WO2015008497A1 - 燃焼制御装置 - Google Patents

燃焼制御装置 Download PDF

Info

Publication number
WO2015008497A1
WO2015008497A1 PCT/JP2014/050411 JP2014050411W WO2015008497A1 WO 2015008497 A1 WO2015008497 A1 WO 2015008497A1 JP 2014050411 W JP2014050411 W JP 2014050411W WO 2015008497 A1 WO2015008497 A1 WO 2015008497A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
combustion
air flow
fuel flow
ratio
Prior art date
Application number
PCT/JP2014/050411
Other languages
English (en)
French (fr)
Inventor
肇 垂石
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to MYPI2016700157A priority Critical patent/MY183381A/en
Priority to AU2014291501A priority patent/AU2014291501B2/en
Priority to CN201480040909.8A priority patent/CN105393056B/zh
Publication of WO2015008497A1 publication Critical patent/WO2015008497A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/34Signal processing; Details thereof with feedforward processing

Definitions

  • Embodiments of the present invention relate to a combustion control apparatus that applies dynamic feedforward compensation to adjust the ratio of air flow rate to fuel flow rate.
  • a combustion furnace air and fuel are supplied to a burner of the combustion furnace at a certain ratio under the control of a combustion control device. As a result, the combustion furnace burns the fuel mixed with air to obtain heat.
  • the ratio of air to fuel for example, the ratio of air (air flow rate) to fuel (fuel flow rate). If this ratio decreases and there is a lack of air, incomplete combustion will result. Incomplete combustion leads to the generation of black smoke and carbon monoxide (CO). On the other hand, if the ratio increases and air becomes excessive, generation of nitrogen oxide (NOx) and sulfur oxide (SOx) is caused. And if the said ratio is not in the optimal range, the energy conversion efficiency in a combustion furnace will fall and it will cause the increase in operating cost.
  • air air flow rate
  • fuel fuel flow rate
  • the first is a method called ratio control.
  • the second is a method called cross limit control in which the ratio control method is improved.
  • the third is a method called double cross limit control in which cross limit control (more specifically, single cross limit control) is improved.
  • the first to third control methods are common in that the air flow rate and the fuel flow rate are controlled while keeping the ratio of the air flow rate to the fuel flow rate at a set ratio so as to follow the master signal that requires combustion. To do.
  • an air flow rate and a fuel flow rate (more specifically, measured values of the air flow rate and the fuel flow rate) are fed back.
  • the master signal not only requires combustion, but also specifies the degree of combustion demand (combustion amount) (that is, the combustion demand level).
  • the dead time is different between the air flow rate process and the fuel flow rate process. That is, when the air is a gas and the fuel is a liquid or the fuel is a powder such as pulverized coal, the above-described dead time is different. Also, the above-mentioned dead time is different when there are physical restrictions such as the piping length of the plant equipment and the piping system.
  • the problem to be solved by the present invention is that the ratio between the air flow rate and the fuel flow rate is the set ratio even in a transient state where the air flow rate process and the fuel flow rate process have different dead times and the combustion demand level changes suddenly.
  • An object of the present invention is to provide a combustion control device capable of controlling both flow rates so as to be close to each other.
  • a combustion control device for adjusting a ratio between an air flow rate and a fuel flow rate.
  • the combustion control device includes a ratio setting device, a first control loop, a second control loop, a first dynamic feedforward compensator, and a second dynamic feedforward compensator.
  • the ratio setter sets the ratio to be adjusted.
  • the first control loop includes an air flow process and a first feedback controller.
  • the air flow process supplies air to the combustion furnace.
  • the first feedback controller is configured so that the air flow follows the first set value of first and second set values that are target values of the air flow rate and the fuel flow rate, respectively. Controlling the air flow process.
  • the first and second set values change at the set ratio in accordance with a change in the required combustion level indicated by a master signal requesting combustion in the combustion furnace.
  • the second control loop includes a fuel flow process and a second feedback controller.
  • the fuel flow process supplies fuel to the combustion furnace.
  • the second feedback controller controls the fuel flow rate process so that the fuel flow rate follows the second set value.
  • the first dynamic feedforward compensator compensates for a first dead time of the air flow process associated with the responsiveness of the first control loop to changes in the demanded combustion level.
  • the second dynamic feedforward compensator compensates for a second dead time of the fuel flow process associated with the responsiveness of the second control loop to changes in the combustion demand level.
  • FIG. 1 is a block diagram illustrating an example of a combustion control device according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of a combustion control apparatus according to the second embodiment.
  • FIG. 3 is a block diagram illustrating an example of a combustion control apparatus according to the third embodiment.
  • FIG. 1 is a block diagram showing an example of a combustion control apparatus according to the first embodiment.
  • This combustion control device controls the amount of air and fuel supplied to the combustion furnace.
  • the combustion furnace for example, a boiler furnace, a hot air furnace, a reheating furnace, a heating furnace, an incinerator, and the like are known.
  • the fuel for example, one or more of coal (powder), petroleum (liquid), and gas (gas) are used.
  • the master signal M is an input of the combustion control device, and is a combustion request signal for requesting combustion in the combustion furnace. More specifically, the master signal M specifies the degree of combustion demand (ie, combustion demand level).
  • the air flow rate PV 0 and the fuel flow rate PV 1 are outputs of the combustion control device, and are called an air flow rate process value and a fuel flow rate process value, respectively.
  • the air flow rate PV 0 and the fuel flow rate PV 1 are expressed as percentage (%) values corresponding to the first adjustment range of the air flow rate and the second adjustment range of the fuel flow rate, respectively.
  • Air flow rate (% value of air flow rate).
  • PV 1 100 (%) indicates the upper limit fuel flow rate of the second adjustment range (%). (% Value of fuel flow rate).
  • (% Value of fuel flow rate) The same applies to the second and third embodiments described later.
  • combustion control apparatus 1 is provided with control loops 10 and 11 and a ratio setting device 12 in the same manner as the conventional combustion control apparatus to which the ratio control method is applied.
  • This combustion control device is different from the conventional combustion control device in that a configuration surrounded by a broken line F1 in FIG. 1, that is, dynamic feedforward compensators (hereinafter referred to as DFF compensators) 13 and 14 is provided. It is in preparation. That is, the combustion control apparatus shown in FIG. 1 applies a combustion control method (hereinafter referred to as a feedforward compensation ratio control method) that combines a feedforward compensation method and a ratio control method.
  • a combustion control method hereinafter referred to as a feedforward compensation ratio control method
  • the control loop 10 corresponds to the air flow rate process (supply process) 101 as a control target, and the process 101, the feedback controller 102, including. That is, the control loop 10 is an air system control loop (first control loop).
  • the control loop 11 corresponds to a fuel flow rate process (supply process) 111 as a control target, and includes the process 111 and a feedback controller 112. That is, the control loop 11 is a fuel system control loop (second control loop).
  • the processes 101 and 111 may be referred to as an air flow process 101 and a fuel flow process 111, respectively.
  • the feedback controller (first feedback controller) 102 causes the air flow rate PV 0 (that is, the flow rate of air supplied from the process 101) to follow (match) the target value (first target value) SV 0.
  • the process 101 is feedback-controlled. That feedback controller 102, an air flow rate PV 0 is the target value (i.e., air flow rate target value) so as to follow the SV 0, control the manipulated variable MV 0 to be applied to the process 101 based on the air flow rate PV 0 To do.
  • the feedback controller (second feedback controller) 112 is configured so that the fuel flow rate PV 1 (that is, the flow rate of the fuel supplied from the process 111) follows the target value (second target value) SV 1. 111 is feedback-controlled. That feedback controller 112, the fuel flow rate PV 1 is the target value (i.e., the fuel flow rate target value) so as to follow the SV 1, controls the operation amount MV 1 to be applied to the process 111 based on the fuel flow rate PV 1 To do.
  • Target value SV 0 and SV 1 corresponds to change in the combustion required level indicated by the master signal M, and to keep the ratio PV 0 / PV 1 of the air flow rate PV 0 to a predetermined ratio of fuel flow rate PV 1 Set to the required value. That is, the target values SV 0 and SV 1 change at the predetermined ratio according to the change in the combustion demand level.
  • the target value SV 0 is referred to as a set value (first set value) SV 0
  • the target value SV 1 is referred to as a set value (second set value) SV 1 .
  • the ratio setter 12 sets the ratio of the air flow rate PV 0 to the fuel flow rate PV 1 (that is, the actual ratio) PV 0 / PV 1 to the predetermined ratio. More specifically, the ratio setting unit 12 determines that the air flow rate PV 0 and the fuel flow rate PV 1 are in a state where the actual ratio PV 0 / PV 1 is maintained at the predetermined ratio (that is, the set ratio).
  • a command value corresponding to at least one of the set values SV 0 and SV 1 is generated so as to follow the master signal M.
  • the master signal M is used as a second command value corresponding to the set value (fuel flow rate set value) SV 1 .
  • the ratio setter 12 generates a first command value corresponding to the set value (air flow rate set value) SV 0 based on the master signal M. More specifically, the ratio setting unit 12 is configured by using a constant multiplier, and generates a first command value by multiplying the master signal M by a constant ⁇ .
  • the constant ⁇ indicates a preset ratio of the air flow rate to the fuel flow rate.
  • is an air / fuel range conversion coefficient
  • is an air ratio.
  • the air / fuel range conversion factor beta, set value SV 1 master signal M (that is, the set value SV 1 control loop 11 of the fuel system)
  • This is a coefficient for normalizing the adjustment range of the air flow rate based on the adjustment range of the fuel flow rate.
  • the adjustment range of the air flow rate is 0 to S 0 normal cubic meter / hour (Nm 3 / h).
  • the adjustment range of the fuel flow rate when the fuel is gas is 0 to S 1 normal cubic meter / hour (Nm 3 / h).
  • A is the theoretical air amount necessary for burning the unit fuel.
  • the air ratio ⁇ is the air actually required to completely burn a certain amount of fuel relative to the theoretically necessary amount of air (that is, the theoretical amount of air) to completely burn a certain amount of fuel. Refers to the ratio of quantities.
  • the master signal M is used as the second command value.
  • the ratio setting device 12 outputs (generates) the master signal M as the second command value in addition to the function of generating the first command value by multiplying the master signal M by the constant (setting ratio) ⁇ . ).
  • the master signal M may be used as the first command value.
  • a ratio setting device that generates the second command value by multiplying the master signal M by the constant 1 / ⁇ may be used in place of the ratio setting device 12.
  • the first and second command values may be used such that the set values SV 0 and SV 1 change at the set ratio in accordance with the change in the required combustion level indicated by the master signal M.
  • the output of the ratio setter 12 (more specifically, the feedback controller 102 of the control loop 10) control loop 10 as the set value SV 0 given.
  • the master signal M (more specifically, the feedback controller 112 of the control loop 11) control loop 11 as the set value SV 1 given.
  • the output of the ratio setter 12 is given to the DFF compensator 13 as the first command value corresponding to the set value SV 0 .
  • the master signal M is given to the DFF compensator 14 as a second command value corresponding to the set value SV 1 .
  • the DFF compensators 13 and 14 operate by regarding the change in the required combustion level indicated by the master signal M (that is, the change in the first and second command values) as a kind of disturbance, and the change in the required combustion level is detected. To compensate. That is, the DFF compensators 13 and 14 compensate for the responsiveness of the control loops 10 and 11 with respect to changes in the combustion demand level.
  • DFF compensators 13 and 14 are associated with control loops 10 and 11 (more specifically, processes 101 and 111 of control loops 10 and 11), respectively, associated with responsiveness to changes in combustion demand levels. Is wasted (first and second wasted time). Therefore, the DFF compensators 13 and 14 have transfer functions C 0 (s) and C 1 (s), respectively, which will be described later, and the control loops 10 and 11 are set according to the change in the required combustion level indicated by the master signal M.
  • the values SV 0 and SV 1 are dynamically increased or decreased.
