WO2015003370A1 - 磁力操动机构 - Google Patents

磁力操动机构 Download PDF

Info

Publication number
WO2015003370A1
WO2015003370A1 PCT/CN2013/079236 CN2013079236W WO2015003370A1 WO 2015003370 A1 WO2015003370 A1 WO 2015003370A1 CN 2013079236 W CN2013079236 W CN 2013079236W WO 2015003370 A1 WO2015003370 A1 WO 2015003370A1
Authority
WO
WIPO (PCT)
Prior art keywords
eddy current
operating mechanism
coil
yoke
component
Prior art date
Application number
PCT/CN2013/079236
Other languages
English (en)
French (fr)
Inventor
姚吉隆
杨超
宋英华
赵研峰
王澜锦
程健
Original Assignee
西门子公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子公司 filed Critical 西门子公司
Priority to PCT/CN2013/079236 priority Critical patent/WO2015003370A1/zh
Priority to CN201380074154.9A priority patent/CN105009231B/zh
Priority to US14/784,445 priority patent/US9576714B2/en
Priority to EP13888967.0A priority patent/EP3021333B1/en
Publication of WO2015003370A1 publication Critical patent/WO2015003370A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • H01F7/1646Armatures or stationary parts of magnetic circuit having permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/28Power arrangements internal to the switch for operating the driving mechanism using electromagnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • H01H50/42Auxiliary magnetic circuits, e.g. for maintaining armature in, or returning armature to, position of rest, for damping or accelerating movement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/64Driving arrangements between movable part of magnetic circuit and contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2235/00Springs
    • H01H2235/01Spiral spring

