WO2012074267A2 - 분할 코어형 스테이터 및 이를 이용한 비엘디씨 모터 - Google Patents

분할 코어형 스테이터 및 이를 이용한 비엘디씨 모터 Download PDF

Info

Publication number
WO2012074267A2
WO2012074267A2 PCT/KR2011/009144 KR2011009144W WO2012074267A2 WO 2012074267 A2 WO2012074267 A2 WO 2012074267A2 KR 2011009144 W KR2011009144 W KR 2011009144W WO 2012074267 A2 WO2012074267 A2 WO 2012074267A2
Authority
WO
WIPO (PCT)
Prior art keywords
support bracket
coupling
stator
split
unit core
Prior art date
Application number
PCT/KR2011/009144
Other languages
English (en)
French (fr)
Other versions
WO2012074267A3 (ko
Inventor
김병수
Original Assignee
주식회사 아모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모텍 filed Critical 주식회사 아모텍
Publication of WO2012074267A2 publication Critical patent/WO2012074267A2/ko
Publication of WO2012074267A3 publication Critical patent/WO2012074267A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/12Machines characterised by the bobbins for supporting the windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present invention relates to a split core type stator and a BCD motor using the same, and more particularly, by winding a coil continuously in a plurality of split cores and coupling and joining adjacent bobbins, and then fixing them using a support bracket.
  • the present invention relates to a split core type stator capable of reducing weight, slimming, and assembling productivity of the stator by excluding integrated injection molding by an insert molding method, and a BLC motor using the same.
  • the core type BLDC motor has a structure in which the magnetic circuit is symmetrical in the radial direction about the axis, so it has low axial vibration noise, is suitable for low-speed rotation, and has a low performance due to the extremely small portion of the air gap in the direction of the magnetic path.
  • High magnetic flux density can be obtained even by using magnet or reducing the amount of magnet, which has the advantage of high torque and high efficiency.
  • stator core in the fully split type determines the competitiveness of the motor because the coil can be wound around the split core with high efficiency using a low cost universal winding machine. This is a very important factor.
  • an expensive dedicated winding machine is used and a low efficiency winding is made, thus increasing the manufacturing cost of the motor.
  • a radial core type double rotor type BLDC motor that can utilize the advantages of the axial double rotor type and the radial core type and improve the disadvantage has been proposed in Korean Patent No. 432954 by the present applicant.
  • the stator core is implemented with a plurality of split cores, the coil winding may be superior in productivity compared to the case of using an integrated (ie, single) core. Assembling with (PCB) can be less productive.
  • Korean Patent No. 446591 is connected to one side of the core segment by concave-convex coupling or pin coupling to fabricate a core segment series, and then coils the coils. Therefore, the stator connecting one side of the core segment to each other by uneven coupling or pin coupling can be applied to an inner rotor type motor, but the core segment is formed in an "I" or "H" shape and the rotor is a stator. There is a problem in that it is difficult to apply to a double rotor type motor that is disposed inside / outside.
  • Patent 4465591 forms a magnetic circuit in which a core segment serial is formed in a ring shape so that the yokes of all adjacent core segments abut each other, but in a double rotor structure, the spacing between adjacent split cores is a magnetic field between the double rotor and the stator. Setting wider than the gap is desirable to direct the progress of the magnetic flux towards the magnetic gap. Therefore, Patent No. 4465561 of the structure in which the yokes of adjacent core segments abut is problematic in that it is difficult to apply to a double rotor type motor.
  • the present invention has been proposed in view of the problems of the prior art, and its object is to insert a molding method by fixing a support bracket after the pre-assembled by winding a coil continuously in a plurality of split cores and coupling between adjacent bobbins
  • the present invention provides a split-core stator and a BLC motor using the same, eliminating the integrated injection molding.
  • Another object of the present invention is to exclude the integral injection molding by the insert molding method by fixing a plurality of pre-assembled divided cores using the support bracket to easily release the heat generated from the stator coil to the outside to increase performance and efficiency Disclosure of the Invention
  • the present invention provides a split core stator capable of achieving a BLC motor using the same.
  • the split core type stator of the present invention is integrally formed with an insulating bobbin having an inner flange and an outer flange defining a coil winding area on the outer periphery of each of the plurality of split cores.
  • a plurality of unit core assemblies detachably coupled to each other and assembled in an annular manner between the bobbins of the split cores adjacent to one side and the other of one of the outer flanges;
  • a plurality of coils sequentially wound to at least two bobbins of the plurality of unit core assemblies for each phase;
  • at least one annular support bracket coupled to at least one side of the assembled plurality of unit core assemblies to fix the plurality of unit core assemblies.
  • the bobbin may further include a connection box formed integrally with the bobbin and interconnecting end portions of the coils to respective phases.
  • the present invention includes a second connection box formed integrally with the bobbin to interconnect the lead terminal and the terminal terminal of the coil for each phase; And a power block in which one end of the terminal terminal is coupled to the second connection box and the other end is drawn out to each phase.
  • the plurality of bobbins each of the first coupling protrusion formed on one side of the outer flange; A coupling ring formed at the other side of the outer flange and coupled to the first coupling protrusion of an adjacent bobbin; A second coupling protrusion extending in a direction opposite to the first coupling protrusion and having a front end fixed to the support bracket; And a pair of third coupling protrusions respectively formed at one side and the other side of the inner flange and fixed to the support bracket at the front end thereof.
  • the annular support bracket includes an inner ring and an outer ring concentrically disposed at different diameters; And a plurality of connection links disposed radially at intervals to connect the inner ring and the outer ring, wherein each of the connection links includes a first through hole corresponding to the second coupling protrusion and a third coupling protrusion corresponding to the third coupling protrusion. It is preferable that a boss is provided with two through-holes, each of which has a through-hole formed in a central portion at a portion corresponding to the second and third engaging projections.
  • the support bracket is made of a synthetic resin, it is preferable to further include a reinforcing member made of a metal material for strength reinforcement.
  • the support bracket may further include a plurality of circular protrusions protruding from the inner ring or the outer ring and used to attach the stator to the housing of the driven device.
  • the stator of the present invention can be used in combination with a double rotor having an inner rotor and an outer rotor corresponding to the inner and outer peripheral surfaces of the stator.
  • the present invention is a BLDC motor having an inner and outer rotor arranged in a concentric circle, comprising a double rotor coupled to the rotating shaft in the center and a stator for rotationally driving the double rotor, the stator Is formed integrally with an insulating bobbin having an inner flange and an outer flange defining a coil winding area on the outer periphery of each of the plurality of split cores, the bobbin of the split core adjacent to one side and the other of the inner flange or the outer flange.
  • a plurality of unit core assemblies detachably coupled to each other and assembled in an annular shape therebetween; A coil continuously wound around the bobbins of the plurality of unit core assemblies for each phase; And at least one annular support bracket coupled to at least one side of the assembled plurality of unit core assemblies to fix the plurality of unit core assemblies.
  • the double rotor has an inner and outer rotor in which a plurality of N-pole and S-pole magnets are alternately disposed on different concentric circles, and extends from the inner rotor while forming a trench space between the inner and outer rotors.
  • the rotating shaft is coupled to a central portion of the rotor support, and the stator is disposed in a trench space between an inner and an outer rotor to rotate the double rotor.
  • Each of the plurality of unit core assemblies includes a plurality of split cores; An inner bobbin integrally provided with an inner flange and an outer flange defining a coil winding region on an outer periphery of each of the plurality of split cores, the insulating bobbin being coupled to each other in an annular shape, wherein the bobbin is formed on one side of the outer flange; First binding protrusion; A coupling ring formed at the other side of the outer flange and coupled to the first coupling protrusion of the adjacent bobbin; A second coupling protrusion extending in a direction opposite to the first coupling protrusion and having a front end fixed to the support bracket; And a pair of third coupling protrusions formed on one side and the other side of the inner flange, respectively, and the tip portion is fixed to the support bracket.
  • the support bracket includes an inner ring and an outer ring disposed concentrically with different diameters; And a plurality of connecting links disposed radially at intervals to connect the inner ring and the outer ring, wherein each of the connecting links includes a first through hole and a third coupling protrusion into which the second coupling protrusion is inserted. It is preferable to have a second through hole to be engaged.
  • bosses having through-holes formed in the center thereof protrude from the first and second through-holes of the connecting link, respectively.
  • the coupling between the second and third coupling protrusions and the support bracket may be made by ultrasonic welding or thermal welding.
  • the support bracket may further include a plurality of circular protrusions protruding from the inner ring or the outer ring and used to attach the stator to the housing of the driven device.
  • the rotating shaft is rotatably mounted to a housing of the washing machine, and a washing tank or a drum of the washing machine is connected to the front end thereof.
  • the plurality of unit core assemblies are coupled to each other by a first coupling structure formed on one side and the other side of the outer flange of each bobbin to be assembled in an annular shape, the second and third coupling structure formed on the outer flange and the inner flange of the bobbin It is preferable to be fixed to the support bracket by.
  • Each of the plurality of unit core assemblies may be pre-assembled after the coils are continuously wound around each phase on the outer periphery of the bobbin, and then alternately arranged in a reducing form by rotating each phase.
  • the split core type stator of the present invention comprises a plurality of split cores; A plurality of bobbins each partially enclosing the plurality of split cores, the plurality of bobbins being mutually coupled such that the plurality of split cores are annularly assembled; A coil wound around each phase on the outer circumference of each bobbin; It is characterized in that it comprises an annular support bracket coupled to at least one side of the plurality of bobbins are coupled to each other by the bobbin to be assembled in an annular to fix the plurality of bobbins.
  • the stator according to the present invention is coiled, respectively, the first coupling protrusion and the coupling ring for mutual coupling are provided at both ends of the outer flange, and the second coupling protrusion is provided in the opposite direction to the first coupling protrusion and at both ends of the inner flange.
  • Integrally forming a bobbin provided with a third coupling protrusion to a plurality of split cores Preparing three sets of unit core assemblies by winding coils continuously on bobbins for each phase; Arranging the three sets of unit core assemblies in a reduced form and assembling the coupling protrusions of adjacent bobbins to the coupling ring; And fixing the plurality of unit core assemblies by coupling the second and third coupling protrusions to the support brackets on one side of the assembled plurality of unit core assemblies.
  • the coil is continuously wound on a plurality of split stator cores, and coupling and fixing between adjacent bobbins eliminates integrated injection molding by the insert molding method, thereby reducing the stator weight, slimming, and improving assembly productivity. can do.
  • the coils are continuously wound on a plurality of split cores of the stator, and the temporary bobbins are assembled by assembling between adjacent bobbins and then fixed by using a support bracket, thereby eliminating the integral injection molding by the insert molding method. It is easy to dissipate heat generated from the outside, and moreover, it generates vortex while generating a large amount of wind by forming cooling holes and ribs perpendicular to the circumferential direction in the rotor support connecting the inner and outer rotors when the rotor rotates. By forming a, it is possible to effectively cool the heat generated from the rotor and the stator.
  • FIG. 1 is a cross-sectional view taken along an axial direction of a half part of a BLDC motor of a core type double rotor type according to a first embodiment of the present invention
  • FIG. 2 is a circumferential cross-sectional view of a BLDC motor according to the first embodiment of the present invention
  • FIG. 3 is a connection diagram for a stator coil of a BLDC motor according to the present invention.
  • FIG. 4 is a plan view of a unit core assembly coupled to a bobbin according to the present invention.
  • FIG. 5 is a plan view of a unit core assembly coupled to a modified bobbin
  • Figure 6 is a front view of the bobbin coupled unit core assembly according to the invention seen from the outside
  • FIG. 8 is a front view illustrating a state in which four unit core assemblies are assembled
  • 9 and 10 are explanatory diagrams showing a continuous winding method for a split core, respectively;
  • FIG. 11 is a plan view illustrating a state in which a plurality of unit core assemblies are preassembled in an annular shape
  • FIG. 12 is a plan view of a support bracket for fixing a plurality of prefabricated unit core assemblies shown in FIG. 11;
  • FIG. 13 is a plan view showing an example of the reinforcing piece for reinforcing the strength of the support bracket shown in FIG.
  • FIG. 14 is a plan view illustrating a state in which the support bracket of FIG. 12 is coupled to the temporarily assembled unit core assembly of FIG. 11;
  • FIG. 15 is a partially enlarged view of FIG. 14;
  • FIG. 16 is a cross-sectional view of a half of a core type double rotor type BLDC motor according to a second embodiment of the present invention cut along an axial direction;
  • FIG. 17 is a plan view of a support bracket for fixing a plurality of unit core assemblies temporarily assembled in the second embodiment shown in FIG. 16;
  • FIG. 18 is a plan view illustrating a support bracket of FIG. 17 coupled to the temporarily assembled unit core assembly of FIG. 11.
  • FIG. 1 is a cross-sectional view taken along an axial direction of a 1/2 part of a BLDC motor of a core type double rotor method according to a first embodiment of the present invention
  • Figure 2 is a circumference of a BLDC motor according to a first embodiment of the present invention
  • 3 is a connection diagram of a stator coil of a BLDC motor according to the present invention.
  • the BLDC motor of the radial core type double rotor type according to the first embodiment of the present invention is installed in the lower part of the fully automatic washing machine to drive the washing tub of the washing machine in the forward / reverse direction. It has a structure suitable for making, but is not limited to this, can be installed in the tub of the drum washing machine can be used to drive the basket or drum of the washing machine in the forward / reverse direction, and also applied to other equipment other than the washing machine It can be used to drive the fuselage in rotation.
  • BLDC motor 1 of the radial core type double rotor type according to the present invention is a bobbin after the coil 10 is continuously wound on the outer periphery of the bobbin 20 integrally formed in a plurality of split cores 30 for each phase.
  • a stator 3 which is assembled in an annular shape by using the mutual coupling structure formed integrally with the 20;
  • An inner rotor 4 including a plurality of magnets 4a arranged in an annular shape and a ring-shaped inner yoke 4b having a predetermined magnetic gap in the inner and outer peripheral portions of the stator 3;
  • An outer rotor 5 in which a plurality of magnets 5a and a ring-shaped outer yoke 5b are disposed, and a rotor support frame 6 which interconnects the inner rotor 4 and the outer rotor 5.
  • Double rotor 50 And a rotating shaft having one end connected to the center of the rotor support frame 6 through an involute serration bushing, the other being rotatably supported at least through a bearing, and the driven body being coupled to the front end (not shown). ) Is included.
