WO2015009106A1 - 세탁기 모터 및 이를 구비한 세탁기 - Google Patents

세탁기 모터 및 이를 구비한 세탁기 Download PDF

Info

Publication number
WO2015009106A1
WO2015009106A1 PCT/KR2014/006550 KR2014006550W WO2015009106A1 WO 2015009106 A1 WO2015009106 A1 WO 2015009106A1 KR 2014006550 W KR2014006550 W KR 2014006550W WO 2015009106 A1 WO2015009106 A1 WO 2015009106A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
stator
shaft
rotor
washing machine
Prior art date
Application number
PCT/KR2014/006550
Other languages
English (en)
French (fr)
Inventor
김병수
고형환
Original Assignee
주식회사 아모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모텍 filed Critical 주식회사 아모텍
Priority to US14/903,125 priority Critical patent/US10323350B2/en
Priority to CN201480040852.1A priority patent/CN105393442A/zh
Publication of WO2015009106A1 publication Critical patent/WO2015009106A1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/20Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
    • D06F37/206Mounting of motor
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/304Arrangements or adaptations of electric motors
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/40Driving arrangements  for driving the receptacle and an agitator or impeller, e.g. alternatively
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/08Control circuits or arrangements thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/26Casings; Tubs
    • D06F37/267Tubs specially adapted for mounting thereto components or devices not provided for in preceding subgroups
    • D06F37/269Tubs specially adapted for mounting thereto components or devices not provided for in preceding subgroups for the bearing of the rotary receptacle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a washing machine motor capable of independently driving a washing tank and a pulsator, and a washing machine having the same.
  • washing machine is disclosed in the Republic of Korea Patent Publication No. 10-0548310 (January 24, 2006), the outer case forming the appearance, the outer tub that is supported inside the outer case to accommodate the wash water therein, and Washing and dehydration combined inner tub rotatably accommodated inside the outer tub, a pulsator installed in the inner tub so as to rotate relative to form a water flow, and a driving force for rotating the inner tub and the pulsator
  • a driving motor for generating a pressure
  • an inner tank rotating shaft for rotating the inner tank by receiving the driving force of the driving motor
  • a pulsator rotating shaft for rotating the pulsator by receiving the driving force of the driving motor
  • a pulsator rotating shaft connected to the driving motor.
  • Such a conventional washing machine is equipped with a planetary gear set consisting of a sun gear, a ring gear, a planetary gear and a carrier, and decelerates the rotational force of the drive motor and transmits it to the pulsator and the inner tank. Power is transmitted to rotate the pulsator only or to rotate the pulsator and the inner tank in the same direction at the same time.
  • the conventional washing machine requires a planetary gear device, a clutch, and the like to selectively rotate the pulsator and the inner tank, so that the configuration is complicated and manufacturing costs increase.
  • the clutch spring is tightened to the outer circumferential surfaces of the first clutch drum and the second clutch drum, thereby tensioning the clutch spring.
  • the pulsator rotating shaft and the inner tank rotating shaft are integrally rotated in the same direction at the same speed.
  • a bearing in which the bearing supporting the planetary gear device is rotatable only in one direction is used.
  • the conventional washing machine is a structure in which the pulsator and the inner tank can be rotated only in the same direction, and the pulsator and the inner tank cannot be rotated in opposite directions, and thus various washing water flows cannot be formed, thereby improving the performance of the washing machine.
  • the purpose of the present invention is to adopt a washing machine motor having a double rotor-double stator structure and provide a co-force, it is possible to drive the pulsator and the washing tank independently of each other to eliminate the existing clutch device can simplify the structure It is to provide a washing machine motor capable of reverse driving of a pulsator and a washing tank and a washing machine having the same.
  • Another object of the present invention is to drive the pulsator and the washing tank independently, and to set the planetary gear in a state capable of rotating in both directions to implement a bidirectional force and a single force washing machine motor to form a variety of water flow patterns And to provide a washing machine having the same.
  • Still another object of the present invention is to provide a washing machine motor suitable for a large capacity washing machine and a washing machine having the same by enabling torque conversion by shifting the rotational speed of the inner shaft.
  • Still another object of the present invention is to control the rotational direction and the rotational speed of the pulsator and the washing tank independently to form a variety of types of washing water flow can improve the degree of cleaning, improve the foaming performance, tangling
  • the present invention provides a washing machine capable of preventing and rhythm washing and adjusting the flow intensity.
  • Washing machine motor of the present invention for achieving the above object includes an inner rotor connected to the outer shaft, an outer rotor connected to the inner shaft, and a stator disposed with a gap between the inner rotor and the outer rotor, The outer shaft is rotated at the same speed as the inner rotor, the inner shaft is decelerated relative to the rotational speed of the outer rotor to increase the torque, the outer surface of the outer shaft first bearing for rotatably supporting the outer shaft And a second bearing is disposed, and the first bearing is installed in the stator.
  • the outer shaft includes a first outer shaft connected to the inter rotor, a second outer shaft connected to the washing tank, and the inner shaft includes a first inner shaft connected to the outer rotor, and a second inner connected to the pulsator. It may include a shaft.
  • a planetary gear device may be installed between the first inner shaft and the second inner shaft to reduce the rotation speed.
  • the planetary gear device includes a ring gear connecting between a first outer shaft and a second outer shaft, a sun gear connected to the first inner shaft, a plurality of planet gears that are geared to an outer surface of the sun gear and an inner surface of the ring gear. And, the plurality of planetary gears may include a carrier rotatably supported and connected to the second inner shaft.
  • a first bearing is disposed on the outer surface of the first outer shaft, a second bearing is disposed on the outer surface of the second outer shaft, the first bearing is installed on the stator, and the second bearing may be installed on the bearing housing.
  • the stator includes a stator core arranged radially, a bobbin wrapped around an outer circumferential surface of the stator core, a first coil wound on one side of the stator core, a second coil wound on the other side of the stator core, and the stator core. It may comprise a stator support arranged in an annular and the first bearing is installed.
  • the stator support includes a core fixing part in which the stator core is annularly arranged and fixed, a first bearing installation part extending inwardly from the core fixing part to install a first bearing, and extending outwardly from the core fixing part. It may include an outer tank fixing portion which is fixed to the outer tank.
  • the washing machine motor of the present invention includes an inner rotor connected to an outer shaft, an outer rotor connected to an inner shaft, a stator disposed with a gap between the inner rotor and the outer rotor, and installed on the inner shaft to reduce the speed.
  • the planetary gear device may include a first bearing and a second bearing rotatably supporting the outer shaft on an outer surface of the outer shaft, and the first bearing may be installed on the stator.
  • Washing machine of the present invention is the outer tank for receiving the wash water; A washing tank rotatably disposed in the outer tub to perform washing and dehydration; A pulsator rotatably disposed in the washing tank to form a washing stream; And a washing machine motor configured to simultaneously or selectively drive the washing tub and the pulsator, wherein the washing machine motor comprises: an inner rotor having a front end connected to an outer shaft connected to the pulsator; An outer rotor having a front end connected to an inner shaft connected to the washing tub; A stator disposed with a gap between the inner rotor and the outer rotor; And a planetary gear device installed on the inner shaft to reduce the speed, wherein an outer surface of the outer shaft includes a first bearing and a second bearing rotatably supporting the outer shaft, and the first bearing is the stator. Characterized in that installed in.
  • the washing machine drives the pulsator and the washing tank in different directions and at different speeds to form a strong washing water stream in a pattern form, and drives the pulsator and the washing tank in different directions and at the same speed to increase the washing degree. Can be formed.
  • the washing machine may drive the pulsator and the washing tank at a variable speed to form a rhythm stream, or drive the pulsator and the washing tank at the same direction and at different speeds to form a vortex to prevent laundry damage.
  • the washing machine motor of the present invention can drive the pulsator and the washing tank independently, so that the existing clutch can be eliminated and the structure can be simplified, and the reverse driving of the pulsator and the washing tank is possible.
  • Various laundry streams can be formed.
  • the washing machine motor of the present invention can drive the pulsator and the washing tank independently, so that it is possible to implement a twin force and a single force to form a variety of water flow patterns can improve the performance of the washing machine.
  • the washing machine motor of the present invention is a planetary gear device is installed on any one of the inner shaft and the outer shaft connected to the washing tank and the pulsator, it is possible to reduce the rotational speed to increase the torque can implement a large capacity washing machine .
  • the washing machine motor of the present invention is provided with a first bearing and a second bearing for supporting the outer shaft on the outer surface of the outer shaft, and the first bearing is installed in the stator so that a separate bearing housing for installing the first bearing is unnecessary. Therefore, the number of parts can be reduced while simplifying the structure.
  • FIG. 1 is a cross-sectional view of a washing machine according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a washing machine motor according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view of the planetary gear device according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a washing machine motor according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a washing machine motor according to another embodiment of the present invention.
  • FIG. 6 is a side cross-sectional view of the washing machine motor according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a stator according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a stator core according to an embodiment of the present invention.
  • FIG. 9 is a block circuit diagram of a washing machine control apparatus according to the present invention.
  • FIG. 1 is a cross-sectional view of a washing machine according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view of a washing machine motor according to an embodiment of the present invention.
  • a washing machine includes a case 100 forming an external appearance, an outer tub 110 disposed inside the case 100 to receive wash water, and an outer tank (
  • the washing tank 120 is rotatably disposed inside the washing tank 120 to perform washing and dehydration, and the pulsator 130 is rotatably disposed inside the washing tank 120 to form washing water flow. It is installed in the lower portion includes a motor 140 for driving the washing tank 120 and the pulsator 130 simultaneously or selectively.
  • the motor 140 is rotatably disposed in the outer shafts 20 and 22 and the outer shafts 20 and 22 connected to the washing tank 120 and the pulsator 130.
  • Inner shafts 30 and 32 connected to each other, an inner rotor 40 connected to the outer shafts 20 and 22, and an outer rotor 50 connected to the inner shafts 30 and 32.
  • a stator 60 disposed with a gap between the inner rotor 40 and the outer rotor 50.
  • One of the inner shafts 30 and 32 and the outer shafts 20 and 22 may increase torque by reducing the rotation speed.
  • the planetary gear device 70 is installed on the inner shafts 30 and 32 to reduce the rotational speed of the inner shafts 30 and 32 to increase torque.
  • the planetary gear device 70 may be installed on the inner shafts 30 and 32 when the pulsator 130 is connected to the inner shafts 30 and 32 to reduce the rotation speed of the inner shafts 30 and 32.
  • the outer shafts 20 and 22 are formed in a cylindrical shape to allow the inner shafts 30 and 32 to pass therethrough, the first outer shaft 20 connected to the inter rotor 40, and the second connected to the washing tub 120. And an outer shaft 22.
  • the inner shafts 30 and 32 include a first inner shaft 30 connected to the outer rotor 50 and a second inner shaft 32 connected to the pulsator 130.
  • the planetary gear device 70 is integrally formed with a ring gear 72 connecting the first outer shaft 20 and the second outer shaft 22 and the first inner shaft 30. And a planetary gear 78 which is geared to the outer surface of the sun gear 74 and the inner surface of the ring gear 72 and the planetary gear 78 are rotatably supported and connected to the second inner shaft ( A carrier 76 connected to 32.
  • the first outer shaft 20 and the second outer shaft 22 are connected by a ring gear 72 such that the rotation speed of the first outer shaft 20 is maintained as it is. 22). Therefore, the rotation speeds of the first outer shaft 20 and the second outer shaft 22 are the same.
  • first inner shaft 30 is integrally formed with the sun gear 74
  • second inner shaft 32 is connected to the carrier 76 by spline coupling, etc.
  • the carrier 76 is a planetary gear 78 It is rotatably supported in the center of the rotation speed of the first inner shaft 30 is reduced is transmitted to the second inner shaft (32).
  • the inner shafts 30 and 32 are connected by the planetary gear device 70 so that the rotation speed of the outer rotor 50 is reduced and transmitted to the pulsator 130, thereby increasing the torque of the pulsator 130. It can be applied to a large capacity washing machine accordingly.
  • a cylindrical first sleeve bearing 80 and a second sleeve bearing 82 are installed between the outer circumferential surface of the first inner shaft 30 and the inner circumferential surface of the first outer shaft 20 to form the first inner shaft 30. Support rotatably.
  • the third sleeve bearing 84 and the fourth sleeve bearing 86 are installed on upper and lower inner surfaces of the second outer shaft 22 to rotatably support the second inner shaft 32.
  • the outer surface of the first outer shaft 20 is formed with a first connecting portion 90 to which the inner rotor support 46 of the inner rotor 40 is connected, and the outer rotor 50 at the lower end of the first inner shaft 30.
  • a second connecting portion 92 to which the outer rotor support 56 is connected is formed.
  • the first connector 90 and the second connector 92 may have a structure that is serration-coupled or spline-coupled to protrusions formed on the outer surfaces of the first outer shaft 20 and the first inner shaft 30.
  • the key groove may have a structure in which key keys are mutually coupled to each other.
  • first fixing nut 34 is screwed to the lower end of the first outer shaft 20 to prevent the inner rotor support 46 from being separated from the first outer shaft 20, and the first inner shaft (
  • the second fixing nut 36 is screwed to the lower end of the 30 to prevent the outer rotor support 56 of the outer rotor 50 from being separated.
  • a third connection portion 94 is formed on the upper outer surface of the second outer shaft 22 to connect the washing tub 120, and a fourth connection portion is connected to the pulsator 130 on the upper outer surface of the second inner shaft 32. 96 is formed.
  • the third connector 94 and the fourth connector 96 may have a structure that is serration-coupled or spline-coupled by protrusions formed on outer surfaces of the second outer shaft 22 and the second inner shaft 32. It may have a structure in which key grooves are formed to mutually key.
  • a first seal 220 is installed between the second outer shaft 22 and the second inner shaft 32 to prevent the washing water from leaking, and is washed between the second outer shaft 22 and the bearing housing 10.
  • a second seal 210 is mounted to prevent leakage of water.
  • the first bearing 26 is disposed on the outer surface of the first outer shaft 20, and the second bearing 28 is disposed on the outer surface of the second outer shaft 22 to rotate the outer shafts 20 and 22. Support.
  • the first bearing 26 is installed in the stator 60, and the second bearing 28 is installed in the bearing housing 10.
  • a separate bearing housing for installing the first bearing is unnecessary, so that the number of parts can be reduced, and the manufacturing process can be shortened, further reducing the size of the motor. can do.
