WO2015008537A1 - オキシメチレン共重合体の製造方法 - Google Patents

オキシメチレン共重合体の製造方法 Download PDF

Info

Publication number
WO2015008537A1
WO2015008537A1 PCT/JP2014/063735 JP2014063735W WO2015008537A1 WO 2015008537 A1 WO2015008537 A1 WO 2015008537A1 JP 2014063735 W JP2014063735 W JP 2014063735W WO 2015008537 A1 WO2015008537 A1 WO 2015008537A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
trioxane
oxymethylene copolymer
amount
production method
Prior art date
Application number
PCT/JP2014/063735
Other languages
English (en)
French (fr)
Inventor
智之 平野
顕 伊東
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP14826304.9A priority Critical patent/EP3023445A4/en
Priority to US14/904,552 priority patent/US20160145384A1/en
Priority to JP2015527208A priority patent/JPWO2015008537A1/ja
Priority to KR1020157032683A priority patent/KR20160031450A/ko
Publication of WO2015008537A1 publication Critical patent/WO2015008537A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2615Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen the other compounds containing carboxylic acid, ester or anhydride groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/04Polymerisation by using compounds which act upon the molecular weight, e.g. chain-transferring agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/06Catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/10Polymerisation of cyclic oligomers of formaldehyde
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/18Copolymerisation of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G4/00Condensation polymers of aldehydes or ketones with polyalcohols; Addition polymers of heterocyclic oxygen compounds containing in the ring at least once the grouping —O—C—O—

