラフィーにて精製し、標記化合物(12mg)を得た。
1H NMR (500MHz, DMSO-d6) δ 13.30 (s, 1H), 8.07 (d, J = 6.7 Hz, 2H), 7.91 (d, J = 7.0 Hz, 1H), 7.63 (t, J = 7.8 Hz, 1H), 7.54 - 7.48 (m, 4H), 7.41 (d, J = 7.3 Hz, 1H), 7.28 (d, J = 1.2 Hz, 1H), 7.00 (d, J = 13.1 Hz, 1H), 6.68 (br. s, 2H), 6.63 (dd, J = 1.5, 7.3 Hz, 1H), 5.49 (br. s, 1H), 4.36 (d, J = 9.5 Hz, 1H), 4.13 - 4.09 (m, 1H), 2.10 - 2.05 (m, 1H), 1.12 - 1.08 (m, 2H), 0.89 - 0.86 (m, 2H);LCMS (m/z): 519.39 [M+H] +
実施例3
 2-[3-(6-アミノ-3-フェニル-1H-ピラゾロ[3,4-d]ピリミジン-4-イル)-2-(ヒドロキシメチル)フェニル]-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン
Figure JPOXMLDOC01-appb-C000018
(第1工程)
 2-アミノ-4,6-ジクロロピリミジン-5-カルバルデヒド(1.0g,5.2mmol)のTHF溶液(100mL)に、フェニルマグネシウムブロミド(1M THF溶液,26mL,26mmol)を-78℃でゆっくり加え、2時間攪拌した。反応混合物に飽和塩化アンモニウム水溶液を加え、セライトろ過した。ろ液を10%メタノール―DCMで抽出した。得られた有機層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、得られた残渣をカラムクロマトグラフィー(シリカゲル、石油エーテル/酢酸エチル)で精製し、(2-アミノ-4,6-ジクロロピリミジン-5-イル)(フェニル)メタノール(0.6g)を得た。
1H NMR (400MHz, DMSO-d6) δ = 7.52 (br. s, 2H), 7.33 - 7.30 (m, 4H), 7.26 - 7.18 (m, 1H), 6.20 (d, J = 4.4 Hz, 1H), 6.03 (d, J = 4.9 Hz, 1H);LCMS (m/z): 270.05 [M+H]+.
(第2工程)
 氷冷下、(2-アミノ-4,6-ジクロロピリミジン-5-イル)(フェニル)メタノール(0.6g,2.2mmol)の1,2-ジクロロエタン溶液(15mL)に、二酸化マンガン(3.88g,44.6mmol)を加え、80℃で3時間攪拌した。反応溶液をセライトろ過し、溶媒を減圧留去して(2-アミノ-4,6-ジクロロピリミジン-5-イル)(フェニル)メタノン(0.5g)を得た。
1H NMR (400MHz, DMSO-d6) δ 7.97 - 7.92 (m, 4H), 7.75 - 7.72 (m, 1H), 7.60 - 7.56 (m, 2H);LCMS (m/z): 267.94 [M+H] +
(第3工程)
 (2-アミノ-4,6-ジクロロピリミジン-5-イル)(フェニル)メタノン(0.5g,1.87mmol)のTHF溶液(15mL)に、ヒドラジン一水和物(0.1mL,1.87mmol)を加え、室温で16時間攪拌した。反応溶液の溶媒を減圧留去し、得られた残渣に水を加え、析出した固体をろ取して、4-クロロ-3-フェニル-1H-ピラゾロ[3,4-d]ピリミジン-6-アミン(0.35g)を得た。
1H NMR (400MHz, DMSO-d6) δ 13.38 (br. s, 1H), 7.70 - 7.68 (m, 2H), 7.50 - 7.44 (m, 3H), 7.18 (br. s, 2H);LCMS (m/z): 246.1 [M+H] +
(第4工程)
 酢酸 2-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)-6-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンジル(0.193g,0.4mmol)、4-クロロ-3-フェニル-1H-ピラゾロ[3,4-d]ピリミジン-6-アミン(0.1g,0.4mmol)および炭酸カリウム(0.11g,0.8mmol)にDME-水混合溶液(4:1,10mL)を加え、アルゴンガス雰囲気下、30分間脱気をおこなった。Pd(PPh(23mg,0.02mmol)を加え、マイクロウェーブ反応装置を用いて110℃で15分間反応させた。反応溶液に水を加え、析出した固体をろ取して、酢酸 2-(6-アミノ-3-フェニル-1H-ピラゾロ[3,4-d]ピリミジン-4-イル)-6-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)ベンジル(0.3g)の粗生成物を得た。得られた粗生成物をメタノール(20mL)に溶解し、炭酸カリウム(0.4g)を加え、室温で16時間撹拌した。溶媒を減圧留去し、得られた残渣に水を加え析出した固体をろ取して、固体をHPLC分取クロマトグラフィーにて精製し、標記化合物(45mg)を得た。
1H NMR (400MHz, DMSO-d6) δ 13.18 (br. s, 1H), 7.28 - 6.94 (m, 13H), 6.61 (d, J = 5.9 Hz, 1H), 4.69 (br. s, 1H), 4.49 - 4.12 (m, 2H), 2.11 - 2.04 (m, 1H), 1.12 - 1.07 (m, 2H), 0.89 - 0.85 (m, 2H);LCMS (m/z): 519.39 [M+H] +
実施例4~22、24~93
以下の実施例化合物[表1-1]および[表1-2]は、それぞれ対応する原料(市販品、または市販化合物から公知の方法もしくはそれに準じた方法により誘導体化した化合物)を用い、上述の実施例記載の方法に従い、必要に応じて、有機合成化学で通常用いられる方法を適宜組み合わせて製造した。
また、各々の化合物の物理化学データを[表2-1]および[表2-2]に示した。
Figure JPOXMLDOC01-appb-T000019