  • a transfer function having the master signal M as input and the air flow rate PV 0 as output is expressed by Expression (1).
  • C 0 (s) is a transfer function of the DFF compensator 13
  • G 0 (s) is a transfer function of the control loop 10.
  • a transfer function having the master signal M as an input and the fuel flow rate PV 1 as an output is expressed by Expression (2).
  • C 1 (s) is a transfer function of the DFF compensator 14
  • G 1 (s) is a transfer function of the control loop 11.
  • G 0 (s) that is, the transfer function of the control loop 10 is a result of the feedback controller 102 performing feedback control such as P (proportional) I (integral) D (differential) control on the air flow rate process 101.
  • this feedback control is performed as follows.
  • the feedback controller 102 adjusts the parameters of the controller 102 such that the air flow rate (air flow rate process value) PV 0 follows the set value SV 0 of the controller 102 with a gain of 1. Therefore, G 0 (s) is approximately expressed by Expression (3).
  • L 0 and T 0 indicate the dead time (first dead time) and the first-order lag time of the control loop 10 (more specifically, the air flow rate process 101 of the control loop 10), respectively.
  • the dead time L 0 and the first-order delay time T 0 are eigenvalues related to the response of the control loop 10 and measurable during actual plant operation.
  • G 1 (s) that is, the transfer function of the control loop 11 represents the result of the feedback controller 112 performing feedback control such as PID control on the fuel flow rate process 111. Specifically, this feedback control is performed as follows.
  • the feedback controller 112 adjusts the parameter of the controller 112 so that the fuel flow rate (fuel flow rate process value) PV 1 follows with the gain 1 with respect to the set value SV 1 of the controller 112. Therefore, G 1 (s) is approximately expressed by Expression (4).
  • L 1 and T 1 indicate a dead time (second dead time) and a primary delay time of the control loop 11 (more specifically, the fuel flow rate process 111 of the control loop 11), respectively.
  • the dead time L 1 and the first order delay time T 1 are related to the response of the control loop 11 and are eigenvalues that can be measured during actual plant operation.
  • the constants (transfer functions) of the DFF compensators 13 and 14 are the dead time L 0 and first-order lag time T 0 of the control loop 10, and the dead time L 1 and first-order lag time T 1 of the control loop 11, respectively. And is uniquely determined based on the above.
  • exp ( ⁇ (max (L 0 , L 1 ) ⁇ L 0 ) s) in the equation (5) is a dead time element of C 0 (s), and “max (L 0 , L 1 ) ⁇ L 0 ′′ is included as a dead time. That is, the dead time element of C 0 (s) includes the difference between max (L 0 , L 1 ) and L 0 as the dead time.
  • max (L 0 , L 1 ) indicates a large value (third dead time) of L 0 and L 1 .
  • exp ( ⁇ (max (L 0 , L 1 ) ⁇ L 1 ) s) in the equation (6) is a dead time element of C 1 (s), and “max (L 0 , L 1 ) ⁇ L 1 ′′ is included as dead time. That is, the dead time element of C 1 (s) includes the difference between max (L 0 , L 1 ) and L 1 as the dead time.
  • T x is a value that specifies the first-order lag time of the entire ratio control, and is a value that satisfies the condition expressed by the equation (7).
  • min (T 0 , T 1 ) indicates a smaller value of T 0 and T 1 .
  • max (T 0 , T 1 ) is the same as the aforementioned max (L 0 , L 1 ). Therefore, if T 0 is smaller than T 1 , T x is a value larger than T 0 and smaller than T 1 . If T 0 is larger than T 1 , T x is larger than T 1 and smaller than T 0 . That is, T x is a value between T 0 and T 1 .
  • the combustion control apparatus is a feedforward compensation type even in a transient state in which the air flow rate process 101 and the fuel flow rate process 111 have different dead times and the combustion demand level changes suddenly.
  • the air flow rate PV 0 and the fuel flow rate PV 1 can always be controlled in the vicinity of the set ratio ⁇ .
  • C 0 (s) G 0 ( s) and C 1 (s) G 1 ( s) C 1 (s) other than G 1 (s)
  • C 0 (s) G 0 (s) C 1 (s) other than G 1 (s)
  • a condition that C 0 (s) G 0 (s) and C 1 (s) G 1 (s) are substantially equal C 0 (s) G 0 (s) ⁇ C 1 (s) G 1 (s )
  • C 0 (s) and C 1 (s) is set It doesn't matter.
  • FIG. 2 is a block diagram showing an example of a combustion control apparatus according to the second embodiment. 2, elements equivalent to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the combustion control device shown in FIG. 2 applies a combustion control method (hereinafter referred to as a feedforward compensation cross limit control method) that combines a feed forward compensation method and a cross limit control method.
  • the combustion control apparatus shown in FIG. 2 to which the feedforward compensation type cross limit control method is applied is added to the control loops 10 and 11 and the ratio setting unit 12 in the same manner as the conventional combustion control apparatus to which the cross limit control method is applied.
  • a constant multiplier 20, a high level selector (hereinafter referred to as H selector) 21, and a low level selector (hereinafter referred to as L selector) 22 are provided.
  • the difference between this combustion control device and the conventional combustion control device is that the configuration surrounded by a broken-line frame F2 in FIG. 2, that is, DFF (dynamic feedforward) compensators 13 and 14, and a switcher (hereinafter referred to as “switching device”). (Referred to as SW) 23 and 24, and a determiner 25.
  • Constant multiplier 20 constant times the air flow rate PV 0. Specifically, the constant multiplier 20 generates a command value PV 0 / ⁇ corresponding to the set value SV 1 by multiplying the air flow rate PV 0 by a constant 1 / ⁇ .
  • the H selector 21 and the L selector 22 function as first and second cross limit controllers, respectively. That is, the H selector 21 selects the higher one of the master signal M (combustion request level indicated by the master signal M) or the fuel flow rate PV 1 as the command value corresponding to the set value SV 0 . On the other hand, the L selector 22 selects the lower one of the master signal M (combustion request level indicated by the master signal M) or the command value PV 0 / ⁇ as the command value corresponding to the set value SV 1 .
  • the H selector 21 prioritizes the increase in the air flow rate PV 0 in the control loop 10 by giving priority to the request for increase in combustion by the cross limit control with respect to the air flow rate.
  • the L selector 22 causes the fuel flow rate PV 1 (control loop 11) to follow the increase in the air flow rate (actual air flow rate) PV 0 . That is, when an increase in combustion is required, the air flow rate PV 0 first increases by cross limit control, and the fuel flow rate PV 1 increases following the increase in the air flow rate PV 0 .
  • the required combustion level indicated by the master signal M has decreased. That is, it is assumed that combustion reduction is requested by the master signal M.
  • M ⁇ PV 1 and M ⁇ PV 0 / ⁇ are assumed.
  • the L selector 22 selects the master signal M as a command value corresponding to the set value SV 1 .
  • the H selector 21 selects the fuel flow rate PV 1 as a command value corresponding to the set value SV 1 because M ⁇ PV 1 .
  • the L selector 22 prioritizes the reduction in fuel flow PV 1 in the control loop 11 by prioritizing the request for reduction in combustion by cross limit control with respect to the fuel flow.
  • the H selector 21 causes the air flow rate PV 0 (control loop 10) to follow the decrease in the fuel flow rate (actual fuel flow rate) PV 1 . That is, when a reduction in combustion is required, the fuel flow rate PV 1 is first reduced by cross limit control, and the air flow rate PV 0 is reduced following the decrease in the fuel flow rate PV 1 .
  • the “preceding-following” method is applied when a switching condition SC described later is not satisfied. In such a state, it is beneficial to operate the combustion control device shown in FIG. 2 on the safer side by applying the “preceding-following” method, even if process characteristics change or feedback control adjustment is insufficient. It is.
  • SW23 switches the output of the DFF compensator 13 and the output of the H selector 21 according to the switching signal q. More specifically, the SW 23 switches either the output of the DFF compensator 13 or the output of the H selector 21 to the input side of the ratio setting unit 12 according to the switching signal q. That is, the SW 23 selects either the output of the DFF compensator 13 or the output of the H selector 21 according to the switching signal q.
  • SW24 switches the output of the DFF compensator 14 and the output of the L selector 22 according to the switching signal q. More specifically, the SW 24 switches either the output of the DFF compensator 14 or the output of the L selector 22 to the input side of the control loop 11 (feedback controller 112) according to the switching signal q. That is, the SW 23 selects either the output of the DFF compensator 14 or the output of the L selector 22 according to the switching signal q.
  • the SWs 23 and 24 select the outputs of the DFF compensators 13 and 14, respectively. Further, the SWs 23 and 24 select the outputs of the H selector 21 and the L selector 22 respectively when the switching signal q is the second level L.
  • the switching signal q is generated by the determiner 25. Based on the output PV 0 / ⁇ of the constant multiplier 20 and the output PV 1 of the control loop 11, the determiner 25 determines whether the switching condition SC of the SWs 23 and 24 is satisfied. This switching condition SC is expressed by equation (10).
  • K is an allowable error coefficient of the air flow rate.
  • the allowable error coefficient K depends on the combustion operation policy for each process, but is about 0.1, for example.
  • the switching condition SC is, PV 0 (% value of the air flow) Air flow is established when the below (1-K) greater than BetamyuPV 1, and (1 + K) ⁇ PV 1 . That is, the switching condition SC is satisfied when the air flow rate (% value of the fuel flow rate) PV 0 is within the allowable error range (that is, the allowable range) based on the fuel flow rate (% value of the fuel flow rate) PV 1. To do.
  • the switching condition SC is satisfied is determined from the viewpoint of the ratio of the air flow rate PV 0 to the fuel flow rate PV 1 (that is, the actual ratio) PV 0 / PV 1 , the actual ratio PV 0 / PV 1 is This is equivalent to determining whether or not the set ratio ⁇ is within the allowable error range (allowable range).
  • the determiner 25 generates the switching signal q of the first level H or the second level L depending on whether or not the switching condition SC is satisfied.
  • the determination unit 25 If the switching condition SC is satisfied, the determination unit 25 generates the first level H switching signal q on the assumption that the actual ratio PV 0 / PV 1 is within the allowable range of the set ratio ⁇ . . On the other hand, if the switching condition SC is not satisfied, the determination unit 25 determines that the actual ratio PV 0 / PV 1 is out of the allowable range of the setting ratio ⁇ , and outputs the second level L switching signal q. Generate.
  • the SWs 23 and 24 select the DFF compensators 13 and 14, respectively, when the switching signal q is the first level H. Then, the combustion control apparatus shown in FIG. 2 executes combustion control by feedforward type compensation similar to that of the first embodiment.
  • the combustion control device executes combustion control (ratio control) based on feedforward type compensation. That is, if the actual ratio PV 0 / PV 1 (or the air flow rate PV 0 ) is within the allowable range of the set ratio ⁇ (or the allowable range based on the fuel flow rate PV 1 ), the combustion control device is a feedforward type. Combustion control based on compensation is executed.
  • the feedforward compensation type ratio control is performed.
  • the air flow rate PV 0 and the fuel flow rate PV 1 can always be controlled in the vicinity of the set ratio ⁇ .
  • the combustion control device shown in FIG. 2 executes the combustion control similar to the conventional cross limit control.
  • the combustion control device executes the combustion control based on the cross limit control. Therefore, according to the second embodiment, safety regarding combustion can be ensured by applying the cross limit control even in a situation where the actual ratio is out of the allowable range.
  • FIG. 3 is a block diagram showing an example of a combustion control apparatus according to the third embodiment. 3, elements equivalent to those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the combustion control apparatus shown in FIG. 3 applies a combustion control method (hereinafter referred to as a feedforward compensation type double cross limit control method) that combines a feed forward type compensation method and a double cross limit control method.
  • the combustion control apparatus shown in FIG. 3 to which the feedforward compensation type double cross limit control method is applied is similar to the conventional combustion control apparatus to which the double cross limit control method is applied, and the control loops 10 and 11, the ratio setting device 12, In addition, a constant multiplier 20, constant multipliers 201 to 204, and intermediate level selectors (hereinafter referred to as MED selectors) 210 and 220 are provided.
  • This combustion control device is different from the conventional combustion control device in that the configuration surrounded by a broken-line frame F3 in FIG. 3, that is, DFF (dynamic feedforward) compensators 13 and 14, and a switcher (hereinafter, referred to as a “switching device”) (Referred to as SW) 230 and 240, and a determination device 250.
  • the constant multiplier 201 multiplies the output (PV 0 / ⁇ ) of the constant multiplier 20 by a constant. Specifically, the constant multiplier 201 multiplies the output (PV 0 / ⁇ ) of the constant multiplier 20 by a constant 1 + K 1 to obtain a command value (1 + K 1 ) PV 0 / ⁇ corresponding to the set value SV 1.
  • K 1 is a set value indicating the smoke generation limit when the required combustion level increases.
