WO2015008586A1 - 基板の製造方法および電子デバイスの製造方法 - Google Patents

基板の製造方法および電子デバイスの製造方法 Download PDF

Info

Publication number
WO2015008586A1
WO2015008586A1 PCT/JP2014/066633 JP2014066633W WO2015008586A1 WO 2015008586 A1 WO2015008586 A1 WO 2015008586A1 JP 2014066633 W JP2014066633 W JP 2014066633W WO 2015008586 A1 WO2015008586 A1 WO 2015008586A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
manufacturing
planarizing film
material substrate
Prior art date
Application number
PCT/JP2014/066633
Other languages
English (en)
French (fr)
Inventor
慎 赤阪
公文 哲史
健太郎 佐藤
雄紀 大石
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to KR1020157036577A priority Critical patent/KR20160032039A/ko
Priority to CN201480039155.4A priority patent/CN105378821B/zh
Priority to JP2015527233A priority patent/JPWO2015008586A1/ja
Priority to US14/905,115 priority patent/US9894775B2/en
Publication of WO2015008586A1 publication Critical patent/WO2015008586A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/26Cleaning or polishing of the conductive pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0055After-treatment, e.g. cleaning or desmearing of holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/007Manufacture or processing of a substrate for a printed circuit board supported by a temporary or sacrificial carrier
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0147Carriers and holders
    • H05K2203/016Temporary inorganic, non-metallic carrier, e.g. for processing or transferring