Definitions

  • the present invention relates to a method for producing a stable oxymethylene copolymer.
  • Oxymethylene copolymers have excellent properties in mechanical properties, thermal properties, electrical properties, slidability, moldability, etc., and are used as electrical materials, automotive parts and precision components as structural materials and mechanical parts. Widely used for machine parts. In recent years, the range of use has further expanded, and the demand for cost reduction has increased along with higher performance requirements for the resin. An important issue among the required qualities is that the oxymethylene copolymer is thermally decomposed in the molding machine at the time of molding and formaldehyde is generated, which causes molding defects such as defective appearance and abnormal dimensions. In addition, the occurrence of formaldehyde from the final product has caused adverse effects on the human body, such as causing sick house syndrome.
  • a method of polymerizing a monomer with reduced impurities and quenching immediately after the polymerization to deactivate the catalyst to suppress side reactions a method of directly stabilizing the end by adding water or the like to the extruder, Stabilize the terminal by polymerizing the monomer to which the hindered phenol is added, controlling the oxymethylene copolymer after polymerization to the optimum particle size, deactivating the catalyst, adding water and devolatilizing under reduced pressure under melting
  • a method for performing the conversion is disclosed.
  • a production method for producing an oxymethylene copolymer having a high polymerization yield and particularly a polymerization yield of 95% or more is advantageous in terms of productivity and economy.
  • a large number of thermally unstable structures are produced during polymerization. Therefore, the thermal stability is poor and the amount of formaldehyde generated in the molding machine is large.
  • a sterically hindered phenol having a molecular weight of 350 or more is added to the monomer in an amount of 0.001 to 2 in the monomer prior to the polymerization.
  • a technique for carrying out copolymerization by adding 0.0% by mass is known (for example, see Patent Document 2).
  • Patent Document 2 discloses that when trioxane and 1,3-dioxolane are copolymerized using a boron trifluoride ether coordination compound as a catalyst, the copolymerization is carried out in the presence of a sterically hindered phenol to perform alkali decomposition. The technique which improved the rate and the weight reduction rate by heating is disclosed.
  • 1,3-dioxolane is 8 per 100 moles of trioxane. It is known that an oxymethylene copolymer obtained by copolymerization for 5 to 18 moles for 3 to 60 minutes is stabilized by a specific stabilization method (see, for example, Patent Document 5). However, there is no reference to the amount of formaldehyde generated, and it is not yet satisfactory in terms of the balance between mechanical properties and thermal stability.
  • JP-A-8-325341 Japanese Examined Patent Publication No. 3-63965 Japanese Patent Laid-Open No. 7-242652 Japanese Patent Laid-Open No. 11-269165 International Publication No. 2002/77049 Pamphlet
  • the present invention provides a high yield of an oxymethylene copolymer having improved thermal stability and formaldehyde generation while maintaining excellent MD resistance (mold deposit resistance) and folding resistance. It aims to provide a method.
  • the present inventors have copolymerized a monomer raw material containing trioxane and 1,3-dioxolane using boron trifluoride as a catalyst to obtain an oxymethylene copolymer.
  • trioxane and a specific amount of 1,3-dioxolane are copolymerized in the presence of a specific amount of sterically hindered phenols to obtain an oxymethylene copolymer, and the polymerization yield is 92%.
  • the said objective can be achieved by making the produced
  • the present invention provides the following production method: A monomer raw material containing trioxane and 7.0 to 22% by mass of 1,3-dioxolane based on trioxane was mixed with 0.03 to 0.10 mmol of boron trifluoride per mole of trioxane and 0 to trioxane. A step of carrying out a copolymerization reaction in the presence of 0.006 to 2.0% by mass of a sterically hindered phenol; and, when the polymerization yield of the polymerization reaction is 92% or more, a polymerization terminator is added to the reaction system A method for producing an oxymethylene copolymer, comprising a step of stopping the polymerization.
  • an oxymethylene copolymer having a high thermal stability and a small amount of formaldehyde generated can be obtained in a high yield while maintaining excellent MD resistance and folding resistance. Therefore, the industrial significance is extremely large.
  • the method for producing an oxymethylene copolymer of the present invention comprises a monomer raw material containing trioxane and a specific amount of 1,3-dioxolane in the presence of a specific amount of boron trifluoride and a specific amount of sterically hindered phenol.
  • the polymerization is terminated by bringing the copolymer formed at a time when the polymerization yield is 92% or more into contact with the polymerization terminator.
  • the trioxane (1,3,5-trioxane) used as a monomer in the present invention is a cyclic trimer of formaldehyde, which is commercially available or can be prepared by a production method known to those skilled in the art. Is not particularly limited.
  • amines are usually contained in an amount of 0.00001 to 0.003 mmol, preferably 0.00001 to 0.0005 mmol, more preferably 0.00001 to 0.0003 mmol, per mol of trioxane. If the amine content is higher than this, it may cause adverse effects such as deactivation of the catalyst, and if it is less, it may cause generation of paraformaldehyde during storage of trioxane.
  • amines to be contained in trioxane primary amines, secondary amines, tertiary amines, amine compounds having an alcoholic hydroxyl group in the molecule, alkylated melamines, and hindered amine compounds are used alone or as a mixture.
  • Primary amines are n-propylamine, isopropylamine, n-butylamine, etc.
  • Secondary amines are diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, piperidine, piperazine, 2-methylpiperazine , Morpholine, N-methylformoline, N-ethylformoline, etc.
  • tertiary amines include triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, etc.
  • amine-based compounds include monoethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, N, N-dimethylethanolamine, N-ethylethanolamine, N, N-diethylethanolamine, N- ( ⁇ -Ami Ethyl) isopropanolamine, hydroxyethyl piperazine and the mono as the alkylated melamine methoxymethyl substituents melamine, di-, tri-, tetra, penta or hexa methoxymethyl melamine, or mixtures thereof and the like are preferably used.
  • hindered amine compounds include bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate, 1,2,3, 4-Butanetetracarboxylic acid tetrakis (2,2,6,6-tetramethyl-4-piperidinyl) ester, poly [[6- (1,1,3,3-tetramethylenebutyl) amino-1,3,5 -Triazine-2,4-diyl] [(2,2,6,6-tetramethyl-4-piperidinyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidinyl) imino]] 1,2,2,6,6-pentamethylpiperidine, dimethyl succinate 1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate And N, N′-bis (3-aminopropyl)
  • the 1,3-dioxolane used as a comonomer in the present invention is commercially available or can be prepared by a production method known to those skilled in the art.
  • the manufacturing method is not particularly limited.
  • the amount of 1,3-dioxolane added is 7.0 to 22% by mass, preferably 7.4 to 18.1% by mass, more preferably 8.2 to 13.2%, based on trioxane. % By mass.
  • the amount of 1,3-dioxolane used is larger than this, the polymerization rate becomes extremely slow and thermal stability is lowered, and when it is less, folding resistance is lowered.
  • the boron trifluoride used in the present invention preferably uses a coordination compound thereof, which is commercially available or can be prepared by a production method known to those skilled in the art.
  • a coordination compound of boron trifluoride a coordination compound with an organic compound having an oxygen atom or a sulfur atom can be given.
  • the organic compound include alcohol, phenol, acid, ether, acid anhydride, ester, ketone, aldehyde, dialkyl, and sulfide.
  • the coordination compound of boron trifluoride is preferably an etherate, and preferred specific examples include diethyl etherate and dibutyl etherate of boron trifluoride.
  • the amount added is 0.03 to 0.10 mmol, preferably 0.03 to 0.08 mmol, more preferably 0.04 to 0.07 mmol, per mol of trioxane.
  • the amount of boron trifluoride added is larger than this, the thermal stability is lowered and the polymerization rate is remarkably lowered, which is not suitable for industrial production.
  • Boron trifluoride is used as is or in the form of a solution.
  • examples of the solvent include aliphatic hydrocarbons such as hexane, heptane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; and halogenated hydrocarbons such as methylene dichloride and ethylene dichloride.
  • the sterically hindered phenol used at the time of polymerization is preferably the following sterically hindered phenol.