Figure JPOXMLDOC01-appb-I000020

Figure JPOXMLDOC01-appb-I000021

Figure JPOXMLDOC01-appb-I000022
実施例23
 2-(3-{2-アミノ-6-[1-(オキセタン-3-イル)-1,2,3,6-テトラヒドロピリジン-4-イル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-2-(ヒドロキシメチル)フェニル)-6-シクロプロピル-8-フルオロイソキノリン-1(2H)-オン
Figure JPOXMLDOC01-appb-C000023
(第1工程)
 6-クロロ-5-ヨードピリミジン-2,4-ジアミン(7.1g,26.3mmol)のDMF溶液(52.5mL)に、ヨウ化銅(0.25g,1.31mmol)、PdCl(PPh(0.92g,1.31mmol)、トリメチルシリルアセチレン(3.87g,39.4mmol)、トリエチルアミン(7.32mL,52.5mmol)を加え、45℃で30分間加熱撹拌した。トリメチルシリルアセチレン(3.87g,39.4mmol)を反応液に追加し、さらに45℃で30分間加熱撹拌した。反応溶液に水を加え、酢酸エチルで抽出した。得られた有機層を、水および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去して得られた残渣をフラッシュクロマトグラフィーで精製し、6-クロロ-5-((トリメチルシリル)エチニル)ピリミジン-2,4-ジアミン(6.3g)を得た。
1H NMR (400 MHz, DMSO-d6) δ 6.78 (s, 2H), 0.21 (s, 9H);LCMS (m/z): 241.14 [M+H]+.
(第2工程)
6-クロロ-5-((トリメチルシリル)エチニル)ピリミジン-2,4-ジアミン(7.0g,29.1mmol)のTHF溶液(291mL)に、0.1M水酸化ナトリウム水溶液(58.1mL,5.81mmol)を加え、室温で1時間撹拌した。反応溶液に水を加え、酢酸エチルで抽出した。得られた有機層を、水および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去して6-クロロ-5-エチニルピリミジン-2,4-ジアミン(4.85g)を得た。
1H NMR (400 MHz, DMSO-d6) δ 6.75 (s, 2H), 4.50 (s, 1H);LCMS (m/z): 169.01 [M+H]+.
(第3工程)
 6-クロロ-5-エチニルピリミジン-2,4-ジアミン(3.8g,22.5mmol)のDMF溶液(225mL)に、ヨウ化銅(0.215g,1.13mmol)、PdCl(PPh(1.58g,2.25mmol)、4-{[(トリフルオロメチル)スルホニル]オキシ}-5,6-ジヒドロピリジン-1(2H)-カルボン酸 tert-ブチル(7.47g,22.5mmol)、トリエチルアミン(6.28mL,45.1mmol)を加え、90℃で30分間加熱撹拌した。反応溶液に水を加え、酢酸エチルで抽出した。得られた有機層を、水および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去して得られた残渣をフラッシュクロマトグラフィーにて精製し、4-[(2,4-ジアミノ-6-クロロピリミジン-5-イル)エチニル]-5,6-ジヒドロピリジン-1(2H)-カルボン酸 tert-ブチル(4.92g)を得た。
1H NMR (400 MHz, DMSO-d6) δ 6.73 (s, 2H), 6.14 (s, 1H), 3.97 - 3.90 (m, 2H), 3.44 (t, J = 5.7 Hz, 2H), 2.28 - 2.24 (m, 2H), 1.41 (s, 9H);LCMS (m/z): 350.13 [M+H]+.
(第4工程)
 4-[(2,4-ジアミノ-6-クロロピリミジン-5-イル)エチニル]-5,6-ジヒドロピリジン-1(2H)-カルボン酸 tert-ブチル(4.9g,14mmol)のN-メチルピロリドン溶液(140mL)に、カリウム tert-ブトキシド(4.72g,42mmol)を加え、室温で1時間撹拌した。反応溶液に水を加え、酢酸エチルで抽出した。得られた有機層を、水および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去して得られた残渣をフラッシュクロマトグラフィーにて精製し、4-(2-アミノ-4-クロロ-7H-ピロロ[2,3-d]ピリミジン-6-イル)-5,6-ジヒドロピリジン-1(2H)-カルボン酸 tert-ブチル(2.93g)を得た。
1H NMR (400 MHz, DMSO-d6) δ 11.73 - 11.55 (m, 1H), 6.57 (s, 2H), 6.32 (s, 1H), 6.29 - 6.16 (m, 1H), 4.14 - 3.90 (m, 2H), 3.61 - 3.43 (m, 2H), 2.49 - 2.35 (m, 2H), 1.42 (s, 9H);LCMS (m/z): 350.18 [M+H]+.
(第5工程)
 酢酸 2-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)-6-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンジル(3.96g,8.29mmol)、4-(2-アミノ-4-クロロ-7H-ピロロ[2,3-d]ピリミジン-6-イル)-5,6-ジヒドロピリジン-1(2H)-カルボン酸 tert-ブチル(2.9g,8.29mmol)およびリン酸三カリウム(3.52g,16.6mmol)にDMF-水混合溶液(5:1,165mL)を加え、窒素ガス雰囲気下、30分間脱気をおこなった。Pd(PPh(0.96g,0.829mmol)を加え、110℃で20分間加熱撹拌した。反応溶液を酢酸エチルで希釈し、水および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、粗生成物として4-{4-[2-(アセトキシメチル)-3-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)フェニル]-2-アミノ-7H-ピロロ[2,3-d]ピリミジン-6-イル}-5,6-ジヒドロピリジン-1(2H)-カルボン酸 tert-ブチル(5.43g)を得た。
LCMS (m/z): 665.37 [M+H]+.
(第6工程)
 4-{4-[2-(アセトキシメチル)-3-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)フェニル]-2-アミノ-7H-ピロロ[2,3-d]ピリミジン-6-イル}-5,6-ジヒドロピリジン-1(2H)-カルボン酸 tert-ブチル(3.54g,5.33mmol)のTHF溶液(53mL)に、トリエチルアミン(4.45mL,32mmol)と塩化アセチル(1.89mL,26.6mmol)を加え、室温で1時間撹拌した。反応溶液に水を加え、酢酸エチルで抽出した。得られた有機層を、水、1M水酸化ナトリウム水溶液および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、粗生成物として4-{2-アセトアミド-4-[2-(アセトキシメチル)-3-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)フェニル]-7H-ピロロ[2,3-d]ピリミジン-6-イル}-5,6-ジヒドロピリジン-1(2H)-カルボン酸 tert-ブチル(5.44g)を得た。