Definitions

  • the present technology relates to a substrate manufacturing method suitable for forming a highly flexible electronic device, and an electronic device manufacturing method using the substrate manufacturing method.
  • a functional unit including an electronic circuit and a display body is provided on a substrate surface. If the substrate surface has defects such as scratches and depressions, it is desirable to repair those defects before forming the electronic circuit in order to suppress damage to the electronic circuit.
  • a restoration agent is injected into defects such as scratches and depressions on the substrate surface such as glass, and after the restoration agent is cured, the substrate surface is flattened by locally polishing the cured restoration agent. It has been proposed to do.
  • a substrate manufacturing method includes polishing a surface of a material substrate and forming a planarization film on the surface of the material substrate after polishing the surface of the material substrate. It is a waste.
  • the surface of the material substrate is polished to remove convex defects such as protrusions existing on the surface of the material substrate. After that, by forming a planarizing film on the surface of the material substrate, concave defects such as dents existing on the surface of the material substrate and scratches caused by polishing are embedded with the planarizing film.
  • An electronic device manufacturing method includes forming a substrate and forming a functional unit on the substrate, and forming the substrate includes manufacturing the substrate according to the present disclosure. It is performed by the method.
  • the planarization film is formed on the surface of the material substrate. Since they are formed, it is possible to deal with both concave and convex defects on the substrate surface, and it is possible to improve the smoothness of the substrate surface.
  • FIG. 1 It is a figure showing the flow of the manufacturing method of the board
  • FIG. 7 is a cross-sectional view illustrating a process of forming a TFT layer on the substrate illustrated in FIG. 6. It is sectional drawing showing the process of forming a display body on a TFT layer. It is sectional drawing showing the process of peeling the substrate main body containing a raw material substrate and a planarization film
  • FIG. 17 is a cross-sectional view for explaining the operation of the electronic device (display device) shown in FIG. 16. It is a figure showing the flow of the manufacturing method of the electronic device (display apparatus) which concerns on the modification 1. It is sectional drawing showing the process of forming a planarization film
  • FIG. 10 is a cross-sectional view illustrating a configuration of an organic EL element as another example of the display body illustrated in FIG.
  • FIG. 22 is a diagram illustrating an example of a pixel drive circuit illustrated in FIG. 21. It is a perspective view showing the external appearance of the application example 1 of an electronic device. 12 is another perspective view showing the appearance of application example 1. FIG. It is a perspective view showing the external appearance of the application example 2 of an electronic device. It is a perspective view showing the external appearance of the application example 3 of an electronic device. It is a perspective view showing the external appearance of the application example 4 of an electronic device. It is a perspective view showing the external appearance seen from the front side of the application example 5 of an electronic device.
  • FIG. 14 is a perspective view illustrating an appearance of Application Example 5 as viewed from the back side.
  • FIG. It is a perspective view showing the external appearance of the application example 6 of an electronic device. It is a perspective view showing the external appearance of the application example 7 of an electronic device. It is a perspective view showing the open state of the application example 8 of an electronic device.
  • 12 is a perspective view illustrating a closed state of application example 8.
  • FIG. It is a figure showing the closed state of the application example 9 of an electronic device. It is a figure showing the open state of the example 9 of application.
  • Embodiment Example in which a resin film is formed as a planarizing film and a barrier coat made of an inorganic film is formed on the surface of the planarizing film.
  • Modification 1 example of forming an inorganic film that also serves as a barrier coat as a planarizing film
  • Modification 2 example having an organic EL (Electroluminescence) element as a display body
  • the manufacturing method of the substrate 1 according to the present embodiment uses a flexible material substrate 10 such as a plastic film, and smoothes out the concave and convex defects present on the surface of the material substrate 10 to provide high smoothness.
  • a substrate 1 having a surface is formed.
  • the manufacturing method of the substrate 1 of the present embodiment includes polishing the surface of the material substrate 10 and forming the planarizing film 20 on the surface of the material substrate 10 after polishing the surface of the material substrate 10. Contains.
  • substrate 1 is used for manufacture of electronic devices, such as a display apparatus and a sensor.
  • the material substrate 10 is made of a flexible resin sheet (plastic sheet).
  • the thickness of the material substrate 10 is preferably, for example, 200 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • polyethylene terephthalate polyethylene naphthalate, polyethersulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polyamide, polycarbonate, cellulose triacetate, polyolefin, polystyrene, polyethylene
  • plastic sheet include polypropylene, polymethyl methacrylate, polyolefin, polyvinyl chloride, polyvinylidene chloride, epoxy resin, phenol resin, urea resin, melamine resin, silicone resin, and acrylic resin.
  • the convex defect 11 and the concave defect 12 are present on the surface of the material substrate 10 as shown in FIG.
  • the convex defect 11 for example, there can be a high protrusion 11A having a height of 2 ⁇ m or more from the reference surface 10A or a low protrusion 11B having a height of 2 ⁇ m or less from the reference surface 10A.
  • the concave defect 12 may include a depression 12A that is recessed from the reference surface 10A in a crater shape, or a wound 12B that is dug in a wedge shape from the reference surface 10A.
  • the depth of the depression 12A from the reference surface 10A is, for example, 2.0 ⁇ m or less, and the depth of the scratch 12B from the reference surface 10A is, for example, 1.0 ⁇ m or less.
  • Such a material substrate 10 is attached to the support 30 using the adhesive layer 40 as shown in FIG. 3 before the polishing step (step S101 in FIG. 1).
  • the polishing step and the step of forming the planarizing film 20 are performed in a state where the material substrate 10 is attached to the support 30, and the flatness of the back surface of the material substrate 10 can be ensured.
  • the attachment of the material substrate 10 to the support 30 can be performed as follows, for example.
  • the adhesive layer 40 is formed by applying to the support 30 or the material substrate 10 by a printing method such as spin coating, die coating, gravure coating, or applying an adhesive tape.
  • the material substrate 10 is bonded and fixed to the support 30 with a laminator.
  • the support 30 is preferably made of a material having a melting point of 500 ° C. or higher, such as quartz glass, heat-resistant glass, metal, or ceramic. Moreover, it is preferable that the linear expansion coefficient of the support body 30 is 10 ppm / K or less, for example. More preferably, the linear expansion coefficient of the support 30 is 0.1 ppm / K or more and 10 ppm / K or less.
  • the thickness T30 of the support 30 is preferably 0.3 mm or more from the viewpoint of mechanical strength and handleability. More preferably, the thickness T30 of the support 30 is preferably 0.3 mm or greater and 2.0 mm or less.
  • the adhesive layer 40 a general-purpose adhesive or adhesive tape can be used. Therefore, it is possible to peel the material substrate 10 from the support 30 and perform the functional unit 3 and the like described later on the substrate 1 without performing a special process for reducing the adhesive force.
  • an acrylic adhesive, a silicone, a siloxane, a natural rubber adhesive, a synthetic rubber adhesive, or the like can be used.
  • the polishing method may be mechanical polishing, or may use an abrasive (slurry) or the like whose pH is appropriately adjusted to increase polishing efficiency.
  • a polishing method a method such as CMP (Chemical Mechanical Polishing), tape polishing, roll polishing, or the like can be used.
  • the polishing step it is preferable to polish the entire surface of the material substrate 10. If only a part of the surface of the material substrate 10 is locally polished, the convex defect 11 may remain in a region that is not polished. Depending on the height, the remaining convex defect 11 cannot be covered even by the planarization film 20 formed in a later step, and the surface smoothness of the substrate 1 may be lowered.
  • the height of the convex defect 11 is equal to or less than the thickness of the planarizing film 20 formed in a subsequent step, for example, 1 ⁇ m or less. If the height of the convex defect 11 is 1 ⁇ m or less, it can be covered by the planarizing film 20 formed in a later step.
  • the depth D13 of the polishing flaw 13 is preferably equal to or less than the thickness of the planarizing film 20 formed in a later step, for example, 3 ⁇ m or less, and more preferably 1 ⁇ m or less. If the depth D13 of the polishing flaw 13 is about this level, the planarization can be performed by the planarization film 20 formed in a later step.
  • step S103 in FIG. 1 After the surface of the material substrate 10 is polished, the surface of the material substrate 10 is cleaned in preparation for the formation of the planarizing film 20 in the next process (step S103 in FIG. 1). By the cleaning process, polishing residue, abrasive (slurry), etc. are removed to obtain a clean surface.
  • a cleaning method water cleaning or organic cleaning, and in addition to this, ultrasonic cleaning or the like can be performed. Further, UV (ultraviolet) cleaning or ozone cleaning may be performed.
  • a pretreatment is performed before the planarization film 20 is formed (step S104 in FIG. 1).
  • the pretreatment it is possible to perform UV treatment, plasma treatment, silane coupling agent coating, or the like for improving the adhesion of the planarizing film 20.
  • Step S105 in FIG. 1 After finishing the pretreatment, as shown in FIG. 5, a planarizing film 20 is formed on the surface of the material substrate 10 (step S105 in FIG. 1). Thereby, the concave defects 12 existing on the surface of the material substrate 10 and the polishing flaws 13 generated in the polishing process are filled with the planarizing film 20. At the same time, the convex defects 11 remaining after the polishing are covered with the planarizing film 20. Therefore, the surface of the planarizing film 20 is formed smoothly.
  • the planarizing film 20 may be a resin film or an inorganic film.
  • the resin film include acrylic and polyimide.
  • inorganic films include SiOx films, SiNx films, SiON films, and Al 2 O 3 films.
  • the planarizing film 20 may be a hybrid film of a resin film and an inorganic film.
  • the planarizing film 20 can be made of TEOS (Tetraethyl orthosilicate), and the surface of the planarizing film 20 can be easily smoothed even if the concave defect 12 exists on the surface of the material substrate 10. .
  • planarizing film 20 in the case of a resin film, methods such as slit coating, screen printing, gravure coating, spin coating, and spray coating can be used.
  • CVD Chemical Vapor Deposition
  • ALD Atomic Layer Deposition
  • sputtering or the like can be used.
  • the planarizing film 20 is made of a material having the same or substantially the same thermal behavior such as a thermal expansion coefficient and a thermal contraction.
  • the planarization film 20 is preferably made of a material having high affinity such as a chemical composition or a functional group with the material substrate 10.
  • the planarizing film 20 has heat resistance with respect to the temperature when the functional unit 3 is formed later.
  • the thickness T20 of the planarizing film 20 is preferably thinner than the thickness T10 of the material substrate 10.
  • the material substrate 10 is thinner than the planarization film 20, there is a possibility that the convex defects 11 remaining after the polishing of the surface of the material substrate 10 cannot be covered.
  • the thermal contraction of the planarizing film 20 is large, the film contraction of the planarizing film 20 is increased due to a heating process or the like when forming the functional unit later, and the substrate 1 is warped.
  • the thickness T20 of the planarizing film 20 is preferably, for example, 1/5 or less of the thickness T10 of the material substrate 10, more preferably 1/7 or less, and even more preferably 1/10 or less. .
  • the planarization film 20 is sintered (post-baked) by an oven, an IR (infrared) furnace, or the like (step S106 in FIG. 1).
  • the temperature at this time is preferably not higher than the heat resistance temperature of the material of each layer of the laminated structure including the material substrate 10, the planarizing film 20, the support 30 and the adhesive layer 40.
  • a barrier coat 50 is formed on the surface of the planarizing film 20 (step S107 in FIG. 1).
  • the barrier coat 50 has a thickness of several tens to several hundreds of nanometers, and is preferably composed of an inorganic film such as a SiOx film, a SiNx film, a SiON film, an Al 2 O 3 film, or a TEOS film.
  • the substrate 1 is completed.
  • Step of forming the functional unit 3 First, as shown in FIG. 8, the TFT layer 60 is formed on the surface of the barrier coat 50 of the substrate 1 (step S201 in FIG. 7).
  • the display body 70 is formed on the TFT layer 60 (step S202 in FIG. 7). Thereby, the functional unit 3 that performs image display on the substrate 1 is formed.
  • the substrate body 4 including the material substrate 10, the planarizing film 20, and the barrier coat 50 is peeled from the support 30 and the adhesive layer 40 as indicated by an arrow R ⁇ b> 1 in FIG. 10. (Step S301 in FIG. 7).
  • the substrate body 4 and the functional unit 3 are cut by a cutting line CL, adjusted to a predetermined size and shape, and a flexible wiring board 5 is connected to form a module 6 ( Step S302 in FIG.
  • the electronic device 2 is completed by incorporating the module 6 into a housing (not shown).
  • the substrate body 4 can be peeled off from the support 30 after cutting and forming the module 6.
  • the substrate 1 and the functional unit 3 are cut by a cutting line CL to be adjusted to a predetermined size and shape, and flexible wiring is performed.
  • the module 6 is formed by connecting the substrate 5 (step S303 in FIG. 7).
  • the substrate body 4 including the material substrate 10, the planarization film 20, and the barrier coat 50 is peeled from the support 30 and the adhesive layer 40. (Step S304 in FIG. 7).
  • the electronic device 2 is completed by incorporating the module 6 into a housing (not shown).
  • FIG. 14 shows a planar configuration of an electrophoretic element 71 as an example of the display body 70
  • FIG. 15 shows a cross-sectional configuration of the electrophoretic element 71.
  • the electrophoretic element 71 generates contrast using an electrophoretic phenomenon, and is applied to various electronic devices such as a display device.
  • the electrophoretic element 71 includes, in an insulating liquid 72, electrophoretic particles 73 (first particles) and a porous layer 74 having pores 74A. 14 and 15 schematically show the configuration of the electrophoretic element 71, and may differ from actual dimensions and shapes.
  • the insulating liquid 72 is made of an organic solvent such as paraffin or isoparaffin.
  • One type of organic solvent may be used for the insulating liquid 72, or a plurality of types of organic solvents may be used. It is preferable to make the viscosity and refractive index of the insulating liquid 72 as low as possible. When the viscosity of the insulating liquid 72 is lowered, the mobility (response speed) of the migrating particles 73 is improved. Accordingly, the energy (power consumption) for moving the migrating particles 73 is lowered accordingly. When the refractive index of the insulating liquid 72 is lowered, the difference in refractive index between the insulating liquid 72 and the porous layer 74 is increased, and the reflectance of the porous layer 74 is increased.
  • a coloring agent for example, a coloring agent, a charge adjusting agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant, or a resin may be added to the insulating liquid 72.
  • the migrating particles 73 dispersed in the insulating liquid 72 are one or more charged particles, and the charged migrating particles 73 move through the pores 74A according to the electric field.
  • the migrating particles 73 have an arbitrary optical reflection characteristic (light reflectance), and a contrast is generated due to a difference between the light reflectance of the migrating particles 73 and the light reflectance of the porous layer 74.
  • the migrating particles 73 may be brightly displayed and the porous layer 74 may be darkly displayed, or the migrating particles 73 may be darkly displayed and the porous layer 74 may be brightly displayed.
  • the electrophoretic element 71 When the electrophoretic element 71 is viewed from the outside, when the electrophoretic particles 73 are displayed brightly, the electrophoretic particles 73 are visually recognized as, for example, white or a color close to white, and when displayed darkly, for example, the electrophoretic particles 73 are displayed in black or a color close to black. Visible.
  • the color of the migrating particles 73 is not particularly limited as long as contrast can be generated.
  • the migrating particles 73 are made of particles (powder) such as organic pigments, inorganic pigments, dyes, carbon materials, metal materials, metal oxides, glass, or polymer materials (resins). One of these may be used for the migrating particles 73, or two or more of them may be used.
  • the migrating particles 73 may be composed of pulverized particles or capsule particles of resin solids containing the particles. Note that materials corresponding to the carbon material, metal material, metal oxide, glass, or polymer material are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes.
  • the particle size of the migrating particles 73 is, for example, 30 nm to 300 nm.
  • organic pigments examples include azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, and perylene pigments.
  • Inorganic pigments include, for example, zinc white, antimony white, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, lead chromate Lead sulfate, barium carbonate, lead white or alumina white.
  • the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes.
  • the carbon material is, for example, carbon black.
  • the metal material is, for example, gold, silver, or copper.
  • metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide.
  • the polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. If it is a high molecular compound which has a light absorption area
  • the specific material of the migrating particles 73 is selected according to, for example, the role that the migrating particles 73 play to cause contrast.
  • a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate is used for the migrating particles 73.
  • the migrating particles 73 may be, for example, a carbon material such as carbon black or copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide.
  • metal oxides such as copper-iron-chromium oxide are used.
  • the migrating particles 73 made of a carbon material exhibit excellent chemical stability, mobility and light absorption.
  • the content (concentration) of the migrating particles 73 in the insulating liquid 72 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. In this concentration range, the shielding and mobility of the migrating particles 73 are ensured. Specifically, if the content of the migrating particles 73 is less than 0.1% by weight, the migrating particles 73 are less likely to shield (hide) the porous layer 74, and it may be difficult to generate sufficient contrast. is there. On the other hand, when the content of the electrophoretic particles 73 is more than 10% by weight, the dispersibility of the electrophoretic particles 73 is lowered, and thus the electrophoretic particles 73 are difficult to migrate and may aggregate.
  • the migrating particles 73 are easily dispersed and charged in the insulating liquid 72 for a long period of time and are difficult to be adsorbed on the porous layer 74. For this reason, for example, a dispersant is added to the insulating liquid 72.
  • a dispersant and a charge control agent may be used in combination.
  • This dispersing agent or charge adjusting agent has, for example, positive, negative, or both charges, and increases the amount of charge in the insulating liquid 72 and also causes the electrophoretic particles 73 to move by electrostatic repulsion. It is for dispersing.
  • Examples of such a dispersing agent include Solsperce series manufactured by Lubrizol, BYK series or Anti-Terra series manufactured by BYK-Chemical, and Span series manufactured by TCI America.
  • the migrating particles 73 may be subjected to a surface treatment.
  • This surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment.
  • long-term dispersion stability of the migrating particles 10 can be maintained by performing a graft polymerization process, a microencapsulation process, or a combination thereof.
  • a material having a functional group capable of being adsorbed on the surface of the migrating particle 73 and a polymerizable functional group is used.
  • the adsorbable functional group is determined according to the forming material of the migrating particles 73.
  • the migrating particles 73 are made of a carbon material such as carbon black, an aniline derivative such as 4-vinylaniline, and when the migrating particles 10 are made of a metal oxide, methacrylic acid 3- Organosilane derivatives such as (trimethoxysilyl) propyl can be adsorbed respectively.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • a surface treatment may be performed by introducing a polymerizable functional group onto the surface of the migrating particle 73 and grafting it onto the surface (graftable material).
  • the graft material has, for example, a polymerizable functional group and a dispersing functional group.
  • the functional group for dispersion is to disperse the migrating particles 73 in the insulating liquid 72 and retain dispersibility due to the steric hindrance.
  • the insulating liquid 72 is, for example, paraffin, a branched alkyl group can be used as the dispersing functional group.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used.
  • the porous layer 74 can shield the migrating particles 73 and has a fibrous structure 74B and non-migrating particles 74C (second particles) held by the fibrous structure 74B.
  • the porous layer 74 is a three-dimensional structure (irregular network structure such as a nonwoven fabric) formed by the fibrous structure 74B, and is provided with a plurality of gaps (pores 74A).
  • the thickness of the porous layer 74 is small, a high reflectance can be obtained, the contrast of the electrophoretic element 71 can be improved, and the energy for moving the electrophoretic particles 73 can be reduced. Further, the average pore diameter of the pores 74 ⁇ / b> A is increased, and many pores 74 ⁇ / b> A are provided in the porous layer 74. Thereby, the migrating particles 73 are easily moved via the pores 74A, the response speed is improved, and the energy for moving the migrating particles 73 is further reduced.
  • the thickness of such a porous layer 74 is, for example, 5 ⁇ m to 100 ⁇ m.
  • the fibrous structure 74B is a fibrous substance having a sufficient length with respect to the fiber diameter (diameter). For example, a plurality of fibrous structures 21 are assembled and randomly overlapped to form the porous layer 74. One fibrous structure 74B may be entangled randomly to form the porous layer 74. Or the porous layer 74 by the one fibrous structure 74B and the porous layer 74 by the some fibrous structure 74B may be mixed.
  • the fibrous structure 74B is made of, for example, a polymer material or an inorganic material.
  • the polymer material include nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, polyvinylidene fluoride, poly Hexafluoropropylene, cellulose acetate, collagen, gelatin, chitosan or a copolymer thereof can be used.
  • the inorganic material is, for example, titanium oxide.
  • a polymeric material is preferably used for the fibrous structure 74B. This is because the polymer material has low reactivity to light, for example, and is chemically stable. That is, by using a polymer material, an unintended decomposition reaction of the fibrous structure 74B can be prevented.
  • the fibrous structure 74B is made of a highly reactive material, the surface is preferably covered with an arbitrary protective layer.
  • the fibrous structure 74B extends, for example, linearly.
  • the shape of the fibrous structure 74B may be any shape.
  • the fibrous structure 74B may be crimped or bent in the middle.
  • fibrous structure 74B may be branched on the way.
  • the average fiber diameter of the fibrous structure 74B is, for example, not less than 50 nm and not more than 2000 nm, but may be outside the above range. By reducing the average fiber diameter, light is easily diffusely reflected, and the pore diameter of the pores 74A is increased. The fiber diameter is determined so that the fibrous structure 74B can hold the non-migrating particles 74C. The average fiber diameter can be measured, for example, by microscopic observation using a scanning electron microscope or the like. The average length of the fibrous structure 74B is arbitrary.
  • the fibrous structure 74B is formed by, for example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, or a spray coating method. Is done. By using such a method, the fibrous structure 74B having a sufficient length with respect to the fiber diameter can be easily and stably formed.
  • the fibrous structure 74B is preferably composed of nanofibers.
  • the nanofiber is a fibrous substance having a fiber diameter of 1 nm to 1000 nm and a length of 100 times or more of the fiber diameter.
  • the fibrous structure 74B By using such a nanofiber as the fibrous structure 74B, light is easily diffusely reflected, and the reflectance of the porous layer 74 can be further improved. That is, the contrast of the electrophoretic element 71 can be improved.
  • the fibrous structure 74B made of nanofibers the proportion of the pores 74A in the unit volume increases, and the migrating particles 73 can easily move through the pores 74A. Therefore, the energy for moving the migrating particles 73 can be reduced.
  • the fibrous structure 74B made of nanofibers is preferably formed by an electrostatic spinning method. By using the electrostatic spinning method, the fibrous structure 74B having a small fiber diameter can be formed easily and stably.
  • a fibrous structure 74B having a light reflectance different from that of the migrating particles 73 is preferable to use. Thereby, the contrast due to the difference in light reflectance between the porous layer 74 and the migrating particles 73 is easily formed.
  • a fibrous structure 74 ⁇ / b> B that exhibits optical transparency (colorless and transparent) in the insulating liquid 72 may be used.
  • the pores 74A are configured by overlapping a plurality of fibrous structures 74B or tangling one fibrous structure 74B.
  • the pores 74A preferably have as large an average pore diameter as possible so that the migrating particles 73 can easily move through the pores 74A.
  • the average pore diameter of the pores 74A is, for example, 0.1 ⁇ m to 10 ⁇ m.
  • the non-migrating particles 74C are fixed to the fibrous structure 74B, and the light reflectance thereof is different from the light reflectance of the migrating particles 73.
  • the non-migrating particles 74 ⁇ / b> C can be made of the same material as that of the migrating particles 73. Specifically, when the non-electrophoretic particle 74C (porous layer 74) displays brightly, the material when the electrophoretic particle 73 displays brightly, and when the non-electrophoretic particle 74C displays dark, the electrophoretic particle 73 darkens. Each material for display can be used. When the bright display is performed by the porous layer 74, it is preferable that the non-migrating particles 74C are made of a metal oxide.
  • the non-migrating particles 74 ⁇ / b> C are made of a metal oxide having a high refractive index, for example, a rutile type titanium oxide.
  • the constituent materials of the non-migrating particles 74C and the migrating particles 73 may be the same or different.
  • the non-migrating particles 74C may be completely embedded in the fibrous structure 74B, or may be partially exposed from the fibrous structure 74C.
  • the color visually recognized from the outside when the non-electrophoretic particle 74 ⁇ / b> C performs bright display or dark display is the same as that described for the electrophoretic particle 73.
  • Such a porous layer 74 can be formed by the following method, for example. First, a constituent material of the fibrous structure 74B such as a polymer material is dissolved in an organic solvent to prepare a spinning solution. Next, the non-migrating particles 74C are added to the spinning solution and stirred sufficiently to disperse the non-migrating particles 74C. Finally, the spinning solution is spun by, for example, an electrostatic spinning method to fix the non-migrating particles 74C to the fibrous structure 74B, thereby forming the porous layer 74.
  • the porous layer 74 may be formed by perforating a polymer film using a laser to form the pores 74A.
  • the porous layer 74 may be a cloth knitted with synthetic fibers or the like on the porous layer 74, or may be continuous. A foam porous polymer may be used.
  • the electrophoretic element 71 generates contrast by the difference between the light reflectance of the electrophoretic particles 73 and the light reflectance of the porous layer 74.
  • the light reflectance for bright display is higher than the light reflectance for dark display.
  • the light reflectance of the non-migrating particles 74 ⁇ / b> C is higher than that of the migrating particles 73 so that the porous layer 74 displays light and the migrating particles 73 display dark.
  • the electrophoretic particles 73 move through the pores 74A of the porous layer 74 within a range where an electric field is applied. Depending on the area where the migrating particles 73 have moved or not moved, either bright display or dark display is performed, and an image is displayed.
  • FIG. 16 illustrates an example of a cross-sectional configuration of an electronic device (display device) 2 that uses an electrophoretic element 71 as a display body 70.
  • the electronic device 2 is an electrophoretic display (so-called electronic paper display) that displays an image (for example, character information) using an electrophoretic phenomenon.
  • the functional unit 3 having the TFT layer 60 and the electrophoretic element 71 as the display body 70 is provided on the substrate 1.
  • the TFT layer 60 includes, for example, a TFT 61, a protective layer 62, and a planarization insulating layer 63.
  • the TFT 61 is a switching element for selecting a pixel.
  • the TFT 61 may be an inorganic TFT using an inorganic semiconductor layer as a channel layer or an organic TFT using an organic semiconductor layer.
  • the protective layer 62 and the planarization insulating layer 63 are made of an insulating resin material such as polyimide, for example. If the surface of the protective layer 62 is sufficiently flat, the planarization insulating layer 63 can be omitted.
  • the display body 70 includes the pixel electrode 75, the above-described electrophoretic element 71, and the counter substrate 76.
  • a spacer 77 is interposed between the TFT layer 60 and the counter substrate 76.
  • the pixel electrode 75 is formed of, for example, a metal material such as gold (Au), silver (Ag), or copper (Cu).
  • the pixel electrode 75 is connected to the TFT 61 through a contact hole (not shown) provided in the protective layer 62 and the planarization insulating layer 63.