  • sterically hindered phenol for example, dibutylhydroxytoluene, triethylene glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate, pentaerythrityl-tetrakis-3- (3,5-di-t-butyl- 4-hydroxyphenyl) propionate, hexamethylene bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,2′-methylene bis (6-tert-butyl-4-methylphenol) 3,9-bis ⁇ 2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl ⁇ -2,4,8,10-tetraoxa Spiro [5.5] undecane, N, N′-hexane
  • the addition amount of the sterically hindered phenol is usually 0.006 to 2.0% by mass, preferably 0.01 to 0.5% by mass, more preferably 0.02 to 0% with respect to trioxane. .1% by mass. If the amount of sterically hindered phenol used is larger than this, it will cause adverse effects such as lowering the molecular weight of the produced oxymethylene copolymer and lowering the polymerization yield, and if less, formic acid in the produced oxymethylene copolymer. Unstable moieties such as ester structures increase, causing adverse effects such as reduced heat or hydrolysis stability.
  • a chain transfer agent can be used to control the intrinsic viscosity by adjusting the molecular weight of the oxymethylene copolymer.
  • the intrinsic viscosity is adjusted to 0.5 to 5 dl / g, preferably 0.7 to 3 dl / g, and more preferably 0.8 to 2 dl / g.
  • the chain transfer agent include carboxylic acid, carboxylic acid anhydride, ester, amide, imide, phenol, acetal compound and the like. In particular, phenol, 2,6-dimethylphenol, methylal, and polyoxymethylene dimethoxide are preferably used. Most preferred is methylal.
  • the chain transfer agent is used as is or in the form of a solution.
  • examples of the solvent include aliphatic hydrocarbons such as hexane, heptane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; and halogenated hydrocarbons such as methylene dichloride and ethylene dichloride.
  • primary amine include n-propylamine, isopropylamine, n-butylamine, etc.
  • Secondary amines include diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, piperidine, morpholine, etc.
  • Examples of amines include triethylamine, tri-n-propylamine, triisopropylamine, and tri-n-butylamine.
  • Examples of alkylated melamine include mono, di, tri, tetra, penta, or hexamethoxy, which are methoxymethyl substitutes of melamine. Methylmelamine or a mixture thereof is preferably used.
  • hindered amine compounds include bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate, 1,2,3, 4-Butanetetracarboxylic acid tetrakis (2,2,6,6-tetramethyl-4-piperidinyl) ester, poly [[6- (1,1,3,3-tetramethylenebutyl) amino-1,3,5 -Triazine-2,4-diyl] [(2,2,6,6-tetramethyl-4-piperidinyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidinyl) imino]] 1,2,2,6,6-pentamethylpiperidine, dimethyl-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate And N, N′-bis (3-aminopropyl) ethylene
  • hindered amine compounds trivalent organic phosphorus compounds, and alkylated melamines are preferred in terms of hue.
  • hindered amine compounds include bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate, dimethyl succinate 1- ( 2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, N, N′-bis (3-aminopropyl) ethylenediamine ⁇ 2,4-bis [N-butyl-N -(1,2,2,6,6-pentamethyl-4-piperidyl) amino] -1,3,5-triazine condensate is a trivalent organophosphorus compound, triphenylphosphine as alkylated melamine Hexamethoxymethylmelamine is most preferably used.
  • the solvent used is not particularly limited, but other than water and alcohols, acetone, methyl ethyl ketone, hexane, cyclohexane, heptane, benzene, toluene, xylene, Various aliphatic and aromatic organic solvents such as methylene dichloride and ethylene dichloride can be used. Among these, preferred are water, alcohols, and aliphatic and aromatic organic solvents such as acetone, methyl ethyl ketone, hexane, cyclohexane, heptane, benzene, toluene, and xylene.
  • the polymerization time is usually 0.25 to 120 minutes, preferably 1 to 60 minutes, more preferably 1 to 30 minutes, and most preferably 2 to 15 minutes. If the polymerization time is longer than this, unstable parts increase, and if it is shorter, the polymerization yield may decrease.
  • Impurities such as water, formic acid, methanol, and formaldehyde contained in trioxane are inevitably generated when trioxane is produced industrially, but the total amount is preferably 100 ppm or less in trioxane. Preferably it is 70 ppm or less, Most preferably, it is 50 ppm or less. In particular, water is preferably 50 ppm or less, more preferably 20 ppm or less, and most preferably 10 ppm or less.
  • impurities such as water, formic acid and formaldehyde present in 1,3-dioxolane are preferably 1000 ppm or less, more preferably 200 ppm or less in total.
  • the polymerization reaction may be solution polymerization carried out in the presence of an inert solvent, but bulk polymerization under substantially no solvent is preferable because the cost of solvent recovery is unnecessary and the effect of sterically hindered phenol is large.
  • a solvent aliphatic hydrocarbons such as hexane, heptane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; and halogenated hydrocarbons such as methylene dichloride and ethylene dichloride.
  • the polymerization reaction is preferably performed using a continuous polymerization apparatus.
  • the method of implementing by connecting one or two or more continuous polymerization machines in series is a suitable thing.
  • a continuous polymerization machine a kneading machine having at least two horizontal rotation shafts and screw-type or paddle-type rotation blades on the rotation shafts can be mentioned as a preferable example. Specifically, it has an inner cross-section with two overlapping circles, a jacket around it, a pair of shafts in a long case, and a large number of convex lens-type paddle blades engaged with each other.
  • a continuous polymerization machine capable of cleaning the inner surface of the case and the surface of the opposite convex lens type paddle blade with the tip of the convex lens type paddle blade is preferable.
  • copolymerization is carried out in the presence of a sterically hindered phenol, and the sterically hindered phenol is added as it is or in the form of a solution.
  • the solvent include aliphatic hydrocarbons such as hexane, heptane and cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; and halogenated hydrocarbons such as methylene dichloride and ethylene dichloride. It is done.
  • the monomer trioxane and the comonomer 1,3-dioxolane may be used as the solvent.
  • the sterically hindered phenol In order to maintain the activity of the sterically hindered phenol during the polymerization reaction, it is desirable to add a part or all of the sterically hindered phenol as it is or in the form of a solution at the continuous polymerization machine inlet. It is also possible to dissolve a predetermined amount in the trioxane to be added in advance.
  • a polymerization terminator is added to deactivate the catalyst (boron trifluoride). Stop the polymerization.
  • a large amount of energy consumption for recovering unreacted monomers can be reduced.
  • the amount of generated formaldehyde, thermal stability, storage stability, etc. are improved for all resin compositions with additive compositions optimized for various applications. The effect can be expected. Therefore, the industrial significance in the present invention is very large.
  • Trioxane and 1,3-dioxolane are copolymerized in the presence of boron trifluoride and sterically hindered phenol, and the resulting oxymethylene copolymer is contacted with a polymerization terminator to terminate the polymerization.
  • a polymerization terminator to terminate the polymerization.
  • the amount of the unstable portion of the oxymethylene copolymer that is unstable to heat and hydrolysis having a formate structure is small.
  • Significant recovery costs for unreacted monomers are required.
  • the polymerization is terminated at a polymerization yield of 92% or more, the recovery cost of the unreacted monomer is reduced.
  • the oxymethylene copolymer has a formate structure and is unstable to heat and hydrolysis. Is generated rapidly.
  • the formic acid ester structure in the oxymethylene copolymer was obtained by the presence of a specific amount of boron trifluoride and a specific amount of sterically hindered phenol during the copolymerization and termination of polymerization at a polymerization yield of 92% or more. It has been found that the amount of unstable parts having sigma can be greatly reduced and the thermal stability can be improved.
  • the polymerization reaction is stopped by bringing a polymerization terminator into contact with the oxymethylene copolymer in the reaction system.
  • the contact method is to continuously add a small amount of the polymerization terminator or a solution or suspension of the polymerization terminator to the oxymethylene copolymer. It is desirable to pulverize and contact.
  • a washing step such as introducing an oxymethylene copolymer into a solution or suspension of a large amount of the polymerization terminator is also carried out, so that a solvent recovery step or a solvent removal step in the subsequent stage is required.
  • a method in which a small amount of a polymerization terminator is added to a reaction system containing an oxymethylene copolymer at the time of termination of polymerization is industrially more preferable.
  • a mixer for adding a polymerization terminator and mixing with an oxymethylene copolymer, there is a continuous mixer such as a single or twin screw or paddle type mixer similar to the above continuous polymerizer. Can be used.