Definitions

  • the present invention relates to an operating mechanism, and more particularly to a magnetic operating mechanism for a circuit breaker or a high speed reversing switch.
  • the operating mechanism is an important component of circuit breakers and high speed reversing switches.
  • Existing spring operating mechanism, electromagnetic operating mechanism and permanent magnet operating mechanism Existing spring operating mechanism, electromagnetic operating mechanism and permanent magnet operating mechanism.
  • the advantage of the spring operating mechanism is that it does not require a high-power DC power supply.
  • the disadvantage is that the structure is more complicated, the parts are more, and the reliability is poor.
  • the structure of the electromagnetic operating mechanism is cumbersome, and the opening and closing time is long.
  • the permanent magnet operating mechanism uses a permanent magnet as a component that maintains the opening and closing positions. When the permanent magnet operating mechanism is working, there is only one main moving part. The opening and closing currents are small and the mechanical life is long. However, the moving inertia of the moving parts is relatively large when the brake is opened, and the high operating speed cannot be achieved.
  • CN101315836A (Publication Date: February 13, 2008) discloses a typical vacuum circuit breaker operating mechanism, which mainly includes a vortex disk, an opening coil, a closing coil and a charging circuit.
  • a rapidly increasing current flows through the opening or closing coil, and the opening or closing coil induces a eddy current in the eddy current disk.
  • the operating mechanism also includes a spring mechanism for maintaining the open and closed states. Although the operating mechanism can achieve rapid opening by means of electromagnetic repulsion, the operating mechanism has high energy consumption and poor controllability. Summary of the invention
  • the object of the present invention is to simplify the operating mechanism, reduce its size, reduce its energy consumption, and improve its stability. Sex.
  • One embodiment of the present invention provides a magnetic actuator that includes: a movement unit movable between a first position and a second position, the movement unit including an integral vortex member and a first a yoke member; a second yoke member that forms a magnetic circuit with the first yoke member; an electromagnetic coil that generates an excitation magnetic field when energized, and a magnetic field line generated when the electromagnetic coil is energized passes through the first a magnetic circuit formed by the second yoke member and the first yoke member; an eddy current coil disposed opposite to the eddy current member to generate eddy currents in the eddy current member to generate an electromagnetic repulsion force to the motion unit; A permanent magnet holding member for holding the moving unit at the first position or the second position.
  • the first yoke component has a groove, and the eddy current component is located in the groove.
  • the eddy current member and the first yoke member together form a cone or a truncated cone shape.
  • the electromagnetic coil and the eddy current coil are both located within a frame formed by the eddy current member and the first yoke member.
  • the electromagnetic coil and the eddy current coil share a power source or a power supply capacitor, or different power sources or power supply capacitors are used respectively.
  • the operating mechanism is for a circuit breaker, the operating mechanism further comprising a drive rod, the drive rod being coupled to the motion unit, and one end of the drive rod being coupled to a contact of the circuit breaker.
  • the other end of the driving rod is connected with a spring for holding the moving unit in an open or closed position of the circuit breaker, the permanent magnet holding member for keeping the circuit breaker open Another position for the brakes and closing.
  • the two sets of the operating mechanisms are arranged symmetrically with respect to the drive rod.
  • the embodiment of the present invention designs the eddy current component and the first yoke component in an integrated manner, so that the operating mechanism is smaller in size and compact in structure than the existing operating mechanism; at the same time, the number of components is small, and the reliability of the operating mechanism Better, the control method is more flexible.
  • the compact construction also enables series connection in high voltage applications Use a plurality of circuit breakers with such an operating mechanism. For example, if a circuit breaker with the above-mentioned operating mechanism has a rated voltage of 20 kV and a transmission line has a rated voltage of 50 kV, three such circuit breakers can be connected in series to protect the transmission line.
  • the electromagnetic coil and the eddy current coil can be used in combination to realize the opening and closing operations, which can greatly reduce the need to be loaded on the eddy current coil when the moving unit and the second yoke are separated from each other by a certain gap.
  • the current value enables energy savings.
  • FIG. 1 is a schematic structural view of the present invention for explaining the basic working principle of the present invention
  • FIG. 2 is a schematic structural view of a portion including an electric control circuit of the present invention
  • FIG. 3 is a schematic structural view of an embodiment of the present invention.
  • FIGS. 4 and 5 are schematic structural views of another embodiment of the present invention, which may be used in a circuit breaker including two sets of operating mechanisms.
  • Figure 4 shows a state of the circuit breaker
  • Figure 5 shows another state of the circuit breaker.
  • the magnetic actuator mechanism in an embodiment of the invention includes: a motion unit that is moveable between a first position and a second position.
  • the movement unit includes an integral vortex member and a first yoke member; a second yoke member that forms a magnetic circuit with the first yoke member; an electromagnetic coil that generates a magnetic field when energized, and generates the electromagnetic coil when energized Magnetic lines of force are formed through the first yoke component and the second yoke component a magnetic circuit; the eddy current coil is disposed opposite to the eddy current component to generate an eddy current in the eddy current component to generate an electromagnetic repulsion force to the motion unit; and a permanent magnet holding member for maintaining the motion unit in the first position or Two locations.
  • Fig. 1 is a schematic structural view for explaining the basic operation principle of the present invention
  • Fig. 2 is a schematic view showing the structure of an electric control circuit portion of the present invention.
  • the operating mechanism includes a motion unit 1, which, as the name suggests, can be moved, is moved between two positions, such as the opening and closing positions of the circuit breaker, to implement a circuit breaker or high speed commutation. Switch on and off operation.
  • the moving unit 1 includes an integral vortex member 2 and a first yoke member 3.
  • the eddy current member 2 is a disk-shaped member made of a metal such as copper.
  • the vortex member 2 and the first yoke member 3 are "integrated" herein, and it does not mean that the eddy current member 2 and the first yoke member 3 have to be formed as one member as long as they are not spatially separated. Under the action of force, it can move and interact together without the transmission of other components.
  • the eddy current member 2 and the first yoke member 3 may be strip-like or plate-like members stacked one on top of the other, and they may be fixed together by a member such as a bolt or a viscous material.
  • a member such as a bolt or a viscous material.
  • the first yoke member 3 may be in the shape of a strip, and the eddy current member 2 may be in the form of a strip which can be fitted in the recess of the first yoke member 3.
  • the eddy current member 2 and the first yoke member 3 together can be formed into a truncated cone shape or a conical shape, which can reduce the mass of the motion unit 1 while maintaining the mechanical strength of the motion unit 1, and reduce the movement unit 1 when subjected to movement. Air resistance.
  • the operating mechanism shown in Fig. 1 further includes a vortex coil 5 disposed opposite the vortex member 2 described above.
  • the vortex coil 5 end is connected to the power supply capacitor or the power source.
  • the power supply capacitor or the power source can be connected to the control device, so that the control device controls the power supply capacitor or the power source to discharge the eddy current coil 5, and the eddy current coil 5 generates
  • the high-frequency current and the magnetic field under the action of the high-frequency magnetic field, induce eddy currents in the eddy current component 2 opposite to the current in the eddy current coil 5, and the current in the eddy current coil 5 and the eddy current in the eddy current component 2 are opposite to each other.
  • the two interact to generate mutually exclusive electromagnetic forces that cause the motion unit 1 to move quickly and perform an on or off operation. Since the eddy current coil 5 has a small inductance, the current passing through the eddy current coil 5 can be rapidly increased after being energized, so that the eddy current coil 5 can quickly vortex the eddy current member 2 after being energized, generating an electromagnetic repulsion to cause the motion unit 1 to leave the first
  • the two yoke members 7 quickly perform an opening and closing operation.
  • the operating mechanism further includes a second yoke member 7, and the second yoke member 7 and the first yoke member 3 form a magnetic circuit.
  • the first yoke member 3 and the second yoke member 7 can form a "mouth" shaped frame.
  • the first yoke member 3 and the second yoke member 7 refer to members formed of a yoke material.
  • the yoke material refers to a soft magnetic material that does not itself generate a magnetic field and transmits only magnetic lines of force in the magnetic circuit.
  • the yoke is generally manufactured using soft iron, A3 steel, and soft magnetic alloy having a relatively high magnetic permeability.
  • the operating mechanism also includes a permanent magnet retaining member 6, the retaining member functioning to maintain the motion unit 1 in a first position (e.g., a circuit breaker opening position) or a second position (e.g., a circuit breaker closing position).
  • the holding member may be a permanent magnet shown in Fig. 1, and the permanent magnet holding member 6 provides a holding force in both the first position and the second position, that is, when the position of the moving unit 1 is to be changed, the permanent magnet holding member 6 Will exert resistance on it.
  • the operating mechanism also includes an electromagnetic coil 4.
  • the electromagnetic coil 4 can be connected to a power supply capacitor or a power source, and the electromagnetic coil 4 excites a magnetic field under the action of the exciting current, and the magnetic field lines of the magnetic field pass through the magnetic paths formed by the first yoke member 3 and the second yoke member 7.
  • the direction of the magnetic flux of the exciting magnetic field is opposite to the direction of the magnetic flux generated by the permanent magnet holding member 6, so that the magnetic force generated by the exciting magnetic field of the electromagnetic coil 4 can cancel the magnetic field of the permanent magnet holding member 6.
  • the motion unit 1 implements an opening (or closing) operation.