  • the TFT 61 and the pixel electrode 75 are arranged in a matrix or a segment according to the pixel arrangement, for example.
  • the counter substrate 76 includes, for example, a plate member 76A and a counter electrode 76B, and the counter electrode 76B is provided on the entire surface of the plate member 76A (the surface facing the substrate 1). Similarly to the pixel electrode 75, the counter electrode 76B may be arranged in a matrix or a segment.
  • the plate-like member 76A has light transparency and is made of, for example, an inorganic material, a metal material, a plastic material, or the like.
  • the inorganic material include silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), and aluminum oxide (AlO x ).
  • Silicon oxide includes glass or spin-on-glass (SOG).
  • the metal material include aluminum (Al), nickel (Ni), and stainless steel
  • examples of the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethyl ether. Ketone (PEEK) etc. are mentioned.
  • a light-transmitting conductive material such as indium oxide-tin oxide (ITO), antimony-tin oxide (ATO), fluorine-doped tin oxide (FTO), or aluminum-doped zinc oxide (AZO).
  • ITO indium oxide-tin oxide
  • ATO antimony-tin oxide
  • FTO fluorine-doped tin oxide
  • AZO aluminum-doped zinc oxide
  • the light transmittance (transmittance) of the counter electrode 76B is preferably as high as possible. 80% or more. Further, the electrical resistance of the counter electrode 76B is preferably as low as possible, for example, 100 ⁇ / ⁇ or less.
  • the electrophoretic element 71 includes the electrophoretic particles 73 and the porous layer 74 having a plurality of pores 74A in the insulating liquid 72.
  • the insulating liquid 72 is filled in a space between the TFT layer 60 and the counter substrate 76, and the porous layer 74 is supported by a spacer 77, for example.
  • the space filled with the insulating liquid 72 is divided into, for example, a retreat area R1 near the pixel electrode 75 and a display area R2 near the counter electrode 76B with the porous layer 74 as a boundary. .
  • the configurations of the insulating liquid 72, the migrating particles 73, and the porous layer 74 are the same as described above. In FIG. 16 and FIG. 17 to be described later, only a part of the pore 74A is shown in order to simplify the illustrated contents.
  • the porous layer 74 may be adjacent to one of the pixel electrode 75 and the counter electrode 76B, and the retreat area R1 and the display area R2 may not be clearly separated.
  • the migrating particles 73 move toward the pixel electrode 75 or the counter electrode 76B according to the electric field.
  • the thickness of the spacer 77 is, for example, 10 ⁇ m to 100 ⁇ m, and is preferably as thin as possible. Thereby, power consumption can be suppressed.
  • the spacer 77 is made of, for example, an insulating material such as a polymer material, and is provided, for example, in a lattice shape between the TFT layer 60 and the counter substrate 76.
  • the arrangement shape of the spacers 77 is not particularly limited, but it is preferable to provide the spacers 77 so as not to disturb the movement of the migrating particles 73 and to distribute the migrating particles 73 uniformly.
  • the migrating particles 73 are arranged in the retreat area R1 (FIG. 16). In this case, since the migrating particles 73 are shielded by the porous layer 74 in all pixels, no contrast is generated when the electrophoretic element 71 is viewed from the counter substrate 76 side (an image is not displayed). Is in a state.
  • the migrating particles 73 are transferred from the retreat area R1 to the porous layer 74 for each pixel. It moves to display area R2 via (pore 74A).
  • the migrating particles 73 include pixels that are shielded by the porous layer 74 and pixels that are not shielded, a state in which contrast occurs when the electrophoretic element 71 is viewed from the counter substrate 76 side. become. Thereby, an image is displayed.
  • the planarization film 20 is formed on the surface of the material substrate 10, so that the concave defect 12 and the convex defect on the surface of the material substrate 10 are formed. 11 can be obtained, and it is possible to obtain the substrate 1 with few surface irregularities and excellent surface smoothness. Therefore, there is little damage to the electronic elements such as the TFT layer 60, and the yield can be improved.
  • the material substrate 10 with less irregularities is preferable, and the acceptance criterion for the material substrate 10 is set high, which causes an increase in cost. It was.
  • the acceptance criteria for the material substrate 10 can be relaxed, and the cost of the material substrate 10 can be suppressed.
  • FIG. 18 shows a flow of a method for manufacturing the substrate 1 according to the first modification.
  • This modification is the same as the method for manufacturing the substrate 1 of the above embodiment except that an inorganic film serving also as a barrier coat is formed as the planarizing film 20. Therefore, the process which overlaps with the said embodiment is demonstrated with reference to FIG. 2 thru
  • Step S101 in FIG. 18 Step S101 in FIG. 18.
  • step S103 in FIG. 18 the surface of the material substrate 10 is cleaned (step S103 in FIG. 18), and pre-processing is performed (step S104 in FIG. 18).
  • Step S108 in FIG. 18 a planarizing film 20 is formed on the surface of the material substrate 10 (step S108 in FIG. 18).
  • the concave defects 12 existing on the surface of the material substrate 10 and the polishing flaws 13 generated in the polishing process are filled with the planarizing film 20.
  • the convex defects 11 remaining after the polishing are covered with the planarizing film 20. Therefore, the surface of the planarizing film 20 is formed smoothly.
  • an inorganic film that also serves as a barrier coat is formed as the planarizing film 20.
  • the material of the inorganic film include a SiOx film, a SiNx film, a SiON film, and an Al 2 O 3 film.
  • the planarizing film 20 may be a hybrid film of a resin film and an inorganic film as long as it has a barrier coating performance.
  • planarizing film 20 As a method for forming the planarizing film 20, slit coating, screen printing, gravure coating, spin coating, spray coating, CVD, ALD, sputtering, or the like can be used.
  • the planarizing film 20 is made of a material having the same or substantially the same thermal behavior such as a thermal expansion coefficient and a thermal contraction.
  • the planarization film 20 is preferably made of a material having high affinity such as a chemical composition or a functional group with the material substrate 10.
  • the planarizing film 20 has heat resistance with respect to the temperature when the functional unit 3 is formed later.
  • the thickness T20 of the planarizing film 20 is preferably thinner than the thickness T10 of the material substrate 10 as in the above embodiment.
  • the material substrate 10 is thinner than the planarization film 20, there is a possibility that the convex defects 11 remaining after the polishing of the surface of the material substrate 10 cannot be covered.
  • the thermal contraction of the planarizing film 20 is large, the contraction of the planarizing film 20 is increased due to a heating process or the like when forming the functional unit later, and the substrate 1 is warped.
  • the thickness T20 of the planarizing film 20 is preferably, for example, 1/5 or less of the thickness T10 of the material substrate 10, more preferably 1/7 or less, and even more preferably 1/10 or less. .
  • the planarizing film 20 is formed on the surface of the material substrate 10, and then planarized by an oven, an IR (infrared) furnace, or the like.
  • the film 20 may be sintered (post-baked).
  • the temperature at this time is preferably not higher than the heat resistance temperature of the material of each layer of the laminated structure including the material substrate 10, the planarizing film 20, the support 30 and the adhesive layer 40.
  • the substrate 1 is completed.
  • Modification 2 Next, Modification 2 will be described with reference to FIGS.
  • an organic EL element 81 is formed as the display body 70, and an organic EL display is manufactured as the electronic device 2.
  • FIG. 20 illustrates an example of a cross-sectional configuration of an electronic device (display device) 2 that uses an organic EL element 81 as a display body 70.
  • the electronic device 2 is an organic EL display that displays an image using light emission of the organic EL element 81.
  • the electronic device 2 has a function of having a TFT layer 60 and an organic EL element 81 as a display body 70 on the substrate 1.
  • the part 3 is provided.
  • the TFT layer 60 includes, for example, a TFT 64 and a planarization insulating layer 65.
  • the TFT 64 is a so-called bottom gate type TFT and uses, for example, an oxide semiconductor for a channel (active layer).
  • a gate electrode 64A, a gate insulating film (first gate insulating film 64B, second gate insulating film 64C), an oxide semiconductor layer 64D, a channel protective film 64E, and a source / drain electrode 64F are formed on the substrate 1. It is formed in order.
  • a planarization insulating layer 65 for planarizing the unevenness of the TFT 64 over the entire surface of the substrate 1 is formed.
  • the gate electrode 64A plays a role of controlling the carrier density (here, electron density) in the oxide semiconductor layer 64D by the gate voltage applied to the TFT 64.
  • the gate electrode 64A is composed of a single layer film made of, for example, one of Mo, Al, and an aluminum alloy, or a laminated film made of two or more kinds.
  • the aluminum alloy include an aluminum-neodymium alloy.
  • the first gate insulating film 64B and the second gate insulating film 64C are a single layer film made of one of SiO 2 , Si 3 N 4 , silicon nitride oxide (SiON), aluminum oxide (Al 2 O 3 ), and the like. Or a laminated film composed of two or more of these.
  • the first gate insulating film 64B and the second gate insulating film 64C have a two-layer structure, and the first gate insulating film 64B is made of, for example, a SiO 2 film, and the second gate insulating film 64C is made of, for example, a Si 3 N 4 film. It is configured.
  • the total film thickness of the first gate insulating film 64B and the second gate insulating film 64C is, for example, 200 nm to 300 nm.
  • the oxide semiconductor layer 64D contains, for example, at least one oxide of indium (In), gallium (Ga), zinc (Zn), tin (Sn), Al, and Ti as a main component.
  • the oxide semiconductor layer 64D forms a channel between the source / drain electrodes 64F by applying a gate voltage.
  • the thickness of the oxide semiconductor layer 64D is preferably such that it does not cause deterioration of the on-state current of the thin film transistor so that the negative charge affects the channel, and specifically, it is preferably 5 nm to 100 nm. .
  • the channel protective film 64E is formed on the oxide semiconductor layer 64D and prevents the channel from being damaged when the source / drain electrode 64F is formed.
  • the thickness of the channel protective film 64E is, for example, 10 to 300 nm.
  • the source / drain electrode 64F is, for example, a single layer film made of one of Mo, Al, copper (Cu), Ti, ITO, TiO, or the like, or a laminated film made of two or more of these.
  • a metal or metal compound having a weak bond with oxygen such as a three-layer film laminated in the order of Mo, Al, and Mo in a thickness of 50 nm, 500 nm, and 50 nm, or a metal compound containing oxygen such as ITO and titanium oxide It is desirable to use Accordingly, the electrical characteristics of the oxide semiconductor can be stably maintained.
  • the planarization insulating layer 65 is made of an organic material such as polyimide or novolac.
  • the thickness of the planarization layer 27 is, for example, 10 nm to 100 nm, and preferably 50 nm or less.
  • An anode electrode 82 of the organic EL element 81 is formed on the planarization insulating layer 65.
  • the organic EL element 81 has a configuration in which an anode electrode 82, a partition insulating film 83, an organic layer 84 including a light emitting layer, a cathode electrode 85, a protective layer 86, and a sealing substrate 87 are laminated on the TFT layer 60 in this order. is doing.
  • the organic EL element 81 emits light emitted when the holes injected from the anode electrode 82 and the electrons injected from the cathode electrode 85 recombine in the light emitting layer of the organic layer 84 on the side opposite to the substrate 1 (cathode.
  • This is a top emission type (top emission type) display element that extracts light from the electrode 83 side.
  • the organic EL element 81 of the present disclosure is not limited to such a configuration, and may be, for example, a transmission type that extracts light from the substrate 1 side, that is, a bottom emission type (bottom emission type) display element.
  • the anode electrode 82 is made of a highly reflective material, for example, Al, Ti, Cr, or the like.
  • the anode electrode 82 is made of a transparent material such as ITO, IZO, IGZO or the like when the electronic device (display device) 2 is a transmissive type.
  • the partition insulating film 83 is formed of an organic material such as polyimide or novolac, and has a function of ensuring insulation between the anode electrode 82 and the cathode electrode 85.
  • the partition insulating film 83 is provided so as to surround the light emitting region of the anode electrode 82, and is provided on the connection portion between the source / drain electrode 64 F of the TFT 64 and the anode electrode 82.
  • the organic layer 84 has a structure in which a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are stacked in this order from the anode electrode 82 side.
  • the organic layer 84 is formed by, for example, a vacuum deposition method or a spin coating method.
  • the upper surface of the organic layer 84 is covered with a cathode electrode 85.
  • the film thickness of each layer which comprises the organic layer 84, a constituent material, etc. are not specifically limited, An example is shown below.
  • the hole injection layer is a buffer layer for increasing the efficiency of hole injection into the light emitting layer and preventing leakage.
  • the thickness of the hole injection layer is, for example, preferably 5 nm to 200 nm, more preferably 8 nm to 150 nm.
  • the constituent material of the hole injection layer may be appropriately selected in relation to the material of the electrode and the adjacent layer.
  • polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline, polyquinoxaline and derivatives thereof examples thereof include conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain, metal phthalocyanines (such as copper phthalocyanine), and carbon.
  • Specific examples of the conductive polymer include oligoaniline and polydioxythiophene such as poly (3,4-ethylenedioxythiophene) (PEDOT).
  • the hole transport layer is for increasing the efficiency of hole transport to the light emitting layer.
  • the thickness of the hole transport layer 15B depends on the entire structure of the element, but is preferably 5 nm to 200 nm, and more preferably 8 nm to 150 nm, for example.
  • a material constituting the hole transport layer a light emitting material soluble in an organic solvent, for example, polyvinyl carbazole, polyfluorene, polyaniline, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in a side chain or a main chain , Polythiophene and its derivatives, polypyrrole or Alq3 can be used.
  • the thickness of the light emitting layer is preferably, for example, 10 nm to 200 nm, more preferably 20 nm to 150 nm, although it depends on the overall structure of the device.
  • the light emitting layer may be a single layer or a laminated structure. Specifically, a single red, green, and blue light emitting layer may be provided on the hole transport layer.
  • the blue light emitting layer is a common layer of red, green and blue organic EL elements, the red organic EL element has a blue light emitting layer laminated on the red light emitting layer, and the green organic EL element has a blue color on the green light emitting layer.
  • a light emitting layer may be laminated. Further, a red light emitting layer, a green light emitting layer, and a blue light emitting layer may be laminated, and a white organic EL element is formed by laminating them.
  • the material constituting the light emitting layer may be a material corresponding to each emission color.
  • a polyfluorene polymer derivative for example, a (poly) paraphenylene vinylene derivative, a polyphenylene derivative, a polyvinyl carbazole derivative, a polythiophene derivative, a perylene series.
  • examples thereof include a dye, a coumarin dye, a rhodamine dye, or a polymer obtained by doping the above polymer with an organic EL material.
  • the doping material for example, rubrene, perylene, 9,10-diphenylanthracene, tetraphenylbutadiene, Nile red, coumarin 6 and the like can be used.
  • low molecular weight materials include benzine, styrylamine, triphenylamine, porphyrin, triphenylene, azatriphenylene, tetracyanoquinodimethane, triazole, imidazole, oxadiazole, polyarylalkane, phenylenediamine, arylamine, oxazole, Examples include anthracene, fluorenone, hydrazone, stilbene, or derivatives thereof, or heterocyclic conjugated monomers or oligomers such as polysilane compounds, vinylcarbazole compounds, thiophene compounds, and aniline compounds.
  • a material constituting the light emitting layer in addition to the above materials, as the light emitting guest material, a material having high luminous efficiency, for example, an organic light emitting material such as a low molecular fluorescent material, a phosphorescent dye or a metal complex can be used.
  • an organic light emitting material such as a low molecular fluorescent material, a phosphorescent dye or a metal complex
  • the light-emitting layer may be, for example, a hole-transporting light-emitting layer that also serves as the above-described hole transport layer, or may be an electron-transporting light-emitting layer that also serves as an electron transport layer.
  • the electron transport layer and the electron injection layer are for increasing the efficiency of electron transport to the light emitting layer.
  • the total film thickness of the electron transport layer and the electron injection layer depends on the entire structure of the device, it is preferably, for example, 5 nm to 200 nm, more preferably 10 nm to 180 nm.
  • a material for the electron transport layer an organic material having an excellent electron transport ability is preferably used. By increasing the efficiency of transporting electrons to the light emitting layer, a change in emission color due to the electric field intensity is suppressed.
  • arylpyridine derivatives and benzimidazole derivatives are preferably used. This is because high electron supply efficiency is maintained even with a low driving voltage.
  • the material for the electron injection layer include alkali metals, alkaline earth metals, rare earth metals and their oxides, composite oxides, fluorides, carbonates, and the like.
  • the organic layer 84 is formed by a coating method such as a dipping method, a doctor blade method, a discharge coating method, a spray coating method, an ink jet method, an offset printing method, a relief printing method, an intaglio printing method in addition to a vacuum deposition method and a spin coating method.
  • a coating method such as a dipping method, a doctor blade method, a discharge coating method, a spray coating method, an ink jet method, an offset printing method, a relief printing method, an intaglio printing method in addition to a vacuum deposition method and a spin coating method.
  • Screen printing, microgravure coating, and other printing methods are also possible, and a dry process and a wet process may be used in combination according to the properties of each layer and each member.
  • the cathode electrode 85 is made of, for example, a material having a thickness of about 10 nm, good light transmittance, and a small work function. Moreover, light extraction can be ensured also by forming a transparent conductive film using an oxide. In this case, ZnO, ITO, IZnO, InSnZnO, or the like can be used.
  • the cathode electrode 85 may be a single layer or a laminated structure.
  • the cathode electrode 85 is configured using a transflective material.
  • the optical distance between the light reflecting surface on the anode electrode 82 side and the light reflecting surface on the cathode electrode 85 side is defined by the wavelength of light to be extracted, and the film thickness of each layer is set so as to satisfy this optical distance. Is set. In such a top emission type organic EL element 81, it is possible to improve the light extraction efficiency to the outside and control the emission spectrum by positively using this cavity structure.
  • the protective layer 86 is for preventing moisture from entering the organic layer 84, and is formed using a material having low permeability and low water permeability, for example, with a thickness of 2 to 3 ⁇ m.
  • the material of the protective layer 86 may be made of either an insulating material or a conductive material.
  • Insulating materials include inorganic amorphous insulating materials such as amorphous silicon ( ⁇ -Si), amorphous silicon carbide ( ⁇ -SiC), amorphous silicon nitride ( ⁇ -Si 1-x N x ), amorphous carbon ( ⁇ -C) is preferred.
  • Such an inorganic amorphous insulating material does not constitute grains, and thus has low water permeability and becomes a good protective film.
  • the sealing substrate 87 is positioned on the cathode electrode 85 side of the organic EL element 81 and seals the organic EL element 81 together with an adhesive layer (not shown).
  • the sealing substrate 87 is made of a material such as glass that is transparent to the light generated by the organic EL element 81.
  • the sealing substrate 81 is provided with, for example, a color filter and a light-shielding film (not shown) as a black matrix, and extracts light generated in the organic EL elements 81 and between the organic EL elements 10. The external light reflected by the wiring is absorbed and the contrast is improved.
  • the color filter has a red filter, a green filter, and a blue filter (all not shown), which are arranged in order.
  • Each of the red filter, the green filter, and the blue filter is, for example, rectangular and has no gap.
  • These red filter, green filter and blue filter are each composed of a resin mixed with a pigment, and by selecting the pigment, the light transmittance in the target red, green or blue wavelength region is high, The light transmittance in the wavelength range is adjusted to be low.
  • the light-shielding film is formed of, for example, a black resin film having an optical density of 1 or more mixed with a black colorant, or a thin film filter using thin film interference. Of these, a black resin film is preferable because it can be formed inexpensively and easily.
  • the thin film filter is formed by, for example, laminating one or more thin films made of metal, metal nitride, or metal oxide, and attenuating light by utilizing interference of the thin film. Specific examples of the thin film filter include those in which Cr and chromium oxide (III) (Cr 2 O 3 ) are alternately laminated.
  • FIG. 21 shows a schematic configuration of the electronic device (display device) 2.
  • the electronic device (display device) 2 is used as an organic EL television device or the like, and a functional unit 3 including a TFT layer 60 and a display body 70 is formed on a substrate 1.
  • the functional unit 3 has a display area 110 ⁇ / b> A and a peripheral area 110 ⁇ / b> B on the substrate 1.
  • a red organic EL element 81R that generates red light
  • a green organic EL element 81G that generates green light
  • a blue organic EL element 81B that generates blue light are sequentially matrixed as a whole.
  • the peripheral area 110 ⁇ / b> B is arranged so as to surround the display area 110.
  • a signal line driving circuit 120 and a scanning line driving circuit 130 which are drivers for displaying images are provided.
  • a pixel drive circuit 140 is provided in the display area 110A.
  • FIG. 22 illustrates an example of the pixel driving circuit 140.
  • the pixel driving circuit 140 is an active driving circuit formed in the TFT layer 60 below the anode electrode 81. That is, the pixel drive circuit 140 includes a drive transistor Tr1 and a write transistor Tr2, a capacitor (holding capacitor) Cs between the transistors Tr1 and Tr2, a first power supply line (Vcc), and a second power supply line (GND).
  • Vcc first power supply line
  • GND second power supply line
  • the drive transistor Tr1 and the write transistor Tr2 are configured by, for example, a bottom gate type oxide semiconductor TFT such as the TFT 64 shown in FIG.
  • a plurality of signal lines 120A are arranged in the column direction, and a plurality of scanning lines 130A are arranged in the row direction.
  • the intersection of each signal line 120A and each scanning line 130A corresponds to one of the red organic EL element 81R, the green organic EL element 81G, and the blue organic EL element 81B.
  • Each signal line 120A is connected to the signal line drive circuit 120, and an image signal is supplied from the signal line drive circuit 120 to the source electrode of the write transistor Tr2 via the signal line 120A.
  • Each scanning line 130A is connected to the scanning line driving circuit 130, and a scanning signal is sequentially supplied from the scanning line driving circuit 130 to the gate electrode of the writing transistor Tr2 via the scanning line 130A.
  • a scanning signal is supplied from the scanning line driving circuit 130 to the gate of the writing transistor Tr2 for each pixel, and an image signal is written from the signal line driving circuit 120 to the writing transistor Tr2.
  • This light is transmitted through the anode electrode 82 and the substrate 1 in the case of bottom emission (bottom emission), and in the case of top emission (top emission), the cathode 85, a color filter (not shown), and a sealing substrate. It passes through 87 and is taken out.
  • the electronic device display device 2 as described above to an electronic device.
  • the electronic device include a television device, a digital camera, a notebook personal computer, a mobile terminal device such as a mobile phone, or a video camera. That is, the display device can be applied to electronic devices in various fields that display a video signal input from the outside or a video signal generated inside as an image or video.
  • the electronic book 210 includes, for example, a display unit 211, a non-display unit 212, and an operation unit 213. Note that the operation unit 213 may be provided on the front surface of the non-display unit 212 as illustrated in FIG. 23, or may be provided on the upper surface of the non-display unit 212 as illustrated in FIG. 24.
  • the display unit 211 includes an electronic device (display device) 2.
  • the electronic device (display device) 2 may be mounted on a PDA (Personal Digital Assistants) having the same configuration as the electronic book shown in FIGS.
  • PDA Personal Digital Assistants
  • FIG. 25 shows the appearance of the smartphone 220.
  • the smartphone 220 includes, for example, a display unit 221 and a non-display unit 222.
  • the display unit 221 includes an electronic device (display device) 2.
  • FIG. 26 illustrates an appearance of a television device 230 to which the display device of the above embodiment is applied.
  • the television device 230 includes, for example, a video display screen unit 233 including a front panel 231 and a filter glass 232.
  • the video display screen unit 233 is configured by the electronic device (display device) 2.
  • FIG. 27 shows the appearance of the tablet personal computer 240.
  • the tablet personal computer 240 includes, for example, a touch panel unit 241 and a housing 242, and the touch panel unit 241 is configured by an electronic device (display device) 2.
  • the digital still camera 250 includes, for example, a flash light emitting unit 251, a display unit 252, a menu switch 253, and a shutter button 254, and the display unit 252 includes an electronic device (display device) 2.
  • FIG. 30 shows the appearance of the notebook personal computer 260.
  • the notebook personal computer 260 includes, for example, a main body 261, a keyboard 262 for inputting characters and the like, and a display unit 263 for displaying an image.
  • the display unit 263 is controlled by the electronic device (display device) 2. It is configured.
  • FIG. 31 shows the appearance of the video camera 270.
  • the video camera 270 includes, for example, a main body 271, a subject shooting lens 272 provided on the front side surface of the main body 271, a start / stop switch 273 at the time of shooting, and a display unit 274.
  • the display unit 274 is configured by the electronic device (display device) 2.
  • FIG. 32 and FIG. 33 show the appearance of another electronic book 280.
  • the electronic book 280 is a thin flexible display formed by componentizing a soft material.
  • the entire apparatus can be closed (folded) or opened like an actual book formed by binding a plurality of sheets (pages).
  • the user can browse the content displayed on the electronic book 3 (for example, a page of the book) as if he / she is actually reading a book.
  • the electronic book 280 is provided with a display portion 282 on a support substrate 281, and has a hinge portion 283 at a “back” portion (back 283A) in the book.
  • a cover 284 made of a soft resin film is provided on the lower surface (the surface that becomes the outer side when closed) of the electronic book 280, and the upper surface (the surface that becomes the inner side when the cover is closed) is soft and can display light.
  • a protective sheet 285 made of a resin film having transparency.
  • the display unit 282 includes an electronic device (display device) 2.
  • FIG. 1 The cellular phone 290 is formed by, for example, connecting an upper housing 291 and a lower housing 292 with a connecting portion (hinge portion) 293, and includes a display 294, a sub display 295, a picture light 296, and a camera 297. ing.
  • the display 294 or the sub display 295 is configured by the electronic device (display device) 2.
  • the present technology has been described with reference to the embodiments, the present technology is not limited to these embodiments and the like, and various modifications are possible.
  • an electronic paper display and an organic EL display device have been described as the electronic device (display device) 2.
  • other display devices such as a liquid crystal display device may be used.
  • the electronic device 2 of the present technology can be applied to a sensor or the like in addition to a display device.
  • each layer described in the above embodiments and the like, or the film formation method and film formation conditions are not limited, and may be other materials and thicknesses, or other film formation methods. Alternatively, film forming conditions may be used.
  • substrate 1 and the electronic device 2 were specifically mentioned and demonstrated, the board
  • the present technology can take the following configurations. (1) Polishing the surface of the substrate, Forming a planarizing film on the surface of the material substrate after polishing the surface of the material substrate. (2) The method for manufacturing a substrate according to (1), wherein the polishing and the planarizing film are formed in a state where the material substrate is attached to a support. (3) The method for manufacturing a substrate according to (1) or (2), wherein the planarizing film is made of a material having the same or substantially the same linear expansion coefficient as the material substrate. (4) The method for manufacturing a substrate according to any one of (1) to (3), wherein the planarizing film is made of a material having the same or substantially the same heat shrinkage as that of the material substrate.
  • the depth of polishing scratches on the material substrate is set to be equal to or less than the thickness of the planarizing film.
  • Forming a substrate; and forming a functional part on the substrate; Forming the substrate comprises: Polishing the surface of the substrate, Forming a planarizing film on the surface of the material substrate after polishing the surface of the material substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 素材基板の表面を研磨することと、前記素材基板の表面を研磨したのちに、前記素材基板の表面に平坦化膜を形成することとを含む基板の製造方法。