  • the polymerization reaction and the polymerization termination reaction are preferably performed continuously. That is, as the apparatus, a continuous polymerization apparatus in which a continuous polymerization machine and subsequently a polymerization terminator mixer are connected in series is suitable for producing an oxymethylene copolymer.
  • the stabilization method described in (1) and (2) below can be employed.
  • the stabilization treatment method (1) is simpler than the method (2) and is preferable as an industrial method. That is, when the stabilization treatment method (1) is employed, the oxymethylene copolymer is melt kneaded at a temperature of 760 to 0.1 mmHg in the temperature range from the melting temperature to a temperature 100 ° C. higher than the melting temperature. It is preferable to do. When the stabilization treatment temperature is lower than the melting temperature of the oxymethylene copolymer, the decomposition reaction of the unstable portion becomes insufficient, and the stabilization effect cannot be obtained.
  • the temperature is higher than the melting temperature of 100 ° C.
  • yellowing occurs, the main chain of the polymer is decomposed due to heat, and at the same time, an unstable portion is generated and the thermal stability is impaired.
  • a more preferable range is 170 to 250 ° C., and a most preferable range is 180 to 235 ° C.
  • the pressure during the stabilization process is higher than 760 mmHg, the effect of removing the decomposition gas generated by the decomposition of the unstable portion is low, and a sufficient stabilization effect cannot be obtained.
  • a more preferable range is 740 to 10 mmHg, most preferably 400 to 50 mmHg. Further, the treatment time is appropriately selected within the range of 1 minute to 1 hour.
  • a single-screw extruder or a biaxial or more extruder with a vent can be used as the apparatus used for the stabilization treatment.
  • a method of combining a highly degassing effect such as a WSK ZSK extruder or a ZDS extruder is a more advantageous method.
  • a method of combining a surface renewal type mixer with the above-described extruder as shown in Examples described later is the most effective method.
  • a stabilizer such as an antioxidant or a heat stabilizer can be added to perform the stabilization treatment.
  • Antioxidants that can be used in the stabilization treatment include triethylene glycol-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, pentaerythrityl-tetrakis-3- ( 3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,2′-methylenebis (6-tert-butyl-4-methylphenol), 3,9-bis ⁇ 2- [3- (3- t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl ⁇ -2,4,8,10-tetraoxaspiro [5.5] undecane, N, N′-hexane 1,6-diylbis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionamide], 3,5-bis (1,1-dimethylethyl) -4 One or more sterically hindered phenols, such as hydroxy benzeneprop
  • heat stabilizers include amine-substituted triazines such as melamine, methylol melamine, benzoguanamine, cyanoguanidine, N, N-diarylmelamine, polyamides, urea derivatives, urethanes and the like, and inorganic substances such as sodium, potassium, calcium, magnesium, and barium.
  • examples include acid salts, hydroxides, and organic acid salts.
  • the oxymethylene copolymer obtained by the method of the present invention described in detail has the same excellent properties as the oxymethylene copolymer obtained by the conventional method, and can be used for the same application.
  • the oxymethylene copolymer produced by the method of the present invention includes a colorant, a nucleating agent, a plasticizer, a release agent, a fluorescent brightening agent, an antistatic agent such as polyethylene glycol and glycerin, and a benzophenone compound.
  • Additives such as light stabilizers such as hindered amine compounds can be added as desired.
  • Crude oxymethylene copolymer An oxymethylene copolymer after the termination of polymerization and before the stabilization step is referred to as a crude oxymethylene copolymer.
  • Formaldehyde generation amount Using the pellets obtained after the stabilization process, using the SAV-30-30 molding machine manufactured by Yamashiro Co., Ltd., using a disk with a diameter of 50 mm and a thickness of 3 mm, molded at the cylinder temperature of 215 ° C. In accordance with the method described in German Automobile Manufacturers Association Standard VDA275 (automobile interior parts-quantitative determination of formaldehyde emission by revised flask method).
  • VDA275 automobile interior parts-quantitative determination of formaldehyde emission by revised flask method.
  • (I) Put 50 ml of distilled water in a polyethylene container, close the lid with the test piece suspended, and keep it in a sealed state at 60 ° C. for 3 hours.
  • a test piece is taken out.
  • the formaldehyde concentration absorbed in distilled water in the polyethylene container is measured by an acetylacetone colorimetric method using a UV spectrometer.
  • Thermal stability Residence heat stability was measured as an index of thermal stability.
  • the pellets obtained after the melt stabilization treatment were dried at 80 ° C. for 4 hours, and then 6 shots of resin were retained in an injection molding machine (Toshiba Machine IS75E) with a cylinder temperature of 240 ° C. every 12 minutes. A strip-shaped test piece was molded and evaluated by the time (minutes) until silver (silver strip) due to foaming of the resin was generated on one side of the molded piece.
  • Weight reduction rate by heating The pellets obtained after the melt stabilization treatment were put in a test tube, and after the replacement with nitrogen, the weight reduction rate (mass%) before and after heating was measured at 240 ° C. for 2 hours under reduced pressure of 10 Torr. When the weight before heating is X and the weight after heating is Y, the heating weight reduction rate is calculated as (XY) / X ⁇ 100.
  • MD resistance Continuous injection molding of oxymethylene copolymer using an injection molding machine having a mold clamping pressure of 7 ton at a cylinder temperature of 220 ° C., a mold temperature of 70 degrees, and a molding cycle of about 6 seconds. The number of shots until mold deposit occurred was measured.
  • Folding resistance test (bending fatigue test): Measured according to JISP8115. The details are as follows.
  • the test piece had a thickness of 0.8 mm, a width of 12.7 mm, and a length of 127 mm.
  • Examples 1 to 12 and Comparative Examples 1 to 7 As a continuous polymerization apparatus, a pair of shafts are provided in a long case having an inner cross section in which two circles partially overlap each other, a long diameter of the inner cross section being 100 mm, and having a jacket around it.
  • a continuous polymerization machine in which a large number of convex lens type paddle blades meshing with each other are fitted, and the tip of the convex lens type paddle blade can clean the inner surface of the case and the surface of the opposite convex lens type paddle blade, followed by the polymerization described above as a polymerization terminator mixer
  • a device having a structure similar to that of the polymerizer in which a solution containing a polymerization terminator is injected from the supply port and continuously mixed with the polymer, is connected in series to the polymerizer. Production of the polymer was carried out.
  • trioxane containing 0.00025 mmol of triethanolamine per mole of trioxane as a stabilizer
  • sterically hindered phenol triethylene glycol-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate
  • Table 2 A 1,3-dioxolane solution having a concentration of sterically hindered phenol of 11 wt% was supplied from a line separate from trioxane.
  • 1,3-dioxolane is continuously supplied as a comonomer from the third line, and the total amount of 1,3-dioxolane supplied from the two lines is as shown in Table 2. Adjusted. In Comparative Example 7, no sterically hindered phenol was supplied. At the same time, boron trifluoride diethyl etherate in the amount shown in Table 2 was continuously fed as a catalyst. Further, methylal as a molecular weight regulator was continuously supplied in an amount necessary for the intrinsic viscosity to be 1.0 to 1.5 dl / g. Boron trifluoride diethyl etherate and methylal were each added as a benzene solution.
  • the total amount of benzene used was 1% by mass or less based on trioxane. Further, twice the molar amount of triphenylphosphine of the catalyst was continuously supplied from the inlet of the polymerization terminator mixer as a benzene solution to stop the polymerization reaction, and a crude oxymethylene copolymer was obtained from the outlet.
  • the continuous polymerization apparatus has a continuous polymerization machine shaft rotation speed of about 35 rpm, a polymerization stopper mixing machine shaft rotation speed of about 60 rpm, a continuous polymerization apparatus jacket temperature of 85 ° C., and a polymerization stopper mixing machine jacket. The polymerization operation was performed with the temperature set at 85 ° C. The polymerization time was about 10 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 耐MD性と耐折性が維持されつつ、熱安定性とホルムアルデヒド発生量が改善されたオキシメチレン共重合体を高い重合収率で連続的に製造する方法を提供する。 トリオキサンと、トリオキサンに対して7.0~22質量%の1,3-ジオキソランとを含むモノマー原料を、トリオキサン1モル当たり0.03~0.10ミリモルの三フッ化ホウ素と、トリオキサンに対して0.006~2.0質量%の立体障害性フェノールとの存在下に共重合反応を行う工程;および該共重合の重合収率が92%以上の時点で、反応系中に重合停止剤を加えて重合を停止させる工程を含む、オキシメチレン共重合体の製造方法を提供する。

Description

オキシメチレン共重合体の製造方法
 本発明は、安定なオキシメチレン共重合体の製造方法に関する。
 オキシメチレン共重合体は、機械的特性、熱的特性、電気的特性、摺動性および成形性等において優れた特性を有しており、構造材料や機構部品等として電気機器、自動車部品および精密機械部品等に広く使用されている。
 近年、益々その利用範囲が広がり、当該樹脂に対するより高度な性能要求と共に、低コスト化の要求も高くなってきている。
 その要求される品質の中で重要な課題として、成形時にオキシメチレン共重合体が成形機内で熱分解してホルムアルデヒドが発生し、外観不良や寸法異常等の成形不良を引き起こすことが挙げられる。また最終製品からのホルムアルデヒドの発生により、シックハウス症候群を引き起こす等、人体への悪影響が指摘されている。厚生労働省はこのシックハウス症候群対策として、室内ホルムアルデヒド濃度指針値を0.08ppmと規定しており、最終製品に必要な優れた剛性、靭性を維持しつつ、ホルムアルデヒド発生量が限りなく低減されたオキシメチレン共重合体が要求されている。ホルムアルデヒド発生量を低減させるオキシメチレン共重合体の製造方法は現在までに種々提案されている。例えば、不純物の低減されたモノマーを重合し、さらに重合直後に急冷することにより触媒を失活せしめ副反応を抑制する方法や、押出機に直接水等を添加し末端安定化をおこなう方法、立体障害性フェノールが添加されたモノマーを重合し、さらに重合後のオキシメチレン共重合体を最適粒子径に制御し触媒失活を行い、加えて水を添加し溶融下で減圧脱揮して末端安定化をおこなう方法等が開示されている。
 一方、重合収率が高く、特に重合収率95%以上のオキシメチレン共重合体を生産する製造方法は生産的かつ経済的に有利ではあるが、重合時に熱的不安定構造が多数生成してしまうため、熱安定性に乏しく成形機内でのホルムアルデヒド発生量が多い。
 工業的に安価に製造可能で取り扱いが容易なトリオキサン、1,3-ジオキソランおよび三フッ化ホウ素を原材料として、不安定部分の生成を抑制したオキシメチレン共重合体の製造技術が開示されている(例えば、特許文献1参照)。また、重合収率が高く、重合停止の際に洗浄を行わなくてもよいことから、モノマーの回収コストを低減できる点で優れている。
 しかしながら、この製造方法では重合収率の増加とともにギ酸エステル構造を含む、熱や加水分解に対して不安定な部分の生成が進行する。そのため、より高い重合収率においては不安定部分の生成量が増加し、これが最終製品におけるホルムアルデヒド発生等のポリマーの品質にも悪影響を及ぼすため、満足する方法とは言えなかった。
 また、カチオン活性触媒の存在下でトリオキサンと共重合しうるコモノマーとの共重合を行うにあたり、重合に先だってモノマー中に分子量350以上の立体障害性フェノール類を全モノマーに対して0.001~2.0質量%添加し共重合を行う技術が公知である(例えば、特許文献2参照)。具体的に特許文献2には、トリオキサンと1,3-ジオキソランを三フッ化ホウ素のエーテル配位化合物を触媒として共重合する際に立体障害性フェノールの存在下で共重合を行うことによりアルカリ分解率や加熱重量減少率を改良した技術が開示されている。
 また、トリオキサンと1,3-ジオキソランを三フッ化ホウ素のエーテル配位化合物を触媒として共重合する際に分子量350以上の立体障害性フェノールを添加した1,3-ジオキソランを使用して共重合を行う技術が公知である(例えば、特許文献3および4参照)。しかしながら、これらの技術ではいずれも重合収率が85%以下であり、また、重合停止と同時に洗浄を行っており、未反応モノマーの回収のため多量のエネルギーを要し経済的に不利であった。またこれらの文献は、オキシメチレン共重合体に求められる剛性や靭性が、熱安定性および臭気の改良後も維持されるかの検討はなされていない。
 一方、成形時の金型への付着が極めて少なく、優れた折り曲げ疲労耐性を有し、かつ加熱による重量減少の少ないオキシメチレン共重合体として、トリオキサン100モルに対して1,3-ジオキソランを8.5~18モル、3~60分間共重合して得られたオキシメチレン共重合体を特定の安定化方法で安定化したものが公知である(例えば、特許文献5参照)。しかし、ホルムアルデヒド発生量への言及は一切なく、また機械的性質および熱安定性のバランスの点では未だ満足するものではない。
特開平8-325341号公報 特公平3-63965号公報 特開平7-242652号公報 特開平11-269165号公報 国際公開第2002/77049パンフレット
 本発明はかかる現状に鑑み、優れた耐MD性(耐モールドデポジット性)、耐折性を保持しつつ、熱安定性とホルムアルデヒド発生量が改善したオキシメチレン共重合体を高収率で得る製造方法を提供することを目的とする。
 本発明者らは、上記の課題を解決すべく鋭意検討した結果、トリオキサンと1,3-ジオキソランを含むモノマー原料を、三フッ化ホウ素を触媒に用いて共重合させてオキシメチレン共重合体を製造する方法において、トリオキサンと特定量の1,3-ジオキソランとを、特定量の立体障害性フェノール類の存在下で共重合させてオキシメチレン共重合体を得、且つ、重合収率が92%以上の時点で、生成した共重合体と重合停止剤を接触させて重合を停止させることで、上記目的が達成できることを見出し、本発明を完成するに至った。
 即ち、本発明は以下の製造方法を提供する:
 トリオキサンと、トリオキサンに対して7.0~22質量%の1,3-ジオキソランとを含むモノマー原料を、トリオキサン1モル当たり0.03~0.10ミリモルの三フッ化ホウ素と、トリオキサンに対し0.006~2.0質量%の立体障害性フェノールとの存在下に共重合反応を行う工程;および該重合反応の重合収率が92%以上の時点で、反応系中に重合停止剤を加えて重合を停止させる工程を含む、オキシメチレン共重合体の製造方法。
 本発明のオキシメチレン共重合体の製造方法により、優れた耐MD性と耐折性を保持しつつ、熱安定性が高く、ホルムアルデヒド発生量の少ないオキシメチレン共重合体を高い収率で得ることができるため、工業的意義は極めて大きい。
 本発明のオキシメチレン共重合体の製造方法は、トリオキサンと特定量の1,3-ジオキソランとを含むモノマー原料を、特定量の三フッ化ホウ素と、特定量の立体障害性フェノールとの存在下で共重合させ、且つ、重合収率92%以上の時点で生成した共重合体と重合停止剤とを接触させて重合停止させることを特徴とする。以下、本願を詳細に説明する。
 本発明においてモノマーとして使用するトリオキサン(1,3,5-トリオキサン)は、ホルムアルデヒドの環状3量体であり、市販されているか、または当業者に公知の製造方法により調製され得るが、その製造方法は特に限定されない。安定剤としてアミン類を通常、トリオキサン1モル当たり0.00001~0.003ミリモル、好ましくは0.00001~0.0005ミリモル、より好ましくは0.00001~0.0003ミリモル含有する。アミン類の含有量がこれより多い場合は、触媒の失活等の悪影響を引き起こす可能性があり、少ない場合はトリオキサンの保存中にパラホルムアルデヒドの発生等を引き起こす可能性がある。
 本発明においてトリオキサンに含有させるアミン類としては、一級アミン、二級アミン、三級アミン、アルコール性水酸基を分子内に有するアミン系化合物、アルキル化メラミン、ヒンダードアミン化合物が単独または混合物として使用される。一級アミンとしてはn-プロピルアミン、イソプロピルアミン、n-ブチルアミン等が、二級アミンとしては、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジ-n-ブチルアミン、ピペリジン、ピペラジン、2-メチルピペラジン、モルホリン、N-メチルホルモリン、N-エチルホルモリン等が、三級アミンとしては、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン等が、アルコール性水酸基を分子内に有するアミン系化合物としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルエタノールアミン、N,N-ジメチルエタノールアミン、N-エチルエタノールアミン、N,N-ジエチルエタノールアミン、N-(β-アミノエチル)イソプロパノールアミン、ヒドロキシエチルピペラジン等が、アルキル化メラミンとしてはメラミンのメトキシメチル置換体であるモノ、ジ、トリ、テトラ、ペンタもしくはヘキサメトキシメチルメラミンまたはその混合物等が好適に使用される。ヒンダードアミン化合物としては、ビス(2,2,6,6-テトラメチル-4-ピペリジニル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート、1,2,3,4-ブタンテトラカルボン酸テトラキス(2,2,6,6-テトラメチル-4-ピペリジニル)エステル、ポリ[[6-(1,1,3,3-テトラメチレンブチル)アミノ-1,3,5-トリアジン-2,4-ジイル][(2,2,6,6-テトラメチル-4-ピペリジニル)イミノ]ヘキサメチレン[(2,2,6,6-テトラメチル-4-ピペリジニル)イミノ]]、1,2,2,6,6,-ペンタメチルピペリジン、コハク酸ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、およびN,N’-ビス(3-アミノプロピル)エチレンジアミン・2,4-ビス[N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ]-1,3,5-トリアジン縮合物等が好適に使用される。中でもトリエタノールアミンが最も好適に使用される。
 本発明においてコモノマーとして使用する1,3-ジオキソランは、市販されているか、または当業者に公知の製造方法により調製され得る。その製造方法は特に限定されない。本発明において1,3-ジオキソランの添加量は、トリオキサンに対して7.0~22質量%で、好ましくは7.4~18.1質量%であり、更に好ましくは8.2~13.2質量%である。1,3-ジオキソランの使用量がこれより多い場合は極度に重合速度が遅くなり熱安定性が低下し、少ない場合は耐折性が低下する。
 本発明において使用される三フッ化ホウ素は、その配位化合物を用いることが好ましく、それらは市販されているか、または当業者に公知の製造方法により調製され得る。三フッ化ホウ素の配位化合物としては、酸素原子または硫黄原子を有する有機化合物との配位化合物を挙げることができる。上記有機化合物として、アルコール、フェノール、酸、エーテル、酸無水物、エステル、ケトン、アルデヒド、ジアルキル、サルファイド等を挙げることができる。なかでも三フッ化ホウ素の配位化合物としては、エーテラートが好ましく、好ましい具体例として三フッ化ホウ素のジエチルエーテラートおよびジブチルエーテラートが挙げられる。その添加量は、トリオキサン1モル当たり、0.03~0.10ミリモルであり、好ましくは0.03~0.08ミリモル、より好ましくは0.04~0.07ミリモルである。
 三フッ化ホウ素の添加量がこれより多い場合は熱安定性が低下し、著しく重合速度が落ちるため工業生産に適さない。
 三フッ化ホウ素はそのままか、または溶液の形態で使用される。溶液で使用される場合、溶媒としては、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;メチレンジクロリド、エチレンジクロリド等のハロゲン化炭化水素が挙げられる。
 本発明において重合時に使用される立体障害性フェノールは、以下の立体障害性フェノールが望ましい。例えばジブチルヒドロキシトルエン、トリエチレングリコール-ビス-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、ペンタエリスリチル-テトラキス-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ヘキサメチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2’-メチレンビス(6-t-ブチル-4-メチルフェノール)、3,9-ビス{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオナミド]、3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシベンゼンプロピオン酸1,6-ヘキサンジイルエステル等の立体障害性フェノールの1種または2種以上が挙げられる。中でもトリエチレングリコール-ビス-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、ペンタエリスリチル-テトラキス-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3,9-ビス{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンが好適に使用され、トリエチレングリコール-ビス-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネートが最も好適に使用される。
 本発明の製造方法において、立体障害性フェノールの添加量はトリオキサンに対し、通常、0.006~2.0質量%、好ましくは0.01~0.5質量%より好ましくは0.02~0.1質量%である。立体障害性フェノールの使用量がこれより多い場合は、生成するオキシメチレン共重合体の分子量の低下、重合収率の低下等の悪影響を引き起こし、少ない場合は生成するオキシメチレン共重合体中のギ酸エステル構造等の不安定部分が増加し、熱または加水分解安定性の低下等の悪影響を引き起こす。
 オキシメチレン共重合体の分子量を調節して極限粘度を調節するために、連鎖移動剤を使用することができる。極限粘度は0.5~5dl/gに調整されるが、好ましくは0.7~3dl/gに、より好ましくは0.8~2dl/gに調整される。連鎖移動剤としては、カルボン酸、カルボン酸無水物、エステル、アミド、イミド、フェノール、アセタール化合物等が挙げられる。特に、フェノール、2,6-ジメチルフェノール、メチラール、ポリオキシメチレンジメトキシドは好適に用いられる。最も好ましいのはメチラールである。連鎖移動剤はそのままか、または溶液の形態で使用される。溶液で使用する場合、溶媒としては、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;メチレンジクロリド、エチレンジクロリド等のハロゲン化炭化水素が挙げられる。
 本発明において、重合停止剤としては、一級アミン、二級アミン、三級アミン、アルキル化メラミン、ヒンダードアミン化合物、三価の有機リン化合物、アルカリ金属またはアルカリ土類金属の水酸化物が、単独または混合物として使用される。一級アミンとしてはn-プロピルアミン、イソプロピルアミン、n-ブチルアミン等が、二級アミンとしては、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジ-n-ブチルアミン、ピペリジン、モルホリン等が、三級アミンとしては、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン等が、アルキル化メラミンとしてはメラミンのメトキシメチル置換体であるモノ、ジ、トリ、テトラ、ペンタもしくはヘキサメトキシメチルメラミンまたはその混合物等が好適に使用される。ヒンダードアミン化合物としては、ビス(2,2,6,6-テトラメチル-4-ピペリジニル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート、1,2,3,4-ブタンテトラカルボン酸テトラキス(2,2,6,6-テトラメチル-4-ピペリジニル)エステル、ポリ[[6-(1,1,3,3-テトラメチレンブチル)アミノ-1,3,5-トリアジン-2,4-ジイル][(2,2,6,6-テトラメチル-4-ピペリジニル)イミノ]ヘキサメチレン[(2,2,6,6-テトラメチル-4-ピペリジニル)イミノ]〕、1,2,2,6,6,-ペンタメチルピペリジン、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物およびN,N’-ビス(3-アミノプロピル)エチレンジアミン-2,4-ビス[N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ]-1,3,5-トリアジン縮合物等が好適に使用される。
 中でも色相の点でヒンダードアミン化合物、三価の有機リン化合物、アルキル化メラミンが好ましい。ヒンダードアミン化合物としてはビス(2,2,6,6-テトラメチル-4-ピペリジニル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート、コハク酸ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、N,N’-ビス(3-アミノプロピル)エチレンジアミン・2,4-ビス[N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ]-1,3,5-トリアジン縮合物が、三価の有機リン化合物としては、トリフェニルホスフィンが、アルキル化メラミンとしてはヘキサメトキシメチルメラミンが最も好適に使用される。重合停止剤を溶液または懸濁液の形態で使用する場合、使用される溶媒は特に限定されないが、水、アルコール類以外には、アセトン、メチルエチルケトン、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メチレンジクロリド、エチレンジクロリド等の各種の脂肪族および芳香族の有機溶媒が使用可能である。これらの中で好ましいものは、水、アルコール類および、アセトン、メチルエチルケトン、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレン等の脂肪族、芳香族の有機溶媒である。
 本発明において重合時間は、通常0.25~120分であるが、好ましくは1~60分であり、より好ましくは1~30分であり、最も好ましくは2~15分である。重合時間がこれより長いと不安定部分が増加し、短いと重合収率が低下する場合がある。
 トリオキサン中に含まれる水、ギ酸、メタノール、ホルムアルデヒド等の不純物は、トリオキサンを工業的に製造する際に不可避的に発生するものであるが、総量で、トリオキサン中100ppm以下であることが好ましく、より好ましくは70ppm以下、最も好ましくは50ppm以下である。特に、水は50ppm以下であることが好ましく、より好ましくは20ppm以下であり、最も好ましくは10ppm以下である。また、1,3-ジオキソランに関しても、トリオキサンと同様に、1,3-ジオキソラン中に存在する水、ギ酸、ホルムアルデヒド等の不純物は、総量で、1000ppm以下であることが好ましく、より好ましくは200ppm以下であり、特に好ましくは100ppm以下に、最も好ましくは50ppm以下である。さらに、水は、触媒の活性を低下させるので、重合装置内に外部から水が進入するのを防ぐ方法を採用することが好ましい。その方法として、重合反応中、重合装置を窒素ガス等の不活性ガスにより、常時置換する方法を挙げることができる。
 本発明において、重合反応は、不活性溶媒の存在下に行う溶液重合も可能であるが、溶媒の回収コストが不要で立体障害性フェノールの効果が大きい実質的に無溶媒下における塊状重合が好ましい。溶媒を使用する場合、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;メチレンジクロリド、エチレンジクロリド等のハロゲン化炭化水素が挙げられる。
 本発明において、重合反応は連続方式の重合装置を用いて行うのが好ましい。その際、1台、または2台以上の連続重合機を直列に接続して実施する方法は、好適なものである。連続重合機としては、少なくとも2本の水平回転軸を有し、それらの回転軸にはスクリュー型またはパドル型の回転翼を有する混練機を好適なものとして挙げることができる。具体的には二つの円が一部重なった内断面を有し、周囲にジャケットを有し、長いケース内に1対のシャフトを備え、それぞれのシャフトに互いにかみ合う凸レンズ型パドル翼が多数はめ込まれ、凸レンズ型パドル翼の先端でケース内面および相手の凸レンズ型パドル翼の表面をクリーニングできる連続重合機が好ましい。
 本発明の製造方法では、立体障害性フェノールの存在下で共重合を行うが、立体障害性フェノールはそのままか、または溶液の形態で添加される。溶液の形態で添加される場合、溶媒としては、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;メチレンジクロリド、エチレンジクロリド等のハロゲン化炭化水素が挙げられる。あるいはモノマーのトリオキサン、コモノマーの1,3-ジオキソランを溶媒として使用してもよい。重合反応中の立体障害性フェノールの活性を保つために、連続重合機入口で立体障害性フェノールの一部または全部を、そのままか、またはその溶液の形態で添加することが望ましいが、重合機に投入するトリオキサンにあらかじめ所定量を溶解させておくことも可能である。
 本発明の製造方法では、通常、重合収率が92%以上、好ましくは95%以上、より好ましくは97%以上に達した時点で重合停止剤を加え触媒(三フッ化ホウ素)を失活させ重合を停止させる。重合収率を92%以上とすることにより、未反応モノマーの回収のための多量のエネルギー消費を削減することが可能となる。また、オキシメチレン共重合体の分子鎖自体を改良するため、様々な用途に最適化された添加剤組成の樹脂組成物のすべてに対して発生ホルムアルデヒド量、熱安定性、保存安定性等の改善効果が期待できる。従って本発明における工業的な意義は非常に大きい。
 トリオキサンと1,3-ジオキソランとを、三フッ化ホウ素と立体障害性フェノールの存在下に共重合し、生成したオキシメチレン共重合体と重合停止剤とを接触させて重合を停止させるオキシメチレン共重合体を製造する方法において、重合収率92%未満で重合停止した場合は、オキシメチレン共重合体におけるギ酸エステル構造を持つ熱や加水分解に対して不安定な部分の生成量は少ないが、多大な未反応モノマーの回収コストを必要とする。重合収率92%以上で重合停止した場合には、未反応モノマーの回収コストは低減するものの、従来技術ではオキシメチレン共重合体におけるギ酸エステル構造を持つ熱や加水分解に対して不安定な部分が急激に生成する。しかしながら驚くべきことに、共重合時に特定量の三フッ化ホウ素および特定量の立体障害性フェノールを存在させ、重合収率92%以上で重合停止させることにより、オキシメチレン共重合体におけるギ酸エステル構造を持つ不安定な部分の生成量を大幅に低減し、熱安定性を向上させることが可能であることが明らかとなった。
 重合反応の停止は、重合停止剤を反応系中のオキシメチレン共重合体と接触させることにより行う。重合停止剤はそのままか、あるいは溶液または懸濁液の形態で使用するが、接触方法は連続的に少量の重合停止剤、あるいは重合停止剤の溶液または懸濁液をオキシメチレン共重合体に添加し、粉砕し接触させることが望ましい。重合反応停止の際にオキシメチレン共重合体を多量の重合停止剤の溶液または懸濁液中に導入する様な洗浄工程を合わせて実施すると、後段での溶剤回収工程または溶剤除去工程が必要となり、工程が複雑となりユーティリティーの増加につながるため、工業的に不利である。重合停止の際に少量の重合停止剤を、オキシメチレン共重合体を含む反応系中に添加する方法が工業的にはより好ましい。反応系中に重合停止剤を添加する場合は、添加後、混合機で混合することが好ましい。重合停止剤を添加してオキシメチレン共重合体と混合する重合停止剤混合機としては、前記の連続重合機と類似の、1軸または2軸のスクリューまたはパドル型混合機等の連続混合機が使用できる。