  • a linear current can be passed through the electromagnetic coil 4, such as an electromagnetic coil 4 as shown in FIG.
  • the left side portion of the electromagnetic coil 4 can be loaded, for example, a linear current perpendicular to the paper surface, and a straight line of the right portion of the electromagnetic coil 4.
  • the current direction can be perpendicular to the paper facing outward.
  • the electromagnetic coil 4 is preferably disposed in a region in the "mouth" shaped frame formed by the first yoke member 3 and the second yoke member 7 (as shown in FIG. 1), so that the magnetic lines of force generated by the linear current It is possible to pass through the magnetic circuit of the "mouth" shape.
  • a ring current can also be applied to the electromagnetic coil 4.
  • the two independent electromagnetic coils 4 can be shown in Fig. 1, instead of the left and right portions of one electromagnetic coil.
  • Each of the electromagnetic coils 4 can be set as a section of the "mouth" shaped frame (ie, the electromagnetic coil 4 is a part of the magnetic circuit), so that the magnetic lines of force generated in the two electromagnetic coils 4 pass through the left and right sides of FIG. 1, respectively.
  • the form of the electromagnetic coil 4 described above and the direction of the current flowing are exemplary, and the skilled person can design the current and electromagnetic coil 4 suitable for the present invention according to the right-handed screw rule, which will not be enumerated here.
  • the electromagnetic coil 4 and the eddy current coil 5 of one operating mechanism are both disposed in a frame formed by the first yoke part 3 and the second yoke part 7 (as shown in FIG. 1), which makes the operating mechanism more bulky. Small, more compact structure.
  • the electromagnetic coil 4 and the eddy current coil 5 are disposed in the frame of the first yoke part 3 and the second yoke part 7, the two share a single outer casing (i.e., the first yoke part 3 and the The frame formed by the two yoke members 7 allows the electromagnetic coil 4 and the eddy current coil 5 to share a single power supply or supply capacitor 10.
  • the electromagnetic coil 4 and the eddy current coil 5 can also use separate power sources or supply capacitors 10, respectively.
  • FIG. 3 shows the structure of an embodiment of the present invention.
  • This embodiment includes a set of the above-described operating mechanisms illustrated in Figure 1 for effecting a quick opening of the circuit breaker (or a quick closing operation).
  • the embodiment also includes a drive rod 8, the drive rod 8 Connected to the motion unit 1, for example, the drive rod 8 can be coupled to the first yoke 3 so that the drive rod 8 can move with the motion unit 1 together.
  • One end of the driving rod 8 is connected with the contact of the circuit breaker, and the driving rod 8 drives the contact to move to realize the opening and closing operation of the circuit breaker.
  • the other end of the driving rod 8 is also connected with a spring 9 which can provide power for the downward movement of the moving unit 1 for realizing another operation that cannot be performed by the above-mentioned operating mechanism, and if it corresponds to the above description, it is a driving action .
  • the inductance of the eddy current coil 5 is small, and the current passing through it can be rapidly increased after being energized. Therefore, the eddy current coil 5 can quickly generate an electromagnetic repulsion to move the motion unit 1 after being energized, and the spring 9 operates at a slower speed than the above-mentioned operating mechanism. Many, therefore, the embodiment shown in Figure 3 is only suitable for situations where one of the opening and closing operations requires a fast operation.
  • the power supply or supply capacitor 10 supplies a transient pulse current to the eddy current coil 5 and generates a magnetic field which generates an electromagnetic repulsion force to the eddy current component 2, thereby causing the motion unit 1 to quickly move away from the second yoke component 7.
  • the electromagnetic coil 4 it is also possible to supply power to the electromagnetic coil 4, so that the electromagnetic coil 4 generates a magnetic field, and the magnetic lines of the magnetic field pass through the magnetic circuit formed by the first yoke member 3 and the second yoke member 7, thereby canceling the magnetic lines of the permanent magnet holding member 6,
  • the small eddy current coil 5 needs to generate a repulsive force, and the auxiliary eddy current coil 5 performs a opening operation.
  • the moving unit 1 leaves the second yoke 7 - the fixed gap, it is necessary to increase the pulse current in the eddy current coil 5 to generate a sufficiently large electromagnetic repulsion to continue pushing the moving unit 1 downward to reach the open position.
  • the spring 9 generates a holding force to maintain the motion unit 1 in the open state.
  • control power source or the power supply capacitor 10 discharges the electromagnetic coil 4, and the magnetic field generated by the discharge generates a sufficient suction force to the moving unit 1, and the suction force can overcome the holding force generated by the opening spring 9 to make the moving unit 1 Move to the position of closing.
  • FIG. 4 and FIG. 5 are schematic structural views of another embodiment of the present invention, which includes two sets of operating mechanisms shown in FIG. 3, which are symmetrically disposed with respect to the driving rod 8.
  • Fig. 4 shows a state of this embodiment
  • Fig. 5 shows another state of the embodiment.
  • FIG. 4 shows the closing state of the circuit breaker
  • FIG. 5 shows the opening state of the circuit breaker (actually, it can also be reversed, that is, FIG. 4 shows the opening state
  • FIG. 5 The closing and closing process of this embodiment will be described.
  • the upper eddy current coil 5 When the opening is required, as shown in Fig. 5, the upper eddy current coil 5 is energized to cause a downward electromagnetic repulsion to the eddy current member 2.
  • the upper electromagnetic coil 4 is energized to generate a magnetic field whose magnetic field direction is opposite to the direction of the magnetic flux of the permanent magnet as the holding member 6 to cancel the magnetic lines of force of the permanent magnet holding member 6.
  • the electromagnetic coil 4 located in the lower direction of FIGS. 4 and 5 is loaded with an electric current of an appropriate direction and magnitude, and the control power source stops discharging the eddy current coil 5, so that The lower electromagnetic coil 4 produces a sufficiently large suction force to the motion unit 1 to drive the motion unit 1 to continue moving downward to the position where the brake is opened.
  • the motion unit 1 (including the eddy current component 2) leaves the second yoke component 7 - a fixed gap
  • the eddy current coil 5 still loads and performs the same magnitude of current at the beginning of the opening operation, due to the first yoke component 3 and The presence of the gap between the second yoke members 7 causes the eddy current generated in the eddy current member 2 to be greatly reduced, that is, the electromagnetic repulsion applied to the moving unit 1 by the eddy current coil 5 at this time is greatly reduced.
  • the magnitude of the electromagnetic repulsion is to be kept constant, it is necessary to greatly increase the current passing through the eddy current coil 5.
  • the electromagnetic coil 4 in the lower part of FIGS. 4 and 5 can be used. Power supply, then The lower electromagnetic coil 4 produces a downward suction force to the motion unit 1, and further moves the motion unit 1 downward to reach the opening position shown in FIG.
  • the gap can continue to supply power to the eddy current coil 5, increase its current value, and generate a large enough electromagnetic repulsion to continue to push The moving unit 1 moves downward without loading current to the electromagnetic coil 4 below.
  • the lower eddy current coil 5 When the closing is required, as shown in Fig. 4, the lower eddy current coil 5 is energized, and the lower eddy current coil 5 generates an upward electromagnetic repulsive force to the eddy current member 2.
  • the power supply to the lower eddy current coil 5 can be stopped, and the upper electromagnetic coil 4 is loaded with an electric current in an appropriate direction, so that the upper electromagnetic coil 4 is moved to the moving unit. 1 produces suction.
  • the current in the appropriate direction to the electromagnetic coil 4 below, to generate a magnetic field in the lower electromagnetic coil 4, and to ensure that the direction of the magnetic field lines of the magnetic field is opposite to the direction of the magnetic lines of the permanent magnet holding member 6, to counteract the permanent magnet retention.
  • the upper electromagnetic coil 4 and the lower electromagnetic coil 4 can collectively assist the lower eddy current component 6 to continue the upward movement of the motion unit 1 to the closed position.
  • the current value in the lower eddy current coil 5 is increased, so that a sufficiently large electromagnetic repulsion is generated to continue to push the moving unit 1 upward, instead of two
  • the electromagnetic coil 4 is loaded with current.
  • the upper electromagnetic coil 4 and the lower electromagnetic coil 4 respectively included in the upper and lower two sets of operating structures in Figs. 4 and 5 have different functions.
  • the upper electromagnetic coil 4 can only generate a magnetic field to cancel the magnetic lines of force of the permanent magnet holding member 6, and cannot generate a repulsive force to the moving unit 1, and the lower electromagnetic coil 4 can generate a downward suction force to the moving unit 1.
  • the switch is closed, the lower electromagnetic coil 4 can only generate a magnetic field to cancel the magnetic lines of force of the permanent magnet holding member 6, and the upper electromagnetic coil 4 can be used for the moving unit 1 Produces upward suction.
  • the eddy current coil 5 can be energized only.
  • the embodiment of the present invention integrates the eddy current component 2 and the first yoke component 3 such that the operating mechanism is compact and compact in comparison with the existing operating mechanism; In turn, the operating mechanism is more reliable and the control method is more flexible.
  • the compact construction enables the use of multiple circuit breakers with such operating mechanisms in series for high voltage applications. For example, if a circuit breaker with the above-mentioned operating mechanism has a rated voltage of 20 kV and a transmission line has a rated voltage of 50 kV, three such circuit breakers can be connected in series to protect the transmission line.
  • the use of the eddy current coil 5 enables quick opening and/or closing operations.
  • the eddy current coil 5 has a small inductance, and the current passing through the eddy current coil 5 can be rapidly increased after being energized, so that the eddy current coil 5 can rapidly vortex the eddy current component 2 after being energized, and rapidly generate electromagnetic repulsion to cause the motion unit 1 Leaving the second yoke part 7.
  • the electromagnetic coil 4 can also assist the eddy current coil 5 to complete the opening operation.
  • the electromagnetic coil 4 can be supplied with a current in an appropriate direction so that the magnetic field excited by the electromagnetic coil 4 and the magnetic field of the permanent magnet are opposite to each other, so that the magnetic field lines of the permanent magnet magnetic field can be cancelled.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