Description

基板の製造方法および電子デバイスの製造方法
 本技術は、特にフレキシブル性の高い電子デバイスの形成に好適な基板の製造方法、およびこの基板の製造方法を用いた電子デバイスの製造方法に関する。
 表示装置等の電子デバイスでは、基板表面に、電子回路および表示体等を含む機能部が設けられている。基板表面に傷や陥没などの欠陥がある場合には、電子回路へのダメージを抑えるため、電子回路形成前にそれらの欠陥を修復しておくことが望ましい。例えば特許文献1では、ガラス等の基板表面の傷や陥没などの欠陥に復元剤を注入し、復元剤を硬化させたのち、硬化した復元剤を局所的に研磨することにより基板表面を平坦化することが提案されている。
特開2010-15123号公報
 基板表面には傷や窪みなどの凹欠陥ばかりではなく、突起などの凸欠陥も存在しているが、凹欠陥および凸欠陥の両方に対応可能な平坦化技術は未だ存在していなかった。
 従って、基板表面の平滑性を高めることが可能な基板の製造方法、およびこの基板の製造方法を用いた電子デバイスの製造方法を提供することが望ましい。
 本開示の一実施の形態に係る基板の製造方法は、素材基板の表面を研磨することと、素材基板の表面を研磨したのちに、素材基板の表面に平坦化膜を形成することとを含むものである。
 本開示の一実施の形態の基板の製造方法では、素材基板の表面を研磨することにより、素材基板の表面に存在する突起などの凸欠陥が除去される。そののち、素材基板の表面に平坦化膜が形成されることにより、素材基板の表面に存在する窪みなどの凹欠陥や、研磨により生じた傷が、平坦化膜で埋め込まれる。
 本開示の一実施の形態に係る電子デバイスの製造方法は、基板を形成することと、基板に機能部を形成することとを含み、基板を形成することは、上記本開示に係る基板の製造方法により行われるものである。
 本開示の一実施の形態の基板の製造方法、または本開示の一実施の形態の電子デバイスの製造方法によれば、素材基板の表面を研磨したのちに、素材基板の表面に平坦化膜を形成するようにしたので、基板表面の凹欠陥および凸欠陥の両方に対応可能となり、基板表面の平滑性を高めることが可能となる。
本開示の一実施の形態に係る基板の製造方法の流れを表す図である。 素材基板の一例を表す断面図である。 図2に示した素材基板を支持体に貼り合わせた状態を表す断面図である。 図3に示した素材基板の表面を研磨する工程を表す断面図である。 図4に示した素材基板の表面に平坦化膜を形成する工程を表す断面図である。 図5に示した平坦化膜の表面にバリアコートを形成する工程を表す断面図である。 本開示の一実施の形態に係る電子デバイス(表示装置)の製造方法の流れを表す図である。 図6に示した基板にTFT層を形成する工程を表す断面図である。 TFT層の上に表示体を形成する工程を表す断面図である。 素材基板および平坦化膜を含む基板本体を支持体から剥離する工程を表す断面図である。 基板本体を切断し、モジュールを形成する工程を表す断面図である。 基板を切断し、モジュールを形成する工程を表す斜視図である。 素材基板および平坦化膜を含む基板本体を支持体から剥離する工程を表す断面図である。 図8に示した表示体の一例としての電気泳動素子の構成を表す平面図である。 図14に示した電気泳動素子の構成を表す断面図である。 図14に示した電気泳動素子を有する電子デバイス(表示装置)の構成を表す断面図である。 図16に示した電子デバイス(表示装置)の動作を説明するための断面図である。 変形例1に係る電子デバイス(表示装置)の製造方法の流れを表す図である。 素材基板の表面に平坦化膜を形成する工程を表す断面図である。 変形例2に係る電子デバイス(表示装置)において、図8に示した表示体の他の例としての有機EL素子の構成を表す断面図である。 図20に示した有機EL素子を有する電子デバイス(表示装置)の全体構成を表す図である。 図21に示した画素駆動回路の一例を表す図である。 電子デバイスの適用例1の外観を表す斜視図である。 適用例1の外観を表す他の斜視図である。 電子デバイスの適用例2の外観を表す斜視図である。 電子デバイスの適用例3の外観を表す斜視図である。 電子デバイスの適用例4の外観を表す斜視図である。 電子デバイスの適用例5の表側から見た外観を表す斜視図である 適用例5の裏側から見た外観を表す斜視図である。 電子デバイスの適用例6の外観を表す斜視図である。 電子デバイスの適用例7の外観を表す斜視図である。 電子デバイスの適用例8の開いた状態を表す斜視図である。 適用例8の閉じた状態を表す斜視図である。 電子デバイスの適用例9の閉じた状態を表す図である。 適用例9の開いた状態を表す図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態(平坦化膜として樹脂膜を形成し、平坦化膜の表面に無機膜よりなるバリアコートを形成する例)
2.変形例1(平坦化膜としてバリアコートを兼ねる無機膜を形成する例)
3.変形例2(表示体として有機EL(Electroluminescence )素子を有する例)
4.適用例
(基板の製造方法)
 まず、図1ないし図6を参照して、本開示の一実施の形態に係る基板の製造方法について説明する。本実施の形態の基板1の製造方法は、プラスチックフィルム等の可撓性を有する素材基板10を用い、この素材基板10の表面に存在する凹欠陥および凸欠陥を均して、平滑性の高い表面を有する基板1を形成するものである。本実施の形態の基板1の製造方法は、素材基板10の表面を研磨することと、素材基板10の表面を研磨したのちに、素材基板10の表面に平坦化膜20を形成することとを含んでいる。得られた基板1は、表示装置やセンサなどの電子デバイスの製造に用いられる。
(素材基板10を支持体30に貼り合わせる工程)
 素材基板10は、例えば図2に示したように、可撓性を有する樹脂シート(プラスチックシート)により構成されている。具体的には、素材基板10の厚みは、例えば、200μm以下であることが好ましく、50μm以下であればより好ましい。素材基板10の構成材料としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリアミド、ポリカーボネート、セルローストリアセテート、ポリオレフィン、ポリスチレン、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、シリコーン樹脂、アクリル樹脂などのプラスチックシートが挙げられる。
 素材基板10の表面には、同じく図2に示したように、凸欠陥11と、凹欠陥12とが存在する。凸欠陥11としては、例えば、基準面10Aからの高さが2μm以上の高い突起11A、または、基準面10Aからの高さが2μm以下の低い突起11Bがありうる。凹欠陥12としては、基準面10Aからクレータ状に窪んだ陥没12A、または、基準面10Aから楔状に掘り込まれた傷12Bなどがありうる。なお、陥没12Aの基準面10Aからの深さは例えば2.0μm以下であり、傷12Bの基準面10Aからの深さは例えば1.0μm以下である。
 このような素材基板10を、研磨工程の前に、図3に示したように、支持体30に粘着層40を用いて貼り付ける(図1のステップS101)。これにより、研磨する工程および平坦化膜20を形成する工程を、素材基板10を支持体30に貼り付けた状態で行い、素材基板10の裏面の平坦性を担保することが可能となる。
 素材基板10の支持体30への貼り付けは、例えば、次のようにして行うことができる。まず、支持体30または素材基板10に、スピンコート、ダイコート、グラビアコートなどの印刷法で塗布するか、または粘着テープを貼付することにより、粘着層40を形成する。次いで、ラミネーターで素材基板10を支持体30に貼り合わせて固定する。
 支持体30には、石英ガラス、耐熱ガラス、金属、セラミック等の融点が500℃以上の材質を用いることが好ましい。また、支持体30の線膨張係数は、例えば、10ppm/K以下であることが好ましい。より好ましくは、支持体30の線膨張係数は、0.1ppm/K以上10ppm/K以下である。支持体30の厚みT30は、機械強度や取り扱い性の点から、例えば0.3mm以上であることが好ましい。より好ましくは、支持体30の厚みT30は、0.3mm以上2.0mm以下であることが好ましい。
 粘着層40には、汎用的な粘着剤、粘着テープを用いることが可能である。そのため、粘着力を低下させる特別な処理を行うこと無く、素材基板10を支持体30から剥離し、基板1に後述する機能部3等を作成することが可能である。具体的には、粘着層40としては、アクリル系粘着剤、シリコーン系、シロキサン系、天然ゴム系粘着剤、合成ゴム系粘着剤などを用いることが可能である。
(素材基板10の表面を研磨する工程)
 素材基板10を支持体30に固定したのち、図4に示したように、研磨部材Pを用いて、素材基板10の表面を研磨する(図1のステップS102)。これにより、素材基板10の表面に存在する凸欠陥11が削り取られて除去される。
 研磨方法は、機械的な研磨でもよいし、研磨効率を上げるために適切にPHを調整した研磨剤(スラリー)等を用いることも可能である。具体的には、研磨方法としては、CMP(Chemical Mechanical Polishing ;化学機械研磨)、テープ研磨、ロール研磨などの手法を用いることが可能である。
 この研磨工程では、素材基板10の表面全体を研磨することが好ましい。素材基板10の表面の一部を局所的に研磨するだけでは、研磨されない領域には凸欠陥11が残存する可能性がある。残存した凸欠陥11は、その高さによっては、後工程で形成する平坦化膜20によってもカバーしきれず、基板1の表面平滑性を低下させるおそれがある。
 また、この研磨工程では、凸欠陥11の高さが、後工程で形成する平坦化膜20の厚み以下、例えば1μm以下となるように研磨を行うことが好ましい。凸欠陥11の高さが1μm以下であれば、後工程で形成する平坦化膜20によってカバーすることが可能となる。
 研磨工程において、素材基板10の表面に研磨傷13がつくことは許容される。研磨傷13により、表面積が増加することにより、素材基板10と平坦化膜20の接触面積が増加し、アンカー効果が生じることによって密着性を向上させる効果が見込まれる。研磨傷13の深さD13は、後工程で形成する平坦化膜20の厚み以下、例えば3μm以下であることが好ましく、1μm以下であればより好ましい。研磨傷13の深さD13がこの程度であれば、後工程で形成する平坦化膜20によって平坦化が可能となる。
(洗浄)
 素材基板10の表面を研磨したのち、次工程の平坦化膜20の成膜に備えて、素材基板10の表面を洗浄する(図1のステップS103)。洗浄工程により、研磨カスや研磨剤(スラリー)などを除去して、清浄な表面を得る。洗浄方法は水洗もしくは有機洗浄、またこれに加えて超音波洗浄などを実施することも可能である。更に、UV(紫外線)洗浄またはオゾン洗浄も行うようにしてもよい。
(前処理)
 素材基板10の表面を洗浄したのち、平坦化膜20を形成する前に、前処理を行う(図1のステップS104)。前処理では、平坦化膜20の密着性を向上させるためのUV処理、プラズマ処理、シランカップリング剤塗布などを行うことが可能である。
(素材基板10の表面に平坦化膜20を形成する工程)
 前処理を終了したのち、図5に示したように、素材基板10の表面に平坦化膜20を形成する(図1のステップS105)。これにより、素材基板10の表面に存在する凹欠陥12および研磨工程で生じた研磨傷13が平坦化膜20で埋め込まれる。これと同時に、研磨後に残存している凸欠陥11が平坦化膜20でカバーされる。よって、平坦化膜20の表面が平滑に形成される。
 平坦化膜20は樹脂膜でもよいし、無機膜でもよい。樹脂膜ではアクリル系、ポリイミド系などが挙げられる。無機膜ではSiOx膜、SiNx膜、SiON膜、Al2 O3 膜などが挙げられる。また、平坦化膜20は、樹脂膜と無機膜とのハイブリッド膜でもよい。平坦化膜20をTEOS(Tetraethyl orthosilicate)とすることも可能であり、素材基板10の表面に凹欠陥12が存在していても容易に平坦化膜20の表面を平滑にすることが可能となる。
 平坦化膜20の成膜手法としては、樹脂膜の場合は、スリットコート、スクリーン印刷、グラビアコート、スピンコート、スプレーコートなどの方法を用いることが可能である。無機膜の場合は、上記方法に加えて、CVD(Chemical Vapor Deposition ;化学気相成長)、ALD(Atomic Layer Deposition ;原子層堆積)、スパッタ法などを用いることが可能である。
 平坦化膜20と素材基板10の熱挙動が大きく異なる場合は、製造プロセス中の熱工程により歪応力が蓄積される。例えば、熱膨張係数差が大きい場合は加熱工程中に基板反りや膜剥がれが生じる可能性があり、熱収縮差が大きい場合は加熱工程後に常温に戻った際に基板反りや膜剥がれが生じる可能性がある。そこで、平坦化膜20の熱膨張係数や熱収縮などの熱挙動が同じまたは略同じ材料により構成することが好ましい。更に、平坦化膜20は、素材基板10との化学組成や官能基などの親和性の高い材料により構成されていることが好ましい。加えて、平坦化膜20は、後の機能部3の形成の際の温度に対して耐熱性を備えていることが好ましい。
 平坦化膜20の厚みT20は、素材基板10の厚みT10よりも薄くすることが好ましい。素材基板10のほうが平坦化膜20よりも薄い場合には、素材基板10の表面の研磨後に残存している凸欠陥11をカバーしきれないおそれがある。また、平坦化膜20の熱収縮が大きいと後の機能部形成の際の加熱工程などにより平坦化膜20の膜収縮が大きくなり基板1に反りが生じる。また、厚みT20が大きいほどその影響が大きくなる。そのため、平坦化膜20の厚みT20は、例えば、素材基板10の厚みT10の5分の1以下であることが好ましく、より好ましくは7分の1以下、更に好ましくは10分の1以下である。
(ポストベーク)
 素材基板10の表面に平坦化膜20を形成したのち、オーブン、IR(infrared)炉などにより、平坦化膜20の焼結(ポストベーク)を行う(図1のステップS106)。この際の温度は、素材基板10、平坦化膜20、支持体30および粘着層40を含む積層構造体の各層の材料の耐熱温度以下で行うことが好ましい。また、焼成温度は、後の工程で樹脂膜が分解しない温度で行うことが好ましい。更に、樹脂膜などから脱ガスが極力出なくなるまで十分に加熱することが好ましい。
(バリアコート形成)
 ポストベークを終了したのち、図6に示したように、平坦化膜20の表面にバリアコート50を形成する(図1のステップS107)。バリアコート50は、例えば、厚みが数十nm~数百nmであり、SiOx膜、SiNx膜、SiON膜、Al2 O膜、TEOS膜などの無機膜により構成されていることが好ましい。以上により、基板1が完成する。
(電子デバイス(表示装置)の製造方法)
 続いて、図7ないし図13を参照して、本実施の形態に係る電子デバイス(表示装置)の製造方法について説明する。本実施の形態の電子デバイス2の製造方法は、上述した基板1の製造方法により基板1を形成したのち、この基板1に画像表示またはセンシング等の所望の機能を有する機能部3を形成し、切断およびモジュール化を行うものである。
(機能部3を形成する工程)
 まず、図8に示したように、基板1のバリアコート50の表面に、TFT層60を形成する(図7のステップS201)。
 次いで、図9に示したように、TFT層60の上に表示体70を形成する(図7のステップS202)。これにより、基板1に画像表示を行う機能部3が形成される。
(切断およびモジュール化を行う工程)
 基板1に機能部3を形成したのち、図10の矢印R1に示したように、素材基板10、平坦化膜20およびバリアコート50を含む基板本体4を、支持体30および粘着層40から剥離する(図7のステップS301)。
 続いて、図11に示したように、基板本体4および機能部3を切断線CLで切断して所定の寸法・形状に整え、フレキシブル配線基板5を接続することにより、モジュール6を形成する(図7のステップS302)。最後に、モジュール6を筐体(図示せず)に組み込むことにより、電子デバイス2が完成する。
 あるいは、切断およびモジュール6形成を行ったのちに基板本体4を支持体30から剥離することも可能である。その場合には、例えば、基板1に機能部3を形成したのち、図12に示したように、基板1および機能部3を切断線CLで切断して所定の寸法・形状に整え、フレキシブル配線基板5を接続することにより、モジュール6を形成する(図7のステップS303)。
 続いて、図13の矢印R2に示したように、得られたモジュール6において、素材基板10、平坦化膜20およびバリアコート50を含む基板本体4を、支持体30および粘着層40から剥離する(図7のステップS304)。最後に、モジュール6を筐体(図示せず)に組み込むことにより、電子デバイス2が完成する。
(表示体70として電気泳動素子を形成する例)
 以下、図14ないし図17を参照して、表示体70として電気泳動素子を形成し、電子デバイス2として電子ペーパーディスプレイを製造する例について説明する。
 図14は表示体70の一例である電気泳動素子71の平面構成、図15は電気泳動素子71の断面構成をそれぞれ表している。この電気泳動素子71は、電気泳動現象を利用してコントラストを生じさせるものであり、例えば表示装置などの多様な電子機器に適用される。電気泳動素子71は、絶縁性液体72中に、泳動粒子73(第1粒子)と細孔74Aを有する多孔質層74とを含んでいる。なお、図14および図15は電気泳動素子71の構成を模式的に表したものであり、実際の寸法、形状とは異なる場合がある。
 絶縁性液体72は、例えばパラフィンまたはイソパラフィンなどの有機溶媒により構成されている。絶縁性液体72には、1種類の有機溶媒を用いてもよく、あるいは複数種類の有機溶媒を用いるようにしてもよい。絶縁性液体72の粘度および屈折率は、できるだけ低くすることが好ましい。絶縁性液体72の粘度を低くすると泳動粒子73の移動性(応答速度)が向上する。また、これに応じて泳動粒子73の移動のためのエネルギー(消費電力)は低くなる。絶縁性液体72の屈折率を低くすると、絶縁性液体72と多孔質層74との屈折率の差が大きくなり、多孔質層74の反射率が高くなる。
 絶縁性液体72には、例えば、着色剤,電荷調整剤,分散安定剤,粘度調整剤,界面活性剤または樹脂などを添加するようにしてもよい。
 絶縁性液体72中に分散された泳動粒子73は、1または2以上の荷電粒子であり、このような帯電した泳動粒子73が電界に応じ細孔74Aを経て移動する。泳動粒子73は、任意の光学的反射特性(光反射率)を有しており、泳動粒子73の光反射率と多孔質層74の光反射率との違いによりコントラストが生じるようになっている。例えば、泳動粒子73が明表示し、多孔質層74が暗表示するようにしてもよく、泳動粒子73が暗表示し、多孔質層74が明表示するようにしてもよい。
 外部から電気泳動素子71を見ると、泳動粒子73が明表示する場合には泳動粒子73は例えば白色または白色に近い色に視認され、暗表示する場合には、例えば黒色または黒色に近い色に視認される。このような泳動粒子73の色は、コントラストを生じさせることができれば特に限定されない。
 泳動粒子73は、例えば、有機顔料,無機顔料,染料,炭素材料,金属材料,金属酸化物,ガラスまたは高分子材料(樹脂)などの粒子(粉末)により構成されている。泳動粒子73に、これらのうちの1種類を用いてもよく、または2種類以上を用いてもよい。泳動粒子73を、上記粒子を含む樹脂固形分の粉砕粒子またはカプセル粒子などにより構成することも可能である。なお、上記炭素材料,金属材料,金属酸化物,ガラスまたは高分子材料に該当する材料は、有機顔料,無機顔料または染料に該当する材料から除く。泳動粒子73の粒径は例えば30nm~300nmである。
 上記の有機顔料は、例えば、アゾ系顔料、メタルコンプレックスアゾ系顔料、ポリ縮合アゾ系顔料、フラバンスロン系顔料、ベンズイミダゾロン系顔料、フタロシアニン系顔料、キナクリドン系顔料、アントラキノン系顔料、ペリレン系顔料、ペリノン系顔料、アントラピリジン系顔料、ピランスロン系顔料、ジオキサジン系顔料、チオインジゴ系顔料、イソインドリノン系顔料、キノフタロン系顔料またはインダンスレン系顔料などである。無機顔料は、例えば、亜鉛華、アンチモン白、鉄黒、硼化チタン、ベンガラ、マピコエロー、鉛丹、カドミウムエロー、硫化亜鉛、リトポン、硫化バリウム、セレン化カドミウム、炭酸カルシウム、硫酸バリウム、クロム酸鉛、硫酸鉛、炭酸バリウム、鉛白またはアルミナホワイトなどである。染料は、例えば、ニグロシン系染料、アゾ系染料、フタロシアニン系染料、キノフタロン系染料、アントラキノン系染料またはメチン系染料などである。炭素材料は、例えば、カーボンブラックなどである。金属材料は、例えば、金、銀または銅などである。金属酸化物は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウム、チタン酸カリウム、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物などである。高分子材料は、例えば、可視光領域に光吸収域を有する官能基が導入された高分子化合物などである。可視光領域に光吸収域を有する高分子化合物であれば、その種類は特に限定されない。
 泳動粒子73の具体的な材料は、例えば、泳動粒子73がコントラストを生じさせるために担う役割に応じて選択される。泳動粒子73が明表示する場合、泳動粒子73には例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウムまたはチタン酸カリウムなどの金属酸化物等が用いられる。泳動粒子73が暗表示する場合、泳動粒子73には例えば、カーボンブラックなどの炭素材料または銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物および銅-鉄-クロム酸化物などの金属酸化物等が用いられる。中でも、泳動粒子73には炭素材料を用いることが好ましい。炭素材料からなる泳動粒子73は、優れた化学的安定性、移動性および光吸収性を示す。
 絶縁性液体72中における泳動粒子73の含有量(濃度)は、特に限定されないが、例えば、0.1重量%~10重量%である。この濃度範囲では、泳動粒子73の遮蔽性および移動性が確保される。詳細には、泳動粒子73の含有量が0.1重量%よりも少ないと、泳動粒子73が多孔質層74を遮蔽(隠蔽)しにくくなり、十分にコントラストを生じさせることが難しい可能性がある。一方、泳動粒子73の含有量が10重量%よりも多いと、泳動粒子73の分散性が低下するため、その泳動粒子73が泳動しにくくなり、凝集する虞がある。
 泳動粒子73は、絶縁性液体72中で長期間に渡って分散および帯電しやすく、また、多孔質層74に吸着しにくいことが好ましい。このため、例えば絶縁性液体72中に分散剤が添加される。分散剤と電荷調整剤とを併用するようにしてもよい。
 この分散剤または電荷調整剤は、例えば、正、負のどちらか一方、または両方の電荷を有しており、絶縁性液体72中の帯電量を増加させると共に、静電反発により泳動粒子73を分散させるためのものである。このような分散剤として、例えば、Lubrizol社製のSolsperceシリーズ、BYK-Chemic社製のBYKシリーズまたはAnti-Terraシリーズ、あるいはTCI America社製Spanシリーズなどが挙げられる。
 泳動粒子73の分散性を向上させるため、泳動粒子73に表面処理を施すようにしてもよい。この表面処理は、例えば、ロジン処理、界面活性剤処理、顔料誘導体処理、カップリング剤処理、グラフト重合処理またはマイクロカプセル化処理などである。特に、グラフト重合処理、マイクロカプセル化処理またはこれらを組み合わせて処理を行うことにより、泳動粒子10の長期間の分散安定性を維持することができる。
 このような表面処理には、例えば、泳動粒子73の表面に吸着可能な官能基と重合性官能基とを有する材料(吸着性材料)などが用いられる。吸着可能な官能基は、泳動粒子73の形成材料に応じて決定する。例えば、泳動粒子73がカーボンブラックなどの炭素材料により構成されている場合には、4-ビニルアニリンなどのアニリン誘導体、泳動粒子10が金属酸化物により構成されている場合には、メタクリル酸3-(トリメトキシシリル)プロピルなどのオルガノシラン誘導体をそれぞれ吸着することができる。重合性官能基は、例えば、ビニル基、アクリル基、メタクリル基などである。
 泳動粒子73の表面に重合性官能基を導入し、これにグラフトさせて表面処理を行うようにしてもよい(グラフト性材料)。グラフト性材料は、例えば重合性官能基と分散用官能基とを有している。分散用官能基は、絶縁性液体72中に泳動粒子73を分散させ、その立体障害により分散性を保持するものである。絶縁性液体72が例えばパラフィンである場合、分散用官能基として分岐状のアルキル基などを用いることができる。重合性官能基は、例えばビニル基、アクリル基、メタクリル基などである。グラフト性材料を重合およびグラフトさせるためには、例えば、アゾビスイソブチロニトリル(AIBN)などの重合開始剤を用いればよい。
 上記泳動粒子73を絶縁性液体72中に分散させる方法の詳細については、「超微粒子の分散技術とその評価~表面処理・微粉砕と気中/液中/高分子中の分散安定化~(サイエンス&テクノロジー社)」などの書籍に掲載されている。
 多孔質層74は泳動粒子73を遮蔽可能なものであり、繊維状構造体74Bおよび繊維状構造体74Bに保持された非泳動粒子74C(第2粒子)を有している。この多孔質層74は、繊維状構造体74Bにより形成された3次元立体構造物(不織布のような不規則なネットワーク構造物)であり、複数の隙間(細孔74A)が設けられている。繊維状構造体74Bにより、多孔質層74の3次元立体構造を構成することで、光(外光)が乱反射(多重散乱)し、多孔質層74の反射率が高くなる。従って、多孔質層74の厚みが小さい場合であっても高反射率を得ることができ、電気泳動素子71のコントラストを向上させると共に泳動粒子73の移動のためのエネルギーを小さくすることができる。また、細孔74Aの平均孔径が大きくなり、かつ、多くの細孔74Aが多孔質層74に設けられる。これにより、泳動粒子73が細孔74Aを経由して移動し易くなり、応答速度が向上すると共に、泳動粒子73を移動させるためのエネルギーがより小さくなる。このような多孔質層74の厚みは、例えば、5μm~100μmである。
 繊維状構造体74Bは、繊維径(直径)に対して十分な長さを有する繊維状物質である。例えば、複数の繊維状構造体21が集合し、ランダムに重なって多孔質層74を構成する。1つの繊維状構造体74Bがランダムに絡みあって多孔質層74を構成していてもよい。あるいは、1つの繊維状構造体74Bによる多孔質層74と複数の繊維状構造体74Bによる多孔質層74とが混在していてもよい。
 繊維状構造体74Bは、例えば、高分子材料または無機材料等により構成されている。高分子材料としては、例えば、ナイロン,ポリ乳酸,ポリアミド,ポリイミド,ポリエチレンテレフタレート,ポリアクリロニトリル,ポリエチレンオキシド,ポリビニルカルバゾール,ポリビニルクロライド,ポリウレタン,ポリスチレン,ポリビニルアルコール,ポリサルフォン,ポリビニルピロリドン,ポリビニリデンフロリド,ポリヘキサフルオロプロピレン,セルロースアセテート,コラーゲン,ゼラチン,キトサンまたはそれらのコポリマーなどが挙げられる。無機材料は、例えば酸化チタンなどである。繊維状構造体74Bには、高分子材料を用いることが好ましい。高分子材料は、例えば光などに対する反応性が低く、化学的に安定であるためである。即ち、高分子材料を用いることにより、意図しない繊維状構造体74Bの分解反応を防ぐことができる。繊維状構造体74Bが高反応性の材料により構成される場合には、表面を任意の保護層で被覆しておくことが好ましい。
 繊維状構造体74Bは例えば直線状に延在している。繊維状構造体74Bの形状は、どのようなものであってもよく、例えば、縮れていたり、途中で折れ曲がったりしていてもよい。あるいは、繊維状構造体74Bは途中で分岐していてもよい。
 繊維状構造体74Bの平均繊維径は、例えば50nm以上2000nm以下であるが、上記範囲外であってもよい。平均繊維径を小さくすることにより、光が乱反射し易くなり、また、細孔74Aの孔径が大きくなる。繊維状構造体74Bが非泳動粒子74Cを保持できるよう、その繊維径を決定する。平均繊維径は、例えば、走査型電子顕微鏡などを用いた顕微鏡観察により測定することができる。繊維状構造体74Bの平均長さは任意である。繊維状構造体74Bは、例えば、相分離法,相反転法,静電(電界)紡糸法,溶融紡糸法,湿式紡糸法,乾式紡糸法,ゲル紡糸法,ゾルゲル法またはスプレー塗布法などにより形成される。このような方法を用いることにより、繊維径に対して十分な長さを有する繊維状構造体74Bを容易に、かつ安定して形成することができる。
 繊維状構造体74Bは、ナノファイバーにより構成することが好ましい。ここでナノファイバーとは、繊維径が1nm~1000nmであり、長さが繊維径の100倍以上である繊維状物質である。このようなナノファイバーを繊維状構造体74Bとして用いることにより、光が乱反射し易くなり、多孔質層74の反射率をより向上させることができる。即ち、電気泳動素子71のコントラストを向上させることが可能となる。また、ナノファイバーからなる繊維状構造体74Bでは、単位体積中に占める細孔74Aの割合が大きくなり、細孔74Aを経由して泳動粒子73が移動がし易くなる。従って、泳動粒子73の移動のためのエネルギーを小さくすることができる。ナノファイバーからなる繊維状構造体74Bは、静電紡糸法により形成することが好ましい。静電紡糸法を用いることにより繊維径が小さい繊維状構造体74Bを容易に、かつ安定して形成することができる。
 繊維状構造体74Bには、その光反射率が泳動粒子73の光反射率と異なるものを用いることが好ましい。これにより、多孔質層74と泳動粒子73との光反射率の差によるコントラストが形成され易くなる。絶縁性液体72中で光透過性(無色透明)を示す繊維状構造体74Bを用いるようにしてもよい。
 細孔74Aは、複数の繊維状構造体74Bが重なり合い、または1つの繊維状構造体74Bが絡まりあうことにより構成されている。この細孔74Aは、泳動粒子73が細孔74Aを経て移動し易いよう、できるだけ大きな平均孔径を有していることが好ましい。細孔74Aの平均孔径は、例えば、0.1μm~10μmである。
 非泳動粒子74Cは繊維状構造体74Bに固定されており、その光反射率は泳動粒子73の光反射率と異なっている。非泳動粒子74Cは、上記泳動粒子73と同様の材料により構成することが可能である。詳細には、非泳動粒子74C(多孔質層74)が明表示する場合には上記泳動粒子73が明表示する場合の材料、非泳動粒子74Cが暗表示する場合には上記泳動粒子73が暗表示する場合の材料をそれぞれ用いることができる。多孔質層74により明表示を行うとき、非泳動粒子74Cを金属酸化物により構成することが好ましい。これにより、優れた化学的安定性、定着性および光反射性を得ることができる。中でも、非泳動粒子74Cを屈折率の高い金属酸化物、例えばルチル型の酸化チタンにより構成することが好ましい。非泳動粒子74C、泳動粒子73それぞれの構成材料は同じであってもよく、異なっていてもよい。非泳動粒子74Cは、繊維状構造体74Bの内部に完全に埋設されていてもよく、あるいは、繊維状構造体74Cから部分的に露出していてもよい。非泳動粒子74Cが明表示または暗表示を行うときに外部から視認される色は、上記泳動粒子73について説明したものと同様である。
 このような多孔質層74は、例えば以下の方法により形成することができる。まず有機溶剤などに、例えば高分子材料等の繊維状構造体74Bの構成材料を溶解させ、紡糸溶液を調製する。次いで、この紡糸溶液に非泳動粒子74Cを加えて十分に攪拌し、非泳動粒子74Cを分散させる。最後に、この紡糸溶液から例えば静電紡糸法により紡糸を行って非泳動粒子74Cを繊維状構造体74Bに固定し、多孔質層74を形成する。多孔質層74は、高分子フィルムに、レーザを使用して穴開け加工を施して細孔74Aを形成するようにしてもよく、多孔質層74に合成繊維等により編まれた布、または連泡多孔性高分子などを用いるようにしてもよい。
 電気泳動素子71は、上記のように、泳動粒子73の光反射率と多孔質層74の光反射率との差によりコントラストを生じさせるものである。具体的には、泳動粒子73および多孔質層74のうち、明表示する方の光反射率が暗表示する方の光反射率よりも高くなっている。非泳動粒子74Cの光反射率を、泳動粒子73よりも高くして、多孔質層74で明表示し、泳動粒子73で暗表示することが好ましい。このような表示を行うことにより、明表示がなされる際の光反射率が、多孔質層74(3次元立体構造物)による光の乱反射を利用して著しく高くなる。従って、これに応じ、コントラストも著しく向上する。
 電気泳動素子71では、電界が印加された範囲内で泳動粒子73が多孔質層74の細孔74Aを経て移動する。泳動粒子73の移動した領域、移動しない領域に応じて、明表示および暗表示のうちのどちらか一方がなされ、画像が表示される。
 図16は、表示体70として電気泳動素子71を用いた電子デバイス(表示装置)2の断面構成の一例を表したものである。この電子デバイス2は、電気泳動現象を利用して画像(例えば文字情報など)を表示する電気泳動型ディスプレイ(いわゆる電子ペーパーディスプレイ)である。電子デバイス2は、例えば、基板1に、TFT層60と、表示体70としての電気泳動素子71とを有する機能部3が設けられたものである。
 TFT層60は、例えば、TFT61と、保護層62と、平坦化絶縁層63とを有している。
 TFT61は、画素を選択するためのスイッチング用素子である。TFT61は、チャネル層として無機半導体層を用いた無機TFTでもよいし、有機半導体層を用いた有機TFTでもよい。保護層62および平坦化絶縁層63は、例えば、ポリイミドなどの絶縁性樹脂材料により構成されている。保護層62の表面が十分に平坦であれば、平坦化絶縁層63を省略することも可能である。
 表示体70は、画素電極75と、上述した電気泳動素子71と、対向基板76とを有している。TFT層60と対向基板76との間にはスペーサ77が介在している。
 画素電極75は、例えば、金(Au)、銀(Ag)または銅(Cu)などの金属材料により形成されている。画素電極75は、保護層62および平坦化絶縁層63に設けられたコンタクトホール(図示せず)を通じてTFT61に接続されている。TFT61および画素電極75は、例えば画素配置に応じてマトリクス状またはセグメント状に配置されている。
 対向基板76は、例えば板状部材76Aおよび対向電極76Bを有しており、板状部材76Aの全面(基板1との対向面)に対向電極76Bが設けられている。対向電極76Bを、画素電極75と同様に、マトリクス状またはセグメント状に配置するようにしてもよい。
 板状部材76Aは、光透過性を有し、例えば、無機材料,金属材料またはプラスチック材料などにより構成されている。無機材料としては、例えば、ケイ素(Si),酸化ケイ素(SiO),窒化ケイ素(SiNx )または酸化アルミニウム(AlOx )などが挙げられる。酸化ケイ素には、ガラスまたはスピンオングラス(SOG)などが含まれる。金属材料としては、例えば、アルミニウム(Al)、ニッケル(Ni)またはステンレスなどが挙げられ、プラスチック材料としては、例えば、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)またはポリエチルエーテルケトン(PEEK)などが挙げられる。
 対向電極76Bには、例えば、酸化インジウム-酸化スズ(ITO)、酸化アンチモン-酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)またはアルミニウムドープ酸化亜鉛(AZO)などの光透光性導電性材料(透明電極材料)を用いることができる。
 対向基板76側に画像を表示する場合には、対向電極76Bを介して電気泳動素子71を見ることになるため、対向電極76Bの光透過性(透過率)は、できるだけ高いことが好ましく、例えば、80%以上である。また、対向電極76Bの電気抵抗は、できるだけ低いことが好ましく、例えば、100Ω/□以下である。
 電気泳動素子71は、上述したように、絶縁性液体72中に、泳動粒子73と、複数の細孔74Aを有する多孔質層74とを含んでいる。絶縁性液体72は、TFT層60と対向基板76との間の空間に充填されており、多孔質層74は、例えば、スペーサ77により支持されている。絶縁性液体72が充填されている空間は、例えば、多孔質層74を境界として、画素電極75に近い側の待避領域R1と、対向電極76Bに近い側の表示領域R2とに区分けされている。絶縁性液体72、泳動粒子73および多孔質層74の構成は、上述と同様である。なお、図16および後述の図17では、図示内容を簡略化するために、細孔74Aの一部だけを示している。
 多孔質層74は、画素電極75および対向電極76Bのうちのどちらか一方に隣接していてもよく、待避領域R1と表示領域R2とが明確に区切られていなくてもよい。泳動粒子73は、電界に応じて画素電極75または対向電極76Bに向かって移動する。
 スペーサ77の厚みは、例えば10μm~100μmであり、できるだけ、薄くすることが好ましい。これにより、消費電力を抑えることができる。スペーサ77は、例えば、高分子材料などの絶縁性材料により構成され、TFT層60と対向基板76との間に例えば格子状に設けられている。スペーサ77の配置形状は、特に限定されないが、泳動粒子73の移動を妨げず、かつ、泳動粒子73を均一分布させるように設けることが好ましい。
 初期状態の電子デバイス2では、泳動粒子73が待避領域R1に配置されている(図16)。この場合には、全ての画素で泳動粒子73が多孔質層74により遮蔽されているため、対向基板76側から電気泳動素子71を見ると、コントラストが生じていない(画像が表示されていない)状態にある。
 一方、TFT61により画素が選択され、画素電極75と対向電極76Aとの間に電界が印加されると、図17に示したように、画素毎に泳動粒子73が待避領域R1から多孔質層74(細孔74A)を経由して表示領域R2に移動する。この場合には、泳動粒子73が多孔質層74により遮蔽されている画素と遮蔽されていない画素とが併存するため、対向基板76側から電気泳動素子71を見ると、コントラストが生じている状態になる。これにより、画像が表示される。
 このように本実施の形態では、素材基板10の表面を研磨したのちに、素材基板10の表面に平坦化膜20を形成するようにしたので、素材基板10の表面の凹欠陥12および凸欠陥11の両方に対応可能となり、凹凸欠陥の少ない、表面平滑性の優れた基板1を得ることが可能となる。よって、TFT層60などの電子素子へのダメージが少なく、歩留まりの向上が可能となる。
 また、プラスチックシートよりなるフレキシブルな素材基板10上に電子回路を形成するためには、電気特性への影響を考慮して高い表面平滑性が求められ、素材基板10の選択肢が限られていた。本実施の形態では、表面平滑性がそれほど高くない素材基板10も使用することが可能となり、素材基板10の選択肢を広げることが可能となる。
 更に、プラスチックシートよりなるフレキシブルな素材基板10上に電子回路を形成するためには、凹凸欠陥の少ない素材基板10が好ましく、素材基板10の受け入れ基準が高く設定されることによりコスト増加の原因となっていた。本実施の形態では、素材基板10の受け入れ基準を緩和することが可能となり、素材基板10のコストを抑制することが可能となる。
(変形例1)
 図18は、変形例1に係る基板1の製造方法の流れを表したものである。本変形例は、平坦化膜20としてバリアコートを兼ねる無機膜を形成することを除いては、上記実施の形態の基板1の製造方法と同じである。よって、上記実施の形態と重複する工程については、図2ないし図4を参照して説明する。
(素材基板10を支持体30に貼り合わせる工程)
 まず、上記実施の形態と同様にして、図2および図3に示した工程により、素材基板10を、支持体30に粘着層40を用いて貼り付ける(図18のステップS101)。
(素材基板10の表面を研磨する工程)
 次いで、上記実施の形態と同様にして、図4に示した工程により、素材基板10の表面を研磨する(図18のステップS102)。これにより、素材基板10の表面に存在する凸欠陥11が削り取られて除去される。
(洗浄および前処理)
 続いて、次工程の平坦化膜20の成膜に備えて、素材基板10の表面を洗浄し(図18のステップS103)、前処理を行う(図18のステップS104)。
(素材基板10の表面に平坦化膜20を形成する工程)
 そののち、図19に示したように、素材基板10の表面に平坦化膜20を形成する(図18のステップS108)。これにより、素材基板10の表面に存在する凹欠陥12および研磨工程で生じた研磨傷13が平坦化膜20で埋め込まれる。これと同時に、研磨後に残存している凸欠陥11が平坦化膜20でカバーされる。よって、平坦化膜20の表面が平滑に形成される。
 本変形例では、平坦化膜20として、バリアコートを兼ねる無機膜を形成する。無機膜の材料は、SiOx膜、SiNx膜、SiON膜、Al2 O3 膜などが挙げられる。なお、平坦化膜20は、バリアコート性能を有していれば、樹脂膜と無機膜とのハイブリッド膜でもよい。
 平坦化膜20の成膜手法としては、スリットコート、スクリーン印刷、グラビアコート、スピンコート、スプレーコート、CVD、ALD、スパッタ法などを用いることが可能である。
 平坦化膜20と素材基板10の熱挙動が大きく異なる場合は、製造プロセス中の熱工程により歪応力が蓄積される。例えば、熱膨張係数差が大きい場合は加熱工程中に基板反りや膜剥がれが生じる可能性があり、熱収縮差が大きい場合は加熱工程後に常温に戻った際に基板反りや膜剥がれが生じる可能性がある。そこで、平坦化膜20の熱膨張係数や熱収縮などの熱挙動が同じまたは略同じ材料により構成することが好ましい。更に、平坦化膜20は、素材基板10との化学組成や官能基などの親和性の高い材料により構成されていることが好ましい。加えて、平坦化膜20は、後の機能部3の形成の際の温度に対し耐熱性を備えていることが好ましい。
 平坦化膜20の厚みT20は、上記実施の形態と同様に、素材基板10の厚みT10よりも薄くすることが好ましい。素材基板10のほうが平坦化膜20よりも薄い場合には、素材基板10の表面の研磨後に残存している凸欠陥11をカバーしきれないおそれがある。また、平坦化膜20の熱収縮が大きいと、後の機能部形成の際の加熱工程などにより平坦化膜20の膜収縮が大きくなり基板1に反りが生じる。また、厚みT20が大きいほどその影響が大きくなる。そのため、平坦化膜20の厚みT20は、例えば、素材基板10の厚みT10の5分の1以下であることが好ましく、より好ましくは7分の1以下、更に好ましくは10分の1以下である。
(ポストベーク)
 なお、平坦化膜20として樹脂膜と無機膜とのハイブリッド膜を形成した場合には、素材基板10の表面に平坦化膜20を形成したのち、オーブン、IR(infrared)炉などにより、平坦化膜20の焼結(ポストベーク)を行ってもよい。この際の温度は、素材基板10、平坦化膜20、支持体30および粘着層40を含む積層構造体の各層の材料の耐熱温度以下で行うことが好ましい。また、焼成温度は、後の工程で樹脂膜が分解しない温度で行うことが好ましい。更に、樹脂膜などから脱ガスが極力出なくなるまで十分に加熱することが好ましい以上により、基板1が完成する。
(変形例2)
 次に、図20ないし図22を参照して、変形例2について説明する。本変形例は、表示体70として有機EL素子81を形成し、電子デバイス2として有機ELディスプレイを製造するものである。
 図20は、表示体70として有機EL素子81を用いた電子デバイス(表示装置)2の断面構成の一例を表したものである。この電子デバイス2は、有機EL素子81の発光を利用して画像表示を行う有機ELディスプレイであり、例えば、基板1に、TFT層60と、表示体70としての有機EL素子81とを有する機能部3が設けられたものである。
 TFT層60は、例えば、TFT64と、平坦化絶縁層65とを有している。
 TFT64は、いわゆるボトムゲート型のTFTであり、チャネル(活性層)に、例えば酸化物半導体を用いたものである。このTFT64では、基板1上に、ゲート電極64A、ゲート絶縁膜(第1ゲート絶縁膜64B,第2ゲート絶縁膜64C)、酸化物半導体層64D、チャネル保護膜64Eおよびソース・ドレイン電極64Fがこの順に形成されている。ソース・ドレイン電極64F上には、基板1の全面に渡ってTFT64の凹凸を平坦化させるための平坦化絶縁層65が形成されている。
 ゲート電極64Aは、TFT64に印加されるゲート電圧によって酸化物半導体層64D中のキャリア密度(ここでは、電子密度)を制御する役割を果たすものである。このゲート電極64Aは、例えばMo,Alおよびアルミニウム合金等のうちの1種よりなる単層膜、または2種以上よりなる積層膜により構成されている。なお、アルミニウム合金としては、例えばアルミニウム-ネオジム合金が挙げられる。
 第1ゲート絶縁膜64Bおよび第2ゲート絶縁膜64Cは、SiO2 、Si3 N4、シリコン窒化酸化物(SiON)および酸化アルミニウム(Al2 O3 )等のうちの1種よりなる単層膜、またはこれらのうちの2種以上よりなる積層膜である。ここでは、第1ゲート絶縁膜64Bおよび第2ゲート絶縁膜64Cは2層構造を有し、第1ゲート絶縁膜64Bが例えばSiO2 膜、第2ゲート絶縁膜64Cは例えばSi3 N4 膜によりそれぞれ構成されている。第1ゲート絶縁膜64Bおよび第2ゲート絶縁膜64Cの総膜厚は、例えば200nm~300nmである。
 酸化物半導体層64Dは、例えばインジウム(In),ガリウム(Ga),亜鉛(Zn),スズ(Sn),Al,Tiのうちの少なくとも1種の酸化物を主成分として含んでいる。この酸化物半導体層64Dは、ゲート電圧の印加によりソース・ドレイン電極64F間にチャネルを形成するものである。この酸化物半導体層64Dの膜厚は負の電荷の影響がチャネルへ及ぶように、薄膜トランジスタのオン電流の悪化を引き起こさない程度であることが望ましく、具体的には5nm~100nmであることが望ましい。
