WO2023078352A1 - 超(超)临界燃煤机组变负荷锅炉超前加速控制系统及方法 - Google Patents

超(超)临界燃煤机组变负荷锅炉超前加速控制系统及方法 Download PDF

Info

Publication number
WO2023078352A1
WO2023078352A1 PCT/CN2022/129551 CN2022129551W WO2023078352A1 WO 2023078352 A1 WO2023078352 A1 WO 2023078352A1 CN 2022129551 W CN2022129551 W CN 2022129551W WO 2023078352 A1 WO2023078352 A1 WO 2023078352A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
output
multiplier
load
function converter
Prior art date
Application number
PCT/CN2022/129551
Other languages
English (en)
French (fr)
Inventor
沈乾坤
金国强
王辰昱
安朝榕
张振伟
宋国鹏
胡亚敏
吴恒运
孟阳
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2023078352A1 publication Critical patent/WO2023078352A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D13/00Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
    • G05D13/62Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover characterised by the use of electric means, e.g. use of a tachometric dynamo, use of a transducer converting an electric value into a displacement

Definitions

  • the disclosure relates to the technical field of automatic control of thermal power plants, and in particular to a super (super) critical coal-fired unit variable load boiler advance acceleration control system and method.
  • the power grid power supply structure With the continuous growth of new energy installed capacity and the continuous increase of long-distance power supply outside the region, the power grid power supply structure has undergone fundamental changes, leading to increasing pressure on peak regulation.
  • the Supervision Bureau issued and implemented "two detailed rules", which strictly stipulated the assessment indicators of AGC (Automatic Generation Control) and primary frequency regulation; the coordinated control system of coal-fired units responded
  • the load change of the power grid generally adopts a coordinated control method based on boiler follow-up; however, the heat storage capacity of the super (super) critical once-through boiler itself is poor, and the control of the main steam pressure during the load change process is one of the difficulties.
  • the coordinated control system of super (ultra) critical coal-fired units is generally designed with a boiler variable load advance acceleration (BIR) loop during the load change process to ensure that the boiler heat signal can meet the energy demand of the turbine; ) circuit has more or less certain problems: 1. During the small-amplitude triangular wave load change process of the unit, the large fluctuations in coal volume, feed water flow, total air volume, and primary air pressure affect the stability of the main parameters of the unit; 2. Due to There are differences in the dynamic characteristics of the unit in the process of raising and lowering the load.
  • BIR boiler variable load advance acceleration
  • the unit uses the same control parameters in the process of raising and lowering the load, resulting in poor adjustment flexibility of the unit, and the main parameters of the unit cannot fully meet the operating requirements during the load lifting process; , the main parameters of the units in one or some load sections do not meet the requirements of the regulations; 4.
  • the main steam pressure is relatively high during the load-up process of the unit, and the main steam pressure rises rapidly, and the boiler lead of the same value is still increased during the load-up process.
  • the main steam pressure rises higher; the main steam pressure is low during the load increase process, and the main steam pressure has a downward trend.
  • the same amount of boiler lead is also increased during the load increase process, resulting in a greater drop in the main steam pressure, which seriously affects the control of the unit.
  • the load reduction process is similar; 5.
  • the boiler overshoot is set according to the low and medium load, which can easily cause boiler overshoot.
  • the middle point temperature correction circuit will increase a part of the feed water flow to reduce the temperature of the middle point to maintain the middle point.
  • the main steam pressure will rise even higher; in the process of increasing the load, the temperature at the middle point is lower, and the main steam pressure is generally lower.
  • the temperature correction circuit at the middle point will be reduced by a part
  • the feedwater flow rate is used to increase the temperature of the intermediate point to maintain the stability of the intermediate point temperature.
  • the pressure of the main steam will drop more, which is not conducive to the rapid and stable operation of the unit. 7.
  • the boiler energy increases too fast, which may easily cause the problem of overtemperature and overpressure of the unit; similarly, the boiler energy decreases too fast in the initial stage of load reduction, which may easily cause the problem of undertemperature and undervoltage; 8.
  • the purpose of the present disclosure is to provide a super (super) critical coal-fired unit variable load boiler advance acceleration control system and method, which can meet the needs of super (super) critical coal-fired thermal power units in variable load
  • a super (super) critical coal-fired unit variable load boiler lead acceleration control system characterized in that: it includes a load command input 1, and the load command input 1 is respectively connected to the input of the first lead lag link 2 and the first adder 3
  • One input the second input of the adder 3 is connected to the output of the first lead-lag link 2
  • the output of the adder 3 is connected to the input Y of the first analog switch 4
  • the constant 6 is connected
  • the switching condition of the first analog switch 4 is CCS mode input 5
  • the output of the first analog switch 4 is connected to the first input of the first multiplier 7, the second of the first multiplier 7
  • the input is connected to the output of the second analog switcher 15, the switching condition of the second analog switcher 15 is the output of the high-low limiter 12, and the input N of the second analog switcher 15 is connected to the first function converter 13
  • the output of the second analog switch 15 is connected to the output of the second function converter 14, the input of the high-low limit
  • the output of the first multiplier 7 is connected to the first input of the second multiplier 19, the second input of the second multiplier 19 is connected to the output of the thirteenth function converter 17, the input of the thirteenth function converter 17 Input 1 for the load command, the output of the second multiplier 19 is connected to the first input of the third multiplier 21, the second input of the third multiplier 21 is connected to the output of the eighth multiplier 30, the eighth multiplier 30
  • the first input of the first input is connected with the output of the fifth function converter 29
  • the input of the fifth function converter 29 is the main steam pressure input 28
  • the second input of the eighth multiplier 30 is connected with the output of the multiplier 34
  • the first The first input of the nine multiplier 34 is connected with the output of the fourth function converter 33, the input of the fourth function converter 33 is connected with the output of the first differential controller 32, and the input of the first differential controller 32 is connected with the output of the main differential controller 32.
  • the steam pressure setting value is connected with the actual value deviation input 31, the second input of the ninth multiplier 34 is connected
  • the first output of the third multiplier 21 is connected to the first input of the sixth multiplier 23, the second input of the sixth multiplier 23 is connected to the output of the twelfth multiplier 47, and the second input of the twelfth multiplier 47
  • One input is connected with the output of the tenth function converter 46, and the input of the tenth function converter 46 is connected with the output of the third differential controller 45, and the input of the third differential controller 45 is connected with the middle point temperature setting value and
  • the actual value deviation input 44 is connected, the second input of the twelfth multiplier 47 is connected with the output of the ninth function converter 48, the input of the ninth function converter 48 is connected with the middle point temperature setting value and the actual value deviation input 44 connected;
  • the output of the sixth multiplier 23 is connected to the input of the first rate limiter 25, the output of the first rate limiter 25 is connected to the first input of the second adder 27;
  • the output of the first multiplier 7 is connected to the first input of the third multiplier 20 simultaneously, and the second input of the third multiplier 20 is connected with the output of the fourteenth function converter 18, and the output of the fourteenth function converter 18
  • the input is load command input 1
  • the output of the third multiplier 20 is connected to the first input of the fifth multiplier 22
  • the second input of the fifth multiplier 22 is connected to the output of the eleventh multiplier 43
  • the eleventh multiplier 43 is connected to the output of the eleventh multiplier 43.
  • the first input of the multiplier 43 is connected with the output of the eighth function converter 37, the input of the eighth function converter 37 is the main steam pressure input 28, the second input of the eleventh multiplier 43 is connected with the tenth multiplier 41
  • the output of the tenth multiplier 41 is connected with the output of the seventh function converter 40, the input of the seventh function converter 40 is connected with the output of the second differential controller 39, and the second differential control
  • the input of the device 39 is connected with the main steam pressure setting value and the actual value deviation input 31, the second input of the tenth multiplier 41 is connected with the output of the sixth function converter 42, and the input of the sixth function converter 42 is connected with the output of the sixth function converter 42.
  • the main steam pressure setting value is connected with the actual value deviation input 31;
  • the first output of the fifth multiplier 22 is connected to the first input of the multiplier 24, the second input of the multiplier 24 is connected to the output of the thirteenth multiplier 52, and the first input of the thirteenth multiplier 52 is connected to the output of the thirteenth multiplier 52.
  • the output of the twelve function converter 51 is connected, the input of the twelfth function converter 51 is connected with the output of the fourth differential controller 50, the input of the fourth differential controller 50 is connected with the set value and the actual value of the middle point temperature
  • the deviation input 44 is connected, the second input of the thirteenth multiplier 52 is connected with the output of the eleventh function converter 53, and the input of the eleventh function converter 53 is connected with the middle point temperature setting value and the actual value deviation input 44 connected;
  • the output of the seventh multiplier 24 is connected to the input of the second rate limiter 26, the output of the second rate limiter 26 is connected to the second input of the second adder 27;
  • the output of the second adder 27 is respectively connected to the fuel command output 54, the input of the fifteenth function converter 55, and the input of the sixteenth function converter 57, and the output of the fifteenth function converter 55 is connected to the total air volume command output 56.
  • the output of the sixteenth function converter 57 is connected to the input of the second lead-lag link 58, and the output of the second lead-lag link 58 is connected to the primary air pressure setting value output 59;
  • the second output of the fourth multiplier 21 is connected to the first input of the fourteenth multiplier 61, the second input of the fourteenth multiplier 61 is connected with the output of the fifteenth multiplier 66, and the fifteenth multiplier 66
  • the first input of is connected with the output of the eighteenth function converter 65, the input of the eighteenth function converter 65 is connected with the output of the fifth differential controller 64, the input of the fifth differential controller 64 is connected with the middle point temperature
  • the set value is connected with the actual value deviation input 44, the second input of the fifteenth multiplier 66 is connected with the output of the seventeenth function converter 63, and the input of the seventeenth function converter 63 is connected with the intermediate point temperature setting value is connected to the actual value deviation input 44; the output of the fourteenth multiplier 61 is connected to the first input of the third adder 74;
  • the second output of the fifth multiplier 22 is connected to the first input of the sixteenth multiplier 68, the second input of the sixteenth multiplier 68 is connected to the output of the seventeenth multiplier 73, and the seventeenth multiplier 73
  • the first input of the first input is connected with the output of the nineteenth function converter 72
  • the input of the nineteenth function converter 72 is connected with the output of the sixth differential controller 71
  • the input of the sixth differential controller 71 is connected with the middle point temperature
  • the set value is connected with the actual value deviation input 44
  • the second input of the seventeenth multiplier 73 is connected with the output of the twentieth function converter 70