LCMS (m/z): 707.43 [M+H]+.
(第7工程)
 4-{2-アセトアミド-4-[2-(アセトキシメチル)-3-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)フェニル]-7H-ピロロ[2,3-d]ピリミジン-6-イル}-5,6-ジヒドロピリジン-1(2H)-カルボン酸 tert-ブチル(6.66g,9.42mmol)のDCM溶液(150mL)に4M塩酸1,4-ジオキサン溶液(50mL)を加え、室温で6時間撹拌した。反応溶液に4M水酸化ナトリウム水溶液(50mL)、水を加え、クロロホルムで抽出した。得られた有機層を、水および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去して得られた残渣をフラッシュクロマトグラフィーにて精製し、酢酸 2-[2-アセトアミド-6-(1,2,3,6-テトラヒドロピリジン-4-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-6-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)ベンジル(2.66g)を得た。
1H NMR (400 MHz, DMSO-d6) δ 12.47 (s, 1H), 10.53 (s, 1H), 7.77 - 7.66 (m, 2H), 7.54 (dd, J = 6.8, 2.4 Hz, 1H), 7.40 (d, J = 7.4 Hz, 1H), 7.28 (d, J = 1.7 Hz, 1H), 7.00 (dd, J = 13.3, 1.7 Hz, 1H), 6.64 (dd, J = 7.5, 2.1 Hz, 1H), 6.57 - 6.50 (m, 1H), 6.41 (s, 1H), 5.21 (d, J = 12.6 Hz, 1H), 4.99 (d, J = 12.6 Hz, 1H), 3.71 - 3.66 (m, 2H), 3.18 (t, J = 6.0 Hz, 2H), 2.62 - 2.57 (m, 2H), 2.15 (s, 3H), 2.13 - 2.02 (m, 1H), 1.51 (s, 3H), 1.15 - 1.05 (m, 2H), 0.94 - 0.86 (m, 2H);LCMS (m/z): 607.31 [M+H]+.
(第8工程)
 酢酸 2-[2-アセトアミド-6-(1,2,3,6-テトラヒドロピリジン-4-イル)-7H-ピロロ[2,3-d]ピリミジン-4-イル]-6-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)ベンジル(2.1g,3.46mmol)のDCM溶液(69mL)にオキセタン-3-オン(1.25g,17.3mmol)およびナトリウムトリアセトキシボロヒドリド(3.67g,17.3mmol)を加え、室温で1時間撹拌した。オキセタン-3-オン(1.25g,17.3mmol)およびナトリウムトリアセトキシボロヒドリド(3.67g,17.3mmol)を反応液に追加し、さらに室温で1時間撹拌した。反応溶液に水を加え、酢酸エチルで抽出した。得られた有機層を、水、1M-水酸化ナトリウム水溶液および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、酢酸 2-{2-アセトアミド-6-[1-(オキセタン-3-イル)-1,2,3,6-テトラヒドロピリジン-4-イル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-6-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)ベンジル(2.29g)を得た。
1H NMR (400 MHz, DMSO-d6) δ 12.48 (s, 1H), 10.52 (s, 1H), 7.77 - 7.66 (m, 2H), 7.53 (dd, J = 7.0, 2.2 Hz, 1H), 7.44 - 7.35 (m, 1H), 7.28 (d, J = 1.7 Hz, 1H), 7.00 (dd, J = 13.3, 1.7 Hz, 1H), 6.63 (dd, J = 7.6, 2.1 Hz, 1H), 6.59 - 6.52 (m, 1H), 6.31 (s, 1H), 5.22 (d, J = 12.6 Hz, 1H), 4.99 (d, J = 12.6 Hz, 1H), 4.67 - 4.46 (m, 4H), 3.61 - 3.50 (m, 1H), 3.06 - 3.01 (m, 2H), 2.51 - 2.43 (m, 4H), 2.16 (s, 3H), 2.12 - 2.02 (m, 1H), 1.51 (s, 3H), 1.15 - 1.01 (m, 2H), 0.94 - 0.80 (m, 2H);LCMS (m/z): 663.37 [M+H]+.
(第9工程)
 酢酸 2-{2-アセトアミド-6-[1-(オキセタン-3-イル)-1,2,3,6-テトラヒドロピリジン-4-イル]-7H-ピロロ[2,3-d]ピリミジン-4-イル}-6-(6-シクロプロピル-8-フルオロ-1-オキソイソキノリン-2(1H)-イル)ベンジル(2.3g,3.47mmol)のメタノール溶液(100mL)に2M水酸化ナトリウム水溶液(50mL)を加え、70℃で2時間撹拌した。反応溶液に水を加え、酢酸エチルで抽出した。得られた有機層を、水および飽和食塩水で順に洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去して標記化合物(1.4g)を得た。
1H NMR (400 MHz, DMSO-d6) δ 11.52 (s, 1H), 7.72 (dd, J = 7.8, 1.3 Hz, 1H), 7.64 - 7.53 (m, 1H), 7.46 (dd, J = 7.8, 1.3 Hz, 1H), 7.37 (d, J = 7.4 Hz, 1H), 7.28 (d, J = 1.6 Hz, 1H), 6.99 (dd, J = 13.2, 1.7 Hz, 1H), 6.62 (dd, J = 7.4, 2.1 Hz, 1H), 6.41 (s, 2H), 6.38 - 6.32 (m, 1H), 6.27 - 6.18 (m, 1H), 5.20 (dd, J = 8.8, 4.5 Hz, 1H), 4.61 - 4.46 (m, 4H), 4.25 (dd, J = 12.0, 4.2 Hz, 1H), 4.06 (dd, J = 12.0, 8.8 Hz, 1H), 3.60 - 3.48 (m, 1H), 3.04 - 2.98 (m, 2H), 2.48 - 2.43 (m, 4H), 2.14 - 2.00 (m, 1H), 1.15 - 1.01 (m, 2H), 0.92 - 0.82 (m, 2H);LCMS (m/z): 579.60 [M+H]+.
Figure JPOXMLDOC01-appb-T000024