 チャネル保護膜64Eは、酸化物半導体層64D上に形成され、ソース・ドレイン電極64F形成時におけるチャネルの損傷を防止するものである。チャネル保護膜64Eの厚みは、例えば10~300nmである。
 ソース・ドレイン電極64Fは、例えばMo,Al,銅(Cu),Ti,ITOおよびTiO等のうち1種よりなる単層膜またはこれらのうちの2種以上よりなる積層膜である。例えば、Mo,Al,Moの順に、50nm,500nm,50nmの膜厚で積層した3層膜や、ITOおよび酸化チタン等の酸素を含む金属化合物のような酸素との結びつきの弱い金属または金属化合物を用いることが望ましい。これにより、酸化物半導体の電気特性を安定して保持することができる。
 平坦化絶縁層65は、例えばポリイミド、ノボラック等の有機材料が用いられる。この平坦化層27の厚みは、例えば10nm~100nmであり、好ましくは50nm以下である。平坦化絶縁層65上には、有機EL素子81のアノード電極82が形成されている。
 有機EL素子81は、TFT層60の上に、アノード電極82、隔壁絶縁膜83、発光層を含む有機層84、カソード電極85、保護層86および封止基板87をこの順に積層した構成を有している。有機EL素子81は、アノード電極82から注入された正孔とカソード電極85から注入された電子が有機層84の発光層内で再結合する際に生じた発光光を基板1と反対側(カソード電極83側)から光を取り出す上面発光型(トップエミッション型)の表示素子である。上面発光型の有機EL素子81を用いることにより電子デバイス(表示装置)2の発光部の開口率が向上する。なお、本開示の有機EL素子81は、このような構成に限定されることはなく、例えば基板1側から光を取り出す透過型、即ち下面発光型(ボトムエミッション型)の表示素子としてもよい。
 アノード電極82は、例えば電子デバイス(表示装置)2が上面発光型である場合には、高反射性材料、例えば、Al,Ti,Cr等により構成されている。アノード電極82は、電子デバイス(表示装置)2が透過型である場合には、透明材料、例えばITO,IZO,IGZO等が用いられる。
 隔壁絶縁膜83は、ポリイミドまたはノボラック等の有機材料により形成され、アノード電極82とカソード電極85との絶縁性を確保する機能も有している。隔壁絶縁膜83は、アノード電極82の発光領域を囲むように設けられると共に、TFT64のソース・ドレイン電極64Fとアノード電極82との接続部上に設けられている。
 有機層84は、図示しないが、アノード電極82側から順に、正孔注入層,正孔輸送層,発光層,電子輸送層および電子注入層を積層した構成を有する。有機層84は例えば真空蒸着法やスピンコート法等によって形成される。この有機層84の上面はカソード電極85によって被覆されている。有機層84を構成する各層の膜厚および構成材料等は特に限定されないが、一例を以下に示す。
 正孔注入層は、発光層への正孔注入効率を高めると共に、リークを防止するためのバッファ層である。正孔注入層の厚みは例えば5nm~200nmであることが好ましく、さらに好ましくは8nm~150nmである。正孔注入層の構成材料は、電極や隣接する層の材料との関係で適宜選択すればよく、例えばポリアニリン,ポリチオフェン,ポリピロール,ポリフェニレンビニレン,ポリチエニレンビニレン,ポリキノリン,ポリキノキサリンおよびそれらの誘導体、芳香族アミン構造を主鎖又は側鎖に含む重合体などの導電性高分子,金属フタロシアニン(銅フタロシアニン等),カーボンなどが挙げられる。導電性高分子の具体例としてはオリゴアニリンおよびポリ(3,4-エチレンジオキシチオフェン)(PEDOT)などのポリジオキシチオフェンが挙げられる。
 正孔輸送層は、発光層への正孔輸送効率を高めるためのものである。正孔輸送層15Bの厚みは、素子の全体構成にもよるが、例えば5nm~200nmであることが好ましく、さらに好ましくは8nm~150nmである。正孔輸送層を構成する材料としては、有機溶媒に可溶な発光材料、例えば、ポリビニルカルバゾール,ポリフルオレン,ポリアニリン,ポリシランまたはそれらの誘導体、側鎖または主鎖に芳香族アミンを有するポリシロキサン誘導体,ポリチオフェンおよびその誘導体,ポリピロールまたはAlq3などを用いることができる。
 発光層では、電界がかかると電子と正孔との再結合が起こり発光する。発光層の厚みは、素子の全体構成にもよるが、例えば10nm~200nmであることが好ましく、さらに好ましくは20nm~150nmである。発光層は、単層あるいは積層構造であってもよい。具体的には、正孔輸送層上に赤色,緑色,青色の発光層が単層設けられていてもよい。あるいは、青色発光層を赤色,緑色および青色の有機EL素子の共通層とし、赤色有機EL素子には赤色発光層上に青色発光層が積層され、緑色有機EL素子には緑色発光層上に青色発光層が積層されていてもよい。また、赤色発光層,緑色発光層および青色発光層を積層してもよく、これらを積層することにより白色有機EL素子が形成される。
 発光層を構成する材料は、それぞれの発光色に応じた材料を用いればよく、例えばポリフルオレン系高分子誘導体や、(ポリ)パラフェニレンビニレン誘導体,ポリフェニレン誘導体,ポリビニルカルバゾール誘導体,ポリチオフェン誘導体,ペリレン系色素,クマリン系色素,ローダミン系色素,あるいは上記高分子に有機EL材料をドープしたものが挙げられる。ドープ材料としては、例えばルブレン,ペリレン,9,10-ジフェニルアントラセン,テトラフェニルブタジエン,ナイルレッド,クマリン6等を用いることができる。なお、発光層を構成する材料は、上記材料を2種類以上混合して用いてもよい。また、上記高分子量の材料に限らず、低分子量の材料を組み合わせて用いてもよい。低分子材料の例としては、ベンジン,スチリルアミン,トリフェニルアミン,ポルフィリン,トリフェニレン,アザトリフェニレン,テトラシアノキノジメタン,トリアゾール,イミダゾール,オキサジアゾール,ポリアリールアルカン,フェニレンジアミン,アリールアミン,オキザゾール,アントラセン,フルオレノン,ヒドラゾン,スチルベンあるいはこれらの誘導体、または、ポリシラン系化合物,ビニルカルバゾール系化合物,チオフェン系化合物あるいはアニリン系化合物等の複素環式共役系のモノマーあるいはオリゴマーが挙げられる。
 発光層を構成する材料としては、上記材料の他に発光性ゲスト材料として、発光効率が高い材料、例えば、低分子蛍光材料、りん光色素あるいは金属錯体等の有機発光材料を用いることができる。
 なお、発光層は、例えば上述した正孔輸送層を兼ねた正孔輸送性の発光層としてもよく、また、電子輸送層を兼ねた電子輸送性の発光層としてもよい。
 電子輸送層および電子注入層は、発光層への電子輸送効率を高めるためのものである。電子輸送層および電子注入層の総膜厚は素子の全体構成にもよるが、例えば5nm~200nmであることが好ましく、より好ましくは10nm~180nmである。電子輸送層の材料としては、優れた電子輸送能を有する有機材料を用いることが好ましい。発光層への電子輸送効率を高めることにより、電界強度による発光色の変化が抑制される。具体的には、例えばアリールピリジン誘導体およびベンゾイミダゾール誘導体などを用いることが好ましい。これにより、低い駆動電圧でも高い電子の供給効率が維持されるからである。電子注入層の材料としては、アルカリ金属,アルカリ土類金属,希土類金属およびその酸化物,複合酸化物,フッ化物,炭酸塩等が挙げられる。
 なお、有機層84は、真空蒸着法やスピンコート法の他にディッピング法,ドクターブレード法,吐出コート法,スプレーコート法などの塗布法、インクジェット法,オフセット印刷法,凸版印刷法,凹版印刷法,スクリーン印刷法,マイクログラビアコート法などの印刷法などによる形成も可能であり、各層や各部材の性質に応じて、ドライプロセスとウエットプロセスを併用しても構わない。
 カソード電極85は、例えば、厚みが10nm程度であり、光透過性が良好で仕事関数が小さい材料により構成されている。また、酸化物を用いて透明導電膜を形成することによっても光取り出しを担保することができる。この場合には、ZnO,ITO,IZnO,InSnZnO等を用いる事が可能である。カソード電極85は単層でもよいし、積層構造でもよい。
 更に、この有機EL素子81が、キャビティ構造となっている場合には、カソード電極85が半透過半反射材料を用いて構成されることが好ましい。これにより、アノード電極82側の光反射面と、カソード電極85側の光反射面との間で多重干渉させた発光光がカソード電極85側から取り出される。この場合、アノード電極82側の光反射面とカソード電極85側の光反射面との間の光学的距離は、取り出したい光の波長によって規定され、この光学的距離を満たすように各層の膜厚が設定されていることとする。このような上面発光型の有機EL素子81においては、このキャビティ構造を積極的に用いることにより、外部への光取り出し効率の改善や発光スペクトルの制御を行うことが可能となる。
 保護層86は、有機層84への水分の浸入を防止するためのものであり、透過性および透水性の低い材料を用いて、例えば厚さ2~3μmで形成される。保護層86の材料としては、絶縁性材料または導電性材料のいずれにより構成されていてもよい。絶縁性材料としては、無機アモルファス性の絶縁性材料、例えばアモルファスシリコン(α-Si), アモルファス炭化シリコン(α-SiC), アモルファス窒化シリコン(α-Si1-xx ),アモルファスカーボン(α-C)などが好ましい。このような無機アモルファ
ス性の絶縁性材料は、グレインを構成しないため透水性が低く、良好な保護膜となる。
 封止用基板87は、有機EL素子81のカソード電極85の側に位置しており、接着層(図示せず)と共に有機EL素子81を封止するものである。封止用基板87は、有機EL素子81で発生した光に対して透明なガラスなどの材料により構成されている。封止用基板81には、例えば、カラーフィルタおよびブラックマトリクスとしての遮光膜(いずれも図示せず)が設けられており、有機EL素子81で発生した光を取り出すと共に、各有機EL素子10間の配線において反射された外光を吸収し、コントラストを改善するようになっている。
 カラーフィルタは、赤色フィルタ,緑色フィルタおよび青色フィルタ(いずれも図示せず)を有しており、順に配置されている。赤色フィルタ,緑色フィルタおよび青色フィルタは、それぞれ例えば矩形形状で隙間なく形成されている。これら赤色フィルタ,緑色フィルタおよび青色フィルタは、顔料を混入した樹脂によりそれぞれ構成されており、顔料を選択することにより、目的とする赤,緑あるいは青の波長域における光透過率が高く、他の波長域における光透過率が低くなるように調整されている。
 遮光膜は、例えば黒色の着色剤を混入した光学濃度が1以上の黒色の樹脂膜、または薄膜の干渉を利用した薄膜フィルタにより構成されている。このうち黒色の樹脂膜により構成するようにすれば、安価で容易に形成することができるので好ましい。薄膜フィルタは、例えば、金属,金属窒化物あるいは金属酸化物よりなる薄膜を1層以上積層し、薄膜の干渉を利用して光を減衰させるものである。薄膜フィルタとしては、具体的には、Crと酸化クロム(III)(Cr2 O3 )とを交互に積層したものが挙げられる。
 図21は、この電子デバイス(表示装置)2の概略構成を表したものである。この電子デバイス(表示装置)2は、有機ELテレビジョン装置などとして用いられるものであり、基板1の上に、TFT層60と、表示体70とを含む機能部3が形成されている。機能部3は、基板1の上に、表示領域110Aと、周辺領域110Bとを有している。表示領域110Aには、赤色の光を発生する赤色有機EL素子81Rと、緑色の光を発生する緑色有機EL素子81Gと、青色の光を発生する青色有機EL素子81Bとが、順に全体としてマトリクス状に配置されている。周辺領域110Bは、表示領域110を囲うように配置されている。周辺領域110Bには、映像表示用のドライバである信号線駆動回路120および走査線駆動回路130が設けられている。
 表示領域110A内には画素駆動回路140が設けられている。図22は、画素駆動回路140の一例を表したものである。画素駆動回路140は、アノード電極81の下層のTFT層60に形成されたアクティブ型の駆動回路である。すなわち、この画素駆動回路140は、駆動トランジスタTr1および書き込みトランジスタTr2と、これらトランジスタTr1,Tr2の間のキャパシタ(保持容量)Csと、第1の電源ライン(Vcc)および第2の電源ライン(GND)の間において駆動トランジスタTr1に直列に接続された赤色有機EL素子81R(または緑色有機EL素子81G,青色有機EL素子81B)とを有する。駆動トランジスタTr1および書き込みトランジスタTr2は、例えば、図20に示したTFT64のようなボトムゲート型の酸化物半導体TFTにより構成されている。
 画素駆動回路140において、列方向には信号線120Aが複数配置され、行方向には走査線130Aが複数配置されている。各信号線120Aと各走査線130Aとの交差点が、赤色有機EL素子81R,緑色有機EL素子81G,青色有機EL素子81Bのいずれか一つに対応している。各信号線120Aは、信号線駆動回路120に接続され、この信号線駆動回路120から信号線120Aを介して書き込みトランジスタTr2のソース電極に画像信号が供給されるようになっている。各走査線130Aは走査線駆動回路130に接続され、この走査線駆動回路130から走査線130Aを介して書き込みトランジスタTr2のゲート電極に走査信号が順次供給されるようになっている。
 この電子デバイス(表示装置)2では、各画素に対して走査線駆動回路130から書き込みトランジスタTr2のゲート電極を介して走査信号が供給されると共に、信号線駆動回路120から画像信号が書き込みトランジスタTr2を介して保持容量Csに保持される。即ち、この保持容量Csに保持された信号に応じて駆動トランジスタTr1がオンオフ制御され、これにより、有機EL素子81に駆動電流Idが注入され、正孔と電子とが再結合して発光が起こる。この光は、下面発光(ボトムエミッション)の場合にはアノード電極82および基板1を透過して、上面発光(トップエミッション)の場合にはカソード85,カラーフィルタ(図示せず)および封止用基板87を透過して取り出される。
(適用例)
 以下、上記のような電子デバイス(表示装置)2の電子機器への適用例について説明する。電子機器としては、例えばテレビジョン装置,デジタルカメラ,ノート型パーソナルコンピュータ、携帯電話等の携帯端末装置あるいはビデオカメラ等が挙げられる。すなわち、上記表示装置は、外部から入力された映像信号あるいは内部で生成した映像信号を、画像あるいは映像として表示するあらゆる分野の電子機器に適用することが可能である。
(適用例1)
 図23および図24は、電子ブック210の外観構成を表している。この電子ブック210は、例えば、表示部211および非表示部212と、操作部213とを備えている。なお、操作部213は、図23に示したように非表示部212の前面に設けられていてもよいし、図24に示したように非表示部212の上面に設けられていてもよい。表示部211が電子デバイス(表示装置)2により構成される。なお、電子デバイス(表示装置)2は、図23および図24に示した電子ブックと同様の構成を有するPDA(Personal Digital Assistants )などに搭載されてもよい。
(適用例2)
 図25は、スマートフォン220の外観を表したものである。このスマートフォン220は、例えば、表示部221および非表示部222を有している。表示部221が電子デバイス(表示装置)2により構成されている。
(適用例3)
 図26は、上記実施の形態の表示装置が適用されるテレビジョン装置230の外観を表したものである。このテレビジョン装置230は、例えば、フロントパネル231およびフィルターガラス232を含む映像表示画面部233を有している。映像表示画面部233が電子デバイス(表示装置)2により構成されている。
(適用例4)
 図27は、タブレットパーソナルコンピュータ240の外観を表したものである。このタブレットパーソナルコンピュータ240は、例えば、タッチパネル部241および筐体242を有しており、タッチパネル部241が電子デバイス(表示装置)2により構成されている。
(適用例5)
 図28および図29は、デジタルスチルカメラ250の外観を表したものである。このデジタルスチルカメラ250は、例えば、フラッシュ用の発光部251、表示部252、メニュースイッチ253およびシャッターボタン254を有しており、表示部252が電子デバイス(表示装置)2により構成されている。
(適用例6)
 図30は、ノートブック型パーソナルコンピュータ260の外観を表したものである。このノートブック型パーソナルコンピュータ260は、例えば、本体261,文字等の入力操作のためのキーボード262および画像を表示する表示部263を有しており、表示部263が電子デバイス(表示装置)2により構成されている。
(適用例7)
 図31は、ビデオカメラ270の外観を表したものである。このビデオカメラ270は、例えば、本体部271,この本体部271の前方側面に設けられた被写体撮影用のレンズ272,撮影時のスタート/ストップスイッチ273および表示部274を有している。表示部274が電子デバイス(表示装置)2により構成されている。
(適用例8)
 図32および図33は、他の電子ブック280の外観を表したものである。電子ブック280は、柔らかい素材をコンポーネント化して形成された薄型のフレキシブルディスプレイである。この電子ブック280では、複数枚の紙(頁)を綴じて作られる実際の本のように、装置全体を閉じたり(折り畳んだり)、あるいは開いたりすることができるようになっている。ユーザは実際に本を読んでいるかのような感覚で、電子ブック3に表示された内容(例えば書籍の頁等)を閲覧することが可能である。
 電子ブック280は、支持基板281上に、表示部282を備えたものであり、本における「背」の部分(背283A)には、ヒンジ部283を有している。この電子ブック280の下面(閉じたときに外側になる面)側には軟らかい樹脂フィルムよりなるカバー284が設けられ、上面(閉じたときに内側になる面)側は、柔らかく、かつ表示光に対して透明性を有する樹脂フィルムよりなる保護シート285により覆われている。表示部282が電子デバイス(表示装置)2により構成されている。
(適用例9)
 図34および図35は、携帯電話機290の外観を表したものである。この携帯電話機290は、例えば、上側筐体291と下側筐体292とを連結部(ヒンジ部)293で連結したものであり、ディスプレイ294,サブディスプレイ295,ピクチャーライト296およびカメラ297を有している。ディスプレイ294またはサブディスプレイ295が電子デバイス(表示装置)2により構成されている。
 以上、実施の形態を挙げて本技術を説明したが、本技術はこれら実施の形態等に限定されず、種々の変形が可能である。例えば、上記実施の形態等では、電子デバイス(表示装置)2として電子ペーパーディスプレイおよび有機EL表示装置について説明したが、液晶表示装置などの他の表示装置であってもよい。また、本技術の電子デバイス2は、表示装置のほか、センサ等への適用も可能である。
 また、上記実施の形態等において説明した各層の材料および厚さ、または成膜方法および成膜条件等は限定されるものではなく、他の材料および厚さとしてもよく、または他の成膜方法および成膜条件としてもよい。
 更に、上記実施の形態等では、基板1および電子デバイス2の構成を具体的に挙げて説明したが、本技術の基板1および電子デバイス2は、図示した構成要素を全て備えるものに限定されるものではない。また、一部の構成要素を他の構成要素に置換することもできる。
 本技術は以下のような構成を取り得るものである。
(1)
 素材基板の表面を研磨することと、
 前記素材基板の表面を研磨したのちに、前記素材基板の表面に平坦化膜を形成することと
 を含む基板の製造方法。
(2)
 前記研磨することおよび前記平坦化膜を形成することを、前記素材基板を支持体に貼り付けた状態で行う
 前記(1)記載の基板の製造方法。
(3)
 前記平坦化膜を、前記素材基板の線膨張係数と同じまたは略同じ線膨張係数をもつ材料により構成する
 前記(1)または(2)記載の基板の製造方法。
(4)
 前記平坦化膜を、前記素材基板の熱収縮と同じまたは略同じ熱収縮をもつ材料により構成する
 前記(1)ないし(3)のいずれかに記載の基板の製造方法。
(5)
 前記平坦化膜の厚みを、前記素材基板の厚みよりも薄くする
 前記(1)ないし(4)のいずれかに記載の基板の製造方法。
(6)
 前記平坦化膜の厚みを、前記素材基板の厚みの5分の1以下とする
 前記(5)記載の基板の製造方法。
(7)
 前記素材基板の表面を研磨することにおいて、前記素材基板の表面全体を研磨する
 前記(1)ないし(6)のいずれかに記載の基板の製造方法。
(8)
 前記素材基板の表面を研磨することにおいて、前記素材基板の表面に存在する凸欠陥の高さが前記平坦化膜の厚み以下になるまで研磨する
 前記(7)記載の基板の製造方法。
(9)
 前記素材基板の表面を研磨することにおいて、前記素材基板の研磨傷の深さを前記平坦化膜の厚み以下とする
 前記(8)記載の基板の製造方法。
(10)
 前記素材基板を、可撓性をもつ樹脂シートにより構成する
 前記(1)ないし(9)のいずれかに記載の基板の製造方法。
(11)
 前記平坦化膜として樹脂膜を形成する
 前記(1)ないし(10)のいずれかに記載の基板の製造方法。
(12)
 前記平坦化膜の表面に、無機膜よりなるバリアコートを形成することを更に含む
 前記(1)ないし(11)のいずれかに記載の基板の製造方法。
(13)
 前記平坦化膜としてバリアコートを兼ねる無機膜を形成する
 前記(1)ないし(10)のいずれかに記載の基板の製造方法。
(14)
 基板を形成することと、前記基板に機能部を形成することとを含み、
 前記基板を形成することは、
 素材基板の表面を研磨することと、
 前記素材基板の表面を研磨したのちに、前記素材基板の表面に平坦化膜を形成することと
 を含む電子デバイスの製造方法。
(15)
 前記研磨することおよび前記平坦化膜を形成することを、前記素材基板を支持体に貼り付けた状態で行う
 前記(14)記載の電子デバイスの製造方法。
(16)
 前記基板に機能部を形成したのちに、
 前記素材基板および前記平坦化膜を含む基板本体を、前記支持体から剥離することと、
 前記基板本体を切断してモジュールを形成することと
 を更に含む前記(15)記載の電子デバイスの製造方法。
(17)
 前記基板に機能部を形成したのちに、
 前記基板を切断してモジュールを形成することと、
 前記素材基板および前記平坦化膜を含む基板本体を、前記支持体から剥離することと
 を更に含む前記(15)記載の電子デバイスの製造方法。
 本出願は、日本国特許庁において2013年7月16日に出願された日本特許出願番号2013-147741号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (17)

  1.  素材基板の表面を研磨することと、
     前記素材基板の表面を研磨したのちに、前記素材基板の表面に平坦化膜を形成することと
     を含む基板の製造方法。
  2.  前記研磨することおよび前記平坦化膜を形成することを、前記素材基板を支持体に貼り付けた状態で行う
     請求項1記載の基板の製造方法。
  3.  前記平坦化膜を、前記素材基板の線膨張係数と同じまたは略同じ線膨張係数をもつ材料により構成する
     請求項1記載の基板の製造方法。
  4.  前記平坦化膜を、前記素材基板の熱収縮と同じまたは略同じ熱収縮をもつ材料により構成する
     請求項1記載の基板の製造方法。
  5.  前記平坦化膜の厚みを、前記素材基板の厚みよりも薄くする
     請求項1記載の基板の製造方法。
  6.  前記平坦化膜の厚みを、前記素材基板の厚みの5分の1以下とする
     請求項5記載の基板の製造方法。
  7.  前記素材基板の表面を研磨することにおいて、前記素材基板の表面全体を研磨する
     請求項1記載の基板の製造方法。
  8.  前記素材基板の表面を研磨することにおいて、前記素材基板の表面に存在する凸欠陥の高さが前記平坦化膜の厚み以下になるまで研磨する
     請求項7記載の基板の製造方法。
  9.  前記素材基板の表面を研磨することにおいて、前記素材基板の研磨傷の深さを前記平坦化膜の厚み以下とする
     請求項8記載の基板の製造方法。
  10.  前記素材基板を、可撓性をもつ樹脂シートにより構成する
     請求項1記載の基板の製造方法。
  11.  前記平坦化膜として樹脂膜を形成する
     請求項1記載の基板の製造方法。
  12.  前記平坦化膜の表面に、無機膜よりなるバリアコートを形成することを更に含む
     請求項1記載の基板の製造方法。
  13.  前記平坦化膜としてバリアコートを兼ねる無機膜を形成する
     請求項1記載の基板の製造方法。
  14.  基板を形成することと、前記基板に機能部を形成することとを含み、
     前記基板を形成することは、
     素材基板の表面を研磨することと、
     前記素材基板の表面を研磨したのちに、前記素材基板の表面に平坦化膜を形成することと
     を含む電子デバイスの製造方法。
  15.  前記研磨することおよび前記平坦化膜を形成することを、前記素材基板を支持体に貼り付けた状態で行う
     請求項14記載の電子デバイスの製造方法。
  16.  前記基板に機能部を形成したのちに、
     前記素材基板および前記平坦化膜を含む基板本体を、前記支持体から剥離することと、
     前記基板本体を切断してモジュールを形成することと
     を更に含む請求項15記載の電子デバイスの製造方法。
  17.  前記基板に機能部を形成したのちに、
     前記基板を切断してモジュールを形成することと、
     前記素材基板および前記平坦化膜を含む基板本体を、前記支持体から剥離することと
     を更に含む請求項15記載の電子デバイスの製造方法。
PCT/JP2014/066633 2013-07-16 2014-06-24 基板の製造方法および電子デバイスの製造方法 WO2015008586A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157036577A KR20160032039A (ko) 2013-07-16 2014-06-24 기판의 제조 방법 및 전자 디바이스의 제조 방법
CN201480039155.4A CN105378821B (zh) 2013-07-16 2014-06-24 制造衬底的方法和制造电子器件的方法
JP2015527233A JPWO2015008586A1 (ja) 2013-07-16 2014-06-24 基板の製造方法および電子デバイスの製造方法
US14/905,115 US9894775B2 (en) 2013-07-16 2014-06-24 Method of manufacturing substrate and method of manufacturing electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-147741 2013-07-16
JP2013147741 2013-07-16