  • the input of the twentieth function converter 70 is connected with the middle point temperature setting value is connected to the actual value deviation input 44
  • the output of the sixteenth multiplier 68 is connected to the second input of the third adder 74;
  • the output of the third adder 74 is connected to the input of the twenty-first function converter 75, the output of the twenty-first function converter 75 is connected to the input of the third lead-lag link 76, and the output of the third lead-lag link 76 is connected To Feedwater Setpoint Output 77.
  • Step 1 Input 1 according to the load command of the unit, and obtain the dynamic feedforward basic value BIR01 of the input time, input rate and input process of the variable load boiler advance acceleration BIR command;
  • x is the load command input 1
  • is the time constant of the differential link
  • Step 2 According to the target load input 8 and the load command input 1, the load change range of the unit is obtained, that is, the output of the first adder 9, and then the load change rate is input into 11, and the comprehensive change range of the unit is obtained, which is the output of the divider 10.
  • Amplifier 12 corrects the dynamic feedforward basic value BIR01 instruction to obtain the BIR02 instruction;
  • the function value in f 1 (x) is smaller than the function value in f 2 (x), that is, when the comprehensive change range of the unit, that is, the output X of the divider 10 ⁇ 2
  • the boiler advance acceleration signal is corrected through the output of the first function converter, which is beneficial to the stability of the unit parameters;
  • the comprehensive change range of the unit is the output X of the divider 10 ⁇ 2
  • the boiler advance acceleration signal is corrected through the output of the second function converter;
  • Step 4 When the load of the unit is increased, according to the main steam pressure input 28, the deviation input 31 of the main steam pressure set value and the actual value, and the deviation differential between the main steam pressure set value and the actual value of the first differential controller 32, Using the theory of fuzzy control, the BIR03 instruction is amended to obtain the BIR05 instruction;
  • BIR05 BIR03*f 3 (X1)*f 4 (X2)*f 5 (X3)
  • X1 is input 31 for the deviation between the set value and actual value of the main steam pressure
  • X2 is the differential differential between the set value and the actual value of the main steam pressure
  • X3 is input 28 for the main steam pressure
  • f 3 (X1) is the third function Converter output
  • f 4 (X2) is the fourth function converter output
  • f 5 (X3) is the fifth function converter output
  • BIR06 BIR04*f 6 (X1)*f 7 (X2)*f 8 (X3)
  • X1 is input 31 for the deviation between the set value and actual value of the main steam pressure
  • X2 is the differential differential between the set value and the actual value of the main steam pressure
  • X3 is input 28 for the main steam pressure
  • f 6 (X1) is the sixth function Converter output
  • f 7 (X2) is the seventh function converter output
  • f 8 (X3) is the eighth function converter output
  • reducing the correction coefficient means simultaneously reducing the third function converter output f3(X) and the first The four-function converter outputs f4(X) to meet the boiler energy demand in the variable load process; the final correction coefficient is determined by the fuzzy control rule according to the deviation between the main steam pressure set value and the actual value and the deviation variation; the load reduction process is similar ;
  • Step 5 when the load of the unit is increased, according to the deviation input 44 of the intermediate point temperature setting value and the actual value and the deviation input differential of the intermediate point temperature setting value and the actual value of the third differential controller 45, the fuzzy control theory is adopted, Automatically correct the BIR05 command to obtain the load-up BIR07 command;
  • X1 is the deviation input 44 between the set value of the middle point temperature and the actual value
  • X2 is the deviation differential between the set value of the middle point temperature and the actual value
  • f 9 (X1) is the output of the ninth function converter
  • f 10 (X2 ) is the tenth function converter output
  • the fuzzy control theory is adopted, Automatically correct the BIR06 instruction to obtain the load-up BIR08 instruction;
  • X1 is the deviation input 44 between the set value of the middle point temperature and the actual value
  • X2 is the deviation differential between the set value of the middle point temperature and the actual value
  • f 11 (X1) is the output of the eleventh function converter
  • f 12 ( X2) is the output of the twelfth function converter
  • the fuzzy control rule is adopted to reduce the correction coefficient, that is, at the same time Reducing the output f9(X) of the ninth function converter and the output f10(X) of the tenth function converter not only meets the energy demand of the boiler in the variable load process, but also promotes the rapid stabilization of the main steam pressure and the intermediate point temperature;
  • the final correction coefficient is determined according to the deviation between the set value of the intermediate point temperature and the actual value and the magnitude of the deviation change; the load reduction process is similar;
  • Step 6 When the load of the unit is increased, the BIR07 instruction is processed by the first speed limiter 25 to obtain the BIR09 instruction;
  • the excessive increase of BIR07 command leads to overheating of the boiler wall temperature.
  • the value At the end of the load increase, the value will end slowly to ensure the stability of the boiler energy;
  • the BIR08 instruction is processed by the second rate speed limiter 26 to obtain the BIR10 instruction;
  • the rapid drop causes the temperature at the middle point of the boiler to drop too fast, resulting in large fluctuations in the temperature of the main steam. After the end of the load reduction, the value ends slowly to ensure the stability of the boiler energy;
  • Step 8 Process the generated variable-load boiler advance acceleration (BIR) command separately and superimpose it to the coal volume command, total air volume command and primary air pressure setting value, so that the final total fuel volume and total air volume entering the furnace match, and then To ensure the stability of oxygen;
  • BIR boiler advance acceleration
  • Step 9 when the load of the unit increases, according to the deviation input 44 of the intermediate point temperature setting value and the actual value and the deviation input differential of the intermediate point temperature setting value and the actual value of the fifth differential controller 64, the fuzzy control rule is adopted, Modify the BIR05 instruction to obtain the BIR11 instruction for increasing the load;
  • X1 is the deviation input 44 between the set value of the middle point temperature and the actual value
  • X2 is the deviation differential between the set value of the middle point temperature and the actual value
  • f 17 (X1) is the output of the seventeenth function converter
  • f 18 ( X2) is the eighteenth function converter output
  • X1 is the deviation input 44 between the set value of the middle point temperature and the actual value
  • X2 is the deviation differential between the set value of the middle point temperature and the actual value
  • f 19 (X1) is the output of the nineteenth function converter
  • f 20 ( X2) is the twentieth function converter output
  • step 5 when the temperature at the middle point is higher than the set value of the middle point temperature and the temperature at the middle point changes to a higher direction, at this time, the main steam pressure will also change to an increasing direction. It can be seen from step 5 that at this time, the coal supply command, The total air volume command and primary air pressure setting variable load lead will be reduced; at this time, the fuzzy control rule is adopted to increase the variable load lead correction coefficient of the water supply command, and the corresponding feedwater flow variable load overshoot increases, which is beneficial to the main steam pressure of the unit and The temperature at the middle point is stable; the load reduction process is similar.
  • the present disclosure has the following advantages:
  • variable load boiler of the disclosed super (super) critical coal-fired unit can be corrected according to the variable load range.
  • a small load change can ensure the stability of the main parameters of the unit, and a large load change can meet the load command requirements of the unit;
  • the boiler advance acceleration (BIR) circuit adds a speed limit function to ensure that there is no wall temperature overheating problem during the load change process of the unit, which is conducive to the safe operation of the unit;
  • This control method can be applied to the advanced acceleration control loop of the variable load boiler in the coordinated control system of all super (super) critical coal-fired power plants at home and abroad.
  • Fig. 1 is a logic diagram of a part of an advanced acceleration control system and method for a variable load boiler of a super (super) critical coal-fired unit according to the present disclosure.
  • Fig. 2 is another logical diagram of a control system and method for an advanced acceleration control system and method for a variable load boiler of a super (super) critical coal-fired unit according to the present disclosure.
  • LEADLAG lead lag link
  • adder
  • multiplier
  • T analog switcher
  • divider
  • H/L high and low limiter
  • f(x) - function converter
  • D differential controller.
  • the present disclosure is a super (super) critical coal-fired unit variable load boiler lead acceleration control system, including a load command input 1, the load command input 1 is respectively connected to the input of the first lead-lag link 2 and The first input of the adder 3, the second input of the adder 3 is connected to the output of the first lead-lag link 2, the output of the adder 3 is connected to the input Y of the first analog switch 4, the first analog switch
  • the input N of 4 is connected to the constant 6
  • the switching condition of the first analog switch 4 is CCS mode input 5
  • the output of the first analog switch 4 is connected to the first input of the first multiplier 7, and the first multiplier
  • the second input of the device 7 is connected with the output of the second analog switch 15, the switching condition of the second analog switch 15 is the output of the high-low limiter 12, and the input N of the second analog switch 15 is connected to the first
  • the output of a function converter 13 the input Y of the second analog switcher 15 is connected to the output of the second function converter 14, the input of the high-
  • the output of the first multiplier 7 is connected to the first input of the second multiplier 19, the second input of the second multiplier 19 is connected to the output of the thirteenth function converter 17, the input of the thirteenth function converter 17 Input 1 for the load command, the output of the second multiplier 19 is connected to the first input of the third multiplier 21, the second input of the third multiplier 21 is connected to the output of the eighth multiplier 30, the eighth multiplier 30
  • the first input of the first input is connected with the output of the fifth function converter 29
  • the input of the fifth function converter 29 is the main steam pressure input 28
  • the second input of the eighth multiplier 30 is connected with the output of the multiplier 34
  • the first The first input of the nine multiplier 34 is connected with the output of the fourth function converter 33, the input of the fourth function converter 33 is connected with the output of the first differential controller 32, and the input of the first differential controller 32 is connected with the output of the main differential controller 32.
  • the steam pressure setting value is connected with the actual value deviation input 31, the second input of the ninth multiplier 34 is connected
  • the first output of the third multiplier 21 is connected to the first input of the sixth multiplier 23, the second input of the sixth multiplier 23 is connected to the output of the twelfth multiplier 47, and the second input of the twelfth multiplier 47
  • One input is connected with the output of the tenth function converter 46, and the input of the tenth function converter 46 is connected with the output of the third differential controller 45, and the input of the third differential controller 45 is connected with the middle point temperature setting value and
  • the actual value deviation input 44 is connected, the second input of the twelfth multiplier 47 is connected with the output of the ninth function converter 48, the input of the ninth function converter 48 is connected with the middle point temperature setting value and the actual value deviation input 44 connected;
  • the output of the sixth multiplier 23 is connected to the input of the first rate limiter 25, the output of the first rate limiter 25 is connected to the first input of the second adder 27;
  • the output of the first multiplier 7 is connected to the first input of the third multiplier 20 simultaneously, and the second input of the third multiplier 20 is connected with the output of the fourteenth function converter 18, and the output of the fourteenth function converter 18