Figure JPOXMLDOC01-appb-I000025

Figure JPOXMLDOC01-appb-I000026

Figure JPOXMLDOC01-appb-I000027

Figure JPOXMLDOC01-appb-I000028

Figure JPOXMLDOC01-appb-I000029

Figure JPOXMLDOC01-appb-I000030

Figure JPOXMLDOC01-appb-I000031

Figure JPOXMLDOC01-appb-I000032

Figure JPOXMLDOC01-appb-I000033

Figure JPOXMLDOC01-appb-I000034

Figure JPOXMLDOC01-appb-I000035

Figure JPOXMLDOC01-appb-I000036
Figure JPOXMLDOC01-appb-T000037


Figure JPOXMLDOC01-appb-I000038

Figure JPOXMLDOC01-appb-I000039
Figure JPOXMLDOC01-appb-T000040


Figure JPOXMLDOC01-appb-I000041

Figure JPOXMLDOC01-appb-I000042

Figure JPOXMLDOC01-appb-I000043

Figure JPOXMLDOC01-appb-I000044

Figure JPOXMLDOC01-appb-I000045

Figure JPOXMLDOC01-appb-I000046

Figure JPOXMLDOC01-appb-I000047

Figure JPOXMLDOC01-appb-I000048

Figure JPOXMLDOC01-appb-I000049

Figure JPOXMLDOC01-appb-I000050

Figure JPOXMLDOC01-appb-I000051

Figure JPOXMLDOC01-appb-I000052
試験例1
BTKに対する活性阻害試験
(脱リン酸化BTKの調整)
 脱リン酸化BTKは、ビオチン化BTK蛋白質BTN-BTK(カルナバイオサイエンス社製)酵素溶液にλ protein phosphatase(New England BioLabs社製、Code No.P0753S)とMnClをそれぞれ10U/μg、2mMとなるように添加し、4℃で一晩反応させた後、抗DYKDDDDK-tag抗体アガロースゲルクロマトグラフィーによりλ protein phosphataseを除去したのち、10DG Desalting Columnを用いてバッファー交換を行うことによって得た。
(キナーゼ活性の測定方法)
 キナーゼ活性の測定は、QuickScout Screening Assist(商標) MSA(カルナバイオサイエンス社製市販キット)を用い、モビリティシフトアッセイ(MSA)法により行った。キナーゼ反応の基質は、キット付属のFITC標識SRCtideペプチドを用いた。アッセイバッファー[20mM HEPES、0.01% Triton X-100(商標)、2mM dithiothreitol、pH7.5]を用い、基質(4μM)、MgCl(20mM)、ATP(200μM)となるように調整し、基質混合液を作成した。また脱リン酸化BTKを0.46nMとなるようアッセイバッファーで希釈して酵素溶液を調製した。被験化合物の10mM DMSO溶液から、10濃度(0.00003mM、0.0001mM、0.0003mM、0.001mM、0.003mM、0.01mM、0.03mM、0.1mM、0.3mM、1mM)にDMSOでさらに希釈し、それぞれをアッセイバッファーで25倍希釈して、薬物溶液とした(4%DMSO溶液)。薬物溶液もしくはコントロール溶液(4%DMSO-アッセイバッファー)5μL、基質混合液5μL、および酵素溶液10μLをポリプロピレン製384穴プレートのウェル中で混合し、2時間室温で反応させた後、60μLのキット付属のターミネーションバッファーを添加し反応を停止させた。ついで、反応溶液中の基質(S)およびリン酸化された基質(P)の量をLabChip EZ Reader IIシステム(Caliper Life Sciences社製)を用い、アッセイキットのプロトコールに従って測定した。
(BTK阻害活性の評価方法)
 分離された基質およびリン酸化された基質の各ピークの高さをそれぞれSおよびPとし、またブランクとして酵素溶液の代わりにアッセイバッファーを添加したものを測定した。
被験化合物の阻害率(%)は、次の式に従って算出した。
阻害率(%)=(1-(C-A)/(B-A))×100
ただし、A、B、Cは、それぞれブランクウェルのP/(P+S)、コントロール溶液ウェルのP/(P+S)、化合物添加ウェルのP/(P+S)を示す。
 また、IC50値は、阻害率と被験化合物濃度(対数)の回帰分析により算出した。
(評価結果)
実施例の化合物群は、脱リン酸化BTKに対して10nM以下~100nM以下のIC50値を示したことから、本発明の化合物(I)が、強いBTK阻害活性を有することを示している。本発明の代表化合物の脱リン酸化BTKに対する阻害活性を表3に示す。BTK阻害活性は、IC50値が、0.01μM未満を***印、0.01μM以上0.1μM未満を**印、0.1μM以上1μM未満を*印で示した。
Figure JPOXMLDOC01-appb-T000053