  • the stator 3 has a coupling protrusion 25 and a coupling ring 27 integrally formed at one side and the other side of the outer flange 22 at its outer periphery with respect to each of the plurality of divided cores 30 which are fully divided.
  • the bobbin 20 is provided to form a plurality of unit core assembly (30a-30r) is formed.
  • the plurality of unit core assemblies 30a-30r are preassembled in an annular shape using a coupling structure consisting of the engaging projection 25 and the coupling ring 27 of each of the plurality of unit core assemblies 30a-30r, and then the plurality of unit core assemblies 30a-30r preassembled. ) Is assembled and fixed to the annular support bracket 40 (see FIG. 12).
  • the stator 3 is supported by, for example, a fixing bolt or a fixing screw through a plurality of fixing holes 47 provided inside the annular support bracket 40, for example, in a housing or tub of a washing machine.
  • the double rotor 50 is rotatably supported by a rotating shaft coupled to the central portion in the bearing provided in the housing or tub, the inner end and / or installed in the outer shell of the pulsator washing machine, for example, on the front end of the rotating shaft
  • the pulsator is coupled or the drum of the drum washing machine is coupled to drive rotation or forward and reverse rotation.
  • the illustrated BLDC motor 1 has a radial core type by a single stator 3 and a double rotor 50 in which the inner rotor 4 and the outer rotor 5 are supported on the rotor support frame 6. Forming a motor.
  • FIG. 4 and 6 are respectively a plan view and a front view of a unit core assembly to which a bobbin is coupled according to the present invention
  • FIG. 7 is an explanatory view for explaining an assembly method between unit core assemblies according to the present invention
  • FIG. 9 and 10 are explanatory views showing a continuous winding method for a split core, respectively
  • FIG. 11 is a plan view showing a state in which a plurality of unit core assemblies are assembled in an annular shape. to be.
  • FIG. 12 is a plan view of a support bracket for fixing a plurality of unit core assemblies assembled in FIG. 11,
  • FIG. 13 is a plan view showing an example of a reinforcing piece for reinforcing the support bracket of FIG. 12, and
  • FIG. 12 is a plan view illustrating a state in which the support bracket of FIG. 12 is coupled to the temporarily assembled unit core assembly of FIG. 11, and
  • FIG. 15 is a partially enlarged view of FIG. 14.
  • the BLCD motor of the present invention When the BLCD motor of the present invention is applied to a washing machine, for example, as shown in FIG. 2, the BLCD motor may be implemented in a 6-pole-18 slot structure.
  • the inner rotor 4 and the outer rotor 5 have six-pole magnets 4a, 5a in which three N-poles and three S-poles are alternately arranged, and the inner and outer yokes 4b, 5b annularly. Are attached to the outer and inner surfaces of the inner rotor 4 and the inner rotor 4 and the outer rotor 5 that are opposed to each other.
  • An annular stator 3 including 18 split cores 30 is inserted into an annular space between the inner rotor 4 and the double rotor 50 composed of the outer rotor 5.
  • the annular stator 3 is fixed by using the bobbin 20 and the support bracket 40 without integrating 18 split cores 30 by insert molding using resin.
  • the stator 3 of the present invention is manufactured in a structure in which a plurality of, for example, 18 split cores 30 are sequentially connected in an annular shape.
  • eighteen divided cores 30 include six divided cores 30 for each of U, V, and W phases.
  • the sixth U-phase unit core assembly (U1-U6: 30a, 30d, 30g, 30j, 30m, 30p) having bobbins 20 formed on the outer circumference of the split core 30, respectively, has a first coil. (L1) is wound continuously, and six V-phase unit core assemblies (V1-V6: 30b, 30e, 30h, 30k, 30n, 30q), the second coil (L2) is wound continuously, six W-phase The third coil L3 is continuously wound around the unit core assemblies W1-W6: 30c, 30f, 30i, 30l, 30o, and 30r.
  • Eighteen unit core assemblies 30a-30r prepared by six for each phase are disposed in the unit core assemblies U1-U6, V1-V6, and W1-W6 alternately for each phase, and then each unit core assembly U1-1.
  • One end of the first to third coils L1 to L3 wound around U6, V1 to V6 and W1 to W6 is connected to the terminal terminals 71 to 73 of the power supply block 7, respectively.
  • the other ends of the three coils L1 to L3 are connected to each other to form a neutral point NP.
  • stator 3 including these 18 divided cores 30 is demonstrated in detail.
  • a plurality of thin plates each made of a magnetic circuit forming material are molded into an "I” or "H” shape, and then stacked and integrated.
  • each of the split cores 30 integrates the insulating bobbin 20 on the outer circumference of the split core 30 by insert molding using, for example, a resin.
  • the bobbin 20 is not formed on the inner and outer surfaces of the split core 30 facing the inner and outer rotors 4 and 5.
  • the bobbin 20 is a square coil-shaped coil winding portion 23 to which the coil is wound, and the inner and outer flanges 21 and 22 which are bent and extended respectively inside and outside the coil winding portion to define a coil winding area.
  • the coil winding 23 between these flanges 21 and 22 is a space in which the coil 10 can be wound.
  • the split core 30 has the inner and outer flanges bent and extended on the inner and outer sides of the linear body, respectively, and the inner flange is inward to maintain a constant distance from the annular inner and outer rotors 4 and 5. It is rounded and the outer flange is preferably rounded outward.
  • assembling between the split core 30 and the bobbin 20 is preferably integrally molded by an insert molding method using a thermosetting resin, but is not limited thereto, and may be assembled by other well-known methods.
  • the inner and outer flanges 21 and 22 of the bobbin 20 should preferably be formed with the outer flange 22 relatively larger than the inner flange 21, and the inner or outer flanges 21 and 22 of the bobbin 20.
  • the central part may include a connection box 29 (see FIG. 5) for connecting the terminal terminals 71-73 of the power block 7 and one end of the first to third coils L1 to L3.
  • a coupling structure for pre-assembled in an annular shape by coupling the unit core assemblies 30a-30r having the coils 10 wound to each other is integrally formed.
  • the first and second coupling protrusions 25 and 26 extend from the base part 24 to the upper side and the lower side, respectively, on the left side of the outer flange 22, and the outer flange 22.
  • the right side of the) is provided with a circular coupling ring 27 is coupled to the first coupling protrusion 25 is inserted.
  • the second coupling protrusion 26 is fixed to the through hole 44 of the annular support bracket 40 to fix the rear end of the bobbin 20.
  • the pair of third coupling protrusions 26a and 26b is lowered on the left side and the right side of the inner flange 22 to fix the front end of the bobbin 20 to the support bracket 40, respectively. It is extended.
  • the pair of third coupling protrusions 26a and 26b is combined with the third coupling protrusions 26a and 26b formed on the bobbin 20 of the adjacent unit core assembly at the time of assembly to form one complete rod.
  • the cross section is formed into a rod shape having a semicircular shape.
  • first and second coupling protrusions 25 and 26 and the coupling ring 27 are disposed on the left and right sides of the outer flange 22, but the first and second coupling protrusions 25 are opposite to each other.
  • 26 and the coupling ring 27 may be disposed on the right and left sides of the outer flange 22, and may be disposed on the left and right sides of the inner flange 22 of the bobbin 20.
  • the coupling between the adjacent bobbin 20 is coupled to the coupling ring 27 of the unit core assembly 30b adjacent to the first coupling protrusion 25 of the unit core assembly 30a as shown in FIGS. 7 and 8.
  • the exposed portions of the first coupling projections 25 by ultrasonic fusion or thermal fusion are mutually fixed, and in the same manner the first coupling projections 25 of the unit core assembly 30b adjacent to each other.
  • FIG. 1 a structure using the first coupling protrusion 25 and the coupling ring 27 for coupling between adjacent unit core assemblies 30a and 30b is shown, but as shown in FIG.
  • the left and right sides of the inner flange 21 of the coupling 20 has a coupling protrusion 28a and a coupling groove 28b, respectively, are made mutually coupled, the coupling coupled to the support bracket 40 at the lower end of the coupling protrusion 28a
  • the engaging projection 28a and the engaging groove 28b may be formed on the left and right sides of the outer flange 22 instead of being formed on the left and right sides of the inner flange 21 of the bobbin 20.
  • any coupling structure for coupling between adjacent unit core assemblies 30a and 30b is possible, and the coupling structure between the bobbin 20 and the support bracket 40 can be adopted in other ways.
  • the engaging projections 26; 26a, 26b; 28a of the bobbin 20 for engaging with the support bracket 40 may be formed elsewhere on the inner flange 21 or the outer flange 22. .
  • connection box 29 which can easily handle the interconnection with coil terminals wound on adjacent bobbins or the connection with the terminal terminals of the power block.
  • the connection box 29 may be electrically connected by inserting two coil terminals required to be connected from the side, and then inserting a mat mate terminal having an elastic clip into the connection box groove 29a. Is done.
  • connection box 29 may be formed on the inner flange 21 of the bobbin 20 shown in FIG.
  • first coils 3 to 10 coils L1 to L3 are wound around the coil windings 23 of the respective bobbins 20. That is, as shown in FIG. 9, the first to third coils 10 (L1-L3) are connected to each of six unit core assemblies U1-U6, V1-V6, and W1-W6 by five connecting jigs 11, respectively. ) Can be used to make a continuous winding using a single-axis winding machine in a linear arrangement.
  • the connecting jig 11 has a unit core assembly (U1-U6: 30a, It is preferable to winding the connecting jig 11 a plurality of times so as to form a long connecting line in consideration of the arrangement interval between 30d, 30g, 30j, 30m, and 30p.
  • a method of winding the first to third coils 10 (L1-L3) to the bobbin 20 may include a plurality of unit core assemblies using a multi-axis, for example, a 3-axis winding machine, as shown in FIG. 10. It is also possible to continuously wind (U1-U6, V1-V6, W1-W6). In this case, 18 unit core assemblies (U1-U6, V1-V6, W1-W6) are each wound in succession of six, or two or three, for example, for each phase, and then the inside of the bobbin for each phase.
  • coil terminals of adjacent unit core assemblies (30a, 30d, 30g, 30j, 30m, 30p in the case of U phases) may be interconnected by using a connection box 29 provided at the center of the outer flanges 21 and 22. Do.
  • the first to third coils 10 are wound around the bobbins 20 of the six unit core assemblies U1-U6, V1-V6, and W1-W6, respectively.
  • the unit core assembly U1-U6, V1-V6, W1-W6
  • the unit core assembly U1-U6, V1-V6, each of the U, V, W phase, as shown in Figs.
  • W1-W6 are rotated alternately with each other as shown in FIG. 7, the 18 unit core assemblies 30a-30r form an annular prefabricated structure as shown in FIG. 11.
  • FIG. 11 is a diagram illustrating a coil 10 wound on the bobbin 20 for convenience of description.
  • the preassembled unit core assemblies 30a-30r have annular support brackets 40 formed on the second and third coupling protrusions 26; 26a, 26b extending downward of the bobbin 20 as shown in FIGS. 14 and 15. ) Is assembled to secure a plurality of unit core assemblies 30a-30r.
  • connection links 43 radially arranged at intervals to connect the inner and outer rings 41 and 42 and the inner and outer rings 41 and 42 as shown in FIG. 12.
  • Each of the connection links 43 includes bosses 44a having through-holes 44 and 45 formed in a central portion at portions corresponding to the second and third coupling protrusions 26; 26a and 26b. It is.
  • the second coupling protrusion 26 passes through the through hole 44 of the boss 44a to partially lower the support bracket 40. It is preferable to protrude, and the ultrasonic wave fusion or heat fusion of the second coupling protrusions 26 protruding to the lower side of the support bracket 40 to fix the unit core assembly (30a-30r) and the support bracket 40 Fixation is made.
  • the second and second support brackets 40 are provided in order to reinforce the coupling fixing force and minimize noise when assembling the unit core assembly 30a-30r and the support bracket 40.
  • the boss 44a to which the three coupling protrusions 26; 26a and 26b are coupled is preferably formed integrally, but the present invention is not limited thereto. That is, when the unit core assembly 30a-30r is assembled to the support bracket 40, the second and third coupling protrusions 26 and 26a are partially supported by the front end and the rear end of the bobbin to the support bracket 40. If the front end portion of the 26b) is fixed to the support bracket 40, even if the boss 44a is omitted, sufficient fixation can be made.
  • the support bracket 40 is preferably made of a lightweight and rigid metal material, such as aluminum (Al), it is also possible to manufacture using synthetic resin.
  • the support bracket 40 is made of synthetic resin
  • the support bracket 40 is made of metal as shown in FIG. 13 as needed, and a plurality of reinforcement links 43a extend radially from the inner connecting portion 41a. It is also possible to reinforce the strength by inserting the piece 40a or a reinforcing piece of another shape by the insert molding method.
  • the reinforcing piece for strength reinforcement may be made of a double annular shape as shown in FIG. 12 and made of a metal material.
  • the inner ring 41 has a circular protrusion 46 having a plurality of fixing holes 47 for fixing the stator 3 to the housing or tub of the washing machine, for example, using fixing bolts or fixing screws. ) Is protruding.
  • the prefabricated unit core assembly 30a-30r is disposed in the space between the plurality of connection links 43 of the support bracket 40, respectively, as shown in FIG. 14, and the second coupling protrusion 26 is connected to each connection link 43. Is inserted into the through hole 44, and the pair of third coupling protrusions 26a and 26b are inserted into the through hole 45 together.
  • the present invention eliminates the integral injection molding by the insert molding method by continuously winding the coils to a plurality of split stator cores and coupling and fixing the adjacent bobbins, thereby improving the weight, slimming, and assembly productivity of the stator. We can plan.
  • a plurality of split cores wound around coils that is, unit core assemblies 30a-30r are fixed by using the support bracket 40, thereby eliminating integrated injection molding by the insert molding method, thereby stator coils. It is easy to discharge heat generated from the outside to the outside.
  • cooling holes and ribs perpendicular to the circumferential direction in the rotor support connecting the inner and outer rotors during the rotation of the rotor vortices are generated while generating a large amount of wind, which is generated from the rotor and the stator.
  • the heat to be cooled can be effectively cooled.
  • FIG. 16 is a cross-sectional view of an 1/2 part of a core type double rotor type BLDC motor according to an axial direction according to a second embodiment of the present invention
  • FIG. 17 is a plurality of prefabricated parts in the second embodiment shown in FIG.
  • FIG. 18 is a plan view illustrating a state in which the support bracket of FIG. 17 is coupled to the temporarily assembled unit core assembly of FIG. 11.
  • the radial core type double rotor type BLDC motor 100 according to the second embodiment of the present invention is the same except for the shape of the motor and the support bracket 400 of the first embodiment Do.
  • the stator 300 of the second embodiment uses the support bracket 400 shown in FIG. 17 when fixing the assembled unit core assembly 30a-30r shown in FIG. 11.
  • the support bracket 400 includes inner and outer rings 41 and 42 and a plurality of connecting links 43 disposed radially at intervals to connect the inner and outer rings 41 and 42, and the stator ( 3) is different from the support bracket 40 of the first embodiment in that the circular protrusion 46a having a plurality of fixing holes 47a for fixing the housing 3 or the tub of the washing machine protrudes from the outer ring 42. Do.
  • first and second embodiments have been described using a washing machine driving motor for driving a washing machine, for example, but may be modified to drive other devices such as an impeller driving motor of various cooling fans.
  • a structure in which one bracket is coupled to one side of the unit core assembly 30a-30r to which the support brackets 40 and 400 are assembled is illustrated, but for more firmly fixing the unit core assembly 30a-30r
  • a pair of support brackets 40 and 400 may be coupled to upper and lower portions of the assembled unit core assembly 30a-30r, respectively.
  • the pair of support brackets 40 and 400 may be further fixed by fixing means using bolts and nuts.
  • the split core stator of the present invention may be combined with any type of double rotor to form a motor, and the motor may be applied to a driving apparatus for driving a washing tub or a basket (drum) of a washing machine.