一种磁力操动机构,该操动机构包括:运动单元(1),其能够在第一位置和第二位置之间移动,该运动单元(1)包括形成一体的涡流部件(2)和第一磁轭部件(3);第二磁轭部件(7),其与所述第一磁轭部件(3)形成磁路;电磁线圏(4),其可在通电时产生激发磁场,并且所述电磁线圏(4)通电时产生的磁力线穿过所述第二磁轭部件(7)与所述第一磁轭部件(3)形成的磁路;涡流线圏(5),其与所述涡流部件(2)相对设置,可使所述涡流部件(2)中产生涡流,从而对所述运动单元(1)产生电磁斥力;和永磁保持部件(6),其用于使所述运动单元(1)保持在第一位置或第二位置处。该磁力操动机构能够简化操动机构,减少其部件,缩小其尺寸,同时还能够降低其耗能,并提高其稳定性。

Description

磁力操动机构
技术领域
本发明涉及一种操动机构, 特别涉及断路器或者高速换向开关的磁力操动 机构。
操动机构是断路器和高速换向开关的重要部件。 现有弹簧操动机构、 电磁 操动机构和永磁操动机构等。 弹簧操作机构的优点为不需要大功率的直流电源, 缺点是结构比较复杂零件多, 可靠性差。 电磁操动机构结构笨重, 开闸、 合闸 时间较长。 永磁操动机构使用永磁体作为保持开闸、 合闸位置的部件。 永磁操 动机构工作时的主要运动部件只有一个, 开闸、 合闸电流小, 机械寿命长, 但 是其开闸时运动部件的运动惯量比较大,无法达到较高的动作速度。 中国专利
CN101315836A (公开日为 2008年 2月 13日)公开了一种典型的真空断路器的 操动机构, 该操动机构主要包括涡流盘、 开闸线圈、 合闸线圈和充电电路。 当 充电电路被激发时, 快速增大的电流会流过开闸或合闸线圈, 开闸或合闸线圈 会在涡流盘中感应出涡流。 这样较大的电磁斥力会驱动涡流盘离开相应的线圈。 该操动机构还包括用来维持开闸和合闸状态的弹簧机构。 虽然该操动机构能够 借助电磁斥力实现快速地开闸, 但是该操动机构能耗大, 可控性差。 发明内容
本发明的目的是简化操动机构, 缩小其尺寸, 降低其能耗, 并提高其稳定 性。 本发明的一种实施方式提出一种磁力操动机构, 该操动机构包括: 运动单 元, 其能够在第一位置和第二位置之间移动, 该运动单元包括形成一体的涡流 部件和第一磁轭部件; 第二磁轭部件, 其与所述第一磁轭部件形成磁路; 电磁 线圈, 其可在通电时产生激发磁场, 并且所述电磁线圈通电时产生的磁力线穿 过所述第二磁轭部件与所述第一磁轭部件形成的磁路; 涡流线圈, 其与所述涡 流部件相对设置, 可使所述涡流部件中产生涡流, 从而对所述运动单元产生电 磁斥力; 和永磁保持部件, 其用于使所述运动单元保持在第一位置或第二位置 处。
优选, 所述第一磁轭部件具有凹槽, 所述涡流部件位于所述凹槽内。
优选, 所述涡流部件和第一磁轭部件一起形成圆锥或者圆台形。
优选, 所述电磁线圈和涡流线圈均位于所述涡流部件和第一磁轭部件形成 的框架内。
优选, 所述电磁线圈和涡流线圈共用一个电源或者供电电容, 或分别使用 不同的电源或供电电容。
优选, 其中所述操动机构用于断路器, 该操动机构还包括驱动杆, 所述驱 动杆与所述运动单元连接, 并且驱动杆的一端与断路器的触头连接。
优选, 其中所述驱动杆的另外一端连接有弹簧, 该弹簧用于使所述运动单 元保持在断路器的开闸位置或合闸位置, 所述永磁保持部件用于使断路器保持 在开闸和合闸的另外一个位置。
优选, 两组所述操动机构相对于所述驱动杆对称设置。
本发明的实施方式通过一体化设计涡流部件和第一磁轭部件, 使得该操动机 构和现有的操动机构相比, 体积小, 结构紧凑; 同时部件少, 进而操动机构的 可靠性更好, 控制方式更加灵活。 紧凑的结构还使得能够在高压应用中串联使 用多个带有这种操动机构的断路器。 例如如果一个带有上述操动机构的断路器 的额定电压为 20KV,而一个输电线路的额定电压为 50KV, 则可以串联三个这 种断路器来保护该输电线路。 另外, 在优选的实施方式中可以采用组合使用电 磁线圈和涡流线圈的方式来实现开、 关操作, 这样能够大大减小在运动单元和 第二磁轭距离一定间隙时需要加载在涡流线圈上的电流值, 从而能够实现节省 能耗。 附图说明
图 1为本发明的结构示意图, 其用于说明本发明的基本工作原理; 图 2为本发明包括电气控制电路部分的结构示意图;
图 3为本发明一种实施方式的结构示意图;
图 4和图 5为本发明另外一种实施方式的结构示意图, 该实施方式可以用 于断路器, 其包括两组操动机构。 图 4示出的为断路器的一种状态, 图 5示出 的为断路器的另外一种状态。 具体实施方式
为了使本发明的技术方案及优点更加清楚明白, 以下结合附图及实施方式, 对本发明进行进一歩详细说明。 应当理解, 此处所描述的具体实施方式仅仅用 以阐述性说明本发明, 并不用于限定本发明的保护范围。
本发明实施方式中的磁力操动机构包括: 运动单元, 其能够在第一位置和第 二位置之间移动。 运动单元包括形成一体的涡流部件和第一磁轭部件; 第二磁 轭部件, 其与第一磁轭部件形成磁路; 电磁线圈, 其可在通电时产生磁场, 并 且该电磁线圈通电时产生的磁力线穿过上述第一磁轭部件和第二磁轭部件形成 的磁路; 涡流线圈, 其与涡流部件相对设置, 可使涡流部件中产生涡流, 从而 对所述运动单元产生电磁斥力; 永磁保持部件, 其用于使运动单元保持在第一 位置或第二位置处。
下面结合图 1和图 2说明本发明的基本工作原理。 图 1为用于说明本发明 的基本工作原理的结构示意图; 图 2为本发明包括电气控制电路部分的结构示 意图。如图 1所示,操动机构包括运动单元 1,顾名思义该运动单元 1能够移动, 其是在两个位置, 例如断路器的开闸和合闸位置之间移动, 以实现断路器或者 高速换向开关的开、 关操作。 运动单元 1包括形成一体的涡流部件 2和第一磁 轭部件 3。 涡流部件 2为由铜等金属制成的盘状部件。 需要注意的是, 这里涡流 部件 2和第一磁轭部件 3 "形成一体" 并不表示涡流部件 2和第一磁轭部件 3 必须要做成一个部件, 只要二者在空间上不是分隔开的, 在力的作用下不经过 其它部件的传动就能够相互作用一起移动即可。 例如涡流部件 2和第一磁轭部 件 3 可以为上下叠放在一起的条状或者板状部件, 二者可以用类似螺栓这样的 部件或者粘性材料固定在一起。或者再如图 1所示,第一磁轭部件 3可以为 状, 涡流部件 2可以为能够嵌入在第一磁轭部件 3的凹槽中的条状。涡流部件 2 和第一磁轭部件 3 二者一起可以形成圆台状或者圆锥状, 这样能够在保持运动 单元 1机械强度的同时, 降低运动单元 1的质量, 并减小运动单元 1在移动时 受到的空气阻力。 通过将涡流部件 2和第一磁轭部件 3做成一体, 使得该操动 机构和现有的操动机构相比, 体积小、 结构紧凑; 同时部件少, 进而操动机构 的可靠性更好。
