WO2015002052A1 - 切削部材の先端形状の設計方法、半導体片の製造方法、回路基板および電子装置 - Google Patents

切削部材の先端形状の設計方法、半導体片の製造方法、回路基板および電子装置 Download PDF

Info

Publication number
WO2015002052A1
WO2015002052A1 PCT/JP2014/066897 JP2014066897W WO2015002052A1 WO 2015002052 A1 WO2015002052 A1 WO 2015002052A1 JP 2014066897 W JP2014066897 W JP 2014066897W WO 2015002052 A1 WO2015002052 A1 WO 2015002052A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
cutting member
surface side
stepped portion
width
Prior art date
Application number
PCT/JP2014/066897
Other languages
English (en)
French (fr)
Inventor
健史 皆見
弘明 手塚
道昭 村田
憲二 山崎
勤 大塚
山田 秀一
健一 大野
Original Assignee
富士ゼロックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士ゼロックス株式会社 filed Critical 富士ゼロックス株式会社
Priority to CN201480035012.6A priority Critical patent/CN105308724B/zh
Priority to EP14819812.0A priority patent/EP3018700B1/en
Priority to KR1020157035482A priority patent/KR20160026878A/ko
Publication of WO2015002052A1 publication Critical patent/WO2015002052A1/ja
Priority to US14/927,845 priority patent/US9508595B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D65/00Making tools for sawing machines or sawing devices for use in cutting any kind of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/02Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills
    • B28D5/022Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills by cutting with discs or wheels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • H01L21/3043Making grooves, e.g. cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination

Definitions

  • the present invention relates to a method for designing a tip shape of a cutting member, a method for manufacturing a semiconductor piece, a circuit board, and an electronic device.
  • Patent Document 1 There is a known method for improving the number of chips that can be obtained from one semiconductor wafer by forming a groove with a thick dicing saw on the back side of the semiconductor wafer and forming a groove with a thin dicing saw on the front side of the semiconductor wafer.
  • Patent Document 2 Also proposed is a method of cutting a semiconductor chip by forming a groove of a certain depth on the surface of the wafer by chemical etching and forming a groove with a dicing blade from the back surface of the wafer so as to correspond to the groove.
  • a groove on the front side is formed on the surface of the substrate, and from the back side of the substrate, a rotating cutting member having a thickness larger than the width of the groove on the front side is formed.
  • the semiconductor piece may be damaged along with the formation of the groove on the back surface side.
  • fine groove widths of several ⁇ m to several tens of ⁇ m are communicated with each other, but it is not clear what causes and what kind of damage occurs when such fine grooves are communicated. It was. Therefore, it is unclear what kind of manufacturing conditions can be used to suppress damage, and this manufacturing method cannot be employed in the mass production process.
  • the width of the groove on the surface side is preferably narrower, but the width of the groove on the surface side should be narrower. Then, it becomes difficult to form a deep groove. This is because, for example, when a groove on the surface side is formed by dry etching, if the groove is narrow, the etching gas does not easily penetrate into the depth of the groove, preventing the progress of etching at the bottom of the groove, and thin dicing. This is because the blade is easily damaged when formed with a blade. Therefore, in order to increase the number of semiconductor pieces that can be obtained from a single substrate, it is desired to suppress damage to the semiconductor pieces even when a narrower and shallower groove shape on the surface side is employed.
  • An object of the present invention is to provide a circuit board and an electronic device.
  • a method for designing a tip shape of the cutting member used in a method for manufacturing a semiconductor piece comprising: a step of preparing a plurality of cutting members having different degrees of taper of a tip portion; A step of preparing a groove, and a step of checking the state of breakage of the stepped portion for each of the plurality of front surface side grooves when the back surface side grooves are formed by the plurality of cutting members; As a result of the confirmation, the stepped portions are damaged in the plurality of cutting members.
  • This is a method for designing the tip shape of a cutting member.
  • the plurality of cutting members include a cutting member having a smaller degree of taper than a cutting member having a semicircular tip portion.
  • the tip shape design method may be used.
  • the plurality of cutting members include any one of [1] to [4], including at least three types of cutting members having a smaller degree of taper than a cutting member having a semicircular tip.
  • the cutting member tip shape design method described may be used.
  • the plurality of cutting members have a tapered tip shape having no top surface at the top, and the groove width is increased when the position of the top in the groove width direction deviates from the groove width on the surface side.
  • the cutting member tip shape design method according to any one of [1] to [5], including a cutting member having a taper degree that generates a maximum stress in the detached top region. [7] The cutting member tip shape design method according to [6], including a plurality of tapering degree cutting members that generate maximum stress in the top region. [8] As a result of the confirmation, if the plurality of cutting members include both a cutting member that breaks the stepped portion and a cutting member that does not break the stepped portion, the taper of the cutting member that breaks the stepped portion The cutting member tip shape design method according to any one of [1] to [7], wherein the degree is excluded from selection targets as cutting member tip shapes that are not used in the mass production process.
  • a step of forming a surface-side groove on the surface of the substrate, and a rotating cutting member having a thickness larger than the width of the surface-side groove from the back surface of the substrate Forming a back-side groove that communicates with the front-side groove and singulating into a semiconductor piece having a step portion formed by a difference between the width of the front-side groove and the width of the back-side groove.
  • a step of designing a tip shape of the cutting member used in the method for manufacturing a semiconductor piece comprising: preparing a plurality of cutting members having different degrees of taper of the tip portion; and a plurality of surface sides of the same shape A step of preparing the grooves, and a step of confirming the state of breakage of the stepped portion with respect to the plurality of grooves on the front surface side when the grooves on the back surface side are formed with the plurality of cutting members, and A cutting member that damages the stepped portion to the plurality of cutting members and the front When both of the cutting members that do not damage the stepped portion are included, from the result of the confirmation, the step of estimating the tapering range of the cutting member that does not damage the stepped portion, and the degree of taper included in the estimated range And a step of selecting the cutting member as the tip shape of the cutting member used in the mass production process.
  • a semiconductor substrate is manufactured by the manufacturing method using a cutting member having a tip shape designed by the design method according to any one of [1] to [9]. It is the manufacturing method of the semiconductor piece separated into pieces.
  • a circuit board on which at least one semiconductor piece manufactured by the manufacturing method according to [10] is mounted.
  • an electronic device on which the circuit board according to [11] is mounted.
  • the tip shape of the cutting member is considered without considering the relationship between the degree of taper of the cutting member and the breakage of the stepped portion. Compared with the case of determining the depth, a shallower surface side groove can be adopted in the mass production process. According to [2], it can be confirmed whether or not the stepped portion is damaged under a condition close to the condition that the maximum stress to the root region of the stepped portion is the smallest. According to [3], selection of the tip shape is facilitated as compared with the case where the cutting member does not include a cutting member having a smaller degree of tapering than a cutting member having a semicircular tip portion.
  • the stepped portion is damaged no matter how much the degree of taper is small as compared with the case where only one type of cutting member having a smaller degree of taper than a cutting member having a semicircular tip is included. It will be easier to check if you do not.
  • the stepped portion is damaged no matter how much the degree of taper is small as compared with the case where only two kinds of cutting members having a smaller degree of taper than a cutting member having a semicircular tip are included. It will be easier to check if you do not.
  • FIG. 5A is a cross-sectional view for explaining the cutting operation of the dicing blade
  • FIGS. 5B to 5F are enlarged cross-sectional views of the tip of the dicing blade of this embodiment
  • FIG. ) Is an enlarged cross-sectional view of a tip portion of a dicing blade used for general full dicing.
  • FIG. 6A is an enlarged cross-sectional view of the tip of the dicing blade used in the simulation, and FIG. 6B is formed on the semiconductor substrate when the dicing blade shown in FIG. 6A is used.
  • FIG. 9A is a cross-sectional view illustrating the stress applied to the corner portion of the stepped portion
  • FIG. 9B illustrates an example in which the stepped portion is damaged by the stress generated in the corner portion of the stepped portion.
  • FIG. 11A is a cross-sectional view of the stepped portion when the center of the groove 140 and the center of the groove 170 coincide with each other, and FIG.
  • FIGS. 12A to 12D are diagrams illustrating the four types of dicing blades used in the simulation regarding the positional deviation. It is a graph which shows the result of having simulated the influence which position shift amount and a kerf width give to a level difference part. It is a figure which illustrates the position where the maximum stress occurs when the kerf width Sb is very narrow and the displacement amount Ds is large.
  • the method of manufacturing a semiconductor piece according to the present invention is, for example, a method of manufacturing individual semiconductor pieces (semiconductor chips) by dividing (dividing into pieces) a substrate-like member such as a semiconductor wafer on which a plurality of semiconductor elements are formed.
  • a substrate-like member such as a semiconductor wafer on which a plurality of semiconductor elements are formed.
  • the semiconductor element formed on the substrate is not particularly limited, and can include a light emitting element, an active element, a passive element, and the like.
  • the manufacturing method of the present invention is applied to a method of taking out a semiconductor piece including a light emitting element from a substrate, and the light emitting element can be, for example, a surface emitting semiconductor laser, a light emitting diode, or a light emitting thyristor.
  • One semiconductor piece may include a single light-emitting element, or may include a plurality of light-emitting elements arranged in an array.
  • a driving circuit for driving one or a plurality of light emitting elements can also be included.
  • the substrate can be, for example, a substrate made of silicon, SiC, a compound semiconductor, sapphire, or the like, but is not limited thereto, and is a substrate including at least a semiconductor (hereinafter collectively referred to as a semiconductor substrate). Any other material substrate may be used. In a preferred embodiment, it is a III-V group compound semiconductor substrate such as GaAs on which a light emitting element such as a surface emitting semiconductor laser or a light emitting diode is formed.
  • FIG. 1 is a flowchart showing an example of a semiconductor chip manufacturing process according to an embodiment of the present invention.
  • the method for manufacturing a semiconductor piece of this example includes a step of forming a light emitting element (S100), a step of forming a resist pattern (S102), and a step of forming fine grooves on the surface of a semiconductor substrate ( S104), a step of peeling the resist pattern (S106), a step of attaching a dicing tape to the surface of the semiconductor substrate (S108), a step of half dicing from the back surface of the semiconductor substrate (S110), and an ultraviolet (UV) on the dicing tape.
  • S100 light emitting element
  • S102 a resist pattern
  • S104 fine grooves on the surface of a semiconductor substrate
  • S106 a step of peeling the resist pattern
  • S108 a step of attaching a dicing tape to the surface of the semiconductor substrate
  • S110 a step of half dicing from the back surface of the semiconductor substrate
  • UV ultraviolet
  • the cross-sectional views of the semiconductor substrate shown in FIGS. 2A to 2D and FIGS. 3E to 3I correspond to steps S100 to S116, respectively.
  • a plurality of light emitting elements 100 are formed on the surface of a semiconductor substrate W such as GaAs as shown in FIG.
  • the light emitting element 100 is, for example, a surface emitting semiconductor laser, a light emitting diode, a light emitting thyristor, or the like. Note that although one region is shown as the light emitting element 100 in the drawing, one light emitting element 100 illustrates an element included in one separated semiconductor piece, and one light emitting element 100 is illustrated. It should be noted that the region may include not only one light emitting element but also a plurality of light emitting elements and other circuit elements.
  • FIG. 4 is a plan view showing an example of the semiconductor substrate W when the light emitting element formation process is completed. In the drawing, for the sake of convenience, only the light emitting element 100 at the center portion is illustrated. On the surface of the semiconductor substrate W, a plurality of light emitting elements 100 are formed in an array in the matrix direction.
  • the planar area of one light emitting element 100 is generally rectangular, and each light emitting element 100 is separated in a grid by a cutting area 120 defined by a scribe line or the like having a constant interval S.
  • a resist pattern is then formed on the surface of the semiconductor substrate W (S102). As shown in FIG. 2B, the resist pattern 130 is processed so that the cutting region 120 defined by a scribe line or the like on the surface of the semiconductor substrate W is exposed. The resist pattern 130 is processed by a photolithography process.
  • a fine groove is formed on the surface of the semiconductor substrate W (S104).
  • a fine groove hereinafter, referred to as a fine groove or a groove on the surface side
  • Such a groove can be formed by, for example, anisotropic etching, and is preferably formed by anisotropic plasma etching (reactive ion etching) which is anisotropic dry etching.
  • the width Sa of the fine groove 140 is substantially equal to the width of the opening formed in the resist pattern 130, and the width Sa of the fine groove 140 is, for example, several ⁇ m to several tens of ⁇ m.
  • the depth is, for example, about 10 ⁇ m to 100 ⁇ m, and is formed deeper than at least a depth at which a functional element such as a light emitting element is formed.
  • the interval S between the cutting regions 120 is as large as about 40 to 60 ⁇ m as a total of the margin width considering the groove width and chipping amount of the dicing blade itself.
  • the fine groove 140 is formed by a semiconductor process, not only the groove width itself but also the margin width for cutting can be made narrower than the margin width when a dicing blade is used, in other words, The interval S between the cutting regions 120 can be reduced.
  • the “front side” means a surface side on which a functional element such as a light emitting element is formed
  • the “back side” means a surface side opposite to the “front side”.
  • the resist pattern is peeled off (S106). As shown in FIG. 2D, when the resist pattern 130 is peeled from the surface of the semiconductor substrate, fine grooves 140 formed along the cutting region 120 are exposed on the surface. Details of the shape of the fine groove 140 will be described later.
  • an ultraviolet curable dicing tape is applied (S108).
  • a dicing tape 160 having an adhesive layer on the light emitting element side is attached.
  • half dicing is performed along the fine groove 140 by a dicing blade from the back side of the substrate (S110).
  • the positioning of the dicing blade can be done by placing an infrared camera on the back side of the substrate and indirectly detecting the fine groove 140 through the substrate, or by placing a camera on the surface side of the substrate and directly positioning the fine groove 140.
  • the detection method and other known methods can be used. With such positioning, as shown in FIG. 3F, half dicing is performed by a dicing blade, and a groove 170 is formed on the back surface side of the semiconductor substrate.
  • the groove 170 has a depth that reaches the fine groove 140 formed on the surface of the semiconductor substrate.
  • the fine groove 140 is formed with a width narrower than the groove 170 on the back surface side by the dicing blade.
  • the fine groove 140 is formed with a width narrower than the groove 170 on the back surface side, only the dicing blade is formed. This is because the number of semiconductor pieces that can be obtained from one wafer can be increased as compared with the case of cutting the semiconductor substrate.
  • a fine groove of about several ⁇ m to several tens of ⁇ m shown in FIG. 2C can be formed from the front surface to the back surface of the semiconductor substrate, it is not necessary to form a groove on the back surface by using a dicing blade. It is not easy to form a fine groove having such a depth. Therefore, as shown in FIG. 3F, half dicing from the back surface by a dicing blade is combined.
  • the dicing tape is irradiated with ultraviolet rays (UV), and an expanding tape is attached (S112).
  • UV ultraviolet rays
  • S112 an expanding tape is attached to the back surface of the semiconductor substrate.
  • the dicing tape is peeled off, and the expanding tape is irradiated with ultraviolet rays (S114).
  • the dicing tape 160 is peeled off from the surface of the semiconductor substrate.
  • the expanding tape 190 on the back surface of the substrate is irradiated with ultraviolet rays 200, and the adhesive layer is cured.
  • the expanding tape 190 has a stretchable base material, stretches the tape so that it is easy to pick up semiconductor pieces separated after dicing, and extends the interval between the light emitting elements.
  • the semiconductor piece 210 (semiconductor chip) picked from the expanding tape 190 is placed on the circuit board 230 via a fixing member 220 such as a conductive paste such as an adhesive or solder. Implemented.
  • FIG. 5A is a cross-sectional view when half dicing is performed by the dicing blade shown in FIG.
  • a plurality of light emitting elements 100 are formed on the surface of the semiconductor substrate W, and each light emitting element 100 is separated by a cutting region 120 defined by a scribe line having a spacing S or the like.
  • a fine groove 140 having a width Sa is formed in the cut region 120 by anisotropic dry etching.
  • the dicing blade 300 is a disc-shaped cutting member that rotates about the axis Q, and has a thickness corresponding to the groove 170 having the kerf width Sb. The dicing blade 300 is aligned outside the semiconductor substrate W in a direction parallel to the back surface of the semiconductor substrate W.
  • the dicing blade 300 is rotated, and at least one of the dicing blade 300 or the semiconductor substrate W is moved in a direction parallel to the back surface of the semiconductor substrate W, so that the semiconductor substrate W is moved.
  • a groove 170 is formed. Since the kerf width Sb is larger than the width Sa of the fine groove 140, when the groove 170 reaches the fine groove 140, the cut region 120 has a cantilever-like shape having a thickness T due to the difference between the width Sb and the width Sa.
  • a stepped portion 400 having a bowl shape is formed. If the center of the dicing blade 300 and the center of the fine groove 140 are completely coincident with each other, the length of the stepped portion 400 extending in the lateral direction is (Sb ⁇ Sa) / 2.
  • FIGS. 5B to 5F are enlarged sectional views of the tip portion A of the dicing blade 300 as an example in the embodiment of the present invention, and FIG. It is an expanded sectional view of the front-end
  • the tip of a dicing blade 300A used for general full dicing has one side surface 310, a side surface 320 opposite to the one side surface, and both side surfaces 310, 320. And a flat top surface 340 that intersects at a substantially right angle. That is, the cross section viewed from the rotation direction has a rectangular tip.
  • the tip of the dicing blade 300 according to the present embodiment gradually moves toward the top of the tip of the dicing blade 300 as shown in FIGS. 5B to 5F, for example. It has a tapered shape with a reduced thickness.
  • the “top portion” is the most distal end portion of the dicing blade, and if the shape is as shown in FIGS. 5 (B), (D) and (E), the top portion is the most distal point. It is. Moreover, if it is a shape like FIG.5 (C) and (F), the top part will be comprised by the flat surface except for the fine unevenness
  • each shape of FIG. 5B to FIG. 5G shows an initial shape when the semiconductor substrate is cut in the mass production process. That is, the dicing blade 300 of the present embodiment shown in FIGS. 5B to 5F has such a shape in advance as an initial shape in the mass production process.
  • 5 (G) used for general full dicing has a rectangular shape in the initial state, but as it continues to be used, (B) in FIG. ) To (D) as shown in FIG.
  • 5B includes a pair of side surfaces 310 and 320 and a curved surface 330 between the pair of side surfaces 310 and 320.
  • the distance between the pair of side surfaces 310 and 320 is a width corresponding to the kerf width Sb
  • the tip portion includes a semicircular curved surface 330 between both side surfaces 310 and 320
  • 5 does not include the top surface 340 shown in (C) or (F).