Abstract

본 발명은 다수의 분할 코어에 코일을 연속하여 권선하고 인접한 보빈 사이를 결합하여 조립한 후, 지지브라켓을 이용하여 고정함에 의해 인서트 몰딩 방식에 의한 일체화 사출성형을 배제하여 스테이터의 경량화, 슬림화 및 조립 생산성 향상을 도모할 수 있는 분할 코어형 스테이터와 이를 이용한 비엘디씨 모터에 관한 것이다. 본 발명의 분할 코어형 스테이터는 다수의 분할 코어, 및 상기 분할 코어 각각에 형성되며 내측 플랜지와 외측 플랜지를 구비한 절연성 보빈으로 구성되며, 인접한 분할 코어의 보빈이 착탈 가능하게 상호 결합되는 다수의 단위코어 조립체; 상기 다수의 단위코어 조립체에 권선되는 코일; 및 상기 다수의 단위코어 조립체를 결합하여 고정하기 위한 적어도 하나의 환형의 지지브라켓을 포함하는 것을 특징으로 한다.

Description

분할 코어형 스테이터 및 이를 이용한 비엘디씨 모터
본 발명은 분할 코어형 스테이터 및 이를 이용한 비엘디씨 모터에 관한 것으로, 보다 상세하게는, 다수의 분할 코어에 코일을 연속하여 권선하고 인접한 보빈 사이를 결합하여 가조립한 후 지지브라켓을 이용하여 고정함에 의해 인서트 몰딩방식에 의한 일체화 사출성형을 배제하여 스테이터의 경량화, 슬림화 및 조립 생산성 향상을 도모할 수 있는 분할 코어형 스테이터 및 이를 이용한 비엘디씨 모터에 관한 것이다.
코어형 BLDC 모터는 자기회로가 축을 중심으로 레이디얼 방향으로 대칭인 구조를 가지고 있으므로 축방향 진동성 노이즈가 적고, 저속 회전에 적합하며, 자로의 방향에 대하여 공극이 차지하는 부분이 극히 적어 성능이 낮은 자석을 사용하거나 자석의 양을 줄여도 높은 자속 밀도를 얻을 수 있으므로 토크가 크고 효율이 높다는 장점을 가지고 있다.
그러나, 이러한 코어, 즉 요크 구조는 스테이터를 제작할 때에 요크(yoke, 계철)의 재료 손실이 크고, 양산할 때에 요크의 복잡한 구조로 인하여 요크에 코일을 권선하는 데 특수한 고가의 전용권선기를 사용하여야 하며, 스테이터 제작시 금형 투자비가 높아 설비 투자비용이 높다는 단점을 가지고 있다.
코어형 AC 또는 BLDC 모터, 특히 레이디얼 타입의 코어 모터에서는 스테이터 코어를 완전 분할형으로 구성하는 것이 값이 싼 범용 권선기를 사용하여 고효율로 분할 코어에 코일을 권선할 수 있기 때문에 모터의 경쟁력을 결정하는 매우 중요한 요소이다. 그러나 이와 반대로 일체형 스테이터 코어 구조인 경우는 값이 비싼 전용 권선기를 사용하며 저효율 권선이 이루어지므로 모터의 제조비용이 높아지게 된다.
액시얼 더블로터 타입과 레이디얼 코어 타입의 장점은 살리고 단점을 개선할 수 있는 레이디얼 코어 타입 더블 로터 방식의 BLDC 모터가 본 출원인에 의해 한국특허 제432954호에 제안된 바 있다.
상기 특허 제432954호와 같이, 스테이터 코어를 다수의 분할 코어로 구현하면, 코일 권선에 있어서는 일체형(즉, 단일) 코어를 사용하는 경우에 비해 월등하게 생산성이 우수하다고 할 수 있으나, 이들을 인쇄회로기판(PCB)을 사용하여 조립하는 것은 오히려 생산성이 떨어질 수 있다.
또한, 한국특허 제465591호는 코어 세그먼트의 일측에 상호 간을 요철 결합 또는 핀결합에 의해 연결하여 코어 세그먼트 직렬체를 제작한 후, 코일을 권선하고 있다. 따라서, 상기한 코어 세그먼트의 일측 상호 간을 요철 결합 또는 핀결합에 의해 연결하는 스테이터는 인너 로터 방식의 모터에는 적용이 가능하나, 코어 세그먼트가 "I" 또는 "H"형상으로 이루어지고 로터가 스테이터의 내/외측에 배치되는 더블 로터 방식의 모터에는 적용이 어려운 문제가 있다.
상기 특허 제465591호는 인접하는 모든 코어 세그먼트의 요크가 서로 맞닿도록 코어 세그먼트 직렬체를 고리형상으로 하여 자기회로를 형성하나, 더블 로터 구조에서는 인접한 분할 코어 사이의 간격이 더블 로터와 스테이터 사이의 자기갭 보다 더 넓게 설정하는 것이 자속의 진행이 자기갭을 향하도록 하는 데 바람직하다. 따라서, 인접한 코어 세그먼트의 요크가 맞닿는 구조의 특허 제465591호는 더블 로터 방식의 모터에는 적용이 어려운 문제가 있다.
따라서, 본 발명은 이러한 종래기술의 문제점을 감안하여 제안된 것으로, 그 목적은 다수의 분할 코어에 코일을 연속하여 권선하고 인접한 보빈 사이를 결합하여 가조립한 후 지지브라켓을 이용하여 고정함으로써 인서트 몰딩 방식에 의한 일체화 사출성형을 배제하여 스테이터의 경량화, 슬림화 및 조립 생산성을 향상시킨 분할 코어형 스테이터 및 이를 이용한 비엘디씨 모터를 제공하는 데 있다.
본 발명의 다른 목적은 가조립된 다수의 분할 코어를 지지브라켓을 이용하여 고정함에 의해 인서트 몰딩방식에 의한 일체화 사출성형을 배제하여 스테이터 코일로부터 발생되는 열을 외부로 방출하는 것이 용이하여 성능 및 효율 상승을 도모할 수 있는 분할 코어형 스테이터 및 이를 이용한 비엘디씨 모터를 제공하는 데 있다.
상기한 목적을 달성하기 위하여, 본 발명의 분할 코어형 스테이터는 다수의 분할 코어 각각에 대하여 외주에 코일 권선 영역을 한정하는 내측 플랜지 및 외측 플랜지를 구비한 절연성 보빈이 일체로 형성되고, 상기 내측 플랜지 또는 외측 플랜지 중 하나의 일측 및 타측에 인접한 분할 코어의 보빈 사이에 착탈 가능하게 상호 결합되어 환형으로 조립되는 다수의 단위코어 조립체; 각 상별로 상기 다수의 단위코어 조립체의 적어도 두개의 보빈에 연속 권선되는 다수의 코일; 및 상기 조립된 다수의 단위코어 조립체의 적어도 일측면에 결합되어 다수의 단위코어 조립체를 고정시키기 위한 적어도 하나의 환형 지지브라켓을 포함하는 것을 특징으로 한다.
본 발명의 분할 코어형 스테이터에서는 상기 보빈에 일체로 형성되어 각 상별로 코일의 단부를 상호 연결시켜주는 결선박스를 더 포함할 수 있다.
본 발명은 상기 보빈에 일체로 형성되어 각 상별로 코일의 인출단자와 터미널 단자를 상호 연결시켜주는 제2결선박스; 및 각 상별로 터미널 단자의 일단이 제2결선박스에 결합되고 타단이 외부로 인출되는 전원 블록을 더 포함할 수 있다.
상기 다수의 보빈은 각각 상기 외측 플랜지의 일측에 형성된 제1결합돌기; 상기 외측 플랜지의 타측에 형성되어 인접된 보빈의 상기 제1결합돌기와 결합되는 결합링; 상기 제1결합돌기의 반대방향으로 연장 형성되어 선단부가 지지브라켓에 고정되는 제2결합돌기; 및 각각 상기 내측 플랜지의 일측 및 타측에 형성되고 선단부가 지지브라켓에 고정되는 한쌍의 제3결합돌기를 더 포함할 수 있다.
또한, 상기 환형 지지브라켓은 서로 다른 직경으로 동심원상으로 배치된 내측 링 및 외측 링; 및 상기 내측 링과 외측 링을 연결하도록 간격을 두고 방사상으로 배치된 다수의 연결링크를 포함하며, 상기 각 연결링크에는 제2결합돌기에 대응하는 제1관통구멍과 제3결합돌기에 대응하는 제2관통구멍을 구비하고, 상기 각 연결링크에는 제2 및 제3 결합돌기에 대응하는 부분에 중앙부에 관통구멍이 형성되어 있는 보스가 돌출되어 있는 것이 바람직하다.
이 경우, 상기 지지브라켓은 합성수지로 이루어지고, 강도 보강을 위해 금속재로 이루어진 보강부재를 더 포함하는 것이 바람직하다.
또한, 상기 지지브라켓은 내측 링 또는 외측 링으로부터 돌출되어 상기 스테이터를 피구동장치의 하우징에 부착시키는 데 사용되는 다수의 원형 돌기를 더 포함할 수 있다.
본 발명의 스테이터는 상기 스테이터의 내주면과 외주면에 대응하는 내부 로터와 외부 로터를 구비하는 더블 로터와 결합되어 사용될 수 있다.
본 발명의 다른 특징에 따르면, 본 발명은 동심원상으로 배치된 내부 및 외부 로터를 구비하고, 중앙부에 회전축이 결합되는 더블 로터와 상기 더블 로터를 회전 구동시키는 스테이터를 포함하는 BLDC 모터로서, 상기 스테이터는 다수의 분할 코어 각각에 대하여 외주에 코일 권선 영역을 한정하는 내측 플랜지 및 외측 플랜지를 구비한 절연성 보빈이 일체로 형성되고, 상기 내측 플랜지 또는 외측 플랜지 중 하나의 일측 및 타측에 인접한 분할 코어의 보빈 사이에 착탈 가능하게 상호 결합되어 환형으로 조립되는 다수의 단위코어 조립체; 각 상별로 상기 다수의 단위코어 조립체의 보빈에 연속 권선되는 코일; 및 상기 조립된 다수의 단위코어 조립체의 적어도 일측면에 결합되어 다수의 단위코어 조립체를 고정시키기 위한 적어도 하나의 환형 지지브라켓을 포함하는 것을 특징으로 하는 BLDC 모터를 제공한다.
상기 더블 로터는 각각 다수의 N극 및 S극 자석이 서로 다른 동심원상에 환원으로 교대로 배치되는 내부 및 외부 로터를 구비하며, 상기 내부 및 외부 로터 사이에 트랜치형 공간을 형성하면서 내부 로터로부터 연장된 로터 지지체의 중앙부에 상기 회전축이 결합되고, 상기 스테이터는 내부 및 외부 로터 사이의 트랜치형 공간에 배치되어 상기 더블 로터를 회전시킨다.
상기 다수의 단위코어 조립체는 각각 다수의 분할 코어; 상기 다수의 분할 코어 각각에 대하여 외주에 코일 권선 영역을 한정하는 내측 플랜지 및 외측 플랜지를 일체로 구비하며, 상호 결합되어 환형으로 조립되는 절연성 보빈을 포함하며, 상기 보빈은 상기 외측 플랜지의 일측에 형성된 제1결합돌기; 상기 외측 플랜지의 타측에 형성되어 인접된 보빈의 제1결합돌기와 결합되는 결합링; 상기 제1결합돌기의 반대방향으로 연장 형성되어 선단부가 지지브라켓에 고정되는 제2결합돌기; 및 각각 상기 내측 플랜지의 일측 및 타측에 형성되고 선단부가 지지브라켓에 고정되는 한쌍의 제3결합돌기를 포함하는 것이 바람직하다.