图 1中示出的操动机构还包括与上述涡流部件 2相对设置的涡流线圈 5。该 涡流线圈 5 —端与供电电容或电源向连。 供电电容或者电源可以与控制装置连 接, 使控制装置控制供电电容或电源对涡流线圈 5放电, 涡流线圈 5中会产生 高频电流和磁场, 在高频磁场的作用下, 涡流部件 2中感应出与涡流线圈 5中 电流反向的涡流, 涡流线圈 5中的电流和涡流部件 2中的涡流各自产生的磁场 方向相反, 二者相互作用产生互斥的电磁力, 该电磁斥力使运动单元 1 快速移 动, 执行开或关作业。 由于涡流线圈 5具有较小的电感, 通电后通过涡流线圈 5 的电流能够快速增大, 所以涡流线圈 5在通电后能够迅速在涡流部件 2上激发 涡流, 产生电磁斥力从而使运动单元 1离开第二磁轭部件 7快速地实现开、 关 操作。
如图 1所示, 操动机构还包括第二磁轭部件 7, 该第二磁轭部件 7和上述第 一磁轭部件 3形成磁路。 如图 1所示, 第一磁轭部件 3和第二磁轭部件 7可形 成 "口"字形的框架。 另外, 这里需要说明的是, 第一磁轭部件 3和第二磁轭 部件 7 是指由磁轭材料形成的部件。 磁轭材料是指本身不生产磁场、 在磁路中 只起传输磁力线的软磁材料。 磁轭普遍采用导磁率比较高的软铁、 A3钢以及软 磁合金等来制造。
操动机构还包括永磁保持部件 6,保持部件的作用是使运动单元 1保持在第 一位置 (例如断路器的开闸位置) 或第二位置 (例如断路器的合闸位置) 处。 保持部件可以为图 1 中示出的永磁体, 永磁保持部件 6在第一位置和第二位置 均提供保持力, 也就是说当运动单元 1 的位置要发生改变时, 永磁保持部件 6 都会对其施加阻力。
操动机构还包括电磁线圈 4。 电磁线圈 4可与供电电容或者电源连接, 在励 磁电流的作用下电磁线圈 4会激发磁场, 该磁场的磁力线穿过上述第一磁轭部 件 3和第二磁轭部件 7形成的磁路。 通过选择控制流过电磁线圈 4的电流的方 向使其激发磁场的磁力线的方向和永磁保持部件 6产生的磁力线方向相反, 这 样电磁线圈 4激发磁场产生的磁力能够抵消永磁保持部件 6的磁场, 从而辅助 运动单元 1实现开闸 (或者合闸)作业。 电磁线圈 4中可以通直线电流, 如图 1 中示出的一个电磁线圈 4, 该电磁线圈 4左侧部分可以加载, 例如, 垂直于纸面 向里的直线电流, 电磁线圈 4右侧部分的直线电流方向可以为垂直于纸面向外。 在此种情况下, 电磁线圈 4优选设置在第一磁轭部件 3和第二磁轭部件 7形成 的 "口"字形框架内的区域中 (如图 1所示), 这样直线电流产生的磁力线就可 以穿过 "口"字形的磁路。 另外, 电磁线圈 4 中也可以通入环形电流, 在此种 情况下,图 1中示出的可以为两个独立的电磁线圈 4,而不是一个电磁线圈的左、 右两部分。 可以将每个电磁线圈 4设置为 "口"字形框架的一段(即电磁线圈 4 为磁路的一部分), 这样两个电磁线圈 4中产生的磁力线就会分别穿过图 1左侧 和右侧的第一磁轭 3和第二磁轭 7。上面说明的电磁线圈 4的形式和通入的电流 的方向都是示例性的, 技术人员根据右手螺旋定则可以设计出适合本发明的电 流和电磁线圈 4的形式, 这里不再一一列举。
优选, 一个操动机构的电磁线圈 4和涡流线圈 5均设置在第一磁轭部件 3 和第二磁轭部件 7形成的框架内 (如图 1所示), 这使得操动机构的体积更小, 结构更紧凑。如图 2所示, 当电磁线圈 4和涡流线圈 5均设置在第一磁轭部件 3 和第二磁轭部件 7的框架内时, 二者共用一个外壳 (即第一磁轭部件 3和第二 磁轭部件 7形成的框架), 这使得电磁线圈 4和涡流线圈 5可以共用一个电源或 供电电容 10。 从而使操动机构的结构更加紧凑。 当然, 电磁线圈 4和涡流线圈 5也可以分别使用独立的电源或者供电电容 10。
上面说明了本发明操动机构的工作原理。 下面结合图 3-5说明本发明的操 动机构在断路器上的两种具体应用方式。 图 3 示出本发明的一种实施方式的结 构。 该实施方式包括一组图 1 中示出的上述操动机构, 其用于实现断路器快速 地开闸 (或者快速地合闸操作)。 该实施方式还包括一个驱动杆 8, 该驱动杆 8 与运动单元 1连接, 例如驱动杆 8可以和第一磁轭 3连接, 从而驱动杆 8能够 跟随运动单元 1一起移动。 驱动杆 8的一端与断路器的触头连接, 驱动杆 8带 动触头移动就能实现断路器的开闸和合闸操作。 驱动杆 8 的另外一端还连接有 弹簧 9, 弹簧 9能够为运动单元 1向下运动提供动力, 用于实现上述操动机构不 能执行的另外一个操作, 如果与上面的说明对应的话为开闸动作。 涡流线圈 5 的电感较小, 通电后通过其中的电流能够快速增大, 所以涡流线圈 5在通电后 能迅速产生电磁斥力使运动单元 1移动, 而弹簧 9的动作速度要比上述操动机 构慢很多, 因此, 图 3 示出的实施方式仅仅适用于开闸和合闸操作中的一个动 作需要快速的场合。 当需要开闸时, 电源或者供电电容 10给涡流线圈 5通瞬时 脉冲电流并产生磁场, 该磁场对涡流部件 2产生电磁斥力, 从而使运动单元 1 快速离开第二磁轭部件 7。
同时, 还可以为电磁线圈 4供电, 使电磁线圈 4产生磁场, 磁场的磁力线 通过第一磁轭部件 3和第二磁轭部件 7形成的磁路, 从而抵消永磁保持部件 6 的磁力线, 减小涡流线圈 5需要产生的斥力, 辅助涡流线圈 5实施开闸操作。 当运动单元 1离开第二磁轭 7—定间隙时, 需要增大涡流线圈 5中的脉冲电流, 使其产生足够大的电磁斥力继续推动运动单元 1 向下移动到达开闸的位置。 弹 簧 9则产生保持力使运动单元 1维持在开闸的状态。 当需要合闸时, 控制电源 或者供电电容 10对电磁线圈 4放电, 放电产生的磁场会对运动单元 1产生足够 大的吸力, 该吸力能够克服开闸弹簧 9产生的保持力, 使运动单元 1移动至合 闸的位置。
图 4和图 5为本发明另外一种实施方式的结构示意图, 该实施方式包括两 组图 3中示出的操动机构, 这两组操动机构是相对于驱动杆 8对称设置的。 图 4 示出了该实施方式的一种状态, 图 5 示出了该实施方式的另外一种状态。 下面 假定图 4示出的为断路器的合闸状态,而图 5示出的为该断路器的开闸状态(实 际上也可以反过来, 即图 4示出的为开闸状态, 而图 5示出的为合闸状态), 来 说明该实施方式的开闸、 合闸过程。
在需要开闸时, 如图 5所示, 为上面的涡流线圈 5通电, 使其对涡流部件 2 产生向下的电磁斥力。 同时为上面的电磁线圈 4通电, 使其产生磁场, 磁场的 磁力线的方向和作为保持部件 6 的永磁体的磁力线的方向相反, 以抵消永磁保 持部件 6的磁力线。 另外, 还可以为下面的电磁线圈 4加载适当方向的电流, 使该下面的电磁线圈 4对运动单元 1产生吸力, 辅助涡流线圈 2使运动单元 1 向下移动到达开闸的位置。 或者可以在涡流部件 2离开第二磁轭部件 7—定的 间隙后, 为图 4、 5中位于下面的电磁线圈 4加载适当方向和大小的电流, 而控 制电源停止对涡流线圈 5放电, 使下面的电磁线圈 4对运动单元 1产生足够大 的吸力, 驱使运动单元 1继续向下移动到达开闸的位置。 当运动单元 1 (包括涡 流部件 2)离开第二磁轭部件 7—定间隙后, 如果涡流线圈 5中仍然加载和实施 开闸操作之初同样大小的电流, 则由于第一磁轭部件 3和第二磁轭部件 7之间 的间隙的存在, 涡流部件 2中产生的涡流会大大减小, 也就是说此时涡流线圈 5 对运动单元 1施加的电磁斥力会大大减小。 此时如果要保持电磁斥力大小不变, 则需要大幅提高通过涡流线圈 5中的电流。 例如, 如果在运动单元 1和第二磁 轭部件 7相距 1mm时在涡流线圈 5上加载 100安培的电流就能够产生足够大的 电磁斥力, 在运动单元 1和第二磁轭部件 7相距 3mm时则需要在涡流线圈 5上 加载 1000安培的电流才能够产生同样大小的电磁斥力 (该例子只是用来说明运 动单元 1和第二磁轭部件 7之间的间隙和需要加载在涡流线圈 5上的电流的大 体变化关系。)为了减小运动单元 1离开第二磁轭部件 7—定间隙后需要加载在 涡流线圈 5中的电流, 如上所述, 可以为图 4、 5中下面的电磁线圈 4供电, 则 该下面的电磁线圈 4会对运动单元 1产生向下的吸力, 进一歩使运动单元 1 向 下移动, 到达图 5 中所示的开闸位置。 当然, 如果无节约能耗的考虑, 在运动 单元 1离开第二磁轭部件 7—定间隙后也可以继续对涡流线圈 5供电, 增大其 电流值, 使其产生足够大的电磁斥力继续推动运动单元 1 向下移动, 而无需对 下面的电磁线圈 4加载电流。
当需要合闸时, 如图 4所示, 为下面的涡流线圈 5通电, 下面的涡流线圈 5 对涡流部件 2产生向上的电磁斥力。 当运动单元 1离开下面的第二磁轭部件 7 一定的间隙后, 可以停止为下面的涡流线圈 5供电, 而为上面的电磁线圈 4加 载适当方向的电流, 使上面的电磁线圈 4对运动单元 1产生吸力。 同时, 还可 以为下面的电磁线圈 4加载适当方向的电流, 使下面的电磁线圈 4产生磁场, 并确保该磁场的磁力线的方向和永磁保持部件 6 的磁力线的方向相反, 以抵消 永磁保持部件 6的磁力。 线所以上面的电磁线圈 4和下面的电磁线圈 4可以共 同辅助下面的涡流部件 6使运动单元 1继续向上移动到达合闸的位置。 当然, 也可以在合闸操作之初就为上面的电磁线圈 4和下面的电磁线圈 4加载适当方 向的电流, 辅助涡流线圈 5使运动单元 1 向上移动。 或者也可以仅仅为下面的 涡流线圈 5通电。 当运动单元 1离开下面的第二磁轭部件 7—定的间隙后, 增 大下面的涡流线圈 5 中的电流值, 使其产生足够大的电磁斥力继续推动运动单 元 1向上移动, 而不对两个电磁线圈 4加载电流。
由上可见, 图 4、 5中上下两组操动结构分别包含的上面的电磁线圈 4和下 面的电磁线圈 4的作用不同。 开闸的时候, 上面的电磁线圈 4只能产生磁场抵 消永磁保持部件 6的磁力线, 不能对运动单元 1产生斥力, 而下面的电磁线圈 4 则可以对运动单元 1产生向下的吸力。 合闸的时候, 下面的电磁线圈 4只能产 生磁场抵消永磁保持部件 6的磁力线,而上面的电磁线圈 4则可以对运动单元 1 产生向上的吸力。 当然, 如果不考虑节能的因素, 无论是开闸还是合闸, 都可 以只对涡流线圈 5通电来实现。
图 4和图 5示出的上述实施方式由于具有两组操动机构既可实现快速开闸, 又可实现快速合闸。 其开闸和合闸速度均很快, 平均动作时间可达到 5m/s。 在 需要快速保护电路和使电路快速恢复工作的场合, 可以使用该实施方式。
由上可见, 本发明的实施方式通过将涡流部件 2和第一磁轭部件 3做成一 体, 使得该操动机构和现有的操动机构相比, 体积小, 结构紧凑; 同时部件少, 进而操动机构的可靠性更好, 控制方式更灵活。 另外, 紧凑的结构使得能够在 高压应用中串联使用多个带有这种操动机构的断路器。 例如如果一个带有上述 操动机构的断路器的额定电压为 20KV, 而一个输电线路的额定电压为 50KV, 则可以串联三个这种断路器来保护该输电线路。 另外, 使用涡流线圈 5 可以实 现快速地开闸和 /或合闸作业。 这是由于涡流线圈 5具有较小的电感, 通电后通 过涡流线圈 5的电流能够快速增大, 所以涡流线圈 5在通电后能够迅速在涡流 部件 2上激发涡流,迅速产生电磁斥力使运动单元 1离开第二磁轭部件 7。同时, 电磁线圈 4还可以辅助涡流线圈 5完成开闸操作。 电磁线圈 4中可以通入适当 方向的电流, 使电磁线圈 4激发的磁场和永磁体的磁场方向相反, 这样就能够 抵消永磁体磁场的磁力线。 采用组合使用图 4、 5中的涡流线圈 5和电磁线圈 4 的方式能够大大减小在运动单元 1和第二磁轭 7距离一定间隙时需要加载在涡 流线圈 5上的电流值, 从而能够实现大大节省能耗。
以上所述仅为本发明的较佳实施方式, 并非用于限定本发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包 含在本发明的保护范围之内。

Claims

、 一种磁力操动机构, 其特征在于, 所述操动机构包括:
运动单元(1),其能够在第一位置和第二位置之间移动,该运动单元(1) 包括形成一体的涡流部件 (2) 和第一磁轭部件 (3),
第二磁轭部件 (7), 其与所述第一磁轭部件 (3) 形成磁路,
电磁线圈 (4), 其可在通电时产生激发磁场, 并且所述电磁线圈 (4) 通电时产生的磁力线穿过所述第二磁轭部件 (7) 与所述第一磁轭部件 (3) 形成的磁路,
涡流线圈 (5), 其与所述涡流部件 (2) 相对设置, 可使所述涡流部件 (2) 中产生涡流, 从而对所述运动单元 (1) 产生电磁斥力, 和
永磁保持部件 (6), 其用于使所述运动单元 (1) 保持在第一位置或第 二位置处。 、 根据权利要求 2所述的操动机构, 其中所述第一磁轭部件(3)具有凹槽, 所述涡流部件 (2) 位于所述凹槽内。 、 根据权利要求 1所述的操动机构, 其中所述涡流部件 (2) 和第一磁轭部 件 (3) —起形成圆锥或者圆台形。 、 根据权利要求所述的操动机构, 其中所述电磁线圈 (4) 和涡流线圈 (5) 均位于所述涡流部件 (2) 和第一磁轭部件 (3) 形成的框架内。 、 根据权利要求 4所述的操动机构,其中所述电磁线圈(4)和涡流线圈(5) 共用电源或者供电电容, 或者分别使用独立的电源或者供电电容。 、 根据权利要求 1 所述的操动机构, 其中所述操动机构用于断路器, 该操 动机构还包括驱动杆 (8), 所述驱动杆 (8) 与所述运动单元 (1) 连接, 并且驱动杆 (8) 的一端与断路器的触头连接。 、 根据权利要求 6所述的操动机构, 其中所述驱动杆 (8) 的另外一端连接 有弹簧 (9), 该弹簧 (9) 用于使所述运动单元 (1) 保持在断路器的分闸 位置或合闸位置, 所述永磁保持部件 (6) 用于使断路器保持在开闸和合闸 的另外一个位置。 、 根据权利要求 6-7中任一项所述的操动机构,其中两组所述操动机构相对 于所述驱动杆 (8) 对称设置。
PCT/CN2013/079236 2013-07-11 2013-07-11 磁力操动机构 WO2015003370A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2013/079236 WO2015003370A1 (zh) 2013-07-11 2013-07-11 磁力操动机构
CN201380074154.9A CN105009231B (zh) 2013-07-11 2013-07-11 磁力操动机构
US14/784,445 US9576714B2 (en) 2013-07-11 2013-07-11 Magnetic actuator
EP13888967.0A EP3021333B1 (en) 2013-07-11 2013-07-11 Magnetic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/079236 WO2015003370A1 (zh) 2013-07-11 2013-07-11 磁力操动机构

Publications (1)

Publication Number Publication Date
WO2015003370A1 true WO2015003370A1 (zh) 2015-01-15

Family

ID=52279318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079236 WO2015003370A1 (zh) 2013-07-11 2013-07-11 磁力操动机构

Country Status (4)

Country Link
US (1) US9576714B2 (zh)
EP (1) EP3021333B1 (zh)
CN (1) CN105009231B (zh)
WO (1) WO2015003370A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934258A (zh) * 2015-06-04 2015-09-23 上海合凯电气科技有限公司 一种防拒动永磁操作机构
CN106783258A (zh) * 2017-01-23 2017-05-31 天津平高智能电气有限公司 开关装置及使用该装置的快速开关
CN110148542A (zh) * 2019-05-30 2019-08-20 安徽大学 一种基于物联网技术的涡流致动三相三机构智能真空断路器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108447726B (zh) * 2018-05-21 2024-04-19 华中科技大学 一种基于非对称复合式斥力盘的电磁斥力机构
EP3594972B1 (en) * 2018-07-13 2023-10-04 ABB Schweiz AG Drive for a low-, medium-, or high-voltage switchgear, and method for operating the same
CN109412381B (zh) * 2018-12-20 2024-06-07 中国铁道科学研究院集团有限公司 线性涡流制动装置
CN110246732A (zh) * 2019-06-12 2019-09-17 华中科技大学 一种基于开槽磁轭的电磁斥力机构线圈
CN110416034B (zh) * 2019-07-11 2024-03-19 明珠电气股份有限公司 一种长行程电磁斥力机构
CN113725035B (zh) * 2021-08-17 2024-05-03 安徽合凯电气科技股份有限公司 一种涡流斥力机构
CN115206627B (zh) * 2022-07-19 2023-02-28 华中科技大学 一种平顶脉冲磁场产生装置
CN116313580B (zh) * 2023-05-15 2023-08-15 深圳市国立智能电力科技有限公司 一种永磁机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272661A (en) * 1978-03-09 1981-06-09 Gould Inc. High speed vacuum interrupter
CN2840291Y (zh) * 2005-10-31 2006-11-22 李青 永磁操动机构
WO2008139250A1 (en) * 2007-05-16 2008-11-20 Kulygin, Viktor Ivanovych Combined electrically-controlled actuator
CN101315836A (zh) 2008-06-17 2008-12-03 西安交通大学 电磁斥力系统和永磁系统相耦合的自适应操动机构
CN102881493A (zh) * 2012-10-13 2013-01-16 福州天宇电气股份有限公司 电磁涡流斥力快速灭弧开关

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3070730A (en) * 1960-08-22 1962-12-25 Bendix Corp Three-position latching solenoid actuator
US3859547A (en) * 1971-12-23 1975-01-07 Philip E Massie Multi-position solenoid with latching or nonlatching capability
GB1591471A (en) * 1977-06-18 1981-06-24 Hart J C H Electromagnetic actuators
US4533890A (en) * 1984-12-24 1985-08-06 General Motors Corporation Permanent magnet bistable solenoid actuator
DE3635431C1 (de) * 1986-10-17 1988-01-28 Sds Relais Ag Polarisierter Magnetantrieb fuer ein elektromagnetisches Schaltgeraet
US4883025A (en) * 1988-02-08 1989-11-28 Magnavox Government And Industrial Electronics Company Potential-magnetic energy driven valve mechanism
US4928028A (en) * 1989-02-23 1990-05-22 Hydraulic Units, Inc. Proportional permanent magnet force actuator
JP3264191B2 (ja) * 1996-10-28 2002-03-11 松下電工株式会社 電磁ソレノイド
JP3441360B2 (ja) * 1997-03-25 2003-09-02 株式会社東芝 しゃ断器の操作装置
US5896076A (en) * 1997-12-29 1999-04-20 Motran Ind Inc Force actuator with dual magnetic operation
DE19921938A1 (de) * 1998-06-15 1999-12-16 Fev Motorentech Gmbh Verfahren zur Erhöhung der Abwurfgeschwindigkeit des Ankers an einer elektromagnetisch betätigbaren Stelleinrichtung
JP4126787B2 (ja) * 1998-12-07 2008-07-30 トヨタ自動車株式会社 電磁駆動装置
CN1234135C (zh) * 2001-01-18 2005-12-28 株式会社日立制作所 电磁铁和使用该电磁铁的开关装置的操作机构
DE102008000534A1 (de) * 2008-03-06 2009-09-10 Zf Friedrichshafen Ag Elektromagnetische Stellvorrichtung
US8680956B2 (en) * 2009-10-29 2014-03-25 Mitsubishi Electric Corporation Electromagnet device and switch device using electromagnet device
US8686814B2 (en) * 2010-04-15 2014-04-01 Schneider Electric Industries Sas Electric switching device with ultra-fast actuating mechanism and hybrid switch comprising one such device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272661A (en) * 1978-03-09 1981-06-09 Gould Inc. High speed vacuum interrupter
CN2840291Y (zh) * 2005-10-31 2006-11-22 李青 永磁操动机构
WO2008139250A1 (en) * 2007-05-16 2008-11-20 Kulygin, Viktor Ivanovych Combined electrically-controlled actuator
CN101315836A (zh) 2008-06-17 2008-12-03 西安交通大学 电磁斥力系统和永磁系统相耦合的自适应操动机构
CN102881493A (zh) * 2012-10-13 2013-01-16 福州天宇电气股份有限公司 电磁涡流斥力快速灭弧开关

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934258A (zh) * 2015-06-04 2015-09-23 上海合凯电气科技有限公司 一种防拒动永磁操作机构
CN106783258A (zh) * 2017-01-23 2017-05-31 天津平高智能电气有限公司 开关装置及使用该装置的快速开关
CN110148542A (zh) * 2019-05-30 2019-08-20 安徽大学 一种基于物联网技术的涡流致动三相三机构智能真空断路器
CN110148542B (zh) * 2019-05-30 2024-03-19 安徽大学 一种基于物联网技术的涡流致动三相三机构智能真空断路器

Also Published As

Publication number Publication date
EP3021333A1 (en) 2016-05-18
EP3021333A4 (en) 2017-02-22
CN105009231A (zh) 2015-10-28
US20160111238A1 (en) 2016-04-21
EP3021333B1 (en) 2019-10-16
CN105009231B (zh) 2017-11-17
US9576714B2 (en) 2017-02-21

Similar Documents

Publication Publication Date Title
WO2015003370A1 (zh) 磁力操动机构
US6611413B2 (en) Switching apparatus
US8912871B2 (en) Electromagnetic actuator with magnetic latching and switching device comprising one such actuator
JP2008166085A (ja) 遮断器及びその開閉方法
JP5295858B2 (ja) 電磁アクチュエータおよびこれを用いた電磁操作式の開閉装置およびその制御方法
CN101393822A (zh) 电磁促动器和装备有这种电磁促动器的开关设备
KR101362009B1 (ko) 하이브리드 전기자기적 액추에이터
JP4971738B2 (ja) 開閉器の操作回路及びこれを用いた電力用開閉器
WO2011125092A1 (ja) 電磁操作機構の駆動回路
JP5249704B2 (ja) 電磁操作機構の駆動回路
JP4950625B2 (ja) ハイブリッドリレー
JP3634758B2 (ja) 電磁石ユニット及びこの電磁石ユニットを用いた電磁弁
JP6301013B2 (ja) 開閉器
CN201274237Y (zh) 合闸、分闸没有摩擦阻碍的永磁闭锁型断路器操作机构
JP6698450B2 (ja) 開閉装置
CN110010406B (zh) 一种用于快速斥力机构的推送式电路
JP4859575B2 (ja) 遮断器
JP2006302681A (ja) 電磁操作機構
JP2009016514A (ja) 電磁アクチュエータおよびこれを用いた開閉機器
JP2007027370A (ja) 電磁操作機構およびこれを使用する電力用開閉器、電力用開閉装置
US11935715B2 (en) Electromagnetic drive unit for a switching device and switching device
JP5895171B2 (ja) 有極型電磁リレー
JP2009158179A (ja) 電磁接触器
JP2003193871A (ja) 損失補償制御装置を有する電気機械のエンジンバルブアクチュエータシステム
JP2012150929A (ja) 開閉器の操作機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888967

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14784445

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013888967

Country of ref document: EP