  • the smoke emission limit refers to the limit of the shortage of air that leads to the generation of black smoke and carbon monoxide.
  • the constant multiplier 202 multiplies the fuel flow rate (% value of the fuel flow rate) PV 1 by a constant. Specifically, the constant multiplier 202 generates a command value (1-K 2 ) PV 1 corresponding to the set value SV 0 by multiplying the fuel flow rate PV 1 by a constant 1-K 2 .
  • K 2 is a set value indicating the smoke generation limit when the required combustion level is lowered.
  • the constant multiplier 203 multiplies the output (PV 0 / ⁇ ) of the constant multiplier 20 by a constant. Specifically, the constant multiplier 203 multiplies the output (PV 0 / ⁇ ) of the constant multiplier 20 by a constant 1-K 3, thereby giving a command value (1-K 3 ) PV corresponding to the set value SV 1.
  • Generate 0 / ⁇ . K 3 is a set value indicating the excess air limit when the required combustion level is lowered. The excess air limit refers to the limit of excess air amount that causes generation of nitric oxide and sulfur oxide.
  • the constant multiplier 204 multiplies the fuel flow rate PV 1 by a constant. Specifically, the constant multiplier 204 generates a command value (1 + K 4 ) PV 1 corresponding to the set value SV 0 by multiplying the fuel flow rate PV 1 by a constant 1 + K 4 .
  • K 4 is a set value indicating the excess air limit when the required combustion level increases.
  • the MED selector 210 functions as a first double cross limit controller. That is, even if the master signal M changes, the MED selector 210 changes the set value (air flow rate set value) SV 0 (more specifically, the command value corresponding to the set value SV 0 ) to the fuel flow rate (actual fuel flow rate) PV. Operates to limit the allowable range for 1 . Therefore, the MED selector 210 includes a master signal M (combustion request level indicated by the master signal M), an output (1-K 2 ) PV 1 of the constant multiplier 202, and an output (1 + K 4 ) PV 1 of the constant multiplier 204. The one with the second highest level (that is, the one that is not the highest and the lowest) is selected as the command value (actual command value) corresponding to the set value SV 0 .
  • the MED selector 220 functions as a second double cross limit controller. That is, even if the master signal M changes, the MED selector 220 operates so as to limit the set value (fuel flow rate set value) SV 1 to an allowable range for the air flow rate (actual air flow rate) PV 0 . Therefore, the MED selector 220 outputs the master signal M (combustion request level indicated by the master signal M), the output (1 + K 1 ) PV 0 / ⁇ of the constant multiplier 201, and the output (1-K 3 ) PV 0 of the constant multiplier 203. / ⁇ is selected as the command value (actual command value) corresponding to the set value SV 1 with the second highest level (that is, the lowest and lowest).
  • the combustion control device shown in FIG. 3 applies double cross limit control. As a result, even if the master signal M changes, the combustion control device limits the set value SV 0 to an allowable range for the fuel flow rate PV 1 and allows the set value SV 1 to be allowed for the air flow rate PV 0 . Limit to the range
  • the double cross limit control is applied when switching conditions SC1 and SC2 described later are not satisfied. In such a state, it is beneficial to operate the combustion control device shown in FIG. 3 on the safer side by applying double cross limit control even if a change in process characteristics, insufficient feedback control adjustment, or the like occurs.
  • SW 230 switches either the output of the DFF compensator 13 or the output of the MED selector 210 to the input side of the ratio setting unit 12 according to the switching signal q0. That is, the SW 230 selects either the output of the DFF compensator 13 or the output of the MED selector 210 according to the switching signal q0.
  • SW 240 switches either the output of DFF compensator 14 or the output of MED selector 220 to the input side of control loop 11 (feedback controller 112) according to switching signal q1. That is, the SW 240 selects either the output of the DFF compensator 14 or the output of the MED selector 220 according to the switching signal q1.
  • the SWs 230 and 240 select the outputs of the DFF compensators 13 and 14, respectively.
  • the SWs 230 and 240 select the outputs of the MED selectors 210 and 220, respectively, when the switching signals q0 and q1 are at the second level L.
  • the switching signals q0 and q1 are generated by the determiner 250. Based on the output PV 0 / ⁇ of the constant multiplier 20 and the output PV 1 of the control loop 11, the determiner 250 determines whether or not the switching condition SC1 of the SW 230 and the switching condition SC2 of the SW 240 are satisfied.
  • the switching conditions SC1 and SC2 are expressed by equations (11) and (12), respectively.
  • the switching condition SC1 when the air flow rate (percentage of the air flow) PV 0, the (1-K 2) greater than BetamyuPV 1, and (1 + K 4) below BetamyuPV 1 To establish. That is, the switching condition SC1 is satisfied when the air flow rate (% value of the air flow rate) PV 0 is within an allowable range based on the fuel flow rate (% value of the fuel flow rate) PV 1 .
  • (1-K 2) ⁇ PV 1 is set value K 2 (that is, the set value K 2 of the smoke limit during combustion required level reduction) determined by the preset ratio ⁇ and the fuel flow rate PV 1.
  • This (1-K 2 ) ⁇ PV 1 maintains the actual ratio PV 0 / PV 1 within an allowable range when the air flow rate PV 0 is relatively smaller than the fuel flow rate PV 1 when the required combustion level is lowered.
  • the lower limit of the air flow rate capable of avoiding smoke generation is shown. That is, (1 ⁇ K 2 ) ⁇ PV 1 indicates the lower limit value of the allowable range (hereinafter referred to as the first allowable range) of the air flow rate PV 0 when the fuel flow rate PV 1 is used as a reference.
  • the lower limit value of the first allowable range corresponds to the smoke generation limit when the required combustion level is lowered.
  • This permissible range corresponds to the first permissible range, and the lower limit value of the permissible range corresponds to the smoke generation limit when the required combustion level is lowered.
  • (1 + K 4) ⁇ PV 1 the set value K 4 (i.e., combustion requirements set value K 4 excess air limits at elevated levels) determined by the preset ratio ⁇ and the fuel flow rate PV 1.
  • This (1 + K 4 ) ⁇ PV 1 is oxidized while maintaining the actual ratio PV 0 / PV 1 within an allowable range when the air flow rate PV 0 is relatively large compared to the fuel flow rate PV 1 at the time when the required combustion level increases.
  • the upper limit of the air flow rate that can avoid the generation of nitrogen and sulfur oxide is shown. That is, (1 + K 4 ) ⁇ PV 1 indicates the upper limit value of the first allowable range.
  • the upper limit value of the first allowable range corresponds to the excess air limit when the required combustion level increases.
  • the (1 + K 4 ) ⁇ indicates the upper limit value of the allowable range of the actual ratio PV 0 / PV 1 when the fuel flow rate PV 1 is used as a reference.
  • This permissible range corresponds to the first permissible range
  • the upper limit value of the permissible range corresponds to the excess air limit when the required combustion level increases.
  • the allowable range of the actual ratio PV 0 / PV 1 when the fuel flow rate PV 1 is used as a reference is also referred to as a first allowable range.
  • the switching condition SC1 is satisfied is determined from the viewpoint of the air flow rate PV 0 (or the actual ratio PV 0 / PV 1 ) based on the fuel flow rate PV 1. Is equivalent to determining whether or not the air flow rate PV 0 (actual ratio PV 0 / PV 1 ) is within the first allowable range.
  • the switching condition SC1 is satisfied when the air flow rate PV 0 (actual ratio PV 0 / PV 1 ) based on the fuel flow rate PV 1 is within the first allowable range.
  • the switching condition SC2 is that the value ⁇ PV 1 ⁇ times the fuel flow rate (% value of the fuel flow rate) PV 1 exceeds (1 ⁇ K 3 ) PV 0 and (1 + K 1 ) is established in the case below the PV 0. That, switching condition SC2, the fuel flow rate (percentage of the fuel flow rate) PV 1 is satisfied when that contains the air flow rate (percentage of the air flow) PV 0 the allowable range with reference.
  • (1-K 3) PV 0 is determined by the set value K 3 (i.e., the set value K 3 excess air limits the time of combustion required level reduction) and the air flow rate PV 0.
  • This (1-K 3 ) PV 0 maintains the actual ratio PV 0 / PV 1 within an allowable range when the fuel flow rate PV 1 is relatively smaller than the air flow rate PV 0 when the required combustion level is reduced.
  • the lower limit value of the fuel flow rate that can avoid the generation of nitrogen oxide and sulfur oxide is shown.
  • (1-K 3 ) PV 0 indicates the lower limit value of the allowable range (hereinafter referred to as the second allowable range) of the fuel flow rate PV 1 when the air flow rate PV 0 is used as a reference.
  • the lower limit value of the second allowable range corresponds to the excess air limit when the required combustion level is lowered.
  • the ⁇ / (1-K 3 ) is the upper limit of the allowable range of the actual ratio PV 0 / PV 1 when the air flow rate PV 0 is used as a reference. Indicates the value.
  • This permissible range corresponds to the second permissible range, and the upper limit value of the permissible range corresponds to the excess air limit when the required combustion level is reduced.
  • (1 + K 1) PV 0 the setting values K 1 (i.e., the set value K 1 of the smoke limit during combustion requested level increase) and determined by the air flow rate PV 0.
  • This (1 + K 1 ) PV 0 is a smoke emission while maintaining the actual ratio PV 0 / PV 1 within an allowable range when the fuel flow rate PV 1 is relatively large compared to the air flow rate PV 0 when the required combustion level increases.
  • the upper limit value of the fuel flow rate (more specifically, a value that is ⁇ times the upper limit value of the fuel flow rate) is shown. That is, (1 + K 1 ) PV 0 indicates the upper limit value of the second allowable range.
  • the upper limit value of the second allowable range corresponds to the smoke generation limit when the required combustion level increases.
  • the ⁇ / (1 + K 1 ) indicates the lower limit value of the allowable range of the actual ratio PV 0 / PV 1 when the air flow rate PV 0 is used as a reference.
  • This permissible range corresponds to the second permissible range
  • the lower limit value of the permissible range corresponds to the smoke generation limit when the required combustion level increases.
  • the allowable range of the actual ratio PV 0 / PV 1 when the fuel flow rate PV 0 is used as a reference is also referred to as a second allowable range.
  • switching condition SC2 is satisfied is determined from the viewpoint of the fuel flow rate PV 1 (or the actual ratio PV 0 / PV 1 ) based on the air flow rate PV 0. Is equivalent to determining whether or not the fuel flow rate PV 1 (actual ratio PV 0 / PV 1 ) is within the second allowable range.
  • Switching condition SC2 is established when the fuel flow rate PV 1 relative to the air flow rate PV 0 (actual ratio PV 0 / PV 1) is in the second allowable range.
  • the determiner 250 generates the switching signal q0 of the first level H or the second level L depending on whether or not the switching condition SC1 is satisfied.
  • the determiner 250 also generates the switching signal q1 of the first level H or the second level L depending on whether or not the switching condition SC2 is satisfied.
  • the SWs 230 and 240 select the DFF compensators 13 and 14 when the switching signals q0 and q1 are at the first level H, respectively. Then, the combustion control device shown in FIG. 3 executes combustion control (ratio control) by feedforward type compensation similar to that of the first embodiment. As described above, when both the switching conditions SC1 and SC2 are satisfied, the combustion control device executes the combustion control based on the feedforward type compensation in both the air system and the fuel system. Therefore, according to the third embodiment, if the air flow rate PV 0 and the fuel flow rate PV 1 (actual ratio PV 0 / PV 1 ) are within the first and second allowable ranges, the required combustion level changes suddenly. Even in such a transient state, the air flow rate PV 0 and the fuel flow rate PV 1 can be controlled by the ratio ⁇ .
  • the combustion control device shown in FIG. 3 controls the air system using double cross limit control.
  • the switching signal q1 is at the second level L
  • the SW 240 selects the MED selector 220.
  • the combustion control device controls the fuel system using double cross limit control.
  • the combustion control device executes the combustion control based on the double cross limit control in both the air system and the fuel system when the switching conditions SC1 and SC2 are not satisfied.
  • the double cross limit control is applied. Therefore, safety regarding combustion can be ensured.
  • the DFF compensators 13 and 14 are commonly used for feedforward type compensation.
  • the constants (transfer functions) of the DFF compensators 13 and 14 are a pair of a dead time L 0 and a primary delay time T 0 that can be measured during actual operation of the plant, and a pair of a dead time L 1 and a primary delay time T 1 , respectively. Is uniquely determined based on Thus, the combustion control apparatus according to the first to third embodiments has a clear optimum adjustment rule. Therefore, according to the first to third embodiments, it is possible to provide a combustion control device that can be easily introduced into the operation of an actual process.
  • the ratio between the air flow rate and the fuel flow rate is set even in a transient state where the air flow rate process and the fuel flow rate process have different dead times and the combustion demand level suddenly changes. Both flow rates can be controlled to be close to the ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Feedback Control In General (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

 実施形態によれば、燃焼制御装置は、比率設定器と、第1及び第2の制御ループと、第1及び第2の動的フィードフォワード補償器とを具備する。比率設定器は、調整されるべき空気流量と燃料流量との比率を設定する。第1の制御ループは空気流量プロセスを含み、第2の制御ループは燃料流量プロセスを含む。第1及び第2の動的フィードフォワード補償器は、マスター信号の示す燃焼要求レベルの変化に対する第1及び第2の制御ループの応答性に関連する空気流量プロセス及び燃料流量プロセスの無駄時間を補償する。

Description

燃焼制御装置
 本発明の実施形態は、空気流量と燃料流量との比率を調整するのに動的フィードフォワード補償を適用する燃焼制御装置に関する。
 一般に燃焼炉では、燃焼制御装置の制御により、空気と燃料とが、ある比率で当該燃焼炉のバーナーに供給される。これにより燃焼炉は、空気と混合された燃料を燃焼させて、熱量を得る。
 空気と燃料との比率、例えば燃料(燃料流量)に対する空気(空気流量)の比率には、最適な範囲が存在する。もし、この比率が減少して空気が不足するならば、不完全燃焼を招く。不完全燃焼は、黒煙や一酸化炭素(CO)の発生を招く。これに対し、上記比率が増加して空気が過剰となるならば、酸化窒素(NOx)や酸化硫黄(SOx)の発生を招く。しかも、上記比率が最適な範囲にないならば、燃焼炉におけるエネルギー変換効率が低下して操業コストの増大を招く。
 このため、燃焼制御装置において上記比率を最適に保つ制御は重要であり、従来から様々な工夫がなされてきている。燃焼制御装置における代表的な制御方法として以下の3つが知られている。
 第1は、比率制御と呼ばれる方法である。第2は、比率制御方法が改良されたクロスリミット制御と呼ばれる方法である。第3は、クロスリミット制御(より詳細には、シングルクロスリミット制御)が改良されたダブルクロスリミット制御と呼ばれる方法である。
 第1ないし第3の制御方法は、燃焼を要求するマスター信号に追従するように、燃料流量に対する空気流量の比率を設定された比率に保ちつつ、当該空気流量及び燃料流量を制御する点で共通する。この制御のために、空気流量及び燃料流量(より詳細には、空気流量及び燃料流量それぞれの実測値)がフィードバックされる。マスター信号は、燃焼を要求するだけでなく、燃焼要求(燃焼量)の程度(つまり燃焼要求レベル)を指定する。
 これら3つの制御方法のいずれにおいても、マスター信号が急変する過渡状態では、燃料流量に対する空気流量の比率(つまり実比率)は、設定比率とは大きく異なることが知られている。そこで、フィードバック型補償器を用いることにより上述の過渡状態における実比率を改善する制御方法も提案されている。
特開2002-215204号公報 特許第3904905号公報
 しかし、フィードバック型補償器を用いる方法であっても、空気流量のプロセスと燃料流量のプロセスとがそれぞれ異なる無駄時間を持つ場合は、上述の過渡状態における実比率は、依然として設定比率とは大きく異なる。しかも、空気流量のプロセスの無駄時間と燃料流量のプロセスの無駄時間とが異なるケースは、実際のプラントにおいては少なくない。
 例えば、燃料が気体でない場合、空気流量プロセスと燃料流量プロセスとで無駄時間が異なる。つまり、空気が気体であるのに対し、燃料が液体であるか、或いは燃料が微粉炭のような粉体である場合に、上述の無駄時間が異なる。また、プラント設備の配管長や配管系等の物理的制約がある場合にも、上述の無駄時間が異なる。
 本発明が解決しようとする課題は、空気流量プロセスと燃料流量プロセスとが異なる無駄時間を持ち、かつ燃焼要求レベルが急変するような過渡状態でも、空気流量と燃料流量との比率が設定比率の近傍となるように両流量を制御することができる燃焼制御装置を提供することにある。
 実施形態によれば空気流量と燃料流量との比率を調整するための燃焼制御装置が提供される。前記燃焼制御装置は、比率設定器と、第1の制御ループと、第2の制御ループと、第1の動的フィードフォワード補償器と、第2の動的フィードフォワード補償器とを具備する。前記比率設定器は、前記調整されるべき比率を設定する。前記第1の制御ループは、空気流量プロセスと、第1のフィードバック制御器とを含む。前記空気流量プロセスは、燃焼炉に空気を供給する。前記第1のフィードバック制御器は、前記空気流量及び前記燃料流量それぞれの目標値である第1及び第2の設定値のうちの前記第1の設定値に対して前記空気流量が追従するように、前記空気流量プロセスを制御する。前記第1及び第2の設定値は、前記燃焼炉における燃焼を要求するマスター信号の示す燃焼要求レベルの変化に応じて前記設定比率で変化する。前記第2の制御ループは、燃料流量プロセスと、第2のフィードバック制御器とを含む。前記燃料流量プロセスは、前記燃焼炉に燃料を供給する。前記第2のフィードバック制御器は、前記第2の設定値に対して前記燃料流量が追従するように、前記燃料流量プロセスを制御する。前記第1の動的フィードフォワード補償器は、前記燃焼要求レベルの変化に対する前記第1の制御ループの応答性に関連する前記空気流量プロセスの第1の無駄時間を補償する。前記第2の動的フィードフォワード補償器は、前記燃焼要求レベルの変化に対する前記第2の制御ループの応答性に関連する前記燃料流量プロセスの第2の無駄時間を補償する。
図1は、第1の実施形態に係る燃焼制御装置の一例を示すブロック図である。 図2は、第2の実施形態に係る燃焼制御装置の一例を示すブロック図である。 図3は、第3の実施形態に係る燃焼制御装置の一例を示すブロック図である。
 以下、種々の実施の形態につき図面を参照して説明する。 
 [第1の実施形態]
 図1は第1の実施形態に係る燃焼制御装置の一例を示すブロック図である。この燃焼制御装置は、燃焼炉に供給される空気及び燃料の量を制御する。燃焼炉としては、例えば、ボイラー炉、熱風炉、再熱炉、加熱炉、焼却炉等が知られている。また、燃料としては、例えば、石炭(粉体)、石油(液体)、ガス(気体)の1種以上が用いられる。
 図1に示される燃焼制御装置は、マスター信号Mに追従するように、燃料流量PV1に対する空気流量PV0の比率PV0/PV1を予め定められた比率に保ちつつ、当該空気流量PV0及び燃料流量PV1を制御する。マスター信号Mは、燃焼制御装置の入力であり、燃焼炉における燃焼を要求する燃焼要求信号である。より詳細に述べるならば、マスター信号Mは、燃焼要求の程度(つまり燃焼要求レベル)を指定する。空気流量PV0及び燃料流量PV1は、燃焼制御装置の出力であり、それぞれ空気流量プロセス値及び燃料流量プロセス値と呼ばれる。第1の実施形態において、空気流量PV0及び燃料流量PV1は、それぞれ空気流量の第1の調整範囲及び燃料流量の第2の調整範囲に対応するパーセント(%)値で表される。具体例を挙げるならば、PV0=0(%)は第1の調整範囲の下限の空気流量(空気流量の%値)を示し、PV0=100(%)は第1の調整範囲の上限の空気流量(空気流量の%値)を示す。同様に、PV1=0(%)は第2の調整範囲の下限の燃料流量(燃料流量の%値)を示し、PV1=100(%)は第2の調整範囲の上限の燃料流量(燃料流量の%値)を示す。これは、後述する第2及び第3の実施形態においても同様である。
 図1に示される燃焼制御装置は、比率制御法を適用する従来の燃焼制御装置と同様に、制御ループ10及び11と、比率設定器12とを備えている。この燃焼制御装置が、従来の燃焼制御装置と相違する点は、図1において破線の枠F1で囲まれた構成、つまり動的フィードフォワード補償器(以下、DFF補償器と称する)13及び14を備えていることにある。つまり図1に示される燃焼制御装置は、フィードフォワード型補償法及び比率制御法を組み合わせた燃焼制御方法(以下、フィードフォワード補償型比率制御法と称する)を適用する。
 フィードフォワード補償型比率制御法を適用する図1に示す燃焼制御装置において、制御ループ10は、制御対象としての空気流量のプロセス(供給プロセス)101に対応し、当該プロセス101とフィードバック制御器102とを含む。つまり制御ループ10は、空気系の制御ループ(第1の制御ループ)である。制御ループ11は、制御対象としての燃料流量のプロセス(供給プロセス)111に対応し、当該プロセス111とフィードバック制御器112とを含む。つまり制御ループ11は、燃料系の制御ループ(第2の制御ループ)である。以下の説明では、プロセス101及び111を、それぞれ空気流量プロセス101及び燃料流量プロセス111と称することもある。
 フィードバック制御器(第1のフィードバック制御器)102は、空気流量PV0(つまり、プロセス101から供給される空気の流量)が目標値(第1の目標値)SV0に追従(一致)するように、プロセス101をフィードバック制御する。すなわちフィードバック制御器102は、空気流量PV0が目標値(つまり、空気流量目標値)SV0に追従するように、プロセス101に与えられるべき操作量MV0を当該空気流量PV0に基づいて制御する。
 フィードバック制御器(第2のフィードバック制御器)112は、燃料流量PV1(つまり、プロセス111から供給される燃料の流量)が目標値(第2の目標値)SV1に追従するように、プロセス111をフィードバック制御する。すなわちフィードバック制御器112は、燃料流量PV1が目標値(つまり、燃料流量目標値)SV1に追従するように、プロセス111に与えられるべき操作量MV1を当該燃料流量PV1に基づいて制御する。
 目標値SV0及びSV1は、マスター信号Mの示す燃焼要求レベルの変化に対応し、かつ燃料流量PV1に対する空気流量PV0の比率PV0/PV1を予め定められた比率に保つのに必要な値に設定される。つまり目標値SV0及びSV1は、燃焼要求レベルの変化に応じて、前記予め定められた比率で変化する。以下の説明では、目標値SV0を設定値(第1の設定値)SV0と称し、目標値SV1を設定値(第2の設定値)SV1と称する。
 比率設定器12は、燃料流量PV1に対する空気流量PV0の比率(つまり実比率)PV0/PV1を前記予め定められた比率に設定する。より詳細に述べるならば、比率設定器12は、実比率PV0/PV1が前記予め定められた比率(つまり、設定比率)に維持された状態で、空気流量PV0及び燃料流量PV1がマスター信号Mに追従するように、設定値SV0及びSV1の少なくとも一方に対応する指令値を生成する。第1の実施形態では、マスター信号Mは、設定値(燃料流量設定値)SV1に対応する第2の指令値として用いられる。このため比率設定器12は、マスター信号Mに基づいて、設定値(空気流量設定値)SV0に対応する第1の指令値を生成する。より詳細に述べるならば、比率設定器12は定数倍器を用いて構成されており、マスター信号Mに定数βμを乗じることにより第1の指令値を生成する。
 定数βμは、燃料流量に対する空気流量の予め設定された比率を示す。ここで、βは空気/燃料レンジ変換係数であり、μは空気比である。
 空気/燃料レンジ変換係数βは、マスター信号Mが設定値SV1(つまり、燃料系の制御ループ11の設定値SV1)に対応する第2の指令値として用いられる第1の実施形態では、燃料流量の調整範囲を基準に、空気流量の調整範囲を正規化するための係数である。ここで、空気流量の調整範囲が0ないしS0ノルマル立方メートル/時間(Nm3/h)であるものとする。また、燃料がガスの場合の燃料流量の調整範囲が0ないしS1ノルマル立方メートル/時間(Nm3/h)であるものとする。この場合、空気/燃料レンジ変換係数βは、β=S1×A/S0のように表される。ここでAは単位燃料を燃焼させるに必要な理論空気量である。
 空気比μは、一定量の燃料を完全に燃焼させるために理論上必要な空気量(つまり、理論的空気量)に対する、当該一定量の燃料を完全に燃焼させるために実際に必要となる空気量の比率を指す。
 上述したように、第1の実施形態では、マスター信号Mが第2の指令値として用いられる。この場合、比率設定器12が、定数(設定比率)βμをマスター信号Mに乗じることにより第1の指令値を生成する機能に加えて、当該マスター信号Mを第2の指令値として出力(生成)する機能を有しているとみなすこともできる。なお、第1の実施形態とは逆に、マスター信号Mが第1の指令値として用いられても構わない。この場合、定数1/βμをマスター信号Mに乗じることにより第2の指令値を生成する比率設定器を、比率設定器12に代えて用いれば良い。要するに、マスター信号Mの示す燃焼要求レベルの変化に応じて設定値SV0及びSV1が前記設定比率で変化するような第1及び第2の指令値が用いられれば良い。
 従来技術では、比率設定器12の出力が設定値SV0として制御ループ10(より詳細には、制御ループ10のフィードバック制御器102)に与えられる。また従来技術では、マスター信号Mが設定値SV1として制御ループ11(より詳細には、制御ループ11のフィードバック制御器112)に与えられる。
 これに対して第1の実施形態では、比率設定器12の出力が設定値SV0に対応する第1の指令値としてDFF補償器13に与えられる。またマスター信号Mが、設定値SV1に対応する第2の指令値としてDFF補償器14に与えられる。DFF補償器13及び14は、マスター信号Mの示す燃焼要求レベルの変化(つまり、第1及び第2の指令値の変化)を一種の外乱と見なして動作して、当該燃焼要求レベルの変化を補償する。つまり、DFF補償器13及び14は、燃焼要求レベルの変化に対する制御ループ10及び11の応答性を補償する。より詳細に述べるならば、DFF補償器13及び14は、燃焼要求レベルの変化に対する応答性に関連する、制御ループ10及び11(より詳細には、制御ループ10及び11のプロセス101及び111)それぞれの無駄時間(第1及び第2の無駄時間)を補償する。そのためDFF補償器13及び14は、それぞれ、後述する伝達関数C0(s)及びC1(s)を有し、マスター信号Mの示す燃焼要求レベルの変化に応じて制御ループ10及び11の設定値SV0及びSV1を動的に増加または減少する。
 マスター信号Mを入力、空気流量PV0を出力とする伝達関数は、式(1)で表される。
  βμC0(s)G0(s)                  ----(1)
 ここで、C0(s)はDFF補償器13の伝達関数、G0(s)は制御ループ10の伝達関数である。
 マスター信号Mを入力、燃料流量PV1を出力とする伝達関数は、式(2)で表される。
  C1(s)G1(s)                    ----(2)
 ここで、C1(s)はDFF補償器14の伝達関数、G1(s)は制御ループ11の伝達関数である。
 もし、C0(s)G0(s)=C1(s)G1(s)の条件が成立するならば、空気流量PV0と燃料流量PV1とは常に一定の比率(設定比率)βμで制御できることがわかる。
 G0(s)、つまり制御ループ10の伝達関数は、フィードバック制御器102が、空気流量プロセス101に対してP(比例)I(積分)D(微分)制御のようなフィードバック制御を施した結果を表す。このフィードバック制御は、具体的には次のように行われる。フィードバック制御器102は、当該制御器102の設定値SV0に対して、空気流量(空気流量プロセス値)PV0がゲイン1で追従するように、当該制御器102のパラメータを調整する。したがってG0(s)は、近似的に式(3)で表される。 
Figure JPOXMLDOC01-appb-M000001
 ここでL0及びT0は、制御ループ10(より詳細には、制御ループ10の空気流量プロセス101)のそれぞれ無駄時間(第1の無駄時間)及び一次遅れ時間を示す。無駄時間L0及び一次遅れ時間T0は、制御ループ10の応答性に関連し、プラントの実運転時に測定可能な固有値である。
 G1(s)、つまり制御ループ11の伝達関数は、フィードバック制御器112が、燃料流量プロセス111に対してPID制御のようなフィードバック制御を施した結果を表す。このフィードバック制御は、具体的には次のように行われる。フィードバック制御器112は、当該制御器112の設定値SV1に対して、燃料流量(燃料流量プロセス値)PV1がゲイン1で追従するように、当該制御器112のパラメータを調整する。したがってG1(s)は、近似的に式(4)で表される。 
Figure JPOXMLDOC01-appb-M000002
 ここでL1及びT1は、制御ループ11(より詳細には、制御ループ11の燃料流量プロセス111)のそれぞれ無駄時間(第2の無駄時間)及び一次遅れ時間を示す。無駄時間L1及び一次遅れ時間T1は、制御ループ11の応答性に関連し、プラントの実運転時に測定可能な固有値である。
 DFF補償器13及び14の定数(伝達関数)は、以下に述べるように、制御ループ10の無駄時間L0及び一次遅れ時間T0と、制御ループ11の無駄時間L1及び一次遅れ時間T1とに基づいて一意に決定される。
 C0(s)G0(s)=C1(s)G1(s)の条件を満足するC0(s)及びC1(s)(つまり、DFF補償器13及び14の伝達関数C0(s)及びC1(s))は、それぞれ式(5)及び(6)で与えられる。 
Figure JPOXMLDOC01-appb-M000003
 ここで、式(5)におけるexp(-(max(L0,L1)-L0)s)は、C0(s)の無駄時間要素であり、“max(L0,L1)-L0”を無駄時間として含む。つまり、C0 (s)の無駄時間要素は、max(L0,L1)とL0との差分を無駄時間として含む。max(L0,L1)は、L0及びL1のうちの大きい値(第3の無駄時間)を指す。
 同様に、式(6)におけるexp(-(max(L0,L1)-L1)s)は、C1(s)の無駄時間要素であり、“max(L0,L1)-L1”を無駄時間として含む。つまり、C1 (s)の無駄時間要素は、max(L0,L1)とL1との差分を無駄時間として含む。
 Txは、比率制御全体の一次遅れ時間を指定する値であり、式(7)で示される条件を満足する値である。
  min(T0,T1)<Tx<max(T0,T1)     ----(7)
 ここでmin(T0,T1)は、T0及びT1のうち小さい値を指す。max(T0,T1)は、上述のmax(L0,L1)と同様である。したがって、T0がT1よりも小さいならば、TxはT0よりも大きくT1よりも小さい値である。また、T0がT1よりも大きいならば、TxはT1よりも大きくT0よりも小さい値である。つまりTxはT0とT1との間の値である。
 式(3),(4),(5)及び(6)を使用するならば、式(1)で示される伝達関数βμC0(s)G0(s)及び式(2)で示される伝達関数C1(s)G1(s)は、それぞれ式(8)及び(9)で表わされる。 
Figure JPOXMLDOC01-appb-M000004
 式(5)及び(6)で示される伝達関数C0(s)及びC1(s)が適用された場合、式(8)及び(9)から明らかなように、C0(s)G0(s)=C1(s)G1(s)の条件は成立する。よって、第1の実施形態に係る燃焼制御装置は、空気流量プロセス101と燃料流量プロセス111とがそれぞれ異なる無駄時間を持ち、かつ燃焼要求レベルが急変するような過渡状態においても、フィードフォワード補償型比率制御により、常に空気流量PV0と燃料流量PV1とを設定比率βμの近傍で制御することができる。
 なお、C0(s)G0(s)とC1(s)G1(s)との関係に関し、C0(s)G0(s)=C1(s)G1(s)以外の条件を用いることも可能である。例えば、C0(s)G0(s)とC1(s)G1(s)とがほぼ等しいという条件(C0(s)G0(s)≒C1(s)G1(s))を用いても構わない。つまり、C0(s)G0(s)とC1(s)G1(s)とが許容される範囲で等しくなるように、C0(s)及びC1(s)が設定されても構わない。
 <第2の実施形態>
 図2は第2の実施形態に係る燃焼制御装置の一例を示すブロック図である。図2において、図1と等価な要素には同一参照番号を付して、詳細な説明を省略する。図2に示す燃焼制御装置は、フィードフォワード型補償法及びクロスリミット制御法を組み合わせた燃焼制御方法(以下、フィードフォワード補償型クロスリミット制御法と称する)を適用する。
 フィードフォワード補償型クロスリミット制御法を適用する図2に示す燃焼制御装置は、クロスリミット制御法を適用する従来の燃焼制御装置と同様に、制御ループ10及び11と、比率設定器12とに加えて、定数倍器20と、高レベルセレクタ(以下、Hセレクタと称する)21と、低レベルセレクタ(以下、Lセレクタと称する)22とを備えている。この燃焼制御装置が、従来の燃焼制御装置と相違する点は、図2において破線の枠F2で囲まれた構成、つまりDFF(動的フィードフォワード)補償器13及び14と、切り替え器(以下、SWと称する)23及び24と、判定器25とを更に備えていることにある。
 定数倍器20は、空気流量PV0を定数倍する。具体的には、定数倍器20は、空気流量PV0に定数1/βμを乗じることにより、設定値SV1に対応する指令値PV0/βμを生成する。
 Hセレクタ21及びLセレクタ22は、それぞれ第1及び第2のクロスリミット制御器として機能する。すなわちHセレクタ21は、マスター信号M(マスター信号Mの示す燃焼要求レベル)または燃料流量PV1のうちレベルが高い方を、設定値SV0に対応する指令値として選択する。一方、Lセレクタ22は、マスター信号M(マスター信号Mの示す燃焼要求レベル)または指令値PV0/βμのうちレベルが低い方を、設定値SV1に対応する指令値として選択する。
 ここで、図2に示す燃焼制御装置に与えられるマスター信号Mの示す燃焼要求レベルが上昇したものとする。つまり、マスター信号Mにより燃焼増が要求されたものとする。しかも、M>PV1で、かつM>PV0/βμであるものとする。M>PV1の場合、Hセレクタ21は、マスター信号Mを、設定値SV0に対応する指令値として選択する。これに対してLセレクタ22は、M>PV0/βμであることから、PV0/βμ(つまり、定数倍器20の出力)を、設定値SV1に対応する指令値として選択する。
 このように燃焼増が要求された場合、Hセレクタ21は、空気流量に関してクロスリミット制御により燃焼増の要求を優先することで、制御ループ10における空気流量PV0の増加を先行させる。一方、Lセレクタ22は、空気流量(実空気流量)PV0の増加に燃料流量PV1(制御ループ11)を追従させる。つまり燃焼増が要求された場合、クロスリミット制御により、まず空気流量PV0が増加し、当該空気流量PV0の増加に追従して燃料流量PV1が増加する。
 逆に、マスター信号Mの示す燃焼要求レベルが低下したものとする。つまり、マスター信号Mにより燃焼減が要求されたものとする。しかも、M<PV1で、かつM<PV0/βμであるものとする。この場合、Lセレクタ22は、マスター信号Mを、設定値SV1に対応する指令値として選択する。これに対してHセレクタ21は、M<PV1であることから、燃料流量PV1を、設定値SV1に対応する指令値として選択する。
 このように燃焼減が要求された場合、Lセレクタ22は、燃料流量に関してクロスリミット制御により燃焼減の要求を優先することで、制御ループ11における燃料流量PV1の減少を先行させる。一方、Hセレクタ21は、燃料流量(実燃料流量)PV1の減少に空気流量PV0(制御ループ10)を追従させる。つまり燃焼減が要求された場合、クロスリミット制御により、まず燃料流量PV1が減少し、当該燃料流量PV1の減少に追従して空気流量PV0が減少する。
 このような、クロスリミット制御による“先行-追従”を適用した場合、過渡的には空気過剰を招き、かつ応答速度も比較的遅い。しかし第2の実施形態では、“先行-追従”の手法は後述する切り替え条件SCが不成立の場合に適用される。このような状態で、“先行-追従”の手法の適用により図2に示す燃焼制御装置をより安全サイドで動作させることは、たとえプロセスの特性変化やフィードバック制御調整不足等が発生したとしても有益である。
 SW23は、DFF補償器13の出力とHセレクタ21の出力とを切り替え信号qに応じて切り替える。より詳細に述べるならば、SW23は、DFF補償器13の出力またはHセレクタ21の出力のいずれか一方を切り替え信号qに応じて比率設定器12の入力側に切り替える。つまりSW23は、DFF補償器13の出力またはHセレクタ21の出力のいずれか一方を切り替え信号qに応じて選択する。
 SW24は、DFF補償器14の出力とLセレクタ22の出力とを切り替え信号qに応じて切り替える。より詳細に述べるならば、SW24は、DFF補償器14の出力またはLセレクタ22の出力のいずれか一方を切り替え信号qに応じて制御ループ11(フィードバック制御器112)の入力側に切り替える。つまりSW23は、DFF補償器14の出力またはLセレクタ22の出力のいずれか一方を切り替え信号qに応じて選択する。
 第2の実施形態において、SW23及び24は、切り替え信号qが第1のレベルHの場合、それぞれDFF補償器13及び14の出力を選択する。またSW23及び24は、切り替え信号qが第2のレベルLの場合、それぞれHセレクタ21及びLセレクタ22の出力を選択する。
 切り替え信号qは、判定器25によって生成される。判定器25は、定数倍器20の出力PV0/βμ及び制御ループ11の出力PV1に基づいて、SW23及び24の切り替え条件SCが成立したか否かを判定する。この切り替え条件SCは式(10)で示される。
  (1-K)βμPV1<PV0<(1+K)βμPV1   ----(10)
 ここで、Kは空気流量の許容誤差係数である。許容誤差係数Kは、プロセス毎の燃焼運転方針に依存するが、例えば0.1程度である。
 式(10)から明らかなように、切り替え条件SCは、空気流量(空気流量の%値)PV0が、(1-K)βμPV1を上回り、かつ(1+K)βμPV1を下回る場合に成立する。つまり切り替え条件SCは、空気流量(燃料流量の%値)PV0が、燃料流量(燃料流量の%値)PV1を基準とする許容誤差の範囲(つまり許容範囲)に入っている場合に成立する。切り替え条件SCが成立したか否かを判定することは、燃料流量PV1に対する空気流量PV0の比率(つまり実比率)PV0/PV1の観点からは、当該実比率PV0/PV1が、設定比率βμの許容誤差の範囲(許容範囲)に入っているか否かを判定することと等価である。判定器25は、切り替え条件SCが成立したか否かに応じて、第1のレベルHまたは第2のレベルLの切り替え信号qを生成する。
 もし、切り替え条件SCが成立しているならば、判定器25は実比率PV0/PV1が設定比率βμの許容範囲に入っているものとして、第1のレベルHの切り替え信号qを生成する。これに対して切り替え条件SCが成立していないならば、判定器25は実比率PV0/PV1が設定比率βμの許容範囲から外れているものとして、第2のレベルLの切り替え信号qを生成する。
 SW23及び24は、切り替え信号qが第1のレベルHである場合、それぞれDFF補償器13及び14を選択する。すると図2に示される燃焼制御装置は、第1の実施形態と同様のフィードフォワード型補償による燃焼制御を実行する。このように第2の実施形態においては、切り替え条件SCが成立している場合、燃焼制御装置はフィードフォワード型補償に基づく燃焼制御(比率制御)を実行する。つまり、実比率PV0/PV1(または空気流量PV0)が設定比率βμの許容範囲(または燃料流量PV1を基準とする許容範囲)に入っているならば、燃焼制御装置はフィードフォワード型補償に基づく燃焼制御を実行する。これにより第2の実施形態によれば、切り替え条件SCが成立しているならば、燃焼要求レベルが急変するような過渡状態においても、第1の実施形態と同様に、フィードフォワード補償型比率制御により、常に空気流量PV0と燃料流量PV1とを設定比率βμの近傍で制御することができる。
 一方、切り替え信号qが第2のレベルLである場合、SW23及び24は、それぞれHセレクタ21及びLセレクタ22を選択する。すると、図2に示される燃焼制御装置は、従来のクロスリミット制御と同様の燃焼制御を実行する。このように第2の実施形態においては、切り替え条件SCが成立していない場合、燃焼制御装置はクロスリミット制御に基づく燃焼制御を実行する。よって第2の実施形態によれば、実比率が許容範囲から外れるような状況でも、クロスリミット制御の適用により燃焼に関して安全性を確保することができる。
 <第3の実施形態>
 図3は第3の実施形態に係る燃焼制御装置の一例を示すブロック図である。図3において、図2と等価な要素には同一参照番号を付して、詳細な説明を省略する。図3に示す燃焼制御装置は、フィードフォワード型補償法及びダブルクロスリミット制御法を組み合わせた燃焼制御方法(以下、フィードフォワード補償型ダブルクロスリミット制御法と称する)を適用する。
 フィードフォワード補償型ダブルクロスリミット制御法を適用する図3に示す燃焼制御装置は、ダブルクロスリミット制御法を適用する従来の燃焼制御装置と同様に、制御ループ10及び11と、比率設定器12とに加えて、定数倍器20と、定数倍器201ないし204と、中間レベルセレクタ(以下、MEDセレクタと称する)210及び220とを備えている。この燃焼制御装置が、従来の燃焼制御装置と相違する点は、図3において破線の枠F3で囲まれた構成、つまりDFF(動的フィードフォワード)補償器13及び14と、切り替え器(以下、SWと称する)230及び240と、判定器250とを更に備えていることにある。
 定数倍器201は定数倍器20の出力(PV0/βμ)を定数倍する。具体的には、定数倍器201は、定数倍器20の出力(PV0/βμ)に定数1+K1を乗じることにより、設定値SV1に対応する指令値(1+K1)PV0/βμを生成する。K1は、燃焼要求レベル上昇時の発煙限界を示す設定値である。発煙限界とは、黒煙や一酸化炭素の発生を招く空気量不足の限界を指す。
 定数倍器202は燃料流量(燃料流量の%値)PV1を定数倍する。具体的には、定数倍器202は、燃料流量PV1に定数1-K2を乗じることにより、設定値SV0に対応する指令値(1-K2)PV1を生成する。K2は、燃焼要求レベル低下時の発煙限界を示す設定値である。
 定数倍器203は定数倍器20の出力(PV0/βμ)を定数倍する。具体的には、定数倍器203は、定数倍器20の出力(PV0/βμ)に定数1-K3を乗じることにより、設定値SV1に対応する指令値(1-K3)PV0/βμを生成する。K3は、燃焼要求レベル低下時の空気過剰限界を示す設定値である。空気過剰限界とは、酸化窒素や酸化硫黄の発生を招く空気量過剰の限界を指す。
 定数倍器204は燃料流量PV1を定数倍する。具体的には、定数倍器204は、燃料流量PV1に定数1+K4を乗じることにより、設定値SV0に対応する指令値(1+K4)PV1を生成する。K4は、燃焼要求レベル上昇時の空気過剰限界を示す設定値である。
 MEDセレクタ210は、第1のダブルクロスリミット制御器として機能する。すなわちMEDセレクタ210は、マスター信号Mが変化しても、設定値(空気流量設定値)SV0(より詳細には、設定値SV0に対応する指令値)を燃料流量(実燃料流量)PV1に対して許容される範囲に制限するように動作する。そのためMEDセレクタ210は、マスター信号M(マスター信号Mの示す燃焼要求レベル)、定数倍器202の出力(1-K2)PV1、及び定数倍器204の出力(1+K4)PV1のうち、レベルが2番目に高い方(つまり、最も高くなく、かつ最も低くない方)を、設定値SV0に対応する指令値(実指令値)として選択する。
 MEDセレクタ220は第2のダブルクロスリミット制御器として機能する。すなわちMEDセレクタ220は、マスター信号Mが変化しても、設定値(燃料流量設定値)SV1を空気流量(実空気流量)PV0に対して許容される範囲に制限するように動作する。そのためMEDセレクタ220は、マスター信号M(マスター信号Mの示す燃焼要求レベル)、定数倍器201の出力(1+K1)PV0/βμ、及び定数倍器203の出力(1-K3)PV0/βμのうち、レベルが2番目に高い方(つまり、最も高くなく、かつ最も低くない方)を、設定値SV1に対応する指令値(実指令値)として選択する。
 このように図3に示される燃焼制御装置は、ダブルクロスリミット制御を適用する。これにより燃焼制御装置は、マスター信号Mが変化しても、設定値SV0を燃料流量PV1に対して許容される範囲に制限し、かつ設定値SV1を空気流量PV0に対して許容される範囲に制限する。
 ダブルクロスリミット制御が適用された場合、燃焼制御の応答速度は、過渡的にはクロスリミット制御よりも遅くなる。しかし第3の実施形態では、ダブルクロスリミット制御は、後述する切り替え条件SC1及びSC2が不成立の場合に適用される。このような状態で、ダブルクロスリミット制御の適用により図3に示す燃焼制御装置をより安全サイドで動作させることは、たとえプロセスの特性変化やフィードバック制御調整不足等が発生したとしても有益である。
 SW230は、DFF補償器13の出力またはMEDセレクタ210の出力のいずれか一方を切り替え信号q0に応じて比率設定器12の入力側に切り替える。つまりSW230は、DFF補償器13の出力またはMEDセレクタ210の出力のいずれか一方を切り替え信号q0に応じて選択する。
 SW240は、DFF補償器14の出力またはMEDセレクタ220の出力のいずれか一方を切り替え信号q1に応じて制御ループ11(フィードバック制御器112)の入力側に切り替える。つまりSW240は、DFF補償器14の出力またはMEDセレクタ220の出力のいずれか一方を切り替え信号q1に応じて選択する。
 第3の実施形態において、SW230及び240は、切り替え信号q0及びq1が第1のレベルHの場合、それぞれDFF補償器13及び14の出力を選択する。またSW230及び240は、切り替え信号q0及びq1が第2のレベルLの場合、それぞれMEDセレクタ210及び220の出力を選択する。
 切り替え信号q0及びq1は、判定器250によって生成される。判定器250は、定数倍器20の出力PV0/βμ及び制御ループ11の出力PV1に基づいて、SW230の切り替え条件SC1及びSW240の切り替え条件SC2が成立したか否かを判定する。切り替え条件SC1及びSC2は、それぞれ式(11)及び(12)で示される。
  (1-K2)βμPV1<PV0<(1+K4)βμPV1  ----(11)
  (1-K3)PV0<βμPV1<(1+K1)PV0    ----(12)
 式(11)から明らかなように、切り替え条件SC1は、空気流量(空気流量の%値)PV0が、(1-K2)βμPV1を上回り、かつ(1+K4)βμPV1を下回る場合に成立する。つまり、切り替え条件SC1は、空気流量(空気流量の%値)PV0が、燃料流量(燃料流量の%値)PV1を基準とする許容範囲に入っている場合に成立する。
 (1-K2)βμPV1は、設定値K2(つまり、燃焼要求レベル低下時の発煙限界の設定値K2)と設定比率βμと燃料流量PV1とで決まる。この(1-K2)βμPV1は、燃焼要求レベル低下時において空気流量PV0が燃料流量PV1と比較して相対的に少ない場合に、実比率PV0/PV1を許容範囲に保ちつつ、発煙を回避することが可能な空気流量の下限値を示す。つまり、(1-K2)βμPV1は、燃料流量PV1を基準とする場合の空気流量PV0の許容範囲(以下、第1の許容範囲と称する)の下限値を示す。この第1の許容範囲の下限値は、燃焼要求レベル低下時の発煙限界に対応する。
 ここで、(1-K2)βμに着目するならば、当該(1-K2)βμは、燃料流量PV1を基準とする場合の実比率PV0/PV1の許容範囲の下限値を示す。この許容範囲は第1の許容範囲に相当し、当該許容範囲の下限値は燃焼要求レベル低下時の発煙限界に対応する。
 一方、(1+K4)βμPV1は、設定値K4(つまり、燃焼要求レベル上昇時の空気過剰限界の設定値K4)と設定比率βμと燃料流量PV1とで決まる。この(1+K4)βμPV1は、燃焼要求レベル上昇時において空気流量PV0が燃料流量PV1と比較して相対的に多い場合に、実比率PV0/PV1を許容範囲に保ちつつ、酸化窒素や酸化硫黄の発生を回避することが可能な空気流量の上限値を示す。つまり、(1+K4)βμPV1は、第1の許容範囲の上限値を示す。この第1の許容範囲の上限値は、燃焼要求レベル上昇時の空気過剰限界に対応する。
 ここで、(1+K4)βμに着目するならば、当該(1+K4)βμは、燃料流量PV1を基準とする場合の実比率PV0/PV1の許容範囲の上限値を示す。この許容範囲は第1の許容範囲に相当し、当該許容範囲の上限値は燃焼要求レベル上昇時の空気過剰限界に対応する。以下の説明では、燃料流量PV1を基準とする場合の実比率PV0/PV1の許容範囲も第1の許容範囲と称する。
 以上の説明から明らかなように、切り替え条件SC1が成立したか否かを判定することは、燃料流量PV1を基準とする空気流量PV0(または、実比率PV0/PV1)の観点からは、当該空気流量PV0(実比率PV0/PV1)が第1の許容範囲に入っているか否かを判定することと等価である。切り替え条件SC1は、燃料流量PV1を基準とする空気流量PV0(実比率PV0/PV1)が第1の許容範囲に入っている場合に成立する。
 式(12)から明らかなように、切り替え条件SC2は、燃料流量(燃料流量の%値)PV1のβμ倍の値βμPV1が、(1-K3)PV0を上回り、かつ(1+K1)PV0を下回る場合に成立する。つまり、切り替え条件SC2は、燃料流量(燃料流量の%値)PV1が、空気流量(空気流量の%値)PV0を基準とする許容範囲に入っている場合に成立する。
 (1-K3)PV0は、設定値K3(つまり、燃焼要求レベル低下時の空気過剰限界の設定値K3)と空気流量PV0とで決まる。この(1-K3)PV0は、燃焼要求レベル低下時において燃料流量PV1が空気流量PV0と比較して相対的に少ない場合に、実比率PV0/PV1を許容範囲に保ちつつ、酸化窒素や酸化硫黄の発生を回避することが可能な燃料流量の下限値(より詳細には、燃料流量の下限値のβμ倍の値)を示す。つまり、(1-K3)PV0は、空気流量PV0を基準とする場合の燃料流量PV1の許容範囲(以下、第2の許容範囲と称する)の下限値を示す。この第2の許容範囲の下限値は、燃焼要求レベル低下時の空気過剰限界に対応する。
 ここで、βμ/(1-K3)に着目するならば、当該βμ/(1-K3)は、空気流量PV0を基準とする場合の実比率PV0/PV1の許容範囲の上限値を示す。この許容範囲は第2の許容範囲に相当し、当該許容範囲の上限値は、燃焼要求レベル低下時の空気過剰限界に対応する。
 一方、(1+K1)PV0は、設定値K1(つまり、燃焼要求レベル上昇時の発煙限界の設定値K1)と空気流量PV0とで決まる。この(1+K1)PV0は、燃焼要求レベル上昇時において燃料流量PV1が空気流量PV0と比較して相対的に多い場合に、実比率PV0/PV1を許容範囲に保ちつつ、発煙を回避することが可能な燃料流量の上限値(より詳細には、燃料流量の上限値のβμ倍の値)を示す。つまり(1+K1)PV0は、第2の許容範囲の上限値を示す。この第2の許容範囲の上限値は、燃焼要求レベル上昇時の発煙限界に対応する。
 ここで、βμ/(1+K1)に着目するならば、当該βμ/(1+K1)は、空気流量PV0を基準とする場合の実比率PV0/PV1の許容範囲の下限値を示す。この許容範囲は第2の許容範囲に相当し、当該許容範囲の下限値は、燃焼要求レベル上昇時の発煙限界に対応する。以下の説明では、燃料流量PV0を基準とする場合の実比率PV0/PV1の許容範囲も第2の許容範囲と称する。
 以上の説明から明らかなように、切り替え条件SC2が成立したか否かを判定することは、空気流量PV0を基準とする燃料流量PV1(または、実比率PV0/PV1)の観点からは、当該燃料流量PV1(実比率PV0/PV1)が第2の許容範囲に入っているか否かを判定することと等価である。切り替え条件SC2は、空気流量PV0を基準とする燃料流量PV1(実比率PV0/PV1)が第2の許容範囲に入っている場合に成立する。
 判定器250は、切り替え条件SC1が成立したか否かに応じて、第1のレベルHまたは第2のレベルLの切り替え信号q0を生成する。判定器250はまた、切り替え条件SC2が成立したか否かに応じて、第1のレベルHまたは第2のレベルLの切り替え信号q1を生成する。
 SW230及び240は、それぞれ切り替え信号q0及びq1が第1のレベルHである場合、DFF補償器13及び14を選択する。すると図3に示される燃焼制御装置は、第1の実施形態と同様のフィードフォワード型補償による燃焼制御(比率制御)を実行する。このように燃焼制御装置は、切り替え条件SC1及びSC2がいずれも成立している場合、空気系及び燃料系の両方でフィードフォワード型補償に基づく燃焼制御を実行する。よって第3の実施形態によれば、空気流量PV0及び燃料流量PV1(実比率PV0/PV1)が第1及び第2の許容範囲に入っているならば、燃焼要求レベルが急変するような過渡状態においても、空気流量PV0と燃料流量PV1とを比率βμで制御することができる。
 一方、切り替え信号q0が第2のレベルLである場合、SW230はMEDセレクタ210を選択する。これにより図3に示される燃焼制御装置は、ダブルクロスリミット制御を用いて空気系を制御する。同様に、切り替え信号q1が第2のレベルLである場合、SW240はMEDセレクタ220を選択する。これにより燃焼制御装置は、ダブルクロスリミット制御を用いて燃料系を制御する。このように燃焼制御装置は、切り替え条件SC1及びSC2がいずれも不成立の場合、空気系及び燃料系の両方でダブルクロスリミット制御に基づく燃焼制御を実行する。よって第3の実施形態によれば、空気流量PV0及び燃料流量PV1(実比率PV0/PV1)が第1及び第2の許容範囲から外れるような状況でも、ダブルクロスリミット制御の適用により燃焼に関して安全性を確保することができる。
 上述の第1ないし第3の実施形態では、フィードフォワード型補償のためにDFF補償器13及び14が共通に用いられる。DFF補償器13及び14の定数(伝達関数)は、それぞれ、プラントの実運転時に測定可能な無駄時間L0及び一次遅れ時間T0の対、及び無駄時間L1及び一次遅れ時間T1の対に基づいて一意に決定される。このように第1ないし第3の実施形態に係る燃焼制御装置は明確な最適調整則を持つ。よって第1ないし第3の実施形態によれば、いずれも、実プロセスの運用への導入が容易な燃焼制御装置を提供することができる。
 以上説明した少なくとも1つの実施形態によれば、空気流量プロセスと燃料流量プロセスとが異なる無駄時間を持ち、かつ燃焼要求レベルが急変するような過渡状態でも、空気流量と燃料流量との比率が設定比率の近傍となるように両流量を制御することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (5)

  1.  空気流量と燃料流量との比率を調整するための燃焼制御装置において、
     前記調整されるべき比率を設定する比率設定器と、
     燃焼炉に空気を供給する空気流量プロセスと、前記空気流量プロセスを制御する第1のフィードバック制御器とを含む第1の制御ループと、
     前記燃焼炉に燃料を供給する燃料流量プロセスと、前記燃料流量プロセスを制御する第2のフィードバック制御器とを含む第2の制御ループと、
     前記燃焼要求レベルの変化に対する前記第1の制御ループの応答性に関連する前記空気流量プロセスの第1の無駄時間を補償する第1の動的フィードフォワード補償器と、
     前記燃焼要求レベルの変化に対する前記第2の制御ループの応答性に関連する前記燃料流量プロセスの第2の無駄時間を補償する第2の動的フィードフォワード補償器とを具備し、
      前記第1のフィードバック制御器は、
     前記燃焼炉における燃焼を要求するマスター信号の示す燃焼要求レベルの変化に応じて前記比率設定器により設定された比率で変化する前記空気流量及び前記燃料流量それぞれの目標値である第1及び第2の設定値のうちの前記第1の設定値に対して前記空気流量が追従するように、前記空気流量プロセスを制御し、
      前記第2のフィードバック制御器は、
     前記第2の設定値に対して前記燃料流量が追従するように、前記燃料流量プロセスを制御することを特徴とする、燃焼制御装置。
  2.  前記第1の動的フィードフォワード補償器の伝達関数C0(s)と前記第1の制御ループの伝達関数G0(s)との積C0(s)G0(s)と、前記第2の動的フィードフォワード補償器の伝達関数C1(s)と前記第2の制御ループの伝達関数G1(s)との積C1(s)G1(s)とが、ほぼ等しくなるように、前記伝達関数C0(s)及びC1(s)が設定される請求項1に記載の燃焼制御装置。
  3.  前記伝達関数C0(s)は、前記第1の無駄時間及び前記第2の無駄時間のうちの大きい値である第3の無駄時間と前記第1の無駄時間との差分を無駄時間として含む無駄時間要素を有し、
     前記伝達関数C1(s)は、前記第3の無駄時間と前記第2の無駄時間との差分を無駄時間として含む無駄時間要素を有する、請求項2に記載の燃焼制御装置。
  4.  さらに、前記マスター信号によって燃焼増が要求された場合、前記空気流量に関して前記燃焼増の要求を優先することで、前記空気流量の増加を先行させ、前記マスター信号によって燃焼減が要求された場合、前記燃料流量の減少に前記第1の制御ループを追従させる第1のクロスリミット制御器と、
     前記マスター信号によって前記燃焼減が要求された場合、前記燃料流量に関して前記燃焼減の要求を優先することで、前記燃料流量の減少を先行させ、前記マスター信号によって前記燃焼増が要求された場合、前記空気流量の増加に前記第2の制御ループを追従させる第2のクロスリミット制御器と、
     前記空気流量と前記燃料流量との比率である実比率が許容範囲に入っているかに応じて、前記第1の動的フィードフォワード補償器の出力または前記第1のクロスリミット制御器の出力のいずれか一方を選択する第1の切り替え器と、
     前記実比率が前記許容範囲に入っているかに応じて、前記第2の動的フィードフォワード補償器の出力または前記第2のクロスリミット制御器の出力のいずれか一方を選択する第2の切り替え器とを具備することを特徴とする、請求項1に記載の燃焼制御装置。
  5.  さらに、前記第1の設定値を前記燃料流量に対して許容される範囲に制限する第1のダブルクロスリミット制御器と、
     前記第2の設定値を前記空気流量に対して許容される範囲に制限する第2のダブルクロスリミット制御器と、
     前記空気流量が前記燃料流量を基準とする第1の許容範囲に入っているかに応じて、前記第1の動的フィードフォワード補償器の出力または前記第1のダブルクロスリミット制御器の出力のいずれか一方を選択する第1の切り替え器と、
     前記燃料流量が前記空気流量を基準とする第2の許容範囲に入っているかに応じて、前記第2の動的フィードフォワード補償器の出力または前記第2のダブルクロスリミット制御器の出力のいずれか一方を選択する第2の切り替え器と具備することを特徴とする、請求項1記載の燃焼制御装置。
PCT/JP2014/050411 2013-07-19 2014-01-14 燃焼制御装置 WO2015008497A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYPI2016700157A MY183381A (en) 2013-07-19 2014-01-14 Combustion control apparatus
AU2014291501A AU2014291501B2 (en) 2013-07-19 2014-01-14 Combustion control device
CN201480040909.8A CN105393056B (zh) 2013-07-19 2014-01-14 燃烧控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013150452A JP6202919B2 (ja) 2013-07-19 2013-07-19 燃焼制御装置
JP2013-150452 2013-07-19

Publications (1)

Publication Number Publication Date
WO2015008497A1 true WO2015008497A1 (ja) 2015-01-22

Family

ID=52345973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050411 WO2015008497A1 (ja) 2013-07-19 2014-01-14 燃焼制御装置

Country Status (5)

Country Link
JP (1) JP6202919B2 (ja)
CN (1) CN105393056B (ja)
AU (1) AU2014291501B2 (ja)
MY (1) MY183381A (ja)
WO (1) WO2015008497A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7496768B2 (ja) 2020-12-18 2024-06-07 株式会社豊田中央研究所 メタン製造装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208207B (zh) * 2019-06-28 2022-03-29 四川工程职业技术学院 一种碳硫含量检测方法及检测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183005A (ja) * 1997-09-08 1999-03-26 Toshiba Corp 炉温燃焼制御装置
JP2000328073A (ja) * 1999-05-17 2000-11-28 Hitachi Ltd 化石燃料ガス化・利用設備の制御方法、その制御装置、及び制御装置の一部を構成する先行指令値発生装置
JP2001021141A (ja) * 1999-07-02 2001-01-26 Sumitomo Light Metal Ind Ltd 加熱炉の燃焼制御方法及び装置
JP2002215204A (ja) * 2001-01-15 2002-07-31 Toshiba Corp 比率制御方法及びその装置
JP2002309990A (ja) * 2001-04-11 2002-10-23 Denso Corp 内燃機関の制御装置
JP3904905B2 (ja) * 2001-11-29 2007-04-11 株式会社東芝 ボイラー入力の調整制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232501A (ja) * 2007-03-19 2008-10-02 Ngk Insulators Ltd 燃焼加熱炉の空燃比制御システム
CN201222183Y (zh) * 2008-07-02 2009-04-15 南京金炼科技有限公司 加热炉优化控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183005A (ja) * 1997-09-08 1999-03-26 Toshiba Corp 炉温燃焼制御装置
JP2000328073A (ja) * 1999-05-17 2000-11-28 Hitachi Ltd 化石燃料ガス化・利用設備の制御方法、その制御装置、及び制御装置の一部を構成する先行指令値発生装置
JP2001021141A (ja) * 1999-07-02 2001-01-26 Sumitomo Light Metal Ind Ltd 加熱炉の燃焼制御方法及び装置
JP2002215204A (ja) * 2001-01-15 2002-07-31 Toshiba Corp 比率制御方法及びその装置
JP2002309990A (ja) * 2001-04-11 2002-10-23 Denso Corp 内燃機関の制御装置
JP3904905B2 (ja) * 2001-11-29 2007-04-11 株式会社東芝 ボイラー入力の調整制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7496768B2 (ja) 2020-12-18 2024-06-07 株式会社豊田中央研究所 メタン製造装置

Also Published As

Publication number Publication date
CN105393056A (zh) 2016-03-09
JP2015022535A (ja) 2015-02-02
MY183381A (en) 2021-02-18
JP6202919B2 (ja) 2017-09-27
AU2014291501B2 (en) 2017-02-16
CN105393056B (zh) 2017-10-24
AU2014291501A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
CN101482732A (zh) 混合煤气热值的稳定控制方法
CN108227500A (zh) 一种火电机组快速调峰的协调控制方法及系统
CN105927976B (zh) 一种用于大型循环流化床机组的直接能量平衡协调控制系统
WO2010021176A1 (ja) 制御システム、制御システム用プログラム、燃焼制御方法及びボイラシステム
CN205842637U (zh) 一种用于大型循环流化床机组的直接能量平衡协调控制系统
WO2015025729A1 (ja) ボイラシステム
WO2023078352A1 (zh) 超(超)临界燃煤机组变负荷锅炉超前加速控制系统及方法
CN104676638B (zh) 一种锅炉降负荷过程中的低氮燃烧风门控制方法
JP6202919B2 (ja) 燃焼制御装置
CN111045321B (zh) 一种深度调峰下的协调控制带嵌入式内模控制器的方法
JP2016223686A (ja) 多缶設置ボイラ
CN204063028U (zh) 超临界cfb锅炉床温控制系统
JP2008075529A (ja) 系統周波数安定化装置及び方法
JP2001021141A (ja) 加熱炉の燃焼制御方法及び装置
JP2012037096A (ja) ボイラ多缶設置システム
JP5707975B2 (ja) 加熱炉の操炉方法
JPH10232016A (ja) 混焼ボイラの燃料供給制御方法とその装置
JP2011157860A (ja) 混焼システム
CN111472852B (zh) 一种发电机组基于中间点焓值调频逻辑优化方法
JPS6133362Y2 (ja)
JP6115093B2 (ja) ボイラシステム
RU2416759C1 (ru) Способ автоматического регулирования взаимосвязанных процессов нагрузки прямоточного котла в условиях технологических ограничений
JPS60159516A (ja) 多種燃料混焼制御装置
JP2007262277A (ja) コークス炉の投入熱量制御方法
JPH06257741A (ja) 多品種燃料の燃焼制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480040909.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014291501

Country of ref document: AU

Date of ref document: 20140114

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201601027

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14826961

Country of ref document: EP

Kind code of ref document: A1