  • the input is load command input 1
  • the output of the third multiplier 20 is connected to the first input of the fifth multiplier 22
  • the second input of the fifth multiplier 22 is connected to the output of the eleventh multiplier 43
  • the eleventh multiplier 43 is connected to the output of the eleventh multiplier 43.
  • the first input of the multiplier 43 is connected with the output of the eighth function converter 37, the input of the eighth function converter 37 is the main steam pressure input 28, the second input of the eleventh multiplier 43 is connected with the tenth multiplier 41
  • the output of the tenth multiplier 41 is connected with the output of the seventh function converter 40, the input of the seventh function converter 40 is connected with the output of the second differential controller 39, and the second differential control
  • the input of the device 39 is connected with the main steam pressure setting value and the actual value deviation input 31, the second input of the tenth multiplier 41 is connected with the output of the sixth function converter 42, and the input of the sixth function converter 42 is connected with the output of the sixth function converter 42.
  • the main steam pressure setting value is connected with the actual value deviation input 31;
  • the first output of the fifth multiplier 22 is connected to the first input of the multiplier 24, the second input of the multiplier 24 is connected to the output of the thirteenth multiplier 52, and the first input of the thirteenth multiplier 52 is connected to the output of the thirteenth multiplier 52.
  • the output of the twelve function converter 51 is connected, the input of the twelfth function converter 51 is connected with the output of the fourth differential controller 50, the input of the fourth differential controller 50 is connected with the set value and the actual value of the middle point temperature
  • the deviation input 44 is connected, the second input of the thirteenth multiplier 52 is connected with the output of the eleventh function converter 53, and the input of the eleventh function converter 53 is connected with the middle point temperature setting value and the actual value deviation input 44 connected;
  • the output of the seventh multiplier 24 is connected to the input of the second rate limiter 26, the output of the second rate limiter 26 is connected to the second input of the second adder 27;
  • the output of the second adder 27 is respectively connected to the fuel command output 54, the input of the fifteenth function converter 55, and the input of the sixteenth function converter 57, and the output of the fifteenth function converter 55 is connected to the total air volume command output 56 , the output of the sixteenth function converter 57 is connected to the input of the second lead-lag link 58 , and the output of the second lead-lag link 58 is connected to the primary air pressure setting value output 59 .
  • the second output of the fourth multiplier 21 is connected to the first input of the fourteenth multiplier 61, the second input of the fourteenth multiplier 61 is connected with the output of the fifteenth multiplier 66, and the fifteenth multiplier 66
  • the first input of is connected with the output of the eighteenth function converter 65, the input of the eighteenth function converter 65 is connected with the output of the fifth differential controller 64, the input of the fifth differential controller 64 is connected with the middle point temperature
  • the set value is connected with the actual value deviation input 44, the second input of the fifteenth multiplier 66 is connected with the output of the seventeenth function converter 63, and the input of the seventeenth function converter 63 is connected with the intermediate point temperature setting value is connected to the actual value deviation input 44; the output of the fourteenth multiplier 61 is connected to the first input of the third adder 74;
  • the second output of the fifth multiplier 22 is connected to the first input of the sixteenth multiplier 68, the second input of the sixteenth multiplier 68 is connected to the output of the seventeenth multiplier 73, and the seventeenth multiplier 73
  • the first input of the first input is connected with the output of the nineteenth function converter 72
  • the input of the nineteenth function converter 72 is connected with the output of the sixth differential controller 71
  • the input of the sixth differential controller 71 is connected with the middle point temperature
  • the set value is connected with the actual value deviation input 44
  • the second input of the seventeenth multiplier 73 is connected with the output of the twentieth function converter 70
  • the input of the twentieth function converter 70 is connected with the middle point temperature setting value is connected to the actual value deviation input 44
  • the output of the sixteenth multiplier 68 is connected to the second input of the third adder 74;
  • the output of the third adder 74 is connected to the input of the twenty-first function converter 75, the output of the twenty-first function converter 75 is connected to the input of the third lead-lag link 76, and the output of the third lead-lag link 76 is connected To Feedwater Setpoint Output 77.
  • a control method based on the above-mentioned super (super) critical coal-fired unit variable load boiler advanced acceleration control system includes the following steps:
  • Step 1 Input 1 according to the load command of the unit, and obtain the dynamic feedforward basic value BIR01 of the input time, input rate and input process of the variable load boiler advance acceleration BIR command;
  • x is the load command input 1
  • is the time constant of the differential link.
  • Step 2 According to the target load input 8 and the load command input 1, the unit load change range (the output of the first adder 9) is obtained, and then the load change rate is input 11 to obtain the unit comprehensive change range (the output of the divider 10), through The high and low limiter 12 corrects the dynamic feedforward basic value BIR01 command to obtain the BIR02 command.
  • the function value in f 1 (x) is smaller than the function value in f 2 (x), that is, when the comprehensive variation range of the unit (the output of the divider 10) X
  • the boiler advance acceleration signal is corrected by the output of the first function converter (output range 0.7 ⁇ 1), which is beneficial to the stability of the unit parameters; After being corrected by the output of the second function converter (output range 1-1.3), it can meet the heat demand of the boiler, and further meet the requirement of the unit to respond quickly to the load.
  • Step 4 When the load of the unit is increased, according to the main steam pressure input 28, the deviation input 31 of the main steam pressure set value and the actual value, and the deviation differential between the main steam pressure set value and the actual value of the first differential controller 32, Using the theory of fuzzy control, the BIR03 instruction is amended to obtain the BIR05 instruction;
  • BIR05 BIR03*f 3 (X1)*f 4 (X2)*f 5 (X3)
  • X1 is input 31 for the deviation between the set value and actual value of the main steam pressure
  • X2 is the differential differential between the set value and the actual value of the main steam pressure
  • X3 is input 28 for the main steam pressure
  • f 3 (X1) is the third function Converter output
  • f 4 (X2) is the fourth function converter output
  • f 5 (X3) is the fifth function converter output.
  • BIR06 BIR04*f 6 (X1)*f 7 (X2)*f 8 (X3)
  • X1 is input 31 for the deviation between the set value and actual value of the main steam pressure
  • X2 is the differential differential between the set value and the actual value of the main steam pressure
  • X3 is input 28 for the main steam pressure
  • f 6 (X1) is the sixth function
  • f 7 (X2) is the output of the seventh function converter
  • f 8 (X3) is the output of the eighth function converter.
  • reducing the correction coefficient means simultaneously reducing the third function converter output f3(X) and the first The four-function converter outputs f4(X) to meet the boiler energy demand in the variable load process; the final correction coefficient is determined by the fuzzy control rule according to the deviation between the main steam pressure set value and the actual value and the deviation variation; the load reduction process is similar .
  • Step 5 when the load of the unit is increased, according to the deviation input 44 of the intermediate point temperature setting value and the actual value and the deviation input differential of the intermediate point temperature setting value and the actual value of the third differential controller 45, the fuzzy control theory is adopted, Automatically correct the BIR05 command to obtain the load-up BIR07 command;
  • X1 is the deviation input 44 between the set value of the middle point temperature and the actual value
  • X2 is the deviation differential between the set value of the middle point temperature and the actual value
  • f 9 (X1) is the output of the ninth function converter
  • f 10 (X2 ) is the tenth function converter output.
  • the fuzzy control theory is adopted, Automatically correct the BIR06 instruction to obtain the load-up BIR08 instruction.
  • X1 is the deviation input 44 between the set value of the middle point temperature and the actual value
  • X2 is the deviation differential between the set value of the middle point temperature and the actual value
  • f 11 (X1) is the output of the eleventh function converter
  • f 12 ( X2) is the output of the twelfth function converter.
  • the fuzzy control rule is adopted to reduce the correction coefficient, that is, at the same time Reducing the output f9(X) of the ninth function converter and the output f10(X) of the tenth function converter can meet the energy demand of the boiler in the variable load process, and promote the rapid stabilization of the main steam pressure and the intermediate point temperature ;
  • the final correction coefficient is determined according to the deviation between the set value of the intermediate point temperature and the actual value and the size of the deviation change; the load reduction process is similar.
  • Step 6 When the unit is increasing its load, the BIR07 instruction is processed by the first speed limiter 25 to obtain the BIR09 instruction; Limiting the excessive growth of the BIR07 command leads to the overheating of the boiler wall temperature. After the load is increased, the value will end slowly to ensure the stability of the boiler energy.
  • the BIR08 instruction is processed by the second rate limiter 26 to obtain the BIR10 instruction;
  • the function of the second rate limiter 26 is: at the beginning of the load reduction stage, on the basis of rapidly reducing the heat of the boiler, limit the BIR07 instruction If the temperature decreases too fast at the middle point of the boiler, the temperature of the main steam will fluctuate greatly. After the load reduction ends, the value will end slowly to ensure the stability of the boiler energy.
  • Step 8 Process the generated variable-load boiler advance acceleration (BIR) command separately and superimpose it to the coal volume command, total air volume command and primary air pressure setting value, so that the final total fuel volume and total air volume entering the furnace match, and then To ensure the stability of oxygen.
  • BIR boiler advance acceleration
  • Step 9 when the load of the unit increases, according to the deviation input 44 of the intermediate point temperature setting value and the actual value and the deviation input differential of the intermediate point temperature setting value and the actual value of the fifth differential controller 64, the fuzzy control rule is adopted, Modify the BIR05 instruction to obtain the BIR11 instruction for increasing the load;
  • X1 is the deviation input 44 between the set value of the middle point temperature and the actual value
  • X2 is the deviation differential between the set value of the middle point temperature and the actual value
  • f 17 (X1) is the output of the seventeenth function converter
  • f 18 ( X2) is the eighteenth function converter output.
  • X1 is the deviation input 44 between the set value of the middle point temperature and the actual value
  • X2 is the deviation differential between the set value of the middle point temperature and the actual value
  • f 19 (X1) is the output of the nineteenth function converter
  • f 20 ( X2) is the output of the twentieth function converter.
  • step 5 when the temperature at the middle point is higher than the set value of the middle point temperature and the temperature at the middle point changes to a higher direction, at this time, the main steam pressure will also change to an increasing direction. It can be seen from step 5 that at this time, the coal supply command, The total air volume command and primary air pressure setting variable load lead will be reduced; at this time, the fuzzy control rule is adopted to increase the variable load lead correction coefficient of the water supply command, and the corresponding feedwater flow variable load overshoot increases, which is beneficial to the main steam pressure of the unit and The temperature at the middle point is stable; the load reduction process is similar.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

一种超(超)临界燃煤机组变负荷锅炉超前加速控制系统及方法,方法将主汽压力、中间点温度参与到变负荷锅炉超前加速回路的控制,通过机组负荷指令及变负荷幅度大小得出锅炉变负荷过程超前加速基准量值,根据主汽压力与其设定值、中间点温度与其设定值的偏差及偏差变化,实时正向调节变负荷过程给煤量、总风量及一次风压,达到精确控制变负荷过程风煤比的目的;通过中间点温度的偏差及偏差变化反向调节变负荷过程的给煤量及给水量,达到精准控制变负荷过程水煤比的目的。可满足超(超)临界燃煤火电机组在变负荷过程中主汽压力的快速响应,同时保证中间点温度、氧量变化平稳,以满足电网快速性要求。

Description

超(超)临界燃煤机组变负荷锅炉超前加速控制系统及方法 技术领域
本公开涉及火电站自动控制技术领域,具体涉及一种超(超)临界燃煤机组变负荷锅炉超前加速控制系统及方法。
背景技术
随着新能源装机容量的不断增长以及区外远距离供电量不断增长,电网供电结构发生了根本性变化,导致调峰压力不断加大。为保障电力系统安全、优质、经济运行,监管局发布实行“两个细则”,其中对AGC(自动发电量控制)和一次调频的考核指标进行了严格的规定;燃煤机组协调控制系统为响应电网负荷变化,一般采用以锅炉跟随为基础的协调控制方式;而超(超)临界直流炉本身的蓄热能力差,变负荷过程中主汽压力的控制是难点之一。目前,超(超)临界燃煤机组协调控制系统在变负荷过程中一般均设计有锅炉变负荷超前加速(BIR)回路,以保证锅炉热量信号能够满足汽机能量需求;锅炉变负荷超前加速(BIR)回路或多或少存在一定的问题:一、机组小幅度三角波变负荷过程中,煤量、给水流量、总风量、一次风压的较大波动,影响机组主要参数的稳定性;二、由于机组升、降负荷过程的动态特性存在差异,机组在升、降负荷过程中采用同一控制参数,造成机组调节灵活性差,升降负荷过程机组主要参数无法全部满足运行要求;三、机组变负荷过程中,存在某一或某几负荷段机组主要参数不满足规程要求;四、机组升负荷过程中主汽压力较高,主汽压力上升较快,升负荷过程仍增加相同量值的锅炉超前量,导致主汽压力上升更高;升负荷过程中主汽压力较低,主汽压力存在下降趋势,升负荷过程也增加相同量值的锅炉超前量,导致主汽压力下降更多,严重影响机组控制效果及安全运行;降负荷过程类似;五、在高负荷段升、降负荷过程中,由于锅炉效率提高及主汽压力较高,锅炉超调量按中低负荷设定,极易造成锅炉超压问题,影响机组安全运行;六、升负荷过程中,中间点温度较高,主汽压力一般也较高,此时中间点温度修正回路会增加一部分给水流量以降低中间点温度以维持中间点温度的稳定,此时由于给水流量的增加,导致主汽压力上升会更高;升负荷过程中,中间点温度较低,主汽 压力一般也较低,此时中间点温度修正回路会减少一部分给水流量以提高中间点温度以维持中间点温度的稳定,此时由于给水流量的减少,导致主汽压力下降会更多;不利于机组快速稳定运行。七、在升负荷初期锅炉能量增加速度过快,易造成机组超温超压问题;同理,降负荷初期锅炉能量减少速度过快,易造成欠温欠压问题;八、变负荷过程中水煤比、风煤比失衡,机组主要参数(主汽压力、主汽温度、再热器温度、氧量)波动较大,致使机组负荷响应速度不能满足电网要求。
发明内容
为克服上述现有技术存在的问题,本公开的目的在于提供一种超(超)临界燃煤机组变负荷锅炉超前加速控制系统及方法,可满足超(超)临界燃煤火电机组在变负荷过程中主汽压力的快速响应,同时保证中间点温度、氧量变化平稳的目的,为电厂满足电网快速性要求奠定基础。
本公开的目的通过以下技术方案来实现:
1、一种超(超)临界燃煤机组变负荷锅炉超前加速控制系统,其特征在于:包括负荷指令输入1,负荷指令输入1分别连接第一超前滞后环节2的输入及加法器3的第一输入,加法器3的第二输入连接至第一超前滞后环节2的输出,加法器3的输出连接至第一模拟量切换器4的输入Y,第一模拟量切换器4的输入N与常数6相连接,第一模拟量切换器4的切换条件为CCS方式输入5,第一模拟量切换器4的输出连接至第一乘法器7的第一输入,第一乘法器7的第二输入与第二模拟量切换器15的输出相连接,第二模拟量切换器15的切换条件为高低限制器12的输出,第二模拟量切换器15的输入N连接至第一函数转换器13的输出,第二模拟量切换器15的输入Y连接至第二函数转换器14的输出,高低限制器12的输入、第一函数转换器13的输入、第二函数转换器14的输入均与除法器10的输出相连接,除法器10的输入A(除数)与第一加法器9的输出相连接,第一加法器9输入分别为目标负荷输入8与负荷指令输入1,除法器10的输入B(被除数)为负荷变化率输入11;
第一乘法器7的输出连接至第二乘法器19的第一输入,第二乘法器19的第二输入 与第十三函数转换器17的输出相连接,第十三函数转换器17的输入为负荷指令输入1,第二乘法器19的输出连接至第三乘法器21的第一输入,第三乘法器21的第二输入与第八乘法器30的输出相连接,第八乘法器30的第一输入与第五函数转换器29的输出相连接,第五函数转换器29的输入为主汽压力输入28,第八乘法器30的第二输入与乘法器34的输出相连接,第九乘法器34的第一输入与第四函数转换器33的输出相连接,第四函数转换器33的输入与第一微分控制器32的输出相连接,第一微分控制器32的输入与主汽压力设定值与实际值偏差输入31相连接,第九乘法器34的第二输入与第三函数转换器35的输出相连接,第三函数转换器35的输入与主汽压力设定值与实际值偏差输入31相连接;
第三乘法器21的第一输出连接至第六乘法器23的第一输入,第六乘法器23的第二输入与第十二乘法器47的输出相连接,第十二乘法器47的第一输入与第十函数转换器46的输出相连接,第十函数转换器46的输入与第三微分控制器45的输出相连接,第三微分控制器45的输入与中间点温度设定值与实际值偏差输入44相连接,第十二乘法器47的第二输入与第九函数转换器48的输出相连接,第九函数转换器48的输入与中间点温度设定值与实际值偏差输入44相连接;
第六乘法器23的输出连接至第一速率限制器25的输入,第一速率限制器25的输出连接至第二加法器27的第一输入;
第一乘法器7的输出同时连接至第三乘法器20的第一输入,第三乘法器20的第二输入与第十四函数转换器18的输出相连接,第十四函数转换器18的输入为负荷指令输入1,第三乘法器20的输出连接至第五乘法器22的第一输入,第五乘法器22的第二输入与第十一乘法器43的输出相连接,第十一乘法器43的第一输入与第八函数转换器37的输出相连接,第八函数转换器37的输入为主汽压力输入28,第十一乘法器43的第二输入与第十乘法器41的输出相连接,第十乘法器41的第一输入与第七函数转换器40的输出相连接,第七函数转换器40的输入与第二微分控制器39的输出相连接,第二微分控制器39的输入与主汽压力设定值与实际值偏差输入31相连接,第十乘法器41的第二 输入与第六函数转换器42的输出相连接,第六函数转换器42的输入与主汽压力设定值与实际值偏差输入31相连接;
第五乘法器22的第一输出连接至乘法器24的第一输入,乘法器24的第二输入与第十三乘法器52的输出相连接,第十三乘法器52的第一输入与第十二函数转换器51的输出相连接,第十二函数转换器51的输入与第四微分控制器50的输出相连接,第四微分控制器50的输入与中间点温度设定值与实际值偏差输入44相连接,第十三乘法器52的第二输入与第十一函数转换器53的输出相连接,第十一函数转换器53的输入与中间点温度设定值与实际值偏差输入44相连接;
第七乘法器24的输出连接至第二速率限制器26的输入,第二速率限制器26的输出连接至第二加法器27的第二输入;
第二加法器27的输出分别连接至燃料指令输出54、第十五函数转换器55的输入、第十六函数转换器57的输入,第十五函数转换器55的输出连接至总风量指令输出56,第十六函数转换器57的输出连接至第二超前滞后环节58的输入,第二超前滞后环节58的输出连接至一次风压设定值输出59;
第四乘法器21的第二输出连接至第十四乘法器61的第一输入,第十四乘法器61的第二输入与第十五乘法器66的输出相连接,第十五乘法器66的第一输入与第十八函数转换器65的输出相连接,第十八函数转换器65的输入与第五微分控制器64的输出相连接,第五微分控制器64的输入与中间点温度设定值与实际值偏差输入44相连接,第十五乘法器66的第二输入与第十七函数转换器63的输出相连接,第十七函数转换器63的输入与中间点温度设定值与实际值偏差输入44相连接;第十四乘法器61的输出与第三加法器74的第一输入相连接;
第五乘法器22的第二输出连接至第十六乘法器68的第一输入,第十六乘法器68的第二输入与第十七乘法器73的输出相连接,第十七乘法器73的第一输入与第十九函数转换器72的输出相连接,第十九函数转换器72的输入与第六微分控制器71的输出相连接,第六微分控制器71的输入与中间点温度设定值与实际值偏差输入44相连接,第十 七乘法器73的第二输入与第二十函数转换器70的输出相连接,第二十函数转换器70的输入与中间点温度设定值与实际值偏差输入44相连接;第十六乘法器68的输出与第三加法器74的第二输入相连接;
第三加法器74的输出连接至第二十一函数转换器75的输入,第二十一函数转换器75的输出连接至第三超前滞后环节76的输入,第三超前滞后环节76的输出连接至给水设定值输出77。
2、权利要求1所述的一种超(超)临界燃煤机组变负荷锅炉超前加速控制系统的控制方法,其特征在于:包括以下步骤:
步骤1、根据机组负荷指令输入1,得到变负荷锅炉超前加速BIR指令投入时刻、投入速率和投入过程的动态前馈基础值BIR01;
Figure PCTCN2022129551-appb-000001
其中,x为负荷指令输入1,τ为微分环节时间常数;
步骤2、根据目标负荷输入8与负荷指令输入1得到机组负荷变化幅度即第一加法器9的输出,再由负荷变化率输入11,得到机组综合变化幅度即除法器10的输出,通过高低限幅器12对动态前馈基础值BIR01指令进行修正,得到BIR02指令;
该步骤中,当机组综合变化幅度即除法器10的输出X<2时,BIR02=BIR01*f 1(X);当机组综合变化幅度即除法器10的输出X≥2时,BIR02=BIR01*f 2(X);其中,X=(目标负荷输入8-负荷指令输入1)/负荷变化率输入11,f 1(X)为第一函数转换器输出,f 2(X)为第二函数转换器输出;
当机组综合变化幅度即除法器10的输出X一定情况下,f 1(x)中函数值较f 2(x)中函数值小,即当机组综合变化幅度即除法器10的输出X<2时,锅炉超前加速信号经过第一函数转换器输出修正,利于机组参数稳定;当机组综合变化幅度即除法器10的输出X≥2时,锅炉超前加速信号经过第二函数转换器输出修正;
步骤3、机组升负荷时,BIR03=BIR02*f 13(X),机组降负荷时,BIR04=BIR02*f 14(X); 其中,X为负荷指令输入1,f 13(X)为第十三函数转换器输出,f 14(X)为第十四函数转换器输出;
步骤4、机组升负荷时,根据主汽压力输入28、主汽压力设定值与实际值的偏差输入31及其第一微分控制器32的主汽压力设定值与实际值的偏差微分,采用模糊控制理论,对BIR03指令进行修正,得到BIR05指令;
BIR05=BIR03*f 3(X1)*f 4(X2)*f 5(X3)
其中,X1为主汽压力设定值与实际值的偏差输入31,X2为主汽压力设定值与实际值的偏差微分,X3为主汽压力输入28,f 3(X1)为第三函数转换器输出,f 4(X2)为第四函数转换器输出,f 5(X3)为第五函数转换器输出;
同理,机组降负荷时,根据主汽压力输入28、主汽压力设定值与实际值的偏差输入31及其第二微分控制器39的主汽压力设定值与实际值的偏差的微分,采用模糊控制理论,对BIR04指令进行修正,得到BIR06指令;
BIR06=BIR04*f 6(X1)*f 7(X2)*f 8(X3)
其中,X1为主汽压力设定值与实际值的偏差输入31,X2为主汽压力设定值与实际值的偏差微分,X3为主汽压力输入28,f 6(X1)为第六函数转换器输出,f 7(X2)为第七函数转换器输出,f 8(X3)为第八函数转换器输出;
机组升负荷过程,当主汽压力大于主汽压力设定值且主汽压力往高方向变化时,根据模糊控制理论,减小修正系数即同时减小第三函数转换器输出f3(X)与第四函数转换器输出f4(X),以满足变负荷过程锅炉能量需求;最终修正系数根据主汽压力设定值与实际值的偏差与偏差变化量的大小由模糊控制规则确定;降负荷过程类似;
步骤5、机组升负荷时,根据中间点温度设定值与实际值的偏差输入44及其第三微分控制器45的中间点温度设定值与实际值的偏差输入微分,采用模糊控制理论,自动对BIR05指令进行修正,得到升负荷BIR07指令;
BIR07=BIR05*f 9(X1)*f 10(X2)
其中,X1为中间点温度设定值与实际值的偏差输入44,X2为中间点温度设定值与 实际值的偏差微分,f 9(X1)为第九函数转换器输出,f 10(X2)为第十函数转换器输出;
同理,机组降负荷时,根据中间点温度设定值与实际值的偏差输入44及其第四微分控制器50的中间点温度设定值与实际值的偏差输入微分,采用模糊控制理论,自动对BIR06指令进行修正,得到升负荷BIR08指令;
BIR08=BIR06*f 11(X1)*f 12(X2)
其中,X1为中间点温度设定值与实际值的偏差输入44,X2为中间点温度设定值与实际值的偏差微分,f 11(X1)为第十一函数转换器输出,f 12(X2)为第十二函数转换器输出;
机组升负荷过程,当中间点温度大于中间点温度设定值且中间点温度往高方向变化时,此时,主汽压力也会向增加方向变化,采用模糊控制规则,减小修正系数即同时减小第九函数转换器输出f9(X)与第十函数转换器输出f10(X),即满足变负荷过程锅炉能量需求,又对主汽压力、中间点温度的快速稳定起到促进作用;最终修正系数根据中间点温度设定值与实际值的偏差与偏差变化量的大小共同确定;降负荷过程类似;
步骤6、机组升负荷时,将BIR07指令进行第一速率限速器25处理后得到BIR09指令;第一速率限制器25的作用为:升负荷开始阶段,在快速补偿锅炉惯性的基础上,限制BIR07指令过快增长导致锅炉壁温超温问题,在升负荷结束,该量值缓慢结束,保证锅炉能量的稳定;
机组降负荷时,将BIR08指令进行第二速率限速器26处理后得到BIR10指令;第二速率限制器26的作用为:降负荷开始阶段,在快速降低锅炉热量的基础上,限制BIR07指令过快降低导致锅炉中间点温度下降过快致使主汽温度波动较大,在降负荷结束,该量值缓慢结束,保证锅炉能量的稳定;
步骤7、变负荷锅炉超前加速指令(BIR)=BIR09+BIR10;
步骤8、对生成的变负荷锅炉超前加速(BIR)指令分别处理后叠加至煤量指令、总风量指令和一次风压设定值,使最终进入炉膛的总燃料量、总风量相匹配,进而保证氧量的平稳;
步骤9、机组升负荷时,根据中间点温度设定值与实际值的偏差输入44及其第五微 分控制器64的中间点温度设定值与实际值的偏差输入微分,采用模糊控制规则,对BIR05指令进行修正,得到升负荷BIR11指令;
BIR11=BIR05*f 17(X1)*f 18(X2)
其中,X1为中间点温度设定值与实际值的偏差输入44,X2为中间点温度设定值与实际值的偏差微分,f 17(X1)为第十七函数转换器输出,f 18(X2)为第十八函数转换器输出;
同理,机组降负荷时,根据中间点温度设定值与实际值的偏差输入44及其第六微分控制器71的中间点温度设定值与实际值的偏差输入微分,采用模糊控制规则,对BIR06指令进行修正,得到升负荷BIR12指令;
BIR08=BIR06*f 19(X1)*f 20(X2)
其中,X1为中间点温度设定值与实际值的偏差输入44,X2为中间点温度设定值与实际值的偏差微分,f 19(X1)为第十九函数转换器输出,f 20(X2)为第二十函数转换器输出;
机组升负荷过程,当中间点温度大于中间点温度设定值且中间点温度往高方向变化时,此时,主汽压力也会向增加方向变化,由步骤5可知,此时给煤指令、总风量指令及一次风压设定变负荷超前量会减小;此时采用模糊控制规则,增加给水指令变负荷超前修正系数,对应给水流量变负荷超调量增大,利于机组主汽压力及中间点温度稳定;降负荷过程类似。
与现有技术相比,本公开具有以下优点:
1)本公开超(超)临界燃煤机组变负荷锅炉超前加速回路可以根据变负荷幅度进行修正,小幅度变负荷可保证机组主要参数的稳定,大幅度变负荷可满足机组负荷指令要求;
2)根据升、降负荷进行不同的参数设置,能更准确的进行负荷、主汽压力调节,保证升、降负荷参数满足规程要求;
3)根据不同负荷对锅炉加速信号进行修正,保证机组协调控制系统在全负荷段均具有较好的自适应能力;
4)增加主汽压力、主汽压力设定值与实际值偏差及其变化修正逻辑,提高变负荷过程锅炉对主汽压力的响应,对机组调节的快速性、稳定性和安全性有利;
5)增加中间点温度设定值与实际值偏差及其变化修正逻辑,提高变负荷过程锅炉对中间点温度及主汽压力的响应,对机组调节的稳定性及快速性有利;
6)锅炉超前加速(BIR)回路增加限速功能,保证机组变负荷过程无壁温超温问题,有利于对机组的安全运行;
7)对BIR分别进行处理后叠加至给水指令、燃料量指令、总风量指令、一次风压设定值回路,使进入炉膛的燃料量、给水流量、总风量相匹配,保证合适的水煤比及风煤比,使变负荷过程机组中间点温度、主汽温度、主汽压力、氧量等参数满足规程要求;
8)使用范围广:该控制方法可适用于国内外所有超(超)临界燃煤发电厂协调控制系统变负荷锅炉超前加速控制回路。
附图说明
图1为本公开一种超(超)临界燃煤机组变负荷锅炉超前加速控制系统及方法的一部分逻辑图。
图2为本公开一种超(超)临界燃煤机组变负荷锅炉超前加速控制系统及方法的另一部分逻辑图。
图中:LEADLAG——超前滞后环节;∑——加法器;×——乘法器;T——模拟量切换器;÷——除法器;H/L——高低限制器;f(x)——函数转换器;D——微分控制器。
具体实施方式
下面结合附图和具体实施方式对本公开作进一步详细说明。
如图1和图2所示,本公开一种超(超)临界燃煤机组变负荷锅炉超前加速控制系统,包括负荷指令输入1,负荷指令输入1分别连接第一超前滞后环节2的输入及加法器3的第一输入,加法器3的第二输入连接至第一超前滞后环节2的输出,加法器3的输出连接至第一模拟量切换器4的输入Y,第一模拟量切换器4的输入N与常数6相连接,第一模拟量切换器4的切换条件为CCS方式输入5,第一模拟量切换器4的输出连接至第一乘法器7的第一输入,第一乘法器7的第二输入与第二模拟量切换器15的输出相连 接,第二模拟量切换器15的切换条件为高低限制器12的输出,第二模拟量切换器15的输入N连接至第一函数转换器13的输出,第二模拟量切换器15的输入Y连接至第二函数转换器14的输出,高低限制器12的输入、第一函数转换器13的输入、第二函数转换器14的输入均与除法器10的输出相连接,除法器10的输入A(除数)与第一加法器9的输出相连接,第一加法器9输入分别为目标负荷输入8与负荷指令输入1,除法器10的输入B(被除数)为负荷变化率输入11;
第一乘法器7的输出连接至第二乘法器19的第一输入,第二乘法器19的第二输入与第十三函数转换器17的输出相连接,第十三函数转换器17的输入为负荷指令输入1,第二乘法器19的输出连接至第三乘法器21的第一输入,第三乘法器21的第二输入与第八乘法器30的输出相连接,第八乘法器30的第一输入与第五函数转换器29的输出相连接,第五函数转换器29的输入为主汽压力输入28,第八乘法器30的第二输入与乘法器34的输出相连接,第九乘法器34的第一输入与第四函数转换器33的输出相连接,第四函数转换器33的输入与第一微分控制器32的输出相连接,第一微分控制器32的输入与主汽压力设定值与实际值偏差输入31相连接,第九乘法器34的第二输入与第三函数转换器35的输出相连接,第三函数转换器35的输入与主汽压力设定值与实际值偏差输入31相连接;
第三乘法器21的第一输出连接至第六乘法器23的第一输入,第六乘法器23的第二输入与第十二乘法器47的输出相连接,第十二乘法器47的第一输入与第十函数转换器46的输出相连接,第十函数转换器46的输入与第三微分控制器45的输出相连接,第三微分控制器45的输入与中间点温度设定值与实际值偏差输入44相连接,第十二乘法器47的第二输入与第九函数转换器48的输出相连接,第九函数转换器48的输入与中间点温度设定值与实际值偏差输入44相连接;
第六乘法器23的输出连接至第一速率限制器25的输入,第一速率限制器25的输出连接至第二加法器27的第一输入;
第一乘法器7的输出同时连接至第三乘法器20的第一输入,第三乘法器20的第二 输入与第十四函数转换器18的输出相连接,第十四函数转换器18的输入为负荷指令输入1,第三乘法器20的输出连接至第五乘法器22的第一输入,第五乘法器22的第二输入与第十一乘法器43的输出相连接,第十一乘法器43的第一输入与第八函数转换器37的输出相连接,第八函数转换器37的输入为主汽压力输入28,第十一乘法器43的第二输入与第十乘法器41的输出相连接,第十乘法器41的第一输入与第七函数转换器40的输出相连接,第七函数转换器40的输入与第二微分控制器39的输出相连接,第二微分控制器39的输入与主汽压力设定值与实际值偏差输入31相连接,第十乘法器41的第二输入与第六函数转换器42的输出相连接,第六函数转换器42的输入与主汽压力设定值与实际值偏差输入31相连接;
第五乘法器22的第一输出连接至乘法器24的第一输入,乘法器24的第二输入与第十三乘法器52的输出相连接,第十三乘法器52的第一输入与第十二函数转换器51的输出相连接,第十二函数转换器51的输入与第四微分控制器50的输出相连接,第四微分控制器50的输入与中间点温度设定值与实际值偏差输入44相连接,第十三乘法器52的第二输入与第十一函数转换器53的输出相连接,第十一函数转换器53的输入与中间点温度设定值与实际值偏差输入44相连接;
第七乘法器24的输出连接至第二速率限制器26的输入,第二速率限制器26的输出连接至第二加法器27的第二输入;
第二加法器27的输出分别连接至燃料指令输出54、第十五函数转换器55的输入、第十六函数转换器57的输入,第十五函数转换器55的输出连接至总风量指令输出56,第十六函数转换器57的输出连接至第二超前滞后环节58的输入,第二超前滞后环节58的输出连接至一次风压设定值输出59。
第四乘法器21的第二输出连接至第十四乘法器61的第一输入,第十四乘法器61的第二输入与第十五乘法器66的输出相连接,第十五乘法器66的第一输入与第十八函数转换器65的输出相连接,第十八函数转换器65的输入与第五微分控制器64的输出相连接,第五微分控制器64的输入与中间点温度设定值与实际值偏差输入44相连接,第十 五乘法器66的第二输入与第十七函数转换器63的输出相连接,第十七函数转换器63的输入与中间点温度设定值与实际值偏差输入44相连接;第十四乘法器61的输出与第三加法器74的第一输入相连接;
第五乘法器22的第二输出连接至第十六乘法器68的第一输入,第十六乘法器68的第二输入与第十七乘法器73的输出相连接,第十七乘法器73的第一输入与第十九函数转换器72的输出相连接,第十九函数转换器72的输入与第六微分控制器71的输出相连接,第六微分控制器71的输入与中间点温度设定值与实际值偏差输入44相连接,第十七乘法器73的第二输入与第二十函数转换器70的输出相连接,第二十函数转换器70的输入与中间点温度设定值与实际值偏差输入44相连接;第十六乘法器68的输出与第三加法器74的第二输入相连接;
第三加法器74的输出连接至第二十一函数转换器75的输入,第二十一函数转换器75的输出连接至第三超前滞后环节76的输入,第三超前滞后环节76的输出连接至给水设定值输出77。
基于上述的一种超(超)临界燃煤机组变负荷锅炉超前加速控制系统的控制方法,包括以下步骤:
步骤1、根据机组负荷指令输入1,得到变负荷锅炉超前加速BIR指令投入时刻、投入速率和投入过程的动态前馈基础值BIR01;
Figure PCTCN2022129551-appb-000002
其中,x为负荷指令输入1,τ为微分环节时间常数。
步骤2、根据目标负荷输入8与负荷指令输入1得到机组负荷变化幅度(第一加法器9的输出),再由负荷变化率输入11,得到机组综合变化幅度(除法器10的输出),通过高低限幅器12对动态前馈基础值BIR01指令进行修正,得到BIR02指令。
该步骤中,当机组综合变化幅度(除法器10的输出)X<2时,BIR02=BIR01*f 1(X);当机组综合变化幅度(除法器10的输出)X≥2时,BIR02=BIR01*f 2(X);其中,X=(目 标负荷输入8-负荷指令输入1)/负荷变化率输入11,f 1(X)为第一函数转换器输出,f 2(X)为第二函数转换器输出。
当机组综合变化幅度(除法器10的输出)X一定情况下,f 1(x)中函数值较f 2(x)中函数值小,即当机组综合变化幅度(除法器10的输出)X<2时,锅炉超前加速信号经过第一函数转换器输出(输出范围0.7~1)修正,利于机组参数稳定;当机组综合变化幅度(除法器10的输出)X≥2时,锅炉超前加速信号经过第二函数转换器输出(输出范围1~1.3)修正,可以满足锅炉热量需求,进而满足机组快速响应负荷的要求。
步骤3、机组升负荷时,BIR03=BIR02*f 13(X),机组降负荷时,BIR04=BIR02*f 14(X);X为负荷指令输入1,f 13(X)为第十三函数转换器输出,f 14(X)为第十四函数转换器输出。
由公式可以看出,锅炉超前加速指令根据不同负荷,升、降负荷的不同,自动对锅炉超前加速指令进行修正,以满足不同工况的要求,大大提高了机组控制的灵活性。
步骤4、机组升负荷时,根据主汽压力输入28、主汽压力设定值与实际值的偏差输入31及其第一微分控制器32的主汽压力设定值与实际值的偏差微分,采用模糊控制理论,对BIR03指令进行修正,得到BIR05指令;
BIR05=BIR03*f 3(X1)*f 4(X2)*f 5(X3)
其中,X1为主汽压力设定值与实际值的偏差输入31,X2为主汽压力设定值与实际值的偏差微分,X3为主汽压力输入28,f 3(X1)为第三函数转换器输出,f 4(X2)为第四函数转换器输出,f 5(X3)为第五函数转换器输出。
同理,机组降负荷时,根据主汽压力输入28、主汽压力设定值与实际值的偏差输入31及其第二微分控制器39的主汽压力设定值与实际值的偏差的微分,采用模糊控制理论,对BIR04指令进行修正,得到BIR06指令。
BIR06=BIR04*f 6(X1)*f 7(X2)*f 8(X3)
其中,X1为主汽压力设定值与实际值的偏差输入31,X2为主汽压力设定值与实际值的偏差微分,X3为主汽压力输入28,f 6(X1)为第六函数转换器输出,f 7(X2)为第七函数转换器输出,f 8(X3)为第八函数转换器输出。
机组升负荷过程,当主汽压力大于主汽压力设定值且主汽压力往高方向变化时,根据模糊控制理论,减小修正系数即同时减小第三函数转换器输出f3(X)与第四函数转换器输出f4(X),以满足变负荷过程锅炉能量需求;最终修正系数根据主汽压力设定值与实际值的偏差与偏差变化量的大小由模糊控制规则确定;降负荷过程类似。
步骤5、机组升负荷时,根据中间点温度设定值与实际值的偏差输入44及其第三微分控制器45的中间点温度设定值与实际值的偏差输入微分,采用模糊控制理论,自动对BIR05指令进行修正,得到升负荷BIR07指令;
BIR07=BIR05*f 9(X1)*f 10(X2)
其中,X1为中间点温度设定值与实际值的偏差输入44,X2为中间点温度设定值与实际值的偏差微分,f 9(X1)为第九函数转换器输出,f 10(X2)为第十函数转换器输出。
同理,机组降负荷时,根据中间点温度设定值与实际值的偏差输入44及其第四微分控制器50的中间点温度设定值与实际值的偏差输入微分,采用模糊控制理论,自动对BIR06指令进行修正,得到升负荷BIR08指令。
BIR08=BIR06*f 11(X1)*f 12(X2)
其中,X1为中间点温度设定值与实际值的偏差输入44,X2为中间点温度设定值与实际值的偏差微分,f 11(X1)为第十一函数转换器输出,f 12(X2)为第十二函数转换器输出。
机组升负荷过程,当中间点温度大于中间点温度设定值且中间点温度往高方向变化时,此时,主汽压力也会向增加方向变化,采用模糊控制规则,减小修正系数即同时减小第九函数转换器输出f9(X)与第十函数转换器输出f10(X),即可满足变负荷过程锅炉能量需求,又对主汽压力、中间点温度的快速稳定起到促进作用;最终修正系数根据中间点温度设定值与实际值的偏差与偏差变化量的大小共同确定;降负荷过程类似。
步骤6、机组升负荷时,将BIR07指令进行第一速率限速器25处理后得到BIR09指令;该第一速率限制器25的作用为:升负荷开始阶段,在快速补偿锅炉惯性的基础上,限制BIR07指令过快增长导致锅炉壁温超温问题,在升负荷结束,该量值缓慢结束,保证锅炉能量的稳定。
机组降负荷时,将BIR08指令进行第二速率限速器26处理后得到BIR10指令;该第二速率限制器26的作用为:降负荷开始阶段,在快速降低锅炉热量的基础上,限制BIR07指令过快降低导致锅炉中间点温度下降过快致使主汽温度波动较大,在降负荷结束,该量值缓慢结束,保证锅炉能量的稳定。
步骤7、变负荷锅炉超前加速指令(BIR)=BIR09+BIR10;
步骤8、对生成的变负荷锅炉超前加速(BIR)指令分别处理后叠加至煤量指令、总风量指令和一次风压设定值,使最终进入炉膛的总燃料量、总风量相匹配,进而保证氧量的平稳。
步骤9、机组升负荷时,根据中间点温度设定值与实际值的偏差输入44及其第五微分控制器64的中间点温度设定值与实际值的偏差输入微分,采用模糊控制规则,对BIR05指令进行修正,得到升负荷BIR11指令;
BIR11=BIR05*f 17(X1)*f 18(X2)
其中,X1为中间点温度设定值与实际值的偏差输入44,X2为中间点温度设定值与实际值的偏差微分,f 17(X1)为第十七函数转换器输出,f 18(X2)为第十八函数转换器输出。
同理,机组降负荷时,根据中间点温度设定值与实际值的偏差输入44及其第六微分控制器71的中间点温度设定值与实际值的偏差输入微分,采用模糊控制规则,对BIR06指令进行修正,得到升负荷BIR12指令。
BIR08=BIR06*f 19(X1)*f 20(X2)
其中,X1为中间点温度设定值与实际值的偏差输入44,X2为中间点温度设定值与实际值的偏差微分,f 19(X1)为第十九函数转换器输出,f 20(X2)为第二十函数转换器输出。
机组升负荷过程,当中间点温度大于中间点温度设定值且中间点温度往高方向变化时,此时,主汽压力也会向增加方向变化,由步骤5可知,此时给煤指令、总风量指令及一次风压设定变负荷超前量会减小;此时采用模糊控制规则,增加给水指令变负荷超前修正系数,对应给水流量变负荷超调量增大,利于机组主汽压力及中间点温度稳定;降负荷过程类似。

Claims (2)

  1. 一种超(超)临界燃煤机组变负荷锅炉超前加速控制系统,其特征在于:包括负荷指令输入(1),负荷指令输入(1)分别连接第一超前滞后环节(2)的输入及加法器(3)的第一输入,加法器(3)的第二输入连接至第一超前滞后环节(2)的输出,加法器(3)的输出连接至第一模拟量切换器(4)的输入Y,第一模拟量切换器(4)的输入N与常数6)相连接,第一模拟量切换器(4的切换条件为CCS方式输入(5),第一模拟量切换器(4)的输出连接至第一乘法器(7)的第一输入,第一乘法器(7)的第二输入与第二模拟量切换器(15)的输出相连接,第二模拟量切换器(15)的切换条件为高低限制器(12)的输出,第二模拟量切换器(15)的输入N连接至第一函数转换器(13)的输出,第二模拟量切换器(15)的输入Y连接至第二函数转换器(14)的输出,高低限制器(12)的输入、第一函数转换器(13的输入、第二函数转换器(14)的输入均与除法器(10)的输出相连接,除法器(10)的除数输入(A与第一加法器(9)的输出相连接,第一加法器(9)输入分别为目标负荷输入(8)与负荷指令输入(1),除法器(10)的被除数输入(B)为负荷变化率输入(11);
    第一乘法器(7)的输出连接至第二乘法器(19)的第一输入,第二乘法器(19)的第二输入与第十三函数转换器(17)的输出相连接,第十三函数转换器(17)的输入为负荷指令输入(1),第二乘法器(19)的输出连接至第三乘法器(21)的第一输入,第三乘法器(21)的第二输入与第八乘法器(30)的输出相连接,第八乘法器(30)的第一输入与第五函数转换器(29)的输出相连接,第五函数转换器(29)的输入为主汽压力输入(28),第八乘法器(30)的第二输入与乘法器(34)的输出相连接,第九乘法器(34)的第一输入与第四函数转换器(33)的输出相连接,第四函数转换器(33)的输入与第一微分控制器(32)的输出相连接,第一微分控制器(32)的输入与主汽压力设定值与实际值偏差输入(31)相连接,第九乘法器(34)的第二输入与第三函数转换器(35)的输出相连接,第三函数转换器(35)的输入与主汽压力设定值与实际值偏差输入(31)相连接;
    第三乘法器(21)的第一输出连接至第六乘法器(23)的第一输入,第六乘法器(23) 的第二输入与第十二乘法器(47)的输出相连接,第十二乘法器(47)的第一输入与第十函数转换器(46)的输出相连接,第十函数转换器(46)的输入与第三微分控制器(45)的输出相连接,第三微分控制器(45)的输入与中间点温度设定值与实际值偏差输入(44)相连接,第十二乘法器(47)的第二输入与第九函数转换器(48)的输出相连接,第九函数转换器(48)的输入与中间点温度设定值与实际值偏差输入(44)相连接;
    第六乘法器(23)的输出连接至第一速率限制器(25)的输入,第一速率限制器(25)的输出连接至第二加法器(27)的第一输入;
    第一乘法器(7)的输出同时连接至第三乘法器(20)的第一输入,第三乘法器(20)的第二输入与第十四函数转换器(18)的输出相连接,第十四函数转换器(18)的输入为负荷指令输入(1),第三乘法器(20)的输出连接至第五乘法器(22)的第一输入,第五乘法器(22)的第二输入与第十一乘法器(43)的输出相连接,第十一乘法器(43)的第一输入与第八函数转换器(37)的输出相连接,第八函数转换器(37)的输入为主汽压力输入(28),第十一乘法器(43)的第二输入与第十乘法器(41)的输出相连接,第十乘法器(41)的第一输入与第七函数转换器(40)的输出相连接,第七函数转换器(40)的输入与第二微分控制器(39)的输出相连接,第二微分控制器(39)的输入与主汽压力设定值与实际值偏差输入(31)相连接,第十乘法器(41)的第二输入与第六函数转换器(42)的输出相连接,第六函数转换器(42)的输入与主汽压力设定值与实际值偏差输入(31)相连接;
    第五乘法器(22)的第一输出连接至乘法器(24)的第一输入,乘法器(24)的第二输入与第十三乘法器(52)的输出相连接,第十三乘法器(52)的第一输入与第十二函数转换器(51)的输出相连接,第十二函数转换器(51)的输入与第四微分控制器(50)的输出相连接,第四微分控制器(50)的输入与中间点温度设定值与实际值偏差输入(44)相连接,第十三乘法器(52)的第二输入与第十一函数转换器(53)的输出相连接,第十一函数转换器(53)的输入与中间点温度设定值与实际值偏差输入(44)相连接;
    第七乘法器(24)的输出连接至第二速率限制器(26)的输入,第二速率限制器(26) 的输出连接至第二加法器(27)的第二输入;
    第二加法器(27)的输出分别连接至燃料指令输出(54)、第十五函数转换器(55)的输入、第十六函数转换器(57)的输入,第十五函数转换器(55)的输出连接至总风量指令输出(56),第十六函数转换器(57)的输出连接至第二超前滞后环节(58)的输入,第二超前滞后环节(58)的输出连接至一次风压设定值输出(59);
    第四乘法器(21)的第二输出连接至第十四乘法器(61)的第一输入,第十四乘法器(61)的第二输入与第十五乘法器(66)的输出相连接,第十五乘法器(66)的第一输入与第十八函数转换器(65)的输出相连接,第十八函数转换器(65)的输入与第五微分控制器(64)的输出相连接,第五微分控制器(64)的输入与中间点温度设定值与实际值偏差输入(44)相连接,第十五乘法器(66)的第二输入与第十七函数转换器(63)的输出相连接,第十七函数转换器(63)的输入与中间点温度设定值与实际值偏差输入(44)相连接;第十四乘法器(61)的输出与第三加法器(74)的第一输入相连接;
    第五乘法器(22)的第二输出连接至第十六乘法器(68)的第一输入,第十六乘法器(68)的第二输入与第十七乘法器(73)的输出相连接,第十七乘法器(73)的第一输入与第十九函数转换器(72)的输出相连接,第十九函数转换器(72)的输入与第六微分控制器(71)的输出相连接,第六微分控制器(71)的输入与中间点温度设定值与实际值偏差输入(44)相连接,第十七乘法器(73)的第二输入与第二十函数转换器(70)的输出相连接,第二十函数转换器(70)的输入与中间点温度设定值与实际值偏差输入(44)相连接;第十六乘法器(68)的输出与第三加法器(74)的第二输入相连接;
    第三加法器(74)的输出连接至第二十一函数转换器(75)的输入,第二十一函数转换器(75)的输出连接至第三超前滞后环节(76)的输入,第三超前滞后环节(76)的输出连接至给水设定值输出(77)。
  2. 权利要求1所述的一种超(超)临界燃煤机组变负荷锅炉超前加速控制系统的控制方法,其特征在于:包括以下步骤:
    步骤1、根据机组负荷指令输入(1),得到变负荷锅炉超前加速BIR指令投入时刻、 投入速率和投入过程的动态前馈基础值BIR01;
    Figure PCTCN2022129551-appb-100001
    其中,x为负荷指令输入(1),τ为微分环节时间常数;
    步骤2、根据目标负荷输入(8)与负荷指令输入(1)得到机组负荷变化幅度即第一加法器(9)的输出,再由负荷变化率输入(11),得到机组综合变化幅度即除法器(10)的输出,通过高低限幅器(12)对动态前馈基础值BIR01指令进行修正,得到BIR02指令;
    该步骤中,当机组综合变化幅度即除法器(10)的输出X<2时,BIR02=BIR01*f 1(X);当机组综合变化幅度即除法器(10)的输出X≥2时,BIR02=BIR01*f 2(X);其中,X=(目标负荷输入-负荷指令输入)/负荷变化率输入,f 1(X)为第一函数转换器输出,f 2(X)为第二函数转换器输出;
    当机组综合变化幅度即除法器(10)的输出X一定情况下,f 1(x)中函数值较f 2(x)中函数值小,即当机组综合变化幅度即除法器(10)的输出X<2时,锅炉超前加速信号经过第一函数转换器输出修正,利于机组参数稳定;当机组综合变化幅度即除法器(10)的输出X≥2时,锅炉超前加速信号经过第二函数转换器输出修正;
    步骤3、机组升负荷时,BIR03=BIR02*f 13(X),机组降负荷时,BIR04=BIR02*f 14(X);其中,X为负荷指令输入(1),f 13(X)为第十三函数转换器输出,f 14(X)为第十四函数转换器输出;
    步骤4、机组升负荷时,根据主汽压力输入(28)、主汽压力设定值与实际值的偏差输入(31)及其第一微分控制器(32)的主汽压力设定值与实际值的偏差微分,采用模糊控制理论,对BIR03指令进行修正,得到BIR05指令;
    BIR05=BIR03*f 3(X1)*f 4(X2)*f 5(X3)
    其中,X1为主汽压力设定值与实际值的偏差输入(31,X2为主汽压力设定值与实际值的偏差微分,X3为主汽压力输入(28,f 3(X1)为第三函数转换器输出,f 4(X2)为第 四函数转换器输出,f 5(X3)为第五函数转换器输出;
    同理,机组降负荷时,根据主汽压力输入(28)、主汽压力设定值与实际值的偏差输入(31)及其第二微分控制器(39)的主汽压力设定值与实际值的偏差的微分,采用模糊控制理论,对BIR04指令进行修正,得到BIR06指令;
    BIR06=BIR04*f 6(X1)*f 7(X2)*f 8(X3)
    其中,X1为主汽压力设定值与实际值的偏差输入(31),X2为主汽压力设定值与实际值的偏差微分,X3为主汽压力输入(28),f 6(X1)为第六函数转换器输出,f 7(X2)为第七函数转换器输出,f 8(X3)为第八函数转换器输出;
    机组升负荷过程,当主汽压力大于主汽压力设定值且主汽压力往高方向变化时,根据模糊控制理论,减小修正系数即同时减小第三函数转换器输出f3(X)与第四函数转换器输出f4(X),以满足变负荷过程锅炉能量需求;最终修正系数根据主汽压力设定值与实际值的偏差与偏差变化量的大小由模糊控制规则确定;降负荷过程类似;
    步骤5、机组升负荷时,根据中间点温度设定值与实际值的偏差输入(44)及其第三微分控制器(45)的中间点温度设定值与实际值的偏差输入微分,采用模糊控制理论,自动对BIR05指令进行修正,得到升负荷BIR07指令;
    BIR07=BIR05*f 9(X1)*f 10(X2)
    其中,X1为中间点温度设定值与实际值的偏差输入(44),X2为中间点温度设定值与实际值的偏差微分,f 9(X1)为第九函数转换器输出,f 10(X2)为第十函数转换器输出;
    同理,机组降负荷时,根据中间点温度设定值与实际值的偏差输入(44)及其第四微分控制器(50)的中间点温度设定值与实际值的偏差输入微分,采用模糊控制理论,自动对BIR06指令进行修正,得到升负荷BIR08指令;
    BIR08=BIR06*f 11(X1)*f 12(X2)
    其中,X1为中间点温度设定值与实际值的偏差输入(44),X2为中间点温度设定值与实际值的偏差微分,f 11(X1)为第十一函数转换器输出,f 12(X2)为第十二函数转换器输出;
    机组升负荷过程,当中间点温度大于中间点温度设定值且中间点温度往高方向变化时,此时,主汽压力也会向增加方向变化,采用模糊控制规则,减小修正系数即同时减小第九函数转换器输出f9(X)与第十函数转换器输出f10(X),即满足变负荷过程锅炉能量需求,又对主汽压力、中间点温度的快速稳定起到促进作用;最终修正系数根据中间点温度设定值与实际值的偏差与偏差变化量的大小共同确定;降负荷过程类似;
    步骤6、机组升负荷时,将BIR07指令进行第一速率限速器(25)处理后得到BIR09指令;第一速率限制器(25)的作用为:升负荷开始阶段,在快速补偿锅炉惯性的基础上,限制BIR07指令过快增长导致锅炉壁温超温问题,在升负荷结束,该量值缓慢结束,保证锅炉能量的稳定;
    机组降负荷时,将BIR08指令进行第二速率限速器(26)处理后得到BIR10指令;第二速率限制器(26)的作用为:降负荷开始阶段,在快速降低锅炉热量的基础上,限制BIR07指令过快降低导致锅炉中间点温度下降过快致使主汽温度波动较大,在降负荷结束,该量值缓慢结束,保证锅炉能量的稳定;
    步骤7、变负荷锅炉超前加速指令(BIR)=BIR09+BIR10;
    步骤8、对生成的变负荷锅炉超前加速(BIR)指令分别处理后叠加至煤量指令、总风量指令和一次风压设定值,使最终进入炉膛的总燃料量、总风量相匹配,进而保证氧量的平稳;
    步骤9、机组升负荷时,根据中间点温度设定值与实际值的偏差输入(44)及其第五微分控制器(64)的中间点温度设定值与实际值的偏差输入微分,采用模糊控制规则,对BIR05指令进行修正,得到升负荷BIR11指令;
    BIR11=BIR05*f 17(X1)*f 18(X2)
    其中,X1为中间点温度设定值与实际值的偏差输入(44),X2为中间点温度设定值与实际值的偏差微分,f 17(X1)为第十七函数转换器输出,f 18(X2)为第十八函数转换器输出;
    同理,机组降负荷时,根据中间点温度设定值与实际值的偏差输入(44)及其第六 微分控制器(71)的中间点温度设定值与实际值的偏差输入微分,采用模糊控制规则,对BIR06指令进行修正,得到升负荷BIR12指令;
    BIR08=BIR06*f 19(X1)*f 20(X2)
    其中,X1为中间点温度设定值与实际值的偏差输入(44),X2为中间点温度设定值与实际值的偏差微分,f 19(X1)为第十九函数转换器输出,f 20(X2)为第二十函数转换器输出;
    机组升负荷过程,当中间点温度大于中间点温度设定值且中间点温度往高方向变化时,此时,主汽压力也会向增加方向变化,由步骤5可知,此时给煤指令、总风量指令及一次风压设定变负荷超前量会减小;此时采用模糊控制规则,增加给水指令变负荷超前修正系数,对应给水流量变负荷超调量增大,利于机组主汽压力及中间点温度稳定;降负荷过程类似。
PCT/CN2022/129551 2021-11-05 2022-11-03 超(超)临界燃煤机组变负荷锅炉超前加速控制系统及方法 WO2023078352A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111308700.3 2021-11-05
CN202111308700.3A CN114020056B (zh) 2021-11-05 2021-11-05 超(超)临界燃煤机组变负荷锅炉超前加速控制系统及方法

Publications (1)

Publication Number Publication Date
WO2023078352A1 true WO2023078352A1 (zh) 2023-05-11

Family

ID=80061562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129551 WO2023078352A1 (zh) 2021-11-05 2022-11-03 超(超)临界燃煤机组变负荷锅炉超前加速控制系统及方法

Country Status (2)

Country Link
CN (1) CN114020056B (zh)
WO (1) WO2023078352A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116826770A (zh) * 2023-07-07 2023-09-29 北京怀柔实验室 机组升负荷方法、装置、设备及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114020056B (zh) * 2021-11-05 2024-03-12 西安热工研究院有限公司 超(超)临界燃煤机组变负荷锅炉超前加速控制系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109172A (zh) * 2009-12-24 2011-06-29 江苏方天电力技术有限公司 超临界及超超临界机组燃水比控制方法
CN105467842A (zh) * 2015-12-23 2016-04-06 中国大唐集团科学技术研究院有限公司华东分公司 一种超(超)临界机组的主汽压力广义智能控制方法
WO2018036536A1 (zh) * 2016-08-24 2018-03-01 东方电气集团东方锅炉股份有限公司 1000mw超超临界参数循环流化床锅炉
CN112327609A (zh) * 2020-11-30 2021-02-05 国网新疆电力有限公司电力科学研究院 超临界及超超临界火力发电机组多变量解耦控制方法
CN113515040A (zh) * 2021-04-24 2021-10-19 西安热工研究院有限公司 火力发电单元机组自适应煤种变化的协调控制系统及方法
CN114020056A (zh) * 2021-11-05 2022-02-08 西安热工研究院有限公司 超(超)临界燃煤机组变负荷锅炉超前加速控制系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3124872B2 (ja) * 1993-07-30 2001-01-15 株式会社日立製作所 火力プラントの制御装置
CN103185333B (zh) * 2013-05-06 2016-01-06 安徽省电力科学研究院 一种超临界直流锅炉机组煤质变化协调控制方法
CN104238520B (zh) * 2014-09-18 2016-09-28 安徽新力电业科技咨询有限责任公司 超临界锅炉燃煤热值自平衡控制回路分散控制系统实现方法
CN111308886B (zh) * 2020-04-07 2023-06-02 兰州陇能电力科技有限公司 一种燃煤机组协调控制方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109172A (zh) * 2009-12-24 2011-06-29 江苏方天电力技术有限公司 超临界及超超临界机组燃水比控制方法
CN105467842A (zh) * 2015-12-23 2016-04-06 中国大唐集团科学技术研究院有限公司华东分公司 一种超(超)临界机组的主汽压力广义智能控制方法
WO2018036536A1 (zh) * 2016-08-24 2018-03-01 东方电气集团东方锅炉股份有限公司 1000mw超超临界参数循环流化床锅炉
CN112327609A (zh) * 2020-11-30 2021-02-05 国网新疆电力有限公司电力科学研究院 超临界及超超临界火力发电机组多变量解耦控制方法
CN113515040A (zh) * 2021-04-24 2021-10-19 西安热工研究院有限公司 火力发电单元机组自适应煤种变化的协调控制系统及方法
CN114020056A (zh) * 2021-11-05 2022-02-08 西安热工研究院有限公司 超(超)临界燃煤机组变负荷锅炉超前加速控制系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO, SHIBIN ET AL.: "Performance Analysis and Optimization of Key Parameters under Variable Load in a 1000 MW Ultra-Supercritical Unit", ENERGY CONSERVATION TECHNOLOGY, vol. 37, no. 214, 31 March 2019 (2019-03-31), XP009546053, ISSN: 1002-6339 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116826770A (zh) * 2023-07-07 2023-09-29 北京怀柔实验室 机组升负荷方法、装置、设备及介质

Also Published As

Publication number Publication date
CN114020056A (zh) 2022-02-08
CN114020056B (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2023078352A1 (zh) 超(超)临界燃煤机组变负荷锅炉超前加速控制系统及方法
CN102629131A (zh) 一种脉冲方式调整凝结水流量参与调频的协调控制方法
CN106919053A (zh) 一种基于变结构预测控制算法的火电机组协调控制系统
CN105202571B (zh) 一种火力发电机组主汽压力优化控制方法
CN106019929B (zh) 双进双出直吹式制粉系统协调控制方法
CN104089270A (zh) 一种发电机组锅炉负荷控制优化调整试验方法
CN109654475B (zh) 一种二次再热机组再热汽温控制方法
CN109378833B (zh) 一种通过控制汽轮机抽汽量实现机组快速调频的方法
CN105204340B (zh) 改进后的直接能量平衡负荷协调控制方法及系统
CN105182925A (zh) 一种火力发电机组节能型协调控制方法
CN112648029B (zh) 一种火力发电厂深度调峰工况的协调控制优化方法
CN104932566A (zh) 一种提高单元发电机组锅炉快速调整能力的控制系统及方法
CN112039091B (zh) 一种基于零号高加的一次调频控制方法
CN111045321B (zh) 一种深度调峰下的协调控制带嵌入式内模控制器的方法
CN109631007A (zh) 一种发电机组锅炉主控系统燃料反馈信号优化处理方法
CN105929863A (zh) 供热机组一次调频压力补偿优化方法
CN107831656A (zh) 一种火电机组协调控制系统节能优化技术
CN107045288B (zh) 一种机炉协调控制系统中压力拉回控制的补偿控制方法
CN112114518B (zh) 一种孤网运行状态下锅炉跟随和快速减负荷优化方法
CN111472852B (zh) 一种发电机组基于中间点焓值调频逻辑优化方法
WO2015008497A1 (ja) 燃焼制御装置
CN110703703B (zh) 一种火力发电机组的高加给水旁路控制方法
Zhang et al. Analysis and optimization control strategy for inconsistency between ace-based agc and primary frequency modulation
CN115076679B (zh) 一种尾部三烟道二次再热锅炉再热蒸汽温度控制方法
CN116557086A (zh) 一种提升超临界火电机组灵活性的机炉协调优化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889373

Country of ref document: EP

Kind code of ref document: A1