 重合反応および重合停止反応は連続的に行うことが好ましい。すなわち装置としては、連続重合機と、それに続いて、重合停止剤混合機とを直列に接続した連続重合装置は、オキシメチレン共重合体の製造に好適である。
 さらに、重合停止後のオキシメチレン共重合体は、高収率で得られるためそのまま後段の安定化工程に送ることができる。安定化工程では、下記(1)および(2)に記載される安定化処理方法を採用することができる。
(1)上記で得られたオキシメチレン共重合体を加熱溶融して、不安定部分を除去する安定化処理方法。
(2)上記で得られたオキシメチレン共重合体を水性媒体中で加水分解して、不安定部分を除去する安定化処理方法。
これらの方法により安定化した後、ペレット化し、安定化された成形可能なオキシメチレン共重合体を得ることができる。
 上記の方法のうち、(1)の安定化処理方法が(2)の方法に比べて、工程が単純であり、工業的方法として好ましい。すなわち、(1)の安定化処理方法を採用する場合は、オキシメチレン共重合体をその溶融温度から溶融温度より100℃高い温度までの温度範囲で、760~0.1mmHgの圧力下において溶融混練することが好ましい。安定化の処理温度がオキシメチレン共重合体の溶融温度より低い場合は、不安定部分の分解反応が不十分となり、安定化の効果が得られない。また、その溶融温度より100℃高い温度より高い場合は、黄変を起こしたり、熱によるポリマーの主鎖分解を起こしたり、同時に不安定部分が生成し熱安定性を損なう結果となり好ましくない。より好ましい範囲としては170~250℃、最も好ましい範囲は180~235℃である。また、安定化の処理時の圧力としては、760mmHgより高い場合は、不安定部分の分解により生じた分解ガスを系外に除去する効果が低く、充分な安定化効果が得られない。また0.1mmHgより低い場合は、このような高減圧度を得るための装置が高価となり、工業的不利益が生ずるばかりでなく、吸引ベント口より溶融樹脂が流出し易くなり、運転上のトラブルを起こしやすく好ましくない。より好ましい範囲としては740~10mmHg、最も好ましくは400~50mmHgである。さらに、処理時間としては、1分~1時間の範囲で適宜選択される。
 また、本発明において、上記安定化処理に用いる装置としては、単軸または2軸以上のベント付押出機を使用することができる。押出機は、必要な滞留時間を得るために、2台以上の押出機を直列に配置する方法は有利な方法である。押出機として、ウェルナー社のZSK押出機、ZDS押出機等の脱ガス効果の高いものを組み合わせる方法はさらに有利な方法である。また、後述の実施例に示すような、表面更新型の混合機を上述の押出機と組み合わせる方法は、最も有効な方法である。
 上記(1)の安定化処理方法において、オキシメチレン共重合体の溶融混練時に、酸化防止剤、熱安定剤等の安定剤を添加して安定化処理を行うことができる。添加剤の組成を用途ごとに最適化することで、それぞれの用途に特化し、優れた靭性、剛性を維持しつつ、熱安定性、ホルムアルデヒド発生量が改善したオキシメチレン共重合体を得ることができる。
 上記の安定化処理に際して、使用できる酸化防止剤としては、トリエチレングリコール-ビス-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、ペンタエリスリチル-テトラキス-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス(6-t-ブチル-4-メチルフェノール)、3,9-ビス{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオナミド]、3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシベンゼンプロピオン酸1,6-ヘキサンジイルエステル等の立体障害性フェノールの1種または2種以上が挙げられる。熱安定剤としては、メラミン、メチロールメラミン、ベンゾグアナミン、シアノグアニジン、N,N-ジアリールメラミン等のアミン置換トリアジン類、ポリアミド類、尿素誘導体、ウレタン類等およびナトリウム、カリウム、カルシウム、マグネシウム、バリウムの無機酸塩、水酸化物、有機酸塩等が挙げられる。
 以上、詳述した本発明の方法により、得られたオキシメチレン共重合体は、従来の方法で得られたオキシメチレン共重合体と同じく優れた性質を有し、同じ用途に用いることができる。
 また、本発明の方法により製造されたオキシメチレン共重合体には、着色剤、核剤、可塑剤、離型剤、蛍光増白剤あるいはポリエチレングリコール、グリセリンのような帯電防止剤、ベンゾフェノン系化合物、ヒンダードアミン系化合物のような光安定剤等の添加剤を、所望により添加することができる。
 以下に本発明の実施例および比較例を示すが、本発明はこれらに限定されるものではない。また実施例、比較例中で記載した用語および測定方法を以下に説明する。
 粗オキシメチレン共重合体:重合停止後、安定化工程前のオキシメチレン共重合体を粗オキシメチレン共重合体と記載する。
 ホルムアルデヒド発生量;安定化工程後に得られたペレットを使用し、山城社製SAV-30-30成形機により、シリンダー温度215℃で成形した直径50mm×厚さ3mmの円板を用いて、成形翌日にドイツ自動車工業組合規格VDA275(自動車室内部品-改訂フラスコ法によるホルムアルデヒド放出量の定量)に記載された方法に準拠して測定した。
(i)ポリエチレン容器中に蒸留水50mlを入れ、試験片をつるした状態で蓋を閉め密閉状態で60℃、3時間保持する。
(ii)その後、室温で60分間放置後、試験片を取出す。
(iii)ポリエチレン容器内の蒸留水中に吸収されたホルムアルデヒド濃度を、UVスペクトロメーターを用いてアセチルアセトン比色法で測定する。
熱安定性;
滞留熱安定性;熱安定性の指標として、滞留熱安定性を測定した。溶融安定化処理後に得られたペレットを、80℃で、4時間乾燥した後、シリンダー温度240℃の射出成形機(東芝機械製IS75E)内に6ショット分の樹脂を滞留させ、12分毎に短冊状試験片を成形し、樹脂の発泡に起因するシルバー(銀条)が成形片一面に発生するまでの時間(分)により評価した。
加熱重量減少率;溶融安定化処理後に得られたペレットを試験管に入れ、窒素置換後10Torr減圧下で240℃、2時間加熱した際の加熱前後の重量減少率(質量%)を測定した。なお、加熱前の重量をX、加熱後の重量をYとすると、加熱重量減少率は(X-Y)/X × 100で計算される。
耐MD性;オキシメチレン共重合体を7tonの型締圧を有する射出成形機を用いて、シリンダー温度220℃、金型温度70度、成形サイクル約6秒にて連続射出成形を行い、金型にモールドデポジットが発生するまでのショット数を計測した。
耐折性テスト(折り曲げ疲労試験);JISP8115に準じて測定した。その詳細は以下のとおりである。
(i)共重合体ペレットの予備乾燥条件
ペレット3kgをステンレス製バットに入れ、90℃、2時間以上予備乾燥した。乾燥機として熱風循環式乾燥機を使用した。
(ii)テストピースの成形
予備乾燥したペレットをホッパードライヤー付属の成形機(日精樹脂工業(株)製、型式:FS160S、型締力160tf)に投入し、下記成形条件にてテストピースを成形した。テストピースの形状は、厚さ0.8mm、幅12.7mm、長さ127mmとした。
Figure JPOXMLDOC01-appb-T000001
(iii)耐折性の測定
1)テストピースの状態調節
成形後のテストピースは、温度23±2℃、相対湿度50±5%の室内で48時間以上、状態を調節した後、耐折疲労試験を行った。
2)耐折性疲労試験
繰返し曲げ疲労試験は、下記条件で実施し、破断に至る回数を測定した。
試験条件:折り曲げ角度;±135度、テンション荷重;1kgf試験速度;220回/min、チャック部R;0.38mm
3)使用機器
MIT式耐折疲労試験機(製作;(株)東洋精機製作所)
重合収率;粗オキシメチレン共重合体20gを20mlのアセトンに浸した後、濾過し、アセトンで2回洗浄した後、60℃で恒量となるまで真空乾燥を施した。しかる後、精秤し、以下の式により重合収率を決定した。
重合収率=M1/M0×100
M0:アセトン処理前の質量
M1:アセトン処理、乾燥後の質量
実施例1~12および比較例1~7
 連続重合装置として、二つの円が一部重なった内断面を有し、内断面の長径が100mmであり、周囲にジャケットを有する、長いケース内に1対のシャフトを備え、それぞれのシャフトには互いにかみ合う凸レンズ型パドル翼が多数はめ込まれ、凸レンズ型パドル翼の先端でケース内面および相手の凸レンズ型パドル翼の表面をクリーニングできる連続重合機と、それに続いて、重合停止剤混合機として前記の重合機と類似の構造を有し、供給口部分から重合停止剤を含む溶液を注入し、連続的に重合体と混合せしめる混合機を前記の重合機に直列に接続した装置を用い、オキシメチレン共重合体の製造を実施した。連続重合機の入口に、所定量のトリオキサン(安定剤としてトリオキサン1モル当たり0.00025ミリモルのトリエタノールアミンを含有する)を供給した。更に比較例7以外については、立体障害性フェノール(トリエチレングリコール-ビス-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート)が表2に示す量供給されるように立体障害性フェノールの濃度が11wt%の1,3-ジオキソラン溶液をトリオキサンとは別のラインから供給した。更に、1,3-ジオキソランをコモノマーとして3つ目のラインから連続的に供給し、二つのラインから供給される1,3-ジオキソランの供給量の合計は、表2に記載の量となるように調整した。比較例7においては、立体障害性フェノールを供給しなかった。同時に触媒として表2に示す量の三フッ化ホウ素ジエチルエーテラートを連続的に供給した。また、分子量調節剤としてメチラールを、極限粘度が1.0~1.5dl/gとなるために必要な量だけ連続的に供給した。三フッ化ホウ素ジエチルエーテラートおよびメチラールはそれぞれベンゼン溶液として添加した。ベンゼンの合計使用量はトリオキサンに対して1質量%以下であった。また、重合停止剤混合機の入口より、触媒の2倍モル量のトリフェニルホスフィンをベンゼン溶液で連続的に供給して重合反応を停止し、出口より粗オキシメチレン共重合体を収得した。なお、連続重合装置は、連続重合機のシャフト回転数を約35rpm、重合停止剤混合機のシャフト回転数を約60rpmとし、また連続重合機のジャケット温度を85℃、重合停止剤混合機のジャケット温度を85℃に設定して重合運転を行った。重合時間は約10分であった。
 得られた粗オキシメチレン共重合体100質量部に対し、メラミンを0.05質量部、ポリエチレングリコール(分子量:約20000)を0.15質量部、トリエチレングリコール-ビス-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネートを0.3質量部混合した後、ベント付2軸押出機(50mmφ、L/D=49)に供給し、160mmHgの減圧下、200℃で溶融混練し、引続き内部に2本の回転軸を有し、該軸に複数個の掻き取り羽根が取付けられており、前記軸が異方向に回転した際に羽根同士が接触しないようにずらして取付けられ、羽根の先端がケース内面および相互の軸と僅かな間隙を保って回転するように配置され、軸の回転により重合体を混練し、かつ溶融した重合体の表面を常に更新して、揮発成分を揮散させやすくする機能を有する表面更新型混合機に供給し、再び160mmHgの減圧下、210~240℃で溶融安定化処理を行った。2軸押出機の入口から表面更新型の混合機の出口までの平均滞留時間は25分であった。安定化されたオキシメチレン共重合体はダイスより押し出し、造粒機によりペレット化した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3に示した実施例1~12と比較例1~7との物性の対比によれば、本発明の製造方法により、耐MD性や耐折性を維持しつつホルムアルデヒド発生量と熱安定性が改善された樹脂組成物を高い収率で得ることができている。