  • the example illustrated in FIG. 5C is an intermediate shape between FIG. 5B and FIG. 5G, and includes a top surface 340 and a curved surface 330 at the tip corner.
  • FIG. 5C is an intermediate shape between FIG. 5B and FIG. 5G, and includes a top surface 340 and a curved surface 330 at the tip corner.
  • 5D does not have the top surface 340 but has a curved surface 330 having a radius of curvature larger than the radius of curvature of the tip corner in FIGS. 5B and 5C and the top portion.
  • a curved surface 370 having a smaller radius of curvature than the curved surface 330 is formed at the position of. 5B to 5D, the ratio of the thickness of the dicing blade 300 that decreases as the distance from the top of the dicing blade 300 increases.
  • a curved surface 370 is formed between the two chamfers 350 and 360.
  • the top surface 340 is not formed as in FIG.
  • the side surfaces 310 and 320 are opposed to each other, and a top surface 340 is provided between the side surfaces 310 and 320.
  • the chamfers 350 and 360 are provided between the side surfaces 310 and 320 and the top surface 340. Is formed.
  • a curved surface 352 is formed at the corner between the chamfer 350 and the top surface 340, and a curved surface 362 is formed at the corner between the chamfer 360 and the top surface 340.
  • the tip of the dicing blade according to the present embodiment has a shape tapered from the rectangular tip as shown in FIG. 5G, as shown in FIGS. Unless otherwise specified, it may or may not have a top surface. Further, the tip of the dicing blade 300 according to this embodiment shown in FIGS. 5B to 5F is based on the center K of the thickness of the dicing blade 300 as shown in FIG. 5D. It has a line-symmetric shape. However, unless otherwise specified, the shape is not necessarily line-symmetric, and the position of the top (top surface) may be shifted in the thickness direction of the dicing blade 300.
  • FIGS. 6 to 8 are diagrams for explaining the simulation and the result of the simulation performed to grasp the relationship between the radius of curvature of the tip corner of the dicing blade and the stress applied to the stepped portion.
  • FIG. An example of the dicing blade 302 used for the simulation is shown in FIG.
  • FIG. 6A shows the cross-sectional shape of the tip as viewed from the direction of rotation of the dicing blade 302.
  • the tip of the dicing blade 302 was formed between the side surfaces 310 and 320, the top surface 340 having a certain length, and the side surfaces 310 and 320 and the top surface 340.
  • Including a curved surface 330 having a radius of curvature r, and the tip is configured symmetrically with respect to a line orthogonal to the rotational axis.
  • FIG. 6B shows the shape of the groove formed in the semiconductor substrate when the tip-shaped dicing blade 302 shown in FIG. 6A is used.
  • the width W is between the vertical side surface of the groove 140 on the front surface side and the groove 170 on the back surface side.
  • a step is formed, and a step-shaped region 400 having a thickness T, that is, a step portion 400 is formed by the step.
  • the stepped portion 400 is a portion between the step formed at the connecting portion of the front surface side groove 140 and the back surface side groove 170 and the surface of the semiconductor substrate.
  • the dicing blade 302 has a thickness of 25 ⁇ m
  • 6 (D) has a semicircular shape in which the radius of curvature at the corner of the tip is 1 ⁇ 2 of the thickness of the dicing blade 302.
  • the substrate to be processed is a GaAs substrate
  • the groove width of the surface-side groove 140 is 5 ⁇ m
  • the thickness T of the stepped portion 400 is 40 ⁇ m
  • the load was set to 2 mN.
  • the center of the width of the groove 140 on the surface side and the center of the thickness of the dicing blade 302 were matched.
  • the graph shown in FIG. 7 is the result of simulation, and shows the change in the stress value applied to the stepped portion 400 when the radius of curvature of the tip corner is changed.
  • the vertical axis represents the stress value [Mpa]
  • the horizontal axis represents the X coordinate when the center of the surface-side groove 140 shown in FIG. From the graph, the stress increases as the X coordinate approaches 12.5 ⁇ m at any curvature radius r, that is, from the center side of the groove 170 on the back surface side toward the root side of the stepped portion 400. It can also be seen that as the value of the radius of curvature r increases, the stress applied to the base side of the stepped portion 400 decreases, and the way in which the stress rises becomes gradual.
  • the stress applied to the base side of the stepped portion 400 is smaller in the semicircular tip shape as shown in FIG. 6D than in the shape close to a rectangle as shown in FIG. That is, the greater the degree of taper, the smaller the stress applied to the base side of the step portion 400.
  • FIG. 8 shows the relationship between the radius of curvature on the horizontal axis and the maximum stress value on the vertical axis.
  • the tip shape when the curvature radius r exceeds a semicircular curvature radius of 12.5 ⁇ m, such as 25 ⁇ m or 50 ⁇ m, is a shape with a greater degree of taper, for example, as shown in FIG.
  • the mechanism by which the semiconductor piece breaks will be described with reference to FIGS.
  • the groove 170 having the kerf width Sb is formed from the back surface of the semiconductor substrate.
  • the substrate is pressed by the top surface 340 of the dicing blade 300A.
  • the force F by the dicing blade 300A is applied to the entire stepped portion 400, it is considered that the force F applied to the stepped portion 400 is concentrated on the base side region (the root region 410) of the stepped portion 400 by the lever principle. .
  • the “root region” in the present embodiment is a stepped portion that is parallel to the substrate surface by using a tip shape having a top surface as shown in (C), (F), and (G) of FIG. In the case of being formed, the region on the side closer to the vertical side surface of the groove 170 on the back surface side than the position of 1/2 of the width Wh of the step portion parallel to the substrate surface, which is formed on both sides of the groove on the front surface side.
  • a stepped portion parallel to the substrate surface is not formed, such as when using a tapered tip shape that does not have a top surface as in (B), (D), and (E) of FIG.
  • the relationship between the width Wh and the width Wt is shown in FIG.
  • FIG. 10 is a cross-sectional view for explaining the application of stress to the stepped portion 400 when the groove 170 is formed by the dicing blade 300 of this embodiment shown in FIG.
  • FIG. 10 shows an example in which the tip of the dicing blade 300 is semicircular, and in this case, the shape of the groove 170 is also semicircular so as to follow this.
  • the force F applied to the stepped portion 400 by the tip of the dicing blade 300 is distributed in the direction along the semicircular shape of the groove. Therefore, as in the case of FIG. 9A, stress concentration on the stepped portion 400 is suppressed from being concentrated on the root region 410 of the stepped portion 400, thereby suppressing chipping or cracking of the stepped portion 400. it is conceivable that.
  • 11A and 11B are views for explaining the positional relationship between the width Sa of the groove 140 on the surface side formed on the substrate surface and the kerf width Sb of the groove 170 formed by the dicing blade.
  • the center of the kerf width Sb is ideally coincident with the center of the width Sa of the groove 140 on the surface side.
  • the center of the kerf width Sb is displaced from the center of the width Sa of the groove 140 on the surface side, as shown in FIG.
  • the difference between the center of the width Sa of the groove 140 on the surface side and the center of the kerf width Sb is defined as a positional deviation amount Ds.
  • the manufacturing variation is mainly caused by the accuracy of the manufacturing apparatus to be used. For example, the processing accuracy of the dicing apparatus and the accuracy of the detection means (camera etc.) for detecting the position of the groove 140 on the surface side are used. Etc.
  • a simulation performed for grasping the relationship between the positional deviation amount Ds in the groove width direction of the dicing blade and the stress applied to the step portion 400, and the kerf width Sb of the dicing blade and the stress applied to the step portion 400 are as follows.
  • the simulation performed for grasping the relationship will be described.
  • the tip shape used in this simulation is different from the tip shape used in the simulation according to FIG. 6, it is common in that the tip shape is implemented using a plurality of tip shapes having different degrees of tapering.
  • the substrate to be processed is a GaAs substrate
  • the thickness of the dicing blade is 25 ⁇ m
  • the width Sa of the groove 140 on the surface side of the semiconductor substrate is 5 ⁇ m
  • the thickness of the step 400 T was set to 40 ⁇ m.
  • the load on the side surface of the groove 170 on the back surface side takes into account the lateral vibration of the dicing blade during actual cutting.
  • 12A to 12D show the shapes of the four types of kerf widths (the tip shape of the dicing blade) used in the simulation in a state where the positional deviation amount Ds is zero.
  • the shape is 5 ⁇ m and does not have a tip corner.
  • FIG. 13 shows a result of simulating the influence of the positional deviation amount Ds and the kerf width Sb on the stepped portion.
  • the vertical axis represents the maximum stress value applied to the stepped portion 400, and the horizontal axis represents the kerf width Sb.
  • the kerf width Sb on the horizontal axis is a width at a position of 12.5 ⁇ m from the top of the dicing blade. The case results are plotted.
  • the maximum stress applied to the stepped portion 400 increases as the positional deviation amount Ds of the dicing blade in the groove width direction increases in any kerf width Sb.
  • the maximum stress is generated in the root region 410 on the side where the width Wt of the stepped portion 400 is increased due to the displacement of the dicing blade. This is presumably because when the positional deviation amount Ds is increased, a greater stress is easily applied to the root region 410 of the stepped portion 400 on the side where the step is increased by the lever principle.
  • the narrower the kerf width Sb (the greater the degree of taper), the smaller the maximum stress value tends to be. However, this is a stress that presses the stepped portion 400 toward the substrate surface side due to the greater degree of taper. This is considered to be because the stress is less likely to concentrate on the root region 410 of the stepped portion 400 because of weakening.
  • a dicing blade having a wide kerf width Sb (a dicing blade having a small taper degree) gives stress to the stepped portion 400 on a wide surface, but a dicing blade having a very narrow kerf width Sb (a degree of taper).
  • a very large dicing blade it is considered that when the top (vertex) deviates from the range of the groove 140 on the surface side of the semiconductor substrate, stress concentrates on the tapered top (vertex) region.
  • the “top region” in the present embodiment is a region including the top, and is a region closer to the center of the groove on the back surface side than the root region 410 of the stepped portion 400.
  • FIG. 15 shows experimental results when a plurality of dicing blades having different degrees of taper are prepared and an actual substrate is cut.
  • the tip of a dicing blade having a thickness of 25 ⁇ m was processed, and a plurality of dicing blades having a radius of curvature r of the tip corner of 1 ⁇ m to 23 ⁇ m and a kerf width of 5 ⁇ m to 25 ⁇ m at a position of 5 ⁇ m from the top.
  • a specific combination of the radius of curvature and the kerf width is as shown in FIG. 15, and the dicing blades were prepared so that the degree of tapering was substantially uniform.
  • a GaAs substrate is used, the width of the groove 140 on the surface side is set to about 5 ⁇ m, the thickness T of the stepped portion 400 is set to about 40 ⁇ m, and the positional deviation amount Ds of the dicing blade in the groove width direction is less than ⁇ 7.5 ⁇ m. It was. Since the thickness of the dicing blade is 25 ⁇ m, when the radius of curvature r at the tip corner is 12.5 ⁇ m or more, the tip has a tapered shape with no top surface, while the radius of curvature is less than 12.5 ⁇ m. In the smaller range, the smaller the degree, the smaller the degree of taper. When the radius of curvature is 1 ⁇ m, the tip has a substantially rectangular shape.
  • “ ⁇ ” in FIG. 15 indicates that the stepped portion 400 is sufficiently prevented from being damaged, and that the degree of taper is usable in the mass production process.
  • “X” indicates that the stepped portion 400 is sufficiently prevented from being damaged. This indicates that the degree of taper is not usable in the mass production process.
  • the top (vertex) of the dicing blade In the range where the taper degree is large, the top (vertex) of the dicing blade. This is because stress concentrates at the position of, and the stepped portion 400 is damaged. Note that when the radius of curvature r is 8 ⁇ m or less, the stepped portion is damaged because the degree of taper is small, and when the radius of curvature r is 22 ⁇ m or more, the stepped portion is damaged because the degree of taper is large.
  • the maximum stress received by the stepped portion 400 varies greatly depending on the degree of tapering of the tip. Therefore, even if a rectangular tip shape or any other tip shape is used, even if it is damaged, as shown in the experiment in FIG. If the tip shape is controlled so as to fit within the range, the manufacturing conditions are changed, such as increasing the thickness T of the stepped portion 400 so that the strength of the stepped portion is increased (the width of the groove 140 on the surface side is increased and deepened). Even without this, it can be seen that damage to the stepped portion is suppressed to a level that does not cause a problem in the mass production process.
  • the thickness T of the stepped portion is 25 ⁇ m and the groove width Sa on the front side is 7.5 ⁇ m, it is “B”, which means that the dicing blade is in the range of ⁇ 5 ⁇ m to less than ⁇ 7.5 ⁇ m in the groove width direction. Even if there is a variation, this indicates that the stepped portion 400 is sufficiently prevented from being damaged and can be used in a mass production process, and the stepped portion 400 for a positional deviation of ⁇ 7.5 ⁇ m or more. This indicates that the breakage of is not sufficiently suppressed. Further, when the thickness T of the stepped portion 400 is 45 ⁇ m and the groove width Sa on the front side is 5 ⁇ m, it is “A”.
  • the stepped portion 400 is more resistant to displacement in the groove width direction of the dicing blade as the width Sa of the groove 140 on the front surface side is wider. That is, the stepped portion 400 is less likely to be damaged by the stress from the dicing blade as the width Sa of the groove 140 on the surface side is wider. This is presumably because the principle W of the lever becomes difficult to work because the width W of the stepped portion 400 becomes narrower as the width Sa of the groove 140 on the front surface side becomes wider. Further, it is shown that the thickness T of the stepped portion 400 is stronger against the positional deviation in the groove width direction of the dicing blade. That is, the stepped portion 400 is less likely to be damaged by the stress from the dicing blade when the thickness T of the stepped portion 400 is thicker. This is because the strength against stress increases as the thickness T of the stepped portion 400 increases.
  • FIG. 17 is a flowchart illustrating a method for designing the tip shape of a dicing blade used in a method for manufacturing a semiconductor piece according to an embodiment of the present invention.
  • the series of steps in FIG. 17 may be performed using an actual semiconductor substrate, or may be performed using simulation without using an actual semiconductor substrate.
  • a plurality of dicing blades having different degrees of tapering of the tip shape are prepared.
  • a plurality of dicing blades are prepared so that the degree of tapering is different at a constant interval.
  • the tip shape used for full dicing which is a general dicing method is a rectangular shape as shown in FIG. Therefore, in order to prepare a plurality of dicing blades having different degrees of taper using such a rectangular dicing blade, it is necessary to process the rectangular shape in advance.
  • the degree of wear of the tip shape by cutting may be varied for each dicing blade. Details of the method of tapering the dicing blade will be described later.
  • a plurality of dicing blades with different degrees of taper may be prepared by obtaining from other main bodies without processing the tip shape by itself. Further, S200 can be read as a step of preparing a plurality of dicing blades having different degrees of stress applied to the root region 410 of the stepped portion 400. In addition, it is not necessary to prepare the dicing blade all at once. For example, first, one kind of taper degree is prepared, and after S204 described later, another taper degree is prepared, and then again. You may implement by the method of implementing to S204.
  • the “degree of taper” in this embodiment is determined by the radius of curvature of the tip corner of the dicing blade, the radius of curvature of the apex (vertex), the thickness of the blade at a predetermined distance from the apex, and the like. For example, the greater the radius of curvature at the corner of the tip and the smaller the radius of curvature at the apex (vertex), the greater the degree of taper. Further, the thinner the blade at a predetermined distance from the top, the greater the degree of taper. Therefore, the degree of taper can be rephrased as the thickness of the blade at a predetermined distance from the top. In addition, the degree of taper increases when the dipping blade is worn and the thickness of the tip is reduced.
  • the degree of taper can be rephrased as the degree of stress on the root region 410 of the step portion 400, and the degree of stress on the root region 410 of the step portion 400 decreases as the degree of taper increases. Unless otherwise specified, the degree of taper in the shape of the tip side from the top of the dicing blade to the distance of about twice the thickness of the dicing blade.
  • the surface side grooves to be adopted in the mass production process are the plurality of grooves having the same shape.
  • a semiconductor substrate is prepared.
  • the pitch of the grooves on the surface side may be a pitch that is planned to be adopted in the mass production process or may be a different pitch. That is, it is only necessary to be able to estimate the level of breakage in the mass production process for each degree of taper.
  • a semiconductor substrate on which no groove is formed may be prepared by forming a groove on the surface side as in the case of S104 in FIG. 1, or the groove is not formed by itself. You may prepare by acquiring the semiconductor substrate in which the groove
  • the “same shape” does not mean that they are completely the same, but means substantially the same shape including errors and the like that occur when they are formed to have the same shape.
  • the position of the dicing blade is displaced in consideration of the positional variation of the dicing blade so that the stepped portion is easily damaged.
  • the degree of each taper and whether the degree of taper damages the stepped portion is obtained as a list.
  • the process proceeds to S210.
  • both degrees are included in this way means that at least a part of the range of tapering that can be used in the mass production process and the range of taper that cannot be used can be specified.
  • the stepped portion is damaged on the smaller degree of taper and the stepped portion is not damaged on the larger side, it can be estimated that the smaller one is damaged by the stress on the root region of the stepped portion, and therefore A range where the degree of tapering is smaller than the degree can be determined as an unusable range. Moreover, it can be judged that it is the degree which can be used at least about the degree which did not damage the level
  • a range in which the degree of taper is larger than the degree can be determined as an unusable range. Moreover, it can be judged that the degree which did not damage the level
  • step-difference part is a degree which can be used at least.
  • the step part when both the degree of taper that breaks the step part and the degree of taper that does not damage the step part are included, the step part when an arbitrary tip-shaped dicing blade is used. This means that at least a part of the taper range that can be used in the mass production process and the taper range that cannot be used in the mass production process can be identified for the narrow and shallow groove on the surface side that can be damaged. Yes.
  • the process proceeds to S208.
  • the stepped part does not break at all taper levels, the groove on the surface side is wider and deeper than necessary, and as a result, the strength of the stepped part is set stronger than necessary. It may not be a condition. Therefore, also in this case, the process proceeds to S208.
  • the design conditions such as the shape (width, depth, etc.) of the groove 140 on the surface side are changed.
  • the strength of the stepped portion becomes weaker and more easily damaged. That is, if the stepped portion is damaged at all the taper degrees prepared in S200, it is considered that the strength of the stepped portion is too weak because the surface-side groove 140 is too shallow or too narrow. Therefore, in this case, the strength of the stepped portion is increased by changing the shape of the groove 140 on the surface side. Specifically, at least one of increasing the width Sa and increasing the depth of the groove 140 on the surface side is performed.
  • the manufacturing conditions that affect the position accuracy may be changed so that the position accuracy of the dicing blade in the groove width direction is improved.
  • the dicing blade may be changed to a dicing apparatus with better positioning accuracy. In this way, at least one of the shape of the groove 140 on the front surface side and the positional accuracy of the dicing blade in the groove width direction is changed so that the stepped portion is hardly damaged.
  • the groove 140 on the surface side is wider and deeper than necessary, and as a result, the strength of the stepped portion is set stronger than necessary. It is conceivable that. In this case, there is a possibility that the number of semiconductor pieces that can be obtained from one semiconductor substrate can be increased by narrowing the groove width. If the groove width is narrowed, it becomes difficult to form a deep groove and the strength of the stepped portion becomes weak, but as shown in FIG. 8, since the stress greatly varies depending on the degree of taper, by specifying an appropriate taper degree, Even on the narrower and shallower front surface side groove 140, the back surface side groove 170 can be formed without damaging the stepped portion.
  • step S206 when the stepped portion is not damaged in all the prepared taper degrees, the semiconductor that can be obtained from one semiconductor substrate by changing the groove 140 on the surface side narrower (or narrower and shallower).
  • the design condition is set so as to increase the number of pieces, the flow from S200 is performed again, and the flow from S200 to S208 is repeated until S210 is reached.
  • the design conditions may be changed in S208 so as to increase the types of tip shapes prepared in S200.
  • the design conditions are changed in S208, and the flow from S200 is performed again. Then, the flow from S200 to S208 is repeated until S210 is reached.
  • the initial tip shape of the dicing blade used in the mass production process is selected based on the degree of taper that does not damage the step. Further, the degree of taper that damages the stepped portion is naturally excluded from the selection target so as not to be used through the mass production process. In other words, it is excluded from the selection target range. Note that it is not always necessary to select the same degree of taper used in the experiment as the tip shape used in the mass production process, and the taper range that does not damage the stepped portion is estimated, and the degree of taper included in the estimated range is calculated. You may choose. For example, in the experimental result of FIG.
  • the radius of curvature r of the tip corner is in the range of 13 ⁇ m to 21 ⁇ m that does not damage the step portion, and the radius of curvature r is 14.5 ⁇ m or 18.5 ⁇ m.
  • the tip shape corresponding to the above is selected as the initial tip shape of the dicing blade used in the mass production process and managed so as not to fall out of the range of 13 ⁇ m to 21 ⁇ m throughout the mass production process. That is, when there are a plurality of tapering degrees that do not damage the stepped portion, the range between them is estimated as a range that does not damage the stepped portion, and the tip shape may be selected from the range.
  • the tip shape with a degree of tapering smaller than the degree of tapering at the center of the range is selected as the initial tip shape of the dicing blade used in the mass production process.
  • the tip shape with a curvature radius r of the tip corner of 13 ⁇ m to 17 ⁇ m is selected rather than the tip shape of 17 ⁇ m to 21 ⁇ m.
  • the fact that the degree of tapering is small means that the tip portion is not worn compared to the case where the degree of tapering is large, in other words, the life of the dicing blade is long.
  • the time for machining the rectangular shape in advance to a desired degree of taper is reduced.
  • the degree of such taper is reduced by wear of the tip of the dicing blade. It is preferable to manage in the mass production process so as not to reach the above. For example, in FIG. 15, on the side where the radius of curvature at the tip corner is larger than 13 ⁇ m to 21 ⁇ m, which is the degree of taper that does not damage the stepped part (in a range exceeding 21 ⁇ m), the degree of taper that breaks the stepped part is 22 ⁇ m. There is ⁇ 23 ⁇ m. Therefore, in the case of the experimental result of FIG.
  • the radius of curvature of the tip corner does not exceed 21 ⁇ m due to wear of the tip of the dicing blade.
  • the “exchange” in the present embodiment includes reworking (dressing) the tip shape of the same dicing blade, in addition to exchanging with a completely different dicing blade.
  • the tip shape design method of the dicing blade has been described above.
  • the tip shape of the dicing blade used in the mass production process is determined, the tip shape is tapered.
  • a shallower surface side groove 140 can be employed in the mass production process than in the case of determining without considering the relationship between the degree and breakage of the semiconductor piece.
  • the adoption of the manufacturing process is difficult, and even if the manufacturing process shown in FIG. 1 is adopted, the grooves on the surface side are wider and deeper than necessary.
  • the design method of the tip shape of the dicing blade according to the present embodiment pays attention to the fact that the stress received by the step portion greatly varies depending on the degree of taper as shown in FIG. 7 and FIG. A plurality of dicing blades having different taper degrees were prepared.
  • S206 of FIG. 17 since the tip shape is selected only when both the degree of taper that damages the stepped portion and the degree of taper that does not damage the stepped portion are included, dicing with any tip shape is possible. Although it takes time and effort to design compared to the case of using a blade, a narrower and shallower groove 140 on the surface side can be adopted in the mass production process.
  • a dicing blade for cutting a compound semiconductor such as GaAs a diamond blade or a blade obtained by integrating a diamond blade and an aluminum base can be used.
  • the tips of these dicing blades that are commercially available have a rectangular shape in which a curved surface is not formed at the tip as in the shape of FIG. Therefore, in order to use a dicing blade that does not have a desired shape such as a rectangular shape, it is necessary to process the tip portion.
  • This step includes, for example, the following steps. That is, a commercially available dicing blade is obtained, and a material for processing the tip portion of the obtained dicing blade is selected. For example, a substrate for processing Si, SiC, or another compound semiconductor material is selected. Other materials may be used as long as the tip portion can be processed into a desired shape.
  • the tip is brought close to a desired shape while being worn.
  • an angle formed by the processing substrate and the dicing blade, a rotating speed of the dicing blade, a polishing time, an abrasive, and the like can be appropriately selected.
  • the workpiece is processed into a desired tapered shape using the processing material prepared for processing the tip portion.
  • at least one type of dicing blade having a taper degree with which the maximum stress generated in the root region of the stepped portion is smaller than that of the semicircular dicing blade.
  • the design condition is not changed in S208 so as to increase the types of tip shapes to be prepared, but the stepped portion is damaged in the width and depth of the groove 140 on the surface side. It becomes easy to judge that it is necessary to change so that it becomes difficult.
  • a dicing blade whose tip is not tapered from the semicircular dicing blade is preferably included.
  • the tip portion includes dicing blades having both a degree of tapering and a degree of tapering that are smaller than the semicircular dicing blade.
  • the tip portion includes a plurality of dicing blades having a taper degree that generates a greater stress in the root region of the step portion than the semicircular dicing blade.
  • the change in the maximum stress with respect to the degree of taper is larger than (.5 ⁇ m or more). Therefore, by preparing a plurality of dicing blades within this range in which the maximum stress change is large, it becomes easy to confirm to what extent the stepped portion is not damaged even if the degree of tapering is small.
  • dicing blades having a smaller degree of taper than a cutting portion having a semicircular tip portion it is preferable that at least three types of dicing blades having a taper degree that generates a large stress in the root region of the stepped portion are included rather than a dicing blade having a semicircular tip portion.
  • the stepped portion will not be damaged even if the degree of tapering is small compared to the case of two types. Is easier to check.
  • the dicing blade to be prepared has a tapered tip shape that does not have a top surface at the top portion, and the groove width direction position of the top portion of the dicing blade is the surface when forming the groove on the back surface side. It is preferable to include a dicing blade having a taper degree in which the maximum stress is generated in a top region outside the width of the groove on the surface side when the groove width on the side is deviated. When such a dicing blade is not included, it is not possible to confirm at all how far the stepped portion is not damaged even if the degree of tapering is large when the position in the groove width direction of the top part deviates from the groove width on the surface side. Because.
  • the degree of taper it is preferable to prepare the degree of taper at substantially equal intervals, as shown in FIG. Further, at least two kinds of taper degrees prepared in S200 in FIG. 17 are necessary, but in order to use a narrower and shallower groove on the surface side, as many kinds as possible can be prepared as shown in FIG. preferable.
  • the processing accuracy of the manufacturing apparatus is not only the processing accuracy including the positioning accuracy of the dicing device, but also other devices used in the manufacturing process, such as the detection accuracy of detection means such as a camera that detects the position of the groove 140 on the surface side. It includes the kind of accuracy.
  • the processing accuracy of the manufacturing apparatus is the main factor, and the position (variation range) of the dicing blade in the groove width direction is determined.
  • the region of the top portion The stress may concentrate on the step and the stepped portion may be damaged.
  • the top portion is out of the range in the groove width direction of the groove 140 on the surface side of the semiconductor substrate.
  • the dicing blade has a very large degree of taper, if the relationship between the processing accuracy of the manufacturing apparatus and the width of the groove 140 so that the top portion does not deviate from the width of the groove 140 on the surface side, the stepped portion Such stress does not change rapidly.
  • the manufacturing conditions include a tapered top portion that does not have a top surface included in the width of the groove 140 on the surface side, the degree of taper such that the radius of curvature of the tip corner portion in FIG. 15 is 22 ⁇ m or 23 ⁇ m is extremely high. Even if it is large, the stepped portion will not be damaged, and conversely, a dicing blade with a greater degree of tapering will have a smaller maximum stress applied to the stepped portion, which is preferable from the viewpoint of reducing the maximum stress.
  • the manufacturing condition can be said to be a manufacturing condition in which a range in which the center of the thickness of the dicing blade varies in the groove width direction is included in the width of the groove 140 on the surface side.
  • the tapered top portion having no top surface may deviate from the center of the thickness of the dicing blade depending on the conditions when the tip shape is processed in advance and the manner of wear in the actual manufacturing process. That is, whether or not the tapered top portion having no top surface deviates from or does not deviate from the width of the groove 140 on the surface side is also caused by the deviation due to such a factor.
  • the determination is made in consideration of such a shift.
  • the determination may be made based on the center of the thickness of the dicing blade. From the above, “the manufacturing condition in which the center of the thickness of the dicing blade is included in the width of the groove 140 on the surface side (or deviated from the width of the groove 140 on the surface side)” in this embodiment is not particularly described and is a technique. If there is no general contradiction, it can be read as “a manufacturing condition in which a tapered top portion having no top surface is included in the width of the groove 140 on the surface side (or deviated from the width of the groove 140 on the surface side)”.
  • inclusion in the present embodiment includes a case where the position of the top portion and the groove width exactly coincide with each other, and manufacturing necessary for determining whether the top portion is included in or removed from the width of the groove 140 on the surface side.
  • the value described in the catalog of the product to be used is used. If the catalog value does not exist, it is sufficient to use the value obtained based on the actual measurement. Specifically, the average value and the standard deviation are calculated based on the results of the actual measurement multiple times. The value obtained by adding the value 3 times the standard deviation (3 sigma) to 4 times the value (4 sigma) is the processing accuracy of the manufacturing apparatus.
  • the root mean square value of the accuracy of each device is used.
  • the width of the groove on the surface side necessary for determining whether the top is included in or removed from the width of the groove 140 on the surface side, if the width of the groove on the surface side is not constant, the bottom of the groove on the surface side The maximum width from the position to the position where the top of the dicing blade reaches is used.
  • it is delicate whether the top part is included in the width of the groove 140 on the surface side or not, and it is difficult to judge, etc. it is not included in the embodiment on the assumption that it is included. No matter which one of the embodiments based on the above is adopted, it is considered that there is no significant influence on the degree of breakage of the stepped portion. Therefore, either one may be arbitrarily selected.
  • the tip shape of the dicing blade may be designed as follows. For example, when designing the tip shape of the dicing blade according to the flow of FIG. 17, it is not necessary to prepare a dicing blade in a range where the degree of tapering is very large in S200. Based on the simulation results of FIG.
  • the plurality of dicing blades to be prepared need only include at least a dicing blade having a taper degree that generates a stress in the root region of the stepped portion that has a radius of curvature at the tip corner larger than that of the thickness of the dicing blade or more.
  • the dicing blade having a taper degree that generates a smaller stress in the root region of the stepped portion may not be included.
  • the semiconductor piece may be manufactured by the following manufacturing method. Good.
  • the range of tapering where the stepped portion is damaged because the degree of tapering of the tip shape of the dicing blade is small is confirmed by the flow shown in FIG. 17, for example, and the dicing having the tip shape having a degree of tapering greater than this range.
  • the taper range in which the stepped portion is damaged because the degree of tapering is small is a range in which the radius of curvature of the tip corner is 8 ⁇ m or less, as illustrated in FIG.
  • the center of the thickness of the dicing blade varies in the groove width direction is included in the width of the groove 140 on the front surface side, if the step portion is damaged due to the formation of the groove on the back surface side, This means that the stress on the root region is too large. Therefore, if the stepped portion is damaged as a result of forming the groove on the back side with a certain kind of taper, a dicing blade in a range where the taper is smaller than the taper is not used. .
  • the initial tip shape at the time of cutting is shown in FIG.
  • a dicing blade having a tapered shape is used rather than a dicing blade having a semicircular tip as shown in FIG.
  • the maximum stress is increased when the degree of taper varies. It fluctuates greatly.
  • the maximum stress is saturated at a low level in a range (r> 12.5 ⁇ m) tapered from the semicircular tip. Therefore, if the tip shape tapered from the semicircular tip is the initial tip shape at the time of cutting, the stress on the stepped portion is suppressed to a low level, including when the dicing blade is subsequently worn. Can be maintained throughout the mass production process.
  • the region saturated at a low level as the initial tip shape, even when the tip shape varies when preparing the initial shape, the fluctuation of stress on the stepped portion can be suppressed and narrower. It becomes easier to adopt shallow grooves on the surface side. As a result, the stepped portion is prevented from being damaged as compared with the case where the tip shape having a smaller degree of tapering than the semicircular tip is used as the initial tip shape.
  • a dicing blade having a shape that is tapered more than a dicing blade having a semicircular tip may be prepared by processing a rectangular dicing blade, as described in S200 of FIG. You may prepare by obtaining from other subjects without processing. Further, for example, confirm whether or not the range in which the center of the thickness of the dicing blade varies in the groove width direction is included in the groove width on the surface side. Alternatively, it may be determined to use a dicing blade having a taper shape in advance rather than a dicing blade having a semicircular tip.
  • the semiconductor piece may be manufactured by the following manufacturing method under the manufacturing conditions in which the range in which the center of the thickness of the dicing blade varies in the groove width direction is included in the width of the groove 140 on the surface side.
  • the stepped portion has a strength that is damaged when a dicing blade having a rectangular tip shape in cross section viewed from the rotation direction is used, the tip having a greater degree of taper than the taper range in which the stepped portion is damaged
  • the groove 170 on the back surface side is formed with a dicing blade having a shape.
  • the groove 170 on the back surface side is formed with a tapered tip-shaped dicing blade that does not give a stress higher than the stress that damages the stepped portion to the root region of the stepped portion.
  • the stress applied to the step varies by more than four times depending on the degree of tapering of the tip, so that when the dicing blade having a rectangular tip shape is used, the step is damaged.
  • the groove shape is narrow and shallow on the surface side, there is a degree of tapering that does not damage the stepped portion, and the range in which the center of the thickness of the dicing blade varies in the groove width direction is the groove 140 on the surface side.
  • the embodiment is based on both knowledge that the stress applied to the stepped portion does not change abruptly even if the degree of taper is increased.
  • a dicing blade that is tapered from the semicircular tip or a dicing blade that has a taper degree that generates less stress in the root region of the step than the semicircular tip, Since the area
  • the semiconductor piece in a manufacturing condition that uses a tapered tip-shaped dicing blade that does not have a top surface at the top, and the range in which the top varies in the groove width direction deviates from the width of the groove on the surface side.
  • the semiconductor piece can be manufactured by the following manufacturing method.
  • the groove on the back surface side is formed by a dicing blade having a tip shape that has a smaller degree of tapering than a taper range in which the maximum stress is applied to the top region to break the stepped portion.
  • the dicing blade having such a shape is used throughout the mass production process.
  • the maximum stress is applied in the top region in spite of the manufacturing conditions in which the range in which the tapered top portion having no top surface varies in the groove width direction is out of the groove width on the surface side.
  • the dicing blade having a taper degree that damages the step portion from being used without knowing it.
  • unexpected breakage can be suppressed, and breakage of the stepped portion can be suppressed as compared with the case of using a tip-shaped dicing blade that applies maximum stress to the top region and breaks the stepped portion.
  • stress simulation as shown in FIG. 12 and FIG.
  • the dicing blade is replaced before it reaches a tapering range in which the step portion is damaged by applying a maximum stress in the top region due to wear of the dicing blade. In this way, the stepped portion is not damaged by the maximum stress generated in the top region as the dicing blade is worn.
  • a plurality of dicing blades having different degrees of tapering of the tip shape using the design method described in FIG.
  • the dicing blade After confirming the taper degree that should be used and the taper degree that should not be used from the result of forming the groove on the back side and forming the groove on the back side with the groove width on the front side deviating from The dicing blade may be replaced before reaching the desired non-use taper.
  • the range in which the top portion of the tapered dicing blade having no top surface varies in the groove width direction is a manufacturing condition that deviates from the groove width on the surface side, and the position in the groove width direction on the top portion defines the groove width on the surface side.
  • the maximum Manufacture is performed under conditions in which the shape (width and depth) of the groove on the surface side and the depth reached by the top are set so that the stepped portion is not damaged by stress.
  • the tip-shaped dicing blade that gives the maximum stress to the stepped portion in the top region under the manufacturing conditions in which the position in the groove width direction of the top portion of the dicing blade deviates from the groove width on the surface side. Even when it is used, the stepped portion is prevented from being damaged.
  • the shape of the stepped portion is determined by the shape (width and depth) of the groove on the surface side and the depth reached by the top portion, and the strength of the stepped portion is determined by the shape of the stepped portion. If the (width and depth) and the depth reached by the top are set, the strength of the stepped portion is set.
  • a semiconductor piece may be manufactured with the following manufacturing methods. For example, if the dicing blade is worn to a taper degree that gives the maximum stress to the stepped portion in the top region during the period of use of the dicing blade, the shape and the top of the groove on the surface side are prevented so that the stepped portion is not damaged by the maximum stress. Manufactured under the condition that the depth reached is set.
  • the tip-shaped dicing that gives the maximum stress to the stepped portion in the region of the top portion with wear. Even when the blade is used without knowing it, damage to the stepped portion is suppressed. If it is not set as such, unexpected damage may occur.
  • the semiconductor piece may be manufactured by the following manufacturing method.
  • the degree of tapering of the tip shape of the dicing blade is small as shown in the experimental results of FIG. Both the taper range where the step part is damaged and the taper range where the step part is damaged due to the degree of taper of the tip shape of the dicing blade are confirmed, and the taper range between the two is included in the taper range.
  • a semiconductor piece may be manufactured by forming a groove on the back surface side with a tapered tip shape.
  • the tip of the dicing blade has a large degree of tapering in spite of the manufacturing conditions in which the range in which the center of the thickness of the dicing blade varies in the groove width direction deviates from the width of the groove 140 on the surface side. This is because if the tip shape of the dicing blade is determined without confirming the tapering range where damage occurs, unexpected damage may occur.
  • the range between the two includes a taper range that generates maximum stress in the root region of the step portion and a taper range that generates maximum stress in the top region, the root region of the step portion It is preferable to form the groove on the back surface side with a cutting member that has been processed in advance into a tip shape included in a tapering range that generates the maximum stress. This is because the cutting member has a longer life than the case of using a cutting member pre-processed in the tip shape included in the taper range that generates the maximum stress in the top region. It is.
  • FIG. 18 is a diagram for explaining a method of determining the width of the groove on the surface side according to the embodiment of the present invention.
  • S300 a range in which the center of the dicing blade in the thickness direction varies in the groove width direction is confirmed.
  • the variation range is mainly caused by the accuracy of the manufacturing apparatus used, and is determined by, for example, the processing accuracy of the dicing apparatus and the accuracy of the detection means (camera or the like) that detects the position of the fine groove on the surface side. Therefore, by confirming these accuracies by a product catalog or actual measurement, the range in which the center of the dicing blade in the thickness direction varies in the groove width direction is grasped.
  • the width of the groove on the surface side is determined to include the variation range confirmed in S300.
  • the width of the groove may be determined.
  • the range in which the center in the thickness direction of the dicing blade varies in the groove width direction is ⁇ 3 ⁇ m, it is preferably about 6 to 9 ⁇ m rather than the groove width on the surface side of 10 ⁇ m or more, that is, the dicing blade varies.
  • the groove width should be about ⁇ 50% of the range.
  • FIG. 19 is a diagram for explaining a method for selecting a manufacturing apparatus according to an embodiment of the present invention.
  • the groove width on the surface side is confirmed. More specifically, the width of the groove portion on the surface side that receives stress directly from the dicing blade is confirmed.
  • the manufacturing apparatus to be used is selected so that the range in which the center in the thickness direction of the dicing blade varies in the groove width direction is included in the confirmed width on the surface side.
  • a detection means such as a dicing apparatus or a camera having an accuracy in which the range in which the center in the thickness direction of the dicing blade varies in the groove width direction is included in the confirmed width on the surface side is selected.
  • FIG. 20 is a diagram for explaining another embodiment of the method for determining the width of the groove on the surface side and the method for selecting the manufacturing apparatus according to the embodiment of the present invention.
  • S500 and S510 the width of the groove on the surface side and the range in which the dicing blade varies in the groove width direction are confirmed. Details are the same as those in FIGS. 18 and 19.
  • S520 it is confirmed whether or not the range in which the center (or top) in the thickness direction of the dicing blade varies in the groove width direction deviates from the width of the groove on the surface side. When it does not come off (S520-NO), the process proceeds to S540, and it is decided to use the groove width and the manufacturing apparatus.
  • the tip shape design method of the dicing blade, the semiconductor piece manufacturing method, the surface side As described above, based on the relationship between the position of the dicing blade in the groove width direction due to the accuracy of the manufacturing apparatus and the width of the groove 140 on the surface side, the tip shape design method of the dicing blade, the semiconductor piece manufacturing method, the surface side.
  • the method for determining the width of the groove and the method for selecting the manufacturing apparatus have been described, in these examples, if there is no particular description and there is no technical contradiction, the center of the thickness of the dicing blade is the surface side.
  • the manufacturing condition included in the width of the groove 140 is “the tapered top portion having no top surface is included in the width of the groove 140 on the surface side ( Alternatively, it can be read as “manufacturing conditions deviating from the width of the groove 140 on the surface side”.
  • the configurations and conditions of the embodiments may be combined with each other as long as there is no technical contradiction.
  • a rectangular tip shape or any other tip shape is used in general dicing, but in the processing step according to the present embodiment, for example, the base of the stepped portion like a rectangular shape.
  • a tip-shaped dicing blade that gives more stress than the stress that damages the stepped portion to the region is tapered, and is processed in advance to a degree of tapering that does not damage the stepped portion. For example, the tip portion is worn in advance until reaching a taper level that does not damage the stepped portion.
  • the tip portion in the step of processing the tip portion in advance, may be tapered more than the dicing blade having the semicircular tip portion. For example, even when the step portion does not break even if the tip portion is not even tapered from the semicircular shape, the tip portion may be tapered from the semicircular shape.
  • the stress is sufficiently suppressed. This is because even if the tip shape varies from a desired shape, the fluctuation of the stress with respect to the root region of the stepped portion is suppressed. As a result, it is possible to suppress the fluctuation of stress on the root region of the stepped portion even when the tip shape varies in the processing step as compared with the case where the tip is not tapered than the dicing blade having the semicircular tip.
  • the processing step of processing the tip portion in advance is a step of processing into a tapered tip shape having no top surface at the top portion
  • the pre-processed top portion varies in the groove width direction.
  • the relationship with the groove width on the front surface side is a relationship in which the groove width on the front surface side includes a range in which the previously processed top portion varies in the groove width direction.
  • the relationship between the range in which the center in the thickness direction of the dicing blade varies in the groove width direction and the groove width on the surface side is the thickness direction of the dicing blade. It is preferable that the range in which the center of each of the grooves varies in the groove width direction is included in the groove width on the surface side.
  • the groove width on the surface side includes the range in which the center in the thickness direction of the dicing blade varies in the groove width direction, it is a case where the machining process is performed at a taper degree in which stress is concentrated on the top region.
  • the machining process is performed at a taper degree in which stress is concentrated on the top region.
  • the taper is not tapered to the extent that the stress is concentrated in the top region, the stepped portion is prevented from being damaged due to the stress concentrated in the top region due to the taper caused by wear in the mass production process. Because.
  • a dicing blade having a substantially rectangular cross section viewed from the rotation direction as the tip shape of the dicing blade before being processed in advance.
  • a dicing blade having a substantially rectangular cross section is easily obtained because it is a shape often used for full dicing, and is easily processed to an arbitrary degree of taper depending on the processing process.
  • tip beforehand should just be implemented only with respect to the front-end
  • the processing process is performed only when it is damaged. You do n’t have to.
  • the “substantially rectangular shape” includes a shape in which some curved surfaces are formed at the corners of the tip end due to manufacturing variations as a result of manufacturing with the intention of a rectangular shape. For example, catalogs and the like that are manufactured and sold with the intention of a rectangular shape are included in the “substantially rectangular shape” of this embodiment regardless of the size of the curved shape of the tip corner.
  • a broken line 500 in the drawing is a shape as an example of the initial dicing blade 300 in the present embodiment, and a solid line 510 in the drawing shows a shape in which the dicing blade 300 is worn and tapered.
  • the shape 500 of the dicing blade 300 even if the top of the dicing blade 300 deviates from the width of the groove 140 on the front surface side of the semiconductor substrate W due to manufacturing variation or the like, Since the stress is dispersed, a large stress is not applied to one point of the step portion, and the possibility that the step portion is damaged is low.
  • the worn shape 510 although the tip has a curved surface, since it is tapered, stress is easily concentrated on one point of the stepped portion, and the damage 520 occurs at the stepped portion around the portion. It becomes easy.
  • the dicing blade when the tip of the dicing blade reaches a predetermined tapered shape due to wear of the dicing blade, the dicing blade is replaced with a new one.
  • the stress applied to the step portion during dicing reaches a predetermined stress due to wear of the dicing blade, the dicing blade is replaced with a new one even before the life of the dicing blade is reached. . That is, under manufacturing conditions with positional accuracy such that the top of the tip of the dicing blade deviates from the width of the groove on the surface side of the semiconductor substrate, the dicing blade is replaced at the above timing, apart from the life of the dicing blade.
  • the life of the dicing blade is determined by grasping this timing experimentally and empirically, and replacement is performed based on this life. On the other hand, in this embodiment, replacement is performed even before the end of the life determined based on breakage such as chipping of the dicing blade.
  • a predetermined taper shape is determined based on the degree of damage that can be tolerated in a mass production process (breakage)
  • the total dicing time, total dicing distance, and total number of diced semiconductor substrates required to reach the shape and stress of the tip are obtained in advance.
  • the manufacturing conditions representing the degree of wear of these dicing blades reach a predetermined condition, it may be determined that a predetermined tapered shape or a predetermined stress has been reached.
  • the relationship between the manufacturing conditions representing the degree of wear and the damage situation is obtained from numerous experiments, and based on these experiments, it is determined whether a predetermined taper shape or a predetermined stress has been reached in the mass production process. Also good.
  • determination may be made while actually measuring the shape of the tip during the mass production process. In this case, the thickness at a predetermined distance from the top of the dicing blade, the angle of the tip, etc. may be measured and judged.
  • the dicing blade may be replaced based on the life of the dicing blade.
  • the combination of the processing accuracy of the manufacturing apparatus and the width of the groove on the surface side of the semiconductor substrate should be selected. That's fine. That is, when the accuracy of the manufacturing apparatus is poor, the width of the groove on the surface side of the semiconductor substrate is widened, and when the precision of the manufacturing apparatus is good, the width of the groove is narrowed accordingly.
  • the manufacturing conditions to be implemented are manufacturing conditions that deviate from the groove width or not, it is assumed that the manufacturing conditions deviate from the groove width, and they are replaced regardless of the life of the dicing blade. Is preferable.
  • each step in the embodiment of the present invention may be performed at least partially in the design stage before the mass production process, or may be performed entirely as part of the mass production process. Good.
  • each step in the embodiment of the present invention may be performed by a plurality of subjects.
  • the first main body performs the formation of the groove on the front surface side
  • the second main body supplies the substrate on which the groove on the front surface side is formed by the first main body.
  • the second main body may form a groove on the back side to separate (divide) the substrate. That is, the first main body may prepare the substrate on which the groove on the front side is formed, or the second main body may prepare itself.
  • a first aspect is a step of forming a surface-side groove on the surface of the substrate, and a rotating cutting member having a thickness larger than the width of the groove on the front surface side from the back surface of the substrate.
  • Forming a groove on the back surface side that leads to a semiconductor piece having a stepped portion formed by a difference between the width of the groove on the front surface side and the width of the groove on the back surface side A method of designing the tip shape of the cutting member used in the manufacturing method, the step of preparing a plurality of cutting members having different degrees of tapering of the tip, and the step of preparing a plurality of grooves on the surface side of the same shape
  • a second aspect is the cutting member tip shape design method according to the first aspect, wherein the plurality of cutting members include a cutting member that is tapered relative to a cutting member having a semicircular tip portion. .
  • the plurality of cutting members include a plurality of cutting members having a smaller degree of taper than a cutting member having a semicircular tip portion. It is the design method of the front-end
  • the plurality of cutting members include at least three types of cutting members having a degree of tapering smaller than that of a cutting member having a semicircular tip portion. It is a tip shape design method of a cutting member given in any 1 aspect.
  • the plurality of cutting members have a tapered tip shape that does not have a top surface at the top, and the position of the top in the groove width direction deviates from the groove width on the surface side.
  • the cutting member tip shape design method according to any one of the first aspect to the fifth aspect, including a cutting member having a taper degree that generates a maximum stress in a region of the apex outside the groove width. It is.
  • the seventh aspect is the cutting member tip shape design method according to the sixth aspect, including a plurality of tapering degree cutting members that generate maximum stress in the top region.
  • the cutting member that breaks the stepped portion when the plurality of cutting members include both a cutting member that breaks the stepped portion and a cutting member that does not break the stepped portion, the cutting member that breaks the stepped portion.
  • a ninth aspect is a step of forming a groove on the surface side on the surface of the substrate and a rotating cutting member having a thickness larger than the width of the groove on the surface side from the back surface of the substrate.
  • a semiconductor piece that separates a substrate into semiconductor pieces by the manufacturing method using a cutting member having a tip shape designed by the design method according to the first aspect to the ninth aspect. It is a manufacturing method.
  • the eleventh aspect is a circuit board on which at least one semiconductor piece manufactured by the manufacturing method according to the tenth aspect is mounted.
  • a twelfth aspect is an electronic device on which the circuit board according to the eleventh aspect is mounted.
  • the groove on the shallower surface side is compared with the case where the tip shape of the cutting member is determined without considering the relationship between the taper degree of the cutting member and the breakage of the stepped portion.
  • tip part as a some cutting member is not included, selection of a front-end
  • a stepped portion is formed even if the degree of tapering is small compared to the case where only one type of cutting member having a smaller degree of taper than a cutting member having a semicircular tip is included. It will be easier to check for damage.
  • the stepped portion can be reduced to any extent by the degree of tapering. It will be easier to check for damage.
  • a stepped portion is formed even if the degree of tapering is large as compared with the case where only one type of tip-shaped cutting member that generates the maximum stress at the top position of the cutting member is included. It will be easier to check for damage.
  • the first aspect is the step of forming a groove on the surface side on the surface of the substrate; A rotating cutting member having a thickness larger than the width of the groove on the side, forming a groove on the back surface leading to the groove on the front surface side, and by the difference between the width of the groove on the front surface side and the width of the groove on the back surface side
  • a manufacturing condition in which a range in which the center of the thickness of the cutting member varies in the groove width direction is included in the groove width on the front side,
  • the second aspect is a step of forming a surface-side groove on the surface of the substrate, and a rotating cutting member having a thickness larger than the width of the surface-side groove from the back surface of the substrate.
  • Forming a groove on the back surface side that leads to a semiconductor piece having a stepped portion formed by the difference between the width of the groove on the front surface side and the width of the groove on the back surface side, and at the top In the manufacturing conditions in which the tapered cutting member material having no top surface is used and the range in which the top portion varies in the groove width direction is included in the groove width on the surface side, the tip shape of the cutting member is The first taper range in which the stepped portion is damaged because the degree of taper is small, and the semiconductor piece that forms the groove on the back surface side with a cutting member having a tip shape that has a greater degree of taper than the range. It is a manufacturing method. *
  • a third aspect is a step of forming a surface-side groove on the surface of the substrate and a rotating cutting member having a thickness larger than the width of the surface-side groove from the back surface of the substrate.
  • a fourth aspect is a step of forming a surface-side groove on the surface of the substrate and a rotating cutting member having a thickness larger than the width of the surface-side groove from the back surface of the substrate.
  • Forming a groove on the back surface side that leads to a semiconductor piece having a stepped portion formed by the difference between the width of the groove on the front surface side and the width of the groove on the back surface side, and at the top In the manufacturing conditions in which the tapered cutting member having no top surface is used and the range in which the top portion varies in the groove width direction is included in the groove width on the surface side, the tip shape of the cutting member is tapered.
  • a fifth aspect is a step of forming a groove on the surface side on the surface of the substrate and a rotating cutting member having a thickness larger than the width of the groove on the surface side from the back surface of the substrate.
  • Forming a groove on the back surface side that leads to a semiconductor piece having a step portion formed by a difference between the width of the groove on the front surface side and the width of the groove on the back surface side, and the cutting In a manufacturing condition in which the range in which the center of the thickness of the member varies in the groove width direction deviates from the groove width on the surface side, the first taper where the stepped portion is damaged because the degree of taper of the tip shape of the cutting member is small And a second taper range in which the stepped portion is damaged because the degree of tapering of the tip shape of the cutting member is large, and the first taper range and the second taper range
  • the degree of taper included in the third taper range between Serial is a manufacturing method of a semiconductor element forming a groove of the back side cutting member.
  • a sixth aspect is a step of forming a surface-side groove on the surface of the substrate and a rotating cutting member having a thickness larger than the width of the surface-side groove from the back surface of the substrate.
  • Forming a groove on the back surface side that leads to a semiconductor piece having a stepped portion formed by the difference between the width of the groove on the front surface side and the width of the groove on the back surface side, and at the top In the manufacturing conditions in which the tapered cutting member having no top surface is used and the range in which the top part varies in the groove width direction deviates from the groove width on the surface side, the degree of tapering of the tip shape of the cutting member A first taper range in which the stepped portion is damaged because of a small diameter, and a second taper range in which the stepped portion is damaged because the degree of tapering of the tip shape of the cutting member is large, and Between the first taper range and the second taper range In the cutting member of the degree of tapering to be included within the scope of the third tapered is a manufacturing method
  • the third taper range includes a taper range that generates maximum stress in the root region of the stepped portion and a taper range that generates maximum stress in the top region.
  • the eighth aspect is a circuit board on which at least one semiconductor piece manufactured by the manufacturing method according to any one of the first to seventh aspects is mounted.
  • the ninth aspect is an electronic device on which the circuit board according to the eighth aspect is mounted.
  • the degree of tapering of the tip shape is small, it is compared with a case where a cutting member having any tip shape is used without confirming the tapering range where the stepped portion is damaged. In addition, damage to the semiconductor piece can be suppressed.
  • the semiconductor piece is damaged as compared with the case where a cutting member having an arbitrary tip shape is used without confirming the first taper range and the second taper range. Can be suppressed.
  • the lifetime of a cutting member becomes long compared with the case where the cutting member previously processed by the front-end
  • the first aspect is the step of forming the front side groove on the surface of the substrate, and from the back surface of the substrate to the front side A rotating cutting member having a thickness larger than the width of the groove, forming a groove on the back surface leading to the groove on the front surface side, and forming a difference between the width of the groove on the front surface side and the width of the groove on the back surface side And a step of dividing into individual semiconductor pieces having a stepped portion, wherein the stepped portion has a strength that breaks when the cutting member having a tip shape with a rectangular cross section viewed from the rotation direction is used.
  • the tip shape has a greater degree of taper than the taper range that breaks the stepped portion.
  • the second aspect is a step of forming a surface-side groove on the surface of the substrate, and a rotating cutting member having a thickness larger than the width of the surface-side groove from the back surface of the substrate.
  • the member has a tapered tip shape that does not have a top surface at the top, and the stepped portion has a strength that is damaged when the cutting member having a tip shape having a rectangular cross section viewed from the rotation direction is used.
  • the cutting member having a tip shape having a degree of tapering greater than the taper range in which the stepped part is damaged
  • the groove on the back surface side is formed. That.
  • the cutting member is a cutting member whose tip end is tapered more than a semicircular cutting member. It is.
  • the cutting member is a cutting member having a taper degree that generates a stress in the root region of the stepped portion that is smaller than the cutting member having a semicircular tip. It is a manufacturing method of the semiconductor piece as described in any one of 3 aspects.
  • the fifth aspect is a circuit board on which at least one semiconductor piece manufactured by the manufacturing method according to any one of the first to fourth aspects is mounted.
  • a sixth aspect is an electronic device on which the circuit board according to the fifth aspect is mounted.
  • the substrate can be separated into pieces without damaging the stepped portion of the semiconductor piece due to the stress.
  • the groove on the back surface side can be formed using the region where the stress applied to the step portion is saturated to a low level.
  • the groove on the back surface side can be formed using the region where the stress applied to the step portion is saturated to a low level.
  • the first aspect is the step of forming the surface side groove on the surface of the substrate, and the surface side groove from the back surface of the substrate.
  • a rotating cutting member having a thickness larger than the width of the groove, forming a groove on the back surface leading to the groove on the front surface side, and formed by a difference between the width of the groove on the front surface side and the width of the groove on the back surface side.
  • the groove on the back surface side is formed by a cutting member having a tip shape whose degree of tapering is smaller than a tapering range in which the maximum stress is applied in the top region to break the stepped portion. It is a manufacturing method of a semiconductor piece.
  • the cutting member is replaced before the tip shape of the cutting member becomes a tapered range in which the maximum stress is applied in the top region and the stepped portion is damaged due to wear of the cutting member.
  • a third aspect is a step of forming a surface-side groove on the surface of the substrate and a rotating cutting member having a thickness larger than the width of the surface-side groove from the back surface of the substrate.
  • the range in which the top of the tapered cutting member that does not have a variation in the groove width direction is a manufacturing condition that deviates from the groove width on the surface side, and the position of the top in the groove width direction deviates from the groove width on the surface side.
  • a fourth aspect is a step of forming a surface-side groove on the surface of the substrate and a rotating cutting member having a thickness larger than the width of the surface-side groove from the back surface of the substrate.
  • the shape of the groove on the surface side and the top portion are prevented so that the step portion is not damaged by the maximum stress when the top portion is worn down to a taper degree that gives maximum stress to the step portion.
  • the depth that is reached by the semiconductor It is a method of manufacture.
  • a fifth aspect is a circuit board on which at least one semiconductor piece manufactured by the manufacturing method according to any one of the first aspect to the fourth aspect is mounted.
  • a sixth aspect is an electronic device on which the circuit board according to the fifth aspect is mounted.
  • the first aspect in a manufacturing condition in which the range in which the top portion of the cutting member varies in the groove width direction exceeds the groove width on the surface side, cutting with a taper degree that damages the stepped portion by applying a maximum stress in the top region. Compared with the case where it is used without knowing that it is a member, the stepped portion can be prevented from being damaged.
  • the second aspect compared to the case where the cutting member is not replaced even when the tip shape of the cutting member is in a tapering range in which the maximum stress is applied in the top region and the stepped portion is damaged, Damage can be suppressed.
  • the taper degree of giving the maximum stress to the stepped portion in the top region can be controlled.
  • the first aspect includes a step of forming a surface-side groove on the surface of the substrate, and a width of the groove on the surface side from the back surface of the substrate.
  • a rotating cutting member having a large thickness, forming a groove on the back surface leading to the groove on the front surface side, and having a step portion formed by a difference between the width of the groove on the front surface side and the width of the groove on the back surface side
  • a processing step of tapering a cutting member having a tip portion that gives a stress greater than or equal to a stress to be damaged, and processing to a degree of taper that does not damage the stepped portion by the stress to the root region. is there.
  • a second aspect is the method of manufacturing a semiconductor piece according to the first aspect, wherein the processing step is a step of tapering a cutting member having a semicircular tip.
  • the processing step is a step of processing into a tapered tip shape having no top surface at the top, and the range in which the top varies in the groove width direction is included in the groove width on the surface side.
  • a range in which the center in the thickness direction of the cutting member varies in the groove width direction is included in the groove width on the surface side. Manufacturing method.
  • the fifth aspect is the step of preparing a cutting member having a substantially rectangular cross section viewed from the rotation direction, and the stepped portion when the groove on the back surface side is formed using the prepared cutting member.
  • a step of confirming the state of breakage, and when the stepped portion is damaged by the prepared cutting member, the processing step is performed according to any one of the first to fourth aspects. This is a method of manufacturing a semiconductor piece.
  • the sixth aspect is a circuit board on which at least one semiconductor piece manufactured by the manufacturing method according to any one of the first to fifth aspects is mounted.
  • the seventh aspect is an electronic device on which the circuit board according to the sixth aspect is mounted.
  • the stepped portion when using a cutting member having a tip shape that gives a stress higher than the stress that damages the stepped portion to the root region of the stepped portion, the stepped portion is caused by the stress on the root region of the stepped portion.
  • the substrate can be singulated without breaking.
  • the second aspect compared to a case where the cutting member having a semicircular tip portion is not tapered, even when the tip shape varies in the processing step, the stress on the root region of the step portion is reduced. Variation can be suppressed.
  • the machining process can be performed only when the machining process is necessary.
  • the first aspect includes a step of forming a groove on the front surface side on the surface of the substrate, and a back surface of the substrate, A rotating cutting member having a thickness larger than the width of the groove on the front surface side, forming a groove on the back surface leading to the groove on the surface side, and the width of the groove on the front surface side and the width of the groove on the back surface side
  • a process for determining a manufacturing condition in a method of manufacturing a semiconductor piece comprising: a step of dividing into a semiconductor piece having a step portion formed by a difference, wherein a center in a thickness direction of the cutting member varies in a groove width direction.
  • a method for determining manufacturing conditions in a method for manufacturing a semiconductor piece comprising: a step of confirming a range; and a step of determining a width of the groove on the surface side to a width including the confirmed range.
  • the second aspect is a step of forming a surface-side groove on the surface of the substrate, and a rotating cutting member having a thickness larger than the width of the surface-side groove from the back surface of the substrate.
  • Forming a groove on the back surface side that leads to a semiconductor piece having a stepped portion formed by a difference between the width of the groove on the front surface side and the width of the groove on the back surface side A method for determining manufacturing conditions in a manufacturing method, wherein when using a cutting member having a tapered top portion having no top surface, a step of checking a range in which the top portion varies in a groove width direction, and And a step of determining a width of the groove to a width that includes the confirmed range.
  • a third aspect is a step of forming a surface-side groove on the surface of the substrate and a rotating cutting member having a thickness larger than the width of the surface-side groove from the back surface of the substrate.
  • Forming a groove on the back surface side that leads to a semiconductor piece having a stepped portion formed by a difference between the width of the groove on the front surface side and the width of the groove on the back surface side A method for determining manufacturing conditions in a manufacturing method, the step of checking the width of the groove on the surface side, and the range in which the center in the thickness direction of the cutting member varies in the groove width direction are included in the confirmed width.
  • a method for determining manufacturing conditions in a method for manufacturing a semiconductor piece comprising: selecting a manufacturing apparatus to be used in the manufacturing method.
  • a fourth aspect is a step of forming a surface-side groove on the surface of the substrate and a rotating cutting member having a thickness larger than the width of the surface-side groove from the back surface of the substrate.
  • Forming a groove on the back surface side that leads to a semiconductor piece having a stepped portion formed by a difference between the width of the groove on the front surface side and the width of the groove on the back surface side A method for determining manufacturing conditions in a manufacturing method, wherein the top portion is in the groove width direction when the step of confirming the width of the groove on the surface side and a cutting member having a tapered top portion having no top surface are used.
  • a fifth aspect is a step of forming a groove on the surface side on the surface of the substrate and a rotating cutting member having a thickness larger than the width of the groove on the surface side from the back surface of the substrate.
  • Forming a groove on the back surface side that leads to a semiconductor piece having a stepped portion formed by a difference between the width of the groove on the front surface side and the width of the groove on the back surface side A method for determining manufacturing conditions in a manufacturing method, the step of checking whether a range in which the center in the thickness direction of the cutting member varies in the groove width direction deviates from the groove width on the surface side, and the range is on the surface side
  • a sixth aspect is a step of forming a surface-side groove on the surface of the substrate and a rotating cutting member having a thickness larger than the width of the surface-side groove from the back surface of the substrate.
  • a step of changing at least one of the production apparatuses that affect the process. A method for determining production conditions in the production method of the conductor pieces.
  • the substrate is separated into semiconductor pieces by the manufacturing method. It is a manufacturing method of a semiconductor piece.
  • the eighth aspect is a circuit board on which at least one semiconductor piece manufactured by the manufacturing method according to the seventh aspect is mounted.
  • the ninth aspect is an electronic device on which the circuit board according to the eighth aspect is mounted.
  • the stepped portion is not damaged by stress concentration in the top region.
  • the method of manufacturing a semiconductor piece according to the present invention is, for example, a method of manufacturing individual semiconductor pieces (semiconductor chips) by dividing (dividing into pieces) a substrate-like member such as a semiconductor wafer on which a plurality of semiconductor elements are formed.
  • a substrate-like member such as a semiconductor wafer on which a plurality of semiconductor elements are formed.
  • the semiconductor element formed on the substrate is not particularly limited, and can include a light emitting element, an active element, a passive element, and the like.
  • the manufacturing method of the present invention is applied to a method of taking out a semiconductor piece including a light emitting element from a substrate, and the light emitting element can be, for example, a surface emitting semiconductor laser, a light emitting diode, or a light emitting thyristor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dicing (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

 基板の表面に表面側の溝を形成する工程と、基板の裏面から表面側の溝の幅よりも厚みが厚い回転する切削部材で表面側の溝に通じる裏面側の溝を形成し、半導体片に個片化する工程とにおいて、先端部の先細りの度合が異なる複数の切削部材を準備する工程と、同一形状の複数の表面側の溝を準備する工程と、複数の切削部材で裏面側の溝を形成した場合の破損の状況を確認する工程と、確認の結果、破損させる切削部材と破損させない切削部材の両方が含まれる場合、破損させない切削部材の先細りの度合を量産工程で使用する切削部材の先端形状として選択する工程と、を備える切削部材の先端形状の設計方法。

Description

切削部材の先端形状の設計方法、半導体片の製造方法、回路基板および電子装置
 本発明は、切削部材の先端形状の設計方法、半導体片の製造方法、回路基板および電子装置に関する。
 半導体ウエハの裏面側に太いダイシングソーで溝を形成し、半導体ウエハの表面側に細いダイシングソーで溝を形成することで、1枚の半導体ウエハから取得できるチップ数を向上させる方法が知られている(特許文献1)。また、ウエハの表面に化学的なエッチングにより一定の深さの溝を形成し、当該溝と対応するようにウエハの裏面からダイシングブレードにより溝を形成することにより半導体チップの切り出しを行う方法が提案されている(特許文献2、特許文献3)。
日本国特開平4-10554号公報 日本国特開昭61-267343号公報 米国特許第7897485号公報
 基板の表面に表面側の溝を形成し、基板の裏面から、表面側の溝の幅よりも厚みが厚い回転する切削部材で、表面側の溝に通じる裏面側の溝を形成し、基板を複数の半導体片に個片化する半導体片の製造方法において、裏面側の溝の形成に伴い、半導体片が破損する場合があった。この製造方法では数μm~数十μmの微細な溝幅同士を連通させるが、このような微細な溝を連通させる場合において、どのような原因でどのような破損が発生するかが明らかではなかった。よって、どのような製造条件で製造すれば破損を抑制できるかが不明であり、本製造方法を量産工程で採用しえなかった。
 また、上記の製造方法において、一枚の基板から取得できる半導体片の数を増やすためには、表面側の溝の幅はより狭い方が好ましいが、表面側の溝の幅をより狭く形成しようとすると深い溝を形成することが困難になる。これは、例えば、表面側の溝をドライエッチングで形成する場合、溝が狭いとエッチングガスが溝の奥まで侵入しにくく、溝の底部でのエッチング進行が妨げられるためであり、また、薄いダイシングブレードで形成する場合、ブレードが破損しやすいためである。よって、一枚の基板から取得できる半導体片の数を増やすためには、より狭く浅い表面側の溝形状を採用する場合であっても半導体片の破損を抑制することが望まれる。
 そこで、本発明においては、単に破損を抑制できるだけでなく、より狭く浅い表面側の溝形状を採用した場合であっても破損を抑制できる、切削部材の先端形状の設計方法、半導体片の製造方法、回路基板および電子装置を提供することを目的とする。
 [1] 本発明のある観点によれば、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備える半導体片の製造方法に使用する前記切削部材の先端形状の設計方法であって、先端部の先細りの度合が異なる複数の切削部材を準備する工程と、同一形状の複数の表面側の溝を準備する工程と、前記複数の表面側の溝に対して、前記複数の切削部材で前記裏面側の溝を形成した場合のそれぞれについて、前記段差部の破損の状況を確認する工程と、前記確認の結果、前記複数の切削部材に、前記段差部を破損させる切削部材と前記段差部を破損させない切削部材の両方が含まれる場合、前記段差部を破損させない切削部材の先細りの度合を量産工程で使用する切削部材の先端形状として選択する工程と、を備える、切削部材の先端形状の設計方法である。
 [2] 前記複数の切削部材は、半円状の先端部を有する切削部材よりも先細りした切削部材を含む、[1]に記載の切削部材の先端形状の設計方法でもよい。
 [3] 前記複数の切削部材は、半円状の先端部を有する切削部材よりも先細りの度合が小さい切削部材を含む、[2]に記載の切削部材の先端形状の設計方法でもよい。
 [4] 前記複数の切削部材は、半円状の先端部を有する切削部材よりも先細りの度合が小さい切削部材を複数含む、[1]から[3]のいずれか1つに記載の切削部材の先端形状の設計方法でもよい。
 [5] 前記複数の切削部材は、半円状の先端部を有する切削部材よりも先細りの度合が小さい切削部材を、少なくとも3種類以上含む、[1]から[4]のいずれか1つに記載の切削部材の先端形状の設計方法でもよい。
 [6] 前記複数の切削部材は、頂部に頂面を有さない先細りした先端形状であって、当該頂部の溝幅方向の位置が前記表面側の溝幅から外れた場合に、溝幅を外れた当該頂部の領域に最大応力を生じさせる先細り度合の切削部材を含む、[1]から[5]のいずれか1つに記載の切削部材の先端形状の設計方法でもよい。
 [7] 前記頂部の領域に最大応力を生じさせる先細り度合の切削部材を複数含む、[6]に記載の切削部材の先端形状の設計方法でもよい。
 [8] 前記確認の結果、前記複数の切削部材に、前記段差部を破損させる切削部材と前記段差部を破損させない切削部材の両方が含まれる場合、前記段差部を破損させる切削部材の先細りの度合を量産工程で使用しない切削部材の先端形状として選択対象から除外する、[1]から[7]のいずれか1つに記載の切削部材の先端形状の設計方法でもよい。
 [9] 本発明の他の観点によれば、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備える半導体片の製造方法に使用する前記切削部材の先端形状の設計方法であって、先端部の先細りの度合が異なる複数の切削部材を準備する工程と、同一形状の複数の表面側の溝を準備する工程と、前記複数の表面側の溝に対して、前記複数の切削部材で前記裏面側の溝を形成した場合のそれぞれについて、前記段差部の破損の状況を確認する工程と、前記複数の切削部材に、前記段差部を破損させる切削部材と前記段差部を破損させない切削部材の両方が含まれる場合、前記確認の結果から、前記段差部を破損させない切削部材の先細りの範囲を推定する工程と、前記推定した範囲に含まれる先細りの度合の切削部材を量産工程で使用する切削部材の先端形状として選択する工程と、を備える、切削部材の先端形状の設計方法である。
 [10] 本発明の他の観点によれば、[1]から[9]のいずれか1つに記載の設計方法によって設計された先端形状の切削部材を用いて、前記製造方法で基板を半導体片に個片化する半導体片の製造方法である。
 [11] 本発明の他の観点によれば、[10]に記載の製造方法によって製造された少なくとも1つの半導体片を実装する回路基板である。
 [12] 本発明の他の観点によれば、[11]に記載の回路基板を実装する電子装置である。
 [1]、[8]、[9]、[10]、[11]または[12]によれば、切削部材の先細り度合と段差部の破損との関係を考慮しないで、切削部材の先端形状を決定する場合と比較し、より浅い表面側の溝を量産工程で採用できる。
 [2]によれば、段差部の根元領域への最大応力が最も小さくなる条件に近い条件で段差部が破損するか否かを確認できる。
 [3]によれば、複数の切削部材として、半円状の先端部を有する切削部材よりも先細りの度合が小さい切削部材を含まない場合と比較し、先端形状の選択が容易となる。
 [4]によれば、半円状の先端部を有する切削部材よりも先細り度合が小さい切削部材が1種類のみ含まれる場合と比較し、どの程度まで先細りの度合が小さくても段差部が破損しないかが確認しやすくなる。
 [5]によれば、半円状の先端部を有する切削部材よりも先細り度合が小さい切削部材が2種類のみ含まれる場合と比較し、どの程度まで先細りの度合が小さくても段差部が破損しないかが確認しやすくなる。
 [6]によれば、頂部の溝幅方向の位置が表面側の溝幅から外れる場合において、どの程度まで先細りの度合が大きくても段差部が破損しないかを全く確認できない状態を回避できる。
 [7]によれば、切削部材の頂部の位置に最大応力を生じさせる先端形状の切削部材が1種類しか含まれない場合と比較し、どの程度まで先細りの度合が大きくても段差部が破損しないかが確認しやすくなる。
本発明の実施例に係る半導体片の製造工程の一例を示すフローである。 本発明の実施例に係る半導体片の製造工程における半導体基板の模式的な断面図である。 本発明の実施例に係る半導体片の製造工程における半導体基板の模式的な断面図である。 回路形成完了時の半導体基板(ウエハ)の概略的な平面図である。 図5の(A)は、ダイシングブレードの切断動作を説明する断面図、図5の(B)から(F)は、本実施例のダイシングブレードの先端部の拡大断面図、図5の(G)は、一般的なフルダイシングに使用されるダイシングブレードの先端部の拡大断面図である。 図6の(A)は、シミュレーションに用いたダイシングブレードの先端部の拡大断面図、図6の(B)は、図6の(A)に示すダイシングブレードを使用したときの半導体基板に形成される溝の形状を表す断面図、図6の(C)と(D)は、シミュレーションに用いた曲率半径r=0.5とr=12.5のダイシングブレードの先端部の拡大断面図である。 ダイシングブレードの先端部の曲率半径と段差部のコーナー部に生じる応力値との関係をシミュレーションしたときのグラフである。 ダイシングブレードの先端部の曲率半径と最大応力値との関係をシミュレーションしたときのグラフである。 図9の(A)は、段差部のコーナー部に印加される応力を説明する断面図、図9の(B)は、段差部のコーナー部に生じた応力により段差部が破損する例を説明する断面図である。 図5の(B)のダイシングブレードを用いたときの段差部の応力を説明する図である。 図11の(A)は、溝140の中心と溝170の中心が一致したときの段差部の断面図、図11の(B)は、溝140の中心と溝170の中心とが位置ずれをしたときの段差部の断面図である。 図12の(A)から(D)は、位置ずれに関するシミュレーションに使用した4種類のダイシングブレードを説明する図である。 位置ずれ量及びカーフ幅が段差部へ与える影響をシミュレーションした結果を示すグラフである。 カーフ幅Sbが非常に狭く位置ずれ量Dsが大きいときの最大応力が発生する位置を例示する図である。 カーフ幅Sbおよび先端角部の曲率半径が異なる種々のダイシングブレードにより実際の基板を切断したときの実験結果を示す図である。 表面側の溝幅の違いによる段差部の破損への影響、及び段差部の厚みの違いによる段差部の破損への影響を確認するために行った実験結果を示す図である。 本発明の実施例に係る半導体片の製造方法に使用するダイシングブレードの先端形状の設計方法を説明するフローである。 本発明の実施例に係る表面側の溝の幅の決定方法を説明するフローである。 本発明の実施例に係る製造装置の選択方法を説明するフローである。 本発明の実施例に係る表面側の溝の幅の決定方法及び製造装置の選択方法の別の実施例を説明するフローである。 ダイシングブレードの先端部が摩耗と段差部の破損との関係を説明する断面図である。
 本発明の半導体片の製造方法は、例えば、複数の半導体素子が形成された半導体ウエハなどの基板状の部材を分割(個片化)して、個々の半導体片(半導体チップ)を製造する方法に適用される。基板上に形成される半導体素子は、特に制限されるものではなく、発光素子、能動素子、受動素子等を含むことができる。好ましい態様では、本発明の製造方法は、発光素子を含む半導体片を基板から取り出す方法に適用され、発光素子は、例えば、面発光型半導体レーザー、発光ダイオード、発光サイリスタであることができる。1つの半導体片は、単一の発光素子を含むものであってもよいし、複数の発光素子をアレイ状に配置されたものであってもよく、さらに1つの半導体片は、そのような1つまたは複数の発光素子を駆動する駆動回路を包含することもできる。また、基板は、例えば、シリコン、SiC、化合物半導体、サファイア等で構成される基板であることができるが、これらに限定されず、少なくとも半導体を含む基板(以下、総称して半導体基板という)であれば他の材料の基板であってもよい。なお、好ましい態様では、面発光型半導体レーザーや発光ダイオード等の発光素子が形成される、GaAs等のIII-V族化合物半導体基板である。
 以下の説明では、複数の発光素子が半導体基板上に形成され、当該半導体基板から個々の半導体片(半導体チップ)を取り出す方法について図面を参照して説明する。なお、図面のスケールや形状は、発明の特徴を分かり易くするために強調しており、必ずしも実際のデバイスのスケールや形状と同一ではないことに留意すべきである。
 図1は、本発明の実施例に係る半導体片の製造工程の一例を示すフローである。同図に示すように、本実施例の半導体片の製造方法は、発光素子を形成する工程(S100)、レジストパターンを形成する工程(S102)、半導体基板の表面に微細溝を形成する工程(S104)、レジストパターンを剥離する工程(S106)、半導体基板の表面にダイシング用テープを貼付ける工程(S108)、半導体基板の裏面からハーフダイシングをする工程(S110)、ダイシング用テープに紫外線(UV)を照射し、半導体基板の裏面にエキスパンド用テープを貼付ける工程(S112)、ダイシング用テープを剥離し、エキスパンド用テープに紫外線を照射する工程(S114)、半導体片(半導体チップ)をピッキングし、回路基板等にダイマウントする工程(S116)を含む。図2の(A)から(D)、および図3の(E)から(I)に示す半導体基板の断面図は、それぞれステップS100からS116の各工程に対応している。
 発光素子を形成する工程(S100)では、図2の(A)に示すように、GaAs等の半導体基板Wの表面に、複数の発光素子100が形成される。発光素子100は、例えば、面発光型半導体レーザー、発光ダイオード、発光サイリスタ、等である。なお、図面には、発光素子100として1つの領域を示しているが、1つの発光素子100は、個片化された1つの半導体片に含まれる素子を例示しており、1つの発光素子100の領域には、1つの発光素子のみならず、複数の発光素子やその他の回路素子が含まれ得ることに留意すべきである。
 図4は、発光素子の形成工程が完了したときの半導体基板Wの一例を示す平面図である。図面には、便宜上、中央部分の発光素子100のみが例示されている。半導体基板Wの表面には、複数の発光素子100が行列方向にアレイ状に形成されている。1つの発光素子100の平面的な領域は、概ね矩形状であり、各発光素子100は、一定間隔Sを有するスクライブライン等で規定される切断領域120によって格子状に離間されている。
 発光素子の形成が完了すると、次に、半導体基板Wの表面にレジストパターンが形成される(S102)。図2の(B)に示すように、レジストパターン130は、半導体基板Wの表面のスクライブライン等で規定される切断領域120が露出されるように加工される。レジストパターン130の加工は、フォトリソ工程によって行われる。
 次に、半導体基板Wの表面に微細な溝が形成される(S104)。図2の(C)に示すように、レジストパターン130をマスクに用い、半導体基板Wの表面に一定の深さの微細な溝(以下、便宜上、微細溝または表面側の溝という)140が形成される。このような溝は、例えば、異方性エッチングにより形成でき、好ましくは、異方性ドライエッチングである異方性プラズマエッチング(リアクティブイオンエッチング)により形成される。厚みの薄いダイシングブレードや等方性エッチング等で形成してもよいが、異方性ドライエッチングを用いることで、等方性エッチングで表面側の溝を形成するよりも、幅が狭くても深い溝を形成することができ、かつダイシングブレードを使用したときよりも微細溝周辺の発光素子100に振動や応力等が影響するのを抑制することができるため、好ましい。微細溝140の幅Saは、レジストパターン130に形成された開口の幅とほぼ等しく、微細溝140の幅Saは、例えば、数μmから十数μmである。また、その深さは、例えば、約10μmから100μm程度であり、少なくとも発光素子等の機能素子が形成される深さよりも深く形成される。微細溝140を一般的なダイシングブレードによって形成した場合には、切断領域120の間隔Sが、ダイシングブレード自体の溝幅及びチッピング量を考慮したマージン幅の合計として40から60μm程度と大きくなる。一方、微細溝140を半導体プロセスで形成した場合には、溝幅自体が狭いだけでなく切断のためのマージン幅もダイシングブレードを使用した場合のマージン幅より狭くすることが可能となり、言い換えれば、切断領域120の間隔Sを小さくすることができ、このため、発光素子をウエハ上に高密度に配置して半導体片の取得数を増加させることができる。なお、本実施例における「表面側」とは発光素子等の機能素子が形成される面側をいい、「裏面側」とは「表面側」とは反対の面側をいう。
 次に、レジストパターンを剥離する(S106)。図2の(D)に示すように、レジストパターン130を半導体基板の表面から剥離すると、表面には切断領域120に沿って形成された微細溝140が露出される。なお、微細溝140の形状の詳細については後述する。
 次に、紫外線硬化型のダイシング用テープを貼り付ける(S108)。図3の(E)に示すように、発光素子側に粘着層を有するダイシング用テープ160が貼り付けられる。次に、基板裏面側からダイシングブレードにより微細溝140に沿ってハーフダイシングが行われる(S110)。ダイシングブレードの位置決めは、基板裏面側に赤外線カメラを配置し、基板を透過して間接的に微細溝140を検知する方法や、基板表面側にカメラを配置し、直接、微細溝140の位置を検知する方法や、その他の公知の方法が利用できる。このような位置決めによって、図3の(F)に示すように、ダイシングブレードによりハーフダイシングが行われ、半導体基板の裏面側に溝170が形成される。溝170は、半導体基板の表面に形成された微細溝140に到達する深さを有する。ここで、微細溝140はダイシングブレードによる裏面側に溝170よりも狭い幅で形成されているが、これは、微細溝140を裏面側の溝170よりも狭い幅で形成すれば、ダイシングブレードのみで半導体基板を切断する場合と比較し、一枚のウエハから取得できる半導体片の数が増やせるためである。なお、図2の(C)に示す数μmから十数μm程度の微細溝を半導体基板の表面から裏面に至るまで形成できれば、そもそもダイシングブレードを用いて裏面側の溝を形成する必要なないが、そのような深さの微細溝を形成することは容易でない。よって、図3の(F)に示すように、ダイシングブレードによる裏面からのハーフダイシングを組み合わせている。
 次に、ダイシング用テープへ紫外線(UV)を照射し、またエキスパンド用テープを貼り付ける(S112)。図3の(G)に示すようにダイシング用テープ160に紫外線180が照射され、その粘着層が硬化される。その後、半導体基板の裏面にエキスパンド用テープ190が貼り付けられる。
 次に、ダイシング用テープを剥離し、エキスパンド用テープに紫外線を照射する(S114)。図3の(H)に示すように、ダイシング用テープ160が半導体基板の表面から剥離される。また、基板裏面のエキスパンド用テープ190に紫外線200が照射され、その粘着層が硬化される。エキスパンド用テープ190は、基材に伸縮性を有し、ダイシング後に個片化した半導体片のピックアップが容易になるようにテープを伸ばし、発光素子の間隔を拡張する。
 次に、個片化された半導体片のピッキングおよびダイマウントを行う(S116)。図3の(I)に示すように、エキスパンド用テープ190からピッキングされた半導体片210(半導体チップ)が、接着剤やはんだ等の導電性ペーストなどの固定部材220を介して回路基板230上に実装される。
 次に、ダイシングブレードによるハーフダイシングの詳細について説明する。図5の(A)は、図3の(F)に示すダイシングブレードによるハーフダイシングをしたときの断面図である。
 半導体基板Wの表面には、上記したように、複数の発光素子100が形成され、各発光素子100は、間隔Sのスクライブライン等で規定される切断領域120によって離間されている。切断領域120には、異方性ドライエッチングにより幅Saの微細溝140が形成されている。他方、ダイシングブレード300は、図5の(A)に示すように、軸Qを中心に回転する円盤状の切削部材であり、カーフ幅Sbの溝170に対応した厚みを有している。ダイシングブレード300は、半導体基板Wの外側で、半導体基板Wの裏面と平行な方向の位置合わせがされる。更に、半導体基板Wの裏面と垂直な方向Yに所定量だけ移動されることで、段差部400が所望の厚みTを有するように半導体基板Wに対する厚み方向の位置合わせがなされる。そして、位置合わせがなされた後、ダイシングブレード300を回転させた状態で、ダイシングブレード300または半導体基板Wの少なくとも一方を、半導体基板Wの裏面と水平な方向に移動させることで、半導体基板Wに溝170を形成する。カーフ幅Sbは、微細溝140の幅Saよりも大きいため、溝170が微細溝140に到達したとき、切断領域120には、幅Sbと幅Saの差によって、厚さTの片持ち梁状の庇形状の段差部400が形成される。もし、ダイシングブレード300の中心と微細溝140の中心が完全に一致しているならば、段差部400の横方向に延在する長さは、(Sb-Sa)/2である。
 A) 先端部の説明
 図5の(B)から(F)は、本発明の実施例における一例としてのダイシングブレード300の先端部Aの拡大断面図、図5の(G)は、一般的なフルダイシングに使用されるダイシングブレードの先端部Aの拡大断面図である。一般的なフルダイシングに使用されるダイシングブレード300Aの先端部は、図5の(G)に示すように、一方の側面310と、当該一方の側面に対向する側面320と、両側面310、320とほぼ直角に交差する平坦な頂面340とを有している。すなわち、回転方向から見た断面が矩形形状の先端部を有している。これに対し、本実施例のダイシングブレード300の先端部は、例えば、図5の(B)から(F)に示すように、ダイシングブレード300の先端部における頂部に向けて徐々にダイシングブレード300の厚みが薄くなる先細りした形状を有している。
 本実施例においては、「頂部」とは、ダイシングブレードの最も先端の部分であり、図5の(B)、(D)及び(E)のような形状であれば、頂部は最も先端の一点である。また、図5の(C)や(F)のような形状であれば、微細な凹凸を除き、頂部は平坦な面で構成されており、この平坦な面を「頂面」と言う。また、「先細り」とは、ダイシングブレード300の先端部が頂部に向けて厚みが徐々に薄くなる部分を有している形状を言い、図5の(B)から(F)はいずれも先細りした形状の一例である。
 ここで、図5の(B)から(G)の各形状は、量産工程において半導体基板の切削を行う際の初期の形状を示している。つまり、図5の(B)から(F)に示す本実施例のダイシングブレード300は、量産工程における初期の形状として予めこのような形状を有している。また、一般的なフルダイシングに使用される図5の(G)の矩形形状の先端部は、初期状態では矩形の形状を有しているものの、使用し続けるのに伴い、図5の(B)から(D)に示すような湾曲面330を有する先細りした形状に摩耗する。
 図5の(B)に図示する例では、一対の側面310、320と、当該一対の側面310、320の間に湾曲面330とを有している。具体的には、一対の側面310と320との間の距離がカーフ幅Sbに対応する幅であり、先端部は、両側面310、320の間に半円状の湾曲面330を含み、図5の(C)や(F)に示すような頂面340を含んでいない。図5の(C)に図示する例は、図5の(B)と(G)の中間的な形状であり、頂面340とともに先端角部に湾曲面330を有している。図5の(D)に図示する例は、頂面340は有さず、図5の(B)や(C)における先端角部の曲率半径より大きい曲率半径の湾曲面330を有するとともに、頂部の位置には湾曲面330よりも小さな曲率半径を有する湾曲面370が形成される。なお、図5の(B)から(D)における湾曲面330は、ダイシングブレード300の頂部に近づくほどダイシングブレード300の厚みが薄くなる割合が大きくなっている。
 図5の(E)に図示する例では、2つの面取り350と360間に、湾曲面370が形成される。この場合も、図5の(C)と同様に頂面340は形成されない。図5の(F)に図示する例では、対向する側面310、320と、側面310、320間に頂面340とを含み、側面310、320と頂面340との間に面取り350および360が形成されている。そして、面取り350と頂面340との間の角部には、湾曲面352が形成され、面取り360と頂面340間の角部には、湾曲面362が形成される。
 なお、本実施例に係るダイシングブレードの先端部は、図5の(B)から(F)のように、図5の(G)に示すような矩形形状の先端部よりも先細りした形状であればよく、特に記載がない限り、頂面を有していても有していなくてもよい。また、図5の(B)から(F)に示した本実施例に係るダイシングブレード300の先端部は、図5の(D)に示したようにダイシングブレード300の厚みの中心Kを基準とした線対称の形状をしている。しかしながら、特に記載がない限り、必ずしも線対称な形状である必要はなく、頂部(頂面)の位置が、ダイシングブレード300の厚み方向にずれていてもよい。
 B) シミュレーション及び実験結果の説明
 次に、数μm~数十μmの微細な溝幅同士を連通させる場合において、どのような原因でどのような破損が発生するかについて確認するために行ったシミュレーション及び実験について説明する。
 B-1) 先端形状に関するシミュレーションの説明
 図6から図8は、ダイシングブレードの先端角部の曲率半径と段差部にかかる応力との関係を把握するために行ったシミュレーション及びその結果を説明するための図である。シミュレーションに用いたダイシングブレード302の一例を図6の(A)に示す。図6の(A)はダイシングブレード302の回転方向から見た先端部の断面形状である。ダイシングブレード302の先端部は、図6の(A)に示すように、側面310、320と、一定の長さの頂面340と、側面310、320と頂面340との間に形成された曲率半径rの湾曲面330とを含み、先端部は、回転軸と直交する線に関し対称に構成される。
 図6の(B)は、図6の(A)に示す先端形状のダイシングブレード302を使用した場合に半導体基板に形成される溝の形状を示している。ここで、基板の表面側の溝140の側面と基板の裏面側の溝170の側面の位置の差によって、表面側の溝140と裏面側の溝170の垂直な側面との間に幅Wの段差が生じ、この段差によって厚みTの庇形状の領域、すなわち段差部400が形成される。段差部400は、言い換えると、表面側の溝140と裏面側の溝170の接続部に形成される段差と半導体基板の表面との間の部分である。
 今回のシミュレーションでは、ダイシングブレード302における湾曲面330の曲率半径r(μm)を、r=0.5、r=2.5、r=5.0、r=7.5、r=10.0、r=12.5に変化させたとき、段差部400に印加される応力値をシミュレーションにより算出した。ダイシングブレード302の厚みは25μmであり、図6の(C)はr=0.5の先端部を、図6の(D)はr=12.5の先端部の形状を示しており、図6の(D)の先端部は、先端角部の曲率半径がダイシングブレード302の厚みの1/2である半円状となっている。なお、加工対象の基板はGaAs基板とし、表面側の溝140の溝幅は5μm、段差部400の厚みTを40μmとし、段差部400に対して、裏面側の溝170から基板の表面側に向けて2mNの荷重がかかるように設定した。また、表面側の溝140の幅の中心とダイシングブレード302の厚みの中心は一致させた状態で行った。
 図7に示すグラフは、シミュレーションの結果であり、先端角部の曲率半径を変化させたときに段差部400にかかる応力値の変化を示している。ここでは、縦軸に応力値[Mpa]、横軸に、図6の(B)に示す表面側の溝140の中心を原点としたときのX座標を示している。同グラフから、いずれの曲率半径rにおいても、X座標が12.5μmに近づくほど、つまり、裏面側の溝170の中心側から段差部400の根元側に近づくにつれて応力が大きくなっている。また、曲率半径rの値が大きくなると、段差部400の根元側にかかる応力が低下し、かつ、応力の立ち上がり方も緩やかになることがわかる。言い換えると、今回のシミュレーションで使用した先端形状の範囲、つまり、図6の(D)のような半円状の先端部よりも先細りの度合が小さい先端形状の場合は、段差部400の根元側において最大応力が生じている。また、図6の(C)のような矩形に近い形状よりも図6の(D)のような半円状の先端形状の方が段差部400の根元側にかかる応力が小さくなっている。つまり、先細りの度合が大きいほど段差部400の根元側にかかる応力が小さくなっている。また、図6の(C)のような矩形に近い形状の場合、例えばr=0.5の場合、X座標が11μm程度までの範囲においては曲率半径rが大きい場合よりも応力は小さいものの、それを超えた範囲、つまり、根元により近い部分では急激に応力が大きくなっており、応力がX座標で12.5μm近くに集中していることが分かる。
 次に、図8に横軸に曲率半径と縦軸に最大応力値との関係を示す。同グラフでは、図7に示した曲率半径rの値に加え、r=25μm、r=50μmについてもシミュレーションを実施し、その結果も含めて示している。曲率半径rが25μmや50μmのように半円状となる曲率半径12.5μmを超える場合の先端形状は、例えば図5の(D)のように、より先細りの度合が大きい形状となる。同グラフから、曲率半径rが小さいほど、つまり先端形状が矩形形状に近いほど最大応力値が高くなるとともに、曲率半径rの変化に対する最大応力の変化の度合も急激に大きくなる。逆に、曲率半径rが増加すると最大応力値が低下し、曲率半径が5μm程度から、曲率半径rの変化に対する最大応力の変化の度合が鈍化し、曲率半径が12.5~50μmの範囲、つまり図6の(D)や図5の(D)に示すような頂面を有さない先細りした形状の範囲においては、最大応力値の変動がほぼ一定していることがわかる。
 以上のシミュレーション結果から、半導体片が破損するメカニズムについて図9及び図11で説明する。図9の(A)に示すように、ダイシングブレード300Aのように先端部が矩形形状の場合(曲率半径rの値が非常に小さい場合)は、半導体基板の裏面からカーフ幅Sbの溝170を形成する際に、ダイシングブレード300Aの頂面340で基板を押圧する。段差部400には、ダイシングブレード300Aによる力Fが全体に加わるが、てこの原理により、段差部400に加わった力Fが段差部400の根元側の領域(根元領域410)に集中すると考えられる。そして、根元領域410へ集中した応力がウエハの破壊応力を超えたとき、図9の(B)に示すように段差部400の根元領域410に破損(欠け、亀裂あるいはピッキング等)を生じさせる。もし、段差部400に破損が生じるならば、段差部400の切断のためのマージンMを確保しなければならず、これは、切断領域120の間隔SをマージンMと等しいかそれよりも大きくしなければならないことを意味する。図8のシミュレーションの結果からは、r=0.5の場合とr=12.5の場合を比較すると段差部400の根元領域410にかかる応力が4倍近くも異なっている。これは、図5の(B)や図6の(D)に示すような半円状の先端部よりも曲率半径rの値が小さい範囲、つまり、頂面を有する先端形状の範囲においては、その先端角部の曲率半径rの値によって、段差部400の根元領域410にかかる応力が大きく変動することを示している。なお、本実施例における「根元領域」とは、図5の(C)、(F)、及び(G)のような頂面を有する先端形状を使用することで基板面と水平な段差部分が形成される場合は、表面側の溝の両側にそれぞれ形成される、基板面と水平な段差部分の幅Whの1/2の位置よりも裏面側の溝170の垂直な側面に近い側の領域をいう。また、図5の(B)、(D)、及び(E)のような頂面を有さない先細りした先端形状を使用した場合など、基板面と水平な段差部分が形成されない場合においては、段差部の幅Wtの1/2の位置よりも裏面側の溝170の垂直な側面に近い側の領域をいう。なお、幅Whと幅Wtとの関係は、図6の(B)に示す。
 図10は、図5の(B)に示す本実施例のダイシングブレード300により溝170を形成したときの段差部400への応力の印加を説明する断面図である。図10は、ダイシングブレード300の先端部が半円状の例であり、この場合、これに倣うように溝170の形状も半円状となる。その結果、ダイシングブレード300の先端部が段差部400に与える力Fは、溝の半円状に沿う方向に分布されることになる。よって、段差部400には、図9の(A)のときのように、段差部400の根元領域410に応力が集中することが抑制され、これにより段差部400の欠けや割れが抑制されると考えられる。
 B-2) 位置ずれに関するシミュレーション
 次に、ダイシングブレードの溝幅方向への位置ずれ量について説明する。図11の(A)と(B)は、基板表面に形成された表面側の溝140の幅Saとダイシングブレードにより形成される溝170のカーフ幅Sbとの位置関係を説明する図である。カーフ幅Sbの中心は、図11の(A)に示すように、表面側の溝140の幅Saの中心に一致することが理想的である。しかし、実際には、製造上のばらつきにより、カーフ幅Sbの中心は、図11の(B)に示すように、表面側の溝140の幅Saの中心から位置ずれを生じる。そして、位置ずれが生じた結果、左右の段差部400の幅Wtにも差が生じる。表面側の溝140の幅Saの中心と、カーフ幅Sbの中心との差を、位置ずれ量Dsとする。なお、製造上のばらつきは、主に、使用する製造装置の精度に起因するものであり、例えば、ダイシング装置の加工精度や表面側の溝140の位置を検知する検知手段(カメラ等)の精度等で決まる。
 次に、ダイシングブレードの溝幅方向への位置ずれ量Dsと段差部400にかかる応力との関係を把握するために行ったシミュレーションと、ダイシングブレードのカーフ幅Sbと段差部400にかかる応力との関係を把握するために行ったシミュレーションとについて説明をする。このシミュレーションにおいては、ダイシングブレードの頂部から12.5μmの位置でのカーフ幅Sb(μm)を、Sb=25、Sb=20.4、Sb=15.8、Sb=11.2の4種類とし、それぞれのカーフ幅について、表面側の溝140との位置ずれ量Ds(μm)をDs=0、Ds=2.5、Ds=7.5に変化させたときの応力値をシミュレーションにより算出した。今回のシミュレーションに使用した先端形状は図6に係るシミュレーションで使用した先端形状とは異なるものの、先細りの度合が異なる複数の先端形状を用いて実施している点では共通している。なお、加工対象の基板はGaAs基板とし、ダイシングブレードの厚みは25μm、先端角部の曲率半径はいずれもr=5μm、半導体基板の表面側の溝140の幅Saは5μm、段差部400の厚みTを40μmに設定した。また、段差部400及び裏面側の溝170の側面の法線方向に合計10mNの荷重がかかるように設定した。裏面側の溝170の側面への荷重は、実際の切削時におけるダイシングブレードの横方向への振動を考慮したものである。
 図12の(A)から(D)は、シミュレーションに使用した4種類のカーフ幅(ダイシングブレードの先端形状)について、位置ずれ量Dsがゼロの状態における形状を示している。図12の(A)がSb=25μmの形状であり、図12の(B)がSb=20.4μmの形状であり、図12の(C)がSb=15.8μmの形状であり、図12の(D)がSb=11.2μmの形状である。なお、いずれの形状においても先端角部の湾曲面以外の面については直線形状とし、図12の(D)のSb=11.2μmの場合については、図のように頂部の領域における曲率半径を5μmとし先端角部を有さない形状とした。
 図13に、位置ずれ量Ds及びカーフ幅Sbが段差部へ与える影響をシミュレーションした結果を示す。縦軸が段差部400にかかる最大応力値を、横軸がカーフ幅Sbを示している。横軸のカーフ幅Sbは、ダイシングブレードの頂部から12.5μmの位置での幅であり、位置ずれ量Ds(μm)がDs=0、Ds=2.5、Ds=7.5のそれぞれの場合の結果についてプロットしている。
 図13のグラフから明らかなように、いずれのカーフ幅Sbにおいても、ダイシングブレードの溝幅方向への位置ずれ量Dsが大きいほど、段差部400にかかる最大応力が大きくなっていることが分かる。また、図13では表現していないが、最大応力は、ダイシングブレードの位置ずれによって段差部400の幅Wtが大きくなった側の根元領域410に発生している。これは、位置ずれ量Dsが大きくなると、段差が大きくなった側の段差部400の根元領域410に、てこの原理によってより大きな応力がかかりやすくなるためと考えられる。
 また、カーフ幅Sbが狭い方(先細りの度合が大きい方)が最大応力値が小さくなる傾向があるが、これは、先細りの度合が大きいことによって、段差部400を基板表面側に押圧する応力が弱くなるため、段差部400の根元領域410に応力が集中しにくくなるためと考えられる。また、カーフ幅Sbが非常に狭く(Sb=11.2)、位置ずれ量Dsが大きいとき(Ds=7.5μm)、最大応力値が発生する箇所が急激に変わりその応力値(約7.2)が増大することが分かる。これは、カーフ幅Sbが広いダイシングブレード(先細りの度合が小さいダイシングブレード)では、広い面で段差部400に応力を与えることになるが、カーフ幅Sbが非常に狭いダイシングブレード(先細りの度合が非常に大きいダイシングブレード)では、頂部(頂点)が半導体基板の表面側の溝140の範囲から外れた場合に、先細りした頂部(頂点)の領域に応力が集中するためと考えられる。図13では表現していないが、シミュレーション結果によると、カーフ幅Sbが非常に狭く(Sb=11.2)、位置ずれ量Dsが大きいとき(Ds=7.5μm)の最大応力は、頂部(頂点)の領域で発生しており、図14にこの位置をPとして示す。なお、本実施例における「頂部の領域」とは、頂部を含む領域であって、段差部400の根元領域410よりも裏面側の溝の中心側の領域をいう。
 B-3) 第1の実験結果の説明
 次に、先細り度合の異なる複数のダイシングブレードを準備し、実際の基板を切断した際の実験結果を図15に示す。この実験では、厚みが25μmのダイシングブレードの先端を加工して、先端角部の曲率半径rが1μm~23μm、頂部から5μmの位置でのカーフ幅が5μm~25μmの範囲の複数のダイシングブレードを準備した。曲率半径とカーフ幅の具体的な組み合わせは図15に示すとおりで、複数のダイシングブレードの先細りの度合がほぼ均等になるよう準備した。また、GaAs基板を使用し、表面側の溝140の幅は約5μm、段差部400の厚みTは約40μmに設定し、ダイシングブレードの溝幅方向への位置ずれ量Dsは±7.5μm未満とした。なお、ダイシングブレードの厚みは25μmであるため、先端角部の曲率半径rが12.5μm以上の範囲では先端部が頂面を有さない先細りした形状となり、一方、曲率半径が12.5μmよりも小さい範囲では、小さくなるほど先細りの度合も小さくなり、曲率半径が1μmの場合はほぼ矩形の先端形状となる。
 図15における「○」は、段差部400の破損が十分に抑制されており量産工程で使用可能な先細りの度合であることを示し、「×」は、段差部400の破損が十分に抑制されておらず量産工程では使用不可能な先細りの度合であることを示している。図15では、先細り度合が小さい範囲(曲率半径rが8μm以下)と大きい範囲(曲率半径rが22μm以上)の両方において、使用不可能な範囲が存在し、両者の間に適切な先細りの範囲が存在している。これは、先のシミュレーション結果の通り、先細り度合が小さい範囲では段差部400の根元領域410に応力が集中して段差部400が破損し、先細り度合が大きい範囲では、ダイシングブレードの頂部(頂点)の位置に応力が集中し段差部400を破損させるためである。なお、曲率半径rが8μm以下は、先細りの度合が小さいために段差部が破損する範囲であり、曲率半径rが22μm以上は、先細りの度合が大きいために段差部が破損する範囲と言える。
 図8のシミュレーションで示した通り、先端部の先細りの度合によって段差部400が受ける最大応力は非常に大きく変化する。よって、矩形の先端形状やその他の任意の先端形状を使用した場合には破損してしまう場合であっても、図15における実験に示すように、適切な先細りの範囲を確認し、その範囲内に納まるように先端形状を管理すれば、段差部の強度が強くなるように段差部400の厚みTを厚くする(表面側の溝140の幅を広く深くする)などの製造条件の変更をしなくても、量産工程で問題ないレベルに段差部の破損が抑制されることが分かる。
 B-4) 第2の実験結果の説明
 次に、表面側の溝幅の違いによる段差部の破損への影響、及び段差部の厚みの違いによる段差部の破損への影響を確認するために行った実験結果を図16に示す。この実験では、GaAs基板を使用し、段差部400の厚みTは25μm、40μmで、先端部から5μmの位置でのカーフ幅が16.7μmのダイシングブレードを使用した。そして、表面側の溝140の幅Saごと、また段差部400の厚みTごとに、ダイシングブレードの溝幅方向の位置ずれに対して、どの程度の位置ずれまでなら段差部400の破損が抑制されて量産工程で使用可能かを確認した。図16における「A」~「D」は、段差部400の破損が十分に抑制された結果が得られた位置ずれ量Dsの範囲を示している。
 例えば、段差部の厚みTが25μmで表面側の溝幅Saが7.5μmの場合は「B」であり、これは、ダイシングブレードが溝幅方向に±5μm~±7.5μm未満の範囲でばらついた場合であっても、段差部400の破損が十分に抑制されて量産工程で使用可能な条件であることを示しているとともに、±7.5μm以上の位置ずれに対しては段差部400の破損が十分に抑制されなかったことを示す。また、段差部400の厚みTが45μmで表面側の溝幅Saが5μmの場合は「A」であり、これは、ダイシングブレードが溝幅方向に±7.5μm以上ずれた状態においても段差部400の破損が十分に抑制されて量産工程で使用可能な条件であることを示している。また、段差部400の厚みTが25μmで表面側の溝幅Saが5μmの場合は「D」であり、これは、ダイシングブレードの溝幅方向のずれが±3μm未満の場合のみ段差部400の破損が十分に抑制され、±3μm以上ずれた場合は段差部400の破損が十分に抑制されなかったことを示している。
 図16の実験結果から、段差部400は、表面側の溝140の幅Saが広いほどダイシングブレードの溝幅方向の位置ずれに対して強いことを示している。つまり、表面側の溝140の幅Saが広いほどダイシングブレードからの応力に対して段差部400が破損しにくい。これは、表面側の溝140の幅Saが広いほど段差部400の幅Wが狭くなるため、てこの原理が働きにくくなるためと考えられる。また、段差部400の厚みTが厚い方がダイシングブレードの溝幅方向の位置ずれに対して強いことを示している。つまり、段差部400の厚みTが厚い方がダイシングブレードからの応力に対して段差部400が破損しにくくなっている。これは、段差部400の厚みTが厚い方が応力に対する強度が強くなるためである。
 C) 先端部の設計方法
 次に、以上のシミュレーション及び実験の結果をもとにしたダイシングブレードの先端形状の設計方法及び半導体片の製造方法について説明する。なお、特に記載がない限り、以下の各実施例は、図1に示した実施例の製造フローを前提としている。
 図17は、本発明の実施例に係る半導体片の製造方法に使用するダイシングブレードの先端形状の設計方法を説明するフローである。図17の一連の工程は、実際の半導体基板を使用して実施してもよく、また、実際の半導体基板を使わずにシミュレーションを使って実施してもよい。
