WO2015011976A1 - Driving and transmitting device - Google Patents

Driving and transmitting device Download PDF

Info

Publication number
WO2015011976A1
WO2015011976A1 PCT/JP2014/063670 JP2014063670W WO2015011976A1 WO 2015011976 A1 WO2015011976 A1 WO 2015011976A1 JP 2014063670 W JP2014063670 W JP 2014063670W WO 2015011976 A1 WO2015011976 A1 WO 2015011976A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
gas
liquid separation
lubricating oil
air
Prior art date
Application number
PCT/JP2014/063670
Other languages
French (fr)
Japanese (ja)
Inventor
平野 弘之
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2015528173A priority Critical patent/JP6137317B2/en
Publication of WO2015011976A1 publication Critical patent/WO2015011976A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/027Gearboxes; Mounting gearing therein characterised by means for venting gearboxes, e.g. air breathers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0061Disposition of motor in, or adjacent to, traction wheel the motor axle being parallel to the wheel axle

Definitions

  • the present invention relates to a drive transmission device that transmits the rotation of a drive source via a transmission mechanism such as a speed reducer, and more particularly to a gas-liquid separation function and an air breather function.
  • a drive transmission device that includes an air breather in a drive unit that includes a speed reducer is known (see, for example, Patent Document 1).
  • a first air breather chamber and a second air breather chamber are provided adjacent to each other in the axial direction of the input shaft.
  • the first air breather chamber communicates with the atmosphere, and is connected to the upper portion of the second air breather chamber and a large diameter first chamber. It communicates through one communication hole.
  • the 2nd air breather chamber is connected with the casing inside which accommodates a reduction gear by the small 2nd communication hole. Therefore, it is possible to prevent the lubricating oil that has excessively entered the first air breather from flowing out into the second air breather chamber through the first communication hole and leaking outside the unit.
  • the first air breather chamber and the second air breather chamber are arranged to be deviated to one of the left and right when viewed from the axial direction with respect to the input shaft of the speed reducer.
  • the communication hole and the second communication hole are also arranged so as to be biased to one of the left and right. For this reason, if the lubricating oil scraped up by the gears or the like during high rotation hits the first communication hole, the second communication hole, or the opening connected to these communication holes in almost the same situation, the air breather chamber is closed by the lubricating oil. There is a risk of being in a broken state. In this case, since the air communication function (air breather function) between the reduction gear chamber and the outside is lowered, there is a possibility that the lubricating oil leaks from the inside of the unit to the relatively low pressure outside.
  • the present invention has been made paying attention to the above problem, and an object thereof is to provide a drive transmission device capable of stabilizing the air breather function.
  • the present invention provides: A first gas-liquid separation chamber and a second gas-liquid separation chamber communicated with the transmission mechanism accommodation chamber at positions above the transmission mechanism and on both sides of the rotation shaft as viewed from the direction along the rotation axis of the transmission mechanism. And place An air breather chamber communicated with the outside air is communicated with both gas-liquid separation chambers through an air communication port.
  • the drive transmission device is characterized in that the gas-liquid separation chambers communicate with each other through a communication path between the gas-liquid separation chambers at a position below the air communication port.
  • both gas-liquid separation chambers are arranged with the rotating body interposed therebetween, when the rotating body of the transmission mechanism rotates and scoops up the lubricating oil, it depends on the rotating direction of the rotating body. There is a difference in the way in which the lubricating oil is blown to both gas-liquid separation chambers. Therefore, even if one side of both gas-liquid separation chambers is blocked by a large amount of lubricating oil and the communication portion with the transmission mechanism housing chamber is blocked, the lubricating oil is not easily blown to the other gas-liquid separation chamber. Communication with the accommodation room is ensured.
  • the rotating direction of the rotating body is reversed, the relationship between the side where a large amount of lubricating oil is applied in the gas-liquid separation chamber and the side where the lubricating oil is difficult to be blown is reversed, and the side where the lubricating oil is difficult to blow off
  • the communication state with the transmission mechanism accommodation chamber can be maintained. Therefore, regardless of the rotation direction of the rotating body, it is possible to maintain communication with the outside from the transmission mechanism housing chamber and at least one of the gas-liquid separation chambers via the air breather chamber, thereby stabilizing the air breather function. it can. Therefore, it is possible to suppress the leakage of the lubricating oil accompanying the deterioration of the air breather function.
  • FIG. 3 is an operation explanatory diagram of the first embodiment, and is an enlarged view of a main part of FIG. 2.
  • FIG. 4 is an operation explanatory diagram of the first embodiment, and is an enlarged view of a main part of FIG. 3. It is sectional drawing which shows the whole structure of the in-wheel motor unit to which the drive transmission device of Embodiment 2 is applied.
  • Embodiment 1 The drive transmission apparatus of Embodiment 1 is an example applied to the in-wheel motor unit MU that drives the wheels W of the vehicle, as shown in FIG.
  • the drive transmission device according to the first embodiment will be described with reference to FIGS. (Overall schematic structure)
  • the in-wheel motor unit MU (hereinafter referred to as a motor unit MU) has an axle 2 protruding from a unit housing 1, and a wheel portion of a wheel W can rotate integrally with the axle 2. It is supported.
  • the unit housing 1 is supported by the vehicle body (not shown) together with the wheels W via a suspension device (not shown).
  • the unit housing 1 accommodates an electric motor 6 and a speed reduction mechanism 7 as a transmission mechanism.
  • the unit housing 1 is formed by coupling a motor case portion 11, a reduction gear case portion 12, a hub case portion 13, and a motor cover 14, and includes a motor chamber 10a and a reduction gear chamber 10b therein.
  • the motor chamber 10a is held in a dry space while the reduction gear chamber 10b is filled with lubricating oil.
  • the motor case portion 11 includes a substantially cylindrical main body 11a, and the electric motor 6 is accommodated on the inner periphery of the main body 11a.
  • a partition wall 11b that divides the motor chamber 10a and the speed reducer chamber 10b is provided upright from one axial end (right end in the drawing) of the main body 11a toward the inner diameter direction.
  • the partition wall 11b has an input shaft hole 11c through which a rotor shaft (input shaft) 61 described later is inserted.
  • the input shaft hole 11c has oil that seals between the first drive gear bearing 31 that rotatably supports the rotor shaft 61 via a drive gear 71 described later, and the motor chamber 10a and the speed reducer chamber 10b.
  • a seal 41 is provided.
  • a vertical wall portion 11d that forms a lower side portion of the reduction gear chamber 10b extends from the lower end portion of the main body 11a in FIG.
  • the speed reducer case portion 12 is coupled to the motor case portion 11 by fastening bolts.
  • FIG. 3 which is a view from the direction of arrow B in FIG. 1, the speed reducer case portion 12 includes a drive gear housing portion 12 a in the upper portion and a planetary gear set housing portion 12 b in the lower portion. It is formed in a substantially elliptical shape that is long in the diagonally up and down direction.
  • an axle through hole 12c through which the axle 2 passes is opened in the planetary gear set housing portion 12b.
  • the hub case portion 13 is coupled to one end of the reduction gear case portion 12 in the axial direction (the right end portion in the figure) by a bolt coaxially with the axle through hole 12c.
  • the hub case portion 13 includes a cylindrical portion 13a that is coaxial with the axle 2.
  • a hub bearing 33 that rotatably supports the wheel hub shaft 22 of the axle 2 is provided on the inner periphery of the cylindrical portion 13a.
  • the electric motor 6 includes a rotor shaft (input shaft) 61, a rotor 62, and a stator 63.
  • One end of the rotor shaft 61 is rotatably supported via the rotor bearing 34 with respect to the motor cover 14 of the unit housing 1.
  • the other end of the rotor shaft 61 is connected to the motor case 11 and the speed reducer case 12 via a pair of first drive gear bearing 31 and second drive gear bearing 32 via a drive gear 71 described later.
  • the rotor 62 is fixed to the outer periphery of the rotor shaft 61 and is constituted by a laminated steel plate in which a permanent magnet is embedded.
  • the stator 63 is fixed to the inner peripheral surface of the main body 11 a of the motor case portion 11 of the unit housing 1 and is disposed with respect to the rotor 62 via an air gap.
  • the speed reduction mechanism 7 is interposed between the rotor shaft 61 and the axle 2 and includes a spur gear mechanism 70 and a planetary gear mechanism 80.
  • the spur gear mechanism 70 includes a drive gear 71 and a driven gear 72 at the top and bottom.
  • the drive gear 71 is serrated to the front end portion of the rotor shaft 61 in the vehicle width direction (right direction in FIG. 1), and is connected to the motor case portion 11 via the pair of drive gear bearings 31 and 32 described above. And it is rotatably supported by the reducer case 12.
  • the driven gear 72 is formed to have a larger diameter than the drive gear 71 and is integrally formed on the outer periphery of the driven shaft 73 disposed below the rotor shaft 61. Based on the gear ratio of the two gears 71 and 72, the rotation of the rotor shaft 61 is decelerated and transmitted to the driven shaft 73.
  • the driven shaft 73 is rotatably supported by the driven bearings 35 and 36.
  • the driven bearing 35 is supported by the motor case portion 11.
  • the driven bearing 36 is supported on the inner periphery of an output shaft 21 (described later) of the axle 2.
  • the axle 2 is provided coaxially with the driven shaft 73 on the vehicle outer side in the vehicle width direction, and includes an output shaft 21 and a wheel hub shaft 22.
  • the output shaft 21 receives rotation from the planetary gear mechanism 80, is supported by the reduction gear case 12 of the unit housing 1 via the driven bearing 36, and is a shaft that outputs rotation from the speed reduction mechanism 7. .
  • the output shaft 21 is serrated with a member on the outer side of the driven bearing 36 in the radial direction.
  • the wheel hub shaft 22 is engaged with the output shaft 21 in the circumferential direction, and is serrated and coupled so as to be relatively movable in the axial direction.
  • the wheel hub shaft 22 is supported by the hub case portion 13 via a hub bearing 33, and the wheel portion of the wheel W is It is bolted.
  • the planetary gear mechanism 80 includes a sun gear 81, a pinion 82, a pinion carrier 83, and a ring gear 84.
  • the sun gear 81 is formed integrally with the driven shaft 73 and meshes with the pinion 82.
  • the pinion 82 is supported so as to be rotatable relative to the pinion carrier 83 and meshes with the sun gear 81 and the ring gear 84.
  • the pinion carrier 83 is formed integrally with the output shaft 21.
  • the ring gear 84 is formed integrally with the motor case portion 11 of the unit housing 1.
  • Lubricating oil for lubricating and cooling the speed reduction mechanism 7 is accommodated in the speed reducer chamber 10b of the unit housing 1, and the bearings 31, 32, 33 in the speed reducer chamber 10b are accommodated in the lubricating oil. , 35, 36.
  • an oil storage portion 101 that stores lubricating oil by gravity is provided below the reduction gear chamber 10 b.
  • an alternate long and two short dashes line OIL indicates an example of the oil level in the oil reservoir 101.
  • an upper first oil catch portion 111 and an upper second oil catch portion 112 are formed on the partition wall 11 b of the motor case portion 11 at a height coaxial with the rotor shaft 61. Yes. Both oil catch portions 111 and 112 are for catching the lubricating oil scraped up in the speed reducer chamber 10b, and flanges 11f and 11g protruded from the motor case portion 11 and the speed reducer case portion 12 in the axial direction. , 12f, 12g (see FIG. 3) are contacted in the axial direction.
  • the speed reducer case portion 12 has supply holes 121a and 121b opened in the axial direction side portions of the oil catch portions 111 and 112. These supply holes 121a and 121b pass through the communication passages 122a and 122b formed in the speed reducer case portion 12, and are lubricant oil that is opened in the axial direction with respect to the central portion of the rotor shaft 61 and the drive gear 71.
  • a lubricating oil supply path 61 a is formed in the axial direction at the axial center portion of the rotor shaft 61 that overlaps the drive gear 71 in the radial direction.
  • the lubricating oil supply path 61a, the speed reducer chamber 10b, and the innermost portion of the lubricating oil supply path 61a are positioned in the axial direction between the first drive gear bearing 31 and the oil seal 41. Is formed so as to penetrate in the radial direction.
  • the lubricating oil captured by the oil catch portions 111 and 112 is supplied from the supply holes 121a and 121b to the lubricating oil supply ports 123a and 123b through the communication passages 122a and 122b.
  • the lubricating oil supplied to the lubricating oil supply ports 123a and 123b is supplied to the second driving gear bearing 32 paired with the first driving gear bearing 31 and the lubricating oil supply formed on the rotor shaft 61.
  • the first drive gear bearing 31 is supplied through the path 61a and the radial communication hole 61b.
  • the rotational speed of the drive gear 71 that rotates integrally with the rotor shaft 61 increases in proportion to the increase in the vehicle speed, so that the centrifugal pressure acting on the oil passage in the rotor shaft 61 increases at an accelerated rate.
  • a negative pressure becomes large. Therefore, the lubricating oil in the upper first oil catch portion 111 and the upper second oil catch portion 112 is sucked out vigorously to the negative pressure suction portion 610 through the lubricating oil supply ports 123a and 123b.
  • a first gas-liquid separation chamber 91, a second gas-liquid separation chamber 92, and an air breather chamber 93 are formed above the rotor shaft 61 and the oil catch portions 111 and 112. .
  • the first gas-liquid separation chamber 91 and the second gas-liquid separation chamber 92 are positioned above the speed reduction mechanism 7 in the horizontal direction when viewed from the axial direction of the rotor shaft 61 and the drive gear 71 as the rotation shaft of the speed reduction mechanism 7. It is arrange
  • the first gas-liquid separation chamber 91 and the second gas-liquid separation chamber 92 cause the flanges 11h and 12h protruding in the axial direction from the motor case portion 11 and the speed reducer case portion 12 to abut in the axial direction, respectively.
  • the speed reducer chamber 10b is partitioned.
  • the gas-liquid separation chambers 91 and 92 are respectively provided at the upper part of the upper first oil catch portion 111 and the upper second oil catch portion 112, and the speed reducer chamber communication port 94 a opened in the flange 12 h. , 94b, communicates with the reduction gear chamber 10b.
  • the speed reducer chamber communication ports 94a and 94b are located at the deepest positions of the oil catch portions 111 and 112, and are disposed at the horizontal ends of the flanges 12h, as shown in FIG. Further, they are arranged at positions that do not overlap with the drive gear 71 in the radial direction. As a result, the lubricating oil scooped up in the reducer chamber 10b is less likely to be directly applied to the reducer chamber communication ports 94a and 94b.