또한, 상기 지지브라켓은 서로 다른 직경으로 동심원상으로 배치된 내측 링 및 외측 링; 및 상기 내측 링과 외측 링을 연결하도록 간격을 두고 방사상으로 배치된 다수의 연결링크를 포함하며, 상기 각 연결링크에는 상기 제2결합돌기가 삽입 결합되는 제1관통구멍과 제3결합돌기가 삽입 결합되는 제2관통구멍을 구비하는 것이 바람직하다.
더욱이, 연결링크의 제1 및 제2 관통구멍에는 각각 중앙부에 관통구멍이 형성되어 있는 보스가 돌출되어 있는 것이 바람직하다. 이 경우, 상기 제2 및 제3 결합돌기와 지지브라켓과 결합은 초음파 융착 또는 열융착에 의해 이루어질 수 있다.
또한, 상기 지지브라켓은 내측 링 또는 외측 링으로부터 돌출되어 상기 스테이터를 피구동장치의 하우징에 부착시키는 데 사용되는 다수의 원형 돌기를 더 포함할 수 있다.
상기 회전축은 세탁기의 하우징에 회전 가능하게 장착되고, 선단부에 세탁기의 세탁조 또는 드럼이 연결된다.
상기 다수의 단위코어 조립체는 각 보빈의 외측 플랜지의 일측 및 타측에 형성된 제1결합구조에 의해 상호 결합되어 환형으로 조립되고, 상기 보빈의 외측 플랜지 및 내측 플랜지에 형성된 제2 및 제3 결합구조에 의해 지지브라켓에 고정되는 것이 바람직하다.
상기 다수의 단위코어 조립체는 각각 상기 각 보빈의 외주에 각 상별로 코일이 연속 권선된 후, 각각 상별로 돌아가면서 교대로 환원형태로 배치되어 가조립되는 것이 바람직하다.
본 발명의 또 다른 특징에 따르면, 본 발명의 분할 코어형 스테이터는 다수의 분할 코어; 각각 상기 다수의 분할 코어를 부분적으로 둘러싸며 다수의 분할 코어가 환형으로 조립되도록 상호 결합이 이루어지는 다수의 보빈; 상기 각 보빈의 외주에 각 상별로 권선되는 코일; 상기 보빈에 의해 상호 결합되어 환형으로 조립되는 다수의 보빈의 적어도 일측면에 결합되어 다수의 보빈을 고정시키기 위한 환형 지지브라켓을 포함하는 것을 특징으로 한다.
본 발명에 따른 스테이터는 각각 코일이 권선되며 상호 결합용 제1결합돌기와 결합링이 외측 플랜지의 양측단에 구비되고 상기 제1결합돌기와 반대방향으로 제2결합돌기가 구비되며 내측 플랜지의 양측단에 제3결합돌기가 구비된 보빈을 다수의 분할 코어에 일체로 성형하는 단계; 각각 상별로 보빈에 연속적으로 코일을 권선하여 3세트의 단위코어 조립체를 준비하는 단계; 상기 3세트의 단위코어 조립체를 환원형태로 배치한 후 인접한 보빈의 결합돌기를 결합링에 결합하여 조립하는 단계; 및 상기 조립된 다수의 단위코어 조립체의 일측면에 상기 제2 및 제3 결합돌기를 지지브라켓과 결합시켜 다수의 단위코어 조립체를 고정시키는 단계를 포함하는 제조방법에 의해 제조된다.
상기한 바와 같이 본 발명에서는 다수의 분할형 스테이터 코어에 코일을 연속하여 권선하고 인접한 보빈 사이를 결합 고정함에 의해 인서트 몰딩 방식에 의한 일체화 사출성형을 배제하여 스테이터의 경량화, 슬림화 및 조립 생산성 향상을 도모할 수 있다.
또한, 본 발명의 모터에서는 스테이터의 다수의 분할 코어에 코일을 연속하여 권선하고 인접한 보빈 사이를 결합하여 가조립한 후 지지브라켓을 이용하여 고정함에 의해 인서트 몰딩방식에 의한 일체화 사출성형을 배제하여 스테이터 코일로부터 발생되는 열을 외부로 방출하는 것이 용이하고, 더욱이 로터의 회전시에 내부 및 외부 로터를 연결하는 로터 지지체에 원주 방향에 수직인 냉각구멍과 리브를 형성함에 의해 많은 양의 바람을 발생시키면서 와류를 형성하여, 로터와 스테이터로부터 발생되는 열을 효과적으로 냉각시킬 수 있게 된다.
또한, 본 발명에서는 내부 및 외부 로터를 연결하는 로터 지지체에 원주 방향에 수직인 냉각구멍과 리브가 형성된 더블 로터와 결합하여 사용하는 경우 로터의 회전시에 많은 양의 바람과 와류가 분할 코어 사이를 통과하면서 스테이터에서 발생하는 열을 효과적으로 방열할 수 있다.
도 1은 본 발명의 제1실시예에 따른 코어타입 더블 로터 방식의 BLDC 모터의 1/2 부분을 축방향을 따라 절단한 단면도,
도 2는 본 발명의 제1실시예에 따른 BLDC 모터의 원주 방향 단면도,
도 3은 본 발명에 따른 BLDC 모터의 스테이터 코일에 대한 결선도,
도 4는 본 발명에 따른 보빈이 결합된 단위코어 조립체의 평면도,
도 5는 변형된 보빈이 결합된 단위코어 조립체의 평면도,
도 6은 본 발명에 따른 보빈이 결합된 단위코어 조립체의 외측에서 본 정면도,
도 7은 본 발명에 따른 단위코어 조립체 사이의 조립 방법을 설명하기 위한 설명도,
도 8은 4개의 단위코어 조립체가 조립된 상태를 나타내는 정면도,
도 9 및 도 10은 각각 분할 코어에 대한 연속권선방법을 보여주는 설명도,
도 11은 다수의 단위코어 조립체가 환형으로 가조립된 상태를 나타내는 평면도,
도 12는 도 11에 도시된 가조립된 다수의 단위코어 조립체를 고정하기 위한 지지브라켓의 평면도,
도 13은 도 12에 도시된 지지브라켓의 강도 보강용 보강편의 일예를 나타낸 평면도,
도 14는 도 12의 지지브라켓이 도 11의 가조립 단위코어 조립체에 결합된 상태를 나타내는 평면도,
도 15는 도 14의 부분 확대도,
도 16은 본 발명의 제2실시예에 따른 코어타입 더블 로터 방식의 BLDC 모터의 1/2 부분을 축방향을 따라 절단한 단면도,
도 17은 도 16에 도시된 제2실시예에서 가조립된 다수의 단위코어 조립체를 고정하기 위한 지지브라켓의 평면도,
도 18은 도 17의 지지브라켓이 도 11의 가조립 단위코어 조립체에 결합된 상태를 나타내는 평면도이다.
이하에서는, 바람직한 실시예가 도시된 첨부 도면을 참고하여 본 발명을 더욱 상세하게 설명한다.
Ⅰ. 제1실시예
A. 모터 전체 구조
도 1은 본 발명의 제1실시예에 따른 코어타입 더블 로터 방식의 BLDC 모터의 1/2 부분을 축방향을 따라 절단한 단면도, 도 2는 본 발명의 제1실시예에 따른 BLDC 모터의 원주 방향 단면도, 도 3은 본 발명에 따른 BLDC 모터의 스테이터 코일에 대한 결선도이다.
*도 1 내지 도 3을 참고하면, 본 발명의 제1실시예에 따른 레이디얼 코어타입 더블 로터 방식의 BLDC 모터는 특히, 전자동 세탁기의 하부에 설치되어 세탁기의 세탁조를 정/역 방향으로 회전 구동시키는 데 적합한 구조를 갖고 있으나, 이에 제한되는 것은 아니고, 드럼 세탁기의 터브에 설치되어 세탁기의 바스켓 또는 드럼을 정/역 방향으로 회전 구동시키는 데 사용될 수 있으며, 또한 세탁기 이외의 다른 기기에 적용되어 피동체를 회전 구동하는 데 사용될 수 있다.
본 발명에 따른 레이디얼 코어타입 더블 로터 방식의 BLDC 모터(1)는 크게 각 상별로 다수의 분할 코어(30)에 일체로 형성된 보빈(20)의 외주에 코일(10)이 연속 권선된 후 보빈(20)에 일체로 형성된 상호 결합 구조를 이용하여 환형으로 조립이 이루어지는 스테이터(3); 상기 스테이터(3)의 내주부 및 외주부에 소정의 자기갭(gap)을 갖고 환형으로 배치된 다수의 자석(4a)과 링 형상의 내부 요크(4b)가 배치되어 있는 내부로터(4)와, 다수의 자석(5a)과 링 형상의 외부 요크(5b)가 배치되어 있는 외부로터(5)와, 상기 내부로터(4)와 외부로터(5)를 상호 연결하는 로터 지지프레임(6)을 포함하는 더블로터(50); 및 일단이 로터 지지프레임(6)의 중심부에 인벌류트 세레이션(Involute Serration) 부싱을 통하여 연결되고, 타측이 적어도 베어링을 통하여 회전 가능하게 지지되고 선단부에 피동체가 결합되어 있는 회전축(도시되지 않음)을 포함하고 있다.
상기 스테이터(3)는 먼저, 완전히 분할된 다수의 분할 코어(30) 각각에 대하여 그의 외주에 부분적으로 외측 플랜지(22)의 일측 및 타측에 결합돌기(25)와 결합링(27)이 일체로 구비된 보빈(20)이 형성된 다수의 단위코어 조립체(30a-30r)를 형성한다.
그 후, 다수의 단위코어 조립체(30a-30r) 각각의 결합돌기(25)와 결합링(27)으로 이루어진 결합 구조를 사용하여 환형으로 가조립된 후, 가조립된 다수의 단위코어 조립체(30a-30r)가 환형 지지브라켓(40; 도 12 참조)에 조립되어 고정된다.
상기 스테이터(3)는 상기 환형 지지브라켓(40)의 내측에 구비된 다수의 고정구멍(47)을 통해 고정볼트 또는 고정나사 등으로 예를 들어, 세탁기의 하우징 또는 터브에 지지된다. 또한, 상기 더블 로터(50)는 중앙부에 결합된 회전축이 하우징 또는 터브에 구비된 베어링에 회전 가능하게 지지되고, 회전축의 선단부에는, 예를 들어, 펄세이터 방식 세탁기의 외조에 설치된 내조 및/또는 펄세이터가 결합되거나 드럼 세탁기의 드럼이 결합되어 회전 구동 또는 정역회전 구동된다.
따라서, 도시된 BLDC 모터(1)는 내부로터(4)와 외부로터(5)가 로터 지지프레임(6)에 지지되어 있는 더블 로터(50)와 단일의 스테이터(3)에 의해 레이디얼 코어타입 모터를 형성하고 있다.
B. 스테이터 구조와 제조공정