Publications (1)

Publication Number Publication Date
WO2015008586A1 true WO2015008586A1 (ja) 2015-01-22

Family

ID=52346058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066633 WO2015008586A1 (ja) 2013-07-16 2014-06-24 基板の製造方法および電子デバイスの製造方法

Country Status (6)

Country Link
US (1) US9894775B2 (ja)
JP (1) JPWO2015008586A1 (ja)
KR (1) KR20160032039A (ja)
CN (1) CN105378821B (ja)
TW (1) TW201511112A (ja)
WO (1) WO2015008586A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6345903B1 (ja) * 2017-09-13 2018-06-20 堺ディスプレイプロダクト株式会社 フレキシブルディスプレイの製造装置
WO2019053819A1 (ja) * 2017-09-13 2019-03-21 堺ディスプレイプロダクト株式会社 フレキシブルディスプレイ、その製造方法、およびフレキシブルディスプレイ用支持基板
JP2019149378A (ja) * 2019-04-22 2019-09-05 堺ディスプレイプロダクト株式会社 フレキシブルディスプレイ、その製造方法、およびフレキシブルディスプレイ用支持基板

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160080994A (ko) * 2014-12-30 2016-07-08 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
WO2019003292A1 (ja) * 2017-06-27 2019-01-03 堺ディスプレイプロダクト株式会社 フレキシブルディスプレイおよびその製造方法、ならびにフレキシブルディスプレイ用支持基板
CN109728165B (zh) * 2019-01-04 2021-09-21 京东方科技集团股份有限公司 一种显示背板及其制作方法、显示装置
CN115961298A (zh) * 2022-12-31 2023-04-14 广西师范大学 一种电化学介导乙烯基苯胺与醇合成2,3-二烷氧基取代吲哚啉化合物、合成方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335968A (ja) * 2003-05-12 2004-11-25 Sony Corp 電気光学表示装置の製造方法
JP2005157324A (ja) * 2003-10-28 2005-06-16 Semiconductor Energy Lab Co Ltd 光学フィルムの作製方法
JP2005258361A (ja) * 2004-02-12 2005-09-22 Tohoku Pioneer Corp パネル基板、表示パネル、有機elパネル及びその製造方法
WO2012008166A1 (ja) * 2010-07-16 2012-01-19 パナソニック株式会社 有機el素子の製造方法
JP2012104474A (ja) * 2010-10-15 2012-05-31 Nitto Denko Corp 有機エレクトロルミネッセンス発光装置およびその製法
JP2013067110A (ja) * 2011-09-22 2013-04-18 Dainippon Printing Co Ltd ガスバリア性フィルム、ガスバリア層、装置及びガスバリア性フィルムの製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098032A (en) * 1975-10-20 1978-07-04 International Business Machines Corporation Method of forming air bearing rails of head assemblies
JP2789983B2 (ja) * 1993-01-28 1998-08-27 信越半導体株式会社 加工誤差補正装置
JPH0955362A (ja) * 1995-08-09 1997-02-25 Cypress Semiconductor Corp スクラッチを減少する集積回路の製造方法
KR100451937B1 (ko) * 2001-01-31 2004-10-22 주식회사 엘지 전자레인지의 전면시트의 제조방법 및 그것을 부착한전자레인지
KR100817134B1 (ko) * 2002-03-25 2008-03-27 엘지.필립스 엘시디 주식회사 액정 패널의 제조장치 및 방법
JP4114551B2 (ja) * 2003-06-06 2008-07-09 株式会社豊田自動織機 補助電極を用いた面状発光装置
CN100489569C (zh) * 2003-10-28 2009-05-20 株式会社半导体能源研究所 制作光学膜的方法
JP4583062B2 (ja) * 2004-03-31 2010-11-17 大日本印刷株式会社 透明ガス遮断性フィルム、及びその製造方法
JP4805587B2 (ja) * 2005-02-24 2011-11-02 エーユー オプトロニクス コーポレイション 液晶表示装置とその製造方法
US7625783B2 (en) * 2005-11-23 2009-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and method for manufacturing the same
KR101256013B1 (ko) * 2006-01-19 2013-04-18 삼성디스플레이 주식회사 액정표시장치의 제조장치 및 제조방법
US8740670B2 (en) * 2006-12-28 2014-06-03 Saint-Gobain Ceramics & Plastics, Inc. Sapphire substrates and methods of making same
US7775856B2 (en) * 2007-09-27 2010-08-17 Applied Materials, Inc. Method for removal of surface films from reclaim substrates
KR101493087B1 (ko) * 2008-05-27 2015-02-24 엘지디스플레이 주식회사 플렉서블 표시장치의 제조 방법
KR101280828B1 (ko) 2008-07-02 2013-07-02 엘지디스플레이 주식회사 기판결함의 수리방법
JP5620921B2 (ja) * 2008-12-05 2014-11-05 コーニンクレッカ フィリップス エヌ ヴェ プラスチック基板を有する電子デバイス及びその製造方法
JP2012043583A (ja) * 2010-08-17 2012-03-01 Sony Corp 表示装置およびその製造方法
JP2013029722A (ja) * 2011-07-29 2013-02-07 Sony Corp 表示装置および電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335968A (ja) * 2003-05-12 2004-11-25 Sony Corp 電気光学表示装置の製造方法
JP2005157324A (ja) * 2003-10-28 2005-06-16 Semiconductor Energy Lab Co Ltd 光学フィルムの作製方法
JP2005258361A (ja) * 2004-02-12 2005-09-22 Tohoku Pioneer Corp パネル基板、表示パネル、有機elパネル及びその製造方法
WO2012008166A1 (ja) * 2010-07-16 2012-01-19 パナソニック株式会社 有機el素子の製造方法
JP2012104474A (ja) * 2010-10-15 2012-05-31 Nitto Denko Corp 有機エレクトロルミネッセンス発光装置およびその製法
JP2013067110A (ja) * 2011-09-22 2013-04-18 Dainippon Printing Co Ltd ガスバリア性フィルム、ガスバリア層、装置及びガスバリア性フィルムの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6345903B1 (ja) * 2017-09-13 2018-06-20 堺ディスプレイプロダクト株式会社 フレキシブルディスプレイの製造装置
WO2019053820A1 (ja) * 2017-09-13 2019-03-21 堺ディスプレイプロダクト株式会社 フレキシブルディスプレイの製造装置
WO2019053819A1 (ja) * 2017-09-13 2019-03-21 堺ディスプレイプロダクト株式会社 フレキシブルディスプレイ、その製造方法、およびフレキシブルディスプレイ用支持基板
US10516121B2 (en) 2017-09-13 2019-12-24 Sakai Display Products Corporation Apparatus for producing flexible display
US10991898B2 (en) 2017-09-13 2021-04-27 Sakai Display Products Corporation Flexible display, method for manufacturing same, and support substrate for flexible display
JP2019149378A (ja) * 2019-04-22 2019-09-05 堺ディスプレイプロダクト株式会社 フレキシブルディスプレイ、その製造方法、およびフレキシブルディスプレイ用支持基板

Also Published As

Publication number Publication date
KR20160032039A (ko) 2016-03-23
US9894775B2 (en) 2018-02-13
TW201511112A (zh) 2015-03-16
CN105378821A (zh) 2016-03-02
JPWO2015008586A1 (ja) 2017-03-02
CN105378821B (zh) 2019-10-25
US20160165735A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
WO2015008586A1 (ja) 基板の製造方法および電子デバイスの製造方法
US20210036027A1 (en) Thin film transistor, display device, electronic apparatus and method of manufacturing thin film transistor
TWI594662B (zh) 發光裝置,其製造方法,以及顯示單元
US8664021B2 (en) Organic light-emitting display device and foldable display device including the same
CN103247234B (zh) 显示设备
JP6330220B2 (ja) 表示装置、電子機器および基板
US9240569B2 (en) Display and electronic system
JP2018022143A (ja) 表示装置および電子機器
CN106537486A (zh) 显示装置及电子装置
KR20180020091A (ko) 표시 장치
CN105448954A (zh) 包括灰色滤色器的显示装置
JP2012238544A (ja) 表示素子および表示装置ならびに電子機器
JP7277636B2 (ja) 表示装置、表示モジュール及び電子機器
WO2015041040A1 (ja) 表示装置および電子機器
JP6439114B2 (ja) 表示装置および電子機器
CN105633116A (zh) Oled器件及其制造方法、显示装置
JP2020177147A (ja) 赤外線カットフィルム、光学フィルタ、生体認証装置及び撮像装置
JP6702781B2 (ja) 表示装置
WO2016035413A1 (ja) 表示素子および表示装置ならびに電子機器
JP2015046391A (ja) 発光装置、及び電子機器
US20230273495A1 (en) Piezo-electrophoretic film including patterned piezo polarities for creating images via electrophoretic media
US20230276710A1 (en) Piezoelectric films including ionic liquids and methods of making piezoelectric films including ionic liquids
JP2018066944A (ja) 表示装置の作製方法
JP6931985B2 (ja) 表示装置の作製方法
CN114335098A (zh) 一种柔性显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157036577

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015527233

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14905115

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826178

Country of ref document: EP

Kind code of ref document: A1