  • the air breather chamber 93 is partitioned from the gas-liquid separation chambers 91 and 92 at a position between the gas-liquid separation chambers 91 and 92 in the horizontal direction orthogonal to the axial direction, as shown in FIGS. Is formed. Further, as shown in FIG. 2, the air breather chamber 93 has air communication ports 93a and 93b communicating with the upper portions of the gas-liquid separation chambers 91 and 92, respectively.
  • a gas-liquid separation chamber communication passage 95 is provided between the air breather chamber 93 and the flanges 11h and 12h in the vertical direction to communicate the lower ends of the gas-liquid separation chambers 91 and 92 with each other. As shown in FIGS. 2 and 3, the gas-liquid separation chamber communication passage 95 is formed in an upwardly convex arc shape based on the shapes of the flanges 11 h and 12 h. The gas-liquid separation chamber communication passage 95 is arranged at a position lower than the air communication ports 93a and 93b even at the highest position protruding upward.
  • the lubricating oil in the gas-liquid separation chambers 91 and 92 moves between the gas-liquid separation chambers 91 and 92 via the gas-liquid separation chamber communication path 95 before reaching the air communication ports 93a and 93b.
  • the air breather chamber 93 communicates with the outside air via an air breather pipe 96 provided at the upper end, and the upper portion of the air breather chamber 93 and the motor chamber 10a are connected to the motor chamber. Communication is made via a passage 97.
  • the first embodiment is provided with a lower catch structure that catches the lubricating oil scraped up around the driven gear 72 and supplies it to the axial center portion of the driven shaft 73.
  • the lower catch structure includes a lower first oil catch portion 131 and a lower second oil catch portion 132 provided at a position slightly higher than the axial center position of the driven shaft 73. ing.
  • Each oil catch part 131,132 attaches
  • the lubricating oil captured by the oil catch portions 131 and 132 is supplied to the shaft center portion of the driven shaft 73 (see FIG. 1) by the lower suction structure 130, and then the driven bearings 35, 36, the planetary gear mechanism 80, and the like. That is, supply holes 131 a and 132 a are opened in the axial direction side portions of both oil catch portions 131 and 132 in the vertical wall portion 11 d of the motor case portion 11. These supply holes 131a and 132a pass through the communication passages 131b and 132b formed in the vertical wall portion 11d and are opened in the axial direction with respect to the axial center portion of the driven shaft 73 as shown in FIG. In addition, the lubricating oil supply port 133 is communicated. Further, the lubricating oil supply port 133 is connected to a driven shaft oil passage 134 formed through the shaft center portion of the driven shaft 73.
  • the lubricating oil in the oil reservoir 101 is scraped up by the rotation of the driven gear 72.
  • the lubricating oil in both oil catch portions 131 and 132 is sucked up into the oil passage 134 in the driven shaft and scattered by centrifugal force.
  • the lubricating oil is supplied in the outer radial direction of the driven gear 72 through the driven bearing 35 in the outer radial direction.
  • the lubricating oil that has traveled to the back of the oil passage 134 in the driven shaft passes through the driven bearing 36 from between the output shaft 21 and the planetary gear mechanism 80. Thereby, the surface of each rotation element of the speed reduction mechanism 7 can be lubricated.
  • the speed reducer chamber 10b passes from the gas-liquid separation chambers 91 and 92 through the air communication ports 93a and 93b as shown by arrows AR1 and AR2 in FIG. 4 and from the air breather chamber 93 to the air breather as shown by arrows AR0.
  • the outside air communicates with the pipe 96.
  • the speed reducer chamber 10b is maintained at the same pressure as the external air pressure. That is, in the reduction gear chamber 10b, the volume of the internal air increases and decreases due to temperature changes.
  • the drive gear 71 and the driven gear 72 which are the rotation shafts, on both sides in the horizontal direction around the shaft, the left and right in FIG. 4, There is a bias in how to flip up. Further, at the time of retreating, the direction in which the lubricating oil is scraped is biased in the left-right direction opposite to the above.
  • the speed reducer chamber 10b includes the speed reducer chamber communication port 94b, the second gas-liquid separation chamber 92, the air communication port 93b, the air breather chamber 93, and the air breather pipe 96. This ensures communication with the outside air.
  • the speed reduction mechanism 7 side of the speed reducer chamber communication ports 94a, 94b that communicate the gas-liquid separation chambers 91, 92 and the speed reducer chamber 10b is provided by flanges 11f, 11g, 12f, 12g. Covering. For this reason, since it is difficult for lubricating oil to be directly applied to the reduction gear chamber communication ports 94a and 94b, the reduction gear chamber communication ports 94a and 94b are not easily blocked by the lubricating oil.
  • the upper suction structure 120 causes the lubricating oil captured by the oil catch portions 111 and 112 to be negatively supplied through the supply holes 121a and 121b, the communication passages 122a and 122b, and the lubricating oil supply ports 123a and 123b. Lubricating oil can be sucked into the pressure suction unit 610. Thereby, it can suppress that the bubble of lubricating oil leaks outside from each gas-liquid separation chambers 91 and 92 through the air breather chamber 93.
  • the drive unit of Embodiment 1 is A speed reduction mechanism 7 as a transmission mechanism for transmitting rotation of the rotor shaft 61 as an input shaft input from the electric motor 6 as a drive source to the output shaft 21; A reduction gear chamber 10b serving as a transmission mechanism accommodation chamber in which the reduction mechanism 7 is accommodated and lubricating oil is accommodated; A first gas-liquid separation chamber 91 that is disposed above both the speed reduction mechanism 7 and on both sides of the rotor shaft 61 as a rotation axis when viewed from the direction along the rotation axis of the speed reduction mechanism 7 and communicates with the speed reducer chamber 10b.
  • a second gas-liquid separation chamber 92 And a second gas-liquid separation chamber 92;
  • An air breather chamber 93 communicated with both gas-liquid separation chambers 91 and 92 via air communication ports 93a and 93b, and communicated with outside air;
  • a gas-liquid separation chamber communication passage 95 communicating the gas-liquid separation chambers 91 and 92 at positions below the air communication ports 93a and 93b; It is characterized by having.
  • the lubricating oil supply amount to one side is relatively large based on the rotation direction of the rotating element of the speed reduction mechanism 7, but the other lubricating oil supply amount is relatively large. It will be in very few states. Therefore, even if one of the gas-liquid separation chambers 91 and 92 is blocked by the communicating portion (the reduction gear chamber communication ports 94a and 94b) with the reduction gear chamber 10b due to a large amount of lubricating oil being scraped up, the other is lubricated. The state closed by the oil is not continued, and the air breather function can be secured.
  • the reduction gear chamber 10b maintains the communication state between at least one of the gas-liquid separation chambers 91 and 92 and the outside air via the air breather chamber 93 regardless of whether the vehicle is moving forward or backward. Therefore, it is possible to prevent the lubricant (bubbles) from being ejected from the air breather pipe 96 due to the pressure increase in the gas-liquid separation chambers 91 and 92.
  • the lubricating oil enters one of the gas-liquid separation chambers 91 and 92, the lubricating oil is separated before reaching the air communication ports 93a and 93b opened in the upper air breather chamber 93.
  • the gas is discharged to the other of the gas-liquid separation chambers 91 and 92 via the inter-chamber communication passage 95. Therefore, the function as the gas-liquid separation chamber is sufficiently exhibited without securing a large volume as each of the gas-liquid separation chambers 91 and 92.
  • the drive transmission device of Embodiment 1 is The gas-liquid separation chamber communication passage 95 is characterized by being formed in a convex shape upward as viewed from the axial direction of the rotor shaft 61 as a rotating shaft. Accordingly, when the lubricating oil enters the gas-liquid separation chambers 91 and 92 into the gas-liquid separation chamber communication path 95, if the lubricating oil disappears from the gas-liquid separation chambers 91 and 92, the gas-liquid separation chamber communication path. The lubricating oil in 95 is also smoothly and reliably discharged based on the inclination.
  • the drive transmission device of Embodiment 1 is Lower first oil catching portions 94a and 94b for communicating the gas-liquid separation chambers 91 and 92 and the speed reducer chamber 10b serving as a transmission mechanism accommodation chamber capture the lubricating oil in the speed reducer chamber 10b.
  • 111 provided on the upper portion of the upper second oil catch portion 112. Therefore, since the lubricating oil scooped up by the speed reduction mechanism 7 in the speed reducer chamber 10b directly hits the speed reducer chamber communication ports 94a and 94b by the oil catch portions 111 and 112, both gas-liquid separation chambers are prevented. Intrusion of the lubricating oil into 91 and 92 can be suppressed.
  • the drive transmission device of Embodiment 1 is A motor chamber 10a for accommodating the electric motor 6 as a drive source is formed adjacent to the speed reducer chamber 10b as the transmission mechanism accommodating chamber, The upper part of the air breather chamber 93 is communicated with the motor chamber 10 a through the motor chamber communication passage 97. Since the upper part of the air breather chamber 93 and the motor chamber 10a are connected, the air breather chamber dedicated to the motor chamber 10a can be omitted, and the motor unit MU can be downsized. In addition, it is possible to reduce the number of air breather pipes 96 that are routed up to the top of the vehicle for the purpose of preventing flooding during traveling. In particular, when the steered wheels are applied, and the like, when the movement amount of the motor unit MU is large and the arrangement space of the air breather pipe 96 is large, the effect of reducing to one system is remarkable.
  • the drive transmission device of Embodiment 1 is Both oil catch portions 111 and 112 are provided with an upper suction structure 120 that sucks the lubricating oil of both oil catch portions 111 and 112 by the negative pressure generated by the rotation of the rotor shaft 61 as the input shaft and the drive gear 71. It is characterized by. When the rotation speed of the electric motor 6 is increased, the rotation speed of the rotating element of the speed reduction mechanism 7 is increased, and the amount of lubricating oil captured by both the oil catch portions 111 and 112 is increased. On the other hand, in the upper suction structure 120, the higher the rotational speed of the rotor shaft 61 and the drive gear 71, the higher the negative pressure and the suction force.
  • the drive transmission device of Embodiment 1 is A lower first oil catch portion 131 and a lower second oil catch portion 132 are provided on both sides when viewed from the rotation axis of the driven gear 72, A lower suction structure 130 is provided for sucking the lubricating oil captured by the oil catch portions 131 and 132 by the negative pressure of the negative pressure suction portion 610 provided at the axial center portion of the driven gear 72. Accordingly, the lubricating oil is scraped up by the driven gear 72, and the lubricating oil is also supplied by the lower suction structure 130, so that the lubricity is excellent. And since it is excellent in lubricity in this way, ensuring of air breather performances, such as said 1), becomes more effective.
  • the second embodiment is different from the first embodiment in the connection structure between the air breather chamber 293 and the outside. That is, the air breather pipe 296 is connected to the upper part of the motor chamber 10a, and the air breather chamber 93 is connected to the outside air through the motor chamber communication path 97 and the motor chamber 10a. Further, in the second embodiment, the motor chamber communication path 97 is provided with a microfilter 200 that allows only gas to pass therethrough.
  • Embodiment 2 In the speed reducer chamber 10b, when the volume of the internal air increases or decreases due to a temperature change or the like, air is discharged from the gas breather chamber 93 from the gas-liquid separation chambers 91 and 92, and further from the air breather pipe 296 via the motor chamber 10a. Can be maintained at the same pressure as the external pressure. In addition, the motor chamber 10a is likely to be relatively hot and the internal air volume is likely to change. Since the motor chamber 10a is directly communicated to the outside by the air breather pipe 296, the amount of air flow in the air breather chamber 293 can be suppressed as compared with the case where air is sucked into and discharged from the outside via the air breather chamber 293. .
  • the air breather chamber 293 communicates with the outside through an air breather pipe 296 provided at the upper portion of the motor chamber 10a through the motor chamber communication passage 97 and the motor chamber 10a.
  • the air breather pipe 296 is provided at the upper portion of the motor chamber 10a, the upper portion of the motor chamber 10a having a large diameter is likely to be the uppermost portion of the motor unit MU, and the possibility of water splashing on the air breather pipe 296 portion is reduced. It is easy to ensure watertightness.
  • the outside air is more likely to enter and exit from the reducer chamber 10b.
  • the frequency of air flow in and out of the air breather chamber 293 and the outside can be suppressed as compared with the case where it is performed via the air breather chamber 293. Thereby, the lubricating oil leakage caused by the change in the air volume of the motor chamber 10a can be suppressed.
  • the motor chamber communication path 97 is provided with a microfilter 200 that allows only gas to pass therethrough. Therefore, even if the lubricating oil enters the air breather chamber 293, the lubricating oil can be prevented from entering the motor chamber 10a, and leakage of the lubricating oil from the motor chamber 10a can be prevented. Therefore, it is possible to suppress the deterioration of the insulation performance of the electric motor 6 and the deterioration of the lubrication performance due to the reduction of the lubricating oil in the speed reducer chamber 10b, thereby ensuring the reliability of the motor unit MU.
  • a so-called wheel-in motor type in which one wheel is driven by one electric motor is illustrated, but the present invention is not limited to this.
  • one electric motor may be arranged between the left and right wheels, and the rotation of the output shaft may be transmitted to the left and right wheels.
  • the drive source other means such as an internal combustion engine other than the electric motor can be used.
  • the speed reduction mechanism is shown as the transmission mechanism.
  • the speed reduction mechanism is not limited to this, and a speed increasing mechanism, a mechanism for changing the rotation direction regardless of whether or not there is a shift, etc. Can also be applied.
  • the speed reducer the one provided with the spur gear mechanism and the planetary gear mechanism is shown.
  • the present invention is not limited to this, and the structure without the planetary gear mechanism or the spur gear is a conical gear. Other structures such as the above structure can be used.
  • the gas-liquid separation chamber communication path is formed in an arc shape when forming the upward convex shape is shown, but the present invention is not limited thereto, and may be a mountain shape other than the arc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • General Details Of Gearings (AREA)

Abstract

Provided is a driving and transmitting device configured so that the function of an air breather can be stabilized. A driving and transmitting device is characterized by comprising: a speed reduction mechanism (7) which transmits the rotation of a rotor shaft (61) to an output shaft (21), the rotation being inputted from an electric motor (6); a speed reducer chamber (10b) which houses the speed reduction mechanism (7) and in which lubricating oil is stored; a first gas-liquid separation chamber (91) and a second gas-liquid separation chamber (92), which are connected to the speed reducer chamber (10b) and which are arranged above the speed reduction mechanism (7) such that, when viewed in the direction along the rotating shaft of the speed reduction mechanism (7), the first and second gas-liquid separation chambers (91, 92) are located on both sides of the rotator shaft (61) so as to sandwich the rotor shaft (61); an air breather chamber (93) which is connected to the gas-liquid separation chambers (91, 92) through air connection openings (93a, 93b) and which is connected to the outside air; and an inter-chamber connection passage (95) which connects the gas-liquid separation chambers (91, 92) to each other at a position below the air connection openings (93a, 93b).

Description

駆動伝動装置Drive transmission device
 本発明は、駆動源の回転を、減速機などの伝動機構を介して伝達する駆動伝動装置に関し、特に、気液分離機能およびエアブリーザ機能に関する。 The present invention relates to a drive transmission device that transmits the rotation of a drive source via a transmission mechanism such as a speed reducer, and more particularly to a gas-liquid separation function and an air breather function.
 従来、駆動伝動装置において、減速機を備えた駆動ユニットにエアブリーザを備えたものが知られている(例えば、特許文献1参照)。
  この従来技術では、第1エアブリーザ室と第2エアブーザ室とを入力軸の軸方向に隣接して設け、第1エアブリーザ室は、大気に連通させるとともに、第2エアブリーザ室の上部と大径の第1連通穴を介して連通されている。そして、第2エアブリーザ室は、小径の第2連通穴により減速機を収容するケーシング内部と連通させている。
  したがって、第1エアブリーザに過剰に入り込んだ潤滑油は、第1連通穴を介して第2エアブリーザ室に抜け出て、ユニット外部に漏れ出るのを抑制できる。
2. Description of the Related Art Conventionally, a drive transmission device that includes an air breather in a drive unit that includes a speed reducer is known (see, for example, Patent Document 1).
In this prior art, a first air breather chamber and a second air breather chamber are provided adjacent to each other in the axial direction of the input shaft. The first air breather chamber communicates with the atmosphere, and is connected to the upper portion of the second air breather chamber and a large diameter first chamber. It communicates through one communication hole. And the 2nd air breather chamber is connected with the casing inside which accommodates a reduction gear by the small 2nd communication hole.
Therefore, it is possible to prevent the lubricating oil that has excessively entered the first air breather from flowing out into the second air breather chamber through the first communication hole and leaking outside the unit.
特開平10-325456号公報Japanese Patent Laid-Open No. 10-325456
 しかしながら、上記の従来技術では、第1エアブリーザ室および第2エアブリーザ室が、減速機の入力軸に対して、軸方向から見て左右の一方に偏って配置されており、それに伴って、第1連通穴および第2連通穴も、左右の一方に偏って配置されている。
  このため、高回転時に歯車等により掻き上げた潤滑油がほぼ同じ状況で第1連通穴、第2連通穴、あるいはこれら連通穴に連通された開口にかかった場合、エアブリーザ室が潤滑油により閉じきられた状態となるおそれがある。この場合、減速機室と外部との空気連通機能(エアブリーザ機能)が低下することで、潤滑油がユニット内部から相対的に低圧の外部へ漏出するおそれがあった。
However, in the above-described conventional technology, the first air breather chamber and the second air breather chamber are arranged to be deviated to one of the left and right when viewed from the axial direction with respect to the input shaft of the speed reducer. The communication hole and the second communication hole are also arranged so as to be biased to one of the left and right.
For this reason, if the lubricating oil scraped up by the gears or the like during high rotation hits the first communication hole, the second communication hole, or the opening connected to these communication holes in almost the same situation, the air breather chamber is closed by the lubricating oil. There is a risk of being in a broken state. In this case, since the air communication function (air breather function) between the reduction gear chamber and the outside is lowered, there is a possibility that the lubricating oil leaks from the inside of the unit to the relatively low pressure outside.
 本発明は、上記問題に着目してなされたもので、エアブリーザ機能の安定化を図ることができる駆動伝動装置を提供することを目的とする。 The present invention has been made paying attention to the above problem, and an object thereof is to provide a drive transmission device capable of stabilizing the air breather function.
 上記目的を達成するため、本発明は、
伝達機構の上方位置で、前記伝達機構の回転軸に沿う方向から見て前記回転軸を挟む両側位置に、前記伝達機構収容室に連通された第1気液分離室および第2気液分離室を配置し、
両気液分離室に、外気と連通されたエアブリーザ室を、空気連通口を介して連通し、
前記空気連通口よりも下方位置にて、両気液分離室どうしを、気液分離室間連通路により連通したことを特徴とする駆動伝動装置とした。
In order to achieve the above object, the present invention provides:
A first gas-liquid separation chamber and a second gas-liquid separation chamber communicated with the transmission mechanism accommodation chamber at positions above the transmission mechanism and on both sides of the rotation shaft as viewed from the direction along the rotation axis of the transmission mechanism. And place
An air breather chamber communicated with the outside air is communicated with both gas-liquid separation chambers through an air communication port.
The drive transmission device is characterized in that the gas-liquid separation chambers communicate with each other through a communication path between the gas-liquid separation chambers at a position below the air communication port.
 本発明の駆動伝動装置では、両気液分離室は、回転体を挟んで配置しているため、伝動機構の回転体が回転して潤滑油を掻き上げた際に、回転体の回転方向によって、両気液分離室に対する潤滑油の飛ばされ方に差が生じる。
  したがって、両気液分離室の一方側が多量の潤滑油により、伝達機構収容室との連通部分が塞がれた場合でも、他方の気液分離室に対して潤滑油が飛ばされにくく、伝達機構収容室との連通状態が確保される。
  また、回転体の回転方向が逆転した場合は、両気液分離室の多量の潤滑油がかかる側と、潤滑油が飛ばされにくい側との関係が逆になり、潤滑油が飛ばされにくい側による、伝達機構収容室との連通状態を保つことができる。
  よって、回転体の回転方向にかかわらず、伝達機構収容室から、両気液分離室の少なくとも一方から、エアブリーザ室を介して外部との連通状態を維持し、エアブリーザ機能の安定化を図ることができる。よって、エアブリーザ機能の低下に伴う潤滑油の漏出も抑制できる。
In the drive transmission device of the present invention, since both gas-liquid separation chambers are arranged with the rotating body interposed therebetween, when the rotating body of the transmission mechanism rotates and scoops up the lubricating oil, it depends on the rotating direction of the rotating body. There is a difference in the way in which the lubricating oil is blown to both gas-liquid separation chambers.
Therefore, even if one side of both gas-liquid separation chambers is blocked by a large amount of lubricating oil and the communication portion with the transmission mechanism housing chamber is blocked, the lubricating oil is not easily blown to the other gas-liquid separation chamber. Communication with the accommodation room is ensured.
Also, if the rotating direction of the rotating body is reversed, the relationship between the side where a large amount of lubricating oil is applied in the gas-liquid separation chamber and the side where the lubricating oil is difficult to be blown is reversed, and the side where the lubricating oil is difficult to blow off The communication state with the transmission mechanism accommodation chamber can be maintained.
Therefore, regardless of the rotation direction of the rotating body, it is possible to maintain communication with the outside from the transmission mechanism housing chamber and at least one of the gas-liquid separation chambers via the air breather chamber, thereby stabilizing the air breather function. it can. Therefore, it is possible to suppress the leakage of the lubricating oil accompanying the deterioration of the air breather function.
実施の形態1の駆動伝動装置を適用したインホイールモータユニットの全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the in-wheel motor unit to which the drive transmission device of Embodiment 1 is applied. 前記インホイールモータユニットのモータケース部の端面形状を示す正面図であって、図1の矢印A方向から見た状態を示す。It is a front view which shows the end surface shape of the motor case part of the said in-wheel motor unit, Comprising: The state seen from the arrow A direction of FIG. 前記インホイールモータユニットの減速機ケース部の端面形状を示す正面図であって、図1の矢印B方向から見た状態を示す。It is a front view which shows the end surface shape of the reduction gear case part of the said in-wheel motor unit, Comprising: The state seen from the arrow B direction of FIG. 実施の形態1の作用説明図であって、図2の主要部を拡大した図である。FIG. 3 is an operation explanatory diagram of the first embodiment, and is an enlarged view of a main part of FIG. 2. 実施の形態1の作用説明図であって、図3の主要部を拡大した図である。FIG. 4 is an operation explanatory diagram of the first embodiment, and is an enlarged view of a main part of FIG. 3. 実施の形態2の駆動伝動装置を適用したインホイールモータユニットの全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the in-wheel motor unit to which the drive transmission device of Embodiment 2 is applied.
 以下、本発明の駆動伝動装置を実現する最良の形態を、図面に示す実施の形態に基づいて説明する。
(実施の形態1)
  実施の形態1の駆動伝動装置は、図1に示すように、車両の車輪Wを駆動させるインホイールモータユニットMUに適用した例である。
  以下に、実施の形態1の駆動伝動装置を、図1~図5に基づいて説明する。
  (全体概略構造)
  このインホイールモータユニットMU(以下、モータユニットMUと称する)は、図1に示すように、ユニットハウジング1から車軸2が突出され、この車軸2に車輪Wのホイール部分が一体的に回転可能に支持されている。
  なお、ユニットハウジング1は、車輪Wと共に、図示を省略したサスペンション装置を介して車体(図示省略)に支持されている。
Hereinafter, the best mode for realizing the drive transmission device of the present invention will be described based on the embodiments shown in the drawings.
(Embodiment 1)
The drive transmission apparatus of Embodiment 1 is an example applied to the in-wheel motor unit MU that drives the wheels W of the vehicle, as shown in FIG.
Hereinafter, the drive transmission device according to the first embodiment will be described with reference to FIGS.
(Overall schematic structure)
As shown in FIG. 1, the in-wheel motor unit MU (hereinafter referred to as a motor unit MU) has an axle 2 protruding from a unit housing 1, and a wheel portion of a wheel W can rotate integrally with the axle 2. It is supported.
The unit housing 1 is supported by the vehicle body (not shown) together with the wheels W via a suspension device (not shown).
 (駆動ユニット内部構造)
  次に、モータユニットMUの内部構造について説明する。
  ユニットハウジング1内には、電動モータ6と、伝達機構としての減速機構7と、が収容されている。
(Drive unit internal structure)
Next, the internal structure of the motor unit MU will be described.
The unit housing 1 accommodates an electric motor 6 and a speed reduction mechanism 7 as a transmission mechanism.
 ユニットハウジング1は、モータケース部11、減速機ケース部12、ハブケース部13、モータカバー14を結合して形成され、内部に、モータ室10a、減速機室10bを備えている。なお、減速機室10bの内部には潤滑油が充填されているのに対し、モータ室10aはドライ空間に保持されている。
  モータケース部11は、略円筒状の本体11aを備え、本体11aの内周に、電動モータ6が収容されている。
  また、本体11aの軸方向の一端(図において右方向端部)から内径方向に向かって、モータ室10aと減速機室10bとを区画する区画壁11bが立設されている。そして、この区画壁11bに、後述するロータ軸(入力軸)61が挿通される入力軸穴11cが開口されている。なお、入力軸穴11cには、ロータ軸61を後述する駆動歯車71を介して回転自在に支持する第1の駆動歯車軸受31と、モータ室10aと減速機室10bとの間をシールするオイルシール41が設けられている。
The unit housing 1 is formed by coupling a motor case portion 11, a reduction gear case portion 12, a hub case portion 13, and a motor cover 14, and includes a motor chamber 10a and a reduction gear chamber 10b therein. The motor chamber 10a is held in a dry space while the reduction gear chamber 10b is filled with lubricating oil.
The motor case portion 11 includes a substantially cylindrical main body 11a, and the electric motor 6 is accommodated on the inner periphery of the main body 11a.
A partition wall 11b that divides the motor chamber 10a and the speed reducer chamber 10b is provided upright from one axial end (right end in the drawing) of the main body 11a toward the inner diameter direction. The partition wall 11b has an input shaft hole 11c through which a rotor shaft (input shaft) 61 described later is inserted. The input shaft hole 11c has oil that seals between the first drive gear bearing 31 that rotatably supports the rotor shaft 61 via a drive gear 71 described later, and the motor chamber 10a and the speed reducer chamber 10b. A seal 41 is provided.
 さらに、本体11aの図1の下端部から、図2において左斜め下方に向けて、減速機室10bの下部の側部を形成する縦壁部11dが延在されている。 Further, a vertical wall portion 11d that forms a lower side portion of the reduction gear chamber 10b extends from the lower end portion of the main body 11a in FIG.
 減速機ケース部12は、図1に示すように、モータケース部11にボルトの締結により結合されている。この減速機ケース部12は、上部に駆動歯車収容部12aを備えるとともに、下部に遊星歯車組収容部12bを備え、図1の矢印B方向からの矢視図である図3に示すように、斜め上下方向に長い略楕円形状に形成されている。
  なお、遊星歯車組収容部12bには、図1に示すように、車軸2を貫通させる車軸貫通穴12cが開口されている。
As shown in FIG. 1, the speed reducer case portion 12 is coupled to the motor case portion 11 by fastening bolts. As shown in FIG. 3, which is a view from the direction of arrow B in FIG. 1, the speed reducer case portion 12 includes a drive gear housing portion 12 a in the upper portion and a planetary gear set housing portion 12 b in the lower portion. It is formed in a substantially elliptical shape that is long in the diagonally up and down direction.
As shown in FIG. 1, an axle through hole 12c through which the axle 2 passes is opened in the planetary gear set housing portion 12b.
 ハブケース部13は、減速機ケース部12の軸方向の一端(図において右側の端部)に、車軸貫通穴12cと同軸にボルトにより結合されている。このハブケース部13は、車軸2と同軸の円筒部13aを備え、この円筒部13aの内周に、車軸2のホイールハブ軸22を回転自在に支持するハブ軸受33が設けられている。 The hub case portion 13 is coupled to one end of the reduction gear case portion 12 in the axial direction (the right end portion in the figure) by a bolt coaxially with the axle through hole 12c. The hub case portion 13 includes a cylindrical portion 13a that is coaxial with the axle 2. A hub bearing 33 that rotatably supports the wheel hub shaft 22 of the axle 2 is provided on the inner periphery of the cylindrical portion 13a.
 電動モータ6は、ロータ軸(入力軸)61と、ロータ62と、ステータ63と、を備えている。ロータ軸61は、一端部がユニットハウジング1のモータカバー14に対しロータ軸受34を介して回転可能に支持されている。また、ロータ軸61の他端部は後述する駆動歯車71を介して、モータケース部11および減速機ケース部12に対し一対の第1の駆動歯車軸受31および第2の駆動歯車軸受32を介して回転可能に支持されている。
  ロータ62は、ロータ軸61の外周に固定され、永久磁石を埋設した積層鋼板により構成されている。ステータ63は、ユニットハウジング1のモータケース部11の本体11aの内周面に固定されるとともにロータ62に対しエアギャップを介して配置されている。
The electric motor 6 includes a rotor shaft (input shaft) 61, a rotor 62, and a stator 63. One end of the rotor shaft 61 is rotatably supported via the rotor bearing 34 with respect to the motor cover 14 of the unit housing 1. The other end of the rotor shaft 61 is connected to the motor case 11 and the speed reducer case 12 via a pair of first drive gear bearing 31 and second drive gear bearing 32 via a drive gear 71 described later. And is rotatably supported.
The rotor 62 is fixed to the outer periphery of the rotor shaft 61 and is constituted by a laminated steel plate in which a permanent magnet is embedded. The stator 63 is fixed to the inner peripheral surface of the main body 11 a of the motor case portion 11 of the unit housing 1 and is disposed with respect to the rotor 62 via an air gap.
 減速機構7は、ロータ軸61と車軸2との間に介在されており、平歯車機構70と遊星歯車機構80とを備えている。
  平歯車機構70は、駆動歯車71と従動歯車72とを上下に備えている。
  駆動歯車71は、ロータ軸61の車幅方向で車外方向(図1において右方向)の先端部にセレーション結合され、かつ、前述の一対の駆動歯車軸受31,32を介して、モータケース部11および減速機ケース部12に回転可能に支持されている。
  従動歯車72は、駆動歯車71よりも大径に形成され、かつ、ロータ軸61の下方に配置された従動軸73の外周に一体に形成されている。
  これら両歯車71,72のギヤ比に基づいて、ロータ軸61の回転が従動軸73に減速されて伝達される。
The speed reduction mechanism 7 is interposed between the rotor shaft 61 and the axle 2 and includes a spur gear mechanism 70 and a planetary gear mechanism 80.
The spur gear mechanism 70 includes a drive gear 71 and a driven gear 72 at the top and bottom.
The drive gear 71 is serrated to the front end portion of the rotor shaft 61 in the vehicle width direction (right direction in FIG. 1), and is connected to the motor case portion 11 via the pair of drive gear bearings 31 and 32 described above. And it is rotatably supported by the reducer case 12.
The driven gear 72 is formed to have a larger diameter than the drive gear 71 and is integrally formed on the outer periphery of the driven shaft 73 disposed below the rotor shaft 61.
Based on the gear ratio of the two gears 71 and 72, the rotation of the rotor shaft 61 is decelerated and transmitted to the driven shaft 73.
 なお、従動軸73は、従動軸受35,36に回転可能に支持されている。そして、従動軸受35は、モータケース部11に支持されている。また、従動軸受36は、車軸2の後述する出力軸21の内周に支持されている。 The driven shaft 73 is rotatably supported by the driven bearings 35 and 36. The driven bearing 35 is supported by the motor case portion 11. The driven bearing 36 is supported on the inner periphery of an output shaft 21 (described later) of the axle 2.
 ここで、車軸2について説明を加える。
  車軸2は、従動軸73と同軸に、その車幅方向で車外側に設けられ、出力軸21とホイールハブ軸22とを備えている。
  出力軸21は、遊星歯車機構80から回転が伝達されるもので、ユニットハウジング1の減速機ケース部12に従動軸受36を介して支持されており、減速機構7から回転を出力する軸である。なお、出力軸21は、従動軸受36の径方向の外側の部材とセレーション結合されている。
  ホイールハブ軸22は、この出力軸21と周方向に係合する一方で、軸方向に相対移動可能にセレーション結合され、ハブケース部13にハブ軸受33を介して支持され、車輪Wのホイール部分がボルト止めされる。
Here, the axle 2 will be described.
The axle 2 is provided coaxially with the driven shaft 73 on the vehicle outer side in the vehicle width direction, and includes an output shaft 21 and a wheel hub shaft 22.
The output shaft 21 receives rotation from the planetary gear mechanism 80, is supported by the reduction gear case 12 of the unit housing 1 via the driven bearing 36, and is a shaft that outputs rotation from the speed reduction mechanism 7. . The output shaft 21 is serrated with a member on the outer side of the driven bearing 36 in the radial direction.
The wheel hub shaft 22 is engaged with the output shaft 21 in the circumferential direction, and is serrated and coupled so as to be relatively movable in the axial direction. The wheel hub shaft 22 is supported by the hub case portion 13 via a hub bearing 33, and the wheel portion of the wheel W is It is bolted.
 遊星歯車機構80は、サンギヤ81と、ピニオン82と、ピニオンキャリア83と、リングギヤ84と、を有する。サンギヤ81は、従動軸73に一体に形成され、ピニオン82と噛み合っている。ピニオン82は、ピニオンキャリア83に対して相対回転可能に支持されており、サンギヤ81およびリングギヤ84と噛み合っている。ピニオンキャリア83は、出力軸21と一体に形成されている。リングギヤ84は、ユニットハウジング1のモータケース部11と一体的に形成されている。
  以上の構成の遊星歯車機構80により、従動軸73の回転が、出力軸21(車軸2)に減速して伝達される。
The planetary gear mechanism 80 includes a sun gear 81, a pinion 82, a pinion carrier 83, and a ring gear 84. The sun gear 81 is formed integrally with the driven shaft 73 and meshes with the pinion 82. The pinion 82 is supported so as to be rotatable relative to the pinion carrier 83 and meshes with the sun gear 81 and the ring gear 84. The pinion carrier 83 is formed integrally with the output shaft 21. The ring gear 84 is formed integrally with the motor case portion 11 of the unit housing 1.
By the planetary gear mechanism 80 having the above configuration, the rotation of the driven shaft 73 is decelerated and transmitted to the output shaft 21 (axle 2).
 (油路構造)
  次に、油路構造について簡単に説明する。
  ユニットハウジング1の減速機室10bの内部には、減速機構7を潤滑および冷却するための潤滑油が収容されており、かつ、この潤滑油を減速機室10b内の各軸受31,32,33,35,36に供給される。
(Oil channel structure)
Next, the oil passage structure will be briefly described.
Lubricating oil for lubricating and cooling the speed reduction mechanism 7 is accommodated in the speed reducer chamber 10b of the unit housing 1, and the bearings 31, 32, 33 in the speed reducer chamber 10b are accommodated in the lubricating oil. , 35, 36.
 ユニットハウジング1において減速機室10bの下部には、重力により潤滑油を貯留するオイル貯留部101が設けられている。なお、図において二点鎖線OILが、オイル貯留部101におけるオイルレベルの一例を示している。 In the unit housing 1, an oil storage portion 101 that stores lubricating oil by gravity is provided below the reduction gear chamber 10 b. In the figure, an alternate long and two short dashes line OIL indicates an example of the oil level in the oil reservoir 101.
 さらに、図2に示すように、モータケース部11の区画壁11bにおいて、ロータ軸61と同軸の高さには、上部第1オイルキャッチ部111と上部第2オイルキャッチ部112とが形成されている。
  両オイルキャッチ部111,112は、減速機室10bにて掻き上げられた潤滑油を捕捉するためのもので、モータケース部11および減速機ケース部12から軸方向に突出させたフランジ11f,11g,12f,12g(図3参照)を軸方向に当接させて形成されている。
Further, as shown in FIG. 2, an upper first oil catch portion 111 and an upper second oil catch portion 112 are formed on the partition wall 11 b of the motor case portion 11 at a height coaxial with the rotor shaft 61. Yes.
Both oil catch portions 111 and 112 are for catching the lubricating oil scraped up in the speed reducer chamber 10b, and flanges 11f and 11g protruded from the motor case portion 11 and the speed reducer case portion 12 in the axial direction. , 12f, 12g (see FIG. 3) are contacted in the axial direction.
 また、両オイルキャッチ部111,112で捕捉された潤滑油は、図3に示す上部吸引構造120により吸引されてロータ軸61および駆動歯車71の中心部に供給された後、その外径方向の両駆動歯車軸受31,32などに供給される。すなわち、減速機ケース部12には、両オイルキャッチ部111,112の軸方向側部に供給穴121a,121bが開口されている。これらの供給穴121a,121bは、減速機ケース部12に形成された連通路122a,122bを通って、ロータ軸61および駆動歯車71の中心部に対して軸方向を向いて開口された潤滑油供給ポート123a,123bに連通されている。
  さらに、図1に示すように、ロータ軸61において駆動歯車71と径方向で重なる部分の軸心部には、潤滑油供給路61aが軸方向に形成されている。そして、この潤滑油供給路61aの最も奥の部分であって、軸方向で、第1の駆動歯車軸受31とオイルシール41との間の位置に、潤滑油供給路61aと減速機室10bとを連通する径方向連通孔61bが径方向に貫通して形成されている。
Further, the lubricating oil captured by both the oil catch portions 111 and 112 is sucked by the upper suction structure 120 shown in FIG. 3 and supplied to the central portion of the rotor shaft 61 and the drive gear 71, and then in the outer diameter direction. Supplied to both drive gear bearings 31, 32, etc. That is, the speed reducer case portion 12 has supply holes 121a and 121b opened in the axial direction side portions of the oil catch portions 111 and 112. These supply holes 121a and 121b pass through the communication passages 122a and 122b formed in the speed reducer case portion 12, and are lubricant oil that is opened in the axial direction with respect to the central portion of the rotor shaft 61 and the drive gear 71. The supply ports 123a and 123b communicate with each other.
Further, as shown in FIG. 1, a lubricating oil supply path 61 a is formed in the axial direction at the axial center portion of the rotor shaft 61 that overlaps the drive gear 71 in the radial direction. The lubricating oil supply path 61a, the speed reducer chamber 10b, and the innermost portion of the lubricating oil supply path 61a are positioned in the axial direction between the first drive gear bearing 31 and the oil seal 41. Is formed so as to penetrate in the radial direction.
 したがって、各オイルキャッチ部111,112で捕捉された潤滑油は、供給穴121a,121bから、連通路122a,122bを通り潤滑油供給ポート123a,123bに供給される。そして、潤滑油供給ポート123a,123bに供給された潤滑油は、第1の駆動歯車軸受31と対の第2の駆動歯車軸受32に供給されるとともに、ロータ軸61に形成された潤滑油供給路61aと径方向連通孔61bとを通って、第1の駆動歯車軸受31に供給される。 Therefore, the lubricating oil captured by the oil catch portions 111 and 112 is supplied from the supply holes 121a and 121b to the lubricating oil supply ports 123a and 123b through the communication passages 122a and 122b. The lubricating oil supplied to the lubricating oil supply ports 123a and 123b is supplied to the second driving gear bearing 32 paired with the first driving gear bearing 31 and the lubricating oil supply formed on the rotor shaft 61. The first drive gear bearing 31 is supplied through the path 61a and the radial communication hole 61b.
 なお、ロータ軸61と一体的に回転する駆動歯車71は、車速の上昇に比例して回転数が上昇するため、ロータ軸61内油路に作用する遠心圧が加速度的に高まる。これにより、潤滑油供給路61aと径方向連通孔61bとにより構成される負圧吸引部610では、負圧が大きくなる。よって、上部第1オイルキャッチ部111および上部第2オイルキャッチ部112の潤滑油は、潤滑油供給ポート123a,123bを経て、負圧吸引部610に勢い良く吸い出される。 The rotational speed of the drive gear 71 that rotates integrally with the rotor shaft 61 increases in proportion to the increase in the vehicle speed, so that the centrifugal pressure acting on the oil passage in the rotor shaft 61 increases at an accelerated rate. Thereby, in the negative pressure suction part 610 comprised by the lubricating oil supply path 61a and the radial direction communication hole 61b, a negative pressure becomes large. Therefore, the lubricating oil in the upper first oil catch portion 111 and the upper second oil catch portion 112 is sucked out vigorously to the negative pressure suction portion 610 through the lubricating oil supply ports 123a and 123b.
 (気液分離室およびエアブリーザ室)
  次に、気液分離室91,92およびエアブリーザ室93について説明する。
  図2および図3に示すように、ロータ軸61および両オイルキャッチ部111,112の上部には、第1気液分離室91、第2気液分離室92、エアブリーザ室93が形成されている。
  第1気液分離室91および第2気液分離室92は、減速機構7の上方位置で、減速機構7の回転軸としてのロータ軸61および駆動歯車71の軸方向から見て、水平方向でこれらを挟む両側位置に配置されている。そして、第1気液分離室91および第2気液分離室92は、モータケース部11および減速機ケース部12から、それぞれ軸方向に突出されたフランジ11h、12hを軸方向に当接させることにより、減速機室10bに対して区画されている。また、各気液分離室91,92は、図3に示すように、上部第1オイルキャッチ部111および上部第2オイルキャッチ部112の上部で、フランジ12hに開口された減速機室連通口94a,94bを通じて減速機室10bに連通されている。
(Gas-liquid separation chamber and air breather chamber)
Next, the gas- liquid separation chambers 91 and 92 and the air breather chamber 93 will be described.
As shown in FIGS. 2 and 3, a first gas-liquid separation chamber 91, a second gas-liquid separation chamber 92, and an air breather chamber 93 are formed above the rotor shaft 61 and the oil catch portions 111 and 112. .
The first gas-liquid separation chamber 91 and the second gas-liquid separation chamber 92 are positioned above the speed reduction mechanism 7 in the horizontal direction when viewed from the axial direction of the rotor shaft 61 and the drive gear 71 as the rotation shaft of the speed reduction mechanism 7. It is arrange | positioned at the both-sides position which pinches | interposes these. The first gas-liquid separation chamber 91 and the second gas-liquid separation chamber 92 cause the flanges 11h and 12h protruding in the axial direction from the motor case portion 11 and the speed reducer case portion 12 to abut in the axial direction, respectively. Thus, the speed reducer chamber 10b is partitioned. Further, as shown in FIG. 3, the gas- liquid separation chambers 91 and 92 are respectively provided at the upper part of the upper first oil catch portion 111 and the upper second oil catch portion 112, and the speed reducer chamber communication port 94 a opened in the flange 12 h. , 94b, communicates with the reduction gear chamber 10b.
 なお、減速機室連通口94a,94bは、各オイルキャッチ部111,112の最も奥まった位置であって、フランジ12hの前記水平方向の端部に配置されており、また、図1に示すように、径方向で駆動歯車71と重ならない位置に配置されている。これにより、減速機室10bにて掻き上げられた潤滑油が、減速機室連通口94a,94bに、直接掛かりにくくなっている。 The speed reducer chamber communication ports 94a and 94b are located at the deepest positions of the oil catch portions 111 and 112, and are disposed at the horizontal ends of the flanges 12h, as shown in FIG. Further, they are arranged at positions that do not overlap with the drive gear 71 in the radial direction. As a result, the lubricating oil scooped up in the reducer chamber 10b is less likely to be directly applied to the reducer chamber communication ports 94a and 94b.
 エアブリーザ室93は、図2、図3に示すように、軸方向に直交する水平方向で、両気液分離室91,92の間の位置に、両気液分離室91,92と区画して形成されている。さらに、エアブリーザ室93には、図2に示すように、それぞれ、各気液分離室91,92の上部と連通する、空気連通口93a,93bが開口されている。 The air breather chamber 93 is partitioned from the gas- liquid separation chambers 91 and 92 at a position between the gas- liquid separation chambers 91 and 92 in the horizontal direction orthogonal to the axial direction, as shown in FIGS. Is formed. Further, as shown in FIG. 2, the air breather chamber 93 has air communication ports 93a and 93b communicating with the upper portions of the gas- liquid separation chambers 91 and 92, respectively.
 そして、上下方向でエアブリーザ室93とフランジ11h,12hとの間には、両気液分離室91,92の下端部どうしを連通する気液分離室間連通路95が設けられている。この気液分離室間連通路95は、図2、図3に示すように、両フランジ11h,12hの形状に基づいて、上方に凸形状の円弧形状に形成されている。なお、この気液分離室間連通路95は、上方に凸となった最も高い位置であっても、空気連通口93a,93bよりも低くなる位置に配置されている。これにより、両気液分離室91,92の潤滑油は、空気連通口93a,93bに達する前に、気液分離室間連通路95を介して両気液分離室91,92の間で移動する。
  さらに、エアブリーザ室93は、図1に示すように、上端部に設けられたエアブリーザパイプ96を介して外気と連通されており、また、エアブリーザ室93の上部とモータ室10aとが、モータ室連通路97を介して連通されている。
A gas-liquid separation chamber communication passage 95 is provided between the air breather chamber 93 and the flanges 11h and 12h in the vertical direction to communicate the lower ends of the gas- liquid separation chambers 91 and 92 with each other. As shown in FIGS. 2 and 3, the gas-liquid separation chamber communication passage 95 is formed in an upwardly convex arc shape based on the shapes of the flanges 11 h and 12 h. The gas-liquid separation chamber communication passage 95 is arranged at a position lower than the air communication ports 93a and 93b even at the highest position protruding upward. As a result, the lubricating oil in the gas- liquid separation chambers 91 and 92 moves between the gas- liquid separation chambers 91 and 92 via the gas-liquid separation chamber communication path 95 before reaching the air communication ports 93a and 93b. To do.
Further, as shown in FIG. 1, the air breather chamber 93 communicates with the outside air via an air breather pipe 96 provided at the upper end, and the upper portion of the air breather chamber 93 and the motor chamber 10a are connected to the motor chamber. Communication is made via a passage 97.
 (下部キャッチ構造)
  本実施の形態1には、従動歯車72の周囲にも掻き上げられた潤滑油をキャッチして従動軸73の軸心部に供給する下部キャッチ構造が設けられている。
  以下に、この下部キャッチ構造について簡単に説明する。
  この下部キャッチ構造は、図2,3に示すように、従動軸73の軸心位置よりも僅かに高い位置に設けられた、下部第1オイルキャッチ部131、下部第2オイルキャッチ部132を備えている。各オイルキャッチ部131,132は、両オイルキャッチ部111,112と同様に、両ケース部11,12に設けた略L字断面形状のフランジ11m,11n、12m,12nを軸方向に付き合わせることで形成されている。
  また、両オイルキャッチ部131,132で捕捉された潤滑油は、下部吸引構造130により、従動軸73(図1参照)の軸心部に供給された後、その外径方向の従動軸受35,36や遊星歯車機構80などに供給される。すなわち、モータケース部11の縦壁部11dには、両オイルキャッチ部131,132の軸方向側部に供給穴131a,132aが開口されている。これらの供給穴131a,132aは、縦壁部11dに形成された連通路131b,132bを通って、図1に示すように、従動軸73の軸心部に対して軸方向を向いて開口された潤滑油供給ポート133に連通されている。
  さらに、潤滑油供給ポート133は、従動軸73の軸心部に貫通された形成された従動軸内油路134に接続されている。
(Lower catch structure)
The first embodiment is provided with a lower catch structure that catches the lubricating oil scraped up around the driven gear 72 and supplies it to the axial center portion of the driven shaft 73.
Below, this lower catch structure is demonstrated easily.
As shown in FIGS. 2 and 3, the lower catch structure includes a lower first oil catch portion 131 and a lower second oil catch portion 132 provided at a position slightly higher than the axial center position of the driven shaft 73. ing. Each oil catch part 131,132 attaches | subjects the flanges 11m, 11n, 12m, 12n of the substantially L-shaped cross section provided in both case parts 11,12 to an axial direction similarly to both oil catch parts 111,112. It is formed with.
Further, the lubricating oil captured by the oil catch portions 131 and 132 is supplied to the shaft center portion of the driven shaft 73 (see FIG. 1) by the lower suction structure 130, and then the driven bearings 35, 36, the planetary gear mechanism 80, and the like. That is, supply holes 131 a and 132 a are opened in the axial direction side portions of both oil catch portions 131 and 132 in the vertical wall portion 11 d of the motor case portion 11. These supply holes 131a and 132a pass through the communication passages 131b and 132b formed in the vertical wall portion 11d and are opened in the axial direction with respect to the axial center portion of the driven shaft 73 as shown in FIG. In addition, the lubricating oil supply port 133 is communicated.
Further, the lubricating oil supply port 133 is connected to a driven shaft oil passage 134 formed through the shaft center portion of the driven shaft 73.
 したがって、電動モータ6の駆動時に、従動歯車72の回転によりオイル貯留部101の潤滑油が掻き上げられる。それに加え、従動軸73の回転に伴って生じる負圧により、両オイルキャッチ部131,132の潤滑油が、従動軸内油路134に吸い上げられ、遠心力により飛散される。この場合、従動軸73の手前側では、潤滑油は、外径方向の従動軸受35を経て、従動歯車72の外径方向に供給される。また、従動軸内油路134の奥に進んだ潤滑油は、出力軸21との間から、従動軸受36を通った後、遊星歯車機構80に供給される。
  これにより、減速機構7の各回転要素の表面を潤滑することができる。
Therefore, when the electric motor 6 is driven, the lubricating oil in the oil reservoir 101 is scraped up by the rotation of the driven gear 72. In addition, due to the negative pressure generated with the rotation of the driven shaft 73, the lubricating oil in both oil catch portions 131 and 132 is sucked up into the oil passage 134 in the driven shaft and scattered by centrifugal force. In this case, on the front side of the driven shaft 73, the lubricating oil is supplied in the outer radial direction of the driven gear 72 through the driven bearing 35 in the outer radial direction. Further, the lubricating oil that has traveled to the back of the oil passage 134 in the driven shaft passes through the driven bearing 36 from between the output shaft 21 and the planetary gear mechanism 80.
Thereby, the surface of each rotation element of the speed reduction mechanism 7 can be lubricated.
 (実施の形態1の作用)
  以下に、実施の形態1の作用として、減速機室10bにおけるエアブリーザ機能について説明する。
  減速機室10bは、両気液分離室91,92から、図4の矢印AR1、AR2に示すように、空気連通口93a,93bを通り、エアブリーザ室93から、矢印AR0に示すように、エアブリーザパイプ96を介して外気と連通される。
  これにより、減速機室10bは、外気圧と同圧に保持される。
  すなわち、減速機室10bでは、内部の空気は温度変化による体積増減が生じる。このような場合でも、上記の外気との連通により、減速機室10bの内部空気の体積増減に応じて空気の吸排を行なって、外気圧と同圧に保持することができる。
  また、電動モータ6の駆動時には、減速機構7において潤滑油が掻き上げられる。この際、車両の前進時と後退時の違いにより、減速機構7の各回転要素の回転方向が逆になる。この場合、例えば、駆動歯車71は、図4および図5に示すように、矢印H1が示す方向に回転し、従動歯車72は、矢印H2に示す方向に回転する。この回転方向を、例えば、前進走行時の回転方向とする。
(Operation of Embodiment 1)
Hereinafter, as an operation of the first embodiment, an air breather function in the reducer chamber 10b will be described.
The speed reducer chamber 10b passes from the gas- liquid separation chambers 91 and 92 through the air communication ports 93a and 93b as shown by arrows AR1 and AR2 in FIG. 4 and from the air breather chamber 93 to the air breather as shown by arrows AR0. The outside air communicates with the pipe 96.
As a result, the speed reducer chamber 10b is maintained at the same pressure as the external air pressure.
That is, in the reduction gear chamber 10b, the volume of the internal air increases and decreases due to temperature changes. Even in such a case, by communicating with the above-described outside air, air can be sucked and discharged according to the volume increase / decrease of the inside air of the speed reducer chamber 10b, and can be maintained at the same pressure as the outside air pressure.
Further, when the electric motor 6 is driven, the reduction mechanism 7 scoops up the lubricating oil. At this time, the rotation direction of each rotating element of the speed reduction mechanism 7 is reversed due to the difference between when the vehicle moves forward and when the vehicle moves backward. In this case, for example, as shown in FIGS. 4 and 5, the drive gear 71 rotates in the direction indicated by the arrow H1, and the driven gear 72 rotates in the direction indicated by the arrow H2. This rotational direction is, for example, the rotational direction during forward travel.
 この前進時に、従動歯車72の近傍では、オイル貯留部101(図2,3参照)から掻き上げた潤滑油は、図4において矢印OI1に示すように、従動歯車72の、図において左側における掻き上げ量が、図において右側よりも多くなる。
  さらに、この掻き上げられた潤滑油が、駆動歯車71にかかった場合、上部両オイルキャッチ部111,112では、矢印OI2に示すように、駆動歯車71に対して図において右側である上部第1オイルキャッチ部111への跳ね上がり量が多くなる。
  このように、減速機構7では、その回転軸である駆動歯車71や従動歯車72では、その軸を中心とした水平方向の両側である、図4における左右で、潤滑油の掻き上げ方、ならびに跳ね上げ方に偏りが生じる。また、後退時には、潤滑油の掻き上げ方向が、上記とは図において左右逆方向に偏ることになる。
At the time of this forward movement, in the vicinity of the driven gear 72, the lubricating oil scooped up from the oil reservoir 101 (see FIGS. 2 and 3) is scraped on the left side in the drawing of the driven gear 72 as shown by an arrow OI1 in FIG. The raising amount is larger than that on the right side in the figure.
Further, when this scooped-up lubricating oil is applied to the drive gear 71, the upper first oil catch portions 111 and 112, as shown by the arrow OI2, are the upper first on the right side of the drive gear 71 in the drawing. The amount of springing up to the oil catch portion 111 increases.
As described above, in the speed reduction mechanism 7, the drive gear 71 and the driven gear 72, which are the rotation shafts, on both sides in the horizontal direction around the shaft, the left and right in FIG. 4, There is a bias in how to flip up. Further, at the time of retreating, the direction in which the lubricating oil is scraped is biased in the left-right direction opposite to the above.
 これにより、上記の前進時の回転状態では、上部第1オイルキャッチ部111において潤滑油が多量に溜まり、両気液分離室91,92では、第1気液分離室91に潤滑油が浸入する可能性が高くなる。
  このような場合に、第1気液分離室91に潤滑油が浸入し、減速機室連通口94aが塞がれたとしても、上部第2オイルキャッチ部112における潤滑油の溜まり量は少なく、減速機室連通口94bが継続的に塞がる状態にはなりにくい。
  したがって、減速機室連通口94bの開口が確保される結果、減速機室10bは、この減速機室連通口94b、第2気液分離室92、空気連通口93b、エアブリーザ室93、エアブリーザパイプ96により外気との連通が確保される。
Thereby, in the rotation state at the time of the forward movement, a large amount of lubricating oil is accumulated in the upper first oil catch portion 111, and the lubricating oil enters the first gas-liquid separation chamber 91 in both the gas- liquid separation chambers 91 and 92. The possibility increases.
In such a case, even if the lubricating oil enters the first gas-liquid separation chamber 91 and the speed reducer chamber communication port 94a is blocked, the amount of accumulated lubricating oil in the upper second oil catch portion 112 is small, The reduction gear chamber communication port 94b is unlikely to be continuously blocked.
Therefore, as a result of ensuring the opening of the speed reducer chamber communication port 94b, the speed reducer chamber 10b includes the speed reducer chamber communication port 94b, the second gas-liquid separation chamber 92, the air communication port 93b, the air breather chamber 93, and the air breather pipe 96. This ensures communication with the outside air.
 さらに、本実施の形態1では、各気液分離室91,92と減速機室10bとを連通する減速機室連通口94a,94bの減速機構7側を、フランジ11f,11g,12f,12gにより覆っている。このため、減速機室連通口94a,94bには、潤滑油が直接かかりにくいことから、これら減速機室連通口94a,94bが潤滑油により塞がれにくい構造となっている。 Further, in the first embodiment, the speed reduction mechanism 7 side of the speed reducer chamber communication ports 94a, 94b that communicate the gas- liquid separation chambers 91, 92 and the speed reducer chamber 10b is provided by flanges 11f, 11g, 12f, 12g. Covering. For this reason, since it is difficult for lubricating oil to be directly applied to the reduction gear chamber communication ports 94a and 94b, the reduction gear chamber communication ports 94a and 94b are not easily blocked by the lubricating oil.
 また、電動モータ6を高速回転させた場合には、減速機室10b内に多量の泡が発生する場合があり、この泡が、減速機室10bの上部に発生するおそれがある。それに対して、本実施の形態1では、電動モータ6の高速回転により、ロータ軸61および駆動歯車71が高速回転を行なうと、その軸心部の負圧吸引部610にて負圧が発生する。この負圧により、上部吸引構造120では、各オイルキャッチ部111,112に捕捉された潤滑油を、供給穴121a,121b、連通路122a,122b、潤滑油供給ポート123a,123bを介して、負圧吸引部610に潤滑油を吸引することができる。これにより、潤滑油の泡が、各気液分離室91,92からエアブリーザ室93を経て、外部に漏出するのを抑制できる。 Further, when the electric motor 6 is rotated at a high speed, a large amount of bubbles may be generated in the speed reducer chamber 10b, and there is a possibility that the bubbles are generated in the upper portion of the speed reducer chamber 10b. On the other hand, in the first embodiment, when the rotor shaft 61 and the drive gear 71 rotate at a high speed due to the high speed rotation of the electric motor 6, a negative pressure is generated at the negative pressure suction section 610 at the center of the shaft. . Due to this negative pressure, the upper suction structure 120 causes the lubricating oil captured by the oil catch portions 111 and 112 to be negatively supplied through the supply holes 121a and 121b, the communication passages 122a and 122b, and the lubricating oil supply ports 123a and 123b. Lubricating oil can be sucked into the pressure suction unit 610. Thereby, it can suppress that the bubble of lubricating oil leaks outside from each gas- liquid separation chambers 91 and 92 through the air breather chamber 93. FIG.
 (実施の形態1の効果)
  以下に、実施の形態1の駆動ユニットの効果を列挙する。
  1)実施の形態1の駆動ユニットは、
駆動源としての電動モータ6から入力される入力軸としてのロータ軸61の回転を出力軸21へ伝達させる伝達機構としての減速機構7と、
この減速機構7を収容するとともに、潤滑油が収容された伝達機構収容室としての減速機室10bと、
減速機構7の上方位置で、減速機構7の回転軸に沿う方向から見て回転軸としてのロータ軸61を挟む両側位置に配置され、減速機室10bに連通された第1気液分離室91および第2気液分離室92と、
両気液分離室91,92に空気連通口93a,93bを介して連通されているとともに、外気と連通されたエアブリーザ室93と、
空気連通口93a,93bよりも下方位置にて両気液分離室91,92どうしを連通する気液分離室間連通路95と、
を備えていることを特徴とする。
  電動モータ6の駆動時には、オイル貯留部101に溜まった潤滑油が減速機構7の回転要素の回転により掻き上げられる。このとき、両気液分離室91,92では、減速機構7の回転要素の回転方向に基づいて、一方への潤滑油供給量が相対的に多くなるが、他方の潤滑油供給量が相対的に少ない状態となる。
  よって、両気液分離室91,92の一方が、多量の潤滑油の掻き上げで減速機室10bとの連通部分(減速機室連通口94a,94b)で塞がれても、他方は潤滑油により塞がれた状態が継続されることはなく、エアブリーザ機能を確保できる。
  なお、車両の前進、後退の切換に伴い、電動モータ6の回転方向が逆転した場合は、両気液分離室91,92の潤滑油により塞がれる側と、連通が保たれる側の関係が逆転する。
  したがって、減速機室10bは、車両の前進、後退に関わらず、両気液分離室91,92の少なくとも一方とエアブリーザ室93とを介した外気との連通状態が保たれる。よって、両気液分離室91,92内の圧力上昇を原因とするエアブリーザパイプ96からの潤滑油(泡)の噴出しを防止できる。
  さらに、仮に、両気液分離室91,92の一方に潤滑油が浸入した場合、潤滑油が、その上部のエアブリーザ室93に開口された空気連通口93a,93bに達する前に、気液分離室間連通路95を経由して両気液分離室91,92の他方に排出される。よって、各気液分離室91,92として大きな体積を確保しなくても、気液分離室としての機能が十分に発揮される。
(Effect of Embodiment 1)
The effects of the drive unit according to Embodiment 1 are listed below.
1) The drive unit of Embodiment 1 is
A speed reduction mechanism 7 as a transmission mechanism for transmitting rotation of the rotor shaft 61 as an input shaft input from the electric motor 6 as a drive source to the output shaft 21;
A reduction gear chamber 10b serving as a transmission mechanism accommodation chamber in which the reduction mechanism 7 is accommodated and lubricating oil is accommodated;
A first gas-liquid separation chamber 91 that is disposed above both the speed reduction mechanism 7 and on both sides of the rotor shaft 61 as a rotation axis when viewed from the direction along the rotation axis of the speed reduction mechanism 7 and communicates with the speed reducer chamber 10b. And a second gas-liquid separation chamber 92;
An air breather chamber 93 communicated with both gas- liquid separation chambers 91 and 92 via air communication ports 93a and 93b, and communicated with outside air;
A gas-liquid separation chamber communication passage 95 communicating the gas- liquid separation chambers 91 and 92 at positions below the air communication ports 93a and 93b;
It is characterized by having.
When the electric motor 6 is driven, the lubricating oil accumulated in the oil reservoir 101 is scraped up by the rotation of the rotating element of the speed reduction mechanism 7. At this time, in the gas- liquid separation chambers 91 and 92, the lubricating oil supply amount to one side is relatively large based on the rotation direction of the rotating element of the speed reduction mechanism 7, but the other lubricating oil supply amount is relatively large. It will be in very few states.
Therefore, even if one of the gas- liquid separation chambers 91 and 92 is blocked by the communicating portion (the reduction gear chamber communication ports 94a and 94b) with the reduction gear chamber 10b due to a large amount of lubricating oil being scraped up, the other is lubricated. The state closed by the oil is not continued, and the air breather function can be secured.
In addition, when the rotation direction of the electric motor 6 is reversed in accordance with the forward / reverse switching of the vehicle, the relationship between the side of the gas- liquid separation chambers 91 and 92 that is blocked by the lubricating oil and the side where the communication is maintained. Is reversed.
Therefore, the reduction gear chamber 10b maintains the communication state between at least one of the gas- liquid separation chambers 91 and 92 and the outside air via the air breather chamber 93 regardless of whether the vehicle is moving forward or backward. Therefore, it is possible to prevent the lubricant (bubbles) from being ejected from the air breather pipe 96 due to the pressure increase in the gas- liquid separation chambers 91 and 92.
Furthermore, if the lubricating oil enters one of the gas- liquid separation chambers 91 and 92, the lubricating oil is separated before reaching the air communication ports 93a and 93b opened in the upper air breather chamber 93. The gas is discharged to the other of the gas- liquid separation chambers 91 and 92 via the inter-chamber communication passage 95. Therefore, the function as the gas-liquid separation chamber is sufficiently exhibited without securing a large volume as each of the gas- liquid separation chambers 91 and 92.
 2)実施の形態1の駆動伝動装置は、
気液分離室間連通路95は、回転軸としてのロータ軸61の軸方向から見て、上方に凸形状形成されていることを特徴とする。
  したがって、両気液分離室91,92から気液分離室間連通路95に潤滑油が浸入した場合に、両気液分離室91,92から潤滑油が無くなれば、気液分離室間連通路95内の潤滑油も、その傾斜に基づいて円滑に、確実に排出される。
2) The drive transmission device of Embodiment 1 is
The gas-liquid separation chamber communication passage 95 is characterized by being formed in a convex shape upward as viewed from the axial direction of the rotor shaft 61 as a rotating shaft.
Accordingly, when the lubricating oil enters the gas- liquid separation chambers 91 and 92 into the gas-liquid separation chamber communication path 95, if the lubricating oil disappears from the gas- liquid separation chambers 91 and 92, the gas-liquid separation chamber communication path. The lubricating oil in 95 is also smoothly and reliably discharged based on the inclination.
 3)実施の形態1の駆動伝動装置は、
両気液分離室91,92と伝達機構収容室としての減速機室10bとを連通する減速機室連通口94a,94bが、減速機室10bにて潤滑油を捕捉する上部第1オイルキャッチ部111、上部第2オイルキャッチ部112の上部に設けられていることを特徴とする。
  したがって、減速機室10bにおいて減速機構7により掻き上げられた潤滑油が、減速機室連通口94a,94bを直撃するのが、各オイルキャッチ部111,112により妨げられるため、両気液分離室91,92への潤滑油の浸入を抑制できる。
3) The drive transmission device of Embodiment 1 is
Lower first oil catching portions 94a and 94b for communicating the gas- liquid separation chambers 91 and 92 and the speed reducer chamber 10b serving as a transmission mechanism accommodation chamber capture the lubricating oil in the speed reducer chamber 10b. 111, provided on the upper portion of the upper second oil catch portion 112.
Therefore, since the lubricating oil scooped up by the speed reduction mechanism 7 in the speed reducer chamber 10b directly hits the speed reducer chamber communication ports 94a and 94b by the oil catch portions 111 and 112, both gas-liquid separation chambers are prevented. Intrusion of the lubricating oil into 91 and 92 can be suppressed.
 4)実施の形態1の駆動伝動装置は、
伝達機構収容室としての減速機室10bに隣接して駆動源としての電動モータ6を収容するモータ室10aが形成され、
エアブリーザ室93の上部が、モータ室連通路97を介してモータ室10aに連通されていることを特徴とする。
  エアブリーザ室93の上部とモータ室10aを連通させたため、モータ室10a専用のエアブリーザ室を省略でき、モータユニットMUの小型化が可能となる。
  加えて、走行中に冠水等を防止する目的で車両上部まで配索させるエアブリーザパイプ96も1系統に削減できる。特に、転舵輪適用時などのように、モータユニットMUの移動量が大きくエアブリーザパイプ96の配索スペースの制約が大きい場合に、上記1系統に削減できる効果が顕著である。
4) The drive transmission device of Embodiment 1 is
A motor chamber 10a for accommodating the electric motor 6 as a drive source is formed adjacent to the speed reducer chamber 10b as the transmission mechanism accommodating chamber,
The upper part of the air breather chamber 93 is communicated with the motor chamber 10 a through the motor chamber communication passage 97.
Since the upper part of the air breather chamber 93 and the motor chamber 10a are connected, the air breather chamber dedicated to the motor chamber 10a can be omitted, and the motor unit MU can be downsized.
In addition, it is possible to reduce the number of air breather pipes 96 that are routed up to the top of the vehicle for the purpose of preventing flooding during traveling. In particular, when the steered wheels are applied, and the like, when the movement amount of the motor unit MU is large and the arrangement space of the air breather pipe 96 is large, the effect of reducing to one system is remarkable.
 5)実施の形態1の駆動伝動装置は、
両オイルキャッチ部111,112に、入力軸としてのロータ軸61および駆動歯車71の回転に伴い生じる負圧により、両オイルキャッチ部111,112の潤滑油を吸引する上部吸引構造120を設けたことを特徴とする。
  電動モータ6の回転数が高まると、減速機構7の回転要素の回転数が高まり、両オイルキャッチ部111,112に捕捉される潤滑油量が増加する。
  一方、上部吸引構造120にあっては、ロータ軸61および駆動歯車71の回転数が高くなるほど、負圧が高まり吸引力が大きくなる。
  このように、両オイルキャッチ部111,112に捕捉される潤滑油量が増加するのに伴い、上部吸引構造120の吸引力も増加して、両オイルキャッチ部111,112に捕捉された潤滑油が吸引される。
  よって、両オイルキャッチ部111,112に捕捉された潤滑油により減速機室連通口94a,94bが塞がれる不具合を抑制でき、上記1)で述べたエアブリーザ性能の確保を、より確実に達成できる。
5) The drive transmission device of Embodiment 1 is
Both oil catch portions 111 and 112 are provided with an upper suction structure 120 that sucks the lubricating oil of both oil catch portions 111 and 112 by the negative pressure generated by the rotation of the rotor shaft 61 as the input shaft and the drive gear 71. It is characterized by.
When the rotation speed of the electric motor 6 is increased, the rotation speed of the rotating element of the speed reduction mechanism 7 is increased, and the amount of lubricating oil captured by both the oil catch portions 111 and 112 is increased.
On the other hand, in the upper suction structure 120, the higher the rotational speed of the rotor shaft 61 and the drive gear 71, the higher the negative pressure and the suction force.
Thus, as the amount of lubricating oil captured by both oil catch portions 111 and 112 increases, the suction force of the upper suction structure 120 also increases, and the lubricating oil captured by both oil catch portions 111 and 112 is increased. Sucked.
Therefore, it is possible to suppress the problem that the speed reducer chamber communication ports 94a and 94b are blocked by the lubricating oil trapped by both the oil catch portions 111 and 112, and it is possible to more reliably achieve the air breather performance described in 1) above. .
 6)実施の形態1の駆動伝動装置は、
従動歯車72の回転軸から見て両側に下部第1オイルキャッチ部131、下部第2オイルキャッチ部132を設け、
両オイルキャッチ部131,132に捕捉された潤滑油を、従動歯車72の軸心部に設けた負圧吸引部610の負圧により吸引する下部吸引構造130を設けた。
  したがって、従動歯車72による潤滑油の掻き上げに加え、下部吸引構造130による潤滑油の供給もなされ、潤滑性に優れる。
  そして、このように潤滑性に優れることから、上記1)などのエアブリーザ性能の確保がより有効となる。
6) The drive transmission device of Embodiment 1 is
A lower first oil catch portion 131 and a lower second oil catch portion 132 are provided on both sides when viewed from the rotation axis of the driven gear 72,
A lower suction structure 130 is provided for sucking the lubricating oil captured by the oil catch portions 131 and 132 by the negative pressure of the negative pressure suction portion 610 provided at the axial center portion of the driven gear 72.
Accordingly, the lubricating oil is scraped up by the driven gear 72, and the lubricating oil is also supplied by the lower suction structure 130, so that the lubricity is excellent.
And since it is excellent in lubricity in this way, ensuring of air breather performances, such as said 1), becomes more effective.
 (他の実施の形態)
  次に、他の実施の形態の駆動ユニットについて説明する。
  なお、他の実施の形態を説明するのにあたり、実施の形態1と共通する構成には実施の形態1と同じ符号を付して説明を省略し、実施の形態1との相違点のみ説明する。
(Other embodiments)
Next, drive units according to other embodiments will be described.
In the description of the other embodiments, the same reference numerals as those in the first embodiment are assigned to the same components as those in the first embodiment, and the description thereof is omitted. Only the differences from the first embodiment will be described. .
 (実施の形態2)
  図6に基づいて、実施の形態2の駆動伝動装置を適用したインホイールモータユニットについて説明する。
  この実施の形態2は、エアブリーザ室293と外部との接続構造が、実施の形態1と異なる。
  すなわち、モータ室10aの上部にエアブリーザパイプ296が接続され、エアブリーザ室93は、モータ室連通路97とモータ室10aとを介して、外気に接続されている。さらに、実施の形態2では、モータ室連通路97には、気体のみを通過させるマイクロフィルタ200が設置されている。
(Embodiment 2)
An in-wheel motor unit to which the drive transmission device of the second embodiment is applied will be described based on FIG.
The second embodiment is different from the first embodiment in the connection structure between the air breather chamber 293 and the outside.
That is, the air breather pipe 296 is connected to the upper part of the motor chamber 10a, and the air breather chamber 93 is connected to the outside air through the motor chamber communication path 97 and the motor chamber 10a. Further, in the second embodiment, the motor chamber communication path 97 is provided with a microfilter 200 that allows only gas to pass therethrough.
 (実施の形態2の作用)
  減速機室10bでは、温度変化などにより内部空気の体積増減が生じた場合、両気液分離室91,92からエアブリーザ室93を介し、さらに、モータ室10aを介し、エアブリーザパイプ296から空気の吸排を行って、外気圧と同圧に保持することができる。
  また、モータ室10aは、比較的高温になり易く、内部空気体積の変化が生じやすい。モータ室10aは、直接、エアブリーザパイプ296により直接外部に連通されているため、エアブリーザ室293を介して外部と空気の吸排を行う場合と比較して、エアブリーザ室293の空気の流通量を抑制できる。これにより、モータ室10aの空気体積変化を原因とする潤滑油漏出を防止できる
 また、万一、潤滑油がエアブリーザ室293に浸入した場合、潤滑油の外部への漏出は、マイクロフィルタ200により規制される。
(Operation of Embodiment 2)
In the speed reducer chamber 10b, when the volume of the internal air increases or decreases due to a temperature change or the like, air is discharged from the gas breather chamber 93 from the gas- liquid separation chambers 91 and 92, and further from the air breather pipe 296 via the motor chamber 10a. Can be maintained at the same pressure as the external pressure.
In addition, the motor chamber 10a is likely to be relatively hot and the internal air volume is likely to change. Since the motor chamber 10a is directly communicated to the outside by the air breather pipe 296, the amount of air flow in the air breather chamber 293 can be suppressed as compared with the case where air is sucked into and discharged from the outside via the air breather chamber 293. . As a result, leakage of the lubricating oil due to the change in the air volume of the motor chamber 10a can be prevented. In the unlikely event that the lubricating oil enters the air breather chamber 293, leakage of the lubricating oil to the outside is restricted by the microfilter 200. Is done.
 2-1)実施の形態2の駆動装置では、
エアブリーザ室293と外部との連通は、モータ室10aの上部に設けられたエアブリーザパイプ296から、モータ室連通路97およびモータ室10aを介して行なわれていることを特徴とする。
  エアブリーザパイプ296を、モータ室10aの上部に設けた構造では、一般的に大径となるモータ室10aの上部がモータユニットMUの最上部となり易く、エアブリーザパイプ296部分への水掛かりの虞を低減でき、水密性を確保し易い。
  さらに、相対的に高温になり易いモータ室10aでは、外部との空気の出入が、減速機室10bよりも頻繁に生じ易い。この頻繁な空気の出入を、モータ室10aから直接行なうことにより、エアブリーザ室293を介して行なった場合と比較して、エアブリーザ室293と外部との空気の出入頻度を低く抑えることができる。これにより、モータ室10aの空気体積変化を原因とする潤滑油漏出を抑制できる。
2-1) In the driving apparatus of the second embodiment,
The air breather chamber 293 communicates with the outside through an air breather pipe 296 provided at the upper portion of the motor chamber 10a through the motor chamber communication passage 97 and the motor chamber 10a.
In the structure in which the air breather pipe 296 is provided at the upper portion of the motor chamber 10a, the upper portion of the motor chamber 10a having a large diameter is likely to be the uppermost portion of the motor unit MU, and the possibility of water splashing on the air breather pipe 296 portion is reduced. It is easy to ensure watertightness.
Further, in the motor chamber 10a, which tends to be relatively high in temperature, the outside air is more likely to enter and exit from the reducer chamber 10b. By performing this frequent air flow in and out directly from the motor chamber 10a, the frequency of air flow in and out of the air breather chamber 293 and the outside can be suppressed as compared with the case where it is performed via the air breather chamber 293. Thereby, the lubricating oil leakage caused by the change in the air volume of the motor chamber 10a can be suppressed.
 2-2)実施の形態2の駆動装置では、
モータ室連通路97には、気体のみを通過させるマイクロフィルタ200が設置されていることを特徴とする。
  したがって、万一、潤滑油がエアブリーザ室293に浸入しても、この潤滑油がモータ室10aに浸入するのを防止し、モータ室10aからの潤滑油の漏出を防止できる。よって、電動モータ6の絶縁性能低下、減速機室10b内の潤滑油減少による潤滑性能低下などを抑制し、モータユニットMUの信頼性を確保できる。
2-2) In the driving apparatus of the second embodiment,
The motor chamber communication path 97 is provided with a microfilter 200 that allows only gas to pass therethrough.
Therefore, even if the lubricating oil enters the air breather chamber 293, the lubricating oil can be prevented from entering the motor chamber 10a, and leakage of the lubricating oil from the motor chamber 10a can be prevented. Therefore, it is possible to suppress the deterioration of the insulation performance of the electric motor 6 and the deterioration of the lubrication performance due to the reduction of the lubricating oil in the speed reducer chamber 10b, thereby ensuring the reliability of the motor unit MU.
 以上、本発明の駆動伝動装置を実施の形態に基づき説明してきたが、具体的な構成については、この実施の形態に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The drive transmission device of the present invention has been described above based on the embodiment. However, the specific configuration is not limited to this embodiment, and the gist of the invention according to each claim of the claims is described. Unless it deviates, design changes and additions are allowed.
 例えば、実施の形態では、1つの電動モータにより、1つの車輪を駆動させる、いわゆるホイールインモータ形式のものを例示したが、本発明は、これに限定されない。例えば、1つの電動モータを、左右の車輪の間に配置し、出力軸の回転を、左右の車輪に伝達する構造としてもよい。さらに、駆動源としても、電動モータ以外の内燃機関などの他の手段を用いることもできる。
  また、車輪としては、車両の前輪、後輪いずれに適用してもよい。
  また、実施の形態では、伝達機構として、減速機構を示したが、これに限定されず、回転を伝達するものであれば、増速機構や、変速の有無に関わらず回転方向を変える機構なども適用することができる。加えて、実施の形態では、減速機として、平歯車機構と遊星歯車機構とを備えたものを示したが、これに限定されず、遊星歯車機構と備えない構造や、平歯車を円錐歯車とした構造など、他の構造のものを用いることができる。
  また、実施の形態では、気液分離室連通路を、上方に凸形状に形成するのにあたり、円弧形状とした例を示したが、これに限定されず、円弧以外の山形形状としてもよい。
For example, in the embodiment, a so-called wheel-in motor type in which one wheel is driven by one electric motor is illustrated, but the present invention is not limited to this. For example, one electric motor may be arranged between the left and right wheels, and the rotation of the output shaft may be transmitted to the left and right wheels. Further, as the drive source, other means such as an internal combustion engine other than the electric motor can be used.
Moreover, as a wheel, you may apply to either the front wheel of a vehicle, or a rear wheel.
In the embodiment, the speed reduction mechanism is shown as the transmission mechanism. However, the speed reduction mechanism is not limited to this, and a speed increasing mechanism, a mechanism for changing the rotation direction regardless of whether or not there is a shift, etc. Can also be applied. In addition, in the embodiment, as the speed reducer, the one provided with the spur gear mechanism and the planetary gear mechanism is shown. However, the present invention is not limited to this, and the structure without the planetary gear mechanism or the spur gear is a conical gear. Other structures such as the above structure can be used.
Further, in the embodiment, an example in which the gas-liquid separation chamber communication path is formed in an arc shape when forming the upward convex shape is shown, but the present invention is not limited thereto, and may be a mountain shape other than the arc.
関連出願の相互参照Cross-reference of related applications
 本出願は、2013年7月24日に日本国特許庁に出願された特願2013-153399に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-153399 filed with the Japan Patent Office on July 24, 2013, the entire disclosure of which is fully incorporated herein by reference.

Claims (6)

  1.  駆動源から入力される入力軸の回転を出力軸へ伝達させる伝達機構と、
     この伝達機構を収容するとともに、潤滑油が収容された伝達機構収容室と、
     前記伝達機構の上方位置で、前記伝達機構の回転軸に沿う方向から見て前記回転軸を挟む両側位置に配置され、前記伝達機構収容室に連通された第1気液分離室および第2気液分離室と、
     両気液分離室に空気連通口を介して連通されているとともに、外気と連通されたエアブリーザ室と、
     前記空気連通口よりも下方位置にて両気液分離室どうしを連通する気液分離室間連通路と、
    を備えていることを特徴とする駆動伝動装置。
    A transmission mechanism for transmitting the rotation of the input shaft input from the drive source to the output shaft;
    While accommodating this transmission mechanism, the transmission mechanism accommodation chamber in which lubricating oil was accommodated,
    A first gas-liquid separation chamber and a second gas are disposed above the transmission mechanism, on both sides of the rotation mechanism as viewed from the direction along the rotation axis of the transmission mechanism, and communicated with the transmission mechanism accommodation chamber. A liquid separation chamber;
    An air breather chamber communicated with both gas-liquid separation chambers through an air communication port and communicated with outside air;
    A gas-liquid separation chamber communication passage communicating the gas-liquid separation chambers at a position below the air communication port;
    A drive transmission device comprising:
  2.  請求項1に記載された駆動伝動装置において、
     前記気液分離室間連通路は、前記回転軸の軸方向から見て、上方に凸形状に形成されていることを特徴とする駆動伝動装置。
    The drive transmission device according to claim 1,
    The drive transmission device, wherein the gas-liquid separation chamber communication path is formed in a convex shape upward as viewed from the axial direction of the rotating shaft.
  3.  請求項1または請求項2に記載された駆動伝動装置において、
     両気液分離室と前記伝達機構収容室とを連通する連通口が、前記伝達機構収容室にて前記潤滑油を捕捉するオイルキャッチ部の上部に設けられていることを特徴とする駆動伝動装置。
    In the drive transmission device according to claim 1 or 2,
    A drive transmission device characterized in that a communication port that communicates both the gas-liquid separation chamber and the transmission mechanism accommodation chamber is provided above an oil catch portion that captures the lubricating oil in the transmission mechanism accommodation chamber. .
  4.  請求項1~請求項3のいずれか1項に記載された駆動伝動装置において、
     前記伝達機構収容室に隣接して駆動源としての電動モータを収容するモータ室が形成され、
     前記エアブリーザ室の上部が、前記モータ室連通路を介して前記モータ室に連通されていることを特徴とする駆動伝動装置。
    The drive transmission device according to any one of claims 1 to 3,
    A motor chamber that houses an electric motor as a drive source is formed adjacent to the transmission mechanism housing chamber,
    An upper part of the air breather chamber is communicated with the motor chamber via the motor chamber communication passage.
  5.  請求項4に記載された駆動伝動装置において、
     前記エアブリーザ室と外部との連通は、前記モータ室の上部に設けられたエアブリーザパイプから、前記モータ室連通路および前記モータ室を介して行なわれていることを特徴とする駆動伝動装置。
    The drive transmission device according to claim 4,
    The drive transmission device, wherein the air breather chamber communicates with the outside through an air breather pipe provided at an upper portion of the motor chamber via the motor chamber communication path and the motor chamber.
  6.  請求項4または請求項5に記載された駆動伝動装置において、
     前記モータ室連通路には、前記気体のみを通過させるマイクロフィルタが設置されていることを特徴とする駆動伝動装置。
    In the drive transmission device according to claim 4 or 5,
    A drive transmission device, wherein a micro filter that allows only the gas to pass through is installed in the motor chamber communication path.
PCT/JP2014/063670 2013-07-24 2014-05-23 Driving and transmitting device WO2015011976A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015528173A JP6137317B2 (en) 2013-07-24 2014-05-23 Drive transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-153399 2013-07-24
JP2013153399 2013-07-24

Publications (1)

Publication Number Publication Date
WO2015011976A1 true WO2015011976A1 (en) 2015-01-29

Family

ID=52393032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063670 WO2015011976A1 (en) 2013-07-24 2014-05-23 Driving and transmitting device

Country Status (2)

Country Link
JP (1) JP6137317B2 (en)
WO (1) WO2015011976A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015190A (en) * 2015-07-02 2017-01-19 株式会社豊田自動織機 Reduction gear
WO2018055904A1 (en) * 2016-09-26 2018-03-29 ジヤトコ株式会社 Air breather chamber structure
CN109476228A (en) * 2016-08-01 2019-03-15 Ntn株式会社 The connection structure of in-wheel motor drive unit and in-wheel motor drive unit and wheel
CN110332305A (en) * 2019-08-15 2019-10-15 北京三一智造科技有限公司 A kind of input shell, retarder and rotary drilling rig
CN110388447A (en) * 2018-04-18 2019-10-29 住友重机械工业株式会社 Geared system
CN110578788A (en) * 2018-06-08 2019-12-17 丰田自动车株式会社 Transfer case for vehicle
EP3505380A4 (en) * 2016-08-25 2020-04-22 NTN Corporation In-wheel motor drive device for steered wheel
EP3836364A4 (en) * 2019-03-28 2021-12-01 Aisin Aw Co., Ltd. Rotary electric machine
EP4092293A1 (en) * 2021-05-21 2022-11-23 Volvo Car Corporation Transmission gear assembly with a breather cavity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162153A1 (en) * 2022-02-25 2023-08-31 武蔵精密工業株式会社 Breather structure in power unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351261U (en) * 1989-09-26 1991-05-17
JPH10103453A (en) * 1996-09-25 1998-04-21 Jatco Corp Air breather structure of automatic transmission
JP2005163951A (en) * 2003-12-04 2005-06-23 Hitachi Constr Mach Co Ltd Transmission device and construction equipment
JP2008185154A (en) * 2007-01-30 2008-08-14 Toyota Motor Corp Breather structure for final reduction gear
JP2009127831A (en) * 2007-11-28 2009-06-11 Komatsu Ltd Breather structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351261U (en) * 1989-09-26 1991-05-17
JPH10103453A (en) * 1996-09-25 1998-04-21 Jatco Corp Air breather structure of automatic transmission
JP2005163951A (en) * 2003-12-04 2005-06-23 Hitachi Constr Mach Co Ltd Transmission device and construction equipment
JP2008185154A (en) * 2007-01-30 2008-08-14 Toyota Motor Corp Breather structure for final reduction gear
JP2009127831A (en) * 2007-11-28 2009-06-11 Komatsu Ltd Breather structure

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015190A (en) * 2015-07-02 2017-01-19 株式会社豊田自動織機 Reduction gear
US10792994B2 (en) 2016-08-01 2020-10-06 Ntn Corporation In-wheel motor drive device and connection structure between in-wheel motor drive device and wheel
CN109476228A (en) * 2016-08-01 2019-03-15 Ntn株式会社 The connection structure of in-wheel motor drive unit and in-wheel motor drive unit and wheel
EP3492293A4 (en) * 2016-08-01 2020-05-06 NTN Corporation In-wheel motor drive device and connection structure between in-wheel motor drive device and wheel
EP3505380A4 (en) * 2016-08-25 2020-04-22 NTN Corporation In-wheel motor drive device for steered wheel
US20190277394A1 (en) * 2016-09-26 2019-09-12 Jatco Ltd Air breather chamber structure
CN109690139B (en) * 2016-09-26 2022-03-25 加特可株式会社 Ventilation chamber structure
WO2018055904A1 (en) * 2016-09-26 2018-03-29 ジヤトコ株式会社 Air breather chamber structure
US10704668B2 (en) * 2016-09-26 2020-07-07 Jatco Ltd Air breather chamber structure
JPWO2018055904A1 (en) * 2016-09-26 2019-04-25 ジヤトコ株式会社 Air breather room structure
CN109690139A (en) * 2016-09-26 2019-04-26 加特可株式会社 Ventilation cell structure
JP2019190484A (en) * 2018-04-18 2019-10-31 住友重機械工業株式会社 Gear device
CN110388447A (en) * 2018-04-18 2019-10-29 住友重机械工业株式会社 Geared system
JP7204289B2 (en) 2018-04-18 2023-01-16 住友重機械工業株式会社 gearbox
CN110578788A (en) * 2018-06-08 2019-12-17 丰田自动车株式会社 Transfer case for vehicle
CN110578788B (en) * 2018-06-08 2022-10-14 株式会社捷太格特 Transfer case for vehicle
EP3836364A4 (en) * 2019-03-28 2021-12-01 Aisin Aw Co., Ltd. Rotary electric machine
CN110332305A (en) * 2019-08-15 2019-10-15 北京三一智造科技有限公司 A kind of input shell, retarder and rotary drilling rig
EP4092293A1 (en) * 2021-05-21 2022-11-23 Volvo Car Corporation Transmission gear assembly with a breather cavity
US11879537B2 (en) 2021-05-21 2024-01-23 Volvo Car Corporation Transmission gear assembly with a breather cavity

Also Published As

Publication number Publication date
JP6137317B2 (en) 2017-05-31
JPWO2015011976A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6137317B2 (en) Drive transmission device
US11434977B2 (en) Vehicle drive device
JP6551389B2 (en) Hybrid vehicle lubrication structure
WO2013136589A1 (en) Electric motor
WO2011155277A1 (en) Drive device for vehicle
US20160146332A1 (en) Driving system for vehicle
JP2012086827A (en) Vehicle drive device
JP2018057243A (en) Vehicle drive device
JP2013240125A (en) Cooling device of electric motor
WO2012117798A1 (en) Driving apparatus for vehicle
JP2012138989A (en) Power transmission apparatus
JP2011122711A (en) Lubricating device for vehicular power transmission mechanism
JP2018034713A (en) In-wheel motor drive device
JP7456382B2 (en) motor unit
JP2009257518A (en) Lubrication structure of power transmission device
JP6244772B2 (en) Hybrid vehicle drive device
JP5583254B2 (en) Lubrication cooling structure of electric motor
JP2017133564A (en) Vehicular motor drive device
JP5210094B2 (en) Lubrication structure, electric motor unit and in-wheel motor
JP4799928B2 (en) transfer
JP5527240B2 (en) Lubricator for power transmission system
JP2014227984A (en) Structure of water pump
JP5761087B2 (en) Drive device
JP2012166738A (en) Driving device for vehicle
JP5041908B2 (en) Oil leakage suppression structure for vehicle main motors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14828941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528173

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14828941

Country of ref document: EP

Kind code of ref document: A1