  • the stator 60 is divided into a plurality of stator cores 62 arranged radially and a bobbin 64 which is a nonmagnetic material wrapped around the outer circumferential surface of the stator core 62. ), The first coil 66 wound around one side (inner side) of the stator core 62, the second coil 68 wound around the other side (outer side) of the stator core 62, and the stator core 62.
  • the stator support 102 is formed integrally with the stator core 62 by insert molding after arranging the stator core 62 in the mold in the circumferential direction at regular intervals.
  • thermosetting resin for example, a BMC (Bulk Molding Compound) molding material such as polyester molding the stator support 102 in an insert molding method, wherein the plurality of stator cores 62 in the mold in the circumferential direction It is arranged integrally at regular intervals.
  • BMC Bit Molding Compound
  • stator support 102 may be applied to a structure in which the stator support 102 is bolted to the stator support 102 after being manufactured separately from the stator core 62.
  • the stator support 102 includes a core fixing part 104 in which the stator core 62 is arranged in an annular shape, and a first bearing extending inwardly from the core fixing part 104 to install the first bearing 26.
  • the first bearing installation unit 106 is formed in a stepped shape so that the first bearing 26 is installed on the inner surface of the stator support 102 to prevent the separation of the first bearing 26.
  • a fastening hole 109 is formed in the outer tub fixing part 108, and is fastened to the bearing housing 10 by a bolt 230.
  • the bearing housing 10 is formed of a metal material, and is bent upward from the second bearing installation portion 12 and the second bearing installation portion 12 on which the second bearing 28 is installed, and thus the second seal 210.
  • the connecting portion 16 is bent downward from the seal mounting portion 14 having a cylindrical shape, and extends horizontally outward from the lower end of the connecting portion 16, the stator support 102 And a flat plate portion 18 fastened to the outer tub 110.
  • the flat plate 18 communicates with the fastening hole 109 formed in the stator 60, and a plurality of fastening holes 19 are fastened to the outer tub 100 by bolts 230.
  • the stator support 102 extends in a cylindrical shape in an upward direction and is spaced outwardly from the first alignment protrusion 112 and the first alignment protrusion 112 contacting the inner surface of the connecting portion 16 of the bearing housing 10.
  • the second alignment protrusions 114 are formed to contact the lower surface of the flat plate 18 of the bearing housing 10, respectively.
  • the first alignment protrusion 112 contacts the inner surface of the bearing housing 10 to align the left and right positions, and the second alignment protrusion 114 is disposed on the lower surface of the bearing housing 10. Contact to align the vertical position.
  • the stator support 600 includes a core fixing part 610 to which the stator core 62 is arranged in an annular shape and fixed downward, and downward from an inner surface of the core fixing part 610.
  • Cover portion 620 is extended to surround the outer surface of the planetary gear device 70 and the first bearing installation portion 630 extending inwardly from the cover portion 620, the first bearing 26 is installed
  • an outer tub fixing portion 640 extending outward from the core fixing portion 610 and fixed to the outer tub 110.
  • the stator support 600 may be provided with a cover portion surrounding the outer surface of the planetary gear device 70 to protect the planetary gear device 70.
  • the stator support 500 includes a core fixing part 510 to which the stator core 62 is arranged in an annular shape and fixed, and an inner side of a lower surface of the core fixing part 510.
  • the first bearing installation portion 520 extending in the first direction 26 is installed, and the outer shell fixing portion 530 extending in the outer direction from the upper surface of the core fixing portion 510 to be fixed to the outer tub 110. It includes.
  • the stator support 500 includes an outer tub fixing portion 530 which is extended outward from the upper side of the core fixing portion 510 to which the stator core is fixed and fixed to the outer tub 110. Since the first bearing fixing part 520 extending from the lower side of the core fixing part 510 to the inner side in which the first bearing 26 is installed is formed, the overall height of the motor can be reduced.
  • the inner rotor 40 includes a first magnet 42 disposed at a predetermined gap on the inner surface of the stator 60, a first back yoke 44 disposed on the rear surface of the first magnet 42, and insert molding. And an inner rotor support 46 formed integrally with the first magnet 42 and the first back yoke 44.
  • the inner rotor support 46 is formed integrally with the first magnet 42 and the first back yoke 44 by molding with a thermosetting resin, for example, a bulk molding compound (BMC) molding material such as polyester. . Therefore, the inner rotor 40 can have waterproof performance and can shorten the manufacturing process.
  • a thermosetting resin for example, a bulk molding compound (BMC) molding material such as polyester.
  • the inner rotor support 46 is formed in a disc shape having an open center, and an inner surface thereof is connected to the first connecting portion 90 of the first outer shaft 20 to rotate like the outer shaft 20, and on the outer surface thereof.
  • the first magnet 42 and the first back yoke 44 are integrally formed.
  • the outer rotor 50 includes a second magnet 52 disposed on the outer surface of the stator 60 with a predetermined gap, a second back yoke 54 disposed on the rear surface of the second magnet 52, and an insert.
  • the outer rotor support 56 is formed integrally with the second magnet 52 and the second back yoke 54 by molding.
  • the outer rotor support 56 is formed integrally with the second magnet 52 and the second back yoke 54 by molding with a thermosetting resin, for example, a BMC (Bulk Molding Compound) molding material such as polyester. .
  • a thermosetting resin for example, a BMC (Bulk Molding Compound) molding material such as polyester.
  • the outer rotor 50 can have waterproof performance and can shorten the manufacturing process.
  • the outer rotor support 56 is formed in a disc shape having an open center, and an inner surface thereof is connected to the second connecting portion 92 of the first inner shaft 30 to rotate like the first inner shaft 30.
  • the second magnet 52 and the second back yoke 54 are integrally formed.
  • the stator core 62 is formed on the opposite side of the first teeth portion 310 and the first teeth portion 310 on which the first coils 66 are wound.
  • the first and second outputs are simultaneously applied to the 68, the inner rotor 40 and the outer rotor 50 are rotated at the same time.
  • the through hole 332 is formed in the center of the partition 314 so that the first magnetic circuit formed by the first coil 66 and the second magnetic circuit formed by the second coil 68 interfere with each other. It serves to prevent.
  • the through hole 332 may be formed to be long in the lateral direction of the partition 314 in the form of a slot in addition to the circular.
  • the first flange portion 316 disposed to face the first magnet 44 is formed at the end of the first tooth portion 310, and the second magnet 54 is formed at the end of the second tooth portion 312.
  • a second flange portion 318 is disposed to face the formation.
  • the first flange 316 and the second flange portion 318 are inward and at a predetermined curvature so as to correspond to the first magnet 42 of the inner rotor 40 and the second magnet 52 of the outer rotor 50, respectively. It forms an outwardly curved surface. Therefore, since the roundness of the inner circumferential surface and the outer circumferential surface of the stator core 62 is increased, the magnetic gap is constant while the inner circumferential surface and the outer circumferential surface of the stator 60 are close to each other while the first magnet 42 and the second magnet 52 are close to each other. Can be maintained.
  • the coupling parts 320 and 322 have a structure directly connected to allow the stator cores 22 to be energized with each other.
  • the coupling parts 320 and 322 are formed such that the coupling protrusion 322 protrudes on one side of the partition 16, and the coupling groove 320 into which the coupling protrusion 322 is fitted to the other side of the partition 314. ) Is formed, and when the coupling protrusion 322 is inserted into the coupling groove 320 to assemble, the stator cores 62 are radially arranged and have a structure directly connected to each other.
  • the coupling portion forms pinholes at both ends of the partition portion of the stator core, and connects the pin member between the pinholes of the two stator cores while connecting the cores to each other to connect the stator cores. It is also possible to apply the structure, and a method of caulking using a caulking member in a state in which the stator cores are in contact with each other.
  • connectors 162 and 164 are provided to apply outputs of the first and second inverters 530 and 540 to the first coil 66 and the second coil 68.
  • the connectors 162 and 164 may include a first connector connected to first and second outputs of the first and second inverters 530 and 540 for rotating the washing tub 110, that is, a first output applied to the first coil 66. 162 and a second connector 164 connected to a second output for rotating the pulsator 130, that is, a second output applied to the second coil 68.
  • the first connector fixing part 172 to which the first connector 162 is fixed and the second connector fixing part 174 to which the second connector 164 is fixed are formed on the outer surface of the stator support 102.
  • the first connector fixing part 172 and the second connector fixing part 174 are integrally formed when insert-exjecting the stator support 102. That is, when insert molding is performed after the first connector 162 and the second connector 164 are disposed in a mold, the first connector fixing part 172 is wrapped on the outer surface of the first connector 162 to form a first connector ( 162 is fixed, and the second connector fixing part 174 is wrapped on the outer surface of the second connector 164 to fix the second connector 174.
  • the washing machine motor of the present invention forms a first magnetic circuit L1 between one side of the stator 60 on which the inner rotor 40 and the first coil 66 are wound, and the outer rotor 50 and the second coil. Since the second magnetic circuit L2 is formed between the other sides of the stator 60 to which the 68 is wound to form a pair of magnetic circuits that are independent of each other, the inner rotor 40 and the outer rotor 50 are driven separately, respectively. Can be.
  • the first magnetic circuit (L1) is the first magnet 42 of the N pole
  • the first teeth portion 310 is wound around the first coil 66, the inner portion of the partition portion 314, the first adjacent Via the tooth part 310, the first magnet 42 of the S pole and the first back yoke 44 adjacent to the first magnet 42 of the N pole.
  • the second magnetic circuit L2 is divided into a second tooth portion 312 facing the second magnet 52 of the N pole, the second magnet 52 of the N pole, and the second coil 68 wound thereon. Via the outer portion of the portion 314, the adjacent second teeth portion 312, the second magnet 54 of the S pole, and the second back yoke 54.
  • the washing machine control apparatus includes a first inverter 530 generating a first driving signal applied to the first coil 66 and a second driving applied to the second coil 68. It includes a second inverter 540 for generating a signal, the first inverter 530, the second inverter 540 and the control unit 500 for controlling the entire washing machine.
  • the control unit 500 serves as a system controller to control the entire washing machine at the same time as the control of the first and second inverters (530,540) as described above, or according to the washing course set by the user from the system controller of the washing machine body After receiving the determined washing control signal may be configured as a driver-specific control device for applying a separate control signal to the first and second inverters (530, 540) based on this.
  • the control unit 500 may be configured as a signal processing device such as a microcomputer or a microprocessor.
  • the washing machine motor 140 is made of a twin-force structure consisting of a double rotor-double stator, for example, the motor control is made by U, V, W three-phase drive system.
  • the first and second coils 66 and 68 of the stator 60 also consist of U, V, and W three-phase coils, respectively.
  • the first coil 66 wound on the first tooth part 310 extending in the center direction from the stator 60 forms an inner stator
  • the second coil wound on the second tooth part 312 extending in the radial direction.
  • the coil 68 forms an outer stator.
  • the inner rotor 40 which is rotated by the inner stator forms an inner motor
  • the outer rotor 50 which is rotated by the outer stator forms an outer motor
  • the inner motor and the outer motor are each BLDC.
  • the motor structure is designed to be controlled in such a way that, for example, a six-step drive control is achieved in the first and second inverters.
  • the first and second inverters may be composed of three pairs of switching transistors connected to a totem pole structure, respectively, and the three-phase output of each inverter is U, V, W of the first and second coils 66 and 68. It is applied to a three-phase coil.
  • the control unit for controlling the first and second inverters, respectively, for example, the rotational position of the inner rotor 40 and the outer rotor 50 from the first and second rotor position detection sensor consisting of a Hall sensor (Hall sensor)
  • the first and second inverters When detecting and applying a PWM control signal to the first and second inverters, the first and second inverters output U, V, and W three-phase outputs of U, V, and W of the first and second coils 66, 68. It is applied to the W three-phase coil to drive the inner rotor 40 and the outer rotor 50 to rotate.
  • the first and second inverters are controlled by the control unit to selectively and independently apply the first and second inverter outputs to the first and second coils 66 and 68 so that the inner rotor 40 and The outer rotor 50 can be driven to rotate selectively and independently.
  • the planetary gear device 70 has a ring gear 72 connected between the first and second outer shafts 20 and 22, and the first and second outer shafts 20 and 22 are bidirectional.
  • the planetary gear device 70 is also rotatably supported in both directions because the first and second bearings 26 and 28 are rotatable in both directions.
  • the washing machine uses the washing machine motor 140 configured as the double rotor-double stator, and uses the first and second inverters to output the U, V, and W three-phase outputs to the first and second coils 66.
  • the inner rotor 40 and the outer rotor 50 are independently driven to rotate by applying them to the U, V, and W three-phase coils of (68).
  • the rotational force of the inner rotor 40 and the outer rotor 50 is transmitted to the pulsator 130 and the washing tank 120 through the inner shafts 30 and 32, the outer shafts 20 and 22, and the planetary gear device 70.
  • the pulsator 130 and the washing tank 120 are driven independently, and the planetary gear device 70 is supported by the first and second bearings 26 and 28 capable of bidirectional rotation. Therefore, by controlling the rotational direction and the rotational speed of the pulsator 130 and the washing tank 120 can form a variety of water flow.
  • the first coil 66 and the second coil 68 are simultaneously removed from the first and second inverters 530 and 540. First and second outputs are applied respectively. Then, the inner rotor 40 is rotated by the magnetic circuit L1, and the outer shaft 20 connected to the inner rotor 40 is rotated, thereby rotating the washing tub 120. Then, while the outer rotor 50 is rotated by the magnetic circuit L2, the inner shaft 30 connected to the outer rotor 50 is rotated to rotate the pulsator 130.
  • the first coil 66 and the second coil 68 Inverter output is applied simultaneously or with time difference, and the first output of the first inverter applied to the first coil and the second output of the second inverter applied to the second coil are independently controlled so that the inner rotor 40 ) And the outer rotor 50 may rotate in the opposite direction to rotate the pulsator 130 and the washing tank 120 in the opposite direction.
  • various washing water streams may be formed by rotating the pulsator 130 and the dehydration tank 120 at the same direction and at the same speed or at the same direction and at different speeds during the washing and rinsing strokes.
  • a strong washing water stream may be formed, and the pulsator 130 and the washing tank 120 may be formed.
  • the rotational speed of the pulsator 130 and the washing tank 120 by changing the rotational speed of the pulsator 130 and the washing tank 120, it is possible to form a rhythm water flow, as a result it is possible to implement the rhythm washing. That is, when the rotational speeds of the pulsator 130 and the washing tank 120 are controlled to be sharply variable, it is possible to prevent damage to the laundry while forming a strong stream and a rhythm stream.
  • the pulsator 130 and the washing tank 120 may be rotated at a time difference to form various washing water streams, thereby forming various washing water streams.
  • the present invention is applied to a washing machine motor and a washing machine, in particular, a fully automatic washing machine, in which a washing tank and a pulsator are driven separately to form various washing water streams.

Abstract

본 발명의 세탁기 모터는 아우터 샤프트와 연결되는 인너 로터와, 인너 샤프트와 연결되는 아우터 로터와, 상기 인너 로터와 아우터 로터 사이에 공극을 두고 배치되는 스테이터를 포함하고, 상기 아우터 샤프트는 인너 로터와 동일한 속도로 회전되고, 상기 인너 샤프트는 토크를 증가시킬 수 있도록 상기 아우터 로터의 회전속도에 비해 감속되고, 상기 아우터 샤프트의 외면에는 아우터 샤프트를 회전 가능하게 지지하는 제1베어링 및 제2베어링이 배치되고, 상기 제1베어링은 상기 스테이터에 설치된다. 이와 같은 세탁기 모터는 인너 샤프트에 회전속도를 감속하여 토크를 증대시키는 유성기어 장치를 구비하여 대용량 세탁기를 구현할 수 있다.

Description

세탁기 모터 및 이를 구비한 세탁기
본 발명은 세탁조와 펄세이터를 독립적으로 구동시킬 수 있는 세탁기 모터 및 이를 구비한 세탁기에 관한 것이다.
종래의 세탁기는 한국 등록특허공보 10-0548310(2006년01월24일)에 개시된 바와 같이, 외형을 이루는 아웃케이스와, 상기 아웃케이스의 내부에 지지되어 내부에 세탁수를 수용하는 외조와, 상기 외조의 내부에 회전 가능하게 수용되는 세탁과 탈수 겸용의 내조와, 상기 내조의 내부에 상대회전 가능하게 설치되어 세탁수류를 형성하는 펄세이터(Pulsator)와, 상기 내조 및 펄세이터를 회전시키기 위한 구동력을 발생시키는 구동모터와, 상기 구동모터의 구동력을 전달받아 내조를 회전시키는 내조회전축과, 상기 구동모터의 구동력을 전달받아 펄세이터를 회전시키는 펄세이터회전축과, 구동모터에 연결되고 펄세이터 회전축에 연결되는 선기어, 선기어와 링기어에 동시에 맞물리는 복수의 유성기어와, 유성기어를 자전 및 공전 가능하게 지지하는 캐리어와, 세탁시 또는 탈수시 상기 내조와 펄세이터의 회전을 제어하기 위한 클러치 스프링을 포함하여 구성된다.
이와 같은 종래의 세탁기는 선기어, 링기어, 유성기어 및 캐리어로 구성된 유성기어 셋트가 구비되어, 구동모터의 회전력을 감속하여 펄세이터 및 내조로 전달하고, 클러치 스프링이 작동되어 펄세이터와 내조로 선택적으로 동력을 전달하여 펄세이터만 회전시키거나 펄세이터와 내조를 동시에 동일방향으로 회전시킨다.
하지만, 종래의 세탁기는 펄세이터와 내조를 선택적으로 회전시키기 위해 유성기어 장치와 클러치 등을 필요로 하여 구성이 복잡하고, 제조비용이 증가하는 문제가 있다.
또한, 종래의 세탁기는 구동모터와 외조 사이에 유성기어 장치 및 클러치가 설치되므로 세탁기의 높이방향으로 차지하는 공간이 많아지고, 이에 따라 세탁기의 높이가 높아지거나, 세탁기의 높이가 동일할 경우 내조의 높이를 줄여야 되므로 세탁용량이 작아지는 문제가 있다.
더욱이, 종래의 세탁기는 탈수시에 클러치 스프링이 수축되는 일방향으로만 펄세이터회전축을 회전시키게 되면, 클러치 스프링이 제1클러치드럼 및 제2클러치드럼의 외주면에 조여지게 되고, 이에 따라 클러치 스프링의 장력에 의해 펄세이터회전축과 내조회전축이 일체로 동일한 속도로 동일한 방향으로 회전하게 된다. 이 경우, 종래에는 유성기어 장치를 지지하는 베어링이 일방향으로만 회전 가능한 베어링이 사용되고 있다.
그 결과, 종래의 세탁기는 펄세이터와 내조가 동일한 방향으로만 회전시킬 수 있는 구조로서, 펄세이터와 내조를 서로 반대방향으로 회전시킬 수 없어 다양한 세탁수류를 형성할 수 없기 때문에 세탁기의 성능 개선에 한계가 있다.
본 발명의 목적은 더블 로터-더블 스테이터 구조를 갖고 쌍동력을 제공하는 세탁기 모터를 채용함에 따라 펄세이터와 세탁조를 각각 독립적으로 구동할 수 있어 기존의 클러치 장치를 없앨 수 있어 구조를 단순화할 수 있고 펄세이터와 세탁조의 상호 역방향 구동이 가능한 세탁기 모터 및 이를 구비한 세탁기를 제공하는 것이다.
본 발명의 다른 목적은 펄세이터와 세탁조를 각각 독립적으로 구동할 수 있으며, 유성기어장치를 양방향으로 회전 가능한 상태로 설정하여 쌍동력 및 단동력 구현이 가능하여 다양한 수류 패턴을 형성할 수 있는 세탁기 모터 및 이를 구비한 세탁기를 제공하는 것이다.
본 발명의 또 다른 목적은 인너 샤프트의 회전속도를 변속하여 토크 변환을 가능하게 함으로써, 대용량 세탁기에 적합한 세탁기 모터 및 이를 구비한 세탁기를 제공하는 것이다.
본 발명의 또 다른 목적은 펄세이터와 세탁조의 회전방향 및 회전속도를 각각 독립적으로 제어하여 다양한 형태의 세탁 수류를 형성할 수 있어 세정도를 향상시키고, 포 풀림 성능을 향상시킬 수 있으며, 포 엉킴 방지 및 리듬 세탁이 가능하고, 수류 강도를 조절할 수 있는 세탁기를 제공하는 데 있다.
본 발명의 또 다른 목적은 축 지지용 제1베어링이 스테이터에 설치되어 제1베어링을 설치하기 위한 별도 베어링 하우징이 불필요하므로 구조를 단순화하면서 부품수를 줄일 수 있는 세탁기 모터 및 이를 구비한 세탁기를 제공하는 것이다.
상기의 목적을 달성하기 위한 본 발명의 세탁기 모터는 아우터 샤프트와 연결되는 인너 로터와, 인너 샤프트와 연결되는 아우터 로터와, 상기 인너 로터와 아우터 로터 사이에 공극을 두고 배치되는 스테이터를 포함하고, 상기 아우터 샤프트는 인너 로터와 동일한 속도로 회전되고, 상기 인너 샤프트는 토크를 증가시킬 수 있도록 상기 아우터 로터의 회전속도에 비해 감속되고, 상기 아우터 샤프트의 외면에는 아우터 샤프트를 회전 가능하게 지지하는 제1베어링 및 제2베어링이 배치되고, 상기 제1베어링은 상기 스테이터에 설치되는 것을 특징으로 한다.
상기 아우터 샤프트는 인터 로터에 연결되는 제1아우터 샤프트와, 세탁조에 연결되는 제2아우터 샤프트를 포함하고, 상기 인너 샤프트는 아우터 로터에 연결되는 제1인너 샤프트와, 펄세이터에 연결되는 제2인너 샤프트를 포함할 수 있다.
상기 제1인너 샤프트와 제2인너 샤프트 사이에는 회전속도를 감속시키는 유성기어 장치가 설치될 수 있다.
상기 유성기어 장치는 제1아우터 샤프트와 제2아우터 샤프트 사이를 연결하는 링기어와, 상기 제1인너 샤프트에 연결되는 선기어와, 상기 선기어의 외면 및 링기어의 내면에 기어 물림되는 다수의 유성기어와, 상기 다수의 유성기어가 회전 가능하게 지지되고 제2인너 샤프트에 연결되는 캐리어를 포함할 수 있다.
상기 제1아우터 샤프트의 외면에는 제1베어링이 배치되고, 제2아우터 샤프트의 외면에는 제2베어링이 배치되며, 상기 제1베어링은 스테이터에 설치되고, 상기 제2베어링은 베어링 하우징에 설치될 수 있다.
상기 스테이터는 방사상으로 배열되는 스테이터 코어와, 상기 스테이터 코어의 외주면에 감싸지는 보빈과, 상기 스테이터 코어의 일측에 감겨지는 제1코일과, 스테이터 코어의 타측에 감겨지는 제2코일과, 상기 스테이터 코어를 환형으로 배열하고 제1베어링이 설치되는 스테이터 지지체를 포함할 수 있다.
상기 스테이터 지지체는 스테이터 코어가 환형으로 배열되어 고정되는 코어 고정부와, 상기 코어 고정부에서 내측방향으로 연장되어 제1베어링이 설치되는 제1베어링 설치부와, 상기 코어 고정부에서 외측방향으로 연장되어 외조에 고정되는 외조 고정부를 포함할 수 있다.
본 발명의 세탁기 모터는 아우터 샤프트와 연결되는 인너 로터와, 인너 샤프트와 연결되는 아우터 로터와, 상기 인너 로터와 아우터 로터 사이에 공극을 두고 배치되는 스테이터와, 상기 인너 샤프트에 설치되어 속도를 감속시키는 유성기어 장치를 포함하고, 상기 아우터 샤프트의 외면에는 아우터 샤프트를 회전 가능하게 지지하는 제1베어링 및 제2베어링이 배치되고, 상기 제1베어링은 상기 스테이터에 설치될 수 있다.
본 발명의 세탁기는 세탁수를 수용하는 외조; 상기 외조의 내부에 회전 가능하게 배치되어 세탁과 탈수를 수행하는 세탁조; 상기 세탁조 내부에 회전 가능하게 배치되어 세탁 수류를 형성하는 펄세이터; 및 상기 세탁조와 펄세이터를 동시에 또는 선택적으로 구동시키는 세탁기 모터;를 포함하며, 상기 세탁기 모터는 선단부가 상기 펄세이터와 연결되는 아우터 샤프트와 연결되는 인너 로터; 선단부가 상기 세탁조와 연결되는 인너 샤프트와 연결되는 아우터 로터; 상기 인너 로터와 아우터 로터 사이에 공극을 두고 배치되는 스테이터; 및 상기 인너 샤프트에 설치되어 속도를 감속시키는 유성기어 장치를 포함하고, 상기 아우터 샤프트의 외면에는 아우터 샤프트를 회전 가능하게 지지하는 제1베어링 및 제2베어링이 배치되고, 상기 제1베어링은 상기 스테이터에 설치되는 것을 특징으로 한다.
상기 세탁기는 펄세이터와 세탁조를 서로 다른 방향 및 다른 속도로 구동하여, 패턴 형태의 강한 세탁 수류를 형성하며, 상기 펄세이터와 세탁조를 서로 다른 방향 및 동일한 속도로 구동하여 세정도를 높이는 강한 세탁 수류를 형성할 수 있다.
또한, 상기 세탁기는 상기 펄세이터와 세탁조를 가변적 속도로 구동하여 리듬 수류를 형성하거나, 상기 펄세이터와 세탁조를 같은 방향 및 다른 속도로 구동하여 세탁물 손상을 방지하는 와류를 형성할 수 있다.
상기한 바와 같이, 본 발명의 세탁기 모터는 펄세이터와 세탁조를 각각 독립적으로 구동할 수 있어 기존의 클러치를 없앨 수 있고 이에 따라 구조를 단순화할 수 있으며, 펄세이터와 세탁조의 역방향 구동이 가능하도록 하여 다양한 세탁 수류를 형성할 수 있다.
또한, 본 발명의 세탁기 모터는 펄세이터와 세탁조를 각각 독립적으로 구동할 수 있어 쌍동력 및 단동력 구현이 가능하여 다양한 수류 패턴을 형성할 수 있기 때문에 세탁기의 성능 향상을 도모할 수 있다.
또한, 본 발명의 세탁기 모터는 세탁조와 펄세이터에 각각 연결되는 인너 샤프트 및 아우터 샤프트 중 어느 하나에 유성기어장치가 설치됨으로서, 그의 회전속도를 감속하여 토크를 증대시킬 수 있어 대용량 세탁기를 구현할 수 있다.
또한, 본 발명의 세탁기 모터는 아우터 샤프트의 외면에 아우터 샤프트를 지지하기 위한 제1베어링과 제2베어링이 구비되고, 제1베어링은 스테이터에 설치되어 제1베어링을 설치하기 위한 별도 베어링 하우징이 불필요하므로 구조를 단순화하면서 부품수를 줄일 수 있다.
도 1은 본 발명의 일 실시예에 따른 세탁기의 단면도이다.
도 2는 본 발명의 일 실시예에 따른 세탁기 모터의 단면도이다.
도 3은 본 발명의 일 실시예에 따른 유성기어 장치의 단면도이다.
도 4는 본 발명의 다른 실시예에 따른 세탁기 모터의 단면도이다.
도 5는 본 발명의 또 다른 실시예에 따른 세탁기 모터의 단면도이다.
도 6은 본 발명의 일 실시예에 따른 세탁기 모터의 횡 단면도이다.
도 7은 본 발명의 일 실시에예에 따른 스테이터의 단면도이다.
도 8은 본 발명의 일 실시예에 따른 스테이터 코어의 단면도이다.
도 9는 본 발명에 따른 세탁기 제어장치의 블럭 회로도이다.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. 이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 한다.
도 1은 본 발명의 일 실시예에 따른 세탁기의 단면도이고, 도 2는 본 발명의 일 실시예에 따른 세탁기 모터의 단면도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 세탁기는 외형을 이루는 케이스(100)와, 케이스(100)의 내부에 배치되어 세탁수를 수용하는 외조(110)와, 외조(110)의 내부에 회전 가능하게 배치되어 세탁과 탈수를 수행하는 세탁조(120)와, 세탁조(120) 내부에 회전 가능하게 배치되어 세탁 수류를 형성하는 펄세이터(130)와, 세탁조(120)의 하부에 설치되어 세탁조(120)와 펄세이터(130)를 동시에 또는 선택적으로 구동시키는 모터(140)를 포함한다.
모터(140)는 도 2에 도시된 바와 같이, 세탁조(120)와 연결되는 아우터 샤프트(20,22)와, 아우터 샤프트(20,22)의 내부에 회전 가능하게 배치되고 펄세이터(130)와 연결되는 인너 샤프트(30,32)와, 아우터 샤프트(20,22)와 연결되는 인너 로터(Inner Rotor)(40)와, 인너 샤프트(30,32)와 연결되는 아우터 로터(Outor Rorot)(50)와, 인너로터(40)와 아우터 로터(50) 사이에 공극을 두고 배치되는 스테이터(60)를 포함한다.
인너 샤프트(30,32)와 아우터 샤프트(20,22) 중 어느 하나에는 회전속도를 감속하여 토크를 증가시킬 수 있다.
본 실시예에서는 인너 샤프트(30,32)에 설치되어 인너 샤프트(30,32)의 회전속도를 감속하여 토크를 증대시키는 유성기어 장치(70)가 구비된다.
이러한 유성기어 장치(70)는 펄세이터(130)가 인너 샤프트(30,32)에 연결될 경우 인너 샤프트(30,32)에 설치되어 인너 샤프트(30,32)의 회전속도를 감속시킬 수 있다.
아우터 샤프트(20,22)는 인너 샤프트(30,32)가 통과하도록 원통 형태로 형성되고, 인터 로터(40)에 연결되는 제1아우터 샤프트(20)와, 세탁조(120)에 연결되는 제2아우터 샤프트(22)를 포함한다.
그리고, 인너 샤프트(30,32)는 아우터 로터(50)에 연결되는 제1인너 샤프트(30)와, 펄세이터(130)에 연결되는 제2인너 샤프트(32)를 포함한다.
유성기어 장치(70)는 도 3에 도시된 바와 같이, 제1아우터 샤프트(20)와 제2아우터 샤프트(22) 사이를 연결하는 링기어(72)와, 제1인너 샤프트(30)에 일체로 연결되는 선기어(74)와, 선기어(74)의 외면 및 링기어(72)의 내면에 기어 물림되는 유성기어(78)와, 유성기어(78)가 회전 가능하게 지지되고 제2인너 샤프트(32)에 연결되는 캐리어(76)를 포함한다.
이러한 유성기어 장치(70)는 제1아우터 샤프트(20)와 제2아우터 샤프트(22)가 링기어(72)에 의해 연결되어 제1아우터 샤프트(20)의 회전속도가 그대로 제2아우터 샤프트(22)로 전달된다. 따라서, 제1아우터 샤프트(20)와 제2아우터 샤프트(22)의 회전속도는 동일하다.
그리고, 제1인너 샤프트(30)는 선기어(74)와 일체로 형성되고, 제2인너 샤프트(32)는 캐리어(76)가 스플라인 결합 등에 의해 연결되고, 캐리어(76)는 유성기어(78)의 중앙에 회전 가능하게 지지되어 제1인너 샤프트(30)의 회전속도가 감속되어 제2인너 샤프트(32)로 전달된다.
이와 같이, 인너 샤프트(30,32)는 유성기어 장치(70)에 의해 연결되어 아우터 로터(50)의 회전속도가 감속되어 펄세이터(130)로 전달되므로 펄세이터(130)의 토크를 증대시킬 수 있고, 이에 따라 대용량 세탁기에 적용이 가능하다.
제1인너 샤프트(30)의 외주면과 제1아우터 샤프트(20)의 내주면 사이에는 원통 형태의 제1슬리브 베어링(80) 및 제2슬리브 베어링(82)이 설치되어 제1인너 샤프트(30)를 회전 가능하게 지지한다.
그리고, 제2아우터 샤프트(22)의 상단 및 하단 내면에는 제3슬리브 베어링(84) 및 제4슬리브 베어링(86)이 설치되어 제2인너 샤프트(32)를 회전 가능하게 지지한다.
제1아우터 샤프트(20)의 외면에는 인너 로터(40)의 인너 로터 지지체(46)가 연결되는 제1연결부(90)가 형성되고, 제1인너 샤프트(30)의 하단에는 아우터 로터(50)의 아우터 로터 지지체(56)가 연결되는 제2연결부(92)가 형성된다.
제1연결부(90) 및 제2연결부(92)는 제1아우터 샤프트(20) 및 제1인너 샤프트(30)의 외면에 형성된 돌기에 세레이션(Serration) 결합되거나 스플라인 결합되는 구조를 가질 수 있고, 키홈을 형성하여 상호 키 결합되는 구조를 가질 수 있다.
여기에서, 제1아우터 샤프트(20)의 하단에는 인너 로터 지지체(46)가 제1아우터 샤프트(20)에서 이탈되는 것을 방지하는 제1고정너트(34)가 나사 체결되고, 제1인너 샤프트(30)의 하단에는 아우터 로터(50)의 아우터 로터 지지체(56)가 이탈되는 것을 방지하는 제2고정너트(36)가 나사 체결된다.
제2아우터 샤프트(22)의 상단 외면에는 세탁조(120)가 연결되는 제3연결부(94)가 형성되고, 제2인너 샤프트(32)의 상단 외면에는 펄세이터(130)가 연결되는 제4연결부(96)가 형성된다.
제3연결부(94) 및 제4연결부(96)는 제2아우터 샤프트(22) 및 제2인너 샤프트(32)의 외면에 형성된 돌기에 의해 세레이션(Serration) 결합되거나 스플라인 결합되는 구조를 가질 수 있고, 키홈을 형성하여 상호 키 결합되는 구조를 가질 수 있다.
제2아우터 샤프트(22)와 제2인너 샤프트(32) 사이에는 세탁수가 누수되는 것을 방지하는 제1시일(220)이 장착되고, 제2아우터 샤프트(22)와 베어링 하우징(10) 사이에는 세탁수가 누수되는 것을 방지하는 제2시일(210)이 장착된다.
제1아우터 샤프트(20)의 외면에는 제1베어링(26)이 배치되고, 제2아우터 샤프트(22)의 외면에는 제2베어링(28)이 배치되어, 아우터 샤프트(20,22)를 회전 가능하게 지지한다.
제1베어링(26)은 스테이터(60)에 설치되고, 제2베어링(28)은 베어링 하우징(10)에 설치된다. 이와 같이, 제1베어링(26)은 스테이터(60)에 설치되기 때문에 제1베어링을 설치하기 위한 별도의 베어링 하우징이 불필요하여 부품수를 줄일 수 있고, 제조공정을 단축하며 나아가 모터의 사이즈를 축소할 수 있다.
스테이터(60)는 도 6 내지 도 8에 도시된 바와 같이, 분할형으로 이루어지며 방사상으로 배열되는 다수의 스테이터 코어(62)와, 스테이터 코어(62)의 외주면에 감싸지는 비자성체인 보빈(64)과, 스테이터 코어(62)의 일측(내측)에 감겨지는 제1코일(66)과, 스테이터 코어(62)의 타측(외측)에 감겨지는 제2코일(68)과, 스테이터 코어(62)가 환형으로 배열되고 외조(110)에 고정되는 스테이터 지지체(102)를 포함한다.
스테이터 지지체(102)는 금형에 원주방향으로 스테이터 코어(62)를 일정 간격을 두고 배열한 후 인서트 몰딩에 의해 스테이터 코어(62)와 일체로 형성된다.
즉, 열경화성 수지, 예를 들어 폴리에스터와 같은 BMC(Bulk Molding Compound) 몰딩재로 몰딩하여 스테이터 지지체(102)을 인서트 몰딩 방식으로 성형하고, 이때 금형에 복수의 스테이터 코어(62)를 원주방향으로 일정 간격을 두고 배열하여 일체로 형성된다.
스테이터 지지체(102)는 인서트 몰딩에 의해 스테이터 코어와 일체로 형성되는 구조 이외에, 스테이터 코어(62)와 별도로 제조된 후 스테이터 지지체(102)와 볼트 체결되는 구조도 적용이 가능하다.
스테이터 지지체(102)는 스테이터 코어(62)가 환형으로 배열되어 고정되는 코어 고정부(104)와, 코어 고정부(104)에서 내측방향으로 연장되어 제1베어링(26)이 설치되는 제1베어링 설치부(106)와, 코어 고정부(104)에서 외측방향으로 연장되어 외조(110)에 고정되는 외조 고정부(108)를 포함한다.
제1베어링 설치부(106)는 스테이터 지지체(102)의 내면에 제1베어링(26)이 설치되도록 단차진 형태로 형성되어 제1베어링(26)의 이탈을 방지한다.
그리고, 외조 고정부(108)에는 체결홀(109)이 형성되어 베어링 하우징(10)에 볼트(230)로 체결된다.
베어링 하우징(10)은 금속 재질로 형성되고, 제2베어링(28)이 설치되는 제2베어링 설치부(12)와, 제2베어링 설치부(12)에서 상측방향으로 절곡되어 제2시일(210)이 장착되는 시일 장착부(14)와, 시일 장착부(14)에서 하측방향으로 절곡되어 원통 형태를 갖는 연결부(16)와, 연결부(16)의 하단에서 외측방향으로 수평하게 연장되어 스테이터 지지체(102) 및 외조(110)에 체결되는 평판부(18)를 포함한다.
평판부(18)에는 스테이터(60)에 형성되는 체결홀(109)과 연통되어 외조(100)에 볼트(230)로 체결되는 복수의 체결홀(19)이 형성된다.
스테이터 지지체(102)에는 상측방향으로 원통 형태로 연장되어 베어링 하우징(10)의 연결부(16) 내면에 접촉되는 제1정렬돌기(112)와, 제1정렬돌기(112)의 외측으로 간격을 두고 형성되어 베어링 하우징(10)의 평판부(18) 하면에 접촉되는 제2정렬돌기(114)가 각각 형성된다.
이와 같이, 스테이터(60)를 조립할 때 제1정렬돌기(112)가 베어링 하우징(10)의 내면에 접촉되어 좌우방향 위치를 정렬시키고, 제2정렬돌기(114)가 베어링 하우징(10)의 하면에 접촉되어 상하방향 위치를 정렬시킨다.
다른 실시예에 따른 스테이터 지지체(600)는 도 4에 도시된 바와 같이, 스테이터 코어(62)가 환형으로 배열되어 고정되는 코어 고정부(610)와, 코어 고정부(610)의 내면에서 하측방향으로 연장되어 유성기어 장치(70)의 외면을 감싸게 배치되는 커버부(620)와, 커버부(620)에서 내측방향으로 연장되어 제1베어링(26)이 설치되는 제1베어링 설치부(630)와, 코어 고정부(610)에서 외측방향으로 연장되어 외조(110)에 고정되는 외조 고정부(640)를 포함한다.
이와 같은 다른 실시예에 따른 스테이터 지지체(600)는 유성기어 장치(70)의 외면을 감싸는 커버부가 구비되어 유성기어 장치(70)를 보호하는 역할을 동시에 수행할 수 있다.
또 다른 실시예에 따른 스테이터 지지체(500)는 도 5에 도시된 바와 같이, 스테이터 코어(62)가 환형으로 배열되어 고정되는 코어 고정부(510)와, 코어 고정부(510)의 하면에서 내측방향으로 연장되어 제1베어링(26)이 설치되는 제1베어링 설치부(520)와, 코어 고정부(510)의 상면에서 외측방향으로 연장되어 외조(110)에 고정되는 외조 고정부(530)를 포함한다.
이와 같이, 다른 실시예에 따른 스테이터 지지체(500)는 스테이터 코어가 고정되는 코어 고정부(510)의 상측에서 외측방향으로 연장되어 외조(110)에 고정되는 외조 고정부(530)가 형성되고, 코어 고정부(510)의 하측에서 내측방향으로 연장되어 제1베어링(26)이 설치되는 제1베어링 고정부(520)가 형성되므로 모터의 전체 높이를 줄일 수 있다.
인너 로터(40)는 스테이터(60)의 내면에 일정 갭을 두고 배치되는 제1마그넷(42)과, 제1마그넷(42)의 배면에 배치되는 제1백요크(44)와, 인서트 몰딩에 의해 제1마그넷(42) 및 제1백요크(44)와 일체로 형성되는 인너 로터 지지체(46)를 포함한다.
여기에서, 인너 로터 지지체(46)는 열경화성 수지, 예를 들어 폴리에스터와 같은 BMC(Bulk Molding Compound) 몰딩재로 몰딩하여 제1마그넷(42) 및 제1백요크(44)와 일체로 형성된다. 따라서, 인너 로터(40)는 방수 성능을 가질 수 있고, 제조 공정을 단축할 수 있다.
인너 로터 지지체(46)는 중앙이 개구된 원판 형태로 형성되고, 그 내면은 제1아우터 샤프트(20)의 제1연결부(90)에 연결되어 아우터 샤프트(20)와 같이 회전되고, 그 외면에는 제1마그넷(42) 및 제1백요크(44)가 일체로 형성된다.
그리고, 아우터 로터(50)는 스테이터(60)의 외면에 일정 갭을 두고 배치되는 제2마그넷(52)과, 제2마그넷(52)의 배면에 배치되는 제2백요크(54)와, 인서트 몰딩에 의해 제2마그넷(52) 및 제2백요크(54)와 일체로 형성되는 아우터 로터 지지체(56)을 포함한다.
여기에서, 아우터 로터 지지체(56)는 열경화성 수지, 예를 들어 폴리에스터와 같은 BMC(Bulk Molding Compound) 몰딩재로 몰딩하여 제2마그넷(52) 및 제2백요크(54)와 일체로 형성된다. 따라서, 아우터 로터(50)는 방수 성능을 가질 수 있고, 제조 공정을 단축할 수 있다.
아우터 로터 지지체(56)는 중앙이 개구된 원판 형태로 형성되고, 그 내면은 제1인너 샤프트(30)의 제2연결부(92)에 연결되어 제1인너 샤프트(30)와 같이 회전되고, 그 외면에는 제2마그넷(52) 및 제2백요크(54)가 일체로 형성된다.
스테이터 코어(62)는 도 6 내지 도 8에 도시된 바와 같이, 제1코일(66)이 감겨지는 제1티스부(310)와, 제1티스부(310)의 반대쪽에 형성되어 제2코일(68)이 감겨지는 제2티스부(312)와, 제1티스부(310)와 제2티스부(312) 사이를 구획하는 구획부(314)와, 구획부(314)의 측방향 양쪽 끝부분에 형성되어 코어들(62) 사이를 상호 연결하는 결합부(320,322)를 포함한다.
여기에서, 제1코일(66)로는 제1인버터(530)의 제1출력이 인가되고, 제2코일(68)에는 제2인버터(540)의 제2출력이 인가되기 때문에, 제1코일(66)로만 제1출력이 인가되면 인너 로터(40)만 회전되고, 제2코일(68)로만 제2출력이 인가되면 아우터 로터(50)만 회전되고, 제1코일(66)과 제2코일(68)에 동시에 제1 및 제2 출력이 인가되면 인너 로터(40)와 아우터 로터(50)가 동시에 회전된다.
구획부(314)의 중앙에는 관통홀(332)이 형성되어 제1코일(66)에 의해 형성되는 제1자기 회로와 제2코일(68)에 의해 형성되는 제2자기 회로가 서로 간섭되는 것을 방지하는 역할을 한다. 이러한 관통홀(332)은 원형 이외에 슬롯 형태로 구획부(314)의 측방향으로 길게 형성되는 것도 가능하다.
제1티스부(310)의 끝부분에는 제1마그넷(44)과 마주보게 배치되는 제1플랜지부(316)가 형성되고, 제2티스부(312)의 끝부분에는 제2마그넷(54)과 마주보게 배치되는 제2플랜지부(318)가 형성된다.
제1플랜지(316)와 제2플랜지부(318)는 인너 로터(40)의 제1마그넷(42)과, 아우터 로터(50)의 제2마그넷(52)에 각각 대응하도록 소정 곡률로 내향 및 외향 곡면을 이루고 있다. 따라서, 스테이터 코어(62)의 내주면 및 외주면의 진원도가 높아지므로 스테이터(60)의 내주면 및 외주면과 제1마그넷(42) 및 제2마그넷(52)과의 사이가 근접되면서도 일정한 자기갭(gap)을 유지할 수 있다.
스테이터 코어들(22) 사이는 자기회로를 형성할 수 있도록 상호 직접 연결된 구조를 가져야된다. 따라서, 결합부(320,322)는 스테이터 코어들(22) 사이가 서로 통전될 수 있도록 직접 연결된 구조를 갖는다.
이러한 결합부(320,322)는 일 예로, 구획부(16)의 일측에 결합돌기(322)가 돌출되게 형성되고, 구획부(314)의 타측에 결합돌기(322)가 끼움 결합되는 결합홈(320)이 형성되어, 결합돌기(322)를 결합홈(320)에 끼워 조립하면 스테이터 코어들(62)이 방사상으로 배열되고, 상호 직접 연결된 구조를 갖게 된다.
그리고, 결합부는 이러한 구조 이외에, 스테이터 코어의 구획부 양쪽 끝부분에 핀홀을 형성하고, 코어들 사이를 상호 접촉시킨 상태에서 핀 부재를 두 스테이터 코어의 핀홀 사이에 끼움 결합하여 스테이터 코어들 사이를 연결하는 구조도 적용이 가능하고, 스테이터 코어들 사이를 상호 접촉시킨 상태에서 코킹부재를 이용하여 코킹하는 방법도 적용이 가능하다.
스테이터 지지체(102)의 외측에는 제1 및 제2 인버터(530,540)의 출력을 제1코일(66) 및 제2코일(68)로 인가하는 커넥터(162,164)가 설치된다. 커넥터(162,164)는 세탁조(110)를 회전시키기 위한 제1 및 제2 인버터(530,540)의 제1 및 제2 출력 즉, 제1코일(66)로 인가되는 제1출력이 연결되는 제1커넥터(162)와, 펄세이터(130)를 회전시키기 위한 제2출력 즉, 제2코일(68)로 인가되는 제2출력이 연결되는 제2커넥터(164)를 포함한다.
스테이터 지지체(102)의 외측면에는 제1커넥터(162)가 고정되는 제1커넥터 고정부(172)와, 제2커넥터(164)가 고정되는 제2커넥터 고정부(174)가 각각 형성된다.
여기에서, 제1커넥터 고정부(172)와 제2커넥터 고정부(174)는 스테이터 지지체(102)를 인서트 사출할 때 일체로 형성된다. 즉, 제1커넥터(162)와 제2커넥터(164)를 금형에 배치한 후 인서트 몰딩을 실시하면 제1커넥터 고정부(172)가 제1커넥터(162)의 외면에 감싸져 제1커넥터(162)가 고정되고, 제2커넥터 고정부(174)가 제2커넥터(164)의 외면에 감싸져 제2커넥터(174)가 고정된다.
이와 같은 본 발명의 세탁기 모터는 인너 로터(40)와 제1코일(66)이 감겨지는 스테이터(60)의 일측 간에 제1자기 회로(L1)를 형성하고, 아우터 로터(50)와 제2코일(68)이 감겨지는 스테이터(60)의 타측 간에 제2자기 회로(L2)를 형성하여 각각 서로 독립적인 한 쌍의 자기 회로를 형성하므로 인너 로터(40)와 아우터 로터(50)가 각각 별도로 구동될 수 있다.
구체적으로, 제1자기회로(L1)는 N극의 제1마그넷(42), 제1코일(66)이 감겨지는 제1티스부(310), 구획부(314)의 내측부분, 인접한 제1티스부(310), N극의 제1마그넷(42)에 인접한 S극의 제1마그넷(42) 및 제1백요크(44)를 경유한다.
그리고, 제2자기회로(L2)는 N극의 제2마그넷(52), N극의 제2마그넷(52)에 대향하고 제2코일(68)이 감겨지는 제2티스부(312), 구획부(314)의 외측부분, 인접한 제2티스부(312), S극의 제2마그넷(54), 제2백요크(54)를 경유한다.
이와 같이, 구성되는 본 발명에 따른 세탁기 모터의 작용을 다음에서 설명한다.
도 9를 참고하면, 본 발명에 따른 세탁기 제어장치는 제1코일(66)로 인가되는 제1구동신호를 발생하는 제1인버터(530)와, 제2코일(68)로 인가되는 제2구동신호를 발생하는 제2인버터(540)와, 상기 제1인버터(530), 제2인버터(540) 및 세탁기 전체를 제어하는 제어유닛(500)을 포함한다.
상기 제어유닛(500)은 상기와 같이 제1 및 제2 인버터(530,540)에 대한 제어와 동시에 세탁기 전체를 제어하도록 시스템 제어부 역할을 하거나, 또는 세탁기 본체의 시스템 제어부로부터 사용자가 설정한 세탁코스에 따라 결정되는 세탁 제어신호를 수신한 후 이에 기초하여 제1 및 제2 인버터(530,540)에 개별적인 제어신호를 인가하는 드라이버 전용의 제어장치로 구성할 수 있다. 상기 제어유닛(500)은 마이콤이나 마이크로프로세서와 같은 신호처리장치로 구성될 수 있다.
본 발명에서는 세탁기 모터(140)가 더블 로터-더블 스테이터로 구성된 쌍동력 구조로 이루어진 것이고, 예를 들어, U, V, W 3상 구동방식으로 모터 제어가 이루어진다. 따라서, 스테이터(60)의 제1 및 제2 코일(66,68)도 각각 U, V, W 3상 코일로 구성된다. 스테이터(60)에서 중심방향으로 연장된 제1티스부(310)에 권선된 제1코일(66)은 인너 스테이터를 형성하고, 방사방향으로 연장된 제2티스부(312)에 권선된 제2코일(68)은 아우터 스테이터를 형성한다.
그 결과, 인너 스테이터에 의해 회전이 이루어지는 인너 로터(40)는 인너 모터를 형성하고, 아우터 스테이터에 의해 회전이 이루어지는 아우터 로터(50)는 아우터 모터를 형성하며, 상기 인너 모터와 아우터 모터는 각각 BLDC 방식으로 제어가 이루어지도록 모터 구조가 설계되고 제1 및 제2 인버터에서는 예를 들어, 6-스텝 방식의 구동 제어가 이루어진다.
상기 제1 및 제2 인버터는 각각 토템폴 구조로 접속된 3쌍의 스위칭 트랜지스터로 구성될 수 있으며, 각각의 인버터의 3상 출력은 제1 및 제2 코일(66,68)의 U, V, W 3상 코일로 인가된다.
제1 및 제2 인버터를 제어하는 제어유닛은 각각 예를 들어, 홀 센서(Hall sensor)로 이루어진 제1 및 제2 로터 위치 감지센서로부터 인너 로터(40)와 아우터 로터(50)의 회전위치를 검출하여 PWM 방식의 제어신호를 제1 및 제2 인버터로 인가하면, 제1 및 제2 인버터는 U, V, W 3상 출력을 제1 및 제2 코일(66,68)의 U, V, W 3상 코일로 인가하여 인너 로터(40)와 아우터 로터(50)를 회전 구동한다.
이에 따라 본 발명에서는 제어유닛에서 제1 및 제2 인버터를 제어하여 제1 및 제2 코일(66,68)에 선택적 및 독립적으로 제1 및 제2 인버터 출력을 인가함에 따라 인너 로터(40)와 아우터 로터(50)를 선택적 및 독립적으로 회전 구동시킬 수 있다.
또한, 상기 유성기어 장치((70)는 제1 및 제2 아우터 샤프트(20,22) 사이에 링기어(72)가 연결되어 있고, 제1 및 제2 아우터 샤프트(20,22)는 각각 양방향으로 회전 가능한 제1 및 제2 베어링(26,28)에 의해 양방향으로 회전 가능하게 지지되어 있으므로, 상기 유성기어 장치((70)도 양방향으로 회전 가능하게 지지되어 있다.
따라서, 본 발명에 따른 세탁기는 더블 로터-더블 스테이터로 구성된 세탁기 모터(140)를 사용하며, 제1 및 제2 인버터를 사용하여 U, V, W 3상 출력을 제1 및 제2 코일(66,68)의 U, V, W 3상 코일로 인가하여 인너 로터(40)와 아우터 로터(50)를 독립적으로 회전 구동시킨다. 그 결과, 인너 로터(40)와 아우터 로터(50)의 회전력은 인너 샤프트(30,32)와 아우터 샤프트(20,22) 및 유성기어 장치(70)를 통하여 펄세이터(130)와 세탁조(120)에 인가함에 따라 펄세이터(130)와 세탁조(120)를 각각 독립적으로 구동하며, 또한 유성기어 장치(70)는 양방향 회전이 가능한 제1 및 제2 베어링(26,28)에 의해 지지되어 있기 때문에 펄세이터(130) 및 세탁조(120)의 회전방향과 회전속도를 제어하여 다양한 수류를 형성할 수 있다.
이하에 상기한 세탁기 모터(140)를 사용한 세탁기 제어에 대하여 설명한다.
먼저, 세탁시 펄세이터(130)만 구동시킬 경우, 제2인버터(540)로부터 제2코일(68)로 제2출력이 인가되면 아우터 로터(50)가 회전되고, 아우터 로터(50)에 연결된 제1인너 샤프트(30)가 회전된다. 그리고, 제1인너 샤프트(30)와 연결된 유성기어 장치(70)에 의해 회전속도가 감속되어 제2인너 샤프트(32)로 전달되고, 제2인너 샤프트(32)에 연결된 펄세이터(130)가 회전된다.
이와 같이, 유성기어 장치(70)에 의해 펄세이터(130)로 회전속도는 감속되고 토크는 증가되므로 대용량 세탁기에 적용이 가능하다.
그리고, 탈수 행정 및 헹굼 행정시 펄세이터(130)와 탈수조(120)를 동시에 회전시킬 경우, 제1코일(66)과 제2코일(68)에 동시에 제1 및 제2 인버터(530,540)로부터 각각 제1 및 제2 출력이 인가된다. 그러면 자기회로(L1)에 의해 인너 로터(40)가 회전되고 인너 로터(40)와 연결된 아우터 샤프트(20)가 회전되면서 세탁조(120)를 회전시킨다. 그리고, 자기회로(L2)에 의해 아우터 로터(50)가 회전되면서 아우터 로터(50)와 연결된 인너 샤프트(30)이 회전되면서 펄세이터(130)를 회전시킨다.
또한, 세탁 행정, 헹굼 행정, 세탁물의 엉킴 등을 제거하기 위한 포풀림 행정을 위해 펄세이터(130)와 세탁조(120)를 서로 반대로 회전시킬 경우, 제1코일(66)과 제2코일(68)에 동시에 또는 시간차를 두고 인버터 출력이 인가되고, 제1코일로 인가되는 제1인버터의 제1출력과 제2코일로 인가되는 제2인버터의 제2출력이 각각 독립적으로 제어되어 인너 로터(40)와 아우터 로터(50)가 서로 반대방향으로 회전되면서 펄세이터(130)와 세탁조(120)를 서로 반대방향으로 회전킬 수 있다.
더욱이, 세탁 행정 및 헹굼 행정시 펄세이터(130)와 탈수조(120)를 동일방향 및 동일한 속도로 회전시키거나, 동일방향 및 서로 다른 속도로 회전시킴에 의해 다양한 세탁 수류를 형성할 수 있다.
상기한 바와 같이, 본 발명에서는 펄세이터(130)와 세탁조(120)를 서로 다른 방향 및 동일한 속도로 구동시킬 경우, 강한 세탁 수류를 형성할 수 있고, 펄세이터(130)와 세탁조(120)를 서로 다른 방향 및 다른 속도로 구동시킬 경우, 여러 가지 패턴의 강한 세탁 수류를 형성할 수 있다.
특히, 펄세이터(130)와 세탁조(120)를 서로 다른 방향 및 다른 속도로 구동시킬 경우, 펄세이터에 의한 강한 수직 상승/하강 수류와 세탁조에 의한 와류가 생성되어 세정도 향상과 헹굼 성능 향상을 도모할 수 있다.
또한, 본 발명에서는 펄세이터(130)와 세탁조(120)의 회전 속도를 가변시킴에 의해 리듬 수류를 형성할 수 있고, 그 결과 리듬 세탁을 구현할 수 있다. 즉, 펄세이터(130)와 세탁조(120)의 회전 속도가 급격하게 가변되도록 제어할 경우, 강한 수류 및 리듬 수류를 형성하면서 세탁물의 손상을 방지할 수 있다.
그리고, 다양한 세탁수류를 형성할 수 있도록 펄세이터(130)와 세탁조(120)를 시간차를 두고 회전시킬 수 있어 다양한 세탁 수류를 형성할 수 있다.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
본 발명은 세탁조와 펄세이터가 각각 별도로 구동되도록 하여 다양한 세탁 수류를 형성할 수 있는 세탁기 모터 및 세탁기, 특히 전자동 세탁기에 적용된다.

Claims (15)

  1. 아우터 샤프트와 연결되는 인너 로터;
    인너 샤프트와 연결되는 아우터 로터;
    상기 인너 로터와 아우터 로터 사이에 공극을 두고 배치되는 스테이터를 포함하고,
    상기 아우터 샤프트는 인너 로터와 동일한 속도로 회전되고, 상기 인너 샤프트는 토크를 증가시킬 수 있도록 상기 아우터 로터의 회전속도에 비해 감속되고,
    상기 아우터 샤프트의 외면에는 아우터 샤프트를 회전 가능하게 지지하는 제1베어링 및 제2베어링이 배치되고, 상기 제1베어링은 상기 스테이터에 설치되는 것을 특징으로 하는 세탁기 모터.
  2. 제1항에 있어서,
    상기 아우터 샤프트는 인터 로터에 연결되는 제1아우터 샤프트와, 세탁조에 연결되는 제2아우터 샤프트를 포함하고,
    상기 인너 샤프트는 아우터 로터에 연결되는 제1인너 샤프트와, 펄세이터에 연결되는 제2인너 샤프트를 포함하는 것을 특징으로 하는 세탁기 모터.
  3. 제2항에 있어서,
    상기 제1인너 샤프트와 제2인너 샤프트 사이에는 회전속도를 감속시키는 유성기어 장치가 설치되는 것을 특징으로 하는 세탁기 모터.
  4. 제3항에 있어서,
    상기 유성기어 장치는 제1아우터 샤프트와 제2아우터 샤프트 사이를 연결하는 링기어와, 상기 제1인너 샤프트에 연결되는 선기어와, 상기 선기어의 외면 및 링기어의 내면에 기어 물림되는 다수의 유성기어와, 상기 다수의 유성기어가 회전 가능하게 지지되고 제2인너 샤프트에 연결되는 캐리어를 포함하는 것을 특징으로 하는 세탁기 모터.
  5. 제2항에 있어서,
    상기 제1아우터 샤프트의 외면에는 제1베어링이 배치되고, 제2아우터 샤프트의 외면에는 제2베어링이 배치되며,
    상기 제1베어링은 스테이터에 설치되고, 상기 제2베어링은 베어링 하우징에 설치되는 것을 특징으로 하는 세탁기 모터.
  6. 제1항에 있어서,
    상기 스테이터는 분할형으로 이루어지며 방사상으로 배열되어 조립되는 다수의 스테이터 코어와, 상기 스테이터 코어의 외주면에 감싸지는 보빈과, 상기 스테이터 코어의 일측에 감겨지는 제1코일과, 상기 스테이터 코어의 타측에 감겨지는 제2코일과, 상기 스테이터 코어를 환형으로 배열하고 제1베어링이 설치되는 스테이터 지지체를 포함하는 것을 특징으로 하는 세탁기 모터.
  7. 제6항에 있어서,
    상기 스테이터 지지체는 스테이터 코어가 환형으로 배열되어 고정되는 코어 고정부와,
    상기 코어 고정부에서 내측방향으로 연장되어 제1베어링이 설치되는 제1베어링 설치부와,
    상기 코어 고정부에서 외측방향으로 연장되어 외조에 고정되는 외조 고정부를 포함하는 것을 특징으로 하는 세탁기 모터.
  8. 제6항에 있어서,
    상기 스테이터 지지체는 스테이터 코어가 환형으로 배열되어 고정되는 코어 고정부와,
    상기 코어 고정부의 내면에서 하측방향으로 연장되어 유성기어 장치의 외면을 감싸게 배치되는 커버부와,
    상기 연장부에서 내측방향으로 연장되어 제1베어링이 설치되는 제1베어링 설치부와,
    상기 코어 고정부에서 외측방향으로 연장되어 외조에 고정되는 외조 고정부를 포함하는 것을 특징으로 하는 세탁기 모터.
  9. 제6항에 있어서,
    상기 스테이터 지지체는 스테이터 코어가 환형으로 배열되어 고정되는 코어 고정부와,
    상기 코어 고정부의 하면에서 내측방향으로 연장되어 제1베어링이 설치되는 제1베어링 설치부와,
    상기 코어 고정부의 상면에서 외측방향으로 연장되어 외조에 고정되는 외조 고정부를 포함하는 것을 특징으로 하는 세탁기 모터.
  10. 제6항에 있어서,
    상기 스테이터 코어는 제1코일이 감겨지는 제1티스부와,
    상기 제1티스부의 반대쪽에 형성되어 제2코일이 감겨지는 제2티스부와,
    상기 제1티스부와 제2티스부 사이를 구획하는 구획부와,
    상기 구획부의 양쪽 끝부분에 형성되어 상기 스테이터 코어들 사이를 상호 연결하는 결합부를 포함하는 세탁기 모터.
  11. 제6항에 있어서,
    상기 스테이터 지지체는 인서트 몰딩에 의해 스테이터 코어와 일체로 형성되는 것을 특징으로 하는 세탁기 모터.
  12. 아우터 샤프트와 연결되는 인너 로터;
    인너 샤프트와 연결되는 아우터 로터;
    상기 인너 로터와 아우터 로터 사이에 공극을 두고 배치되는 스테이터; 및
    상기 인너 샤프트에 설치되어 속도를 감속시키는 유성기어 장치를 포함하고,
    상기 아우터 샤프트의 외면에는 아우터 샤프트를 회전 가능하게 지지하는 제1베어링 및 제2베어링이 배치되고, 상기 제1베어링은 상기 스테이터에 설치되는 것을 특징으로 하는 세탁기 모터.
  13. 세탁수를 수용하는 외조;
    상기 외조의 내부에 회전 가능하게 배치되어 세탁과 탈수를 수행하는 세탁조;
    상기 세탁조 내부에 회전 가능하게 배치되어 세탁 수류를 형성하는 펄세이터; 및
    상기 세탁조와 펄세이터를 동시에 또는 선택적으로 구동시키는 세탁기 모터;를 포함하며,
    상기 세탁기 모터는
    선단부가 상기 펄세이터와 연결되는 아우터 샤프트와 연결되는 인너 로터;
    선단부가 상기 세탁조와 연결되는 인너 샤프트와 연결되는 아우터 로터;
    상기 인너 로터와 아우터 로터 사이에 공극을 두고 배치되는 스테이터; 및
    상기 인너 샤프트에 설치되어 속도를 감속시키는 유성기어 장치를 포함하고,
    상기 아우터 샤프트의 외면에는 아우터 샤프트를 회전 가능하게 지지하는 제1베어링 및 제2베어링이 배치되고, 상기 제1베어링은 상기 스테이터에 설치되는 것을 특징으로 하는 세탁기.
  14. 제13항에 있어서,
    상기 펄세이터와 세탁조를 서로 다른 방향 및 다른 속도로 구동하여, 패턴 형태의 강한 세탁 수류를 형성하거나,
    상기 펄세이터와 세탁조를 서로 다른 방향 및 동일한 속도로 구동하여 세정도를 높이는 강한 세탁 수류를 형성하는 것을 특징으로 하는 세탁기.
  15. 제13항에 있어서,
    상기 펄세이터와 세탁조를 같은 방향 및 다른 속도로 구동하여 세탁물 손상을 방지하는 와류를 형성하는 것을 특징으로 하는 세탁기.
PCT/KR2014/006550 2013-07-19 2014-07-18 세탁기 모터 및 이를 구비한 세탁기 WO2015009106A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/903,125 US10323350B2 (en) 2013-07-19 2014-07-18 Washing machine motor and washing machine comprising same
CN201480040852.1A CN105393442A (zh) 2013-07-19 2014-07-18 洗衣机电机及设置有该电机的洗衣机

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0085533 2013-07-19
KR20130085533 2013-07-19
KR20130118047 2013-10-02
KR10-2013-0118047 2013-10-02

Publications (1)

Publication Number Publication Date
WO2015009106A1 true WO2015009106A1 (ko) 2015-01-22

Family

ID=52346477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006550 WO2015009106A1 (ko) 2013-07-19 2014-07-18 세탁기 모터 및 이를 구비한 세탁기

Country Status (4)

Country Link
US (1) US10323350B2 (ko)
KR (1) KR101619472B1 (ko)
CN (1) CN105393442A (ko)
WO (1) WO2015009106A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213525A1 (en) 2016-06-10 2017-12-14 Fisher & Paykel Appliances Limited Direct-drive electric motor arrangement
CN109477279A (zh) * 2016-07-18 2019-03-15 三星电子株式会社 洗衣机

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102253314B1 (ko) * 2014-02-19 2021-05-17 엘지전자 주식회사 세탁방법
JP6820090B2 (ja) * 2015-07-21 2021-01-27 三星電子株式会社Samsung Electronics Co.,Ltd. 洗濯機、および、そのモータ
KR102595183B1 (ko) * 2015-07-21 2023-10-30 삼성전자주식회사 세탁기용 모터, 및 이를 구비한 세탁기
JP6750161B2 (ja) * 2015-12-01 2020-09-02 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. ドラム式洗濯機
US10326323B2 (en) 2015-12-11 2019-06-18 Whirlpool Corporation Multi-component rotor for an electric motor of an appliance
WO2018021871A1 (ko) * 2016-07-28 2018-02-01 삼성전자주식회사 세탁기
US10704180B2 (en) 2016-09-22 2020-07-07 Whirlpool Corporation Reinforcing cap for a tub rear wall of an appliance
CN108336838A (zh) * 2017-01-20 2018-07-27 德昌电机(深圳)有限公司 电机
CN106968083B (zh) * 2017-04-18 2021-05-04 青岛胶南海尔洗衣机有限公司 洗衣机减速器及洗衣机
US10693336B2 (en) 2017-06-02 2020-06-23 Whirlpool Corporation Winding configuration electric motor
EP3701075B1 (en) * 2017-12-20 2022-02-16 Samsung Electronics Co., Ltd. Washing machine and motor
WO2019124995A1 (en) * 2017-12-20 2019-06-27 Samsung Electronics Co., Ltd. Washing machine and control method of the same
CN110048566A (zh) 2018-01-12 2019-07-23 开利公司 双转子式无芯电磁电机
CN108400677B (zh) * 2018-03-25 2019-07-02 如皋久源传动机械有限公司 双转子输入行星齿轮减速机
JP2020089403A (ja) * 2018-12-03 2020-06-11 日立グローバルライフソリューションズ株式会社 洗濯機
US11214910B2 (en) * 2019-11-11 2022-01-04 Haier Us Appliance Solutions, Inc. Washing machine appliance and motor assembly therefor
US11346032B2 (en) * 2019-11-11 2022-05-31 Haier Us Appliance Solutions, Inc. Washing machine appliance and motor assembly therefor
JP7251511B2 (ja) * 2020-04-06 2023-04-04 トヨタ自動車株式会社 リターダ付回転電機
CN112311174A (zh) * 2020-05-29 2021-02-02 深圳市一吉制造有限公司 一种新型四定子四转子的组合节能电机
CN112311178A (zh) * 2020-05-29 2021-02-02 深圳市一吉制造有限公司 一种新型混波永磁节能电机
CN112311175A (zh) * 2020-05-29 2021-02-02 深圳市一吉制造有限公司 一种新型两定子四转子的组合节能电机
CN112311176A (zh) * 2020-05-29 2021-02-02 深圳市一吉制造有限公司 一种新型两定子两转子的组合节能电机
CN112583221A (zh) * 2020-12-01 2021-03-30 西北工业大学 一种用于水下航行器的大功率差对转电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040071395A (ko) * 2003-02-06 2004-08-12 엘지전자 주식회사 전자동 세탁기의 구동장치
KR20050122556A (ko) * 2004-06-24 2005-12-29 엘지전자 주식회사 세탁기의 모터
KR20060006418A (ko) * 2004-07-16 2006-01-19 엘지전자 주식회사 세탁기의 구동부
KR20080092023A (ko) * 2007-04-10 2008-10-15 주식회사 아모텍 세탁기의 동력 전달 장치, 이를 이용한 세탁기의 구동 장치및 전자동 세탁기
KR20130044743A (ko) * 2011-10-24 2013-05-03 엘지전자 주식회사 세탁기의 운전 및 제어방법
KR20130051578A (ko) * 2011-11-10 2013-05-21 주식회사 아모텍 세탁기용 모터, 세탁기 모터 제조방법 및 이를 구비한 세탁기

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971780A (ja) * 1982-10-18 1984-04-23 松下電器産業株式会社 脱水洗濯機の駆動装置
JPS60108087A (ja) * 1983-11-18 1985-06-13 松下電器産業株式会社 全自動洗濯機
JP3524376B2 (ja) * 1998-03-31 2004-05-10 株式会社東芝 脱水兼用洗濯機
KR100504867B1 (ko) * 2003-01-16 2005-07-29 엘지전자 주식회사 인덕션모터를 구비한 드럼 세탁기
DE102004049549A1 (de) * 2004-03-24 2005-10-13 Diehl Ako Stiftung & Co. Kg Motor als Direktantrieb und Verfahren zur Montage des Motors
KR100548310B1 (ko) 2004-07-13 2006-02-02 엘지전자 주식회사 클러치 스프링을 구비한 세탁기
US20070125135A1 (en) * 2005-11-21 2007-06-07 Kim Young S Washing machine
US7576465B2 (en) * 2006-10-26 2009-08-18 Deere & Company Dual rotor electromagnetic machine
KR101140924B1 (ko) * 2010-06-23 2012-05-03 주식회사 아모텍 더블 스테이터-더블 로터형 모터 및 이를 이용한 세탁기의 직결형 구동 장치
KR101345326B1 (ko) * 2011-12-26 2013-12-30 주식회사 아모텍 세탁기용 모터 구동장치 및 구동방법
WO2013174157A1 (zh) * 2012-05-24 2013-11-28 Chen Chang 洗衣机双匀动力输出方法、装置、洗衣机及洗涤方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040071395A (ko) * 2003-02-06 2004-08-12 엘지전자 주식회사 전자동 세탁기의 구동장치
KR20050122556A (ko) * 2004-06-24 2005-12-29 엘지전자 주식회사 세탁기의 모터
KR20060006418A (ko) * 2004-07-16 2006-01-19 엘지전자 주식회사 세탁기의 구동부
KR20080092023A (ko) * 2007-04-10 2008-10-15 주식회사 아모텍 세탁기의 동력 전달 장치, 이를 이용한 세탁기의 구동 장치및 전자동 세탁기
KR20130044743A (ko) * 2011-10-24 2013-05-03 엘지전자 주식회사 세탁기의 운전 및 제어방법
KR20130051578A (ko) * 2011-11-10 2013-05-21 주식회사 아모텍 세탁기용 모터, 세탁기 모터 제조방법 및 이를 구비한 세탁기

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213525A1 (en) 2016-06-10 2017-12-14 Fisher & Paykel Appliances Limited Direct-drive electric motor arrangement
CN109565220A (zh) * 2016-06-10 2019-04-02 菲舍尔和佩克尔应用有限公司 直接传动电动机布置
EP3469693A4 (en) * 2016-06-10 2019-12-25 Fisher&Paykel Appliances Limited ELECTRIC MOTOR ARRANGEMENT WITH DIRECT DRIVE
CN109565220B (zh) * 2016-06-10 2022-04-26 菲舍尔和佩克尔应用有限公司 直接传动电动机布置
CN109477279A (zh) * 2016-07-18 2019-03-15 三星电子株式会社 洗衣机
EP3453795A4 (en) * 2016-07-18 2019-07-17 Samsung Electronics Co., Ltd. WASHING MACHINE
US10982371B2 (en) 2016-07-18 2021-04-20 Samsung Electronics Co., Ltd. Washing machine

Also Published As

Publication number Publication date
KR101619472B1 (ko) 2016-05-11
US10323350B2 (en) 2019-06-18
US20160376741A1 (en) 2016-12-29
CN105393442A (zh) 2016-03-09
KR20150010926A (ko) 2015-01-29

Similar Documents

Publication Publication Date Title
WO2015009106A1 (ko) 세탁기 모터 및 이를 구비한 세탁기
WO2015009104A1 (ko) 세탁기 모터 및 이를 구비한 세탁기
WO2013070008A1 (ko) 세탁기용 모터, 세탁기용 모터 제조방법 및 이를 구비한 세탁기
WO2015167255A1 (ko) 세탁기 구동장치 및 이를 구비한 세탁기
WO2013100440A1 (ko) 세탁기용 모터 구동장치 및 구동방법
WO2012169774A2 (ko) 직결식 세탁기의 구동장치
WO2016003086A1 (ko) 세탁기 및 세탁기 구동방법
WO2011162501A2 (ko) 더블 스테이터/더블 로터형 모터 및 이를 이용한 세탁기의 직결형 구동 장치
WO2016003087A1 (ko) 세탁기 및 세탁기 구동방법
KR101704742B1 (ko) 세탁기 구동장치 및 이를 구비한 세탁기
WO2011162500A2 (ko) 더블 스테이터/더블 로터형 모터 및 이를 이용한 세탁기의 직결형 구동 장치
WO2014058212A1 (en) Washing machine having dual-drum and assembly method thereof
WO2013015593A1 (en) Motor usable with washing machine and washing machine having the same
WO2016080770A1 (ko) 세탁기 및 세탁기 구동방법
AU2017355869B2 (en) Motor for washing machine and washing machine having the same
WO2012057523A2 (ko) 방열 구조를 구비한 슬림형 모터 및 직결식 구동 방식을 구비한 세탁기
WO2015020454A1 (ko) 모터 및 이를 포함하는 세탁기
WO2015050397A1 (ko) 세탁기 모터 및 이를 구비한 세탁기
WO2018016733A1 (ko) 세탁기
KR20140079699A (ko) 세탁기의 구동장치 및 이를 구비한 세탁기
WO2016080753A1 (ko) 세탁기 모터 및 이를 구비한 세탁기
WO2016122170A1 (ko) 드럼 구동장치, 이를 구비한 드럼 세탁기 및 구동방법
WO2018236159A1 (ko) 세탁물 처리장치
WO2012074267A2 (ko) 분할 코어형 스테이터 및 이를 이용한 비엘디씨 모터
WO2014098475A1 (ko) 세탁기의 구동장치 및 이를 구비한 세탁기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480040852.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826569

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14903125

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826569

Country of ref document: EP

Kind code of ref document: A1