WO2015011943A1 - 駆動装置 - Google Patents

駆動装置 Download PDF

Info

Publication number
WO2015011943A1
WO2015011943A1 PCT/JP2014/057458 JP2014057458W WO2015011943A1 WO 2015011943 A1 WO2015011943 A1 WO 2015011943A1 JP 2014057458 W JP2014057458 W JP 2014057458W WO 2015011943 A1 WO2015011943 A1 WO 2015011943A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
switching element
current
inverter
period
Prior art date
Application number
PCT/JP2014/057458
Other languages
English (en)
French (fr)
Inventor
中尾恵子
岩月健
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013153065A external-priority patent/JP6131754B2/ja
Priority claimed from JP2013153066A external-priority patent/JP2015023773A/ja
Priority claimed from JP2013197530A external-priority patent/JP6268857B2/ja
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112014002744.8T priority Critical patent/DE112014002744T5/de
Priority to US14/899,045 priority patent/US9634590B2/en
Priority to PCT/JP2014/057458 priority patent/WO2015011943A1/ja
Priority to CN201480035656.5A priority patent/CN105324932B/zh
Publication of WO2015011943A1 publication Critical patent/WO2015011943A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0262Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic
    • F16H61/0265Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic for gearshift control, e.g. control functions for performing shifting or generation of shift signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/27Devices for sensing current, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a drive device including a rotating electrical machine and an inverter connected between the rotating electrical machine and a DC power source.
  • Patent Document 1 A device described in Japanese Patent Application Laid-Open No. 2007-166803 (Patent Document 1) is known as such a driving device.
  • a current sensor used in a driving device as shown in Patent Document 1, a sensor using a Hall element has been generally used. Sensors using Hall elements have relatively stable temperature characteristics and can detect current with high accuracy, enabling high-precision drive control of rotating electrical machines even in drive devices that tend to be in high-temperature environments. It is frequently used to However, since a sensor using a Hall element is generally expensive, it causes a cost increase.
  • the shunt resistor is inferior in current detection accuracy as compared with a sensor using a Hall element, and is easily affected by the environmental temperature. For this reason, when the shunt resistor is simply used for the purpose of reducing the product cost, there is a possibility that desired accuracy cannot be ensured with respect to the drive control of the rotating electrical machine (for example, the motor generators MG1 and MG2 in Patent Document 1). In particular, in consideration of the fact that the installation environment of the drive device tends to be considerably higher than the installation environment of general electrical appliances, when using a shunt resistor, the control accuracy of the rotating electrical machine tends to deteriorate. Therefore, when applying a shunt resistor for current detection to a driving device, it is necessary to sufficiently examine the application mode.
  • An AC rotating electrical machine through which a plurality of phases of current flow according to the present invention and a switching element unit for each phase corresponding to each of the plurality of phases, connected between a DC power source and the AC rotating electrical machine, are connected to a DC and an AC
  • the characteristic configuration of the drive device comprising an inverter that performs conversion between A shunt resistor for detecting a current flowing through each of the plurality of switching element units for each phase is provided between the DC power supply and the switching element unit for each phase,
  • the AC rotating electrical machine is drivingly connected to a rotating body provided independently of the wheels,
  • the shunt resistor is located in a driving force source chamber that houses a driving force source of the wheel.
  • drive connection means a state in which two rotating elements are connected so as to be able to transmit a driving force (synonymous with torque).
  • This concept includes a state in which the two rotating elements are connected so as to rotate integrally, and a state in which the driving force is transmitted through one or more transmission members.
  • Such transmission members include various members (shafts, gear mechanisms, belts, etc.) that transmit rotation at the same speed or at different speeds, and engaging devices (frictions) that selectively transmit rotation and driving force. Engagement devices, meshing engagement devices, etc.).
  • the “AC rotating electric machine” represents a rotating electric machine driven by AC power.
  • the “rotary electric machine” is used as a concept including any of a motor (electric motor), a generator (generator), and a motor / generator functioning as both a motor and a generator as necessary.
  • independent from the wheel means that the transmission path of the driving force is independent from the wheel, and the rotational driving force of the wheel is not transmitted.
  • the current flowing in each switching element unit for each phase provided in the inverter is detected by a shunt resistor, so that the product cost is reduced compared to the case where current detection is performed by a sensor using a Hall element. can do.
  • the AC rotating electric machine controlled by the inverter is drivingly connected to a rotating body (for example, a rotor such as an oil pump, a water pump, an air conditioner compressor) provided independently of the wheels. Therefore, in many cases, the AC rotating electrical machine does not have so high control accuracy as compared with, for example, a rotating electrical machine for driving wheels (rotating electrical machine for driving wheels). Therefore, the influence on the control accuracy of the AC rotating electrical machine by using the shunt resistor for current detection can be relatively reduced. In particular, even when the shunt resistor is disposed in the driving force source chamber and placed in a high temperature environment, the influence on the control accuracy of the AC rotating electric machine can be suppressed relatively small.
  • the apparatus further includes a drive transmission device that operates by receiving supply of hydraulic pressure and controls a transmission state of the driving force from the driving force source to the wheel, and the rotating body supplies the driving transmission device A rotor of an electric pump that discharges oil is preferable.
  • the oil discharged by the electric pump can be supplied to the drive transmission device, and the transmission state of the drive force from the drive force source to the wheels can be appropriately controlled.
  • the state of the drive transmission device can be controlled with relatively high accuracy.
  • Targeting an AC rotating electrical machine for driving a rotor of an electric pump the current is detected using an inexpensive shunt resistor while enabling relatively high-precision control of the state of the drive transmission device by controlling this with an inverter. It can comprise and can reduce product cost.
  • the AC rotating electric machine is configured so that a current of N (N is a natural number of 2 or more) phase flows
  • the positive electrode of the DC power supply and the switching element units for each phase include N A common positive line common to the switching element units for each phase and N branch positive lines branched from the common positive line and connected to the switching element units for each phase
  • the negative electrode and the switching element unit for each phase include a common negative electrode line common to the N switching element units for each phase, and N branched from the common negative electrode line and connected to each of the switching element units for each phase.
  • Each of the N or (N ⁇ 1) branched negative lines is connected to the shunt resistor. It is preferable to provided.
  • the ground potential can be used as the reference potential by utilizing the fact that the negative electrode side of the DC power supply is connected to the ground. Therefore, unlike a configuration in which, for example, a shunt resistor is provided on the branch positive electrode line, installation of a circuit for generating a reference potential can be omitted, and the apparatus can be downsized.
  • Each phase of the AC rotating electrical machine can be obtained by using N shunt resistors or by using the fact that the sum of instantaneous values of the currents of each phase is zero while using (N-1) shunt resistors. It is possible to appropriately detect the current flowing through the.
  • an inverter control device that drives and controls the inverter is further provided, and the switching element unit for each phase is provided on the positive electrode side of the DC power supply with respect to the connection portion with the AC rotating electrical machine. And a lower switching element provided on the negative electrode side of the DC power supply with respect to the connection portion, and the shunt resistor is a current flowing through the lower switching element of each phase switching element unit.
  • the inverter control device performs PWM control on the AC rotating electrical machine by individually switching the upper switching element and the lower switching element of the switching element unit for each phase, All the lower stage switches of the switching element unit for each phase of Based on the potential difference between both ends of the shunt resistor during the lower full-on period when the switching element is turned on, current detection processing is performed to detect the current of each phase flowing through the AC rotating electric machine, and a plurality of switching element units for each phase It is preferable that the offset correction amount at the zero point in the current detection process is determined based on a potential difference between both ends of the shunt resistor during a lower full-off period in which all the lower switching elements are in an off state.
  • the current of each phase is simultaneously applied by utilizing the fact that the current of each phase flows through the lower switching element of each phase during the lower full-on period in which all the lower switching elements for each phase are in the on state. Can be detected.
  • the current of each phase flows through the upper switching element of each phase and theoretically does not flow through the lower switching element. For this reason, the offset correction amount at the zero point in the current detection process can be appropriately determined by using the current detected by each shunt resistor during the lower full-off period where the current value is supposed to be zero. it can.
  • the inverter control device determines the offset correction amount individually for each of a plurality of divided periods defined by dividing one cycle of the electrical angle of the AC rotating electric machine for each of the shunt resistors. Is preferred.
  • the magnitude of the current detected by each shunt resistor during the lower full-off period is not uniform, but is correlated with the magnitude of the current of each phase flowing through the AC rotating electric machine.
  • the offset correction amount is determined individually for each of the plurality of divided periods, it is possible to determine an appropriate offset correction amount according to the magnitude of the current of each phase flowing through the AC rotating electrical machine. Therefore, the detection accuracy in the current detection process can be further increased.
  • the carrier frequency in the PWM control may be set in advance to a frequency that can secure a lower full-on period of a predetermined time or more.
  • the carrier frequency is uniformly reduced, the controllability of the AC rotating electric machine may be reduced, and noise may be generated depending on the audible range. For this reason, it is preferable that the lower full-on period of a predetermined time or more can be secured while suppressing the occurrence of these problems.
  • an inverter control device that drives and controls the inverter is further provided, and the switching element unit for each phase is provided on the positive electrode side of the DC power supply with respect to the connection portion with the AC rotating electrical machine. And a lower switching element provided on the negative electrode side of the DC power supply with respect to the connection portion, and the shunt resistor is a current flowing through the lower switching element of each phase switching element unit.
  • the inverter control device performs PWM control on the AC rotating electrical machine by individually switching the upper switching element and the lower switching element of the switching element unit for each phase, All the lower stage switches of the switching element unit for each phase of A current detection process is performed to detect a current of each phase flowing through the AC rotating electric machine based on a potential difference between both ends of the shunt resistor during a lower full-on period in which the twitching element is turned on, and the lower full-on period is a predetermined reference When the time is shorter than the time, it is preferable to reduce the carrier frequency in the PWM control.
  • the current of each phase is simultaneously applied by utilizing the fact that the current of each phase flows through the lower switching element of each phase during the lower full-on period in which all the lower switching elements for each phase are in the on state. Can be detected.
  • the carrier frequency in PWM control can be dynamically changed, and the carrier frequency is lowered when the lower full-on period is shorter than a predetermined reference time. As a result, it is possible to extend the duration of the ON state of the lower switching element of each phase while keeping the duty ratio constant. As a result, the lower full-on period can be lengthened, and it is easy to ensure the accuracy of the current detection process.
  • the inverter control device is configured to be able to change the carrier frequency continuously or stepwise, and when the lower full-on period is shorter than the reference time, among the changeable carrier frequencies, It is preferable that the carrier frequency is lowered to a maximum frequency at which the lower full-on period is equal to or longer than the reference time.
  • the lower full-on period can be longer than the reference time, and the accuracy of the current detection process can be ensured.
  • the carrier frequency can be reduced as much as possible, so that the controllability of the AC rotating electrical machine and the generation of noise can be suppressed.
  • an inverter control device that drives and controls the inverter is further provided, and the switching element unit for each phase is provided at the upper switching side provided on the positive electrode side of the DC power supply with respect to the connection portion with the AC rotating electrical machine. And a lower switching element provided on the negative electrode side of the DC power supply with respect to the connection portion, and the shunt resistor detects a current flowing through the lower switching element of each phase switching element unit.
  • the inverter control device individually controls the switching of the upper switching element and the lower switching element of the switching element unit for each phase based on an AC voltage command that is a command of an AC voltage of a plurality of phases.
  • the AC rotating electric machine is PWM-controlled, and a plurality of the phases are used.
  • the modulation rate that represents the ratio of the effective value of the AC voltage command to the voltage on the DC side of the inverter.
  • the current of each phase is simultaneously applied by utilizing the fact that the current of each phase flows through the lower switching element of each phase during the lower full-on period in which all the lower switching elements for each phase are in the on state. Can be detected.
  • the lower full-on period is shorter than the predetermined time, the accuracy of the current detection process may be impaired. Therefore, when the lower full-on period is shorter than a predetermined reference time, the voltage on the DC side of the inverter or the AC voltage command is changed to lower the modulation rate. Thereby, the continuation time of the ON state of the lower switching element of each phase can be lengthened. As a result, the lower full-on period can be lengthened, and it is easy to ensure the accuracy of the current detection process.
  • the inverter control device is configured to control the AC rotating electric machine by current vector control, and a magnetic field generated by a stator coil of the AC rotating electric machine changes in a direction to weaken a field magnetic flux of the rotor. It is preferable to reduce the modulation factor by performing field weakening control for adjusting the AC voltage command.
  • the modulation rate can be effectively reduced by performing field-weakening control and suppressing the AC voltage command and its effective value for generating the torque required for the AC rotating electrical machine to be small.
  • the drive device 1 is a vehicle drive device (hybrid vehicle drive device) for driving a vehicle (hybrid vehicle) provided with both the internal combustion engine E and the rotating electrical machine MG as a drive force source for the wheels W. It is. Specifically, the drive device 1 is configured as a drive device for a 1-motor parallel type hybrid vehicle.
  • the drive device 1 includes an input shaft I as an input member that is drivingly connected to the internal combustion engine E, an output shaft O as an output member that is drivingly connected to the wheels W, A rotating electrical machine MG and a transmission TM are provided.
  • the drive device 1 includes an engagement device CL, a gear mechanism G, and a differential gear device DF.
  • the engaging device CL, the rotating electrical machine MG, the transmission TM, the gear mechanism G, and the differential gear device DF are provided in a power transmission path that connects the input shaft I and the output shaft O. These are provided in the order described from the input shaft I side. These are housed in a case (drive device case) 2.
  • the internal combustion engine E and the drive device 1 are disposed in a drive force source chamber (in this example, an engine room) Q provided in the vehicle.
  • the input shaft I, the rotating electrical machine MG, and the transmission TM are arranged coaxially. In the present embodiment, a direction parallel to the rotation axis common to these is defined as an “axial direction”.
  • the input shaft I, the rotating electrical machine MG, and the transmission TM are arranged in the order described from the internal combustion engine E side along the axial direction.
  • the gear mechanism G and the differential gear device DF are each arranged with an axis parallel to the axial direction and different from the rotation axis such as the input shaft I as a rotation axis.
  • the drive device 1 having such a multi-axis configuration (three-axis configuration in this example) is suitable as a configuration when mounted on, for example, an FF (Front-Engine-Front-Drive) vehicle.
  • an input shaft (drive device input shaft) I is drivingly connected to an internal combustion engine E.
  • the internal combustion engine E is a prime mover (such as a gasoline engine or a diesel engine) that is driven by combustion of fuel inside the engine to extract power.
  • the input shaft I is drivingly connected to the output shaft (crankshaft or the like) of the internal combustion engine E.
  • the engaging device CL is provided in a power transmission path connecting the input shaft I and the rotating electrical machine MG.
  • the engagement device CL selectively connects the input shaft I (internal combustion engine E) and the rotating electrical machine MG.
  • the engagement device CL functions as an internal combustion engine separation engagement device that separates the internal combustion engine E from the wheel W.
  • the engagement device CL is configured as a hydraulically driven friction engagement device.
  • the rotating electrical machine MG has a stator St fixed to the case 2 and a rotor Ro that is rotatably supported on the radially inner side of the stator St.
  • the rotating electrical machine MG can perform a function as a motor (electric motor) that generates power upon receiving power supply and a function as a generator (generator) that generates power upon receiving power supply.
  • the rotating electrical machine MG is electrically connected to the power storage device B (battery, capacitor, etc.) via the first inverter 30.
  • the rotating electrical machine MG receives power from the power storage device B and runs in power, or supplies power stored in the power storage device B with power generated by the torque of the internal combustion engine E or the inertial force of the vehicle.
  • the rotating electrical machine MG functions as a “wheel driving rotating electrical machine” that outputs the driving force transmitted to the wheels W.
  • the rotor Ro of the rotating electrical machine MG is drivingly connected so as to rotate integrally with the intermediate shaft M.
  • the intermediate shaft M is an input shaft (transmission input shaft) of the transmission apparatus TM.
  • the transmission TM is an automatic stepped transmission that includes a plurality of gear mechanisms and a plurality of gear shifting engagement devices and that can switch a plurality of gear speeds having different gear ratios.
  • the transmission TM an automatic continuously variable transmission capable of changing the gear ratio steplessly, a manual stepped transmission equipped with a plurality of shift gears having different gear ratios, a single fixed gear ratio. You may use the constant transmission apparatus provided with the gear stage.
  • the transmission TM shifts the rotation and torque input to the intermediate shaft M according to the gear ratio at each time point, converts the torque, and transmits the torque to the transmission output gear Go of the transmission TM.
  • the transmission output gear Go is drivingly connected to a gear mechanism (counter gear mechanism) C.
  • the gear mechanism G includes a first gear G1 and a second gear G2 that are respectively formed on a common shaft member.
  • the first gear G1 meshes with the transmission output gear Go of the transmission apparatus TM.
  • the second gear G2 meshes with the differential input gear Gi of the differential gear device DF.
  • the differential gear device (differential gear device for output) DF is drivingly connected to the wheel W via the output shaft O.