Claims (7)

  1.  トリオキサンと、トリオキサンに対して7.0~22質量%の1,3-ジオキソランとを含むモノマー原料を、トリオキサン1モル当たり0.03~0.10ミリモルの三フッ化ホウ素と、トリオキサンに対して0.006~2.0質量%の立体障害性フェノールとの存在下に共重合反応を行う工程;および
    該共重合反応の重合収率が92%以上の時点で、反応系中に重合停止剤を加えて重合を停止させる工程
     を含むオキシメチレン共重合体の製造方法。
  2.  トリオキサンが、トリオキサン1モル当たり0.00001~0.003ミリモルのアミン類を含有する、請求項1に記載の製造方法。
  3.  重合停止剤が、トリフェニルホスフィン、ヒンダードアミン化合物およびアルキル化メラミンからなる群から選択される1種または2種以上である、請求項1または2に記載の製造方法。
  4.  重合収率が97%以上となった時点で、反応系中に重合停止剤を加えて重合を停止させる、請求項1~3のいずれか一項に記載の製造方法。
  5.  連続重合機と停止剤混合機を直列に接続した連続重合装置を用いて行う、請求項1~4のいずれか一項に記載の製造方法。
  6.  立体障害性フェノールの一部または全部を、連続重合機入口で添加する、請求項5に記載の製造方法。
  7.  重合を停止させる工程の後に、得られたオキシメチレン共重合体を、その溶融温度から溶融温度より100℃高い温度までの範囲までの範囲の温度で、760~0.1mmHgの圧力下に溶融混練する、安定化処理する工程を含む、請求項1~6のいずれか一項に記載の製造方法。
PCT/JP2014/063735 2013-07-18 2014-05-23 オキシメチレン共重合体の製造方法 WO2015008537A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14826304.9A EP3023445A4 (en) 2013-07-18 2014-05-23 Method for producing oxymethylene copolymer
US14/904,552 US20160145384A1 (en) 2013-07-18 2014-05-23 Method for producing oxymethylene copolymer
JP2015527208A JPWO2015008537A1 (ja) 2013-07-18 2014-05-23 オキシメチレン共重合体の製造方法
KR1020157032683A KR20160031450A (ko) 2013-07-18 2014-05-23 옥시메틸렌 공중합체의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013149458 2013-07-18
JP2013-149458 2013-07-18

Publications (1)

Publication Number Publication Date
WO2015008537A1 true WO2015008537A1 (ja) 2015-01-22

Family

ID=52346012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063735 WO2015008537A1 (ja) 2013-07-18 2014-05-23 オキシメチレン共重合体の製造方法

Country Status (6)

Country Link
US (1) US20160145384A1 (ja)
EP (1) EP3023445A4 (ja)
JP (1) JPWO2015008537A1 (ja)
KR (1) KR20160031450A (ja)
TW (1) TW201504273A (ja)
WO (1) WO2015008537A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7322223B1 (ja) 2022-03-10 2023-08-07 ポリプラスチックス株式会社 ポリアセタール共重合体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108948298B (zh) * 2018-06-26 2020-12-11 中国人民解放军国防科技大学 一种瞬态材料及其成型方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363965B2 (ja) 1983-06-08 1991-10-03 Polyplastics Kk
JPH07242652A (ja) 1994-03-07 1995-09-19 Polyplastics Co 環状ホルマールの変質防止方法
JPH08325341A (ja) 1995-05-31 1996-12-10 Mitsubishi Gas Chem Co Inc オキシメチレン共重合体の製造方法
JPH11269165A (ja) 1999-01-28 1999-10-05 Polyplastics Co 環状ホルマ―ルの変質防止方法
WO2002077049A1 (fr) 2001-03-27 2002-10-03 Mitsubishi Gas Chemical Company, Inc. Copolymere polyoxymethylene et article moule correspondant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19581289C2 (de) * 1994-02-28 2001-02-01 Asahi Chemical Ind Verfahren zur Herstellung eines Acetal-Copolymeren

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363965B2 (ja) 1983-06-08 1991-10-03 Polyplastics Kk
JPH07242652A (ja) 1994-03-07 1995-09-19 Polyplastics Co 環状ホルマールの変質防止方法
JPH08325341A (ja) 1995-05-31 1996-12-10 Mitsubishi Gas Chem Co Inc オキシメチレン共重合体の製造方法
JPH11269165A (ja) 1999-01-28 1999-10-05 Polyplastics Co 環状ホルマ―ルの変質防止方法
WO2002077049A1 (fr) 2001-03-27 2002-10-03 Mitsubishi Gas Chemical Company, Inc. Copolymere polyoxymethylene et article moule correspondant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3023445A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7322223B1 (ja) 2022-03-10 2023-08-07 ポリプラスチックス株式会社 ポリアセタール共重合体の製造方法
WO2023171315A1 (ja) * 2022-03-10 2023-09-14 ポリプラスチックス株式会社 ポリアセタール共重合体の製造方法
JP2023131884A (ja) * 2022-03-10 2023-09-22 ポリプラスチックス株式会社 ポリアセタール共重合体の製造方法

Also Published As

Publication number Publication date
EP3023445A1 (en) 2016-05-25
KR20160031450A (ko) 2016-03-22
JPWO2015008537A1 (ja) 2017-03-02
US20160145384A1 (en) 2016-05-26
EP3023445A4 (en) 2017-01-18
TW201504273A (zh) 2015-02-01

Similar Documents

Publication Publication Date Title
JP6024749B2 (ja) オキシメチレン共重合体の製造方法
WO2008001557A1 (fr) Composition de résine polyacétalique
WO2009081517A1 (ja) ポリアセタール樹脂組成物
JP5036973B2 (ja) 不安定末端基分解処理剤を用いた、安定化ポリアセタール樹脂の製造方法
JP2006111874A (ja) ポリアセタール樹脂組成物
JP2012153899A (ja) ポリアセタール樹脂組成物
WO2014097808A1 (ja) ポリアセタール樹脂組成物
WO2017159602A1 (ja) オキシメチレン共重合体の製造方法
JP2007051205A (ja) ポリアセタール樹脂組成物及び樹脂成形体
JP3309641B2 (ja) オキシメチレン共重合体の製造方法
WO2015008537A1 (ja) オキシメチレン共重合体の製造方法
WO2014196385A1 (ja) オキシメチレン共重合体の製造方法
WO2014189139A1 (ja) オキシメチレン共重合体の製造方法
JP5389468B2 (ja) ポリアセタール樹脂組成物の製造方法
JP2006291001A (ja) 低ホルムアルデヒド化ポリアセタール樹脂組成物の製造方法。
KR100270820B1 (ko) 옥시메틸렌 공중합체의 제조방법
JPH0280416A (ja) オキシメチレン重合体組成物
JP2011116906A (ja) ポリアセタール共重合体
JP2017226792A (ja) ポリアセタール共重合体の製造方法
JP2009046549A (ja) ポリアセタール樹脂組成物
JP2010084088A (ja) オキシメチレン共重合体の製造方法
JP2010265369A (ja) ポリアセタール樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527208

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157032683

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014826304

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014826304

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14904552

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE