WO2015005304A1 - カテーテル - Google Patents
カテーテル Download PDFInfo
- Publication number
- WO2015005304A1 WO2015005304A1 PCT/JP2014/068111 JP2014068111W WO2015005304A1 WO 2015005304 A1 WO2015005304 A1 WO 2015005304A1 JP 2014068111 W JP2014068111 W JP 2014068111W WO 2015005304 A1 WO2015005304 A1 WO 2015005304A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- end side
- distal end
- proximal end
- sectional area
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0043—Catheters; Hollow probes characterised by structural features
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0021—Catheters; Hollow probes characterised by the form of the tubing
- A61M25/0023—Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
- A61M25/0026—Multi-lumen catheters with stationary elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0021—Catheters; Hollow probes characterised by the form of the tubing
- A61M25/0023—Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
- A61M25/0026—Multi-lumen catheters with stationary elements
- A61M2025/0039—Multi-lumen catheters with stationary elements characterized by lumina being arranged coaxially
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0043—Catheters; Hollow probes characterised by structural features
- A61M2025/0059—Catheters; Hollow probes characterised by structural features having means for preventing the catheter, sheath or lumens from collapsing due to outer forces, e.g. compressing forces, or caused by twisting or kinking
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M2025/0183—Rapid exchange or monorail catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/104—Balloon catheters used for angioplasty
Definitions
- the present invention relates to a catheter.
- balloon catheters have been used in treatments such as PTA (percutaneous angioplasty) and PTCA (percutaneous coronary angioplasty).
- the balloon catheter includes a catheter tube and a balloon.
- the balloon is provided on the distal end side of the catheter tube.
- a user introduces a balloon into a stenosis or occlusion occurring in a blood vessel and expands the balloon by inflating the balloon.
- the user is, for example, a technician such as a doctor.
- the catheter tube of the balloon catheter includes an outer tube and an inner tube.
- the inner tube is inserted through the outer tube.
- the balloon is joined to the distal end of the outer tube.
- the inner tube is provided in a state in which the distal end portion of the inner tube extends further toward the distal end side than the distal end of the outer tube.
- the distal end portion of the inner tube extending from the distal end of the outer tube passes through the inside of the balloon and extends to the distal end side of the balloon.
- the lumen of the inner tube is a guide wire lumen through which a guide wire can be inserted.
- a so-called RX type in which the guide wire can be led out from an intermediate position in the axial direction of the outer tube is known.
- a guide wire port penetrating the peripheral wall portion of the outer tube is formed at an intermediate position in the axial direction of the outer tube.
- the lumen of the inner tube is open to the outside of the catheter through a guide wire port.
- the guide wire introduced into the inner tube from the distal end portion of the inner tube is led out of the catheter through the guide wire port.
- this type of balloon catheter may be provided with a core wire for the purpose of increasing rigidity (for example, see Patent Document 1).
- the core wire is provided by being inserted through the lumen of the outer tube.
- the core wire is disposed across the guide wire port in the axial direction.
- the inner tube is provided in a region on the distal end side of the guide wire port in the lumen of the outer tube. Therefore, in the region on the distal end side, the core wire is inserted through between the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube. For this reason, the portion of the core wire that is disposed in the region on the distal end side needs to be formed with a small diameter.
- the proximal end portion of the core wire is formed so that the outer diameter gradually increases from the distal end side to the proximal end side with respect to the portion formed with a narrow diameter. Therefore, for example, the core wire may be formed so that the outer diameter gradually increases with a certain degree from the distal end side toward the proximal end side. In this case, the rigidity of the core wire can be gradually lowered from the proximal end side toward the distal end side, and the kink resistance can be improved.
- the presence of the guide wire makes the rigidity in the region closer to the distal end than the guide wire port through which the guide wire is inserted. It is high.
- the rigidity of the region proximal to the guide wire port is the same as before the guide wire is inserted into the catheter. In this case, the rigidity locally changes at the position where the guide wire port is formed in the axial direction. Therefore, when the user introduces the balloon catheter into the body along the guide wire, the pushing force from the proximal end side may not be transmitted to the distal end side well at the location. Therefore, operability may be reduced.
- the core wire is disposed across the guide wire port in the axial direction, rigidity is provided to the vicinity of the proximal end side of the guide wire port by the core wire. Therefore, the effect which suppresses the local change of the rigidity in the formation location of a guide wire port can be anticipated.
- the outer diameter of the core wire described above gradually increases with a certain degree from the small-diameter region disposed on the distal end side to the proximal end side with respect to the guide wire port. Therefore, it is difficult to make the outer diameter sufficiently large in the vicinity of the proximal end side of the guide wire port. Therefore, it is considered difficult to give sufficient rigidity in the vicinity of the base end side. Therefore, in the above-described core wire, the above-described problem of successfully transmitting the pushing force when the catheter is introduced into the body to the distal end side is still not solved, and an improvement is required.
- the present invention has been made in view of the above circumstances, and a main object of the present invention is to provide a catheter that can improve operability when the catheter is introduced into the body.
- a catheter of a first invention is a guide wire port formed at a midway position in the axial direction of the tube so as to pass through a tube having a lumen therein and a peripheral wall portion surrounding the lumen. And a core wire that is inserted through the lumen and extends across the guide wire port in the axial direction, wherein the core wire is a region located on the distal side of the guide wire port. A region and a region closer to the proximal end than the distal end region, and is a region formed such that a cross-sectional area in a direction orthogonal to the axial direction continuously increases from the distal end side toward the proximal end side.
- a taper region, and the taper region is a region extending from the proximal end of the distal end side region toward the proximal end side.
- a first taper region that is a region including the same position as the first taper region, and a second taper region that is a region extending from the base end of the first taper region toward the base end side.
- the degree of increase in the cross-sectional area from the side toward the base end side is greater than the degree of increase in the cross-sectional area from the tip end side toward the base end side in the second tapered region.
- the core wire includes a distal end side region provided on the distal end side with respect to the guide wire port, and a tapered region provided on the proximal end side with respect to the distal end region.
- the taper region has a first taper region that is a region including the same position as the guide wire port in the axial direction, and a second taper region that is a region closer to the base end than the first taper region.
- the degree of increase in the cross-sectional area from the distal end side to the proximal end side is greater than that in the second tapered region.
- the cross-sectional area of the core wire can be increased at a position near the base end side of the guide wire port in the axial direction as compared with the configuration in which the cross-sectional area of the tapered region is increased to a certain degree from the front end side to the base end side. it can. Therefore, the rigidity of the core wire can be increased. Thereby, the transmissibility of pushing force at the time of introduce
- a boundary portion between the first taper region and the second taper region is located on the distal side from the center of the taper region in the axial direction.
- the boundary portion is located on the distal end side and the proximal end side in the taper region.
- the degree of increase in cross-sectional area from the front end side to the base end side in the first taper region is compared, it is considered that the degree of increase in cross-sectional area is greater in the former case than in the latter case. Therefore, in the present invention, paying attention to this point, the boundary between the first taper region and the second taper region is positioned closer to the tip than the center position of the taper region in the axial direction.
- the cross-sectional area of the core wire can be increased at a position near the proximal end side of the guide wire port in the axial direction. Therefore, the rigidity of the core wire can be further increased. For this reason, it is possible to further improve the transferability of the pushing force when the catheter is introduced into the body.
- the catheter according to a third invention is the catheter according to the second invention, wherein the boundary portion is located on the distal side of the distal end portion of the tapered region from a portion located on the proximal side by a distance of 1/4 of the total length of the tapered region. It is located in.
- the boundary between the first taper region and the second taper region is more distal than the point located on the base end side by a distance of 1/4 of the total length of the taper region from the tip of the taper region. positioned.
- the degree to which the cross-sectional area of the first taper region increases from the distal end side toward the proximal end side can be further increased than in the case of the second invention.
- the cross-sectional area of the core wire can be further increased at a position in the vicinity of the proximal end side of the guide wire port in the axial direction. Therefore, the rigidity of the core wire can be further increased. For this reason, it is possible to further enhance the transferability of the pushing force when the catheter is introduced into the body.
- the catheter of the fourth invention is characterized in that, in the second or third invention, the cross-sectional area of the boundary portion is larger than an average value of the cross-sectional areas at both axial ends of the tapered region. .
- the cross-sectional area at the boundary portion is the taper region. It is larger than the average value of each cross-sectional area at both axial ends.
- the degree of increase in the cross-sectional area of the first tapered region from the distal end side toward the proximal end side is increased as compared with the configuration in which the cross-sectional area at the boundary portion is equal to or less than the average value of the respective cross-sectional areas.
- the cross-sectional area of the core wire can be further increased at a position near the proximal end side of the guide wire port in the axial direction. Therefore, the rigidity of the core wire can be further increased. Thereby, the transmissibility of the pushing force when introducing the catheter into the body can be further enhanced.
- the core wire further includes a proximal end region that is a region extending from the proximal end of the second tapered region toward the proximal end side.
- the proximal end region is formed with the constant cross-sectional area from the distal end side toward the proximal end side, or the sectional area is larger than the second tapered region from the distal end side toward the proximal end side.
- the difference in the increase in the cross-sectional area between the first taper region and the second taper region is the second taper region and the base end side. It is the same as or substantially the same as the difference in the degree of increase in the cross-sectional area between the regions.
- the difference in the increase in the cross-sectional area between the first taper region and the second taper region is the difference in the increase in the cross-sectional area between the second taper region and the proximal side region. Is the same or substantially the same. Therefore, the local change (amount) of the degree of increase in cross-sectional area occurring at each of the boundary between the first taper region and the second taper region and the boundary between the second taper region and the proximal side region is the same. can do. That is, in this case, a local change in the degree of increase in cross-sectional area that occurs at each boundary can be uniformly distributed to each boundary. As a result, it is possible to suppress the local change that occurs at each boundary.
- a catheter according to a sixth aspect of the present invention is the catheter according to any one of the first to fifth aspects, wherein an outer tube corresponding to the tube having a fluid lumen corresponding to the lumen therein and a distal side of the distal end of the outer tube.
- An inner tube that is inserted through the fluid lumen in a partially extended state and has a guide wire lumen through which the guide wire can be inserted and whose proximal end communicates with the guide wire port; and
- a balloon that covers the part of the inner tube that extends from the distal end of the outer tube from the outside and has a proximal end joined to the distal end of the outer tube, and the distal end region of the core wire includes: The fluid lumen is inserted between the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube.
- the balloon catheter has an outer tube and an inner tube.
- the inner tube is inserted through the fluid lumen of the outer tube.
- the fluid flows through between the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube. Therefore, it is necessary to make the cross-sectional area of the tip end side region as small as possible in order to suppress a decrease in the flowability of the fluid flowing between the inner tube and the outer tube. Therefore, the cross-sectional area of the tapered region extending from the distal end side region to the proximal end side may be small at a position near the proximal end side of the guide wire port.
- the cross-sectional area of the core wire can be increased at a position near the proximal end side of the guide wire port.
- (A) is a side view which shows the structure of a core wire
- (b) is an enlarged side view which expands and shows a part of core wire.
- FIG. 1 is an overall side view showing the configuration of a balloon catheter.
- the balloon catheter 10 includes a catheter shaft 11, a hub 12, and a balloon 13.
- the hub 12 is attached to the proximal end portion (proximal end portion) of the catheter shaft 11.
- the balloon 13 is attached to the distal end side (distal end side) of the catheter shaft 11.
- the catheter shaft 11 includes a plurality of tubular shafts (tubes).
- the catheter shaft 11 has an inner and outer multi-tube structure from at least a midway position in the axial direction (longitudinal direction) to the position of the balloon 13.
- the catheter shaft 11 includes an outer shaft 15 and an inner shaft 16.
- the inner diameter of the inner shaft 16 is smaller than the inner diameter of the outer shaft 15.
- the outer diameter of the inner shaft 15 is smaller than the outer diameter of the outer shaft 15.
- the outer diameter of the inner shaft 16 is smaller than the inner diameter of the outer shaft 15.
- the inner shaft 16 is inserted into the outer shaft 15.
- the catheter shaft 11 has an inner / outer double tube structure.
- the outer shaft 15 is a tube having an outer tube hole 15a inside.
- the outer shaft 15 is a tubular member that has outer tube holes 15a (see FIG. 2) that are continuous over the entire axial direction and open at both ends.
- the outer shaft 15 includes a plurality of shafts 17 to 19 arranged in the axial direction.
- the plurality of shafts 17 to 19 are joined to adjacent shafts by welding (thermal welding) or the like.
- the shafts 17 to 19 are not necessarily joined by welding, and may be joined by other joining methods such as adhesion.
- the shafts 17 to 19 are a proxy shaft 17, a mid shaft 18, and a distal shaft 19 in order from the base end side.
- the proxy shaft 17 is made of a metal such as a Ni—Ti alloy or stainless steel.
- the proximal end portion of the proxy shaft 17 is joined to the hub 12.
- the mid shaft 18 is formed of a thermoplastic polyamide elastomer.
- the rigidity of the mid shaft 18 is lower than that of the proxy shaft 17.
- the distal shaft 19 is made of a thermoplastic polyamide elastomer.
- the rigidity of the distal shaft 19 is lower than the rigidity of the mid shaft 18.
- the proxy shaft 17 does not necessarily need to be formed with a metal, and may be formed with a synthetic resin.
- the mid shaft 18 and the distal shaft 19 are not necessarily formed of a polyamide elastomer, and may be formed of other synthetic resins.
- the term “rigidity” refers to the magnitude of a moment that acts when the catheter is bent in a direction perpendicular to the axial direction.
- the inner shaft 16 is a tubular member having an inner tube hole 16a which is continuous over the entire axial direction and opened at both ends (see FIG. 2).
- the inner tube hole 16a is a tube hole that functions as a guide wire lumen. Therefore, the guide wire G can be inserted through the inner tube hole 16a.
- the inner shaft 16 is inserted into a distal shaft 19 of the outer shaft 15.
- the proximal end portion of the inner shaft 16 is joined to an intermediate position in the axial direction of the outer shaft 15. Specifically, the proximal end portion of the inner shaft 16 is joined to the boundary portion between the mid shaft 18 and the distal shaft 19.
- FIG. 2 is a longitudinal sectional view showing the configuration around the guide wire port 21.
- FIG. 2 shows a region C1 in FIG.
- the guide wire port 21 is formed at the proximal end portion of the distal shaft 19.
- the distal shaft 19 has a tube hole 19a which is a part of the outer tube hole 15a therein. That is, the outer tube hole 15a includes the tube hole 19a.
- the tube hole 19a is a tube hole located on the proximal end side of the outer tube hole 19a.
- the guide wire port 21 is formed so as to penetrate the peripheral wall portion 23 surrounding the tube hole 19a. As described above, the guide wire port 21 is formed at an intermediate position in the axial direction of the outer shaft 15 so as to penetrate the peripheral wall portion 23 surrounding the tube hole 19a (see FIG. 1).
- the proximal end portion of the inner shaft 16 is joined to the peripheral portion of the guide wire port 21 in the distal shaft 19 (the peripheral wall portion 23).
- the proximal end of the inner tube hole 16 a of the inner shaft 16 is opened to the outside of the catheter 10 via the guide wire port 21.
- the guide wire G introduced into the inner tube hole 16a from the opening on the distal end side of the inner shaft 16 can be led out from the base end of the inner tube hole 16a through the guide wire port 21 to the outside.
- the balloon catheter 10 is a so-called RX type catheter that is configured such that the guide wire G can be led out at a midway position in the axial direction.
- the balloon 13 is provided so as to cover the inner shaft 16 extending from the tip of the outer shaft 15 from the outside.
- the balloon 13 is made of a thermoplastic polyamide elastomer.
- the balloon 13 may be formed of other thermoplastic resins such as polyethylene and polypropylene.
- the proximal end portion of the balloon 13 is joined to the distal end portion of the outer shaft 15.
- the balloon 13 covers the inner shaft 16 extending from the distal end of the outer shaft 15 from the outer side, and the base end portion of the balloon 13 is joined to the distal end portion of the outer shaft 15.
- the distal end portion of the balloon 13 is joined to the distal end portion of the inner shaft 16.
- the inside of the balloon 13 communicates with the hub 12 through the outer tube hole 15 a of the outer shaft 15.
- the compressed fluid supplied through the hub 12 is supplied to the balloon 13 through the outer tube hole 15a.
- the outer tube hole 15a functions as a fluid lumen for circulating the compressed fluid.
- the balloon catheter 10 includes a core wire 30.
- the core wire 30 is provided in the balloon catheter 10 for the purpose of increasing the rigidity of the catheter 10 or the like.
- the configuration of the core wire 30 will be described with reference to FIGS. 2 and 3.
- 3A is a side view showing the configuration of the core wire 30, and
- FIG. 3B is an enlarged side view showing a part of the core wire 30 in an enlarged manner.
- the core wire 30 is a linear member.
- the core wire 30 is made of, for example, a metal material.
- the core wire 30 is made of stainless steel.
- the cross section of the core wire 30 is circular. As shown in FIG. 3A, the core wire 30 is formed so that the outer diameter on the distal end side is smaller than the outer diameter on the proximal end side. Therefore, the rigidity of the core wire 30 decreases as it goes from the proximal end side to the distal end side.
- the transverse section is a section perpendicular to the axial direction of the core wire 30.
- the core wire 30 may be formed of a material other than stainless steel, for example, a super elastic alloy such as a nickel titanium alloy. Further, the cross section of the core wire 30 is not necessarily circular, and may be other shapes such as a square shape or a hexagonal shape.
- the core wire 30 includes a distal end side region 31, a tapered region 32, and a proximal end side region 33.
- the distal end side region 31 is a region extending from the distal end of the core wire 30 toward the proximal end side.
- the distal end region 31 is a region located on the distal end side with respect to the guide wire port 21.
- the tapered region 32 is a region that is continuously provided on the proximal end side with respect to the distal end side region 31. That is, the tapered region 32 is a region extending from the proximal end of the distal end side region 31 toward the proximal end side.
- the proximal side region 33 is a region that is continuously provided on the proximal side with respect to the tapered region 32.
- the proximal end region 33 is a region extending from the proximal end of the tapered region 32 toward the proximal end side.
- the proximal end region 33 is a region including the proximal end portion of the core wire 30.
- the distal end region 31 is a region including a portion having the smallest outer diameter among the regions 31 to 33 of the core wire 30.
- the tip side region 31 is formed in a taper shape. Therefore, the outer diameter of the distal end region 31 gradually increases from the distal end side toward the proximal end side.
- the length L1 in the axial direction of the distal end side region 31 is set to 80 mm.
- the tip end region 31 is not necessarily formed in a tapered shape.
- the tip end region 31 may be a columnar region whose outer diameter is constant over the entire axial direction.
- the tapered region 32 is a region formed in a tapered shape so that the outer diameter continuously increases from the distal end side toward the proximal end side.
- the length (L2 + L3) in the axial direction of the tapered region 32 is set to 130 mm.
- the outer diameter of the base end region 33 is constant over the entire axial direction. That is, the proximal side region 33 is a non-tapered region, unlike the distal side region 31 and the tapered region 32.
- the length in the axial direction of the proximal end region 33 is sufficiently longer than the distal end region 31 and the tapered region 32. In the present embodiment, the length of the proximal side region 33 is set to 700 to 1500 mm.
- the tapered region 32 has a first tapered region 34 and a second tapered region 35.
- the first taper region 34 is a region continuously provided on the proximal end side with respect to the distal end side region 31. That is, the first tapered region 34 is a region extending from the proximal end of the distal end side region 31 toward the proximal end side.
- the second tapered region 35 is a region that is continuously provided on the proximal end side with respect to the first tapered region 34. That is, the second taper region 35 is a region extending from the base end of the first taper region 34 toward the base end side.
- the first inclination angle ⁇ is larger than the second inclination angle ⁇ .
- the first inclination angle ⁇ is the inclination of the outer peripheral surface with respect to the axial direction in the first tapered region 34.
- the second inclination angle ⁇ is the inclination of the outer peripheral surface with respect to the axial direction in the second tapered region 35.
- the degree of increase in the cross-sectional area from the distal end side to the base end side in the first tapered region 34 is greater than the degree of increase in the cross-sectional area from the distal end side to the base end side in the second tapered region 35.
- the inclination angles ⁇ and ⁇ of the outer circumferential surface with respect to the axial direction include an acute angle side and an obtuse angle side angle, and “inclination angles ⁇ and ⁇ ” in this specification refers to an acute angle angle.
- the cross-sectional area of the core wire 30 (each of the regions 31 to 35) refers to a cross-sectional area in a direction orthogonal to the axial direction of the core wire 30.
- the degree of increase in the outer diameter from the distal end side toward the proximal end side in the first taper region 34 is greater than the degree of increase in the outer diameter from the distal end side toward the proximal end side in the distal end side region 31. That is, in the first taper region 34, the degree of increase in the outer diameter (cross-sectional area) from the distal end side to the proximal end side is greater than in each of the regions 31 and 35 adjacent to both sides in the axial direction. In the present embodiment, the degree of increase in the outer diameter from the distal end side to the proximal end side is the same in each of the distal end side region 31 and the second tapered region 35. In other words, the inclination of the outer peripheral surface with respect to the axial direction is the same in the distal end side region 31 and the second tapered region 35.
- the length L2 of the first taper region 34 in the axial direction is shorter than the length L3 of the second taper region 35 in the axial direction. That is, when the dimension ratio between the length L2 of the first taper region 34 and the length L3 of the second taper region 35 is expressed by L2 / L3, L2 / L3 is smaller than 1 (0 ⁇ L2 / L3 ⁇ 1). ). Specifically, L2 / L3 is smaller than 1/3, and more specifically smaller than 1/5.
- the boundary portion 36 between the first taper region 34 and the second taper region 35 in the taper region 32 is located on the tip side from the center of the taper region 32 in the axial direction. Specifically, the boundary portion 36 is located on the distal end side from a portion located on the proximal end side by a quarter length of the entire length (L2 + L3) of the tapered region 32 from the distal end portion of the tapered region 32. More specifically, the boundary portion 36 is located on the distal end side from a portion located on the proximal end side by a length of 1/6 of the entire tapered region length (L2 + L3) from the distal end portion of the tapered region 32.
- the length L2 of the first taper region 34 is set to 20 mm, and the length L3 of the second taper region 35 is set to 110 mm. Therefore, L2 / L3 is 2/11.
- the outer diameter D1 of the boundary portion 36 is It is larger than the average value of the outer diameter D2 of the distal end portion of the tapered region 32 and the outer diameter D3 of the proximal end portion of the tapered region 32.
- the outer diameter D2 is the minimum outer diameter of the tapered region 32.
- the outer diameter D3 is the maximum outer diameter of the tapered region 32.
- the cross-sectional area of the boundary portion 36 is larger than the average value of the cross-sectional area of the tip end portion of the taper region 32 and the cross-sectional area of the base end portion of the taper region 32. That is, the cross-sectional area of the boundary portion 36 is larger than the average value of the minimum cross-sectional area of the taper region 32 and the maximum cross-sectional area of the taper region 32.
- the degree of increase in the cross-sectional area from the front end side to the base end side in the tapered regions 34 and 35 is expressed as the amount of change in the cross-sectional area per unit length in the axial direction.
- the degree to which the cross-sectional area increases from the distal end side toward the proximal end side in the tapered regions 34 and 35 is also referred to as a cross-sectional increase rate.
- the fluctuation amount of the cross-sectional area per unit length in the axial direction is an increase amount of the cross-sectional area when viewed from the distal end side to the proximal end side.
- the increasing rate of the transverse area in the tapered region 34 is obtained by dividing the difference between the transverse area of the proximal end portion of the tapered region 34 and the transverse area of the distal end portion of the tapered region 34 by the axial length L2 of the tapered region 34. It is obtained by. That is, the rate of increase in the cross-sectional area in the tapered region 34 is obtained by dividing the difference between the maximum cross-sectional area and the minimum cross-sectional area in the taper region 34 by the axial length L2 of the taper region 34.
- the increase rate of the transverse area in the tapered region 35 is the difference between the transverse area of the proximal end portion of the tapered region 35 and the transverse area of the distal end portion of the tapered region 35 by the axial length L3 of the tapered region 35. It is obtained by dividing. That is, the rate of increase in the cross-sectional area in the tapered region 35 is obtained by dividing the difference between the maximum cross-sectional area and the minimum cross-sectional area in the taper region 35 by the axial length L3 of the taper region 35. Further, the difference between the maximum cross-sectional area and the minimum cross-sectional area in the tapered regions 34 and 35 is the amount of change in the cross-sectional area in each region.
- the magnitude relationship of the increasing rates ⁇ S1 to ⁇ S3 of the cross-sectional areas of the first tapered region 34, the second tapered region 35, and the proximal end region 33 is ⁇ S1> ⁇ S2> ⁇ S3.
- the difference between the increase rate ⁇ S1 of the cross-sectional area in the first taper region 34 and the increase rate ⁇ S2 of the cross-sectional area in the second taper region 35 is the increase rate ⁇ S2 of the cross-sectional area in the second taper region 35, It is the same as or substantially the same as the difference from the increase rate ⁇ S3 of the cross-sectional area in the proximal side region 33. Therefore, in the boundary portion 36 between the first tapered region 34 and the second tapered region 35 and the boundary portion 37 between the second tapered region 35 and the proximal end region 33 in the core wire 30, the amount of change in the increase rate of the cross-sectional area ( (Variation) is the same.
- the core wire 30 is inserted into the outer tube hole 15a of the outer shaft 15, and is disposed across the guide wire port 21 in the axial direction. That is, the distal end of the core wire 30 is positioned on the distal end side with respect to the guide wire port 21. The proximal end of the core wire 30 is located closer to the proximal end than the guide wire port 21. Although not shown, the proximal end portion of the core wire 30 is fixed to the hub 12.
- the distal end side region 31 is disposed closer to the distal end side than the guide wire port 21 and is inserted between the outer peripheral surface of the inner shaft 16 and the inner peripheral surface of the outer shaft 15. ing. Further, the first tapered region 34 that is continuous to the proximal end side with respect to the distal end side region 31 is disposed so as to straddle the guide wire port 21 in the axial direction. The first taper region 34 is arranged so that the tip side portion of the first taper region 34 is in the same position as the guide wire port 21 in the axial direction. The proximal end of the first tapered region 34 is located on the proximal end side with respect to the guide wire port 21.
- the first tapered region 34 on the distal end side in the tapered region 32 has an increased outer diameter (cross-sectional area) from the distal end side to the proximal end side as compared with the second tapered region 35 on the proximal end side.
- the degree is large. Therefore, the outer diameter on the distal end side of the tapered region 32 can be increased as compared with the configuration in which the outer diameter (cross-sectional area) of the tapered region increases from the distal end side to the proximal end side with a certain degree.
- the outer diameter (cross-sectional area) of the core wire 30 can be increased at a position near the proximal end side of the guide wire port 21 in the axial direction. Thereby, the rigidity of the core wire 30 can be improved.
- the user first inserts the guiding catheter through a sheath introducer inserted into the blood vessel, and introduces the distal end opening of the guiding catheter to the coronary artery entrance.
- the user inserts the guide wire G through the guiding catheter, and introduces the inserted guide wire G from the coronary artery entrance to a peripheral site through a treatment site such as a stenosis site.
- the rigidity of the region on the tip side of the guide wire port 21 through which the guide wire G is inserted is higher than that of the guide wire port 21 through which the guide wire G is not inserted. Is considered to be higher than the rigidity of the proximal end region. In that case, the rigidity of the balloon catheter 10 locally changes at the position where the guide wire port 21 is formed in the axial direction. If the rigidity of the balloon catheter 10 is locally changed in the axial direction, the force for pushing the balloon catheter 10 from the proximal end side may not be successfully transmitted to the distal end side.
- the tapered region 32 of the core wire 30 has the two regions 34 and 35 having different degrees of increase in the cross-sectional area.
- the rigidity in the vicinity of the proximal end side of the guide wire port 21 is increased by increasing the cross-sectional area of the core wire 30 in the vicinity of the proximal end side of the guide wire port 21.
- the local change of the rigidity in the formation location of the guide wire port 21 can be suppressed.
- the transmissibility of the pushing force of the balloon catheter 10 can be enhanced.
- the operability when the user introduces the balloon catheter 10 into the body can be improved.
- the user After placing the balloon 13 at the treatment site, the user supplies the compressed fluid to the balloon 13 from the hub 12 side through the outer tube hole 15a of the outer shaft 15 using a pressurizer. Thereby, the balloon 13 is inflated. As the balloon 13 is inflated, the narrowed portion is expanded.
- the degree of increase in the cross-sectional area from the distal end side to the proximal end side in the first taper region 34 is compared with the second configuration located on the proximal end side in the region 32, the first configuration is more in the first configuration. It is considered that the degree of increase is larger than that of the second configuration.
- the cross-sectional area of the boundary portion 36 in the first configuration is the same as the cross-sectional area of the boundary portion 36 in the second configuration.
- the boundary portion 36 is located on the distal end side with respect to the center position of the tapered region 32 in the axial direction.
- the boundary portion 36 is located on the distal end side from a location located on the proximal end side by a distance of 1/4 of the total length (L2 + L3) of the tapered region 32 from the distal end portion of the tapered region 32. Therefore, the degree of increase in the cross-sectional area in the first taper region 34 can be further increased. As a result, the cross-sectional area of the core wire 30 can be further increased at a position in the vicinity of the proximal end side of the guide wire port 21 in the axial direction. Thereby, the rigidity of the core wire 30 can be further increased. For this reason, it is possible to further improve the transferability of the pushing force when the balloon catheter 10 is introduced into the body.
- the boundary portion 36 is located on the tip side from the center position of the tapered region 32, and the cross-sectional area of the boundary portion 36 is larger than the average value of the respective cross-sectional areas at both axial ends of the tapered region 32. large.
- the cross-sectional area of the first tapered region 34 is based on the front end side compared to the configuration in which the cross-sectional area at the boundary portion 36 is equal to or less than the average value of the cross-sectional areas at both axial ends of the tapered region 32. The degree of increase toward the end side can be increased.
- the cross-sectional area of the core wire 30 can be further increased at a position near the proximal end side of the guide wire port 21 in the axial direction. Therefore, the rigidity of the core wire 30 can be further increased. Thereby, the transmissibility of the pushing force when introducing the balloon catheter 10 into the body can be further enhanced.
- the difference between the increase rate ⁇ S1 of the cross-sectional area in the first taper region 34 and the increase rate ⁇ S2 of the cross-sectional area in the second taper region 35 is equal to the increase rate ⁇ S2 of the cross-sectional area in the second taper region 35 and the proximal region 33. This is the same as the difference from the crossing area increase rate ⁇ S3.
- the degree of increase in the cross-sectional area occurring at each of the boundary portion 36 between the first taper region 34 and the second taper region 35 and the boundary portion 37 between the second taper region 35 and the proximal end region 33 is locally determined.
- the same change (amount) can be made the same.
- the local change in the increase degree of the cross-sectional area that occurs at each of the boundary portions 36 and 37 can be uniformly distributed to each of the boundary portions 36 and 37.
- the local change of the rigidity which arises in each boundary part 36 and 37 can be suppressed.
- the fall of kink resistance can be suppressed.
- the core wire 30 is provided in the outer tube hole 15 a of the outer shaft 15 of the balloon catheter 10.
- the distal end region 31 of the core wire 30 is inserted between the inner peripheral surface of the outer shaft 15 and the outer peripheral surface of the inner shaft 16.
- a compressed fluid flows between the inner peripheral surface of the outer shaft 15 and the outer peripheral surface of the inner shaft 16. Therefore, it is necessary to make the cross-sectional area of the front end side region 31 as small as possible in order to suppress a decrease in fluid flowability.
- the cross-sectional area may be reduced at a position near the proximal end side of the guide wire port 21.
- the cross-sectional area of the core wire 30 can be increased at a position near the proximal end side of the guide wire port 21.
- the outer shaft 15 corresponds to an “outer tube” and a “tube”.
- the inner shaft 16 corresponds to an “inner tube”.
- the outer tube hole 15a corresponds to a “lumen”.
- the present invention is not limited to the above embodiment, and may be implemented as follows, for example.
- the dimensional ratio L2 / L3 between the length L2 of the first taper region 34 and the length L3 of the second taper region 35 is smaller than 1/5.
- L2 / L3 may be a numerical value that is 1/5 or more and smaller than 1.
- the boundary 36 between the first taper region 34 and the second taper region 35 is located on the tip side with respect to the center position in the axial direction in the taper region 32, so the boundary 36 is the center position of the taper region 32.
- the degree of increase in the outer diameter (cross-sectional area) from the proximal end side to the distal end side in the first taper region 34 can be increased as compared with the case where the first tapered region 34 is located closer to the proximal end side. Therefore, the outer diameter of the core wire 30 can be increased at a position near the proximal end side of the guide wire port 21 in the axial direction. Therefore, the rigidity of the core wire 30 can be further increased. Therefore, also in this case, it is possible to further improve the transmission of the pushing force when the balloon catheter 10 is introduced into the body.
- boundary portion 36 may be located closer to the base end side than the center position of the tapered region 32 in the axial direction. That is, L2 / L3 may be 1 or more.
- the proximal end region 33 is formed in a non-tapered shape having a constant outer diameter (cross-sectional area) over the entire axial direction.
- the proximal end region 33 may be formed in a tapered shape whose outer diameter (cross-sectional area) increases from the proximal end side toward the distal end side.
- the degree of increase in the cross-sectional area from the base end side to the front end side in the base end side region 33 (cross-sectional area increase rate ⁇ S3) is greater than the degree of increase in the cross-sectional area in the second tapered region 35. It may be small.
- the difference between the increase rate ⁇ S2 of the cross-sectional area in the second taper region 35 and the increase rate ⁇ S3 of the cross-sectional area in the proximal end region 33 is equal to the increase rate ⁇ S1 of the cross-sectional area in the first taper region 34 and the second rate. If the difference between the taper region 35 and the increase rate ⁇ S2 of the cross-sectional area is the same, the boundary 37 between the second taper region 35 and the proximal region 33, and the first taper region 34 and the second taper region 35 The amount of local change in the cross-sectional area at each boundary 36 is the same. That is, the local change amount of the rigidity of the core wire 30 can be made the same. Therefore, in the configuration in which the two regions 34 and 35 having different degrees of increase in the cross-sectional area are provided in the tapered region 32, it is possible to suppress a decrease in kink resistance.
- the core wire 30 may not include the proximal end region 33.
- the second tapered region 35 only needs to extend continuously to the proximal end portion of the core wire 30.
- the difference between the increase rate ⁇ S1 of the cross-sectional area in the first taper region 34 and the increase rate ⁇ S2 of the cross-sectional area in the second taper region 35 is the increase rate ⁇ S2 of the cross-sectional area in the second taper region 35.
- ⁇ S1- ⁇ S2> ⁇ S2- ⁇ S3 may be used.
- ⁇ S1 ⁇ S2 ⁇ S2 ⁇ S3 may be satisfied.
- the cross-sectional area at the boundary portion 36 between the first taper region 34 and the second taper region 35 is the cross-sectional area of the tip end portion of the taper region 32 and the cross-sectional area of the base end portion of the taper region 32. Greater than average value.
- the cross-sectional area at the boundary 36 between the first taper region 34 and the second taper region 35 is the same as or average of the average value of the cross-sectional area at the tip end of the taper region 32 and the cross-sectional area at the base end of the taper region 32. It may be smaller than the value.
- the first taper region 34 is positioned such that the tip side of the first taper region 34 is in the same position as the guide wire port 21 in the axial direction.
- the first tapered region 34 may be positioned such that the proximal end side of the first tapered region 34 is in the same position as the guide wire port 21 in the axial direction.
- the first tapered region 34 may be positioned such that the central portion of the first tapered region 34 is at the same position as the guide wire port 21 in the axial direction. Further, the first taper region 34 does not necessarily need to be positioned across the guide wire port 21 in the axial direction.
- the first tapered region 34 may be positioned such that the tip of the first tapered region 34 is in the same position as the guide wire port 21 in the axial direction.
- region 34 should just include the same position as the guide wire port 21 in an axial direction.
- the present invention has been described using an example in which the present invention is applied to a balloon catheter.
- the present invention may be applied to other Rx type catheters in which the guide wire port 21 is formed at an intermediate position in the axial direction.
- the present invention may be applied to a catheter that does not include a balloon.
- the catheter shaft 11 includes a plurality of tubular shafts.
- the catheter shaft may not include a plurality of tubular shafts.
- the present invention may be applied to catheters that include only one shaft. In this case, for example, the one shaft may have a lumen inside. The core wire only needs to be inserted through the lumen.
- a guide wire port may be formed at an intermediate position in the axial direction of the one shaft so as to penetrate the peripheral wall portion surrounding the lumen of the shaft.
- the single shaft may have two lumens inside.
- one of the two lumens may be a lumen through which the guide wire can be inserted, and the other may be a lumen through which the compressed fluid can flow.
- the lumen into which the guide wire can be inserted only needs to have a guide wire port formed in the middle of the axial direction so as to penetrate the lumen.
- One shaft may have three or more lumens.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Pulmonology (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Child & Adolescent Psychology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
カテーテルを体内へ導入する際の操作性向上を図ることができるカテーテルを提供する。 バルーンカテーテル10の外側シャフト15の周壁部23には、軸線方向の途中位置に、ガイドワイヤポート21が形成されている。外側シャフト15の外側管孔15aには、ガイドワイヤポート21を軸線方向に跨いで延びるコアワイヤ30が設けられている。コアワイヤ30は、ガイドワイヤポート21よりも先端側の先端側領域31と、その基端側に設けられたテーパ領域32とを備える。テーパ領域32は、先端側領域31に対して基端側に連続して設けられ、軸線方向にてガイドワイヤポート21と同じ位置を含む第1テーパ領域34と、その基端側に連続して設けられた第2テーパ領域35とを有する。第1テーパ領域34では、先端側から基端側へ向けた横断面積の増加の度合いは第2テーパ領域35と比べて大きい。
Description
本発明は、カテーテルに関する。
従来から、PTA(経皮的血管形成術)やPTCA(経皮的冠動脈形成術)といった治療等においては、バルーンカテーテルが用いられている。バルーンカテーテルは、カテーテルチューブとバルーンとを備える。バルーンは、カテーテルチューブの遠位端側に設けられている。ユーザは、血管内に生じた狭窄箇所又は閉塞箇所にバルーンを導入し、バルーンを膨張させることで、当該箇所の拡張を行う。ユーザは、例えば、医師等の手技者である。
バルーンカテーテルのカテーテルチューブは、外側チューブと内側チューブとを備える。内側チューブは外側チューブに挿通されている。バルーンは外側チューブの遠位端部に接合されている。圧縮流体が外側チューブの内腔を通じて流通することで、バルーンは膨張又は収縮する。内側チューブは、内側チューブの先端部が外側チューブの先端よりも先端側に延出した状態で設けられている。外側チューブの先端から延出した内側チューブの先端部は、バルーン内部を通り、バルーンよりも先端側まで延びている。内側チューブの内腔は、ガイドワイヤが挿通可能なガイドワイヤルーメンである。ユーザは、バルーンカテーテルを体内に導入する際には、予め体内に導入しておいたガイドワイヤを内側チューブの内腔に挿通する。ユーザは、ガイドワイヤが内側チューブの内腔に挿通した状態で、バルーンカテーテルを体内に導入する。
ガイドワイヤの挿通方式として、ガイドワイヤが外側チューブの軸線方向の途中位置から外部に導出可能な型、所謂、RX型が知られている。RX型のバルーンカテーテルには、外側チューブの軸線方向の途中位置に、外側チューブの周壁部を貫通するガイドワイヤポートが形成されている。内側チューブの内腔は、ガイドワイヤポートを通じてカテーテル外部に開放されている。この場合、内側チューブの先端部から内側チューブ内に導入されたガイドワイヤは、ガイドワイヤポートを通じてカテーテル外部に導出される。
ところで、この種のバルーンカテーテルには、剛性を高める等の目的で、コアワイヤが設けられることがある(例えば特許文献1参照)。コアワイヤは、外側チューブの内腔に挿通させて設けられる。コアワイヤは、例えばガイドワイヤポートを軸線方向に跨いで配置される。この場合、外側チューブの内腔においてガイドワイヤポートよりも先端側の領域には内側チューブが設けられている。故に、当該先端側の領域では、コアワイヤは内側チューブの外周面と外側チューブの内周面との間を通じて挿通される。そのため、コアワイヤにおいて当該先端側の領域に配設される部分は、細い径に形成される必要がある。
その一方で、コアワイヤにおいて細い径で形成された部分よりも基端側の部分は、先端側から基端側へ向けて外径が徐々に大きくなるように形成されることが望ましい。そのためコアワイヤは、例えば、先端側から基端側へ向けて外径が一定の度合いで緩やかに大きくなるように形成されることが考えられる。この場合、コアワイヤの剛性を基端側から先端側へ向けて徐々に低くすることができ、耐キンク性の向上を図ることができる。
ところで、上述したバルーンカテーテルにおいて、ガイドワイヤが内側チューブの内腔に挿通された状態では、ガイドワイヤが存在することで、ガイドワイヤが挿通されているガイドワイヤポートよりも先端側の領域では剛性が高くなっている。一方、ガイドワイヤポートよりも基端側の領域には、ガイドワイヤが存在していない。故に、ガイドワイヤポートよりも基端側の領域の剛性は、ガイドワイヤがカテーテルに挿通される前と変わらない。この場合、軸線方向におけるガイドワイヤポートの形成箇所において剛性が局所的に変化することとなる。そのため、ユーザがバルーンカテーテルをガイドワイヤに沿って体内に導入する際、当該箇所において、基端側からの押し込み力が上手く先端側に伝達しない可能性がある。そのため、操作性が低下する可能性がある。
また、ガイドワイヤポートを軸線方向に跨いでコアワイヤが配設される上述の構成では、コアワイヤによりガイドワイヤポートの基端側近傍に剛性が付与される。そのため、ガイドワイヤポートの形成箇所における剛性の局所的な変化を抑制する効果が期待できる。しかしながら、上述のコアワイヤの外径は、ガイドワイヤポートよりも先端側に配置される細径領域から基端側に向けて一定の度合いで緩やかに大きくなる。そのため、ガイドワイヤポートの基端側近傍においてその外径を十分な大きさとすることが難しい。故に、当該基端側近傍に十分な剛性を付与することが難しいと考えられる。したがって、上述のコアワイヤでは、カテーテルを体内に導入する際の押し込み力を上手く先端側に伝達するという上述の課題が依然として解消されず、その改善が求められる。
本発明は、上記事情に鑑みてなされたものであり、カテーテルを体内へ導入する際の操作性向上を図ることができるカテーテルを提供することを主たる目的とするものである。
上記課題を解決すべく、第1の発明のカテーテルは、内部にルーメンを有するチューブと、前記ルーメンを囲む周壁部を貫通するように、前記チューブの軸線方向の途中位置に形成されたガイドワイヤポートと、前記ルーメンに挿通され、前記ガイドワイヤポートを軸線方向に跨いで延びるコアワイヤと、を備えたカテーテルであって、前記コアワイヤは、前記ガイドワイヤポートよりも先端側に位置する領域である先端側領域と、前記先端側領域よりも基端側の領域であって、軸線方向と直交する方向の断面積が先端側から基端側に向けて連続して大きくなるように形成された領域であるテーパ領域と、を備え、前記テーパ領域は、前記先端側領域の基端から基端側に向けて延びる領域であって、軸線方向において前記ガイドワイヤポートと同じ位置を含む領域である第1テーパ領域と、前記第1テーパ領域の基端から基端側に向けて延びる領域である第2テーパ領域と、を有し、前記第1テーパ領域において先端側から基端側へ向けて前記断面積が増加する度合いは、前記第2テーパ領域において先端側から基端側へ向けて前記断面積が増加する度合いよりも大きいことを特徴とする。
本発明によれば、コアワイヤは、ガイドワイヤポートよりも先端側に設けられた先端側領域と、先端領域よりも基端側に設けられたテーパ領域とを備える。テーパ領域は、軸線方向にてガイドワイヤポートと同位置を含む領域である第1テーパ領域と、第1テーパ領域よりも基端側の領域である第2テーパ領域とを有する。第1テーパ領域では、先端側から基端側へ向けた断面積の増加の度合いが第2テーパ領域よりも大きい。そのため、テーパ領域の断面積が先端側から基端側へ向けて一定の度合いで大きい構成と比べて、軸線方向におけるガイドワイヤポートの基端側近傍の位置においてコアワイヤの断面積を大きくすることができる。故にコアワイヤの剛性を高めることができる。これにより、カテーテルを体内に導入する際の押し込み力の伝達性を高めることができる。その結果、操作性の向上を図ることができる。
第2の発明のカテーテルは、第1の発明において、前記第1テーパ領域と前記第2テーパ領域との境界部が、軸線方向における前記テーパ領域の中央よりも先端側に位置していることを特徴とする。
第1テーパ領域と第2テーパ領域との境界部における断面積を同じとした条件の下で、当該境界部がテーパ領域において先端側に位置する場合と、基端側に位置する場合とで、第1テーパ領域における先端側から基端側へ向けた断面積の増加の度合いを大小比べた場合、前者の場合の方が後者の場合よりも断面積の増加の度合いが大きくなると考えられる。そこで本発明では、この点に着目し、第1テーパ領域と第2テーパ領域との境界部を、軸線方向におけるテーパ領域の中心位置よりも先端側に位置させている。この場合、第1テーパ領域における断面積の増加の度合いを大きくすることで、軸線方向におけるガイドワイヤポートの基端側近傍の位置においてコアワイヤの断面積をより大きくすることができる。故にコアワイヤの剛性をより高めることができる。そのため、カテーテルを体内に導入する際の押し込み力の伝達性をより高めることができる。
第3の発明のカテーテルは、第2の発明において、前記境界部が、前記テーパ領域の先端部から、前記テーパ領域の全長の1/4の距離だけ基端側に位置する箇所よりも先端側に位置していることを特徴とする。
本発明によれば、第1テーパ領域と第2テーパ領域との境界部が、テーパ領域の先端部から当該テーパ領域の全長の1/4の距離だけ基端側に位置する箇所より先端側に位置している。これにより、第2の発明の場合よりもさらに第1テーパ領域の断面積が先端側から基端側へ向けて増大する度合いを大きくすることができる。この場合、軸線方向におけるガイドワイヤポートの基端側近傍の位置においてコアワイヤの断面積をさらに大きくすることができる。故にコアワイヤの剛性をさらに高めることができる。そのため、カテーテルを体内に導入する際の押し込み力の伝達性をさらに高めることができる。
第4の発明のカテーテルは、第2又は第3の発明において、前記境界部の前記断面積は、前記テーパ領域の軸線方向両端部における前記各断面積の平均値よりも大きいことを特徴とする。
本発明によれば、第1テーパ領域と第2テーパ領域との境界部がテーパ領域の中心位置よりも先端側に位置する第2の発明の構成において、当該境界部における断面積が、テーパ領域の軸線方向両端部における各断面積の平均値よりも大きい。この場合、当該境界部における断面積が、上記各断面積の平均値以下である構成と比べて、第1テーパ領域の断面積が先端側から基端側へ向けて増大する度合いを大きくすることができる。そのため、軸線方向におけるガイドワイヤポートの基端側近傍の位置においてコアワイヤの断面積をより一層大きくすることができる。故にコアワイヤの剛性をより一層高めることができる。これにより、カテーテルを体内に導入する際の押し込み力の伝達性をより一層高めることができる。
第5の発明のカテーテルは、第1乃至第4のいずれかの発明において、前記コアワイヤは、前記第2テーパ領域の基端から基端側に向けて延びる領域である基端側領域をさらに備え、前記基端側領域は、先端側から基端側へ向けて一定の前記断面積で形成されているか、又は、先端側から基端側へ向けて前記断面積が前記第2テーパ領域と比べて小さい増加度合いで大きくなるように形成されており、前記第1テーパ領域と前記第2テーパ領域との間における前記断面積の増加の度合いの差は、前記第2テーパ領域と前記基端側領域との間における前記断面積の増加の度合いの差と同じ又は略同じであることを特徴とする。
本発明によれば、第1テーパ領域と第2テーパ領域との間における断面積の増加の度合いの差は、第2テーパ領域と基端側領域との間における断面積の増加の度合いの差と同じ又は略同じである。そのため、第1テーパ領域と第2テーパ領域との境界部、及び第2テーパ領域と基端側領域との境界部それぞれにおいて生じる断面積の増加の度合いの局所的な変化(量)を同じとすることができる。つまり、この場合、各境界部にてそれぞれ生じる断面積の増加度合いの局所的な変化を各境界部に均一に振り分けることができる。結果として、各境界部それぞれにおいて生じる上記局所的な変化を抑制することができる。故に、各境界部それぞれにおいて生じる剛性の局所的な変化を抑制することができる。これにより、テーパ領域に断面積の増加の度合いが異なる2つの領域を備えた構成にあって、耐キンク性の低下を抑制することができる。
第6の発明のカテーテルは、第1乃至第5のいずれかの発明において、前記ルーメンに相当する流体ルーメンを内部に有する前記チューブに相当する外側チューブと、前記外側チューブの先端よりも先端側に一部が延出した状態で前記流体ルーメンに挿通された内側チューブであって、前記ガイドワイヤが挿通可能であり且つ基端部が前記ガイドワイヤポートに通じるガイドワイヤルーメンを有する内側チューブと、前記外側チューブの先端から延出した前記内側チューブの前記一部を外側から覆い、且つ基端部が前記外側チューブの先端部に接合されたバルーンと、を備え、前記コアワイヤの前記先端側領域は、前記流体ルーメンにおいて前記内側チューブの外周面と前記外側チューブの内周面との間に挿通されていることを特徴とする。
バルーンカテーテルは外側チューブと内側チューブとを備える。内側チューブは外側チューブの流体ルーメンに挿通されている。流体は、内側チューブの外周面と外側チューブの内周面との間を通じて流通する。そのため、内側チューブと外側チューブの間を流れる流体の流通性低下を抑制すべく、先端側領域の断面積をできるだけ小さくする必要がある。そのため、先端側領域から基端側へと延びるテーパ領域の断面積は、ガイドワイヤポートの基端側近傍の位置において、小さくなる可能性がある。バルーンカテーテルに第1の発明を適用することで、ガイドワイヤポートの基端側近傍の位置においてコアワイヤの断面積を大きくすることができる。ガイドワイヤポート21の基端側近傍の位置にてコアワイヤ30の横断面積を大きくすることで、圧縮流体の中通性を確保し、且つバルーンカテーテル10を体内に導入する際の押し込み力の伝達性をより一層高めることができる。
以下、図面を参照し、本発明を具体化した一実施の形態について説明する。本実施形態では、膨張及び収縮可能なバルーンを備えるバルーンカテーテルについて具体化している。図1はバルーンカテーテルの構成を示す全体側面図である。
図1に示すように、バルーンカテーテル10は、カテーテルシャフト11と、ハブ12と、バルーン13とを備える。ハブ12は、カテーテルシャフト11の基端部(近位端部)に取り付けられている。バルーン13は、カテーテルシャフト11の先端側(遠位端側)に取り付けられている。
カテーテルシャフト11は、複数の管状シャフト(チューブ)を含む。カテーテルシャフト11は、少なくとも軸線方向(長手方向)の途中位置からバルーン13の位置まで内外複数管構造である。具体的には、カテーテルシャフト11は、外側シャフト15と内側シャフト16とを備える。内側シャフト16の内径は外側シャフト15の内径よりも小さい。内側シャフト15の外径は外側シャフト15の外径よりも小さい。内側シャフト16の外径は外側シャフト15の内径よりも小さい。内側シャフト16は外側シャフト15内に挿通されている。これにより、カテーテルシャフト11は内外二重管構造に構成されている。
外側シャフト15は内部に外側管孔15aを有するチューブである。具体的には、外側シャフト15は、軸線方向の全体に亘って連続するとともに両端にて開放された外側管孔15a(図2参照)を有する管状の部材である。外側シャフト15は、軸線方向に並んだ複数のシャフト17~19を備える。複数のシャフト17~19は夫々、隣接するシャフトに溶着(熱溶着)等により接合されている。但し、各シャフト17~19は必ずしも溶着により接合されている必要はなく、接着等その他の接合方法により接合されていてもよい。
各シャフト17~19は、基端側から順に、プロキシマルシャフト17、ミッドシャフト18、ディスタールシャフト19である。プロキシマルシャフト17は、Ni―Ti合金やステンレスなどの金属により形成されている。プロキシマルシャフト17の基端部はハブ12に接合されている。ミッドシャフト18は、熱可塑性のポリアミドエラストマにより形成されている。ミッドシャフト18の剛性は、プロキシマルシャフト17の剛性よりも低い。ディスタールシャフト19は、熱可塑性のポリアミドエラストマにより形成されている。ディスタールシャフト19の剛性は、ミッドシャフト18の剛性よりも低い。
なお、プロキシマルシャフト17は、必ずしも金属により形成される必要はなく、合成樹脂により形成されてもよい。また、ミッドシャフト18及びディスタールシャフト19は、必ずしもポリアミドエラストマにより形成される必要はなく、他の合成樹脂により形成されてもよい。また、本明細書において剛性とは、カテーテルを軸線方向に対して直交する方向に曲げようとするときに作用するモーメントの大きさのことをいう。内側シャフト16は、軸線方向の全体に亘って連続するとともに両端にて開放された内側管孔16aを有する管状の部材である(図2参照)。内側管孔16aは、ガイドワイヤルーメンとして機能する管孔である。故に、ガイドワイヤGは内側管孔16aを挿通可能である。内側シャフト16は、外側シャフト15のディスタールシャフト19に挿入されている。内側シャフト16の基端部は、外側シャフト15における軸線方向の途中位置に接合されている。具体的には、内側シャフト16の基端部は、ミッドシャフト18とディスタールシャフト19との境界部に接合されている。
外側シャフト15における内側シャフト16との接合部分にはガイドワイヤポート21が形成されている。以下、図2を参照して、ガイドワイヤポート21周辺の構成について説明する。なお、図2はガイドワイヤポート21周辺の構成を示す縦断面図である。また、図2は図1におけるC1の領域を示している。
図2に示すように、ガイドワイヤポート21は、ディスタールシャフト19の基端部に形成されている。ディスタールシャフト19は、その内部に外側管孔15aの一部である管孔19aを有する。即ち、外側管孔15aは管孔19aを含む。管孔19aは、外側管孔19aのうち、基端側に位置する管孔である。ガイドワイヤポート21は、管孔19aを囲む周壁部23を貫通するように形成されている。このように、ガイドワイヤポート21は管孔19aを囲む周壁部23を貫通するように、外側シャフト15の軸線方向の途中位置に形成されている(図1参照)。
ディスタールシャフト19(周壁部23)におけるガイドワイヤポート21の周縁部には内側シャフト16の基端部が接合されている。内側シャフト16の内側管孔16aの基端は、ガイドワイヤポート21を介してカテーテル10外側に開放されている。これにより、内側シャフト16の先端側開口から内側管孔16aに導入されたガイドワイヤGは、ガイドワイヤポート21を通じて内側管孔16aの基端から外部に導出可能である。つまり、バルーンカテーテル10は、軸線方向の途中位置で、ガイドワイヤGが導出可能に構成されたカテーテル、所謂RX型のカテーテルである。
内側シャフト16の一部は、外側シャフト15の先端よりも先端側に延出している(図1参照)。バルーン13は、外側シャフト15の先端から延出した内側シャフト16を外側から覆うように設けられている。バルーン13は、熱可塑性のポリアミドエラストマにより形成されている。但し、バルーン13は、ポリエチレンやポリプロピレン等その他の熱可塑性樹脂により形成されてもよい。
バルーン13の基端部は、外側シャフト15の先端部に接合されている。このように、バルーン13は外側シャフト15の先端から延出した内側シャフト16を外側から覆い、且つバルーン13の基端部が外側シャフト15の先端部に接合する。バルーン13の先端部は、内側シャフト16の先端部に接合されている。バルーン13の内部は、外側シャフト15の外側管孔15aを介してハブ12と連通している。ハブ12を介して供給される圧縮流体は、外側管孔15aを通じてバルーン13に供給される。この場合、外側管孔15aは、圧縮流体を流通させる為の流体ルーメンとして機能する。外側管孔15aを通じてバルーン13に圧縮流体が供給されると、バルーン13は膨張状態となる。外側管孔15aに対して陰圧が付与されて圧縮流体が排出されると、バルーン13は収縮状態となる。
バルーンカテーテル10は、コアワイヤ30を備える。コアワイヤ30は、カテーテル10の剛性を高める等の目的でバルーンカテーテル10に設けられている。以下、図2及び図3を参照して、コアワイヤ30の構成について説明する。なお、図3(a)はコアワイヤ30の構成を示す側面図であり、(b)はコアワイヤ30の一部を拡大して示す拡大側面図である。
コアワイヤ30は線状の部材である。コアワイヤ30は、例えば、金属材料により形成されている。例えば、コアワイヤ30はステンレスにより形成されている。コアワイヤ30の横断面は円形状である。図3(a)に示すように、コアワイヤ30は、先端側の外径が基端側の外径より小さくなるように形成されている。したがって、コアワイヤ30の剛性は、基端側から先端側に向かうにつれて低くなっている。なお、横断面とは、コアワイヤ30の軸線方向に対して垂直な断面である。
なお、コアワイヤ30は、ステンレス以外の材料により形成されてもよく、例えばニッケルチタン合金等の超弾性合金により形成されてもよい。また、コアワイヤ30の横断面は必ずしも円形状である必要はなく、四角形状や六角形状等その他の形状でもよい。
コアワイヤ30は、先端側領域31と、テーパ領域32と、基端側領域33とを備える。先端側領域31は、コアワイヤ30の先端から基端側に向けて延びる領域である。なお、先端側領域31は、ガイドワイヤポート21よりも先端側に位置する領域である。テーパ領域32は、先端側領域31に対して基端側に連続して設けられた領域である。即ち、テーパ領域32は、先端側領域31の基端から基端側に向けて延びる領域である。基端側領域33は、テーパ領域32に対して基端側に連続して設けられた領域である。即ち、基端側領域33は、テーパ領域32の基端から基端側に向けて延びる領域である。基端側領域33は、コアワイヤ30の基端部を含む領域である。
先端側領域31は、コアワイヤ30の各領域31~33のうちで外径が最も小さい部分を含む領域である。先端側領域31はテーパ状に形成されている。そのため先端領域31の外径は、先端側から基端側に向けて徐々に大きくなる。本実施形態では、先端側領域31の軸線方向の長さL1は、80mmに設定されている。なお、先端側領域31は、必ずしもテーパ状に形成される必要はない。先端側領域31は、外径が軸線方向全域に亘って一定である円柱状の領域でもよい。
テーパ領域32は、外径が先端側から基端側に向けて連続して大きくなるようにテーパ状に形成された領域である。本実施形態では、テーパ領域32の軸線方向の長さ(L2+L3)は130mmに設定されている。
基端側領域33の外径は、軸線方向全域に亘って一定である。つまり、基端側領域33は、先端側領域31及びテーパ領域32とは異なり、非テーパ領域である。基端側領域33の軸線方向の長さは、先端側領域31及びテーパ領域32よりも十分に長い。本実施形態では、基端側領域33の長さは700~1500mmに設定されている。
次に、テーパ領域32について詳しく説明する。
テーパ領域32は、第1テーパ領域34と、第2テーパ領域35とを有する。第1テーパ領域34は、先端側領域31に対して基端側に連続して設けられた領域である。即ち、第1テーパ領域34は、先端側領域31の基端から基端側に向けて延びる領域である。第2テーパ領域35は、第1テーパ領域34に対して基端側に連続して設けられた領域である。即ち、第2テーパ領域35は、第1テーパ領域34の基端から基端側に向けて延びる領域である。第1テーパ領域34では、先端側から基端側へ向けて外径が増加する度合いは、第2テーパ領域35と比べて大きい。したがって、図3(b)に示すように、第1傾斜角度αは第2傾斜角度βよりも大きい。第1傾斜角度αは、第1テーパ領域34において軸線方向に対する外周面の傾きである。第2傾斜角度βは、第2テーパ領域35において軸線方向に対する外周面の傾きである。即ち、第1テーパ領域34において先端側から基端側へ向けて横断面積が増加する度合いは、第2テーパ領域35において先端側から基端側へ向けて横断面積が増加する度合いよりも大きい。
なお、軸線方向に対する外周面の傾斜角度α、βには、鋭角側の角度と鈍角側の角度とが存在するが、本明細書における「傾斜角度α,β」は、鋭角側の角度を指すものとする。また、本明細書において、コアワイヤ30(各領域31~35)の横断面積とは、コアワイヤ30の軸線方向に対して直交する方向の断面積をいう。
第1テーパ領域34において先端側から基端側へ向けて外径が増加する度合いは、先端側領域31において先端側から基端側へ向けて外径が増加する度合いよりも大きい。つまり、第1テーパ領域34では、その軸線方向の両側に隣接する各領域31,35のいずれよりも、先端側から基端側へ向けた外径(横断面積)の増加の度合いが大きい。なお、本実施形態では、先端側領域31と第2テーパ領域35とのそれぞれにおいて、先端側から基端側へ向けた外径の増加の度合いが同じである。換言すると、軸線方向に対する外周面の傾きは、先端側領域31と第2テーパ領域35とでそれぞれ同じである。
第1テーパ領域34の軸線方向の長さL2は、第2テーパ領域35の軸線方向の長さL3よりも短い。つまり、第1テーパ領域34の長さL2と第2テーパ領域35の長さL3との寸法比をL2/L3で表した場合、L2/L3は1よりも小さい(0<L2/L3<1)。詳しくは、L2/L3は1/3よりも小さく、より詳しくは1/5よりも小さい。
換言すると、テーパ領域32における第1テーパ領域34と第2テーパ領域35との境界部36は、軸線方向においてテーパ領域32の中央よりも先端側に位置している。詳しくは、境界部36は、テーパ領域32の先端部から当該テーパ領域32の全長(L2+L3)の1/4長さ分だけ基端側に位置する箇所よりも先端側に位置している。より詳しくは、境界部36は、テーパ領域32の先端部からテーパ領域全長(L2+L3)の1/6長さ分だけ基端側に位置する箇所よりも先端側に位置している。
なお、本実施形態では、第1テーパ領域34の長さL2が20mmに設定されており、第2テーパ領域35の長さL3が110mmに設定されている。従って、L2/L3は2/11である。
また、第1テーパ領域34と第2テーパ領域35との境界部36が、テーパ領域32における軸線方向の中心位置よりも先端側に位置する上記の構成において、境界部36の外径D1は、テーパ領域32の先端部の外径D2と、テーパ領域32の基端部の外径D3との平均値よりも大きい。外径D2は、テーパ領域32の最小外径である。外径D3は、テーパ領域32の最大外径である。また、境界部36の横断面積は、テーパ領域32先端部の横断面積と、テーパ領域32基端部の横断面積との平均値よりも大きい。即ち、境界部36の横断面積は、テーパ領域32の最小横断面積とテーパ領域32の最大横断面積との平均値よりも大きい。
次に、第1テーパ領域34及び第2テーパ領域35における先端側から基端側へ向けた横断面積の増加の度合いについてさらに説明する。
テーパ領域34,35における先端側から基端側へ向けた横断面積の増加の度合いは、軸線方向の単位長さ当たりにおける横断面積の変動量として表される。以下、テーパ領域34,35において先端側から基端側へ向けて横断面積が増加する度合いを、横断面の増加率とも称す。軸線方向の単位長さ当たりにおける横断面積の変動量とは、先端側から基端側へ向けて見た場合には、横断面積の増加量である。テーパ領域34における横断面積の増加率は、テーパ領域34の基端部の横断面積と、テーパ領域34の先端部の横断面積との差を、テーパ領域34の軸線方向長さL2で除することにより求まる。即ち、テーパ領域34における横断面積の増加率は、テーパ領域34における最大横断面積と最小横断面積との差を、テーパ領域34の軸線方向長さL2で除することにより求まる。同様に、テーパ領域35における横断面積の増加率は、テーパ領域35の基端部の横断面積と、テーパ領域35の先端部の横断面積との差を、テーパ領域35の軸線方向長さL3で除することにより求まる。即ち、テーパ領域35における横断面積の増加率は、テーパ領域35における最大横断面積と最小横断面積との差を、テーパ領域35の軸線方向長さL3で除することにより求まる。また、テーパ領域34、35における最大横断面積と最小横断面積との差とは、夫々の領域における横断面積の変動量である。
上述したように、第1テーパ領域34の横断面積の増加の度合いは、第2テーパ領域35の横断面積の増加の度合いより大きい。故に、第1テーパ領域34における横断面積の増加率をΔS1、第2テーパ領域35における横断面積の増加率をΔS2とした場合、ΔS1>ΔS2である。また、第2テーパ領域35に対して基端側に連続する基端側領域33は、非テーパ領域である。故に、基端側領域33における横断面積の増加率をΔS3とした場合、ΔS3=0である。したがって、第1テーパ領域34、第2テーパ領域35、基端側領域33の各横断面積の増加率ΔS1~ΔS3の大小関係は、ΔS1>ΔS2>ΔS3である。
本実施形態では、第1テーパ領域34における横断面積の増加率ΔS1と、第2テーパ領域35における横断面積の増加率ΔS2との差は、第2テーパ領域35における横断面積の増加率ΔS2と、基端側領域33における横断面積の増加率ΔS3との差と同じ又は略同じである。したがって、コアワイヤ30における第1テーパ領域34と第2テーパ領域35との境界部36、及び第2テーパ領域35と基端側領域33との境界部37ではそれぞれ横断面積の増加率の変化量(変動量)が同じである。
図2に示すように、コアワイヤ30は、外側シャフト15の外側管孔15aに挿通されており、ガイドワイヤポート21を軸線方向に跨いで配置されている。即ち、コアワイヤ30の先端はガイドワイヤポート21よりも先端側に位置する。コアワイヤ30の基端はガイドワイヤポート21よりも基端側に位置する。図示は省略するが、コアワイヤ30の基端部は、ハブ12に固定されている。
このようにコアワイヤ30が配置された状態において、先端側領域31はガイドワイヤポート21よりも先端側に配置され、且つ内側シャフト16の外周面と外側シャフト15の内周面との間に挿通されている。また、先端側領域31に対して基端側に連続する第1テーパ領域34は、ガイドワイヤポート21を軸線方向に跨ぐように配置されている。第1テーパ領域34は、軸線方向において、第1テーパ領域34の先端側の部分がガイドワイヤポート21の位置と同じ位置となるように配置されている。第1テーパ領域34の基端はガイドワイヤポート21よりも基端側に位置する。
上述したように、テーパ領域32において先端側の第1テーパ領域34は、基端側の第2テーパ領域35と比べて、先端側から基端側へ向けた外径(横断面積)の増加の度合が大きい。そのため、テーパ領域の外径(横断面積)が先端側から基端側へ向けて一定の度合いで増加する構成と比べて、テーパ領域32の先端側の外径を大きくすることができる。これにより、軸線方向におけるガイドワイヤポート21の基端側近傍の位置においてコアワイヤ30の外径(横断面積)を大きくすることができる。これにより、コアワイヤ30の剛性を高めることができる。
次に、バルーンカテーテル10の使用方法について簡単に説明する。
ユーザは、先ず血管内に挿入されたシースイントロディーサにガイディングカテーテルを挿通し、ガイディングカテーテルの先端開口部を冠動脈入口部まで導入する。ユーザは、ガイドワイヤGをガイディングカテーテルに挿通し、挿通したガイドワイヤGを冠動脈入口部から狭窄箇所などの治療部位を経て末梢部位まで導入する。
ユーザは、続いて、ガイドワイヤGをバルーンカテーテル10の内側管孔16aに挿通する。そしてユーザは、ガイドワイヤGが内側管孔16aに挿通された状態で、バルーンカテーテル10をガイドワイヤGに沿わせながら、押引操作を加えつつ体内に導入する。ユーザは、体内の治療部位にバルーン13を配置する。
ガイドワイヤGが内側管孔16aに挿通された状態では、ガイドワイヤGが挿通されているガイドワイヤポート21よりも先端側の領域の剛性は、ガイドワイヤGが挿通されていないガイドワイヤポート21よりも基端側の領域の剛性よりも高いと考えられる。その場合、軸線方向におけるガイドワイヤポート21の形成箇所において、バルーンカテーテル10の剛性が局所的に変化することになる。軸線方向においてバルーンカテーテル10の剛性が局所的に変化することで、バルーンカテーテル10を基端側から押し込む力が上手く先端側に伝達しない可能性がある。
本実施形態では、上述したように、コアワイヤ30のテーパ領域32は、横断面積の増加の度合いが互いに異なる2つの領域34,35を有する。これにより、ガイドワイヤポート21の基端側近傍の位置においてコアワイヤ30の横断面積を大きくすることで、ガイドワイヤポート21の基端側近傍の剛性が高められる。これにより、ガイドワイヤポート21の形成箇所における剛性の局所的な変化を抑制することができる。その結果、バルーンカテーテル10の押し込み力の伝達性を高めることができる。これにより、ユーザがバルーンカテーテル10を体内に導入する際の操作性の向上を図ることができる。
ユーザは、バルーン13を治療部位に配置した後、加圧器を用いてハブ12側から外側シャフト15の外側管孔15aを介してバルーン13に圧縮流体を供給する。これにより、バルーン13が膨張する。バルーン13が膨張することで、狭窄箇所は拡張される。
以上、詳述した本実施形態の構成によれば、以下の優れた効果が得られる。
第1テーパ領域34と第2テーパ領域35との境界部36がテーパ領域32において先端側に位置する第1の構成と、第1テーパ領域34と第2テーパ領域35との境界部36がテーパ領域32において基端側に位置する第2の構成とで、第1テーパ領域34における先端側から基端側へ向けた横断面積の増加の度合いを比べた場合、第1の構成の方が第2の構成よりも増加の度合いが大きいと考えられる。なお、第1の構成における境界部36の横断面積と、第2の構成における境界部36の横断面積とは同じである。本実施形態では、この点に鑑みて、境界部36は、軸線方向におけるテーパ領域32の中心位置よりも先端側に位置する。これにより、第1テーパ領域34における横断面積の増加の度合いを大きくすることで、軸線方向におけるガイドワイヤポート21の基端側近傍の位置においてコアワイヤ30の横断面積をより大きくすることができる。これによりコアワイヤ30の剛性をより高めることができる。そのため、バルーンカテーテル10を体内に導入する際の押し込み力の伝達性をより高めることができる。
具体的には、境界部36は、テーパ領域32の先端部から当該テーパ領域32の全長(L2+L3)の1/4の距離だけ基端側に位置する箇所よりも先端側に位置する。故に、第1テーパ領域34における横断面積の増加の度合いをさらに大きくすることができる。その結果、軸線方向におけるガイドワイヤポート21の基端側近傍の位置においてコアワイヤ30の横断面積をさらに大きくすることができる。これにより、コアワイヤ30の剛性をさらに高めることができる。そのため、バルーンカテーテル10を体内に導入する際の押し込み力の伝達性をさらに高めることができる。
また本実施形態では、境界部36はテーパ領域32の中心位置よりも先端側に位置し、且つ当該境界部36の横断面積がテーパ領域32の軸線方向両端部における各横断面積の平均値よりも大きい。この構成によれば、境界部36における横断面積が、テーパ領域32の軸線方向両端部における各横断面積の平均値以下である構成と比べて、第1テーパ領域34の横断面積が先端側から基端側へ向けて増大する度合いを大きくすることができる。そのため、軸線方向におけるガイドワイヤポート21の基端側近傍の位置においてコアワイヤ30の横断面積をより一層大きくすることができる。故に、コアワイヤ30の剛性をより一層高めることができる。これにより、バルーンカテーテル10を体内に導入する際の押し込み力の伝達性をより一層高めることができる。
また本実施形態では、境界部36はテーパ領域32の中心位置よりも先端側に位置し、且つ当該境界部36の横断面積がテーパ領域32の軸線方向両端部における各横断面積の平均値よりも大きい。この構成によれば、境界部36における横断面積が、テーパ領域32の軸線方向両端部における各横断面積の平均値以下である構成と比べて、第1テーパ領域34の横断面積が先端側から基端側へ向けて増大する度合いを大きくすることができる。そのため、軸線方向におけるガイドワイヤポート21の基端側近傍の位置においてコアワイヤ30の横断面積をより一層大きくすることができる。故に、コアワイヤ30の剛性をより一層高めることができる。これにより、バルーンカテーテル10を体内に導入する際の押し込み力の伝達性をより一層高めることができる。
第1テーパ領域34における横断面積の増加率ΔS1と、第2テーパ領域35における横断面積の増加率ΔS2との差は、第2テーパ領域35における横断面積の増加率ΔS2と基端側領域33における横断面積の増加率ΔS3との差と同じである。これにより、第1テーパ領域34と第2テーパ領域35との境界部36、及び第2テーパ領域35と基端側領域33との境界部37のそれぞれにおいて生じる横断面積の増加の度合いの局所的な変化(量)を同じとすることができる。つまり、この場合、各境界部36,37にてそれぞれ生じる横断面積の増加度合いの局所的な変化を各境界部36,37に均一に振り分けることができる。結果として、各境界部36,37それぞれにおいて生じる局所的な変化を抑制することができる。これにより、各境界部36,37それぞれにおいて生じる剛性の局所的な変化を抑制することができる。これにより、テーパ領域32に横断面積の増加の度合いが異なる2つのテーパ領域34,35を設けた構成にあって、耐キンク性の低下を抑制することができる。
コアワイヤ30はバルーンカテーテル10の外側シャフト15の外側管孔15aに設けられている。コアワイヤ30の先端側領域31は、外側シャフト15の内周面と内側シャフト16の外周面との間に挿通されている。外側シャフト15の内周面と内側シャフト16の外周面との間には圧縮流体が流れる。故に、流体の流通性低下を抑制すべく先端側領域31の横断面積はできるだけ小さくする必要がある。そうすると、先端側領域31から基端側へと延びるテーパ領域32についても、ガイドワイヤポート21の基端側近傍の位置において横断面積が小さくなる可能性がある。本実施形態のコアワイヤ30を備えたバルーンカテーテル10では、ガイドワイヤポート21の基端側近傍の位置にてコアワイヤ30の横断面積を大きくすることができる。ガイドワイヤポート21の基端側近傍の位置にてコアワイヤ30の横断面積を大きくすることで、圧縮流体の中通性を確保し、且つバルーンカテーテル10を体内に導入する際の押し込み力の伝達性をより一層高めることができる。
上記実施形態では、外側シャフト15は「外側チューブ」及び「チューブ」に相当する。内側シャフト16は「内側チューブ」に相当する。外側管孔15aは「ルーメン」に相当する。本発明は上記実施形態に限らず、例えば次のように実施されてもよい。
(1)上記実施形態では、第1テーパ領域34の長さL2と第2テーパ領域35の長さL3との寸法比L2/L3は1/5よりも小さい。しかしL2/L3は1/5以上であってかつ1よりも小さい数値でもよい。この場合においても、第1テーパ領域34と第2テーパ領域35との境界部36はテーパ領域32における軸線方向の中心位置よりも先端側に位置するので、境界部36がテーパ領域32の中心位置よりも基端側に位置する場合と比べて、第1テーパ領域34における基端側から先端側へ向けた外径(横断面積)の増加の度合いを大きくすることができる。そのため、軸線方向におけるガイドワイヤポート21の基端側近傍の位置においてコアワイヤ30の外径をより大きくすることができる。故に、はコアワイヤ30の剛性をより高めることができる。よって、この場合にも、バルーンカテーテル10を体内へ導入する際の押し込み力の伝達性をより高めることが可能となる。
なお、境界部36はテーパ領域32における軸線方向の中心位置よりも基端側に位置していてもよい。つまり、L2/L3は1以上でもよい。
(2)上記実施形態では、基端側領域33は、軸線方向全域に亘って外径(横断面積)が一定である非テーパ状に形成されていた。しかし、基端側領域33は、外径(横断面積)が基端側から先端側に向けて大きくなるテーパ状に形成されてもよい。この場合、例えば基端側領域33における、基端側から先端側に向けた横断面積の増加の度合い(横断面積の増加率ΔS3)は、第2テーパ領域35における横断面積の増加の度合いよりも小さくてもよい。この構成においても、第2テーパ領域35における横断面積の増加率ΔS2と基端側領域33における横断面積の増加率ΔS3との差が、第1テーパ領域34における横断面積の増加率ΔS1と第2テーパ領域35における横断面積の増加率ΔS2との差と同じであれば、第2テーパ領域35と基端側領域33との境界部37、及び第1テーパ領域34と第2テーパ領域35との境界部36それぞれにおける横断面積の局所的な変化量は同じとなる。即ち、コアワイヤ30の剛性の局所的な変化量を同じとすることができる。そのため、テーパ領域32に横断面積の増加の度合いが異なる2つの領域34,35を設けた構成にあって、耐キンク性の低下を抑制することができる。
また、コアワイヤ30は、基端側領域33を備えなくてもよい。この場合、第2テーパ領域35がコアワイヤ30の基端部まで連続して延びていればよい。
(3)上記実施形態では、第1テーパ領域34における横断面積の増加率ΔS1と第2テーパ領域35における横断面積の増加率ΔS2との差は、第2テーパ領域35における横断面積の増加率ΔS2と基端側領域33における横断面積の増加率ΔS3との差と同じである(ΔS1-ΔS2=ΔS2-ΔS3)。しかし、ΔS1-ΔS2>ΔS2-ΔS3でもよい。また、ΔS1-ΔS2<ΔS2-ΔS3でもよい。
(4)上記実施形態では、第1テーパ領域34と第2テーパ領域35との境界部36における横断面積は、テーパ領域32先端部の横断面積と、テーパ領域32基端部の横断面積との平均値よりも大きい。しかし、第1テーパ領域34と第2テーパ領域35との境界部36における横断面積は、テーパ領域32先端部の横断面積と、テーパ領域32基端部の横断面積との平均値と同じ又は平均値よりも小さくてもよい。
(5)上記実施形態では、第1テーパ領域34は、第1テーパ領域34の先端側がガイドワイヤポート21と軸線方向で同位置となるように位置する。しかし、第1テーパ領域34は、第1テーパ領域34の基端側がガイドワイヤポート21と軸線方向で同位置となるように位置してもよい。また第1テーパ領域34は、第1テーパ領域34の中央部分がガイドワイヤポート21と軸線方向において同じ位置となるように位置してもよい。また、第1テーパ領域34は、必ずしもガイドワイヤポート21を軸線方向に跨いで位置する必要はない。例えば第1テーパ領域34は、第1テーパ領域34の先端がガイドワイヤポート21と軸線方向で同位置となるように位置してもよい。このように、第1テーパ領域34は、軸線方向において、ガイドワイヤポート21と同じ位置を含めばよい。
(6)上記実施形態では、本発明がバルーンカテーテルに適用された例を用いて説明した。しかし本発明は、軸線方向の途中位置にガイドワイヤポート21が形成されているその他のRx型のカテーテルに適用されてもよい。本発明はバルーンを備えないカテーテルに適用されてもよい。また、上記実施形態では、カテーテルシャフト11は複数の管状シャフトを含む。しかし、カテーテルシャフトは複数の管状シャフトを含まなくてもよい。具体的には、本発明は1つのシャフトのみを備えるカテーテルに適用されてもよい。この場合、例えば、当該1つのシャフトは内部にルーメンを有すればよい。コアワイヤは当該ルーメンに挿通されていればよい。この場合、当該1つのシャフトの軸線方向の途中位置に、当該シャフトのルーメンを囲む周壁部を貫通するようにガイドワイヤポートが形成されていればよい。また、当該1つのシャフトは内部に2つのルーメンを有してもよい。この場合、当該2つのルーメンのうち、一方はガイドワイヤが挿通可能なルーメンであり、他方は圧縮流体が流通可能なルーメンであってもよい。ガイドワイヤが挿通可能なルーメンには、軸線方向の途中位置に、当該ルーメンを貫通するようにガイドワイヤポートが形成されていればよい。また、1つのシャフトは3つ以上のルーメンを有してもよい。
10…バルーンカテーテル、13…バルーン、15…チューブとしての外側チューブ、15a…ルーメン及び流体ルーメンとしての外側管孔、16…内側チューブ、16a…ガイドワイヤルーメンとしての内側管孔、21…ガイドワイヤポート、23…周壁部、30…コアワイヤ、31…先端側領域、32…テーパ領域、33…基端側領域、34…第1テーパ領域、35…第2テーパ領域、36…境界部。
Claims (6)
- 内部にルーメンを有するチューブと、
前記ルーメンを囲む周壁部を貫通するように、前記チューブの軸線方向の途中位置に形成されたガイドワイヤポートと、
前記ルーメンに挿通され、前記ガイドワイヤポートを軸線方向に跨いで延びるコアワイヤと、を備えたカテーテルであって、
前記コアワイヤは、
前記ガイドワイヤポートよりも先端側に位置する領域である先端側領域と、
前記先端側領域よりも基端側の領域であって、軸線方向と直交する方向の断面積が先端側から基端側に向けて連続して大きくなるように形成された領域であるテーパ領域と、
を備え、
前記テーパ領域は、
前記先端側領域の基端から基端側に向けて延びる領域であって、軸線方向において前記ガイドワイヤポートと同じ位置を含む領域である第1テーパ領域と、
前記第1テーパ領域の基端から基端側に向けて延びる領域である第2テーパ領域と、
を有し、
前記第1テーパ領域において先端側から基端側へ向けて前記断面積が増加する度合いは、前記第2テーパ領域において先端側から基端側へ向けて前記断面積が増加する度合いよりも大きいことを特徴とするカテーテル。 - 前記第1テーパ領域と前記第2テーパ領域との境界部は、軸線方向における前記テーパ領域の中央よりも先端側に位置していることを特徴とする請求項1に記載のカテーテル。
- 前記境界部は、前記テーパ領域の先端部から、前記テーパ領域の全長の1/4の距離だけ基端側に位置する箇所よりも先端側に位置していることを特徴とする請求項2に記載のカテーテル。
- 前記境界部の前記断面積は、前記テーパ領域の軸線方向両端部における前記各断面積の平均値よりも大きいことを特徴とする請求項2又は3に記載のカテーテル。
- 前記コアワイヤは、前記第2テーパ領域の基端から基端側に向けて延びる領域である基端側領域をさらに備え、
前記基端側領域は、先端側から基端側へ向けて一定の前記断面積で形成されているか、又は、先端側から基端側へ向けて前記断面積が前記第2テーパ領域と比べて小さい増加度合いで大きくなるように形成されており、
前記第1テーパ領域と前記第2テーパ領域との間における前記断面積の増加の度合いの差は、前記第2テーパ領域と前記基端側領域との間における前記断面積の増加の度合いの差と同じ又は略同じであることを特徴とする請求項1乃至4のいずれか一項に記載のカテーテル。 - 前記ルーメンに相当する流体ルーメンを内部に有する前記チューブに相当する外側チューブと、
前記外側チューブの先端よりも先端側に一部が延出した状態で前記流体ルーメンに挿通された内側チューブであって、前記ガイドワイヤが挿通可能であり且つ基端部が前記ガイドワイヤポートに通じるガイドワイヤルーメンを有する内側チューブと、
前記外側チューブの先端から延出した前記内側チューブの前記一部を外側から覆い、且つ基端部が前記外側チューブの先端部に接合されたバルーンと、
を備え、
前記コアワイヤの前記先端側領域は、前記流体ルーメンにおいて前記内側チューブの外周面と前記外側チューブの内周面との間に挿通されていることを特徴とする請求項1乃至5のいずれか一項に記載のカテーテル。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14822799.4A EP3020444B1 (en) | 2013-07-09 | 2014-07-08 | Catheter |
ES14822799T ES2824255T3 (es) | 2013-07-09 | 2014-07-08 | Catéter |
CN201480039015.7A CN105358208B (zh) | 2013-07-09 | 2014-07-08 | 导管 |
US14/991,213 US20160121081A1 (en) | 2013-07-09 | 2016-01-08 | Catheter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-143240 | 2013-07-09 | ||
JP2013143240A JP6207902B2 (ja) | 2013-07-09 | 2013-07-09 | カテーテル |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/991,213 Continuation-In-Part US20160121081A1 (en) | 2013-07-09 | 2016-01-08 | Catheter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015005304A1 true WO2015005304A1 (ja) | 2015-01-15 |
Family
ID=52279984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/068111 WO2015005304A1 (ja) | 2013-07-09 | 2014-07-08 | カテーテル |
Country Status (6)
Country | Link |
---|---|
US (1) | US20160121081A1 (ja) |
EP (1) | EP3020444B1 (ja) |
JP (1) | JP6207902B2 (ja) |
CN (1) | CN105358208B (ja) |
ES (1) | ES2824255T3 (ja) |
WO (1) | WO2015005304A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9265512B2 (en) | 2013-12-23 | 2016-02-23 | Silk Road Medical, Inc. | Transcarotid neurovascular catheter |
US11065019B1 (en) | 2015-02-04 | 2021-07-20 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
ES2770321T3 (es) | 2015-02-04 | 2020-07-01 | Route 92 Medical Inc | Sistema de trombectomía por aspiración rápida |
US11020133B2 (en) | 2017-01-10 | 2021-06-01 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
JP1553633S (ja) * | 2015-02-13 | 2016-07-11 | ||
CN110461401B (zh) | 2017-01-20 | 2022-06-07 | 92号医疗公司 | 单操作者颅内医疗装置输送系统和使用方法 |
JP2018130312A (ja) * | 2017-02-15 | 2018-08-23 | オリンパス株式会社 | 医療用カテーテルチューブ |
EP3603726B1 (en) * | 2017-03-29 | 2024-02-21 | Terumo Kabushiki Kaisha | Catheter assembly |
JP2021523793A (ja) | 2018-05-17 | 2021-09-09 | ルート92メディカル・インコーポレイテッドRoute 92 Medical, Inc. | 吸引カテーテルシステム及び使用方法 |
JPWO2021033673A1 (ja) * | 2019-08-20 | 2021-02-25 | ||
CN116067261A (zh) | 2021-10-29 | 2023-05-05 | 先进科技新加坡有限公司 | 用于校准剪切测试工具的设备和方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10503386A (ja) * | 1994-04-15 | 1998-03-31 | ラボラトゥワル・ニコメ・エス.ア. | 迅速交換拡張カテーテル |
JP2008200317A (ja) | 2007-02-21 | 2008-09-04 | Goodman Co Ltd | バルーンカテーテル |
US20120029367A1 (en) * | 2010-07-31 | 2012-02-02 | Hobeika Hind Louis | Heart rate waterproof measuring apparatus |
JP2012228296A (ja) * | 2011-04-25 | 2012-11-22 | Asahi Intecc Co Ltd | カテーテル |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5549556A (en) * | 1992-11-19 | 1996-08-27 | Medtronic, Inc. | Rapid exchange catheter with external wire lumen |
US5810867A (en) * | 1997-04-28 | 1998-09-22 | Medtronic, Inc. | Dilatation catheter with varied stiffness |
US6589207B1 (en) * | 1999-12-21 | 2003-07-08 | Advanced Cardiovascular Systems, Inc. | Rapid exchange catheter having a support mandrel |
US6620149B1 (en) * | 2000-10-05 | 2003-09-16 | Scimed Life Systems, Inc. | Corewire securement system |
US6746423B1 (en) * | 2001-11-01 | 2004-06-08 | Advanced Cardiovascular Systems, Inc. | Catheter having improved rapid exchange junction |
US8414527B2 (en) * | 2004-09-21 | 2013-04-09 | Boston Scientific Scimed, Inc. | Rapid exchange catheters having a sealed guidewire lumen and methods of making the same |
US8002714B2 (en) * | 2006-08-17 | 2011-08-23 | Ethicon Endo-Surgery, Inc. | Guidewire structure including a medical guidewire and method for using a medical instrument |
WO2010096708A1 (en) * | 2009-02-20 | 2010-08-26 | Boston Scientific Scimed, Inc. | Balloon catheter for placemnt of a stent in a bifurcated vessel |
JP5626731B2 (ja) * | 2011-03-04 | 2014-11-19 | 朝日インテック株式会社 | バルーンカテーテル |
US20120296367A1 (en) * | 2011-05-20 | 2012-11-22 | Boston Scientific Scimed, Inc. | Balloon catheter with improved pushability |
-
2013
- 2013-07-09 JP JP2013143240A patent/JP6207902B2/ja active Active
-
2014
- 2014-07-08 WO PCT/JP2014/068111 patent/WO2015005304A1/ja active Application Filing
- 2014-07-08 EP EP14822799.4A patent/EP3020444B1/en active Active
- 2014-07-08 ES ES14822799T patent/ES2824255T3/es active Active
- 2014-07-08 CN CN201480039015.7A patent/CN105358208B/zh active Active
-
2016
- 2016-01-08 US US14/991,213 patent/US20160121081A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10503386A (ja) * | 1994-04-15 | 1998-03-31 | ラボラトゥワル・ニコメ・エス.ア. | 迅速交換拡張カテーテル |
JP2008200317A (ja) | 2007-02-21 | 2008-09-04 | Goodman Co Ltd | バルーンカテーテル |
US20120029367A1 (en) * | 2010-07-31 | 2012-02-02 | Hobeika Hind Louis | Heart rate waterproof measuring apparatus |
JP2012228296A (ja) * | 2011-04-25 | 2012-11-22 | Asahi Intecc Co Ltd | カテーテル |
Non-Patent Citations (1)
Title |
---|
See also references of EP3020444A4 |
Also Published As
Publication number | Publication date |
---|---|
CN105358208B (zh) | 2021-09-28 |
JP6207902B2 (ja) | 2017-10-04 |
EP3020444A4 (en) | 2017-04-12 |
ES2824255T3 (es) | 2021-05-11 |
US20160121081A1 (en) | 2016-05-05 |
EP3020444B1 (en) | 2020-09-02 |
EP3020444A1 (en) | 2016-05-18 |
JP2015015990A (ja) | 2015-01-29 |
CN105358208A (zh) | 2016-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015005304A1 (ja) | カテーテル | |
US9339632B2 (en) | Catheter shaft designs | |
AU2014317859B2 (en) | Low-profile occlusion catheter | |
JP5237572B2 (ja) | バルーンカテーテル及びその製造方法 | |
US8475405B2 (en) | Esophageal balloon catheter with asymmetrical balloon | |
JP6304713B2 (ja) | バルーンカテーテル | |
JP2012228296A (ja) | カテーテル | |
WO2015072300A1 (ja) | バルーンカテーテル | |
EP3088036B1 (en) | Balloon catheter | |
JP5497068B2 (ja) | カテーテル | |
US20220088354A1 (en) | Balloon catheter | |
JP5995806B2 (ja) | 側孔付き導入補助器具 | |
JP2012223207A (ja) | バルーンカテーテル | |
JP2012045043A (ja) | 医療用器具 | |
WO2021033673A1 (ja) | カテーテル | |
JP5486679B2 (ja) | 医療用シャフト及び医療用器具 | |
JP6804802B2 (ja) | バルーンカテーテル | |
EP2801385A1 (en) | Balloon catheter | |
JP6304886B2 (ja) | バルーンカテーテル | |
WO2016021592A1 (ja) | 側孔付き導入補助器具 | |
JP2013106797A (ja) | バルーンカテーテル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480039015.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14822799 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014822799 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |