WO2015002226A1 - 車載器、及びスプーフィング検知方法 - Google Patents
車載器、及びスプーフィング検知方法 Download PDFInfo
- Publication number
- WO2015002226A1 WO2015002226A1 PCT/JP2014/067637 JP2014067637W WO2015002226A1 WO 2015002226 A1 WO2015002226 A1 WO 2015002226A1 JP 2014067637 W JP2014067637 W JP 2014067637W WO 2015002226 A1 WO2015002226 A1 WO 2015002226A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spoofing
- vehicle
- time
- time information
- gnss
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/21—Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
- G01S19/215—Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service issues related to spoofing
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07B—TICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
- G07B15/00—Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
- G07B15/06—Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems
- G07B15/063—Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems using wireless information transmission between the vehicle and a fixed station
Definitions
- the present invention relates to a vehicle-mounted device using GNSS (Global Navigation Satelite System).
- GNSS Global Navigation Satelite System
- GNSS Global Navigation Satellite System
- GPS Global Positioning System
- GLONASS Global Positioning System
- Galileo System Galileo System
- a charging process can be performed on a vehicle traveling in an area set as a toll road based on the positioning result of the vehicle position by the artificial satellite.
- spoofing In a satellite positioning system, a technique called spoofing is known in which an estimated position is misidentified as a position different from an actual position by spoofing a positioning signal transmitted from an artificial satellite. In order to legitimately charge a vehicle on a toll road, a technique capable of suppressing spoofing is desired.
- Patent Documents 1 and 2 are examples of techniques for dealing with spoofing.
- the vehicle-mounted device includes a positioning unit that outputs position information indicating the current position of the vehicle and first time information indicating the current time based on a satellite signal received from an artificial satellite, a satellite signal, Includes a processing unit that acquires second time information indicating the current time using different radio signals, and detects spoofing based on a difference between the time indicated by the first time information and the time indicated by the second time information.
- a spoofing detection method outputs a position information indicating a current position of a vehicle and first time information indicating a current time based on a satellite signal received from an artificial satellite, a satellite signal, Obtaining the second time information indicating the current time with different radio signals, and detecting spoofing based on the difference between the time indicated by the first time information and the time indicated by the second time information.
- the present invention provides a technique that enables detection of spoofing.
- FIG. 1 shows the configuration of a satellite positioning system.
- FIG. 2 shows the configuration of the vehicle-mounted device.
- FIG. 3 shows the configuration of the spoofing detection unit.
- FIG. 4 shows the operation of the vehicle-mounted device.
- FIG. 5 shows the configuration of the satellite positioning system.
- FIG. 6 shows the configuration of the vehicle-mounted device.
- FIG. 7 shows the configuration of the satellite positioning system.
- FIG. 8 shows the configuration of the vehicle-mounted device.
- FIG. 9 shows the configuration of the spoofing detection unit.
- FIG. 10 shows the operation of the vehicle-mounted device.
- FIG. 11 shows the operation of the vehicle-mounted device.
- FIG. 12 shows the operation of the vehicle-mounted device.
- FIG. 13 shows the operation of the vehicle-mounted device.
- FIG. 14 shows a base station ID table.
- FIG. 1 shows the configuration of the satellite positioning system in the first embodiment of the present invention.
- the position of the vehicle 1 is estimated using GNSS satellite information carried by satellite signals transmitted from a plurality of GNSS satellites 12 (only one is shown).
- the vehicle-mounted device 2 is mounted on the user's vehicle 1.
- the vehicle-mounted device 2 receives the GNSS satellite information by the GNSS antenna 6.
- the GNSS chip 7 included in the vehicle-mounted device 2 functions as a satellite information acquisition unit that acquires a satellite signal and outputs a current position of the vehicle and GNSS time information described later.
- the GNSS chip 7 estimates a three-dimensional current position on the earth of the vehicle 1 based on the received GNSS satellite information, and outputs it as a positioning result.
- the vehicle-mounted device 2 further includes a processing unit 3 that is a computer that performs billing processing using the positioning result output from the GNSS chip 7.
- the vehicle 1 includes a battery and supplies the vehicle power supply voltage 17 from the battery to the vehicle-mounted device 2.
- the vehicle power supply voltage 17 is supplied to the power supply circuit 4 provided in the vehicle-mounted device 2.
- the vehicle 1 further outputs an ignition ON / OFF signal 18 indicating whether the ignition key is turned in the on direction and the engine is turned on or turned off and the engine is turned off to the vehicle-mounted device 2.
- the ignition ON / OFF signal 18 is transmitted as an ignition ON / OFF signal 19 to the processing unit 3 via the power supply circuit 4.
- the processing unit 3 supplies a vehicle-mounted power supply voltage ON / OFF signal 20 that instructs to turn on the power of the vehicle-mounted device 2.
- 4 is output.
- the power supply circuit 4 outputs the onboard equipment power supply voltage 21 based on the vehicle power supply voltage 17 supplied from the vehicle 1 in response to the onboard equipment power supply voltage ON / OFF signal 20.
- the various circuits included in the vehicle-mounted device 2 are driven by the vehicle-mounted device power supply voltage 21.
- the roadside system 16 is connected to a plurality of DSRC antennas 15 (beacons) installed on a roadside such as a road on which a vehicle runs or a parking lot.
- the vehicle-mounted device 2 includes a DSRC antenna 10 for performing bidirectional narrow area dedicated communication (DSRC) with the DSRC antenna 15 and a DSRC communication processing unit 11.
- DSRC narrow area dedicated communication
- FIG. 2 shows the configuration of the vehicle-mounted device 2.
- the vehicle-mounted device 2 includes a GNSS antenna 6, a GNSS chip 7, a DSRC antenna 10, a DSRC communication processing unit 11, a real-time clock 33, a main processing unit 34, and a spoofing detection unit 31.
- the real-time clock 33, the main processing unit 34, and the spoofing detection unit 34 correspond to the processing unit 3 in FIG.
- Each of these units included in the processing unit 3 may be realized by software executed by the CPU, or may be realized by hardware by separate devices having respective functions.
- the positioning result 35 output from the GNSS chip 7 is input to the spoofing detection unit 31.
- the information generated by the GNSS chip 7 based on the GNSS satellite information includes GNSS time information 37 indicating the current time.
- the GNSS chip 7 outputs the GNSS time information 37 to the real-time clock 33 inside the vehicle-mounted device 2.
- the real-time clock 33 outputs GNSS time information 40 in a format that can be used as a time stamp or the like in data processing or the like in the vehicle-mounted device 2.
- the GNSS time information 37 output from the GNSS chip 7 and the GNSS time information 40 output from the real-time clock 33 have substantially the same contents, although the formats are different.
- the roadside system 16 always generates DSRC time information indicating the current time.
- the DSRC communication processing unit 11 receives the DSRC time information via the DSRC antenna 10 and passes it to the spoofing detection unit 31.
- the positioning result 36 output from the GNSS chip 7 and the GNSS time information 40 output from the real-time clock 33 are input to the spoofing detection unit 31.
- the spoofing detection unit 31 outputs a determination result 39 as to whether or not spoofing has been performed based on the positioning result 36, the GNSS time information 40, and the DSRC time information.
- the main processing unit 34 Based on the positioning result 38 output from the GNSS chip 7 and the determination result 39 output from the spoofing detection unit 31, the main processing unit 34 performs a charging process when the vehicle 1 travels on a toll road.
- FIG. 3 shows functional blocks provided in the spoofing detection unit 31.
- the spoofing detection unit 31 in the present embodiment includes a time information acquisition unit 44 and a determination unit 41. These functional blocks can be realized by the main CPU included in the vehicle-mounted device 2 reading out a program stored in the storage device and operating according to the procedure described in the program.
- the GNSS chip 7 when the engine of the vehicle 1 is activated and the vehicle-mounted device 2 is turned on, the GNSS chip 7 outputs GNSS time information 37 indicating the current time based on the GNSS satellite information.
- the real time clock 33 outputs the GNSS time information 40 corresponding to the GNSS time information 37 to the spoofing detection unit 31 in substantially real time (step B1).
- the time information acquisition unit 44 acquires DSRC time information from the DSRC communication processing unit 11 in substantially real time (step B2).
- the determination unit 41 compares the GNSS time information 40 with the DSRC time information (step B3). When the difference between the time indicated by the GNSS time information 40 and the time indicated by the DSRC time information is smaller than a predetermined threshold value (step B4 NO), the determination unit 41 determines that spoofing has not been performed (step B6). . If the difference between the GNSS time information and the DSRC time information is equal to or greater than a predetermined threshold (step B4 YES), the determination unit 41 determines that spoofing has been performed (step B5).
- the determination part 41 outputs the determination result 39 regarding the presence or absence of spoofing (step B7).
- the main processing unit 34 performs processing such as billing based on the positioning result 38
- the main processing unit 34 performs processing in consideration of the determination result 39 as well. For example, when it is determined that spoofing has been performed, normal charging processing is stopped, and data indicating the determination result 39 is stored in the storage device.
- the processing in the present embodiment verifies the time by the satellite positioning system by comparing with the time given by the radio signal different from the satellite signal of the satellite positioning system (the time provided by the roadside system 16). Thus, spoofing can be detected.
- the spoofing detection by the means described above has an advantage that it can be easily mounted on the vehicle-mounted device 2. The advantages will be described below.
- a dedicated GNSS chip is mounted on the vehicle-mounted device.
- a function for verifying data received from the GNSS satellite inside the GNS chip.
- there is no need to change the GNSS chip and a technique that enables spoofing detection using a signal output from the GNSS chip is desirable.
- the standard of signals output from the GNSS chip is defined by NMEA (National Marine Electronics Association). Any type of chip can be adopted as long as spoofing detection can be performed based on an output signal defined in such a standard, and the degree of freedom in chip selection is high.
- the current time output from the GNSS chip 7 is used as data generated by the satellite positioning system. According to the standard, such a current time is output by any type of GNSS chip 7. Detailed information such as orbit information of each GNSS satellite that is not necessarily output by the GNSS chip 7 is not required in the spoofing detection of FIG. Therefore, the spoofing detection process shown in FIG. 4 can be executed without changing the GNSS chip 7 itself, and has the advantage that it can be executed regardless of the type of the GNSS chip 7. Such advantages also have other embodiments of the present invention described below.
- FIG. 5 shows the configuration of the satellite positioning system in the second embodiment of the present invention.
- FIG. 6 shows a configuration of the vehicle-mounted device 2 in the present embodiment.
- cellular communication is used instead of the roadside system 16 of the first embodiment.
- the satellite positioning system in this embodiment includes a cellular communication chip 9 and a cellular communication antenna 8, and a cellular communication network including a center system 14 and a cellular base station 13 is provided. Use.
- Cellular communication is a method generally used as one of mobile communication methods. The outline will be described below.
- cellular communication a communication area is divided into many small cells, and a base station is installed in each cell.
- the cell size is typically in the range of several kilometers to several tens of kilometers centering on the base station, but a method of dividing into smaller microcells is also used.
- the radio wave output of each base station is large enough to cover the cell to which the base station belongs as a communication range. In other words, each base station is installed away from other base stations so as not to cause radio wave interference. Therefore, the same frequency can be reused in different base stations, and the frequency can be effectively used.
- the cellular communication network can be used as a part of a charging system using the result of position estimation of the vehicle 1 by GNSS.
- the GNSS chip 7 estimates the position of the vehicle 1 based on the GNSS satellite information received from the GNSS satellite 12 and outputs it as a positioning result.
- the cellular communication chip 9 transmits the positioning result from the cellular communication antenna 8.
- the positioning result is transmitted to the center system 14 via the cellular base station 13 near the vehicle 1.
- processing such as billing using the positioning result of the vehicle 1 is performed.
- the cellular communication network uses cellular communication time information indicating the current time.
- cellular communication time information is transmitted from the cellular base station 13 to the vehicle-mounted device 2.
- the cellular communication chip 9 delivers the cellular communication time information received via the cellular communication antenna 8 to the spoofing detection unit 31 in almost real time.
- the spoofing detection unit 31 performs spoofing detection using the cellular communication time information instead of the DSRC time information in the operation of the first embodiment shown in FIG. In such a satellite positioning system, spoofing detection can be performed even in an area where a DSRC roadside device is not installed.
- FIG. 7 shows the configuration of the satellite positioning system in the third embodiment.
- FIG. 8 shows a configuration of the vehicle-mounted device 2 in the present embodiment.
- the following processing is performed. (1) Spoofing detection based on past and present GNSS positioning results. (2) Spoofing detection based on comparison between GNSS time information and DSRC time information, or comparison between GNSS time information and cellular communication time information. (3) Spoofing detection based on a comparison between the GNSS positioning result and the position of the DSRC roadside unit, or a comparison between the GNSS positioning result and the communication area of the cellular base station.
- the processing shown in the first embodiment or the second embodiment is performed. In the present embodiment, the processes (1) and (3) are further added.
- the processing unit 3 stores the positioning result based on the GNSS satellite information in the positioning result storage area 5 prepared in the storage device together with the positioning time indicating the time when the positioning is performed.
- the positioning result storage unit 32 stores the positioning result 35 in the positioning result storage area 5 together with the current time.
- the positioning result 35 is stored in association with the positioning time.
- the roadside system 16 transmits DSRC position information indicating the position of the DSRC antenna 15 (roadside device).
- the DSRC communication processing unit 11 passes the DSRC position information received by the DSRC antenna 10 to the spoofing detection unit 31 as a DSRC positioning result.
- the spoofing detection unit 31 performs spoofing based on the past positioning result 35 and positioning time stored in the positioning result storage area 5, the positioning result 36 (GNSS positioning result) output from the GNSS chip 7, and the DSRC positioning result.
- the determination result 39 of whether or not has been performed is output.
- the main processing unit 34 Based on the positioning result 38 output from the GNSS chip 7 and the determination result 39 output from the spoofing detection unit 31, the main processing unit 34 performs a charging process when the vehicle 1 travels on a toll road.
- FIG. 9 shows functional blocks provided in the spoofing detection unit 31.
- the spoofing detection unit 31 in this embodiment further includes a threshold setting unit 42, an engine information collection unit 43, and a position information acquisition unit 45 in addition to the first embodiment shown in FIG.
- These functional blocks can be realized by the main CPU included in the vehicle-mounted device 2 reading out a program stored in the storage device and operating according to the procedure described in the program.
- FIG. 10 is a flowchart showing the operation of the spoofing detection unit 31 in the spoofing detection based on the past and current GNSS positioning results in the present embodiment.
- the GNSS chip 7 is a positioning result that is data indicating the three-dimensional position of the vehicle 1 on the earth based on the GNSS satellite information. 35, 36, and 38 are output.
- the positioning result storage unit 35 stores the positioning result 35 in the positioning result storage area 5 together with the positioning time indicating the current time (step A1).
- the determination unit 41 compares the current positioning result 36 output from the GNSS chip 7 with the past positioning result stored in the positioning result storage area 5. For this comparison, for example, a time deviation amount is set in advance, and the previous positioning result (for example, 10 seconds before) is read from the positioning result storage area 5 and compared with the current positioning result 36. (Step A2).
- the determination unit 41 determines the magnitude relationship between the difference between the past positioning result and the current positioning result, and a preset threshold value. As this threshold value, a distance that is considered unnatural for the vehicle 1 to move further is set between the set deviation amounts used in step A2. For example, if the amount of time difference is set to 10 seconds and the threshold is set to 500 meters, if the positioning result 10 seconds ago and the current positioning result are 500 meters or more, it is determined that the movement is unnatural.
- step A3 NO the determination unit 41 determines that there is no spoofing and that the positioning is performed normally (step A5). If the difference is greater than or equal to the threshold (YES in step A3), it is determined that spoofing has been performed (step A4).
- the determination part 41 outputs the determination result 39 regarding the presence or absence of spoofing (step A6).
- the main processing unit 34 performs processing such as billing based on the positioning result 38, the main processing unit 34 performs processing in consideration of the determination result 39 as well. For example, when it is determined that spoofing has been performed, normal charging processing is stopped, and data indicating the determination result 39 is stored in the storage device.
- a means for identifying a positioning error in a satellite positioning system such as multipath may be prepared.
- a positioning error due to multipath for example, the vehicle motion path based on satellite positioning temporarily shows an unnatural jump, and returns to the original correct positioning result again. Therefore, when the period in which the distance difference determined in step A3 is equal to or greater than the threshold is equal to or less than the predetermined period, it is determined that there is a possibility of positioning error due to multipath or the like, and it is not determined that spoofing has been performed. Processing may be performed.
- FIG. 11 is a flowchart showing the operation of such a spoofing detection unit 31.
- the GNSS chip 7 outputs positioning results 35, 36, and 38 as in step A1 of FIG.
- the positioning result storage unit 32 stores the positioning result 35 in the positioning result storage area 5 together with the positioning time indicating the current time (step A11).
- the threshold setting unit 42 sets the threshold with reference to the threshold database 50 stored in the storage device in the vehicle-mounted device 2.
- the position change of the vehicle 1 is, for example, fast when traveling on a highway and slow while traveling on an urban area. Therefore, it is possible to determine whether or not the time-series changes in the positioning results 35, 36, and 38 of the vehicle 1 are unnatural by setting different threshold values for the moving speed according to the current position of the vehicle 1. .
- the threshold value database 50 stores an area on the map in association with the threshold value. For example, a high speed threshold is set for an area indicating a highway, and a low speed threshold is set for an area indicating an urban area.
- the threshold value setting unit 42 extracts a threshold value corresponding to the current position of the vehicle 1 indicated in the positioning result 36 output from the GNSS chip 7 from the threshold value database 50 and sets it as a threshold value for spoofing detection.
- Such threshold values can be set for, for example, vehicle speed, acceleration, angular velocity, and the like (step A12).
- the determination unit 41 determines the current speed, acceleration, and angular velocity of the vehicle 1 based on the positioning result 36 input from the GNSS chip 7 and the past positioning results and positioning time history stored in the positioning result storage area 5. Calculate (step A13).
- the determination unit 41 determines the magnitude relationship between the calculated speed of the vehicle 1 and the threshold value Vth of the speed set by the threshold setting unit 42. When the speed of the vehicle 1 is smaller than the threshold value (step A14 YES), the process proceeds to step A15. When the speed of the vehicle 1 is equal to or higher than the threshold (NO in step A14), it is determined that there is a suspicion that spoofing has been performed (step A18).
- the determination unit 41 determines the magnitude relationship between the calculated acceleration of the vehicle 1 and the acceleration threshold Ath set by the threshold setting unit 42.
- the process proceeds to step A16.
- the acceleration of the vehicle 1 is equal to or greater than the threshold (NO in step A15), it is determined that there is a suspicion that spoofing has been performed (step A18).
- the determination unit 41 determines the magnitude relationship between the calculated angular velocity of the vehicle 1 and the angular velocity threshold Ath set by the threshold setting unit 42.
- the process proceeds to step A17. If the acceleration of the vehicle 1 is greater than or equal to the threshold (NO in step A16), it is determined that there is a suspicion that spoofing has been performed (step A18). By this process, when the rate of change in the direction of the vehicle is unnaturally large, it can be determined that there is a suspected spoofing.
- steps A14 to A16 may be executed by arbitrarily changing the order, or only one or two of these three types of processing may be executed. In all of these processes, when the amount (speed, acceleration, angular velocity) indicating the motion of the vehicle is below the threshold, it is determined that spoofing is not performed (step A17).
- the history of suspected spoofing is registered in the spoofing candidate database 51 in association with the current time output by the GNSS chip 7 in step A18.
- the determination unit 41 extracts the past suspected spoofing history from the spoofing candidate database 51. If the duration of suspected spoofing is shorter than the predetermined threshold (NO in step A19), it is determined that there is a short-term positioning error due to multipath or the like and spoofing is not performed (step A17). When the period during which the spoofing suspicion has continued is equal to or greater than a predetermined threshold (step A19 YES), it is determined that spoofing has been performed (step A20).
- the determination unit 41 outputs a determination result 39 indicating no spoofing generated in Step A17 or spoofing generated in Step A20 (Step A21).
- the main processing unit 34 takes into consideration the determination result 39 as in the first embodiment when executing the charging process or the like based on the positioning result 38 output from the GNSS chip 7.
- spoofing determination based on the operation of the engine information collection unit 43 in FIG. 9 may be added.
- the position of the vehicle 1 does not change. If the position estimated by the satellite positioning system changes more than a certain while the engine of the vehicle 1 is stopped, it is considered that spoofing is suspected.
- the engine information collection unit 43 monitors the ignition ON / OFF signal 19. If the engine information collecting unit 43 determines that the engine of the vehicle 1 has been stopped based on the ignition ON / OFF signal 19 (the ignition key has been turned off), the last GNSS chip 7 output before that Is stored in a storage device inside the vehicle-mounted device 2 as a positioning result when the engine is stopped.
- the first positioning result 36 output from the GNSS chip 7 is determined as the engine starting positioning result as the engine stopping positioning result.
- the result is passed to the determination unit 41.
- the determination unit 41 calculates the difference between the positioning result when the engine is stopped and the positioning result when the engine is started.
- the determination unit 41 determines that the difference is smaller than a predetermined threshold value, and determines that the spoofing has been performed when the difference is equal to or greater than the predetermined threshold value.
- the spoofing detection unit 31 further performs spoofing detection (description process (3)) based on a comparison between the GNSS positioning result and the position of the DSRC roadside machine.
- FIG. 10 is a flowchart showing the operation of the spoofing detection unit 31 in the spoofing detection based on the comparison between the GNSS positioning result and the position of the DSRC roadside device in the present embodiment.
- the GNSS chip 7 is data indicating a three-dimensional position of the vehicle 1 on the earth based on the GNSS satellite information. Positioning results 36 and 38 are output (step C1).
- the position information acquisition unit 45 inputs the DSRC positioning result from the DSRC communication processing unit 11 in substantially real time (step C2).
- the determination unit 41 compares the current positioning result 36 (GNSS positioning result) output from the GNSS chip 7 with the DSRC positioning result (step C3).
- the determination unit 41 determines the magnitude relationship between the difference between the position indicated by the GNSS positioning result and the position indicated by the DSRC positioning result (the distance between the two) and a preset threshold value. As this threshold value, a distance that is equal to or larger than the communication range of the roadside unit of DSRC is set.
- the determination unit 41 proceeds to the process of step C5.
- the determination unit 41 proceeds to the process of step C6.
- step C6 the determination unit 41 determines that there is a suspicion of spoofing.
- the history of suspected spoofing is registered in the spoofing candidate database 51 in association with the current time.
- the determination unit 41 extracts the past suspected spoofing history from the spoofing candidate database 51. If the duration of suspected spoofing is shorter than a predetermined threshold (NO in step C7), it is determined that there is a short-term positioning error due to multipath or the like and spoofing is not performed (step C5). If the duration of suspected spoofing is longer than a predetermined threshold (YES in step C7), it is determined that spoofing has been performed (step C8).
- the determination unit 41 outputs a determination result indicating no spoofing generated in step C5 or spoofing generated in step C8 (step C9).
- the main processing unit 34 takes the determination result 39 into consideration when executing a charging process or the like based on the positioning result 38 output from the GNSS chip 7. For example, when it is determined that spoofing has been performed, normal charging processing is stopped, and data indicating the determination result 39 is stored in the storage device.
- the spoofing can be detected when the positioning result based on the GNSS satellite information is unnaturally separated from the position of the DSRC roadside device that is communicating.
- spoofing detection can be performed based on the position (communication range) of the cellular base station 13.
- the cellular communication network transmits an identifier for identifying the cellular base station 13 in communication with the vehicle-mounted device 2 to the vehicle-mounted device 2 when communicating with the vehicle-mounted device 2 for charging processing or the like via the cellular base station 13. .
- the identifier By the identifier, the position where the vehicle 1 is located can be roughly recognized and used instead of the DSRC positioning result in the first embodiment.
- FIG. 14 shows a base station ID table 52 registered in advance in the spoofing detection unit 31 in the present embodiment.
- the base station ID table 52 associates a base station ID 53 that is an identifier for specifying each of a plurality of base stations with an area 54 that is information indicating a communication range covered by each cellular base station 13.
- FIG. 13 shows the operation of the spoofing detection unit 31 in the present embodiment. Similar to step C1 in FIG. 12, the positioning result 36 by the satellite positioning system is input to the spoofing detection unit 31 (step C11).
- the cellular communication chip 9 extracts from the signal received from the cellular base station 13 via the cellular communication antenna 8 the base station ID 53 that identifies the cellular base station 13 in communication.
- the position information acquisition unit 45 inputs the base station ID 53 from the cellular communication chip 9 (step C12).
- the position information acquisition unit 45 searches the base station ID table 52 for an area 54 corresponding to the base station ID 53 acquired from the cellular communication chip 9 (step C13).
- the determination unit 41 compares the position indicated by the GNSS positioning result with the area 54 (cellular base station communication range) searched from the base station ID table 52 (step C14). If the GNSS positioning result is within the cellular base station communication range (step C15 NO), the determination unit 41 proceeds to the process of step C16, and if not (step C15 YES), the determination unit 41 proceeds to the process of step C17.
- the subsequent processing in steps C16 to C20 is the same as that in steps C5 to C9 in FIG.
- the spoofing detection unit 31 performs spoofing detection using the position of the cellular base station 13 in communication instead of the DSRC positioning result in the operation shown in FIG. In such a satellite positioning system, spoofing detection can be performed even in an area where a DSRC roadside device is not installed.
- the spoofing detection unit 31 When the spoofing detection unit 31 performs the processing shown in FIG. 10 or 11 and the processing shown in FIG. 12 or 13 in addition to the processing shown in FIG. 4, the following three spoofing detection results are obtained. can get. (1) Spoofing detection based on past and present GNSS positioning results. (2) Spoofing detection based on comparison between GNSS time and DSRC time (or cellular communication time). (3) Spoofing detection based on a comparison between the GNSS positioning result and the position of the DSRC roadside unit (or the communication area of the cellular base station).
- the spoofing detection unit 31 comprehensively outputs a determination result 39 indicating that there is spoofing when it is determined that “spoofing is present” in at least one of these three types of spoofing detection methods.
- the spoofing detection unit 31 employs a majority method that outputs a determination result 39 of spoofing comprehensively when it is determined that “spoofing is present” in at least two of these three spoofing detection methods. May be.
- only one of the methods (1) and (3) can be employed. In that case, when at least one of the two types of spoofing detection detects the spoofing, a determination result 39 that there is spoofing is output comprehensively. Alternatively, when both spoofing is detected, a determination result 39 that spoofing is present may be output comprehensively.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Computer Networks & Wireless Communication (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Finance (AREA)
- Business, Economics & Management (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Traffic Control Systems (AREA)
- Devices For Checking Fares Or Tickets At Control Points (AREA)
- Navigation (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
以下、添付図面を参照して、本発明の実施形態を説明する。図1は、本発明の第1実施形態における衛星測位システムの構成を示す。衛星測位システムにおいては、複数のGNSS衛星12(1つのみ図示)が発信する衛星信号が搬送するGNSS衛星情報を用いて、車両1の位置が推定される。ユーザの車両1に、車載器2が搭載される。車載器2は、GNSS衛星情報をGNSSアンテナ6によって受信する。車載器2が備えるGNSSチップ7は、衛星信号を取得して、車両の現在位置と、後述するGNSS時刻情報とを出力する衛星情報取得部として機能する。GNSSチップ7は、受信したGNSS衛星情報に基づいて車両1の地球上の三次元的な現在位置を推定し、測位結果として出力する。車載器2は更に、GNSSチップ7から出力される測位結果を用いて課金処理等を行う計算機である処理部3を備える。
図5は、本発明の第2実施形態における衛星測位システムの構成を示す。図6は、本実施形態における車載器2の構成を示す。本実施形態においては、第1実施形態の路側システム16に替えて、セルラ通信が用いられる。図1に示された衛星測位システムと比べて、本実施形態における衛星測位システムは、セルラ通信チップ9とセルラ通信アンテナ8とを備え、センタシステム14とセルラ基地局13とからなるセルラ通信網を利用する。
次に、本発明の第3実施形態について説明する。図7は、第3実施形態における衛星測位システムの構成を示す。図8は、本実施形態における車載器2の構成を示す。本実施形態においては、以下の処理が行われる。
(1)過去と現在のGNSS測位結果に基づくスプーフィング検知。
(2)GNSS時刻情報とDSRC時刻情報との比較、又は、GNSS時刻情報とセルラ通信時刻情報との比較に基づくスプーフィング検知。
(3)GNSS測位結果とDSRC路側機の位置の比較、又は、GNSS測位結果とセルラ基地局の通信領域との比較に基づくスプーフィング検知。
これらのうち、(2)については、第1実施形態又は第2実施形態に示した処理が行われる。本実施形態においては更に、(1)と(3)の処理が追加される。
本実施形態における車載器2において、処理部3は、GNSS衛星情報に基づく測位結果を、測位が行われた時刻を示す測位時刻と共に、記憶装置に用意された測位結果記憶領域5に格納する。GNSSチップ7が測位結果35を出力すると、測位結果保存部32はその測位結果35を現在時刻と共に測位結果記憶領域5に格納する。測位結果記憶領域5には、測位結果35が測位時刻と対応づけられて格納される。
路側システム16は、DSRCアンテナ15(路側装置)の位置を示すDSRC位置情報を発信する。DSRC通信処理部11は、DSRCアンテナ10が受信したDSRC位置情報を、DSRC測位結果としてスプーフィング検知部31に受け渡す。
スプーフィング検知部31は、測位結果記憶領域5に格納された過去の測位結果35及び測位時刻と、GNSSチップ7が出力する測位結果36(GNSS測位結果)と、DSRC測位結果とに基づいて、スプーフィングが行われたか否かの判定結果39を出力する。メイン処理部34は、GNSSチップ7が出力する測位結果38と、スプーフィング検出部31が出力する判定結果39とに基づいて、車両1が有料道路を走行した際の課金処理などを実行する。
次に、本実施形態におけるスプーフィング検知部31の動作について説明する。本実施形態では、スプーフィング検知部31は、過去と現在のGNSS測位結果に基づくスプーフィング検知(既述の処理(1))を行う。図10は、本実施形態における、過去と現在のGNSS測位結果に基づくスプーフィング検知におけるスプーフィング検知部31の動作を示すフローチャートである。
以上の処理に加えて、図9のエンジン情報収集部43の動作によるスプーフィング判定を追加してもよい。通常、車両1のエンジンが停止している場合は、車両1の位置は変化しない。もし車両1のエンジンが停止中に、衛星測位システムによって推定された位置がある程度以上変化した場合には、スプーフィングの疑いがあると考えられる。
本実施形態においては、スプーフィング検知部31は、更に、GNSS測位結果とDSRC路側機の位置との比較に基づくスプーフィング検知(記述の処理(3))を行う。図10は、本実施形態における、GNSS測位結果とDSRC路側機の位置との比較に基づくスプーフィング検知におけるスプーフィング検知部31の動作を示すフローチャートである。
図12に示したDSRC位置情報に替えて、セルラ基地局13の位置(通信範囲)に基づいてスプーフィング検知を行うことも可能である。セルラ通信網は、セルラ基地局13を介して車載器2と課金処理等のための通信を行う際に、車載器2と通信中のセルラ基地局13を特定する識別子を車載器2に送信する。その識別子によって、車両1が位置する位置を概略的に認識し、第1実施形態におけるDSRC測位結果の代わりに用いることができる。
(1)過去と現在のGNSS測位結果に基づくスプーフィング検知。
(2)GNSS時刻とDSRC時刻(又はセルラ通信時刻)との比較に基づくスプーフィング検知。
(3)GNSS測位結果とDSRC路側機の位置(又はセルラ基地局の通信領域)との比較に基づくスプーフィング検知。
スプーフィング検知部31は、これらの3通りのスプーフィング検知方法のうちの少なくとも1つにおいて「スプーフィングあり」と判定されたときに、総合的にスプーフィングありとの判定結果39を出力する。あるいは、スプーフィング検知部31は、これらの3通りのスプーフィング検知方法のうち少なくとも2つにおいて「スプーフィングあり」と判定されたときに、総合的にスプーフィングありとの判定結果39を出力する多数決方式を採用してもよい。あるいは、第1実施形態と同じ(2)の方法に加えて、(1)と(3)のいずれか一方のみの方法を採用することもできる。その場合は、二通りのスプーフィング検知のうち、少なくとも一方がスプーフィングを検知した場合に、総合的にスプーフィングありとの判定結果39を出力する。あるいは、両者がスプーフィングを検知した場合に、総合的にスプーフィングありとの判定結果39を出力してもよい。
Claims (8)
- 人工衛星から受信した衛星信号に基づいて、現在時刻を示す第1時刻情報とを出力する衛星情報取得部と、
前記衛星信号とは異なる無線信号によって現在時刻を示す第2時刻情報を取得し、前記第1時刻情報に示される時刻と、前記第2時刻情報に示される時刻との差に基づいてスプーフィングを検知する処理部と
を具備する車載器。 - 請求項1に記載の車載器であって、
前記処理部は、前記第1時刻情報に示される時刻と、前記第2時刻情報に示される時刻との差が閾値以上の場合にスプーフィングが行われたと判定する
車載器。 - 請求項1又は2に記載された車載器であって、
前記処理部は、前記車両が走行する道路の路側に設けられる路側装置から前記第2時刻情報を取得する
車載器。 - 請求項1に記載された車載器であって、
前記処理部は、セルラ通信によって前記第2時刻情報を取得する
車載器。 - 人工衛星から受信した衛星信号に基づいて、現在時刻を示す第1時刻情報とを出力する工程と、
前記衛星信号とは異なる無線信号によって現在時刻を示す第2時刻情報を取得する工程と、
前記第1時刻情報に示される時刻と、前記第2時刻情報に示される時刻との差に基づいてスプーフィングを検知する工程と
を具備する車載器のスプーフィング検知方法。 - 請求項5に記載された車載器のスプーフィング検知方法であって、
前記スプーフィングを検知する工程は、前記第1時刻情報に示される時刻と、前記第2時刻情報に示される時刻との差が閾値以上の場合にスプーフィングが行われたと判定する工程を含む
車載器のスプーフィング検知方法。 - 請求項5又は6に記載された車載器のスプーフィング検知方法であって、
前記第2時刻情報は、前記車両が走行する道路の路側に設けられる路側装置から取得される
車載器のスプーフィング検知方法。 - 請求項5又は6に記載された車載器のスプーフィング検知方法であって、
前記第2時刻情報は、セルラ通信によって取得される
車載器のスプーフィング検知方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157036360A KR20160013147A (ko) | 2013-07-03 | 2014-07-02 | 차량 탑재 기기, 및 스푸핑 검지 방법 |
US14/901,723 US20160370470A1 (en) | 2013-07-03 | 2014-07-02 | On-board unit and spoofing detecting method |
CN201480036111.6A CN105452900B (zh) | 2013-07-03 | 2014-07-02 | 车载器以及欺骗检测方法 |
SG11201510543RA SG11201510543RA (en) | 2013-07-03 | 2014-07-02 | On-board unit and spoofing detecting method |
HK16107792.7A HK1219780A1 (zh) | 2013-07-03 | 2016-07-05 | 車載器以及欺騙檢測方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-139994 | 2013-07-03 | ||
JP2013139994A JP6496472B2 (ja) | 2013-07-03 | 2013-07-03 | 車載器、及びスプーフィング検知方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015002226A1 true WO2015002226A1 (ja) | 2015-01-08 |
Family
ID=52143798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/067637 WO2015002226A1 (ja) | 2013-07-03 | 2014-07-02 | 車載器、及びスプーフィング検知方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20160370470A1 (ja) |
JP (1) | JP6496472B2 (ja) |
KR (1) | KR20160013147A (ja) |
CN (1) | CN105452900B (ja) |
HK (1) | HK1219780A1 (ja) |
SG (1) | SG11201510543RA (ja) |
WO (1) | WO2015002226A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3339903A1 (de) * | 2016-12-22 | 2018-06-27 | Toll Collect GmbH | Verfahren, system, vorrichtung und computerprogrammprodukt zur signalisierung einer fehlfunktion oder drohenden fehlfunktion einer positionsbestimmungsvorrichtung, sowie gebührenerhebungssystem |
CN110730416A (zh) * | 2018-07-17 | 2020-01-24 | 北京京东尚科信息技术有限公司 | 基于定位数据的车辆安全管理方法和装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11435482B2 (en) * | 2014-06-18 | 2022-09-06 | Continental Teves Ag & Co. Ohg | Method for verifying the plausibility of GNSS position signals |
CN106199647B (zh) * | 2016-06-21 | 2019-02-01 | 华东师范大学 | 一种推测未知无人机目标位置的方法 |
CN106291603A (zh) * | 2016-07-29 | 2017-01-04 | 中传数广(合肥)技术有限公司 | 确保应用数据正确输出的方法、终端及系统 |
CN106850958A (zh) * | 2016-12-22 | 2017-06-13 | 中国科学院光电研究院 | 一种手机位置服务中的位置信息伪造识别方法及装置 |
EP3882667A4 (en) * | 2018-11-12 | 2022-08-24 | Furuno Electric Co., Ltd. | GNSS RECEIVER DEVICE |
US11736946B2 (en) * | 2020-04-01 | 2023-08-22 | Higher Ground Llc | Satellite relaying for geolocation and mitigation of GNSS denial |
CN112859013B (zh) * | 2021-01-22 | 2023-06-30 | 西安电子科技大学 | 基于航迹的无人机gnss欺骗检测方法 |
US11536850B2 (en) * | 2021-04-05 | 2022-12-27 | Qualcomm Incorporated | GNSS spoofing detection and recovery |
CN113447972B (zh) * | 2021-06-07 | 2022-09-20 | 华东师范大学 | 一种基于车载imu的自动驾驶gps欺骗检测方法及系统 |
US12055640B2 (en) * | 2021-11-17 | 2024-08-06 | Qualcomm Incorporated | Erroneous time and location detection and correction |
US12061271B2 (en) * | 2021-11-18 | 2024-08-13 | The Aerospace Corporation | Periodically varying frequencies for assured time transfer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09500998A (ja) * | 1993-10-07 | 1997-01-28 | アムテック コーポレイション | 走行車両からの自動的実時間高速道路料金収受 |
JP2006304193A (ja) * | 2005-04-25 | 2006-11-02 | Toshiba Corp | 時刻及び位置認証装置、方法及びプログラム |
JP2008510138A (ja) * | 2004-08-10 | 2008-04-03 | ノースロップ グルーマン コーポレーション | スプーフィングによる信号の矛盾の検出器 |
JP2009038586A (ja) * | 2007-08-01 | 2009-02-19 | Toyota Infotechnology Center Co Ltd | 位置認証システム |
US20100287038A1 (en) * | 2008-01-15 | 2010-11-11 | Nxp B.V. | Road toll system |
EP2333582A1 (fr) * | 2009-11-27 | 2011-06-15 | Thales | Procédé de détection de fraude sur la transmission d'informations de position par un dispositif mobile |
WO2011119640A1 (en) * | 2010-03-22 | 2011-09-29 | Qualcomm Incorporated | Anti-spoofing detection system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6678510B2 (en) * | 2001-02-05 | 2004-01-13 | Nokia Mobile Phones Ltd. | Method, apparatus and system for GPS time synchronization using cellular signal bursts |
-
2013
- 2013-07-03 JP JP2013139994A patent/JP6496472B2/ja active Active
-
2014
- 2014-07-02 KR KR1020157036360A patent/KR20160013147A/ko not_active Application Discontinuation
- 2014-07-02 US US14/901,723 patent/US20160370470A1/en not_active Abandoned
- 2014-07-02 SG SG11201510543RA patent/SG11201510543RA/en unknown
- 2014-07-02 CN CN201480036111.6A patent/CN105452900B/zh active Active
- 2014-07-02 WO PCT/JP2014/067637 patent/WO2015002226A1/ja active Application Filing
-
2016
- 2016-07-05 HK HK16107792.7A patent/HK1219780A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09500998A (ja) * | 1993-10-07 | 1997-01-28 | アムテック コーポレイション | 走行車両からの自動的実時間高速道路料金収受 |
JP2008510138A (ja) * | 2004-08-10 | 2008-04-03 | ノースロップ グルーマン コーポレーション | スプーフィングによる信号の矛盾の検出器 |
JP2006304193A (ja) * | 2005-04-25 | 2006-11-02 | Toshiba Corp | 時刻及び位置認証装置、方法及びプログラム |
JP2009038586A (ja) * | 2007-08-01 | 2009-02-19 | Toyota Infotechnology Center Co Ltd | 位置認証システム |
US20100287038A1 (en) * | 2008-01-15 | 2010-11-11 | Nxp B.V. | Road toll system |
EP2333582A1 (fr) * | 2009-11-27 | 2011-06-15 | Thales | Procédé de détection de fraude sur la transmission d'informations de position par un dispositif mobile |
WO2011119640A1 (en) * | 2010-03-22 | 2011-09-29 | Qualcomm Incorporated | Anti-spoofing detection system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3339903A1 (de) * | 2016-12-22 | 2018-06-27 | Toll Collect GmbH | Verfahren, system, vorrichtung und computerprogrammprodukt zur signalisierung einer fehlfunktion oder drohenden fehlfunktion einer positionsbestimmungsvorrichtung, sowie gebührenerhebungssystem |
CN110730416A (zh) * | 2018-07-17 | 2020-01-24 | 北京京东尚科信息技术有限公司 | 基于定位数据的车辆安全管理方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
HK1219780A1 (zh) | 2017-04-13 |
SG11201510543RA (en) | 2016-01-28 |
KR20160013147A (ko) | 2016-02-03 |
CN105452900A (zh) | 2016-03-30 |
CN105452900B (zh) | 2018-12-14 |
JP6496472B2 (ja) | 2019-04-03 |
JP2015014474A (ja) | 2015-01-22 |
US20160370470A1 (en) | 2016-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6385651B2 (ja) | 車載器、及びスプーフィング検知方法 | |
WO2015002223A1 (ja) | 車載器、及びスプーフィング検知方法 | |
JP6496472B2 (ja) | 車載器、及びスプーフィング検知方法 | |
US20180106906A1 (en) | Positioning processing system, method, computer program, positioning processing device, and user terminal | |
CN110687562A (zh) | 一种定位方法及车载装置 | |
JP2013101013A (ja) | 位置標定装置、車載器、位置標定方法、位置標定プログラム、運転支援方法、運転支援プログラム、道路課金方法、道路課金プログラム、位置標定システム、運転支援システムおよび道路課金システム | |
US20130122928A1 (en) | Systems and methods for identifying and acting upon states and state changes | |
EP3575833A1 (en) | Distance assessment in a gnss system using particle filter | |
CN104236566A (zh) | 基于智能手机的地图匹配方法 | |
CN107430198B (zh) | 汽车自组织实时动态漫游网络 | |
US11035927B2 (en) | Apparatus and method for determining a geographical position of a vehicle | |
KR20150078881A (ko) | 클라우드 컴퓨팅을 통한 차량 위치 측정방법 | |
JP2018513370A5 (ja) | ||
CN116931005B (zh) | 一种基于v2x辅助的车辆高精度定位方法、装置和存储介质 | |
KR20090032804A (ko) | 항법 위성을 이용한 차량 주차 정보 제공 시스템 및 그방법 | |
CN104090287A (zh) | 一种车辆协同差分卫星定位的方法 | |
CN107444118B (zh) | 一种车辆控制方法及相关设备 | |
US10395538B2 (en) | Vehicular communication device | |
Stephenson et al. | Accuracy requirements and benchmarking position solutions for intelligent transportation location based services | |
Peyret et al. | COST TU1302-SaPPART White Paper-Better use of Global Navigation Satellite Systems for safer and greener transport | |
JP2005016955A (ja) | 車載用ナビゲーション装置及び車載用ナビゲーション装置の測位方法 | |
JP2007257421A (ja) | 交通情報の作成装置並びにその方法及びプログラム | |
JP2018136254A (ja) | 測位装置、測位システム | |
EGNSS | Technical analysis of new paradigms increasing EGNSS accuracy and robustness in vehicles | |
CN114867990A (zh) | 产生并传输位置数据的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480036111.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14819617 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157036360 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14901723 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14819617 Country of ref document: EP Kind code of ref document: A1 |