첨부된 도 4 및 도 6은 각각 본 발명에 따른 보빈이 결합된 단위코어 조립체의 평면도 및 정면도, 도 7은 본 발명에 따른 단위코어 조립체 사이의 조립방법을 설명하기 위한 설명도, 도 8은 4개의 단위코어 조립체가 조립된 상태를 나타내는 정면도, 도 9 및 도 10은 각각 분할 코어에 대한 연속권선방법을 보여주는 설명도, 도 11은 다수의 단위코어 조립체가 환형으로 가조립된 상태를 나타내는 평면도이다.
또한, 도 12는 도 11에 도시된 가조립된 다수의 단위코어 조립체를 고정시키기 위한 지지브라켓의 평면도, 도 13은 도 12에 도시된 지지브라켓의 강도 보강용 보강편의 일예를 나타낸 평면도, 도 14는 도 12의 지지브라켓이 도 11의 가조립 단위코어 조립체에 결합된 상태를 나타내는 평면도, 도 15는 도 14의 부분 확대도이다.
본 발명의 BLCD 모터는 세탁기에 응용되는 경우 예를 들어, 도 2에 도시된 바와 같이 6극-18슬롯 구조로 구현될 수 있다. 이 경우, 내부 로터(4)와 외부 로터(5)는 각각 3개의 N극과 3개의 S극이 교대로 배치된 6극 자석(4a,5a)이 환형으로 이루어진 내부 및 외부 요크(4b,5b)의 외측면 및 내측면에 부착되어 있으며, 내부 로터(4)와 외부 로터(5)의 서로 대향하는 자석은 반대극성을 갖도록 배치되는 것이 바람직하다.
내부 로터(4)와 외부 로터(5)로 이루어진 더블 로터(50) 사이의 환형 공간에는 18개의 분할 코어(30)를 포함하는 환형 스테이터(3)가 삽입되어 있다. 상기 환형 스테이터(3)는 18개의 분할 코어(30)를 수지를 사용한 인서트 몰딩에 의해 일체화시키지 않고 보빈(20)과 지지브라켓(40)을 사용하여 고정시킨다.
본 발명의 스테이터(3)는 다수, 예를 들어 18개의 분할 코어(30)가 환형으로 순차적으로 연결된 구조로 제작된다. 이 경우, 3상 구동방식을 적용하면, 18개의 분할 코어(30)는 U, V, W 각 상별로 6개의 분할 코어(30)로 이루어진다.
도 2 및 도 3과 같이 각각 분할 코어(30)의 외주에 보빈(20)이 형성된 6개의 U상 단위코어 조립체(U1-U6: 30a,30d,30g,30j,30m,30p)에는 제1코일(L1)이 연속적으로 권선되고, 6개의 V상 단위코어 조립체(V1-V6: 30b,30e,30h,30k,30n,30q)에는 제2코일(L2)이 연속적으로 권선되며, 6개의 W상 단위코어 조립체(W1-W6: 30c,30f,30i,30l,30o,30r)에는 제3코일(L3)이 연속적으로 권선된다.
각 상별로 6개씩 준비된 18개의 단위코어 조립체(30a-30r)는 각 상별로 교대로 단위코어 조립체(U1-U6,V1-V6,W1-W6)가 배치된 후, 각 단위코어 조립체(U1-U6,V1-V6,W1-W6)에 권선된 제1 내지 제3 코일(L1-L3)의 일측단은 각각 전원 블록(7)의 터미널 단자(71-73)와 접속되고, 제1 내지 제3 코일(L1-L3)의 타측단은 중성점(Neutral Point: NP)을 형성하도록 상호 결선된다.
U,V,W 각 상별로 돌아가면서 교대로 단위코어 조립체(30a-30r)를 배치함에 의해 U,V,W 각 상에 구동전류가 절환되어 순차적으로 인가될 때 로터(4,5)의 회전이 이루어진다.
이하에 이러한 18개의 분할 코어(30)를 포함하는 스테이터(3)의 제조공정을 상세하게 설명한다.
본 발명의 분할 코어(30)는 각각 자기회로 형성재료로 이루어진 다수의 박판을 "I" 또는 "H"자 형상으로 성형한 후 이를 적층시켜 일체화한 것을 사용한다.
그 후, 각 분할 코어(30)는 도 4 및 도 6에 도시된 바와 같이, 예를 들어, 수지를 재료로 사용하여 인서트 몰딩방법으로 분할 코어(30)의 외주에 절연성 보빈(20)을 일체로 형성한다. 이 경우 내부 및 외부 로터(4,5)와 대향하는 분할 코어(30)의 내측면과 외측면은 보빈(20)이 형성되지 않는다.
상기 보빈(20)은 코일이 권선되는 사각통 형상의 코일권선부(23)와, 코일권선부의 내측 및 외측에 각각 절곡되어 연장되어 코일 권선 영역을 한정하는 내부 및 외부 플랜지(21,22)로 이루어지며, 이들 플랜지(21,22) 사이의 코일권선부(23)가 코일(10)이 권선될 수 있는 공간이다.
상기 분할 코어(30)는 직선형태의 몸통의 내측 및 외측에 내부 및 외부 플랜지가 각각 절곡되어 연장되어 있으며, 환형의 내부 및 외부 로터(4,5)와 일정한 간격을 유지하도록 내부 플랜지는 내측으로 라운드되어 있고, 외부 플랜지는 외측으로 라운드되는 것이 바람직하다.
또한, 분할 코어(30)와 보빈(20) 간의 조립은 열경화성 수지를 사용한 인서트 몰딩방식으로 일체로 성형되는 것이 바람직하나, 이에 제한되는 것은 아니고 주지된 다른 방식으로 조립될 수 있다.
상기 보빈(20)의 내부 및 외부 플랜지(21,22)는 바람직하게는 외부 플랜지(22)가 내부 플랜지(21) 보다 상대적으로 크게 형성되어야 하며, 보빈의 내부 또는 외부 플랜지(21,22)의 중앙부에는 전원 블록(7)의 터미널 단자(71-73)와 제1 내지 제3 코일(L1-L3)의 일측단을 상호 연결하기 위한 결선박스(29; 도 5 참조)를 구비할 수 있다.
또한, 외부 플랜지(22)의 좌측 및 우측에는 코일(10)이 권선된 단위코어 조립체(30a-30r)를 상호 결합시켜서 환형으로 가조립하기 위한 결합 구조물이 바람짖하기로는 일체로 형성되어 있다.
즉, 도 4 및 도 6과 같이 외부 플랜지(22)의 좌측에는 베이스부(24)로부터 상측 및 하측으로 각각 제1 및 제2 결합돌기(25,26)가 연장 형성되어 있고, 외부 플랜지(22)의 우측에는 제1결합돌기(25)가 삽입되어 결합되는 원형 결합링(27)이 구비되어 있다. 상기 제2 결합돌기(26)는, 후술하는 바와 같이, 환형 지지브라켓(40)의 관통구멍(44)에 고정시켜 보빈(20)의 후단을 고정하는 역할을 한다.
또한, 도 4에 도시된 바와 같이 내측 플랜지(22)의 좌측 및 우측에는 각각 보빈(20)의 전단을 지지브라켓(40)에 고정하도록 한 쌍의 제3결합돌기(26a,26b)가 하측으로 연장 형성되어 있다. 상기 한 쌍의 제3결합돌기(26a,26b)는 조립시에 각각 인접한 단위 코어 조립체의 보빈(20)에 형성된 제3결합돌기(26a,26b)와 조합하여 하나의 완전한 봉(rod)을 형성하도록 단면이 반원 형상인 봉 상을 이루고 있다.
상기 도시된 실시예에서는 제1 및 제2 결합돌기(25,26)와 결합링(27)이 외부 플랜지(22)의 좌측 및 우측에 배치되어 있으나, 이와 반대로 제1 및 제2 결합돌기(25,26)와 결합링(27)이 외부 플랜지(22)의 우측 및 좌측에 배치되는 것도 가능하고, 보빈(20)의 내부 플랜지(22)의 좌측 및 우측에 배치되는 것도 가능하다.
따라서, 인접한 보빈(20) 사이의 결합은 도 7 및 도 8에 도시된 바와 같이, 단위코어 조립체(30a)의 제1결합돌기(25)를 인접한 단위코어 조립체(30b)의 결합링(27)의 구멍(27a)에 결합시킨 후 제1결합돌기(25)의 노출부분을 초음파 융착 또는 열 융착에 의해 상호 고정시키고, 동일한 방법으로 단위코어 조립체(30b)의 제1결합돌기(25)를 인접한 단위코어 조립체(30c)의 결합링(27)에 결합시키는 방식으로 순차적으로 18개의 단위코어 조립체(30a-30r)를 결합시키면, 도 11과 같이 환형의 가조립 구조를 이루게 된다.
또한, 상기한 실시예에서는 인접한 단위코어 조립체(30a,30b) 사이의 결합에 제1결합돌기(25)와 결합링(27)을 이용하는 구조를 제시하고 있으나, 도 5에 도시된 바와 같이, 보빈(20)의 내부 플랜지(21)의 좌우측에 각각 결합돌기(28a)와 결합홈(28b)을 구비하여 상호 결합이 이루어지고, 결합돌기(28a)의 하단에 지지브라켓(40)과 결합되는 결합돌기를 구비하는 것도 가능하다. 이 경우, 결합돌기(28a)와 결합홈(28b)이 보빈(20)의 내부 플랜지(21)의 좌우측에 형성되는 대신에 외부 플랜지(22)의 좌우측에 형성되는 것도 가능하다.
더욱이, 인접한 단위코어 조립체(30a,30b) 사이의 결합을 위한 어떤 결합 구조도 가능하며, 또한 보빈(20)과 지지브라켓(40)과의 결합 구조도 다른 방식도 채택 가능하다. 예를 들어, 지지브라켓(40)과의 결합을 위한 보빈(20)의 결합돌기(26;26a,26b;28a)는 내부 플랜지(21) 또는 외부 플랜지(22)의 다른 곳에 형성되는 것도 가능하다.
도 5에 도시된 보빈(20)은 인접한 보빈에 권선된 코일 단자와의 상호 접속이나, 전원 블록의 터미널 단자와의 접속을 간단하게 처리할 수 있는 결선박스(29)가 일체로 구비되어 있다. 상기 결선박스(29)는 예를 들어, 결선이 요구되는 2개의 코일 단자를 측면에서 삽입한 후 탄성 클립 형태의 맥 메이트(mag mate) 단자를 결선박스홈(29a)에 삽입함에 의해 전기적 접속이 이루어진다.
상기 결선박스(29)는 도 4에 도시된 보빈(20)의 내부 플랜지(21)에 형성되는 것도 가능하다.
본 발명에서는 18개의 단위코어 조립체(30a-30r)를 결합하기 전에 먼저 각 보빈(20)의 코일권선부(23)에 제1 내지 제3 코일(10: L1-L3)을 권선한다. 즉, 상기 제1 내지 제3 코일(10: L1-L3)은 도 9와 같이, 각각 상 별로 6개의 단위코어 조립체(U1-U6,V1-V6,W1-W6)를 5개의 연결지그(11)를 사용하여 선 형상으로 정렬한 상태에서 1축 권선기를 이용하여 연속 권선할 수 있다.