  • the differential gear device DF includes a differential input gear Gi and a differential main body portion (a main body portion of the differential gear device DF) connected to the differential input gear Gi.
  • the differential gear device DF distributes and transmits rotation and torque input to the differential input gear Gi to the two left and right output shafts O (that is, the two left and right wheels W) in the differential main body.
  • the drive device 1 can cause the vehicle to travel by transmitting the torque of at least one of the internal combustion engine E and the rotating electrical machine MG to the wheels W.
  • the drive device 1 includes a mechanical pump (not shown) that is drivingly connected to the intermediate shaft M.
  • the mechanical pump discharges oil by these torques in a state where at least one of the internal combustion engine E and the rotating electrical machine MG serving as a driving force source is rotating.
  • the drive device 1 includes an electric pump EP that is driven by a pump motor PM provided independently of the wheels W. That is, the pump motor PM is drivingly connected to the rotor of the electric pump EP provided independently from the wheels W.
  • the pump motor PM corresponds to the “AC rotating electric machine” in the present invention.
  • the rotor of the electric pump EP corresponds to the “rotating body” in the present invention.
  • the pump motor PM is electrically connected to the power storage device B via the second inverter 40.
  • the rotating electrical machine MG controlled by the first inverter 30 and the pump motor PM controlled by the second inverter 40 are driven by using the common power storage device B as a power source.
  • the power storage device B has a higher voltage than an auxiliary battery (for example, 12 to 24 [V]) as a power source of auxiliary equipment such as an air conditioner compressor and audio equipment provided in the vehicle. (For example, 100 to 400 [V]) is used.
  • the electric pump EP discharges oil by its torque while the pump motor PM is rotating.
  • the oil discharged from at least one of the mechanical pump and the electric pump EP generates a hydraulic pressure supplied to a hydraulic servo mechanism (not shown) of the transmission device TM, and the transmission engagement device provided in the transmission device TM Served for controlling the state of engagement.
  • the transmission TM operates upon receiving hydraulic pressure and controls the transmission state of the driving force from at least one of the internal combustion engine E and the rotating electrical machine MG as a driving force source to the wheels W.
  • the transmission device TM corresponds to the “drive transmission device” in the present invention.
  • the oil discharged from at least one of the mechanical pump and the electric pump EP is also used for cooling the rotating electrical machine MG, lubricating each part, and the like.
  • the electric pump EP since the electric pump EP is provided, even when the internal combustion engine E is stopped, oil can be supplied to the shifting engagement device to form the engaged state, and the vehicle can be appropriately operated. Can be started.
  • the drive device 1 according to the present embodiment can be suitably applied to a drive device for a hybrid vehicle having an idle stop function.
  • the case 2 includes an outer peripheral wall 21 formed in a cylindrical shape along the outer shape of the transmission TM, the gear mechanism G, and the differential gear device DF, and the outer peripheral wall 21 faces outward. And a pair of projecting walls 22 arranged to face each other.
  • a space defined by the outer peripheral wall 21 and the pair of protruding walls 22 is an inverter accommodating chamber P.
  • the inverter accommodation chamber P accommodates the first inverter 30 and the second inverter 40 that constitute the inverter device 3.
  • the first inverter 30 and the second inverter 40 are integrally fixed to the case 2 (outer peripheral wall 21).
  • the first inverter 30 and the second inverter 40 are directly fixed to the case 2 and integrated without using an inverter case that accommodates them. That is, the inverter caseless structure is employed in the drive device 1 according to the present embodiment. In such an inverter caseless structure, it is not necessary to prepare a dedicated inverter case, and it is not necessary to prepare a fixing seat for fixing the inverter case to the case 2. Therefore, cost reduction can be achieved by reducing the number of parts. In addition, the entire apparatus can be reduced in size.
  • the case 2 has a columnar or plate-like beam portion 23 that connects the pair of protruding walls 22 to each other.
  • the case 2 has a thick plate-shaped isolation wall (not shown) extending from the outer peripheral wall 21 toward the beam portion 23.
  • the inverter housing chamber P is divided into a first housing portion P1 and a second housing portion P2 by a separating wall.
  • a first inverter 30 and a second inverter 40 are accommodated in the first accommodating portion P1.
  • a capacitor C constituting the inverter device 3 is accommodated in the second accommodating portion P2.
  • the first housing portion P1 is covered with the first cover 26, and the second housing portion P2 is covered with the second cover 27.
  • the first inverter 30 and the second inverter 40 are disposed in the driving force source chamber Q (see FIG. 1) together with the case 2 of the driving device 1.
  • the inverter device 3 performs conversion between DC power and AC power.
  • Inverter device 3 is connected between power storage device B and rotary electric machine MG, and is connected between first inverter 30 that performs power conversion between direct current and alternating current, and between power storage device B and pump motor PM.
  • a second inverter 40 that performs power conversion between direct current and alternating current.
  • the first inverter 30 and the second inverter 40 share the power storage device B, and also share the capacitor C for smoothing DC power (suppressing fluctuations in DC power).
  • Each of the rotary electric machine MG and the pump motor PM is configured as a multi-phase AC drive type (in this example, a three-phase AC drive type) rotary electric machine, and each has three phases (U phase, V phase, W phase). ) Current flows.
  • a capacitor C is connected between a positive electrode Bp side and a negative electrode Bn side (for example, ground side) of a power storage device B as a DC power source via a pair of common positive electrode line Lp0 and common negative electrode line Ln0.
  • the switching element units 31 for the respective phases constituting the first inverter 30 are connected in parallel between the common positive line Lp0 and the common negative line Ln0. That is, the switching element unit 31 is connected between the three branched positive lines Lp1 to Lp3 branched from the common positive line Lp0 and the three branched negative lines Ln1 to Ln3 branched from the common negative line Ln0.
  • Each switching element unit 31 corresponds to each of the three phases (U phase, V phase, W phase) of the stator coil of the rotating electrical machine MG (stator St).
  • Each switching element unit 31 includes an upper switching element 32 provided on the positive electrode Bp side of the power storage device B with respect to the connection portion with the rotating electrical machine MG, and a lower step provided on the negative electrode Bn side of the power storage device B with respect to the connection portion.
  • Side switching element 32 That is, the first inverter 30 includes upper switching elements 32a to 32c connected to the common positive line Lp0 and lower switching elements 32d to 32f connected to the common negative line Ln0, respectively.
  • a pair of switching elements 32 connected in parallel may be used.
  • an IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Semiconductor Field Effect Transistor
  • the collectors of the upper switching elements 32a, 32b, and 32c of each phase are connected to the positive electrode Bp side of the power storage device B through the common positive electrode line Lp0.
  • the emitters of the upper switching elements 32a, 32b, and 32c of each phase are connected to the collectors of the lower switching elements 32d, 32e, and 32f, respectively.
  • the emitters of the lower switching elements 32d, 32e, 32f of each phase are connected to the negative electrode Bn side of the power storage device B through the common negative electrode line Ln0.
  • a rectifying element 33 is connected in parallel between the emitter and collector of each switching element 32. As the rectifying element 33, a diode is used. Note that the gate of each switching element 32 is individually controlled to be switched by a first control unit 51 of the inverter control device 5 described later.
  • Each switching element unit 31 is connected to the rotating electrical machine MG via the first wiring member Lw1 for each phase.
  • the pair of switching elements 32 for each phase has a stator coil for each phase of the rotating electrical machine MG via a first wiring member Lw1 for each phase at an intermediate point (between the upper emitter and the lower collector). It is connected to the.
  • a current sensor 35 for detecting a current flowing through the stator coil for each phase of the rotating electrical machine MG is provided at a predetermined location of the first wiring member Lw1. As such a current sensor 35, a sensor using a Hall element is used in the present embodiment.
  • the current sensor 35 includes an annular core that surrounds the periphery of the first wiring member Lw1, and a Hall element that is disposed in a cutout portion of the core.
  • the switching element units 41 for each phase constituting the second inverter 40 are connected in parallel between the common positive line Lp0 and the common negative line Ln0. That is, the switching element unit 41 is connected between the three branched positive lines Lp4 to Lp6 branched from the common positive line Lp0 and the three branched negative lines Ln4 to Ln6 branched from the common negative line Ln0. Yes.
  • the switching element unit 41 of the second inverter 40 corresponds to the “switching element unit” in the present invention.
  • Each switching element unit 41 corresponds to each of the three phases (U phase, V phase, W phase) of the stator coil of the pump motor PM.
  • Each switching element unit 41 is provided on the upper side switching element 42 provided on the positive electrode Bp side of the power storage device B with respect to the connection portion with the pump motor PM, and on the negative electrode Bn side of the power storage device B with respect to the connection portion.
  • the collectors of the upper switching elements 42a, 42b, 42c of each phase are connected to the positive electrode Bp side of the power storage device B through the common positive electrode line Lp0.
  • the emitters of the upper switching elements 42a, 42b, and 42c of each phase are connected to the collectors of the lower switching elements 42d, 42e, and 42f, respectively.
  • the emitters of the lower switching elements 42d, 42e, 42f of each phase are connected to the negative electrode Bn side of the power storage device B through the common negative electrode line Ln0.
  • a rectifying element 43 is connected in parallel between the emitter and collector of each switching element 42. Note that the gate of each switching element 42 is individually controlled to be switched by a second control unit 52 of the inverter control device 5 described later.
  • Each switching element unit 41 is connected to a pump motor PM via a second wiring member Lw2 for each phase.
  • the pair of switching elements 42 for each phase has a stator for each phase of the pump motor PM via a second wiring member Lw2 for each phase at an intermediate point (between the upper emitter and the lower collector). Connected to the coil.
  • the second wiring member Lw2 is not provided with a current sensor including a Hall element.
  • a shunt resistor 45 is provided between the power storage device B and the switching element unit 41 for each phase.
  • a shunt resistor 45 is provided for each of the three branch negative electrode lines Ln4 to Ln6, and a total of three shunt resistors 45 are provided.
  • the shunt resistor 45 is mounted on the control board of the second inverter 40.
  • the shunt resistor 45 is provided to detect the current flowing through each phase switching element unit 41 (here, the lower switching elements 42d to 42f). When a current flows through the lower switching elements 42d to 42f, a potential difference is generated between both ends of the shunt resistor 45 in accordance with the amount of the current. Therefore, based on the magnitude and the known resistance value of the shunt resistor 45, the pump motor PM It is possible to detect the current flowing in the stator coil for each phase. Details of the current detection method using the shunt resistor 45 will be described later.
  • the current flowing through the stator coil for each phase of the rotating electrical machine MG is detected by the current sensor 35 using the Hall element, while the current is detected in the stator coil for each phase of the pump motor PM.
  • the flowing current is detected by the shunt resistor 45.
  • the current sensor 35 using a Hall element is expensive, but can always detect current with high accuracy.
  • the shunt resistor 45 is inexpensive, the time when the current can be detected is limited in the control cycle of the second inverter 40 as described later. That is, the ratio of the current detectable period of the current sensor 35 to the control period of the first inverter 30 is higher than the ratio of the current detectable period of the shunt resistor 45 to the control period of the second inverter 40.
  • the current sensor 35 using an expensive Hall element has a relatively stable temperature characteristic, whereas the inexpensive shunt resistor 45 is easily affected by the environmental temperature.
  • the rotating electrical machine MG outputs the driving force transmitted to the wheels W, high control accuracy is required for the rotating electrical machine MG.
  • the pump motor PM is for driving the rotor of the electric pump EP provided independently of the wheels W, the required control accuracy is not so high as compared with the rotating electrical machine MG.
  • current detection for the rotating electrical machine MG is performed using the current sensor 35 including a Hall element, and current detection for the pump motor PM is performed using the shunt resistor 45.
  • the control accuracy of the rotating electrical machine MG can be maintained high, and the product cost can be reduced while sacrificing the control accuracy for the pump motor PM to some extent within an allowable range.
  • “Sacrificing the control accuracy for the pump motor PM to some extent” is an expression with the comparison with the case where current detection is performed using a current sensor including a Hall element as in the case of the rotating electrical machine MG. is there.
  • the pump motor PM for driving the rotor of the electric pump EP is controlled by the second inverter 40, for example, compared with the case where the pump motor PM is driven with constant torque or constant rotation.
  • the state of the transmission TM can be controlled with relatively high accuracy.
  • the influence on the control accuracy of the rotating electrical machine MG and the pump motor PM can be suppressed to a low level as a whole. Furthermore, by mounting the shunt resistor 45 on the control board of the second inverter 40, the second inverter 40, and thus the entire device can be effectively downsized.
  • the shunt resistor 45 incorporated in the second inverter 40 is disposed in the driving force source chamber Q
  • the internal combustion engine E and the rotating electrical machine MG as the driving force source of the wheels W generate heat while the vehicle travels, and the shunt A situation in which the installation environment of the resistor 45 becomes high temperature is likely to occur.
  • the fluctuation range of the environmental temperature increases, the current detection accuracy by the shunt resistor 45 decreases, and as a result, the control accuracy of the pump motor PM is likely to deteriorate. Even in this case, the deterioration of the control accuracy can be absorbed within the allowable range of the required accuracy for the control of the pump motor PM.
  • the inverter control device 5 includes a first control unit 51 and a second control unit 52.
  • the first control unit 51 performs switching control of each switching element 32 of the first inverter 30 to drive and control the rotating electrical machine MG.
  • the 2nd control part 52 carries out switching control of each switching element 42 of the 2nd inverter 40 separately, and drives and controls pump motor PM.
  • the first control unit 51 and the second control unit 52 both drive and control the rotating electrical machine MG and the pump motor PM based on the current vector control method.
  • the first control unit 51 includes a rotation speed deriving unit 61, a three-phase two-phase conversion unit 62, a d-axis current command value deriving unit 63, a q-axis current command value deriving unit 64, and a current control unit 65. , A modulation factor deriving unit 66, a d-axis current adjustment command value deriving unit 67, a two-phase / three-phase converting unit 68, and a control signal generating unit 69.
  • the first controller 51 includes a U-phase current Iur, a V-phase current Ivr, and a W-phase current Iwr detected by the current sensor 35 (see FIG.
  • a magnetic pole position ⁇ of the rotor Ro of the rotating electrical machine MG A DC voltage Vdc that is a voltage on the DC side of the first inverter 30 is input.
  • the target torque TR is also input to the first control unit 51.
  • the rotational speed deriving unit 61 derives the rotational speed ⁇ of the rotating electrical machine MG based on the magnetic pole position ⁇ .
  • the derived rotational speed ⁇ is provided to the current controller 65 and the two-phase / three-phase converter 68.
  • the three-phase to two-phase converter 62 derives the d-axis current Idr and the q-axis current Iqr based on the U-phase current Iur, the V-phase current Ivr, the W-phase current Iwr, and the magnetic pole position ⁇ .
  • the derived d-axis current Idr and q-axis current Iqr are provided to the current control unit 65.
  • the d-axis current command value deriving unit 63 derives a basic d-axis current command value Idb based on the target torque TR.
  • the basic d-axis current command value Idb corresponds to a command value for the d-axis current when maximum torque control is performed.
  • the maximum torque control is a control that adjusts the current phase so that the output torque of the rotating electrical machine MG becomes maximum with respect to the same current.
  • the d-axis current command value deriving unit 63 derives a basic d-axis current command value Idb corresponding to the value of the target torque TR using a predetermined map.
  • a d-axis current adjustment command value ⁇ Id derived by a d-axis current adjustment command value deriving unit 67 described later is subtracted from the basic d-axis current command value Idb, and this is provided to the current control unit 65 as a d-axis current command value Id. .
  • the q-axis current command value deriving unit 64 derives the q-axis current command value Iq based on the target torque TR. In the present embodiment, the q-axis current command value deriving unit 64 derives the q-axis current command value Iq according to the value of the target torque TR using a predetermined map. When a d-axis current adjustment command value ⁇ Id is derived by a d-axis current adjustment command value deriving unit 67 described later, the q-axis current command value deriving unit 64 determines the target torque TR and the d-axis current adjustment command value ⁇ Id. A q-axis current command value Iq corresponding to the value is derived. The derived q-axis current command value Iq is provided to the current control unit 65.
  • the current control unit 65 Based on the d-axis current command value Id and the q-axis current command value Iq, the d-axis current Idr and the q-axis current Iqr, and the rotation speed ⁇ , the current control unit 65 performs the d-axis voltage command value Vd and the q-axis voltage command value. Vq is determined. The current control unit 65 performs current feedback control on the d-axis current command value Id and the q-axis current command value Iq, and determines the d-axis voltage command value Vd and the q-axis voltage command value Vq. The determined voltage command values Vd and Vq are provided to the modulation factor deriving unit 66 and the two-phase / three-phase conversion unit 68.
  • the modulation factor deriving unit 66 derives the modulation factor Mf based on the d-axis voltage command value Vd, the q-axis voltage command value Vq, and the DC voltage Vdc.
  • the modulation factor Mf is an index representing the ratio of the effective value of the fundamental wave component of the output voltage waveform of the first inverter 30 to the DC voltage Vdc.
  • the derived modulation factor Mf is provided to the d-axis current adjustment command value deriving unit 67.
  • the d-axis current adjustment command value deriving unit 67 derives the d-axis current adjustment command value ⁇ Id based on the modulation rate Mf and a predetermined reference modulation rate (for example, “0.78”). For example, when the modulation factor Mf exceeds the reference modulation factor, the d-axis current adjustment command value deriving unit 67 determines the d-axis current adjustment command value ⁇ Id ( ⁇ Id> 0 based on the deviation between the modulation factor Mf and the reference modulation factor. ) Is derived.
  • the d-axis current adjustment command value ⁇ Id is a command value that gives a field weakening current, and the field weakening current acts to weaken the field magnetic flux of the rotor Ro of the rotating electrical machine MG. That is, by deriving the d-axis current adjustment command value ⁇ Id, a weakening that adjusts the phase of the AC voltage command so that the magnetic field generated in the stator coil of the rotating electrical machine MG changes in a direction that weakens the field magnetic flux of the rotor Ro. Field control is performed.
  • the d-axis current adjustment command value ⁇ Id is provided to the q-axis current command value deriving unit 64.
  • the d-axis current adjustment command value ⁇ Id is subtracted from the basic d-axis current command value Idb derived by the d-axis current command value deriving unit 63, and this is provided to the current control unit 65 as the d-axis current command value Id. .
  • the two-phase / three-phase conversion unit 68 uses the U-phase voltage command value Vu, the V-phase voltage command value Vv, And a W-phase voltage command value Vw is derived.
  • the derived three-phase AC voltage command values Vu, Vv, Vw are provided to the control signal generator 69.
  • the control signal generator 69 individually controls the switching elements 32a to 32f of the first inverter 30 based on the U-phase voltage command value Vu, the V-phase voltage command value Vv, and the W-phase voltage command value Vw.
  • Control signals (switching control signals) S11 to S16 are generated.
  • the control signal generator 69 generates at least control signals S11 to S16 for PWM (Pulse Width Modulation) control.
  • the control signal generation unit 69 generates control signals S11 to S16 for PWM control based on a magnitude comparison between a carrier (carrier wave) composed of a triangular wave, a sawtooth wave, and the like and the AC voltage command values Vu, Vv, Vw.
  • the control signal generation unit 69 may be configured to generate known overmodulation PWM control and rectangular wave control control signals S11 to S16 according to the magnitude of the modulation factor Mf and the like.
  • the second control unit 52 basically has the same configuration as the first control unit 51.
  • the d-axis current adjustment command value deriving unit 67 in the second control unit 52 derives the d-axis current adjustment command value ⁇ Id under the “specific condition” even when the modulation rate Mf is equal to or less than the reference modulation rate.
  • the second control unit 52 is configured to perform field-weakening control even when the “specific condition” is satisfied, regardless of the magnitude of the modulation factor Mf. This point will be described later.
  • the control signal generation unit 69 in the second control unit 52 is configured to exclusively generate control signals S21 to S26 for PWM control. Since the other points are the same as those of the first control unit 51, detailed description is omitted here.
  • the second control unit 52 generates the control signals S21 to S26 for PWM control, and the switching element 42 is individually controlled to switch based on this, so that the pump The motor PM is PWM controlled.
  • the PWM control means continuous pulse width modulation (CPWM; continuous PWM) such as a sine wave PWM or a space vector PWM.
  • CPWM continuous pulse width modulation
  • the AC voltage command values Vu, Vv, Vw are each modulated into discrete pulse signals.
  • FIG. 5 schematically shows the waveforms of the control signals S21 to S26 in a predetermined period in an enlarged manner together with the carrier.
  • the control signal S21 is high level (H) when the U-phase voltage command value Vu is greater than or equal to the carrier, and is low level (L) when the U-phase voltage command value Vu is less than the carrier.
  • the upper switching element 42a for the U phase is turned on when the control signal S21 is at a high level (H), and turned off when the control signal S21 is at a low level (L).
  • the control signals S22 and S23 are also generated based on the comparison between the voltage command values Vv and Vw and the carrier, and the V-phase upper switching element 42b and the W-phase upper switching element 42c are similarly turned on and off. And switch.
  • the levels of the control signals S24 to S26 at the respective time points are opposite to the levels of the control signals S21 to S23, respectively.
  • the control signal S21 is at a high level (H)
  • the control signal S24 is at a low level (L)
  • the control signal S24 is at a high level (H).
  • the relationship between the control signal S22 and the control signal S25 and the relationship between the control signal S23 and the control signal S26 are the same.
  • the upper switching elements 42a to 42c of the respective phases and the lower switching elements 42d to 42f of the corresponding phases are switched in a complementary manner.
  • there is a dead time in which both the upper and lower switching elements 42 included in each switching element unit 41 are in the off state, but are omitted here for simplicity.
  • the U-phase upper switching element 42a is turned on, and the V-phase and W-phase upper switching elements 42b and 42c are turned off.
  • the power storage device B (capacitor C) and the pump motor PM are energized via the second inverter 40, and a current flows between them (see FIG. 6).
  • positive electrode Bp side of power storage device B (capacitor C) ⁇ U phase upper switching element 42a ⁇ pump motor PM ⁇ V phase and W phase lower switching elements 42e, 42f ⁇ power storage device B (capacitor C). Current flows through a path on the negative electrode Bn side.
  • the V-phase and W-phase currents flow through the two shunt resistors 45 provided on the branch negative electrode lines Ln5 and Ln6, it is possible to detect the currents flowing through the V-phase and W-phase stator coils.
  • the U-phase current flows through the branch positive line Lp4 and does not flow through the shunt resistor 45 provided in the branch negative line Ln4. Accordingly, the current flowing through the U-phase stator coil cannot be detected. In other active vector periods as well, it is possible to detect the current flowing through the one-phase or two-phase stator coils in accordance with the pattern of the path through which the current flows.
  • the zero vector period there are a period in which all the three-phase upper switching elements 42a to 42c are in the on state and a period in which all the three-phase upper switching elements 42a to 42c are in the off state.
  • the former is referred to as “lower full-off period Tf”
  • the latter is referred to as “lower full-on period Tn”.
  • the lower full-off period Tf is a period in which all the switching elements 42 on the side where the shunt resistor 45 is provided are in an off state, and can also be referred to as a “target full-off period”.
  • the lower full-on period Tn can also be referred to as a “target full-on period”.
  • In the zero vector period no current flows between the power storage device B and the pump motor PM. However, in the zero vector period, the current flows back between the second inverter 40 and the pump motor PM.
  • the current circulation pattern differs between the lower full-on period Tn and the lower full-off period Tf.
  • the inverter control device 5 (second control unit 52) performs a current detection process using the shunt resistor 45 in the lower full-on period Tn. That is, the inverter control device 5 simultaneously detects the currents flowing through the stator coils of the respective phases of the pump motor PM in the lower full-on period Tn. As described above, the current flowing through the stator coil of each phase of the pump motor PM is detected based on the potential difference between both ends of each shunt resistor 45.
  • the inverter control device 5 detects the minute current flowing through the stator coil of each phase of the pump motor PM using the shunt resistor 45 also in the lower full-off period Tf. That is, the inverter control device 5 simultaneously detects a minute current flowing through the stator coil of each phase of the pump motor PM in the lower full-off period Tf. In this manner, the zero point offset correction amount ⁇ Oc in the above-described current detection process is calculated using the minute current of each phase detected in the lower full-off period Tf.
  • the inverter control device 5 divides one electrical angle cycle Tc of the pump motor PM into a plurality of divided periods Td, and individually performs offset correction for each of the plurality of divided periods Td. The amount ⁇ Oc is determined. More specifically, the inverter control device 5 stores (accumulates) individual offset correction values determined in the past for each divided period Td.
  • the offset correction amount ⁇ Oc is set as a value obtained by statistically processing them (for example, calculating an average value / weighted average value / moderate value / median value of a specific period). decide.
  • the offset correction amount ⁇ Oc for each divided period Td is determined for each shunt resistor 45.
  • the number of division periods Td may be set as appropriate, but is preferably 2 K (K represents a natural number of 10 or less).
  • the inverter control device 5 detects the actual current flowing through the stator coil of each phase of the pump motor PM using such an offset correction amount ⁇ Oc.
  • the inverter control device 5 corrects the current detection value ("Idet" shown in FIG. 9) obtained by the current detection process executed in the lower full-on period Tn for each phase with the offset correction amount ⁇ Oc.
  • An actual current flowing through the stator coil (“Ir” shown in FIG. 9) is detected. That is, the inverter control device 5 subtracts the offset correction amount ⁇ Oc assigned to the divided period Td from the actually obtained current detection value (Idet) for each phase, so that the actual current flowing through the stator coil is reduced. (Ir) is detected.
  • the detected actual current value of each phase is provided to the current feedback control by the second control unit 52 as a U-phase current Iur, a V-phase current Ivr, and a W-phase current Iwr (see FIG. 4).
  • the shunt resistor 45 incorporated in the second inverter 40 is arranged in the driving force source chamber Q in this embodiment, the periphery of the shunt resistor 45 is likely to become high temperature, and the temperature fluctuation range is also large. Easy to grow.
  • the fluctuation range of the environmental temperature increases, the current detection accuracy by the shunt resistor 45 decreases, and as a result, the control accuracy of the pump motor PM is likely to deteriorate.
  • zero point offset correction is performed at the start-up of the apparatus, there is a problem that it is not possible to cope with large fluctuations in the environmental temperature.
  • the offset correction amount ⁇ Oc is determined in the lower full-off period Tf that repeatedly appears during the drive control of the pump motor PM, so that it is possible to repeatedly perform offset correction and cope with fluctuations in the environmental temperature. be able to. Therefore, the detection accuracy in the current detection process can be increased.
  • the actual potential difference sampling in the current detection process is performed at the center (intermediate time) of the lower full-on period Tn.
  • an output signal is amplified by an operational amplifier (operational amplifier; not shown) at the time of sampling.
  • the second control unit 52 includes an amplifier circuit that amplifies the output signal from the shunt resistor 45.
  • general-purpose operational amplifiers generally have a slew rate (Slew Rate) set to a relatively small value, and the maximum response speed is limited. That is, the upper limit of the time change rate of the output value from the shunt resistor 45 is limited by a slew rate (change rate limit value) preset in the operational amplifier.
  • FIG. 10 schematically shows an example of the change of the output signal from the shunt resistor 45 acquired through the operational amplifier during the lower full-on period Tn.
  • the output torque of the pump motor PM is increased, for example, when the lower full-on period Tn becomes considerably short, amplification of the output signal of the shunt resistor 45 is completed.
  • the potential difference sampling is performed without performing the above process. In such a case, the current flowing through the stator coil of each phase of the pump motor PM is erroneously detected (detected as a value different from the actual value), so the control accuracy of the pump motor PM is deteriorated. To do.
  • the inverter control device 5 sets the parameter relating to the current feedback control of the pump motor PM so as to lengthen the lower full-on period Tn when the lower full-on period Tn is shorter than a predetermined reference time Tr.
  • Perform adjustment processing to adjust The reference time Tr is set based on a change rate limit value (slew rate) preset in the operational amplifier as an upper limit value of the time change rate of the output value from the shunt resistor 45.
  • the reference time Tr is preferably set as a time that is at least twice the time obtained by dividing the maximum value by the change rate limit value based on the maximum value assumed as the output value from the shunt resistor 45. is there.
  • parameters to be adjusted include a carrier frequency in PWM control and a modulation factor Mf in current vector control. These may be adjusted alternatively or may be adjusted in combination.
  • the carrier frequency in PWM control is configured to be continuously changeable. Then, as one aspect of the adjustment process, the inverter control device 5 reduces the carrier frequency in the PWM control when the lower full-on period Tn is shorter than the reference time Tr (see the lower stage in FIG. 10). Since the control signals S21 to S26 are generated based on the magnitude comparison between the carrier and the AC voltage command values Vu, Vv, Vw, the lower switching of each phase is performed by lowering the carrier frequency (increasing the carrier cycle). The duration of the ON state of the elements 42d to 42f is increased. In addition, it is possible to extend the duration of the ON state of the lower switching elements 42d to 42f of each phase while keeping the duty ratio constant. As a result, the lower full-on period Tn can be lengthened.
  • the inverter control device 5 reduces the carrier frequency to a frequency at which the lower full-on period Tn becomes equal to the reference time Tr.
  • the reference time Tr can be secured as the lower full-on period Tn, and sampling of the output signal of the shunt resistor 45 that has not been amplified by the slew rate of the operational amplifier can be suppressed. Therefore, the accuracy of the current detection process can be ensured.
  • the carrier frequency can be reduced to the minimum necessary level. Therefore, a decrease in controllability of the pump motor PM, generation of noise, and the like can be effectively suppressed.
  • the inverter control device 5 reduces the modulation factor Mf in the current vector control when the lower full-on period Tn is shorter than the reference time Tr.
  • the inverter control device 5 reduces the modulation factor Mf by performing field weakening control.
  • “the lower full-on period Tn is shorter than the reference time Tr” is the “specific condition” mentioned above as one of the starting conditions of the field weakening control.
  • the q-axis current command value Iq derived based on a predetermined map generally decreases along an isotorque line as shown in FIG.
  • the current deviation in the current feedback control is reduced, and the voltage command values Vd and Vq derived by the current control unit 65 are also reduced.
  • the modulation factor Mf is reduced by the execution of the field weakening control.
  • the modulation factor Mf is an index representing the ratio of the effective value of the fundamental wave component of the output voltage waveform of the second inverter 40 to the DC voltage Vdc.
  • the duty ratio is reduced by reducing this.
  • the duration of the ON state of the upper switching elements 42a to 42c of each phase is shortened, and the duration of the ON state of the lower switching elements 42d to 42f of each phase is correspondingly increased.
  • the lower full-on period Tn can be lengthened.
  • the inverter control device 5 reduces the modulation rate Mf so that the lower full-on period Tn is equal to or longer than the reference time Tr. In order to do this, for example, it is preferable to experimentally obtain the second reference modulation rate such that the lower full-on period Tn is equal to or longer than the reference time Tr.
  • the d-axis current adjustment command value deriving unit 67 determines the d based on the second reference modulation factor (for example, a value of about “0.6” to “0.7”) obtained as an empirical value and the modulation factor Mf. It is preferable that the shaft current adjustment command value ⁇ Id is derived.
  • the reference time Tr can be ensured as the lower full-on period Tn, and sampling of the output signal of the shunt resistor 45 that has not been amplified by the slew rate of the operational amplifier can be suppressed. Therefore, the accuracy of the current detection process can be ensured. In that case, the output torque of the pump motor PM can be kept constant.
  • the configuration in which the shunt resistor 45 is provided in each of the three branch negative electrode lines Ln4 to Ln6 has been described as an example.
  • the embodiment of the present invention is not limited to this.
  • a configuration in which a shunt resistor 45 is provided in each of any two of the three branch negative electrode lines Ln4 to Ln6 (a two-shunt configuration) may be employed. Since the sum of instantaneous values of the currents of the respective phases is zero, the current flowing through the stator coils of the respective phases of the pump motor PM can be appropriately detected even with such a configuration.
  • a configuration (one shunt configuration) in which one shunt resistor 45 is provided in the common negative electrode line Ln0 may be used.
  • the configuration in which the shunt resistor 45 is provided in the branch negative electrode lines Ln4 to Ln6 in order to detect the currents flowing through the lower switching elements 42d to 42f for each phase has been described as an example.
  • the embodiment of the present invention is not limited to this.
  • a shunt resistor 45 may be provided in the branch positive lines Lp4 to Lp6 or the common positive line Lp0 in order to detect the current flowing in each of the upper switching elements 42a to 42c for each phase.
  • the second inverter 40 is described as an example of a configuration that controls the pump motor PM that is drivingly connected to the rotor of the oil discharge electric pump EP that is provided independently of the wheels W. did.
  • the embodiment of the present invention is not limited to this.
  • the second inverter 40 may be configured to control an AC rotating electrical machine that is drivingly connected to a rotating body other than the rotor of the electric pump EP. Examples of such a rotating body include rotors such as a cooling water discharge drive motor, an air conditioner compressor drive motor, an electric power steering drive motor, and a cooling fan drive motor.
  • the inverter caseless structure in which the first inverter 30 and the second inverter 40 are integrally fixed to the case 2 has been described as an example.
  • the embodiment of the present invention is not limited to this.
  • the first inverter 30 and the second inverter 40 may be accommodated in a dedicated inverter case separate from the case 2, and the inverter case and the case 2 may be disposed in the driving force source chamber Q.
  • the inverter control device 5 is configured to individually determine the offset correction amount ⁇ Oc for each of the plurality of divided periods Td defined by dividing the electrical angle one cycle Tc of the pump motor PM. Described as an example. However, the embodiment of the present invention is not limited to this. For example, the inverter control device 5 may determine the uniform offset correction amount ⁇ Oc for the entire electrical angle cycle Tc of the pump motor PM without setting the division period Td.
  • the configuration in which the carrier frequency in PWM control can be continuously changed has been described as an example.
  • the inverter control device 5 has been described as an example of a configuration in which the carrier frequency is reduced to a frequency at which the lower full-on period Tn is equal to the reference time Tr.
  • the embodiment of the present invention is not limited to this.
  • the carrier frequency in PWM control may be configured to be changeable in stages.
  • the inverter control device 5 sets the carrier frequency to the maximum frequency at which the lower full-on period Tn is greater than or equal to the reference time Tr among the carrier frequencies that can be changed in stages. It is preferable to reduce the frequency. Further, in both configurations in which the carrier frequency can be changed continuously or stepwise, the inverter control device 5 may be configured to reduce the carrier frequency to any frequency at which the lower full-on period Tn is greater than or equal to the reference time Tr. good.
  • the configuration in which the inverter control device 5 reduces the modulation factor Mf by performing field-weakening control when the lower full-on period Tn is shorter than the reference time Tr has been described as an example.
  • the embodiment of the present invention is not limited to this.
  • the inverter control device 5 may decrease the modulation factor Mf by controlling the booster circuit to boost the DC voltage Vdc. .
  • the inverter control device itself having a function of accurately detecting the current flowing through the stator coil of each phase of the AC rotating electric machine using a shunt resistor has a great feature.
  • An inverter control device 5 that drives and controls an inverter that performs DC / AC conversion by being connected to a power storage device B as a DC power source and an N (N is a natural number of 2 or more) phase AC drive AC rotating electric machine.
  • N or (N ⁇ 1) shunt resistors 45 for detecting a current flowing in the AC rotating electric machine are provided.
  • the AC rotating electrical machine is PWM controlled by individually controlling the upper switching element and the lower switching element of each phase,
  • the first current detection process is to detect the current flowing through the stator coil of each phase of the AC rotating electric machine during the target full-on period in which all of the installation side switching elements provided with the shunt resistors 45 of each phase are turned on.
  • the inverter control device 5 has a second feature of including any one or more of the following (a) to (c) alone or in combination.
  • (A) The zero point offset correction amount ⁇ Oc in the current detection process is determined during the target full-off period in which all the switching elements on the installation side stage of each phase are turned off.
  • the modulation factor Mf representing the ratio of the effective values of the AC voltage commands Vu, Vv, Vw to the DC voltage Vdc of the inverter is decreased.
  • the inverter control device having each of these characteristic configurations can also obtain various effects related to the drive device described in the above embodiment.
  • such an inverter control device is not limited to a vehicle drive device, but is applied to various devices (electric appliances, large industrial equipment, etc.) equipped with an inverter for controlling a multi-phase AC drive type AC rotating electric machine. You can also
  • the present invention can be used for a drive device for a hybrid vehicle, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 回転電機の制御精度に与える影響を小さく抑えつつ、製品コストを低減する。 本発明は、交流回転電機PMとインバータ40とを備える駆動装置1に関する。駆動装置1は、インバータ40の各相用スイッチング素子ユニットに流れる電流を検出するシャント抵抗を備える。交流回転電機PMは、車輪Wから独立して設けられた回転体に駆動連結され、シャント抵抗は、駆動力源Eを収容する駆動力源室Qに配置されている。

Description

駆動装置
 本発明は、回転電機と、この回転電機と直流電源との間に接続されるインバータとを備える駆動装置に関する。
 上記のような駆動装置として、特開2007-166803号公報(特許文献1)に記載された装置が知られている。このような装置において、回転電機〔モータジェネレータMG1,MG2〕の駆動制御を行うためには、各相のステータコイルに流れる電流を検出するための電流センサを搭載する必要がある。従来、駆動装置に用いられる電流センサとしては、特許文献1にも示されているように、ホール素子を用いたセンサが一般的であった。ホール素子を用いたセンサは、比較的安定した温度特性を有するとともに、高精度に電流を検出することができるので、高温環境となりがちな駆動装置においても回転電機の高精度な駆動制御を可能とするために頻用されている。しかし、ホール素子を用いたセンサは一般に高価であるため、コストアップの要因となる。
 一方、例えば空調機等の電化製品において、回転電機の各相のステータコイルに流れる電流を、インバータ回路に設けられたシャント抵抗を利用して検出する技術も知られている(特許文献2~4)。シャント抵抗は安価であるため、ホール素子を用いたセンサで電流検出を行うように構成する場合に比べて、製品コストを低減することができる。
 しかし、シャント抵抗は、ホール素子を用いたセンサに比べて電流検出精度に劣り、また、環境温度の影響を受けやすい。このため、単純に製品コスト低減の目的でシャント抵抗を用いる場合には、回転電機(例えば特許文献1におけるモータ・ジェネレータMG1,MG2)の駆動制御に関して所望の精度が確保できない可能性がある。特に、駆動装置の設置環境が、一般的な電化製品の設置環境に比べてかなり高温となりがちであることを考慮すれば、シャント抵抗を用いる場合には、回転電機の制御精度は悪化しやすい。よって、電流検出のためのシャント抵抗を駆動装置に適用する場合には、その適用態様を十分に検討する必要がある。
特開2007-166803号公報 特開2011-125130号公報 特開2005-151790号公報 特開2005-192358号公報
 上記に鑑み、回転電機とインバータとを備える駆動装置において、回転電機の制御精度に与える影響を小さく抑えつつ、製品コストを低減することが望まれる。
 本発明に係る、複数相の電流が流れる交流回転電機と、複数相のそれぞれに対応する各相用スイッチング素子ユニットを有し、直流電源と前記交流回転電機との間に接続されて直流と交流との間の変換を行うインバータと、を備える駆動装置の特徴構成は、
 前記直流電源と前記各相用スイッチング素子ユニットとの間で、複数の前記各相用スイッチング素子ユニットのそれぞれに流れる電流を検出するシャント抵抗を備え、
 前記交流回転電機は、車輪から独立して設けられた回転体に駆動連結され、
 前記シャント抵抗は、前記車輪の駆動力源を収容する駆動力源室に配置されている点にある。
 本願において、「駆動連結」とは、2つの回転要素が駆動力(トルクと同義)を伝達可能に連結された状態を意味する。この概念には、2つの回転要素が一体回転するように連結された状態や、1つ以上の伝動部材を介して駆動力を伝達可能に連結された状態が含まれる。このような伝動部材には、回転を同速で又は変速して伝達する各種の部材(軸、歯車機構、ベルト等)が含まれ、回転及び駆動力を選択的に伝達する係合装置(摩擦係合装置や噛み合い式係合装置等)が含まれても良い。
 また、「交流回転電機」は、交流電力によって駆動される回転電機を表す。ここで、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
 また、「車輪から独立」とは、駆動力の伝達経路が車輪から独立しており、車輪の回転駆動力が伝達されないことを意味する。
 この特徴構成によれば、インバータに備えられる各相用スイッチング素子ユニットのそれぞれに流れる電流をシャント抵抗で検出するので、ホール素子を用いたセンサで電流検出を行う場合に比べて、製品コストを低減することができる。このインバータによって制御される交流回転電機は、車輪から独立して設けられた回転体(例えばオイルポンプ、ウォーターポンプ、エアコンディショナーのコンプレッサ等のロータ)に駆動連結されている。よって、交流回転電機は、例えば車輪の駆動用の回転電機(車輪駆動用回転電機)に比べて、求められる制御精度はそれほど高くない場合が多い。従って、電流検出のためにシャント抵抗を用いることによる交流回転電機の制御精度への影響を相対的に小さく抑えることができる。特に、シャント抵抗が駆動力源室に配置され、高温環境下に置かれる場合であっても、交流回転電機の制御精度への影響を相対的に小さく抑えることができる。
 以下、本発明の好適な態様について説明する。
 1つの態様として、油圧の供給を受けて動作し、前記駆動力源から前記車輪への駆動力の伝達状態を制御する駆動伝達装置をさらに備え、前記回転体は、前記駆動伝達装置に供給する油を吐出する電動ポンプのロータであると好適である。
 この構成によれば、電動ポンプにより吐出される油を駆動伝達装置に供給して、駆動力源から車輪への駆動力の伝達状態を適切に制御することができる。交流回転電機に駆動連結された電動ポンプのロータを、交流回転電機に流れる電流をシャント抵抗で検出しながら駆動制御することで、駆動伝達装置の状態を比較的高精度に制御することができる。電動ポンプのロータ駆動用の交流回転電機を対象として、これをインバータで制御することで駆動伝達装置の状態の比較的高精度な制御を可能としつつ、安価なシャント抵抗を用いて電流検出を行うように構成して製品コストを抑えることができる。
 1つの態様として、前記交流回転電機は、N(Nは2以上の自然数)相の電流が流れるように構成され、前記直流電源の正極と前記各相用スイッチング素子ユニットとは、N個の前記各相用スイッチング素子ユニットに共通の共通正極ラインと、前記共通正極ラインから分岐して前記各相用スイッチング素子ユニットのそれぞれにつながるN本の分岐正極ラインとを介して接続され、前記直流電源の負極と前記各相用スイッチング素子ユニットとは、N個の前記各相用スイッチング素子ユニットに共通の共通負極ラインと、前記共通負極ラインから分岐して前記各相用スイッチング素子ユニットのそれぞれにつながるN本の分岐負極ラインとを介して接続され、N本又は(N-1)本の前記分岐負極ラインのそれぞれに、前記シャント抵抗が設けられていると好適である。
 この構成によれば、通常、直流電源の負極側がグランドに接続されることを利用して、グランド電位を基準電位として利用することができる。よって、例えば分岐正極ラインにシャント抵抗が設けられる構成とは異なり、基準電位の生成のための回路の設置を省略することができ、装置の小型化を図ることができる。また、N個のシャント抵抗を用いて、或いは、(N-1)個のシャント抵抗を用いつつ各相の電流の瞬時値の和がゼロとなることを利用して、交流回転電機の各相に流れる電流を適切に検出することができる。
 ところで、交流回転電機の各相に流れる電流を、シャント抵抗を用いて検出する場合には、ゼロ点のオフセット補正を行う必要がある。このようなオフセット補正は、使用環境の温度変化が比較的小さい例えば電化製品等では、通常、装置の起動時にのみ行われていた。しかし、駆動装置への適用を考えた場合、環境温度の変動が大きいため、装置起動時にオフセット補正を行うだけでは、電流検出精度が低下する可能性がある。
 この点に鑑み、1つの態様として、前記インバータを駆動制御するインバータ制御装置をさらに備え、前記各相用スイッチング素子ユニットは、前記交流回転電機との接続部よりも前記直流電源の正極側に設けられる上段スイッチング素子と、前記接続部よりも前記直流電源の負極側に設けられる下段スイッチング素子と、を備え、前記シャント抵抗は、前記各相用スイッチング素子ユニットのそれぞれの前記下段スイッチング素子に流れる電流を検出するように設けられ、前記インバータ制御装置は、前記各相用スイッチング素子ユニットの前記上段スイッチング素子と前記下段スイッチング素子とを個別にスイッチング制御することで前記交流回転電機をPWM制御し、複数の前記各相用スイッチング素子ユニットの全ての前記下段スイッチング素子がオン状態となる下段フルオン期間の前記シャント抵抗の両端の電位差に基づいて前記交流回転電機を流れる各相の電流を検出する電流検出処理を行い、複数の前記各相用スイッチング素子ユニットの全ての前記下段スイッチング素子がオフ状態となる下段フルオフ期間の前記シャント抵抗の両端の電位差に基づいて前記電流検出処理におけるゼロ点のオフセット補正量を決定すると好適である。
 この構成によれば、各相用の下段スイッチング素子が全てオン状態となる下段フルオン期間に、各相の電流がそれぞれの相の下段スイッチング素子を流れることを利用して、各相の電流を同時に検出することができる。一方、各相用の下段スイッチング素子が全てオフ状態となる下段フルオフ期間には、各相の電流はそれぞれの相の上段スイッチング素子を流れ、理論的には下段スイッチング素子を流れない。このため、本来的には電流値がゼロとなるはずの下段フルオフ期間に各シャント抵抗により検出される電流を利用することで、電流検出処理におけるゼロ点のオフセット補正量を適切に決定することができる。そして、交流回転電機の駆動制御中に繰り返し現れる下段フルオフ期間でオフセット補正量を決定することで、繰り返しオフセット補正を行うことができ、環境温度の変動に対応することができる。よって、電流検出処理における検出精度を高めることができる。
 1つの態様として、前記インバータ制御装置は、前記シャント抵抗のそれぞれについて、前記交流回転電機の電気角1周期を分割して規定される複数の分割期間毎に、個別に前記オフセット補正量を決定すると好適である。
 本発明者らの検討によれば、下段フルオフ期間に各シャント抵抗により検出される電流の大きさは一律ではなく、交流回転電機を流れる各相の電流の大きさに相関があることが判明した。この構成によれば、複数の分割期間毎に個別にオフセット補正量を決定するので、交流回転電機を流れる各相の電流の大きさに応じて適切なオフセット補正量を決定することができる。よって、電流検出処理における検出精度をさらに高めることができる。
 上述したように下段フルオン期間に各相の電流を同時に検出する構成を採用する場合には、電流検出処理の正確性を担保するためには、所定時間以上の下段フルオン期間が確保されていることが好ましい。そのためには、例えばPWM制御におけるキャリア周波数を、所定時間以上の下段フルオン期間を確保可能な周波数に予め設定することも考えられる。しかし、キャリア周波数を一律に低下させると、交流回転電機の制御性が低下する可能性があり、可聴域との関係で場合によっては騒音が生じる可能性もある。このため、これらの問題の発生を抑制しつつ、所定時間以上の下段フルオン期間を確保できるように構成されていることが好ましい。
 この点に鑑み、1つの態様として、前記インバータを駆動制御するインバータ制御装置をさらに備え、前記各相用スイッチング素子ユニットは、前記交流回転電機との接続部よりも前記直流電源の正極側に設けられる上段スイッチング素子と、前記接続部よりも前記直流電源の負極側に設けられる下段スイッチング素子と、を備え、前記シャント抵抗は、前記各相用スイッチング素子ユニットのそれぞれの前記下段スイッチング素子に流れる電流を検出するように設けられ、前記インバータ制御装置は、前記各相用スイッチング素子ユニットの前記上段スイッチング素子と前記下段スイッチング素子とを個別にスイッチング制御することで前記交流回転電機をPWM制御し、複数の前記各相用スイッチング素子ユニットの全ての前記下段スイッチング素子がオン状態となる下段フルオン期間に前記シャント抵抗の両端の電位差に基づいて前記交流回転電機を流れる各相の電流を検出する電流検出処理を行い、前記下段フルオン期間が予め定められた基準時間よりも短い場合に、前記PWM制御におけるキャリア周波数を低下させると好適である。
 この構成によれば、各相用の下段スイッチング素子が全てオン状態となる下段フルオン期間に、各相の電流がそれぞれの相の下段スイッチング素子を流れることを利用して、各相の電流を同時に検出することができる。このとき、下段フルオン期間が所定時間よりも短い場合には、電流検出処理の正確性が損なわれる可能性がある。そこで、PWM制御におけるキャリア周波数を動的に変更可能として、下段フルオン期間が予め定められた基準時間よりも短い場合には、キャリア周波数を低下させる。これにより、デューティ比を一定に保ったまま、各相の下段スイッチング素子のオン状態の継続時間を長くすることができる。結果的に、下段フルオン期間を長くすることができ、電流検出処理の正確性を担保することが容易となる。
 1つの態様として、前記インバータ制御装置は、連続的又は段階的に前記キャリア周波数を変更可能に構成され、前記下段フルオン期間が前記基準時間よりも短い場合に、変更可能な前記キャリア周波数のうち、前記下段フルオン期間が前記基準時間以上となる最大の周波数に前記キャリア周波数を低下させると好適である。
 この構成によれば、下段フルオン期間を基準時間以上とすることができ、電流検出処理の正確性を担保することができる。また、この構成では、キャリア周波数の低下幅を極力小さく抑えることができるので、交流回転電機の制御性の低下や騒音の発生等を抑制することができる。
 また、1つの態様として、前記インバータを駆動制御するインバータ制御装置をさらに備え、前記各相用スイッチング素子ユニットは、前記交流回転電機との接続部よりも前記直流電源の正極側に設けられる上段スイッチング素子と、前記接続部よりも前記直流電源の負極側に設けられる下段スイッチング素子と、を備え、前記シャント抵抗は、前記各相用スイッチング素子ユニットのそれぞれの前記下段スイッチング素子に流れる電流を検出するように設けられ、前記インバータ制御装置は、複数相の交流電圧の指令である交流電圧指令に基づき、前記各相用スイッチング素子ユニットの前記上段スイッチング素子と前記下段スイッチング素子とを個別にスイッチング制御することで前記交流回転電機をPWM制御し、複数の前記各相用スイッチング素子ユニットの全ての前記下段スイッチング素子がオン状態となる下段フルオン期間の前記シャント抵抗の両端の電位差に基づいて前記交流回転電機を流れる各相の電流を検出する電流検出処理を行い、前記下段フルオン期間が予め定められた基準時間よりも短い場合に、前記インバータの直流側の電圧に対する前記交流電圧指令の実効値の比率を表す変調率を低下させると好適である。
 この構成によれば、各相用の下段スイッチング素子が全てオン状態となる下段フルオン期間に、各相の電流がそれぞれの相の下段スイッチング素子を流れることを利用して、各相の電流を同時に検出することができる。このとき、下段フルオン期間が所定時間よりも短い場合には、電流検出処理の正確性が損なわれる可能性がある。そこで、下段フルオン期間が予め定められた基準時間よりも短い場合には、インバータの直流側の電圧又は交流電圧指令を変化させて、変調率を低下させる。これにより、各相の下段スイッチング素子のオン状態の継続時間を長くすることができる。結果的に、下段フルオン期間を長くすることができ、電流検出処理の正確性を担保することが容易となる。
 1つの態様として、前記インバータ制御装置は、前記交流回転電機を電流ベクトル制御により制御するように構成され、前記交流回転電機のステータコイルにより生成する磁界が、ロータの界磁磁束を弱める方向に変化するように前記交流電圧指令を調整する弱め界磁制御を行うことにより、前記変調率を低下させると好適である。
 この構成によれば、弱め界磁制御を行って、交流回転電機に必要なトルクを発生させるための交流電圧指令及びその実効値を小さく抑えることで、変調率を有効に低下させることができる。また、変調率を低下させて下段フルオン期間を長くしつつ、交流回転電機に必要な出力トルクを確保することができる。
駆動装置の概略構成を示す模式図 駆動装置の分解斜視図 インバータ装置の回路図 インバータ制御装置のブロック図 制御信号の一例を示す模式図 アクティブベクトル期間における電流の流れの一例を示す模式図 下段フルオン期間における電流の流れを示す模式図 下段フルオフ期間における電流の流れを示す模式図 ステータコイルに流れる実電流の検出方法を示す波形図 キャリア周波数に応じた下段フルオン期間の調整方法を示す模式図 弱め界磁制御による電流指令値の変化を示す図
 本発明に係る駆動装置の実施形態について、図面を参照して説明する。本実施形態に係る駆動装置1は、車輪Wの駆動力源として内燃機関E及び回転電機MGの双方を備えた車両(ハイブリッド車両)を駆動するための車両用駆動装置(ハイブリッド車両用駆動装置)である。具体的には、駆動装置1は、1モータパラレル方式のハイブリッド車両用の駆動装置として構成されている。
1.駆動装置の概略構成
 図1に示すように、駆動装置1は、内燃機関Eに駆動連結される入力部材としての入力軸Iと、車輪Wに駆動連結される出力部材としての出力軸Oと、回転電機MGと、変速装置TMとを備えている。また、本実施形態では、駆動装置1は、係合装置CLと、ギヤ機構Gと、差動歯車装置DFとを備えている。係合装置CL、回転電機MG、変速装置TM、ギヤ機構G、及び差動歯車装置DFは、入力軸Iと出力軸Oとを結ぶ動力伝達経路に設けられている。これらは、入力軸Iの側から記載の順に設けられている。また、これらは、ケース(駆動装置ケース)2内に収容されている。また、本実施形態では、内燃機関Eと駆動装置1とが、車両に設けられた駆動力源室(本例では、エンジンルーム)Qに配置されている。
 入力軸I、回転電機MG、及び変速装置TMは、同軸状に配置されている。本実施形態では、これらに共通の回転軸心に平行な方向を「軸方向」と定義する。入力軸I、回転電機MG、及び変速装置TMは、軸方向に沿って内燃機関Eの側から記載の順に配置されている。ギヤ機構G及び差動歯車装置DFは、それぞれ軸方向に平行でかつ入力軸I等の回転軸心とは異なる軸を回転軸心として配置されている。このような複軸構成(本例では三軸構成)の駆動装置1は、例えばFF(Front Engine Front Drive)車両に搭載される場合の構成として適している。
 図1に示すように、入力軸(駆動装置入力軸)Iは内燃機関Eに駆動連結される。内燃機関Eは、機関内部における燃料の燃焼により駆動されて動力を取り出す原動機(ガソリンエンジンやディーゼルエンジン等)である。本実施形態では、内燃機関Eの出力軸(クランクシャフト等)に、入力軸Iが駆動連結される。
 係合装置CLは、入力軸Iと回転電機MGとを結ぶ動力伝達経路に設けられている。係合装置CLは、入力軸I(内燃機関E)と回転電機MGとを選択的に駆動連結する。この係合装置CLは、車輪Wから内燃機関Eを切り離す内燃機関切離用係合装置として機能する。係合装置CLは、油圧駆動式の摩擦係合装置として構成されている。
 回転電機MGは、ケース2に固定されたステータStと、当該ステータStの径方向内側に回転自在に支持されたロータRoとを有している。回転電機MGは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを果たすことが可能である。回転電機MGは、第一インバータ30を介して蓄電装置B(バッテリやキャパシタ等)に電気的に接続されている。回転電機MGは、蓄電装置Bから電力の供給を受けて力行し、又は、内燃機関Eのトルクや車両の慣性力により発電した電力を蓄電装置Bに供給して蓄電させる。回転電機MGは、車輪Wに伝達される駆動力を出力する「車輪駆動用回転電機」として機能する。回転電機MGのロータRoは、中間軸Mと一体回転するように駆動連結されている。中間軸Mは、変速装置TMの入力軸(変速入力軸)となっている。
 本実施形態では、変速装置TMは、複数の歯車機構と複数の変速用係合装置とを備え、変速比の異なる複数の変速段を切替可能な自動有段変速装置である。なお、変速装置TMとして、変速比を無段階に変更可能な自動無段変速装置や、変速比の異なる複数の変速段を切替可能に備えた手動式有段変速装置、固定変速比の単一変速段を備えた定変速装置等を用いても良い。変速装置TMは、中間軸Mに入力される回転及びトルクを、各時点における変速比に応じて変速するとともにトルク変換して、当該変速装置TMの変速出力ギヤGoに伝達する。
 変速出力ギヤGoは、ギヤ機構(カウンタギヤ機構)Cに駆動連結されている。ギヤ機構Gは、共通の軸部材にそれぞれ形成された第一ギヤG1と第二ギヤG2とを有する。第一ギヤG1は、変速装置TMの変速出力ギヤGoに噛み合っている。第二ギヤG2は、差動歯車装置DFの差動入力ギヤGiに噛み合っている。
 差動歯車装置(出力用差動歯車装置)DFは、出力軸Oを介して車輪Wに駆動連結されている。差動歯車装置DFは、差動入力ギヤGiと、当該差動入力ギヤGiに連結された差動本体部(差動歯車装置DFの本体部)とを有する。差動歯車装置DFは、差動入力ギヤGiに入力される回転及びトルクを、差動本体部にて左右2つの出力軸O(すなわち、左右2つの車輪W)に分配して伝達する。これにより、駆動装置1は、内燃機関E及び回転電機MGの少なくとも一方のトルクを車輪Wに伝達させて車両を走行させることができる。
 駆動装置1は、中間軸Mに駆動連結された機械式ポンプ(図示せず)を備えている。機械式ポンプは、駆動力源としての内燃機関E及び回転電機MGの少なくとも一方が回転している状態で、これらのトルクによって油を吐出する。また、本実施形態では、駆動装置1は、車輪Wから独立して設けられたポンプ用モータPMにより駆動される電動ポンプEPを備えている。すなわち、ポンプ用モータPMは、車輪Wから独立して設けられた電動ポンプEPのロータに駆動連結されている。本実施形態では、ポンプ用モータPMが本発明における「交流回転電機」に相当する。また、電動ポンプEPのロータが本発明における「回転体」に相当する。ポンプ用モータPMは、第二インバータ40を介して蓄電装置Bに電気的に接続されている。
 本実施形態では、第一インバータ30によって制御される回転電機MGと、第二インバータ40によって制御されるポンプ用モータPMとが、共通の蓄電装置Bを電力源として駆動される。なお、蓄電装置Bは、車両に設けられる例えばエアコンディショナーのコンプレッサやオーディオ機器等の補機類の電力源としての補機用バッテリ(例えば、12~24[V])に比べて高電圧のもの(例えば、100~400[V])が使用される。
 電動ポンプEPは、ポンプ用モータPMが回転している状態で、そのトルクによって油を吐出する。機械式ポンプ及び電動ポンプEPの少なくとも一方から吐出された油は、変速装置TMの油圧サーボ機構(図示せず)に供給される油圧を発生させ、変速装置TMに備えられる変速用係合装置の係合の状態の制御のために供される。変速装置TMは、油圧の供給を受けて動作し、駆動力源としての内燃機関E及び回転電機MGの少なくとも一方から車輪Wへの駆動力の伝達状態を制御する。本実施形態では、変速装置TMが本発明における「駆動伝達装置」に相当する。
 また、機械式ポンプ及び電動ポンプEPの少なくとも一方から吐出された油は、回転電機MGの冷却や各部位の潤滑等のためにも供される。なお、本実施形態では、電動ポンプEPを備えていることで、内燃機関Eの停止状態でも、変速用係合装置に油を供給してその係合状態を形成することができ、適切に車両を発進させることができる。本実施形態に係る駆動装置1は、アイドルストップ機能を有するハイブリッド車両用の駆動装置に好適に適用することができる。
 図2に示すように、ケース2は、変速装置TM、ギヤ機構G、及び差動歯車装置DFの外形に沿って異形筒状に形成された外周壁21と、この外周壁21から外側に向かって突出するように対向配置された一対の突出壁22とを有する。外周壁21と一対の突出壁22とによって区画された空間はインバータ収容室Pとなっている。このインバータ収容室Pに、インバータ装置3を構成する第一インバータ30及び第二インバータ40が収容されている。このように、第一インバータ30及び第二インバータ40は、ケース2(外周壁21)に一体的に固定されている。
 すなわち、第一インバータ30及び第二インバータ40は、それらを収容するインバータケースを介することなく、直接的にケース2に固定されて一体化されている。つまり、本実施形態に係る駆動装置1では、インバータケースレス構造が採用されている。このようなインバータケースレス構造では、専用のインバータケースを準備する必要がないことはもちろんのこと、当該インバータケースをケース2に固定するための固定座を準備する必要もない。よって、部品点数の低減により低コスト化を図ることができる。また、装置全体の小型化を図ることもできる。
 なお、図2に示すように、本実施形態では、ケース2は、一対の突出壁22どうしをつなぐ柱状又は板状の梁部23を有する。また、ケース2は、外周壁21から梁部23に向かって延びる厚板状の隔離壁(図示せず)を有する。インバータ収容室Pは、隔離壁によって第一収容部P1と第二収容部P2とに分かれている。第一収容部P1には、第一インバータ30及び第二インバータ40が収容されている。第二収容部P2には、インバータ装置3を構成するコンデンサCが収容されている。その状態で、第一収容部P1は第一カバー26で覆われ、第二収容部P2は第二カバー27で覆われている。第一インバータ30及び第二インバータ40は、駆動装置1のケース2と共に、駆動力源室Q(図1を参照)に配置されている。
2.インバータ装置の概略構成
 インバータ装置3は、直流電力と交流電力との変換を行う。インバータ装置3は、蓄電装置Bと回転電機MGとの間に接続されて直流と交流との間の電力変換を行う第一インバータ30と、蓄電装置Bとポンプ用モータPMとの間に接続されて直流と交流との間の電力変換を行う第二インバータ40とを備えている。本実施形態では、第一インバータ30と第二インバータ40とで、蓄電装置Bが共用されるとともに、直流電力の平滑化(直流電力の変動の抑制)のためのコンデンサCも共用されている。また、回転電機MG及びポンプ用モータPMは、いずれも多相交流駆動式(本例では3相交流駆動式)の回転電機として構成されており、それぞれ3相(U相,V相,W相)の電流が流れるように構成されている。
 図3に示すように、直流電源としての蓄電装置Bの正極Bp側と負極Bn側(例えばグランド側)との間に、一対の共通正極ラインLp0及び共通負極ラインLn0を介してコンデンサCが接続されている。また、共通正極ラインLp0と共通負極ラインLn0との間に、第一インバータ30を構成する各相用のスイッチング素子ユニット31が互いに並列に接続されている。すなわち、共通正極ラインLp0から分岐する3本の分岐正極ラインLp1~Lp3と、共通負極ラインLn0から分岐する3本の分岐負極ラインLn1~Ln3との間に、スイッチング素子ユニット31がそれぞれ接続されている。各スイッチング素子ユニット31は、回転電機MG(ステータSt)のステータコイルの3相(U相,V相,W相)のそれぞれに対応している。
 各スイッチング素子ユニット31は、回転電機MGとの接続部よりも蓄電装置Bの正極Bp側に設けられる上段側のスイッチング素子32と、上記接続部よりも蓄電装置Bの負極Bn側に設けられる下段側のスイッチング素子32とを有する。すなわち、第一インバータ30は、共通正極ラインLp0にそれぞれ接続される上段スイッチング素子32a~32cと、共通負極ラインLn0にそれぞれ接続される下段スイッチング素子32d~32fとを有する。なお、図3の例における各スイッチング素子32に代えて、並列接続された2つ一組のスイッチング素子32を用いても良い。また、本例では、スイッチング素子32としてはIGBT(Insulated Gate Bipolar Transistor)を用いているが、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等を用いても良い。
 各相の上段スイッチング素子32a,32b,32cのコレクタは、共通正極ラインLp0を介して蓄電装置Bの正極Bp側に接続されている。各相の上段スイッチング素子32a,32b,32cのエミッタは、それぞれ下段スイッチング素子32d,32e,32fのコレクタに接続されている。各相の下段スイッチング素子32d,32e,32fのエミッタは、共通負極ラインLn0を介して蓄電装置Bの負極Bn側に接続されている。各スイッチング素子32のエミッタ-コレクタ間には、整流素子33が並列接続されている。整流素子33としてはダイオード(Diode)が用いられている。なお、各スイッチング素子32のゲートは、後述するインバータ制御装置5の第一制御部51により、それぞれ個別にスイッチング制御される。
 各スイッチング素子ユニット31は、各相用の第一配線部材Lw1を介して回転電機MGに接続されている。各相用の一対のスイッチング素子32は、それらの中間点(上段側のエミッタ-下段側のコレクタ間)において、各相用の第一配線部材Lw1を介して回転電機MGの各相のステータコイルに接続されている。第一配線部材Lw1の所定箇所には、回転電機MGの各相用のステータコイルに流れる電流を検出するための電流センサ35が設けられている。このような電流センサ35として、本実施形態ではホール素子を用いたセンサが用いられている。電流センサ35は、第一配線部材Lw1の周囲を囲む環状のコアと、このコアの切欠部に配置されたホール素子とを有する。各相用の第一配線部材Lw1に電流が流れると、その電流量に応じた磁界がコアに発生し、ホール素子は磁束量に応じた起電力を発生する。よって、その大きさに基づいて、回転電機MGの各相用のステータコイルに流れる電流を検出することができる。
 図3に示すように、本実施形態では、共通正極ラインLp0と共通負極ラインLn0との間に、第二インバータ40を構成する各相用のスイッチング素子ユニット41が互いに並列に接続されている。すなわち、共通正極ラインLp0から分岐する3本の分岐正極ラインLp4~Lp6と、共通負極ラインLn0から分岐する3本の分岐負極ラインLn4~Ln6との間に、スイッチング素子ユニット41がそれぞれ接続されている。本実施形態では、第二インバータ40のスイッチング素子ユニット41が本発明における「スイッチング素子ユニット」に相当する。各スイッチング素子ユニット41は、ポンプ用モータPMのステータコイルの3相(U相,V相,W相)のそれぞれに対応している。
 各スイッチング素子ユニット41は、ポンプ用モータPMとの接続部よりも蓄電装置Bの正極Bp側に設けられる上段側のスイッチング素子42と、上記接続部よりも蓄電装置Bの負極Bn側に設けられる下段側のスイッチング素子42とを有する。すなわち、第二インバータ40は、共通正極ラインLp0にそれぞれ接続される上段スイッチング素子42a~42cと、共通負極ラインLn0にそれぞれ接続される下段スイッチング素子42d~42fとを有する。
 各相の上段スイッチング素子42a,42b,42cのコレクタは、共通正極ラインLp0を介して蓄電装置Bの正極Bp側に接続されている。各相の上段スイッチング素子42a,42b,42cのエミッタは、それぞれ下段スイッチング素子42d,42e,42fのコレクタに接続されている。各相の下段スイッチング素子42d,42e,42fのエミッタは、共通負極ラインLn0を介して蓄電装置Bの負極Bn側に接続されている。各スイッチング素子42のエミッタ-コレクタ間には、整流素子43が並列接続されている。なお、各スイッチング素子42のゲートは、後述するインバータ制御装置5の第二制御部52により、それぞれ個別にスイッチング制御される。
 各スイッチング素子ユニット41は、各相用の第二配線部材Lw2を介してポンプ用モータPMに接続されている。各相用の一対のスイッチング素子42は、それらの中間点(上段側のエミッタ-下段側のコレクタ間)において、各相用の第二配線部材Lw2を介してポンプ用モータPMの各相のステータコイルに接続されている。本実施形態では、第一インバータ30とは異なり、第二配線部材Lw2には、ホール素子を含む電流センサは設けられていない。
 ホール素子を含む電流センサに代替するものとして、蓄電装置Bと各相用のスイッチング素子ユニット41との間には、シャント抵抗45が設けられている。本実施形態では、3本の分岐負極ラインLn4~Ln6のそれぞれにシャント抵抗45が設けられ、計3つのシャント抵抗45が設けられている。本実施形態では、シャント抵抗45は、第二インバータ40の制御基板に実装されている。シャント抵抗45は、各相用のスイッチング素子ユニット41(ここでは、下段スイッチング素子42d~42f)のそれぞれに流れる電流を検出するために設けられている。下段スイッチング素子42d~42fに電流が流れると、その電流量に応じてシャント抵抗45の両端間に電位差が生じるので、その大きさと既知のシャント抵抗45の抵抗値とに基づいて、ポンプ用モータPMの各相用のステータコイルに流れる電流を検出することができる。シャント抵抗45を用いた電流検出方法の詳細に関しては、後述する。
 このように、本実施形態では、回転電機MGの各相用のステータコイルに流れる電流を、ホール素子を用いた電流センサ35で検出し、一方、ポンプ用モータPMの各相用のステータコイルに流れる電流を、シャント抵抗45で検出する。ホール素子を用いた電流センサ35は、高価ではあるが、常時、高精度な電流検出が可能である。これに対して、シャント抵抗45は、安価ではあるが、後述するように第二インバータ40の制御周期の中で電流検出可能な時期が制限される。つまり、第一インバータ30の制御周期に対する電流センサ35の電流検出可能期間の割合は、第二インバータ40の制御周期に対するシャント抵抗45の電流検出可能期間の割合よりも高い。さらに、高価なホール素子を用いた電流センサ35は比較的安定した温度特性を有するのに対して、安価なシャント抵抗45は環境温度の影響を受けやすい。
 また、回転電機MGは車輪Wに伝達される駆動力を出力するため、この回転電機MGに対しては高い制御精度が求められる。これに対して、ポンプ用モータPMは、車輪Wから独立して設けられた電動ポンプEPのロータの駆動用であるので、回転電機MGに比べて、求められる制御精度はそれほど高くない。これらの点を総合的に考慮して、回転電機MG用の電流検出を、ホール素子を含む電流センサ35を用いて行い、ポンプ用モータPM用の電流検出を、シャント抵抗45を用いて行う。これにより、回転電機MGの制御精度を高く維持することができるとともに、許容範囲内でポンプ用モータPM用の制御精度をある程度犠牲にしつつ製品コストを低減することができる。
 なお、“ポンプ用モータPM用の制御精度をある程度犠牲にする”とは、回転電機MGと同様にホール素子を含む電流センサを用いて電流検出を行う場合との比較を念頭に置いた表現である。電動ポンプEPのロータ駆動用のポンプ用モータPMを対象として、これを第二インバータ40で制御する構成を採用することで、例えば定トルク又は定回転でポンプ用モータPMを駆動する場合に比べて、変速装置TMの状態の比較的高精度な制御が可能である。本実施形態の構成では、ポンプ用モータPMのインバータ制御によって変速装置TMの状態の比較的高精度な制御を可能としつつ、安価なシャント抵抗45で電流検出を行うように構成して製品コストを抑えることができる。また、総合的に見て、回転電機MG及びポンプ用モータPMの制御精度に与える影響を小さく抑えることができる。さらに、シャント抵抗45を第二インバータ40の制御基板に実装して備えることで、第二インバータ40、ひいては装置全体を有効に小型化することができる。
 特に、第二インバータ40に組み込まれたシャント抵抗45が駆動力源室Qに配置された構成では、車両走行中に車輪Wの駆動力源としての内燃機関Eや回転電機MGが発熱し、シャント抵抗45の設置環境が高温となる状況が生じやすい。環境温度の変動幅が大きくなると、シャント抵抗45による電流検出精度が低下し、その結果、ポンプ用モータPMの制御精度も悪化しやすい。この場合であっても、制御精度の悪化を、ポンプ用モータPMの制御に対する要求精度の許容範囲で吸収することができる。つまり、シャント抵抗45が駆動力源室Qに配置され、高温環境下に置かれる場合であっても、総合的に見て、回転電機MG及びポンプ用モータPMの制御精度に与える影響を小さく抑えることができる。
3.インバータ制御装置の構成
 図3に示すように、インバータ制御装置5は、第一制御部51と第二制御部52とを備えている。第一制御部51は、第一インバータ30の各スイッチング素子32を個別にスイッチング制御して、回転電機MGを駆動制御する。第二制御部52は、第二インバータ40の各スイッチング素子42を個別にスイッチング制御して、ポンプ用モータPMを駆動制御する。本実施形態では、第一制御部51及び第二制御部52は、いずれも電流ベクトル制御法に基づいて、回転電機MG及びポンプ用モータPMをそれぞれ駆動制御する。
 図4に示すように、第一制御部51は、回転速度導出部61、三相二相変換部62、d軸電流指令値導出部63、q軸電流指令値導出部64、電流制御部65、変調率導出部66、d軸電流調整指令値導出部67、二相三相変換部68、及び制御信号生成部69を備えている。第一制御部51には、電流センサ35(図3を参照)によって検出されたU相電流Iur、V相電流Ivr、及びW相電流Iwrと、回転電機MGのロータRoの磁極位置θと、第一インバータ30の直流側の電圧である直流電圧Vdcが入力される。また、第一制御部51には、目標トルクTRも入力される。
 回転速度導出部61は、磁極位置θに基づいて回転電機MGの回転速度ωを導出する。導出された回転速度ωは、電流制御部65及び二相三相変換部68に提供される。三相二相変換部62は、U相電流Iur、V相電流Ivr、及びW相電流Iwrと磁極位置θとに基づいて、d軸電流Idr及びq軸電流Iqrを導出する。導出されたd軸電流Idr及びq軸電流Iqrは、電流制御部65に提供される。
 d軸電流指令値導出部63は、目標トルクTRに基づいて基本d軸電流指令値Idbを導出する。基本d軸電流指令値Idbは、最大トルク制御を行う場合におけるd軸電流の指令値に相当する。最大トルク制御とは、同一電流に対して回転電機MGの出力トルクが最大となるように電流位相を調節する制御である。本実施形態では、d軸電流指令値導出部63は、所定のマップを用いて、目標トルクTRの値に応じた基本d軸電流指令値Idbを導出する。基本d軸電流指令値Idbから後述するd軸電流調整指令値導出部67によって導出されるd軸電流調整指令値ΔIdが減算され、これがd軸電流指令値Idとして電流制御部65に提供される。
 q軸電流指令値導出部64は、目標トルクTRに基づいてq軸電流指令値Iqを導出する。本実施形態では、q軸電流指令値導出部64は、所定のマップを用いて、目標トルクTRの値に応じたq軸電流指令値Iqを導出する。後述するd軸電流調整指令値導出部67によってd軸電流調整指令値ΔIdが導出されている場合には、q軸電流指令値導出部64は、目標トルクTR及びd軸電流調整指令値ΔIdの値に応じたq軸電流指令値Iqを導出する。導出されたq軸電流指令値Iqは、電流制御部65に提供される。
 電流制御部65は、d軸電流指令値Id及びq軸電流指令値Iq、d軸電流Idr及びq軸電流Iqr、及び回転速度ωに基づいて、d軸電圧指令値Vd及びq軸電圧指令値Vqを決定する。電流制御部65は、d軸電流指令値Id及びq軸電流指令値Iqに対する電流フィードバック制御を行い、d軸電圧指令値Vd及びq軸電圧指令値Vqを決定する。決定された電圧指令値Vd、Vqは、変調率導出部66及び二相三相変換部68に提供される。
 変調率導出部66は、d軸電圧指令値Vd及びq軸電圧指令値Vqと直流電圧Vdcとに基づいて、変調率Mfを導出する。変調率導出部66は、下記の式(1)
  Mf=√(Vd+Vq)/Vdc・・・(1)
に従って変調率Mfを導出する。変調率Mfは、直流電圧Vdcに対する第一インバータ30の出力電圧波形の基本波成分の実効値の比率を表す指標となる。導出された変調率Mfは、d軸電流調整指令値導出部67に提供される。
 d軸電流調整指令値導出部67は、変調率Mfと予め定められた基準変調率(例えば「0.78」)とに基づいて、d軸電流調整指令値ΔIdを導出する。d軸電流調整指令値導出部67は、例えば変調率Mfが基準変調率を超えている場合に、変調率Mfと基準変調率との偏差に基づいてd軸電流調整指令値ΔId(ΔId>0)を導出する。
 d軸電流調整指令値ΔIdは、弱め界磁電流を与える指令値であり、弱め界磁電流は回転電機MGのロータRoの界磁磁束を弱めるように作用する。つまり、d軸電流調整指令値ΔIdが導出されることにより、回転電機MGのステータコイルに生じる磁界が、ロータRoの界磁磁束を弱める方向に変化するように交流電圧指令の位相を調整する弱め界磁制御が行われる。d軸電流調整指令値ΔIdは、q軸電流指令値導出部64に提供される。また、d軸電流調整指令値ΔIdが、d軸電流指令値導出部63によって導出された基本d軸電流指令値Idbから減算され、これがd軸電流指令値Idとして電流制御部65に提供される。
 二相三相変換部68は、d軸電圧指令値Vd及びq軸電圧指令値Vqと磁極位置θとに基づいて、交流電圧指令としてのU相電圧指令値Vu、V相電圧指令値Vv、及びW相電圧指令値Vwを導出する。導出された3相の交流電圧指令値Vu,Vv,Vwは、制御信号生成部69に提供される。
 制御信号生成部69は、U相電圧指令値Vu、V相電圧指令値Vv、及びW相電圧指令値Vwに基づいて、第一インバータ30の各スイッチング素子32a~32fを個別にスイッチング制御するための制御信号(スイッチング制御信号)S11~S16を生成する。制御信号生成部69は、少なくともPWM(Pulse Width Modulation;パルス幅変調)制御用の制御信号S11~S16を生成する。制御信号生成部69は、三角波やのこぎり波等からなるキャリア(搬送波)と交流電圧指令値Vu,Vv,Vwとの大小比較に基づいて、PWM制御用の制御信号S11~S16を生成する。なお、制御信号生成部69は、変調率Mfの大きさ等に応じて、公知の過変調PWM制御や矩形波制御用の制御信号S11~S16を生成するように構成されても良い。
 制御対象は回転電機MGとポンプ用モータPMとで異なるものの、第二制御部52も、基本的には第一制御部51と同様の構成を備えている。但し、第二制御部52におけるd軸電流調整指令値導出部67は、変調率Mfが基準変調率以下の場合であっても、“特定条件”下でd軸電流調整指令値ΔIdを導出する。これにより、第二制御部52は、変調率Mfの大きさによらずに、“特定条件”の成立時にも弱め界磁制御を行うことができるように構成されている。この点に関しては、後述する。また、第二制御部52における制御信号生成部69は、専らPWM制御用の制御信号S21~S26を生成するように構成されている。それ以外の点に関しては、第一制御部51と同様であるので、ここでは詳細な説明を省略する。
4.シャント抵抗を用いた電流検出方法
 上述したように、第二制御部52はPWM制御用の制御信号S21~S26を生成し、これに基づいてスイッチング素子42が個別にスイッチング制御されることで、ポンプ用モータPMはPWM制御される。なお、本実施形態では、PWM制御とは、正弦波PWMや空間ベクトルPWM等の連続パルス幅変調(CPWM;continuous PWM)を意味する。良く知られているように、PWM制御では、交流電圧指令値Vu,Vv,Vwはそれぞれ離散的なパルス信号に変調される。図5には、所定期間における制御信号S21~S26の波形を、キャリアと共に拡大して模式的に示している。
 図5に示すように、制御信号S21は、U相電圧指令値Vuがキャリア以上の場合にハイレベル(H)となり、U相電圧指令値Vuがキャリア未満の場合にローレベル(L)となる。U相用の上段スイッチング素子42aは、制御信号S21がハイレベル(H)の場合にオン状態となり、ローレベル(L)の場合にオフ状態となる。制御信号S22,S23も、電圧指令値Vv,Vwとキャリアとの比較に基づいて生成され、V相用の上段スイッチング素子42b及びW相用の上段スイッチング素子42cも、同様にオン状態とオフ状態とが切り替わる。
 なお、各時点における制御信号S24~S26のレベルは、それぞれ制御信号S21~S23のレベルと反対となる。制御信号S21がハイレベル(H)の期間は制御信号S24がローレベル(L)となり、制御信号S21がローレベル(L)の期間は制御信号S24がハイレベル(H)となる。制御信号S22と制御信号S25との関係、及び制御信号S23と制御信号S26との関係も同様である。これにより、各相の上段スイッチング素子42a~42cと、対応する相の下段スイッチング素子42d~42fとは、それぞれ相補的にスイッチングする。実際には、各スイッチング素子ユニット41に含まれる上下2つのスイッチング素子42が共にオフ状態となるデッドタイムが存在するが、ここでは簡略化のために省略して記載している。
 ところで、3相の制御信号S21~S23(又は制御信号S24~S26)の相互の関係に注目すると、3相の制御信号のレベルにハイ(H)/ロー(L)が混在する期間と、3相の制御信号のレベルが全て同一となる期間とが存在することが分かる。ここでは、前者を“アクティブベクトル期間”と称し、後者を“ゼロベクトル期間”と称する。図5では、ゼロベクトル期間を、斜線を付した状態で示している。
 アクティブベクトル期間の一例として、例えば図5において(A)で示される時点では、U相の上段スイッチング素子42aがオン状態となり、V相及びW相の上段スイッチング素子42b,42cはオフ状態となる。このとき、第二インバータ40を介して蓄電装置B(コンデンサC)とポンプ用モータPMとが通電し、これらの間で電流が流れる状態となる(図6を参照)。具体的には、蓄電装置B(コンデンサC)の正極Bp側→U相の上段スイッチング素子42a→ポンプ用モータPM→V相及びW相の下段スイッチング素子42e,42f→蓄電装置B(コンデンサC)の負極Bn側、の経路を経て電流が流れる。
 この場合、V相及びW相の電流は分岐負極ラインLn5,Ln6に設けられた2つのシャント抵抗45に流れるので、V相及びW相のステータコイルに流れる電流を検出することは可能である。一方、U相の電流は分岐正極ラインLp4を流れ、分岐負極ラインLn4に設けられたシャント抵抗45には流れない。従って、U相のステータコイルに流れる電流を検出することはできない。他のアクティブベクトル期間においても、電流が流れる経路のパターンに応じて、同様に、1相又は2相のステータコイルに流れる電流を検出することは可能である。
 ゼロベクトル期間には、3相の上段スイッチング素子42a~42cが全てオン状態となる期間と、全てオフ状態となる期間とが存在する。言い換えれば、3相の下段スイッチング素子42d~42fが全てオフ状態となる期間と、全てオン状態となる期間とが存在する。ここでは、前者を“下段フルオフ期間Tf”と称し、後者を“下段フルオン期間Tn”と称する。下段フルオフ期間Tfは、シャント抵抗45が設けられた側の段のスイッチング素子42全てオフ状態となる期間であり、“対象フルオフ期間”と称することもできる。同様の趣旨で、下段フルオン期間Tnは、“対象フルオン期間”と称することもできる。ゼロベクトル期間では、蓄電装置Bとポンプ用モータPMとの間では、電流は流れない。但し、ゼロベクトル期間では、第二インバータ40とポンプ用モータPMとの間で電流が還流する状態となる。電流の還流パターンは、下段フルオン期間Tnと下段フルオフ期間Tfとで異なる。
 例えば図5において(B)で示される、下段フルオン期間Tn中の時点では、3相の下段スイッチング素子42d~42fが全てオン状態となる。このとき、3相の下段スイッチング素子42d~42f(又は、対応する整流素子43)を通って、電流が還流する(図7を参照)。具体的には、ポンプ用モータPM→V相及びW相の下段スイッチング素子42e,42f→U相の下段スイッチング素子42dに並列接続された整流素子43→ポンプ用モータPM、の閉回路を電流が還流する。
 この場合、分岐負極ラインLn4~Ln6に設けられた3つのシャント抵抗45の全てに電流が流れる。この現象を利用して、インバータ制御装置5(第二制御部52)は、下段フルオン期間Tnに、シャント抵抗45を用いた電流検出処理を行う。つまり、インバータ制御装置5は、下段フルオン期間Tnにおいて、ポンプ用モータPMの各相のステータコイルを流れる電流を、同時に検出する。上述したように、ポンプ用モータPMの各相のステータコイルに流れる電流は、各シャント抵抗45の両端間の電位差に基づいて検出される。
 一方、例えば図5において(C)で示される、下段フルオフ期間Tf中の時点では、3相の下段スイッチング素子42d~42fが全てオフ状態(3相の上段スイッチング素子42a~42cが全てオン状態)となる。このとき、3相の上段スイッチング素子42a~42c(又は、対応する整流素子43)を通って、電流が還流する(図8を参照)。具体的には、ポンプ用モータPM→V相及びW相の上段スイッチング素子42b,42cにそれぞれ並列接続された整流素子43→U相の上段スイッチング素子42a→ポンプ用モータPM、の閉回路を電流が還流する。
 この場合、分岐負極ラインLn4~Ln6に設けられた3つのシャント抵抗45には、理論的には、いずれも電流は流れない。しかし実際には、下段フルオフ期間Tf中にも、3つのシャント抵抗45は微小電流を検出する。この微小電流は、下段フルオン期間Tnに実行される電流検出処理のゼロ点(原点)の誤差の原因となる。そこで、インバータ制御装置5は、下段フルオフ期間Tfにも、シャント抵抗45を用いて、ポンプ用モータPMの各相のステータコイルを流れる微小電流を検出する。つまり、インバータ制御装置5は、下段フルオフ期間Tfにおいて、ポンプ用モータPMの各相のステータコイルを流れる微小電流を、同時に検出する。このようにして下段フルオフ期間Tfに検出される各相の微小電流を用いて、上述した電流検出処理におけるゼロ点のオフセット補正量ΔOcを算出する。
 本発明者らの検討によれば、下段フルオフ期間Tfに各シャント抵抗45により検出される電流の大きさは、一律ではなく、ポンプ用モータPMの各相のステータコイルを流れる電流の大きさに相関があることが判明した。この点を考慮して、本実施形態では、インバータ制御装置5は、ポンプ用モータPMの電気角1周期Tcを複数の分割期間Tdに分割し、当該複数の分割期間Td毎に個別にオフセット補正量ΔOcを決定する。より具体的には、インバータ制御装置5は、分割期間Td毎に、過去に決定された個々のオフセット補正値を記憶(蓄積)する。そして、蓄積された複数のオフセット補正値に基づき、それらを統計的処理(例えば、特定期間の平均値/加重平均値/最頻値/中央値等を算出)した値として、オフセット補正量ΔOcを決定する。なお、分割期間Td毎のオフセット補正量ΔOcの決定は、シャント抵抗45のそれぞれについて行われる。分割期間Tdの数は、適宜設定しても良いが、好ましくは2(Kは10以下の自然数を表す)である。
 インバータ制御装置5は、このようなオフセット補正量ΔOcを用いて、ポンプ用モータPMの各相のステータコイルに流れる実電流を検出する。インバータ制御装置5は、各相毎に、下段フルオン期間Tnに実行される電流検出処理で得られた電流検出値(図9に示される「Idet」)をオフセット補正量ΔOcで補正することで、ステータコイルに流れる実電流(図9に示される「Ir」)を検出する。つまり、インバータ制御装置5は、各相毎に、実際に得られた電流検出値(Idet)から、その分割期間Tdに割り当てられたオフセット補正量ΔOcを減算することで、ステータコイルに流れる実電流(Ir)を検出する。検出された各相の実電流値は、U相電流Iur、V相電流Ivr、及びW相電流Iwr(図4を参照)として、第二制御部52による電流フィードバック制御に提供される。
 上述したように、本実施形態では第二インバータ40に組み込まれたシャント抵抗45が駆動力源室Qに配置されているので、シャント抵抗45の周辺は高温となりやすく、また、温度の変動幅も大きくなりやすい。環境温度の変動幅が大きくなると、シャント抵抗45による電流検出精度が低下し、その結果、ポンプ用モータPMの制御精度も悪化しやすい。装置の起動時にゼロ点のオフセット補正を行うことも知られてはいるが、それだけでは環境温度の大きな変動には対応できないという課題がある。この点、本実施形態では、ポンプ用モータPMの駆動制御中に繰り返し現れる下段フルオフ期間Tfでオフセット補正量ΔOcを決定するので、繰り返しオフセット補正を行うことができ、環境温度の変動にも対応することができる。よって、電流検出処理における検出精度を高めることができる。
 ところで、本実施形態では、電流検出処理における実際の電位差サンプリングは、下段フルオン期間Tnの中央(中間時点)で行われる。一方、シャント抵抗45の両端間の電位差は非常に小さいため、そのサンプリングに際してはオペアンプ(演算増幅器;図示せず)によって出力信号が増幅される。すなわち、第二制御部52には、シャント抵抗45からの出力信号を増幅させる増幅回路が備えられる。ところが、汎用のオペアンプには、一般に比較的小さい値に設定されたスルーレート(Slew Rate)が存在し、最大応答速度が制限されている。すなわち、シャント抵抗45からの出力値の時間変化率が、オペアンプに予め設定されたスルーレート(変化率制限値)によって上限リミットされている。
 図10には、下段フルオン期間Tnにオペアンプを通して取得されるシャント抵抗45からの出力信号の変化態様の一例を模式的に示している。図10の上段からも理解できるように、例えばポンプ用モータPMの出力トルクを増大させる等の状況で、下段フルオン期間Tnがかなり短くなった場合には、シャント抵抗45の出力信号の増幅が完了しないまま電位差サンプリングが行われる可能性がある。そのような場合には、ポンプ用モータPMの各相のステータコイルに流れる電流が誤検出される(実際とは異なる値として検出される)ことになるため、ポンプ用モータPMの制御精度が悪化する。例えば、実電流に比べて小さい値が電流検出値として電流フィードバック制御に提供されると、実際よりも大きく算出される電流偏差を打ち消そうとしてより大きな作用力が働くことになる。その結果、ステータコイルに流れる電流が必要以上に増加する可能性がある。
 そこで、本実施形態では、インバータ制御装置5は、下段フルオン期間Tnが予め定められた基準時間Trよりも短い場合に、下段フルオン期間Tnを長くするようにポンプ用モータPMの電流フィードバック制御に関するパラメータを調整する調整処理を行う。なお、基準時間Trは、シャント抵抗45からの出力値の時間変化率の上限値としてオペアンプに予め設定された変化率制限値(スルーレート)に基づいて設定されている。基準時間Trは、シャント抵抗45からの出力値として想定される最大値に基づき、当該最大値を変化率制限値で除算して得られる時間の2倍以上の時間として設定されていると好適である。調整対象のパラメータとしては、PWM制御におけるキャリア周波数と、電流ベクトル制御における変調率Mfとが挙げられる。これらは、択一的に調整されても良いし、複合的に調整されても良い。
 本実施形態では、PWM制御におけるキャリア周波数が、連続的に変更可能に構成されている。そして、インバータ制御装置5は、調整処理の一態様として、下段フルオン期間Tnが基準時間Trよりも短い場合に、PWM制御におけるキャリア周波数を低下させる(図10の下段を参照)。制御信号S21~S26は、キャリアと交流電圧指令値Vu,Vv,Vwとの大小比較に基づいて生成されるので、キャリア周波数を低下させる(キャリア周期を長くする)ことで、各相の下段スイッチング素子42d~42fのオン状態の継続時間が長くなる。しかも、デューティ比を一定に保ったまま、各相の下段スイッチング素子42d~42fのオン状態の継続時間を長くすることができる。結果的に、下段フルオン期間Tnを長くすることができる。
 本実施形態では、インバータ制御装置5は、下段フルオン期間Tnが基準時間Trに等しくなる周波数に、キャリア周波数を低下させる。これにより、下段フルオン期間Tnとして基準時間Trを確保することができ、オペアンプのスルーレートによって増幅しきっていないシャント抵抗45の出力信号をサンプリングすることを抑制できる。よって、電流検出処理の正確性を担保することができる。また、その場合において、キャリア周波数の低下幅を必要最小限に抑えることができる。よって、ポンプ用モータPMの制御性の低下や騒音の発生等を有効に抑制することができる。
 また、インバータ制御装置5は、調整処理の他の一態様として、下段フルオン期間Tnが基準時間Trよりも短い場合に、電流ベクトル制御における変調率Mfを低下させる。インバータ制御装置5は、弱め界磁制御を行うことにより変調率Mfを低下させる。本実施形態では、“下段フルオン期間Tnが基準時間Trよりも短いこと”が、弱め界磁制御の開始条件の1つとして上記で言及した“特定条件”となる。弱め界磁制御が実行されてd軸電流調整指令値ΔIdが導出されると、図4から明らかなようにd軸電流指令値Idは小さくなる(負方向に変化する)。また、所定のマップに基づいて導出されるq軸電流指令値Iqも、一般には図11に示すように等トルク線に沿って小さくなる。その結果、電流フィードバック制御における電流偏差が小さくなり、電流制御部65によって導出される電圧指令値Vd,Vqも小さくなる。このため、上述した式(1)からも明らかなように、弱め界磁制御の実行によって変調率Mfが低下する。
 変調率Mfは、直流電圧Vdcに対する第二インバータ40の出力電圧波形の基本波成分の実効値の比率を表す指標であるので、これを小さくすることでデューティ比が低下する。デューティ比が低下すると、各相の上段スイッチング素子42a~42cのオン状態の継続時間が短くなり、その分、各相の下段スイッチング素子42d~42fのオン状態の継続時間が長くなる。結果的に、下段フルオン期間Tnを長くすることができる。
 インバータ制御装置5は、下段フルオン期間Tnが基準時間Tr以上となるように、変調率Mfを低下させる。このようにするには、例えば、下段フルオン期間Tnが基準時間Tr以上となるような第2の基準変調率を実験的に求めておくと良い。d軸電流調整指令値導出部67は、経験値として得られる第2の基準変調率(例えば、「0.6」~「0.7」程度の値)と変調率Mfとに基づいて、d軸電流調整指令値ΔIdを導出するように構成されると好適である。このようにしても、下段フルオン期間Tnとして基準時間Trを確保することができ、オペアンプのスルーレートによって増幅しきっていないシャント抵抗45の出力信号をサンプリングすることを抑制できる。よって、電流検出処理の正確性を担保することができる。また、その場合において、ポンプ用モータPMの出力トルクを一定に保つことができる。
5.その他の実施形態
 最後に、本発明に係る駆動装置の、その他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。
(1)上記の実施形態では、3本の分岐負極ラインLn4~Ln6のそれぞれにシャント抵抗45が設けられた構成(3シャント構成)を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、3本の分岐負極ラインLn4~Ln6のうちの任意の2本のそれぞれに、シャント抵抗45が設けられた構成(2シャント構成)であっても良い。各相の電流の瞬時値の和はゼロとなるので、このような構成によっても、ポンプ用モータPMの各相のステータコイルに流れる電流をそれぞれ適切に検出することができる。或いは、共通負極ラインLn0に1つのシャント抵抗45が設けられた構成(1シャント構成)であっても良い。
(2)上記の実施形態では、シャント抵抗45が、各相用の下段スイッチング素子42d~42fのそれぞれに流れる電流を検出するために分岐負極ラインLn4~Ln6に設けられた構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、各相用の上段スイッチング素子42a~42cのそれぞれに流れる電流を検出するために、シャント抵抗45が分岐正極ラインLp4~Lp6又は共通正極ラインLp0に設けられても良い。但し、この場合、基準電位の生成のための回路を別途設置する必要がある。
(3)上記の実施形態では、回転電機MGの各相用のステータコイルに流れる電流を検出するための電流センサ35として、コアとホール素子とを有するセンサを用いる例について説明した。しかし、本発明の実施形態はこれに限定されない。第一インバータ30の制御周期に対する電流検出可能期間の割合が、第二インバータ40の制御周期に対するシャント抵抗45の電流検出可能期間の割合よりも高いものであれば、他の電流センサを用いても良い。例えば、コアレス型のホール素子電流センサ、磁気コイル式電流センサ、及びコアレスコイル式電流センサ等を用いても良い。
(4)上記の実施形態では、第二インバータ40が、車輪Wから独立して設けられた油吐出用の電動ポンプEPのロータに駆動連結されたポンプ用モータPMを制御する構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、第二インバータ40が、電動ポンプEPのロータ以外の回転体に駆動連結された交流回転電機を制御するように構成されても良い。このような回転体としては、例えば冷却水吐出用の駆動モータ、エアコンディショナーのコンプレッサ用の駆動モータ、電動パワーステアリング用の駆動モータ、及び冷却ファン用の駆動モータ等のロータが例示される。
(5)上記の実施形態では、第一インバータ30及び第二インバータ40がケース2に一体的に固定された、インバータケースレス構造を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、第一インバータ30及び第二インバータ40が、ケース2とは別体の専用のインバータケースに収容され、当該インバータケースとケース2とが駆動力源室Qに配置されていても良い。
(6)上記の実施形態では、インバータ制御装置5が、ポンプ用モータPMの電気角1周期Tcを分割して規定される複数の分割期間Td毎に個別にオフセット補正量ΔOcを決定する構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、分割期間Tdが設定されることなく、インバータ制御装置5が、ポンプ用モータPMの電気角1周期Tc全体について一律のオフセット補正量ΔOcを決定しても良い。
(7)上記の実施形態では、PWM制御におけるキャリア周波数が連続的に変更可能な構成を例として説明した。また、下段フルオン期間Tnが基準時間Trよりも短い場合に、インバータ制御装置5が、下段フルオン期間Tnが基準時間Trに等しくなる周波数にキャリア周波数を低下させる構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、PWM制御におけるキャリア周波数が段階的に変更可能に構成されても良い。この場合、インバータ制御装置5は、下段フルオン期間Tnが基準時間Trよりも短い場合に、段階的に変更可能なキャリア周波数のうち、下段フルオン期間Tnが基準時間Tr以上となる最大の周波数にキャリア周波数を低下させると好適である。また、キャリア周波数が連続的又は段階的に変更可能な両構成において、インバータ制御装置5が、下段フルオン期間Tnが基準時間Tr以上となるいずれかの周波数にキャリア周波数を低下させる構成であっても良い。
(8)上記の実施形態では、下段フルオン期間Tnが基準時間Trよりも短い場合に、インバータ制御装置5が、弱め界磁制御を行うことにより変調率Mfを低下させる構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、蓄電装置BとコンデンサCとの間に昇圧回路が備えられる構成では、インバータ制御装置5は、当該昇圧回路を制御して直流電圧Vdcを昇圧させることによって変調率Mfを低下させても良い。
(9)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の範囲はそれらによって限定されることはないと理解されるべきである。当業者であれば、本発明の趣旨を逸脱しない範囲で、適宜改変が可能であることを容易に理解できるであろう。従って、本発明の趣旨を逸脱しない範囲で改変された別の実施形態も、当然、本発明の範囲に含まれる。
(10)さらに、本発明に係る駆動装置とは別に、シャント抵抗を用いて交流回転電機の各相のステータコイルに流れる電流を精度良く検出する機能を有するインバータ制御装置自体も、大きな特徴を有する。すなわち、
 直流電源としての蓄電装置BとN(Nは2以上の自然数)相交流駆動式の交流回転電機とに接続されて直流/交流変換を行うインバータを駆動制御するインバータ制御装置5は、
 蓄電装置Bの電極ラインLp,Lnとインバータに備えられる各相のスイッチング素子との間に、交流回転電機に流れる電流を検出するシャント抵抗45を、N個又は(N-1)個備え、
 各相の上段スイッチング素子及び下段スイッチング素子を個別にスイッチング制御することで交流回転電機をPWM制御し、
 各相のシャント抵抗45が設けられる設置側段のスイッチング素子が全てオンとなる対象フルオン期間に、交流回転電機の各相のステータコイルを流れる電流を検出する電流検出処理を行うことを第一の特徴とする。
 このような構成において、インバータ制御装置5は、以下の(a)~(c)のいずれか1つ以上を単独で又は組み合わせて備えることを第二の特徴とする。
(a)各相の設置側段のスイッチング素子が全てオフとなる対象フルオフ期間に、電流検出処理におけるゼロ点のオフセット補正量ΔOcを決定する。
(b)対象フルオン期間が予め定められた基準時間Trよりも短い場合に、PWM制御におけるキャリア周波数を低下させる。
(c)対象フルオン期間が予め定められた基準時間Trよりも短い場合に、インバータの直流電圧Vdcに対する交流電圧指令Vu,Vv,Vwの実効値の比率を表す変調率Mfを低下させる。
 これらの各特徴構成を備えるインバータ制御装置も、上記の実施形態で説明した駆動装置に係る各種の作用効果を得ることができる。また、この場合、インバータ制御装置に、上記の実施形態で説明した駆動装置の好適な構成の例として挙げたいくつかの付加的技術を組み込むことも可能である。付加的技術を組み込んだ場合には、それぞれに対応する作用効果を得ることができる。このようなインバータ制御装置は、もちろん、車両用の駆動装置に限らず、多相交流駆動式の交流回転電機を制御するインバータを備えた各種の装置(電化製品や産業用大型設備等)に適用することもできる。
 本発明は、例えばハイブリッド車両用の駆動装置に利用することができる。
1    :駆動装置
2    :ケース
5    :インバータ制御装置
30   :第一インバータ
31   :スイッチング素子ユニット
35   :電流センサ
40   :第二インバータ
41   :スイッチング素子ユニット
42a  :上段スイッチング素子
42b  :上段スイッチング素子
42c  :上段スイッチング素子
42d  :下段スイッチング素子
42e  :下段スイッチング素子
42f  :下段スイッチング素子
45   :シャント抵抗
E    :内燃機関(駆動力源)
MG   :回転電機(駆動力源)
TM   :変速装置(駆動伝達装置)
W    :車輪
EP   :電動ポンプ
PM   :ポンプ用電動機(交流回転電機)
P    :インバータ収容室
Q    :駆動力源室
B    :蓄電装置(直流電源)
Bp   :直流電源の正極
Bn   :直流電源の負極
Lp0  :共通正極ライン
Lp4  :分岐正極ライン
Lp5  :分岐正極ライン
Lp6  :分岐正極ライン
Ln0  :共通負極ライン
Ln4  :分岐負極ライン
Ln5  :分岐負極ライン
Ln6  :分岐負極ライン
Lw1  :第一配線部材
Vdc  :直流電圧(インバータの直流側の電圧)
Vu   :U相電圧指令値(交流電圧指令)
Vv   :V相電圧指令値(交流電圧指令)
Vw   :W相電圧指令値(交流電圧指令)
Mf   :変調率
Tc   :交流回転電機の電気角1周期
Td   :分割期間
Tn   :下段フルオン期間
Tf   :下段フルオフ期間
Tr   :基準時間
ΔOc  :オフセット補正量

Claims (9)

  1.  複数相の電流が流れる交流回転電機と、複数相のそれぞれに対応する各相用スイッチング素子ユニットを有し、直流電源と前記交流回転電機との間に接続されて直流と交流との間の変換を行うインバータと、を備える駆動装置であって、
     前記直流電源と前記各相用スイッチング素子ユニットとの間で、複数の前記各相用スイッチング素子ユニットのそれぞれに流れる電流を検出するシャント抵抗を備え、
     前記交流回転電機は、車輪から独立して設けられた回転体に駆動連結され、
     前記シャント抵抗は、前記車輪の駆動力源を収容する駆動力源室に配置されている駆動装置。
  2.  油圧の供給を受けて動作し、前記駆動力源から前記車輪への駆動力の伝達状態を制御する駆動伝達装置をさらに備え、
     前記回転体は、前記駆動伝達装置に供給する油を吐出する電動ポンプのロータである請求項1に記載の駆動装置。
  3.  前記交流回転電機は、N(Nは2以上の自然数)相の電流が流れるように構成され、
     前記直流電源の正極と前記各相用スイッチング素子ユニットとは、N個の前記各相用スイッチング素子ユニットに共通の共通正極ラインと、前記共通正極ラインから分岐して前記各相用スイッチング素子ユニットのそれぞれにつながるN本の分岐正極ラインとを介して接続され、前記直流電源の負極と前記各相用スイッチング素子ユニットとは、N個の前記各相用スイッチング素子ユニットに共通の共通負極ラインと、前記共通負極ラインから分岐して前記各相用スイッチング素子ユニットのそれぞれにつながるN本の分岐負極ラインとを介して接続され、
     N本又は(N-1)本の前記分岐負極ラインのそれぞれに、前記シャント抵抗が設けられている請求項1又は2に記載の駆動装置。
  4.  前記インバータを駆動制御するインバータ制御装置をさらに備え、
     前記各相用スイッチング素子ユニットは、前記交流回転電機との接続部よりも前記直流電源の正極側に設けられる上段スイッチング素子と、前記接続部よりも前記直流電源の負極側に設けられる下段スイッチング素子と、を備え、
     前記シャント抵抗は、前記各相用スイッチング素子ユニットのそれぞれの前記下段スイッチング素子に流れる電流を検出するように設けられ、
     前記インバータ制御装置は、
      前記各相用スイッチング素子ユニットの前記上段スイッチング素子と前記下段スイッチング素子とを個別にスイッチング制御することで前記交流回転電機をPWM制御し、
      複数の前記各相用スイッチング素子ユニットの全ての前記下段スイッチング素子がオン状態となる下段フルオン期間の前記シャント抵抗の両端の電位差に基づいて前記交流回転電機を流れる各相の電流を検出する電流検出処理を行い、
      複数の前記各相用スイッチング素子ユニットの全ての前記下段スイッチング素子がオフ状態となる下段フルオフ期間の前記シャント抵抗の両端の電位差に基づいて前記電流検出処理におけるゼロ点のオフセット補正量を決定する請求項1から3のいずれか一項に記載の駆動装置。
  5.  前記インバータ制御装置は、前記シャント抵抗のそれぞれについて、前記交流回転電機の電気角1周期を分割して規定される複数の分割期間毎に、個別に前記オフセット補正量を決定する請求項4に記載の駆動装置。
  6.  前記インバータを駆動制御するインバータ制御装置をさらに備え、
     前記各相用スイッチング素子ユニットは、前記交流回転電機との接続部よりも前記直流電源の正極側に設けられる上段スイッチング素子と、前記接続部よりも前記直流電源の負極側に設けられる下段スイッチング素子と、を備え、
     前記シャント抵抗は、前記各相用スイッチング素子ユニットのそれぞれの前記下段スイッチング素子に流れる電流を検出するように設けられ、
     前記インバータ制御装置は、
      前記各相用スイッチング素子ユニットの前記上段スイッチング素子と前記下段スイッチング素子とを個別にスイッチング制御することで前記交流回転電機をPWM制御し、
      複数の前記各相用スイッチング素子ユニットの全ての前記下段スイッチング素子がオン状態となる下段フルオン期間に前記シャント抵抗の両端の電位差に基づいて前記交流回転電機を流れる各相の電流を検出する電流検出処理を行い、
      前記下段フルオン期間が予め定められた基準時間よりも短い場合に、前記PWM制御におけるキャリア周波数を低下させる請求項1から5のいずれか一項に記載の駆動装置。
  7.  前記インバータ制御装置は、連続的又は段階的に前記キャリア周波数を変更可能に構成され、前記下段フルオン期間が前記基準時間よりも短い場合に、変更可能な前記キャリア周波数のうち、前記下段フルオン期間が前記基準時間以上となる最大の周波数に前記キャリア周波数を低下させる請求項6に記載の駆動装置。
  8.  前記インバータを駆動制御するインバータ制御装置をさらに備え、
     前記各相用スイッチング素子ユニットは、前記交流回転電機との接続部よりも前記直流電源の正極側に設けられる上段スイッチング素子と、前記接続部よりも前記直流電源の負極側に設けられる下段スイッチング素子と、を備え、
     前記シャント抵抗は、前記各相用スイッチング素子ユニットのそれぞれの前記下段スイッチング素子に流れる電流を検出するように設けられ、
     前記インバータ制御装置は、
      複数相の交流電圧の指令である交流電圧指令に基づき、前記各相用スイッチング素子ユニットの前記上段スイッチング素子と前記下段スイッチング素子とを個別にスイッチング制御することで前記交流回転電機をPWM制御し、
      複数の前記各相用スイッチング素子ユニットの全ての前記下段スイッチング素子がオン状態となる下段フルオン期間の前記シャント抵抗の両端の電位差に基づいて前記交流回転電機を流れる各相の電流を検出する電流検出処理を行い、
      前記下段フルオン期間が予め定められた基準時間よりも短い場合に、前記インバータの直流側の電圧に対する前記交流電圧指令の実効値の比率を表す変調率を低下させる請求項1から7のいずれか一項に記載の駆動装置。
  9.  前記インバータ制御装置は、前記交流回転電機を電流ベクトル制御により制御するように構成され、前記交流回転電機のステータコイルにより生成する磁界が、ロータの界磁磁束を弱める方向に変化するように前記交流電圧指令を調整する弱め界磁制御を行うことにより、前記変調率を低下させる請求項8に記載の駆動装置。
PCT/JP2014/057458 2013-07-23 2014-03-19 駆動装置 WO2015011943A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014002744.8T DE112014002744T5 (de) 2013-07-23 2014-03-19 Antriebsvorrichtung
US14/899,045 US9634590B2 (en) 2013-07-23 2014-03-19 Drive device
PCT/JP2014/057458 WO2015011943A1 (ja) 2013-07-23 2014-03-19 駆動装置
CN201480035656.5A CN105324932B (zh) 2013-07-23 2014-03-19 驱动装置

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2013153067 2013-07-23
JP2013153065A JP6131754B2 (ja) 2013-07-23 2013-07-23 駆動装置及びインバータ制御装置
JP2013-153066 2013-07-23
JP2013-153065 2013-07-23
JP2013153066A JP2015023773A (ja) 2013-07-23 2013-07-23 駆動装置
JP2013-153067 2013-07-23
JP2013-197530 2013-09-24
JP2013197530A JP6268857B2 (ja) 2013-07-23 2013-09-24 駆動装置
PCT/JP2014/057458 WO2015011943A1 (ja) 2013-07-23 2014-03-19 駆動装置

Publications (1)

Publication Number Publication Date
WO2015011943A1 true WO2015011943A1 (ja) 2015-01-29

Family

ID=56097342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057458 WO2015011943A1 (ja) 2013-07-23 2014-03-19 駆動装置

Country Status (4)

Country Link
US (1) US9634590B2 (ja)
CN (1) CN105324932B (ja)
DE (1) DE112014002744T5 (ja)
WO (1) WO2015011943A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017169346A (ja) * 2016-03-16 2017-09-21 日立オートモティブシステムズ株式会社 モータ制御装置及びモータ駆動回路の制御方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016106564B4 (de) * 2016-04-11 2022-07-14 Robert Bosch Gmbh Verfahren und steuerschaltung zur strommessung bei einer mehrphasigen elektrischen maschine
WO2018090655A1 (zh) 2016-11-17 2018-05-24 杭州三花研究院有限公司 控制系统以及控制方法
CN108073102B (zh) * 2016-11-17 2021-04-06 浙江三花智能控制股份有限公司 通信系统的通信方法以及通信控制系统
KR102349221B1 (ko) * 2017-10-10 2022-01-10 존슨 컨트롤스 테크놀러지 컴퍼니 냉각기 전기 인클로저를 위한 시스템
WO2019146073A1 (ja) * 2018-01-26 2019-08-01 新電元工業株式会社 電子モジュール
JP7119900B2 (ja) * 2018-10-26 2022-08-17 トヨタ自動車株式会社 車両用冷却装置
JP7129930B2 (ja) * 2019-02-22 2022-09-02 ルネサスエレクトロニクス株式会社 故障判定装置、及び故障判定方法
JP7115378B2 (ja) * 2019-03-20 2022-08-09 トヨタ自動車株式会社 駆動装置
CN114312055B (zh) * 2020-09-30 2023-12-29 上海商米科技集团股份有限公司 一种纸张宽度类型自动检测方法及其系统
JP7501355B2 (ja) * 2020-12-28 2024-06-18 ニデック株式会社 モータ制御装置、モータ、モータ制御方法、及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308913A (ja) * 2004-05-24 2004-11-04 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2006300038A (ja) * 2005-04-25 2006-11-02 Denso Corp 強制冷却式車両用モータ制御装置
JP2007336641A (ja) * 2006-06-13 2007-12-27 Denso Corp 同期モータの位置センサレス駆動装置
JP2011091992A (ja) * 2009-09-28 2011-05-06 Daikin Industries Ltd 相電流検出装置、及びそれを用いた電力変換装置
JP2011223707A (ja) * 2010-04-07 2011-11-04 Denso Corp 電動機制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501433B2 (ja) 2003-10-24 2010-07-14 ダイキン工業株式会社 Dcモータのコイル温度推定方法およびその装置
JP4396270B2 (ja) 2003-12-26 2010-01-13 株式会社豊田自動織機 インバータ装置およびモータ制御方法
WO2006009145A1 (ja) * 2004-07-20 2006-01-26 Matsushita Electric Industrial Co., Ltd. インバータ装置
EP1826899A1 (en) * 2004-11-24 2007-08-29 NSK Steering Systems Co., Ltd. Non-connection motor, its drive control device and mortorized power steering device using drive control device of non-connection motor
JP4692263B2 (ja) 2005-12-14 2011-06-01 トヨタ自動車株式会社 車両の駆動装置
ES2625458T3 (es) * 2007-06-07 2017-07-19 Mitsubishi Electric Corporation Controlador de motor eléctrico
JP4657329B2 (ja) 2008-07-29 2011-03-23 日立オートモティブシステムズ株式会社 電力変換装置および電動車両
JP4957815B2 (ja) * 2009-06-24 2012-06-20 株式会社デンソー 半導体モジュール及びそれを用いた電子回路内蔵型モータ
JP5446937B2 (ja) * 2009-06-24 2014-03-19 株式会社デンソー 電子回路内蔵型モータ
JP2011125130A (ja) 2009-12-10 2011-06-23 Panasonic Corp インバータ駆動装置
JP5083305B2 (ja) * 2009-12-24 2012-11-28 株式会社デンソー 電動機駆動装置、および、これを用いた電動パワーステアリング装置
JP5375874B2 (ja) * 2011-05-13 2013-12-25 株式会社デンソー モータ駆動装置
JP5970227B2 (ja) * 2012-04-17 2016-08-17 日立オートモティブシステムズ株式会社 同期電動機の駆動システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308913A (ja) * 2004-05-24 2004-11-04 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2006300038A (ja) * 2005-04-25 2006-11-02 Denso Corp 強制冷却式車両用モータ制御装置
JP2007336641A (ja) * 2006-06-13 2007-12-27 Denso Corp 同期モータの位置センサレス駆動装置
JP2011091992A (ja) * 2009-09-28 2011-05-06 Daikin Industries Ltd 相電流検出装置、及びそれを用いた電力変換装置
JP2011223707A (ja) * 2010-04-07 2011-11-04 Denso Corp 電動機制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017169346A (ja) * 2016-03-16 2017-09-21 日立オートモティブシステムズ株式会社 モータ制御装置及びモータ駆動回路の制御方法

Also Published As

Publication number Publication date
US9634590B2 (en) 2017-04-25
US20160134214A1 (en) 2016-05-12
CN105324932B (zh) 2017-09-08
DE112014002744T5 (de) 2016-03-31
CN105324932A (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
WO2015011944A1 (ja) 駆動装置
JP6131754B2 (ja) 駆動装置及びインバータ制御装置
WO2015011943A1 (ja) 駆動装置
JP4489098B2 (ja) 発電制御装置
JP6062327B2 (ja) インバータ装置および電動車両
JP6268857B2 (ja) 駆動装置
US10862415B2 (en) Motor controller and power steering device
US20140265975A1 (en) Inverter control method and vehicle having same
WO2018150793A1 (ja) インバータ装置および電動車両
CN111713006A (zh) 马达控制系统和助力转向系统
CN111713009A (zh) 马达控制系统和助力转向系统
WO2015011945A1 (ja) 駆動装置
JP6080996B1 (ja) 電動機駆動システム
JP2015023773A (ja) 駆動装置
WO2017109884A1 (ja) 回転電機の制御装置
CN111713008B (zh) 马达控制系统和助力转向系统
JP2009219191A (ja) 車両の回生電力制御装置及び回生電力制御方法
JP2008001183A (ja) 車両用駆動制御装置
WO2023053490A1 (ja) インバータ制御装置、ハイブリッドシステム、機電一体ユニット、電動車両システム、インバータ制御方法
JP7494393B2 (ja) モータ制御装置、機電一体ユニット、ハイブリッドシステム、電動パワーステアリングシステム、およびモータ制御方法
CN111713004B (zh) 马达控制系统和助力转向系统
JP2007245967A (ja) 車両用駆動制御装置
JP2009081915A (ja) モータ制御装置
JP6187242B2 (ja) 車両の駆動力制御装置
JP2019170098A (ja) 電力変換装置制御システム、モータシステムおよび複合システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480035656.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829274

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14899045

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014002744

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829274

Country of ref document: EP

Kind code of ref document: A1