Figure JPOXMLDOC01-appb-I000054
試験例2
細胞内BTKの自己リン酸化活性阻害試験
(使用する細胞の培養)
 Ramos細胞(2G6.4C10、ATCC社No.CRL-1923)は、T75フラスコ中、10%FBS(AusGene社)および1%ペニシリンストレプトマイシン(ナカライ社)を添加したRPMI-1640培地(GIBCO社、#A10491-01)(以下、増殖培地)を用いて5%COインキュベーター内で培養した。
(被験化合物の添加)
 培養したRamos細胞を細胞密度7.5×10cells/mLになるように、血清を除いたRPMI-1640培地(以後、培地)で希釈して、45分間37℃で保温した。細胞懸濁液を2.0mLチューブに1mLずつ小分けした後、被験化合物の0.03mM DMSO溶液を培地で希釈し、0.09μMとした被験化合物溶液を、500μL添加し、被験化合物の最終濃度が0.03μMの条件下で1時間37℃インキュベーションした。その後、培地で希釈した抗IgM抗体(Invitrogen、 No.H15100)を最終濃度が10μg/mLになるように添加して、10分間37℃でインキュベーションした。
(タンパク質の抽出)
 遠心操作により細胞を回収して得られたペレットにLysisバッファー[RIPA Buffer(×1)(Cell Signaling Technology社)に、1% Phosphatase inhibitor Cacktail 3(Sigma社、No.P0044)、1% Phosphatase inhibitor Cacktail (ナカライ社、No.07575)および1mM フッ化フェニルメチルスルホニル(PMSF)を添加したもの]を100μL添加し、軽く攪拌したのち10分間静置した。遠心操作(15,000rpm、15分間)により上清を回収し、タンパク質量を定量した。SDS-サンプルバッファーと混合し、95℃5分間反応させてタンパク質を変性させて、サンプル溶液とした。5-20%のグラジエントアクリルアミドゲル(ナカライ社、No.13064-04)の各ウェルにサンプル溶液を5μLずつアプライし、電気泳動を行った。その後、iBlotゲルトランスファーシステム(ライフテクノロジーズ社)を用いてPVDF膜にゲル中のタンパク質を転写した。
(BTKまたはリン酸化BTKの検出)
 転写したPVDF膜を2%ECL prime blocking Reagent(GEヘルスケア社)でブロッキング処理した後、一次抗体として抗BTKマウス抗体(BDtransduction laboratory社、No.611116)もしくは抗リン酸化BTKウサギ抗体(pY223、EPITOMICS社、No.2207-1)を用い、4℃で1晩反応させた。未反応の一次抗体をTBSTバッファー(10mM Tris-HCl(pH7.5)、150mM NaCl、0.1% Tween20)で洗浄後、二次抗体としてHRPラベルした抗マウスIgGウマ抗体(Cell Signaling Technology社、No.7076)あるいは抗ウサギIgGヤギ抗体(Cell Signaling Technology社、No.7074)を用い、2%ECL prime blocking Reagentを添加したTBSTバッファー中で、室温で1時間反応させた。未反応の二次抗体をTBSTバッファーで洗浄後、ケミルミワンSuper(ナカライ社)を用いて添付のプロトコールどおりに反応させた後、CCDカメラ(GEヘルスケア社、ImageQuant LAS 500)を用いて、それぞれのバンドを化学発光で検出した。検出されたバンドをデンシトメトリー(ImageQuant TL解析ソフトウェアv8.1)により数値化し、化合物非添加かつIgM刺激群のリン酸化BTKのバンドの発光を100%、化合物非添加かつIgM無刺激群のリン酸化BTKのバンドの発光を0%として、各群におけるバンドの強度から阻害率を算出した。なお、それぞれのリン酸化BTKのバンドは、総BTKにより補正を行なった。
 本試験で用いた一次抗体と二次抗体の組み合わせおよび希釈濃度は以下の通りである。
Figure JPOXMLDOC01-appb-T000055
 被験化合物濃度0.03μMの濃度における結果を、表5に示す。細胞内BTKの自己リン酸化阻害活性は、90%以上のものは***印、70%以上90%未満のものは**印、50%以上70%未満のものは*印で示した。
 本試験において、本発明の代表化合物の細胞内BTKの自己リン酸化阻害活性を表5に示すとおり、本発明化合物(I)は0.03μMの濃度で細胞内BTKの自己リン酸化活性を強く阻害した。
Figure JPOXMLDOC01-appb-T000056
 試験例2の結果は、本発明の化合物(I)が、“細胞内BTKの自己リン酸化活性作用”についても、強い阻害作用を有することを示している。
試験例3
C481S 変異BTK阻害活性試験
(キナーゼ活性の測定方法)
 キナーゼ活性の測定は、QuickScout Screening Assist(商標) MSA(カルナバイオサイエンス社製市販キット)を用い、モビリティシフトアッセイ(MSA)法により行った。キナーゼ反応の基質は、キット付属のFITC標識SRCtideペプチドを用いた。アッセイバッファー[20mM HEPES、0.01% Triton X-100(商標)、2mM dithiothreitol、pH7.5]を用い、基質(4μM)、MgCl(20mM)、ATP(120μMまたは100μM(それぞれ野生型またはC481S 変異BTKのKm値付近のATP濃度))となるように調整し、基質混合液を作成した。また野生型BTKまたはC481S 変異BTKを0.28nMとなるようアッセイバッファーで希釈して酵素溶液を調製した。被験化合物の10mM DMSO溶液から、10濃度(0.00003mM、0.0001mM、0.0003mM、0.001mM、0.003mM、0.01mM、0.03mM、0.1mM、0.3mM、1mM)にDMSOでさらに希釈し、それぞれをアッセイバッファーで25倍希釈して、薬物溶液とした(4%DMSO溶液)。薬物溶液もしくはコントロール溶液(4%DMSO-アッセイバッファー)5μL、基質混合液5μL、および酵素溶液10μLをポリプロピレン製384穴プレートのウェル中で混合し、1時間室温で反応させた後、60μLのキット付属のターミネーションバッファーを添加し反応を停止させた。ついで、反応溶液中の基質(S)およびリン酸化された基質(P)の量をLabChip EZ Reader IIシステム(Caliper Life Sciences社製)を用い、アッセイキットのプロトコールに従って測定した。
(BTK阻害活性の評価方法)
 分離された基質およびリン酸化された基質の各ピークの高さをそれぞれSおよびPとし、またブランクとして酵素溶液の代わりにアッセイバッファーを添加したものを測定した。
被験化合物の阻害率(%)は、次の式に従って算出した。
阻害率(%)=(1-(C-A)/(B-A))×100
ただし、A、B、Cは、それぞれブランクウェルのP/(P+S)、コントロール溶液ウェルのP/(P+S)、化合物添加ウェルのP/(P+S)を示す。
 また、IC50値は、阻害率と被験化合物濃度(対数)の回帰分析により算出した。
本発明の代表化合物の野生型BTK(BTK(WT))及びC481S 変異BTK(BTK(C481S))に対する阻害活性を表6に示す。C481S変異抵抗性の目安として、IC50[BTK(C481S)]/IC50[BTK(WT)]の値を記載した。
Figure JPOXMLDOC01-appb-T000057
 試験例3の結果は、本発明の化合物(I)が、C481S 変異BTKに対しても、強い阻害作用を有することを示している。
試験例4
びまん性大細胞型B細胞性リンパ腫OCI-Ly10細胞株に対する増殖抑制試験
OCI-Ly10細胞は20%Fetal bovine serumおよび1%ペニシリンストレプトマイシン(ナカライ社)を含むIMDM培地(Iscove‘s Modified Dulbecco’s Medium、Thermo Fisher Scientific Inc.)(以後、培地)を用いて5%COインキュベーター内で培養した。OCI-Ly10(20000cells/well)を96穴プレートに播種し、そこに培地で希釈した化合物を終濃度0.9nM~30000nM(最終DMSO濃度、0.3%)になるように添加し、96時間培養後、アラマーブルー試薬(Thermo Fisher Scientific Inc.)を加えた。3時間後、570nm-600nmの吸光度を測定し、化合物非添加かつ細胞非添加のウェルを100%、化合物非添加かつ細胞添加のウェルを0%として、阻害活性のIC50を求めた。
本発明の代表化合物(I)のOCI-Ly10細胞株に対する増殖抑制活性を表7に示す。
Figure JPOXMLDOC01-appb-T000058


Figure JPOXMLDOC01-appb-I000059
 試験例4の結果より、本発明の化合物(I)が、OCI-Ly10細胞株に対する増殖抑制活性を有することを示している。
 本発明により提供される化合物は、BTKを介した異常な細胞応答に関連していることが知られている疾患、例えば、自己免疫疾患、炎症性疾患、骨疾患、リンパ腫のような癌等に対する予防または治療用医薬品(医薬組成物)として有用である。また、BTK阻害剤として、実験用、研究用の試薬に有用である。

Claims (5)

  1.  下式(I): 
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、置換基を有してもよい低級アルキル基を表し、Qは以下の構造(a)、(b)もしくは(c)
    Figure JPOXMLDOC01-appb-C000002
    から選択される構造を示し、
    およびR3は、それぞれ独立して、水素原子、置換基を有してもよい低級アルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、置換基を有してもよいヘテロ環基を表す。)
    で示されるオキソイソキノリン誘導体またはその薬学的に許容される塩。
  2.  Qが構造(a)であり、Rがヒドロキシメチル基である請求項1に記載のオキソイソキノリン誘導体またはその薬学的に許容される塩。
  3.  下式(Ia):
    Figure JPOXMLDOC01-appb-C000003
    (式中、R3aは置換基を有してもよいテトラヒドロピリジル基を表す。)
    で表される、請求項1に記載のオキソイソキノリン誘導体またはその薬学的に許容される塩。
  4.  該テトラヒドロピリジル基の置換基が、オキセタニル基、アセチル基、プロピオニル基、モルホリノアセチル基、ジメチルカルバモイル基、ピロリジンカルボニル基、メチルスルホニル基およびイソプロピルスルホニル基よりなる群から選択される、請求項3に記載のオキソイソキノリン誘導体またはその薬学的に許容される塩。
  5. 下式(Ib):
    Figure JPOXMLDOC01-appb-C000004
    (式中、R3bは低級アルキル基が置換してもよいフェニル基を表す。)
    で表される、請求項1に記載のオキソイソキノリン誘導体またはその薬学的に許容される塩。
PCT/JP2017/042172 2016-11-25 2017-11-24 新規オキソイソキノリン誘導体 WO2018097234A1 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2018552969A JP7015060B2 (ja) 2016-11-25 2017-11-24 新規オキソイソキノリン誘導体
FIEP17874560.0T FI3546462T3 (fi) 2016-11-25 2017-11-24 Uusi oksoisokinoliinijohdannainen
RU2019119374A RU2772226C2 (ru) 2016-11-25 2017-11-24 Новые производные оксоизохинолина
ES17874560T ES2968023T3 (es) 2016-11-25 2017-11-24 Derivados de oxoisoquinolina novedosos
MX2019006079A MX2019006079A (es) 2016-11-25 2017-11-24 Derivados de oxoisoquinolina novedosos.
EP17874560.0A EP3546462B1 (en) 2016-11-25 2017-11-24 Novel oxoisoquinoline derivative
DK17874560.0T DK3546462T3 (da) 2016-11-25 2017-11-24 Nyt oxoisoquinolinderivat
CN201780072975.7A CN109963852B (zh) 2016-11-25 2017-11-24 氧代异喹啉衍生物
BR112019010617A BR112019010617A2 (pt) 2016-11-25 2017-11-24 derivados de oxoisoquinolina
CA3044933A CA3044933A1 (en) 2016-11-25 2017-11-24 Oxoisoquinoline derivatives
AU2017364720A AU2017364720B2 (en) 2016-11-25 2017-11-24 Novel oxoisoquinoline derivative
US16/463,493 US10793575B2 (en) 2016-11-25 2017-11-24 Oxoisoquinoline derivatives
KR1020197018178A KR102565546B1 (ko) 2016-11-25 2017-11-24 신규 옥소이소퀴놀린 유도체

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-229262 2016-11-25
JP2016229262 2016-11-25
JP2017191488 2017-09-29
JP2017-191488 2017-09-29

Publications (1)

Publication Number Publication Date
WO2018097234A1 true WO2018097234A1 (ja) 2018-05-31

Family

ID=62195030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042172 WO2018097234A1 (ja) 2016-11-25 2017-11-24 新規オキソイソキノリン誘導体

Country Status (13)

Country Link
US (1) US10793575B2 (ja)
EP (1) EP3546462B1 (ja)
JP (1) JP7015060B2 (ja)
KR (1) KR102565546B1 (ja)
CN (1) CN109963852B (ja)
AU (1) AU2017364720B2 (ja)
BR (1) BR112019010617A2 (ja)
CA (1) CA3044933A1 (ja)
DK (1) DK3546462T3 (ja)
ES (1) ES2968023T3 (ja)
FI (1) FI3546462T3 (ja)
MX (1) MX2019006079A (ja)
WO (1) WO2018097234A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157650A1 (ja) 2020-02-05 2021-08-12 カルナバイオサイエンス株式会社 抗がん剤組成物
WO2022102715A1 (ja) * 2020-11-13 2022-05-19 カルナバイオサイエンス株式会社 組み合わせ医薬組成物および治療方法
WO2022140246A1 (en) 2020-12-21 2022-06-30 Hangzhou Jijing Pharmaceutical Technology Limited Methods and compounds for targeted autophagy
WO2023110970A1 (en) 2021-12-14 2023-06-22 Netherlands Translational Research Center Holding B.V Macrocyclic btk inhibitors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133367A1 (ja) 2012-03-09 2013-09-12 カルナバイオサイエンス株式会社 新規トリアジン誘導体
WO2013157022A1 (en) 2012-04-20 2013-10-24 Advinus Therapeutics Limited Substituted hetero-bicyclic compounds, compositions and medicinal applications thereof
WO2013157021A1 (en) * 2012-04-20 2013-10-24 Advinus Therapeutics Limited Bicyclic compounds, compositions and medicinal applications thereof
CN104211703A (zh) 2013-05-30 2014-12-17 江苏先声药物研究有限公司 一类作为布鲁顿激酶抑制剂的稠杂环化合物
WO2015012149A1 (ja) 2013-07-26 2015-01-29 カルナバイオサイエンス株式会社 新規トリアジン誘導体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3048102A1 (en) * 2013-09-20 2016-07-27 Carna Biosciences Inc. Novel triazine derivative

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133367A1 (ja) 2012-03-09 2013-09-12 カルナバイオサイエンス株式会社 新規トリアジン誘導体
WO2013157022A1 (en) 2012-04-20 2013-10-24 Advinus Therapeutics Limited Substituted hetero-bicyclic compounds, compositions and medicinal applications thereof
WO2013157021A1 (en) * 2012-04-20 2013-10-24 Advinus Therapeutics Limited Bicyclic compounds, compositions and medicinal applications thereof
CN104211703A (zh) 2013-05-30 2014-12-17 江苏先声药物研究有限公司 一类作为布鲁顿激酶抑制剂的稠杂环化合物
WO2015012149A1 (ja) 2013-07-26 2015-01-29 カルナバイオサイエンス株式会社 新規トリアジン誘導体

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
CHENG,S. ET AL., LEUKEMIA, vol. 29, 2015, pages 895 - 900
DAVIS,R.E. ET AL., NATURE, vol. 463, 2010, pages 88 - 92
ELLMEIER,W. ET AL., FEBS J., vol. 278, 2011, pages 1990 - 2000
GRASSILI.E. ET AL., ONCOGENE, vol. 35, 2016, pages 4368 - 4378
HALCOMB,K.E., MOL.IMMUNOL., vol. 46, no. 2, 2008, pages 233 - 241
JANSSON, L.HOLMDAHL, R., CLIN. EXP. IMMUNOL., vol. 94, 1993, pages 459 - 465
KUROSAKI,T., CURR.OPIN.IMMUNOL., vol. 12, 2000, pages 276 - 281
N. MIYAURA ET AL., J. AM. CHEM. SOC., vol. 107, 1985, pages 972
N. MIYAURAA. SUZUKI, CHEM. REV., vol. 95, 1995, pages 2457
SATTERTHWAITE,A.B.WITTE, O.N., IMMUNOL.REV., vol. 175, 2000, pages 120 - 127
T. W. GREENE: "Protective Groups in Organic Synthesis", 1999, JOHN WILEY&SONS, INC.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157650A1 (ja) 2020-02-05 2021-08-12 カルナバイオサイエンス株式会社 抗がん剤組成物
EP4101468A4 (en) * 2020-02-05 2024-02-28 Carna Biosciences Inc COMPOSITION OF ANTI-CANCER AGENT
WO2022102715A1 (ja) * 2020-11-13 2022-05-19 カルナバイオサイエンス株式会社 組み合わせ医薬組成物および治療方法
WO2022140246A1 (en) 2020-12-21 2022-06-30 Hangzhou Jijing Pharmaceutical Technology Limited Methods and compounds for targeted autophagy
WO2023110970A1 (en) 2021-12-14 2023-06-22 Netherlands Translational Research Center Holding B.V Macrocyclic btk inhibitors

Also Published As

Publication number Publication date
RU2019119374A (ru) 2020-12-25
US10793575B2 (en) 2020-10-06
EP3546462A1 (en) 2019-10-02
EP3546462B1 (en) 2024-01-03
MX2019006079A (es) 2019-11-12
CA3044933A1 (en) 2018-05-31
FI3546462T3 (fi) 2024-01-11
KR20190104142A (ko) 2019-09-06
US20190359616A1 (en) 2019-11-28
CN109963852B (zh) 2021-12-03
BR112019010617A2 (pt) 2019-09-17
CN109963852A (zh) 2019-07-02
AU2017364720A1 (en) 2019-06-20
KR102565546B1 (ko) 2023-08-10
ES2968023T3 (es) 2024-05-06
RU2019119374A3 (ja) 2020-12-25
JPWO2018097234A1 (ja) 2019-10-17
EP3546462A4 (en) 2020-07-01
DK3546462T3 (da) 2024-03-04
JP7015060B2 (ja) 2022-02-02
AU2017364720B2 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
KR101541086B1 (ko) 피롤로피리미딘 화합물 및 그 용도
US10611777B2 (en) Imidazopyridazine compounds and their use
RU2569635C9 (ru) ЗАМЕЩЕННЫЕ ПИРИДОПИРАЗИНЫ КАК НОВЫЕ ИНГИБИТОРЫ Syk
JP7015060B2 (ja) 新規オキソイソキノリン誘導体
JP2017516814A (ja) Tank結合キナーゼインヒビター化合物
TW201404779A (zh) 新的雜芳基和雜環化合物、其組合物及方法
JP2012504157A (ja) 複素環式jakキナーゼ阻害剤
TWI580679B (zh) 雜芳基並嘧啶類衍生物、其製備方法和用途
EP3797107B1 (en) Heterocondensed pyridone compounds and their use as idh inhibitors
CN117062818A (zh) 新型sos1抑制剂及其制备方法和应用
CA3114259A1 (en) Aminonorbornane derivative and manufacture method therefor and use thereof
KR20220085735A (ko) 아이소옥사졸리딘 유도체 화합물 및 이의 용도
WO2015033888A1 (ja) 新規2,6-ジアミノピリミジン誘導体
RU2772226C2 (ru) Новые производные оксоизохинолина
CN112209934B (zh) 含有氮杂螺庚烷的btk抑制剂
CN111763217B (zh) 一类噻吩并氮杂环类化合物、制备方法和用途
WO2015041155A1 (ja) 新規トリアジン誘導体
WO2023109870A1 (zh) 吡唑并嘧啶类化合物及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552969

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3044933

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019010617

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017364720

Country of ref document: AU

Date of ref document: 20171124

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197018178

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017874560

Country of ref document: EP

Effective date: 20190625

ENP Entry into the national phase

Ref document number: 112019010617

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190523