이 경우, 예를 들어, U상 단위코어 조립체(U1-U6: 30a,30d,30g,30j,30m,30p)를 연속 권선할 때 연결지그(11)에는 단위코어 조립체(U1-U6: 30a,30d,30g,30j,30m,30p) 사이의 배치 간격을 고려하여 긴 연결선을 형성하도록 연결지그(11)에도 다수 회 권선을 실시하는 것이 바람직하다.
또한, 제1 내지 제3 코일(10: L1-L3)을 보빈(20)에 권선하는 방법은 도 10에 도시된 바와 같이, 다축, 예를 들어, 3축 권선기를 이용하여 다수의 단위코어 조립체(U1-U6,V1-V6,W1-W6)를 연속 권선하는 것도 가능하다. 이 경우, 18개의 단위코어 조립체(U1-U6,V1-V6,W1-W6)를 각각 6개씩 연속하여 권선하거나 또는 각 상별로 예를 들어, 2 또는 3 개씩 권선한 후 각 상별로 보빈의 내부 또는 외부 플랜지(21,22)의 중앙부에 구비된 결선박스(29)를 이용하여 인접한 단위코어 조립체(U상인 경우 30a,30d,30g,30j,30m,30p)의 코일 단자를 상호 연결하는 것도 가능하다.
상기와 같이 각각 6개 단위코어 조립체(U1-U6,V1-V6,W1-W6)의 보빈(20)에 제1 내지 제3 코일(10: L1-L3)을 권선하여 3상인 경우 3세트의 단위코어 조립체(U1-U6,V1-V6,W1-W6)를 준비한 후, 예를 들어, 도 2 및 도 3과 같이 U,V,W 각 상의 단위코어 조립체(U1-U6,V1-V6,W1-W6)가 각각 상별로 돌아가면서 교대로 배치된 상태에서 도 7과 같이 결합시키면 18개의 단위코어 조립체(30a-30r)는 도 11과 같이 환형의 가조립 구조를 이루게 된다.
도 11은 설명의 편의상 보빈(20)에 권선된 코일(10)을 제거한 상태로 나타낸 것이다.
그 후, 가조립된 단위코어 조립체(30a-30r)는 도 14 및 도 15와 같이 보빈(20)의 하측으로 연장된 제2 및 제3 결합돌기(26;26a,26b)에 환형 지지브라켓(40)이 조립되어 다수의 단위코어 조립체(30a-30r)에 대한 고정이 이루어진다.
이를 위해 지지브라켓(40)은 도 12와 같이 내측 및 외측 링(41,42)과, 내측 및 외측 링(41,42)을 연결하도록 간격을 두고 방사상으로 배치된 다수의 연결링크(43)를 포함하며, 상기 각 연결링크(43)에는 제2 및 제3 결합돌기(26;26a,26b)에 대응하는 부분에, 중앙부에 관통구멍(44,45)이 형성되어 있는 보스(44a)가 돌출되어 있다.
단위코어 조립체(30a-30r)에 지지브라켓(40)을 조립한 경우 제2결합돌기(26)는 보스(44a)의 관통구멍(44)을 통과하여 지지브라켓(40)의 하측으로 선단부의 일부가 돌출되는 것이 바람직하며, 단위코어 조립체(30a-30r)와 지지브라켓(40)의 고정을 위해 지지브라켓(40)의 하측으로 돌출된 제2결합돌기(26)를 초음파 융착 또는 열 융착시키면 상호 고정이 이루어진다.
또한, 보빈(20)의 전단을 지지브라켓(40)에 고정하도록 인접한 보빈에 구비된 한쌍의 제3결합돌기(26a,26b)를 지지브라켓(40)의 관통구멍(45)에 형성된 보스에 함께 조립한 후 지지브라켓(40)의 하측으로 돌출된 선단부를 융착에 의해 지지브라켓(40)에 고정한다.
더욱이, 도 1 및 도 15에 도시된 실시예에서는 단위코어 조립체(30a-30r)와 지지브라켓(40)을 조립할 때 결합 고정력을 보강하고 소음을 최소화하기 위해 지지브라켓(40)에 제2 및 제3 결합돌기(26;26a,26b)가 결합되는 보스(44a)가 일체로 형성되는 것이 바람직하나, 본 발명은 이에 제한되지 않는다. 즉, 단위코어 조립체(30a-30r)는 지지브라켓(40)에 조립될 때 지지브라켓(40)에 보빈의 선단 및 후단이 부분적으로 지지된 상태에서 제2 및 제3 결합돌기(26;26a,26b)의 선단부를 지지브라켓(40)에 고정이 이루어진다면 보스(44a)를 생략할지라도 충분한 고정이 이루어질 수 있다.
한편, 상기 지지브라켓(40)은 경량이면서도 강성을 가지는 금속재료, 예를 들어 알루미늄(Al) 등으로 이루어지는 것이 바람직하며, 합성수지를 사용하여 제작하는 것도 가능하다.
또한, 상기 지지브라켓(40)은 합성수지로 제작될 때 필요에 따라 도 13에 도시된 바와 같은 금속재로 이루어지며 다수의 연결링크(43a)가 내측 연결부(41a)로부터 방사방향으로 연장된 다수의 보강편(40a) 또는 다른 형상의 보강편을 인서트 몰딩방법으로 삽입하여 강도를 보강하는 것도 가능하다. 더욱이 강도 보강용 보강편은 도 12에 도시된 바와 같은 2중 환형 형상으로 이루어지며 금속재로 이루어진 것을 사용하는 것도 가능하다.
더욱이, 내측 링(41)에는 상기 스테이터(3)를 예를 들어, 세탁기의 하우징 또는 터브에 고정볼트 또는 고정나사 등을 사용하여 고정시키기 위한 다수의 고정구멍(47)을 구비하는 원형 돌기(46)가 돌출되어 있다.
상기 가조립된 단위코어 조립체(30a-30r)는 도 14와 같이 각각 지지브라켓(40)의 다수의 연결링크(43) 사이의 공간에 배치시키면 제2결합돌기(26)는 각 연결링크(43)의 관통구멍(44)에 삽입되고, 한 쌍의 제3결합돌기(26a,26b)는 관통구멍(45)에 함께 삽입된다.
그 후, 지지브라켓(40)의 하측으로 돌출된 제2 및 제3 결합 돌기(26;26a,26b)를 초음파 융착 또는 열 융착시키면 단위코어 조립체(30a-30r)와 지지브라켓(40)의 상호 고정이 이루어진다.
상기한 바와 같이, 본 발명에서는 다수의 분할형 스테이터 코어에 코일을 연속하여 권선하고 인접한 보빈 사이를 결합 고정함에 의해 인서트 몰딩방식에 의한 일체화 사출성형을 배제하여 스테이터의 경량화, 슬림화 및 조립 생산성 향상을 도모할 수 있다.
또한, 본 발명의 모터에서는 코일이 권선된 다수의 분할 코어, 즉 단위코어 조립체(30a-30r)를 지지브라켓(40)을 사용하여 고정함에 의해 인서트 몰딩방식에 의한 일체화 사출성형을 배제하여 스테이터 코일로부터 발생되는 열을 외부로 방출하는 것이 용이하다.
더욱이, 본 발명에서는 로터의 회전시에 내부 및 외부 로터를 연결하는 로터 지지체에 원주 방향에 수직인 냉각구멍과 리브를 형성함에 의해 많은 양의 바람을 발생시키면서 와류를 형성하여, 로터와 스테이터로부터 발생되는 열을 효과적으로 냉각시킬 수 있게 된다.
Ⅱ. 제2실시예
이하에 본 발명의 제2실시예에 따른 레이디얼 코어타입 더블 로터 방식의 BLDC 모터에 대하여 설명한다.
도 16은 본 발명의 제2실시예에 따른 코어타입 더블 로터 방식의 BLDC 모터의 1/2 부분을 축방향을 따라 절단한 단면도, 도 17은 도 16에 도시된 제2실시예에서 가조립된 다수의 단위코어 조립체를 고정시키기 위한 지지브라켓의 평면도, 도 18은 도 17의 지지브라켓이 도 11의 가조립 단위코어 조립체에 결합된 상태를 나타내는 평면도이다.
도 16 내지 도 18을 참고하면, 본 발명의 제2실시예에 따른 레이디얼 코어타입 더블 로터 방식의 BLDC 모터(100)는 제1실시예의 모터와 지지브라켓(400)의 형상을 제외하고 모두 동일하다.
제2실시예의 스테이터(300)는 도 11에 도시된 가조립된 단위코어 조립체(30a-30r)를 고정시킬 때 도 17에 도시된 지지브라켓(400)을 사용한다.
지지브라켓(400)은 내측 및 외측 링(41,42)과, 내측 및 외측 링(41,42)을 연결하도록 간격을 두고 방사상으로 배치된 다수의 연결링크(43)를 포함하며, 상기 스테이터(3)를 세탁기의 하우징 또는 터브에 고정시키기 위한 다수의 고정구멍(47a)을 구비하는 원형 돌기(46a)가 외측 링(42)으로부터 돌출되어 있는 점에서 제1실시예의 지지브라켓(40)과 상이하다.
따라서, 도 11에 도시된 가조립된 단위코어 조립체(30a-30r)에 도 17에 도시된 지지브라켓(400)을 결합시키면 도 18과 같이 얻어진다.
제2실시예에서 나머지 부분은 제1실시예와 동일하므로 동일한 부재번호를 부여하며 표시하며 이에 대하여는 자세한 설명을 생략한다.
또한, 상기 제1 및 제2 실시예는 세탁기를 구동하기 위한 세탁기 구동용 모터를 예를 들어 설명하였으나, 각종 냉각용 팬의 임펠러 구동모터 등과 같이 다른 장치를 구동하도록 변형되는 것도 가능하다.
더욱이, 상기 실시예 설명에서는 지지브라켓(40,400)이 조립된 단위코어 조립체(30a-30r)의 일측에 1개 결합된 구조가 예시되었으나, 보다 강고한 단위코어 조립체(30a-30r)의 고정을 위해 1쌍의 지지브라켓(40,400)이 조립된 단위코어 조립체(30a-30r)의 상, 하부에 각각 결합되는 것도 물론 가능하다. 이 경우, 1쌍의 지지브라켓(40,400)은 볼트와 너트를 사용한 고정수단으로 추가로 고정이 이루어질 수 있다.
이상에서는 본 발명을 특정의 바람직한 실시예를 예로 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
본 발명의 분할 코어형 스테이터는 어떤 형태의 더블 로터와도 조합되어 모터를 구성할 수 있으며, 상기 모터는 세탁기의 세탁조 또는 바스켓(드럼)을 구동하는 구동장치 등에 적용될 수 있다.

Claims (15)

  1. 다수의 분할 코어, 및 상기 분할 코어 각각에 형성되며 내측 플랜지와 외측 플랜지를 구비한 절연성 보빈으로 구성되며, 인접한 분할 코어의 보빈이 착탈 가능하게 상호 결합되는 다수의 단위코어 조립체;
    상기 다수의 단위코어 조립체에 권선되는 코일; 및
    상기 다수의 단위코어 조립체를 결합하여 고정하기 위한 적어도 하나의 환형의 지지브라켓을 포함하는 것을 특징으로 하는 분할 코어형 스테이터.
  2. 제1항에 있어서,
    상기 보빈은,
    상기 내측 플랜지 또는 외측 플랜지의 일측에 형성된 제1 결합돌기;
    상기 내측 플랜지 또는 외측 플랜지의 타측에 형성되어 인접하는 보빈의 상기 제1 결합돌기와 결합하는 결합링; 및
    상기 제1 결합돌기의 반대방향으로 연장 형성되어 선단부가 상기 지지브라켓에 고정되는 제2 결합돌기;를 포함하는 것을 특징으로 하는 분할 코어형 스테이터.
  3. 제2항에 있어서,
    상기 보빈은,
    상기 외측 플랜지 또는 내측 플랜지의 일측과 타측에 형성되고 선단부가 상기 지지브라켓에 고정되는 한 쌍의 제3 결합돌기를 더 포함하는 것을 특징으로 하는 분할 코어형 스테이터.
  4. 제1항에 있어서,
    상기 보빈에 일체로 형성되어 각 상 별로 코일의 인출단자와 터미널 단자를 상호 연결시켜 주는 제2결선박스; 및
    각 상 별로 터미널 단자의 일단이 제2결선박스에 결합되고, 타단이 외부로 인출되는 전원 블록을 포함하는 것을 특징으로 하는 분할 코어형 스테이터.
  5. 제2항에 있어서,
    상기 환형의 지지브라켓은,
    서로 다른 직경의 동심원상으로 배치된 내측 링과 외측 링; 및
    상기 내측 링과 외측 링을 연결하도록 간격을 두고 방사상으로 배치된 다수의 연결링크를 포함하며,
    상기 각 연결링크에는 상기 제2 결합돌기에 대응하는 제1 관통구멍이 형성되는 것을 특징으로 하는 분할 코어형 스테이터.
  6. 제3항에 있어서,
    상기 환형의 지지브라켓은,
    서로 다른 직경의 동심원상으로 배치된 내측 링과 외측 링; 및
    상기 내측 링과 외측 링을 연결하도록 간격을 두고 방사상으로 배치된 다수의 연결링크를 포함하며,
    상기 각 연결링크에는 한 쌍의 제 3 결합돌기에 대응하는 제2 관통구멍이 형성되는 것을 특징으로 하는 분할 코어형 스테이터.
  7. 제1항에 있어서, 상기 지지브라켓은 합성수지로 이루어지고, 강도 보강을 위해 금속재로 이루어진 보강부재를 더 포함하는 것을 특징으로 하는 분할 코어형 스테이터.
  8. 제5항에 있어서, 상기 지지브라켓은 상기 내측 링 또는 외측 링으로부터 돌출되어 상기 스테이터를 피구동체의 하우징에 부착시키는 데 사용되는 다수의 원형 돌기를 더 포함하는 것을 특징으로 하는 분할 코어형 스테이터.
  9. 동심원상으로 배치된 내부 로터와 외부 로터를 구비하고 중앙부에 회전축이 결합되는 더블 로터와, 상기 더블 로터를 회전 구동시키는 스테이터를 포함하는 BLDC 모터로서,
    상기 스테이터는,
    다수의 분할 코어, 및 상기 분할 코어 각각에 형성되며 내측 플랜지와 외측 플랜지를 구비한 절연성 보빈으로 구성되며, 인접한 분할 코어의 보빈이 착탈 가능하게 상호 결합되는 다수의 단위코어 조립체;
    상기 다수의 단위코어 조립체에 권선되는 코일; 및
    상기 다수의 단위코어 조립체를 결합하여 고정하기 위한 적어도 하나의 환형의 지지브라켓을 포함하는 것을 특징으로 하는 BLDC 모터.
  10. 제9항에 있어서,
    상기 보빈은,
    상기 내측 플랜지 또는 외측 플랜지의 일측에 형성된 제1 결합돌기;
    상기 내측 플랜지 또는 외측 플랜지의 타측에 형성되어 인접된 보빈의 제1 결합돌기와 결합하는 결합링;
    상기 제1 결합돌기의 반대방향으로 연장 형성되어 선단부가 상기 지지브라켓에 고정되는 제2 결합돌기; 및
    각각 상기 외측 플랜지 또는 내측 플랜지의 일측과 타측에 형성되고 선단부가 지지브라켓에 고정되는 한 쌍의 제3 결합돌기를 포함하는 것을 특징으로 하는 BLDC 모터.
  11. 제10항에 있어서,
    상기 지지브라켓은
    서로 다른 직경의 동심원상으로 배치된 내측 링과 외측 링; 및
    상기 내측 링과 외측 링을 연결하도록 간격을 두고 방사상으로 배치된 다수의 연결링크를 포함하며,
    상기 각 연결링크에는 상기 제2 결합돌기가 삽입 결합되는 제1 관통구멍과 상기 한 쌍의 제3 결합돌기가 삽입 결합되는 제2 관통구멍이 형성되는 것을 특징으로 하는 BLDC 모터.
  12. 제11항에 있어서,
    상기 연결링크의 제1 및 제2 관통구멍에는 각각 중앙부에 관통구멍이 형성되어 있는 보스가 돌출되어 있는 것을 특징으로 하는 BLDC 모터.
  13. 제11항에 있어서,
    상기 제2 및 제3 결합돌기와 상기 지지브라켓의 결합은 초음파 융착 또는 열융착에 의해 이루어지는 것을 특징으로 하는 BLDC 모터.
  14. 제11항에 있어서,
    상기 지지브라켓은 상기 내측 링 또는 외측 링으로부터 돌출되어 상기 스테이터를 피구동체의 하우징에 부착시키는 데 사용되는 다수의 원형 돌기를 더 포함하는 것을 특징으로 하는 BLDC 모터.
  15. 제9항에 있어서,
    상기 회전축은 세탁기의 하우징에 회전 가능하게 장착되고, 선단부에 세탁기의 세탁조 또는 드럼이 연결되는 것을 특징으로 하는 BLDC 모터.
PCT/KR2011/009144 2010-11-30 2011-11-29 분할 코어형 스테이터 및 이를 이용한 비엘디씨 모터 WO2012074267A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100120202A KR101176981B1 (ko) 2010-11-30 2010-11-30 분할 코어형 스테이터, 그의 제조방법과 이를 이용한 비엘디씨 모터
KR10-2010-0120202 2010-11-30

Publications (2)

Publication Number Publication Date
WO2012074267A2 true WO2012074267A2 (ko) 2012-06-07
WO2012074267A3 WO2012074267A3 (ko) 2012-07-26

Family

ID=46172384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009144 WO2012074267A2 (ko) 2010-11-30 2011-11-29 분할 코어형 스테이터 및 이를 이용한 비엘디씨 모터

Country Status (2)

Country Link
KR (1) KR101176981B1 (ko)
WO (1) WO2012074267A2 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271453B1 (ko) * 2011-12-16 2013-06-05 엘에스메카피온 주식회사 몰딩 스테이터를 가지는 모터
JP2016123154A (ja) * 2014-12-24 2016-07-07 トヨタ自動車株式会社 ステータカフサ
KR102191128B1 (ko) * 2019-04-05 2020-12-16 엘지전자 주식회사 모터부 및 이를 포함하는 전동식 압축기
KR20230023836A (ko) * 2021-08-09 2023-02-20 주식회사 아모텍 버스바 구조를 갖는 스테이터, 이를 이용한 프로펠러 구동모터 및 스테이터의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040002349A (ko) * 2002-06-26 2004-01-07 주식회사 아모텍 레이디얼 코어타입 더블 로터 방식의 비엘디씨 모터
KR20050000245A (ko) * 2003-06-23 2005-01-03 주식회사 아모텍 레이디얼 코어타입 더블 로터 방식의 비엘디씨 모터 및그의 제조방법
KR20060031177A (ko) * 2004-10-07 2006-04-12 주식회사 아모텍 단일 스핀들 구조의 범용 권선기를 이용한 다수 분할코어의 연속 권선장치 및 그의 권선방법
KR100663641B1 (ko) * 2006-04-06 2007-01-05 주식회사 아모텍 일체형 스테이터의 제조방법, 이를 이용한 레이디얼코어타입 더블 로터 방식의 비엘디씨 모터 및 그의제조방법
KR20100073449A (ko) * 2008-12-23 2010-07-01 주식회사 아모텍 슬림형 스테이터 및 그의 제조방법과, 이를 포함하는 슬림형 모터 및 드럼세탁기용 직결식 구동장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101026084B1 (ko) 2010-10-21 2011-03-31 주식회사 아모텍 슬림형 스테이터를 포함하는 슬림형 모터 및 이를 이용한 드럼세탁기용 직결식 구동장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040002349A (ko) * 2002-06-26 2004-01-07 주식회사 아모텍 레이디얼 코어타입 더블 로터 방식의 비엘디씨 모터
KR20050000245A (ko) * 2003-06-23 2005-01-03 주식회사 아모텍 레이디얼 코어타입 더블 로터 방식의 비엘디씨 모터 및그의 제조방법
KR20060031177A (ko) * 2004-10-07 2006-04-12 주식회사 아모텍 단일 스핀들 구조의 범용 권선기를 이용한 다수 분할코어의 연속 권선장치 및 그의 권선방법
KR100663641B1 (ko) * 2006-04-06 2007-01-05 주식회사 아모텍 일체형 스테이터의 제조방법, 이를 이용한 레이디얼코어타입 더블 로터 방식의 비엘디씨 모터 및 그의제조방법
KR20100073449A (ko) * 2008-12-23 2010-07-01 주식회사 아모텍 슬림형 스테이터 및 그의 제조방법과, 이를 포함하는 슬림형 모터 및 드럼세탁기용 직결식 구동장치

Also Published As

Publication number Publication date
KR101176981B1 (ko) 2012-08-24
KR20120058765A (ko) 2012-06-08
WO2012074267A3 (ko) 2012-07-26

Similar Documents

Publication Publication Date Title
US7960893B2 (en) Method of making integrated stator, brushless direct-current motor of radial core type double rotor structure using the integrated stator, and method of making the same
KR101026083B1 (ko) 슬림형 스테이터 및 그의 제조방법
KR101130978B1 (ko) 슬림형 스테이터와 그의 제조방법, 이를 포함하는 슬림형 모터 및 드럼세탁기용 직결식 구동장치
WO2011162501A2 (ko) 더블 스테이터/더블 로터형 모터 및 이를 이용한 세탁기의 직결형 구동 장치
WO2011162500A2 (ko) 더블 스테이터/더블 로터형 모터 및 이를 이용한 세탁기의 직결형 구동 장치
WO2014116079A1 (ko) 드럼 세탁기용 구동 모터, 이를 구비한 드럼 세탁기 및 그 구동방법
WO2013070008A1 (ko) 세탁기용 모터, 세탁기용 모터 제조방법 및 이를 구비한 세탁기
WO2015009106A1 (ko) 세탁기 모터 및 이를 구비한 세탁기
EP1536542A1 (en) Rotating electric machine
KR20100073450A (ko) 커버 일체형 구조를 갖는 슬림형 스테이터, 슬림형 모터 및이를 포함하는 드럼세탁기의 직결형 구동장치
WO2012074267A2 (ko) 분할 코어형 스테이터 및 이를 이용한 비엘디씨 모터
JP2012509055A (ja) 電気機械、及び電気機械のための固定子セクションの製造方法
KR20080094274A (ko) Bldc 모터용 스테이터 및 이를 이용한 더블 로터/싱글스테이터 구조의 bldc 모터
WO2012057523A2 (ko) 방열 구조를 구비한 슬림형 모터 및 직결식 구동 방식을 구비한 세탁기
US5325007A (en) Stator windings for axial gap generators
KR101079050B1 (ko) 분할 스큐 코어 구조의 스테이터, 이를 이용한 bldc 모터 및 배터리 쿨링장치
WO2011008016A2 (ko) 스테이터 및 이를 구비한 모터
CN218498894U (zh) 用于旋转电机的定子组件和旋转电机
WO2013070007A1 (ko) 모터 및 모터 제조방법
WO2021045383A1 (ko) 스테이터
KR20110023877A (ko) 커버 일체형 구조의 스테이터를 포함하는 드럼세탁기의 직결형 구동장치
WO2014098473A1 (ko) 세탁기의 구동장치 및 이를 구비한 세탁기
JPH10126991A (ja) 集中巻回転電機及びそれを用いた電動車両
WO2014098475A1 (ko) 세탁기의 구동장치 및 이를 구비한 세탁기
WO2024010146A1 (ko) 냉각 구조가 개선된 전기기계

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844319

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844319

Country of ref document: EP

Kind code of ref document: A2