 図17のフローでは、まずS200において、先端形状の先細りの度合が異なる複数のダイシングブレードを準備する。例えば、図15に示した実験のように、先細りの度合が一定の間隔で異なるように複数のダイシングブレードを準備する。ここで、一般的なダイシング方法であるフルダイシングに使用される先端形状は、図5の(G)に示すような矩形形状である。よって、このような矩形形状のダイシングブレードを利用して先細りの度合が異なる複数のダイシングブレードを準備するためには、この矩形形状を予め加工する必要がある。例えば、矩形形状のダイシングブレードを複数入手し、ダミーウェハなどの先端加工用の部材を実際にダイシングすることで、ダイシングブレード毎に、切削による先端形状の摩耗度合を異ならせればよい。ダイシングブレードを先細りさせる方法の詳細は後述する。
 S200では、自ら先端形状の加工を行わず、他の主体から入手することで先細りの度合が異なる複数のダイシングブレードを準備してもよい。また、S200は、段差部400の根元領域410に与える応力の度合が異なる複数のダイシングブレードを準備する工程と読み替えることができる。また、ダイシングブレードの準備は一度にまとめて実施する必要はなく、例えば、まずは1種類の先細りの度合を準備し、後に説明するS204まで実施し、その後に他の先細りの度合を準備し、再度S204まで実施するなどの方法で実施してもよい。
 なお、本実施例における「先細りの度合」とは、ダイシングブレードの先端角部の曲率半径や頂部(頂点)の曲率半径、また、頂部から所定距離におけるブレードの厚み等で決まるものである。例えば、先端角部の曲率半径が大きいほど、また、頂部(頂点)の曲率半径が小さいほど先細りの度合が大きくなる。また、頂部から所定距離におけるブレードの厚みが薄いほど、先細りの度合が大きくなるため、先細りの度合とは、頂部から所定距離におけるブレードの厚みと言い換えることができる。また、ダシングブレードが摩耗して、先端部の厚みが薄くなった場合も先細りの度合が大きくなる。先細りの度合は、段差部400の根元領域410への応力の度合と言い換えることができ、先細りの度合が大きいほど、段差部400の根元領域410への応力の度合は小さくなる関係がある。なお、特に記載がない限り、ダイシングブレードの頂部からダイシングブレードの厚みの2倍程度の距離までの先端側の形状における先細りの度合を言う。
 次に、S202において、S200で準備した複数のダイシングブレードを使用した場合の段差部の破損状況を確認するために、量産工程で採用予定の表面側の溝であって、同一形状の複数の溝を有する半導体基板を準備する。表面側の溝のピッチは、量産工程で採用予定のピッチであっても、異なるピッチであってもよい。すなわち、先細りの度合ごとに、量産工程における段差部の破損状況を推定できるようになっていればよい。また、S202では、溝が形成されていない半導体基板に対して、図1のS104の場合と同様に表面側の溝を形成することで準備しても良いし、自ら溝の形成を行わず、他の主体から溝が形成された半導体基板を入手することで準備してもよい。なお、「同一形状」とは完全に同一であることを意味するものではなく、同一形状になるように形成した場合に生じる誤差等を含む実質的に同一の形状を言う。
 次に、S204において、S200で準備した複数のダイシングブレードのそれぞれを使用し、S202で準備した半導体基板に対して裏面側の溝170を形成する。そして、複数のダイシングブレードのそれぞれを使用した場合の段差部の破損状況を確認する。具体的には、顕微鏡等を使用して、段差部周辺のひびや割れ等の有無、及びその程度を確認する。なお、段差部を破損させない先細りの度合(量産工程で使用可能な程度に破損が抑制される形状)を特定するために、それぞれの先端形状に対して、複数回の裏面側の溝形成と破損状況の確認とを行うことが好ましい。また、ダイシングブレードの位置ばらつきを考慮して、段差部が破損しやすいよう、位置ずれした条件で実施することが好ましい。そして、このような確認の結果として、例えば、図15に示すように、それぞれの先細りの度合と、その先細りの度合が段差部を破損させるか否か(その先細りの度合が量産工程で使用可能か否か)が一覧として得られる。
 次に、S206において、S200で準備した複数のダイシングブレードに、段差部を破損させる先細りの度合と段差部を破損させない先細りの度合との両方が含まれるかを確認する。例えば、図15の場合は、段差部を破損させる先細りの度合と段差部を破損させない先細りの度合との両方が含まれるので(S206-YES)、S210に進む。このように両方の度合が含まれる場合というのは、量産工程で使用可能な先細りの範囲と使用不可能な先細りの範囲のそれぞれの少なくとも一部が特定できたことを意味している。例えば、先細りの度合が小さい方において段差部が破損し、大きい方において段差部が破損していない場合は、小さい方は段差部の根元領域への応力によって破損したものと推定でき、よって、その度合いよりも先細りの度合が小さい範囲は使用不可能な範囲と判断できる。また、段差部を破損させなかった度合について少なくとも使用できる度合であると判断できる。逆に、先細りの度合が大きい方において段差部が破損し、小さい方において段差部が破損していない場合は、大きい方は先細りした頂部の領域への応力の集中によって段差部が破損したものと推定でき、よって、その度合いよりも先細りの度合が大きい範囲は使用不可能な範囲と判断できる。また、段差部を破損させなかった度合は少なくとも使用できる度合であると判断できる。このように、S206において、段差部を破損させる先細りの度合と段差部を破損させない先細りの度合との両方が含まれる場合というのは、任意の先端形状のダイシングブレードを使用した場合には段差部が破損する可能性のある、狭く浅い表面側の溝に対して、量産工程で使用可能な先細りの範囲と使用不可能な先細りの範囲のそれぞれの少なくとも一部が特定できたことを意味している。
 一方、S200で準備した全ての先細りの度合において段差部を破損させてしまう場合は、量産工程で使用可能な先細りの度合が全く特定できていないことを意味する。よって、この場合は(S206-NO)、S208に進む。また、全ての先細りの度合において段差部が破損しなかった場合は、表面側の溝が必要以上に広く深いため、結果として段差部の強度が必要以上に強く設定されているなど、適切な製造条件になっていない可能性がある。よって、この場合もS208に進む。
 S208では、例えば、表面側の溝140の形状(幅や深さ等)などの設計条件を変更する。図16の実験結果に基づくと、表面側の溝140の深さが浅いほど、また、表面側の溝140の幅Saが狭いほど、段差部の強度が弱く破損しやすくなる。つまり、S200で準備した全ての先細りの度合において段差部を破損させてしまう場合は、表面側の溝140が浅すぎたり、狭すぎたりすることで段差部の強度が弱すぎると考えられる。よって、この場合は、表面側の溝140の形状を変更することで段差部の強度を強くするようにする。具体的には、表面側の溝140の幅Saを広くすること及び深さを深くすることの少なくとも一方を行う。
 また、図12及び図13のシミュレーション結果に基づくと、裏面側の溝140を形成する際のダイシングブレードの溝幅方向の位置精度が悪いほど、段差部が破損しやすくなる。よって、ダイシングブレードの溝幅方向の位置精度が良くなるように、位置精度に影響を与える製造条件を変更してもよい。例えば、ダイシングブレードの位置決め精度がよりよいダイシング装置に変更してもよい。このように、表面側の溝140の形状及びダイシングブレードの溝幅方向の位置精度の少なくとも一方を変更して、段差部が破損しにくい条件に変更する。
 また、S200で準備した全ての先細りの度合において段差部が破損しなかった場合は、表面側の溝140が必要以上に広く深いため、結果として段差部の強度が必要以上に強く設定されていると考えられる。この場合、溝幅を狭く変更し、一枚の半導体基板から取得できる半導体片の数を増やせる可能性がある。溝幅を狭くすると、深い溝を形成しにくくなり段差部の強度が弱くなるが、図8に示した通り、先細りの度合によって応力が大きく変動するため、適切な先細り度合を特定することで、より狭く浅い表面側の溝140に対しても段差部を破損させずに裏面側の溝170を形成できる。よって、S206において、準備した全ての先細りの度合において段差部が破損しなかった場合は、表面側の溝140を狭く(又は、狭く浅く)変更することで、一枚の半導体基板から取得できる半導体片の数を増やすように設計条件をし、再度、S200からのフローを実施するとともに、S210に到達するまで、S200からS208のフローを繰り返す。なお、溝140が狭いと深い溝の形成しにくくなると説明したが、これは、例えば、表面側の溝140をドライエッチングで形成する場合、溝が狭いとエッチングガスが溝の奥まで侵入しにくく、溝の底部でのエッチング進行が妨げられ、また、薄いダイシングブレードで形成する場合、ブレードが破損しやすいためである。
 なお、S200において準備するダイシングブレードの種類が少なく、かつ先細りの度合が大きすぎる方や小さすぎる方に偏っている場合などは、S206において、段差部を破損させる先細りの度合と破損させない先細りの度合の両方が含まれる状態となりにくい。よって、このような場合は、S200において準備する先端形状の種類を増やすようにS208において設計条件を変更してもよい。
 以上説明したように、S208では設計条件を変更し、再度、S200からのフローを実施する。そして、S210に到達するまで、S200からS208のフローを繰り返す。
 S210では、段差部を破損させない先細りの度合から、量産工程で使用するダイシングブレードの初期の先端形状を選択する。また、段差部を破損させる先細りの度合については、当然ながら量産工程を通じて使用しないように選択対象から除外する。つまり選択対象の範囲から除外する。なお、必ずしも実験に使用した先細りの度合と同じ度合を量産工程で使用する先端形状として選択する必要はなく、段差部を破損させない先細りの範囲を推定し、推定した範囲に含まれる先細りの度合を選択してもよい。例えば、図11の実験結果においては、先端角部の曲率半径rが、13μm~21μmの範囲が段差部を破損させない先細りの範囲であると推定し、曲率半径rが14.5μmや18.5μmなどに対応する先端形状を量産工程で使用するダイシングブレードの初期の先端形状として選択し、量産工程を通じて13μm~21μmの範囲から外れないように管理する。つまり、段差部を破損させない先細りの度合が複数ある場合は、その間の範囲は段差部を破損させない範囲と推定し、その範囲の中から先端形状を選択すればよい。
 ここで、段差部を破損させない先細りの範囲のうち、範囲の中心の先細りの度合よりも先細りの度合が小さい度合の先端形状を、量産工程で使用するダイシングブレードの初期の先端形状として選択することが好ましい。例えば、図15の実験結果においては、先端角部の曲率半径rが、17μm~21μmの先端形状を選択するよりも、13μm~17μmの先端形状を選択するようにする。先細りの度合が小さいということは、先細りの度合が大きい場合と比較して先端部が摩耗していない状態であり、言い換えると、ダイシングブレードの寿命が長いためである。また、一般的な矩形形状のダイシングブレードを利用してその先端形状を加工する場合は、矩形形状を所望の先細り度合いに予め加工する時間が少なくて済むことになる。
 また、段差部を破損させない先細りの度合よりも先細りの度合が大きい側において、段差部を破損させる先細りの度合が存在する場合、ダイシングブレードの先端部が摩耗することによって、そのような先細りの度合に至らないように量産工程において管理することが好ましい。例えば、図15において、先端角部の曲率半径が、段差部を破損させない先細りの度合である13μm~21μmよりも先細りの大きい側(21μmを超える範囲)において、段差部を破損させる先細りの度合22μm~23μmが存在している。よって、図15の実験結果の場合は、ダイシングブレードの先端部が摩耗することによって、先端角部の曲率半径が21μmを超えないように量産工程において管理することが好ましい。具体的には、そのような先細りの度合に至る前に、ダイシングブレードを交換することが好ましい。なお、本実施例における「交換」とは、全く別のダイシングブレードに交換する以外に、同じダイシングブレードの先端形状を再加工(ドレッシング)することも含む。
 以上、本実施例に係るダイシングブレードの先端形状の設計方法のフローを説明したが、この設計方法によれば、量産工程で使用するダイシングブレードの先端形状を決定する際に、先端形状の先細りの度合と半導体片の破損との関係を考慮しないで決定する場合よりも、より浅い表面側の溝140を量産工程で採用できる。従来は、数μm~数十μmの微細な溝幅同士を連通させる場合において、どのような原因でどのような破損が発生するかについては明らかでなかったため、実際の量産工程において図1に示す製造工程の採用が困難であり、また、仮に図1に示す製造工程を採用する場合であっても必要以上に広く深い表面側の溝となっていた。一方、本実施例に係るダイシングブレードの先端形状の設計方法は、図7や図8に示す通り、先細りの度合によって段差部が受ける応力が大きく変動する点に着目し、図17のS200において、先細り度合の異なる複数のダイシングブレードを準備するようにした。そして、図17のS206において、段差部を破損させる先細りの度合と段差部を破損させない先細りの度合との両方が含まれる場合にのみ、先端形状を選択するようにしたため、任意の先端形状のダイシングブレードよ使用する場合と比較して設計上の手間がかかるものの、より狭く浅い表面側の溝140を量産工程で採用できる。
 次に、図17のS200において複数の先細り度合を準備する具体的な方法について説明する。まず、GaAs等の化合物半導体を切断するダイシングブレードは、ダイヤモンドブレード、あるいはダイヤモンドブレードとアルミ基台を一体化したブレード等が使用できる。一般的に、市販等されているこれらのダイシングブレードの先端は、図5の(G)の形状のように先端部に湾曲面が形成されていない矩形形状をしている。そこで、矩形形状のように所望の形状をしていないダイシングブレードを利用するために、先端部を加工する必要がある。
 この工程は、例えば、以下のような工程を含む。すなわち、市販等されているダイシングブレードを入手するとともに、入手したダイシングブレードの先端部を加工するための材料を選択する。例えば、Si、SiC、あるいは他の化合物半導体材料の加工用基板を選択する。なお、先端部を所望の形状に加工できる材料であれば他のものであってもよい。
 次に、ダイシングブレードを用いて加工用半導体基板の切断を繰り返すことで、先端部に摩耗させながら所望の形状に近づけていく。所望の湾曲面の形状を得るために、加工用基板とダイシングブレードとの成す角度、ダイシングブレードの回転速度、研磨時間、研磨剤などを適宜選択することができる。以上のように、ダイシングの工程に先立って、先端部の加工用に準備された加工材を用いて所望の先細りの形状に加工する。このような方法によって、一般的なフルダイシングに使用される矩形形状のダイシングブレードであっても、図17のS200で準備するダイシングブレードとして共通に利用できる。
 次に、図17のS200において、どのような先細りの度合の先端形状を準備すべきかについて詳細に説明する。
 第1の態様として、先端部が半円状のダイシングブレードよりも先細りしたダイシングブレードを少なくとも1種類以上含むことが好ましい。言い換えると、先端部が半円状ダイシングブレードよりも段差部の根元領域に発生させる最大応力が小さい先細りの度合のダイシングブレードを少なくとも1種類以上含むことが好ましい。これは、図8から分かるように、先端部が半円状の場合より先細りした範囲(r=12.5μmを超える範囲)では、最大応力が低位に飽和している。つまり、この範囲の先細り度合いのダイシングブレードを少なくとも1種類以上準備することで、根元領域への最大応力が最も小さくなる条件に近い条件で段差部が破損するか否かを確認できる。そして、例えば、段差部が破損した場合は、S208において、準備する先端形状の種類を増やすように設計条件を変更するのではなく、表面側の溝140の幅や深さを段差部が破損しにくくなるように変更する必要があると判断しやすくなる。
 第2の態様として、先端部が半円状のダイシングブレードよりも先細りしたダイシングブレードに加えて、先端部が半円状のダイシングブレードよりも先細りしていないダイシングブレードを含むことが好ましい。言い換えると、先端部が半円状ダイシングブレードよりも段差部の根元領域に発生させる最大応力が小さい先細りの度合と大きい先細り度合いの両方のダイシングブレードを含むことが好ましい。これは、図8から分かるように、先端部が半円状の場合より先細りした範囲(r=12.5μmを超える範囲)では、最大応力が低位に飽和している一方、先端部が半円状の場合より先細りしていない範囲(r=12.5μm以下の範囲)では、最大応力の変動が大きい。つまり、それぞれの範囲に含まれる先細り度合いのダイシングブレードを準備することで、これらのダイシングブレードが段差部を破損させる先細りの度合と段差部を破損させない先細りの度合である可能性が高くなり、図17のS206において、図17のS210側に進みやすくなる。つまり、先端形状の選択が容易となる。
 第3の態様として、半円状の先端部を有する切削部よりも先細り度合が小さいダイシングブレードを複数含むことが好ましい。言い換えると、先端部が半円状ダイシングブレードよりも、大きな応力を段差部の根元領域に発生させる先細りの度合のダイシングブレードを複数含むことが好ましい。図8から分かるように、先端部が半円状のダイシングブレードよりも大きな応力を段差部の根元領域に発生させる範囲(r=12.5μm未満)では、その範囲より先細りした範囲(r=12.5μm以上)よりも、先細りの度合に対する最大応力の変化が大きい。よって、最大応力の変化が大きいこの範囲内のダイシングブレードを複数準備することで、どの程度まで先細りの度合が小さくても段差部が破損しないかが確認しやすくなる。
 第4の態様として、半円状の先端部を有する切削部よりも先細り度合が小さいダイシングブレードを3種類以上含むことが好ましい。言い換えると、先端部が半円状のダイシングブレードよりも、大きな応力を段差部の根元領域に発生させる先細りの度合のダイシングブレードが少なくとも3種類以上含まれていることが好ましい。図8から分かるように、先端部が半円状のダイシングブレードよりも大きな応力を段差部の根元領域に発生させる範囲(r=12.5μm未満)では、最大応力の変化が大きいことに加え、応力変化が直線的ではなく非線形に変化している。よって、よって、応力が非線形に変化するこの範囲内のダイシングブレードを少なくとも3種類以上使用することで、2種類の場合と比較し、どの程度まで先細りの度合が小さくても段差部が破損しないかが確認しやすくなる。
 第5の態様として、準備するダイシングブレードには、頂部に頂面を有さない先細りした先端形状であって、裏面側の溝を形成する際にダイシングブレードの頂部の溝幅方向の位置が表面側の溝幅を外れた場合に、表面側の溝の幅から外れた頂部の領域で最大応力が生じる先細りの度合のダイシングブレードが含まれることが好ましい。このようなダイシングブレードが含まれない場合は、頂部の溝幅方向の位置が表面側の溝幅から外れる場合において、どの程度まで先細りの度合が大きくても段差部が破損しないかが全く確認できないためである。また、このようなダイシングブレードが複数含まれるようにすることで、1種類のみの場合と比較し、どの程度まで先細りの度合が大きくても段差部が破損しないかが確認しやすくなる。なお、ダイシングブレードの頂部が表面側の溝幅から外れないことが分かっている場合は、このようなダイシングブレードが含めなくてもよい。
 第6の態様として、図15に示すように、先細りの度合を略等間隔で準備することが好ましい。また、図17のS200において準備する先細りの度合は少なくとも2種類必要であるが、より狭く浅い表面側の溝を使用するために、図15に示すように、できるだけ多くの種類を準備することが好ましい。
 D) ブレード位置と溝幅との関係に基づく実施例
 D-1) 加工精度と表面側の溝との関係
 次に、半導体片を製造する製造装置の加工精度と表面側の溝140の幅Saとの関係、及びその関係に基づく、ダイシングブレードの先端形状の設計方法及び半導体片の製造方法について説明する。製造装置の加工精度とは、ダイシング装置の位置決め精度等を含む加工精度のみならず、表面側の溝140の位置を検知するカメラ等の検知手段の検知精度など、製造工程で使用するその他の装置類の精度を含むものである。そして、この製造装置の加工精度が主要因となりダイシングブレードの溝幅方向の位置(ばらつきの範囲)が決まることになる。
 図13において説明した通り、先細りの度合が大きいダイシングブレードでは、頂面を有さない先細りした頂部が半導体基板の表面側の溝140の溝幅方向の範囲から外れた場合に、その頂部の領域に応力が集中し、段差部が破損する場合がある。つまり、頂面を有さない先細りした頂部の領域に応力が集中する先細り度合のダイシングブレードを使用する場合は、この頂部が半導体基板の表面側の溝140の溝幅方向の範囲から外れるような製造装置の加工精度と表面側の溝140の幅との関係であっても、段差部が破損しないように、ダイシングブレードの先端形状や表面側の溝140の形状等のその他の製造条件を決定することが好ましい。
 一方、先細りの度合が非常に大きいダイシングブレードであっても、その頂部が表面側の溝140の幅から外れないような製造装置の加工精度と溝140の幅との関係であれば段差部にかかる応力が急激変わることはない。つまり、頂面を有さない先細りした頂部が表面側の溝140の幅に包含される製造条件であれば、図15における先端角部の曲率半径が22μmや23μmのような先細りの度合が非常に大きい場合であっても段差部が破損することはなく、逆に、先細りの度合が大きいダイシングブレードほど段差部に与える最大応力が小さくなるため、最大応力を小さくするという観点からは好ましい。
 また、頂面を有さない先細りした頂部は、通常、ダイシングブレードの厚みの中心に形成されることが多いため、頂面を有さない先細りした頂部が表面側の溝140の幅から外れない製造条件とは、ダイシングブレードの厚みの中心が溝幅方向にばらつく範囲が表面側の溝140の幅に包含される製造条件と言うことができる。ここで、頂面を有さない先細りした頂部は、予め先端形状を加工する際の条件や実際の製造工程における摩耗の仕方によってはダイシングブレードの厚みの中心からずれる場合もある。つまり、頂面を有さない先細りした頂部が表面側の溝140の幅から外れるか外れないかは、そのような要因によるずれにも起因する。
 よって、頂面を有さない先細りした頂部が表面側の溝140の幅から外れるか外れないかの判断が必要な場合は、そのようなずれを考慮して判断することになる。ただし、そのような要因を考慮することが困難な場合は、ダイシングブレードの厚みの中心を基準に判断すればよい。以上から、本実施例における「ダイシングブレードの厚みの中心が表面側の溝140の幅に包含される(又は、表面側の溝140の幅から外れる)製造条件」とは、特に記載がなく技術的な矛盾がなければ「頂面を有さない先細りした頂部が表面側の溝140の幅に包含される(又は、表面側の溝140の幅から外れる)製造条件」と読み替えることができる。
 なお、本実施例における「包含」とは、頂部の位置と溝幅が丁度一致する状態の場合も含み、頂部が表面側の溝140の幅に包含されるのか外れるのかの判断として必要な製造装置の加工精度は、使用する製品のカタログ等に記載された値を使用する。カタログ値が存在しない場合、実測をもとに把握した値を使用すればよく、具体的には、複数回の実測を実施し、その結果をもとに平均値と標準偏差を算出し、平均値に標準偏差の3倍(3シグマ)~4倍(4シグマ)の値を足したものを製造装置の加工精度とする。複数の装置の精度に起因する場合は、それぞれの装置の精度の二乗平均の値を使用する。
 また、頂部が表面側の溝140の幅に包含されるのか外れるかの判断として必要な表面側の溝の幅については、表面側の溝の幅が一定でない場合は、表面側の溝の底部の位置からダイシングブレードの頂部が到達する位置までの間の最大幅を使用する。ここで、頂部が表面側の溝140の幅に包含されるのか外れるのかが微妙であって判断がつかない場合等は、包含されることを前提とした実施例と包含されないこと(外れること)を前提にした実施例とのいずれを採用しても、段差部の破損度合いに有意な影響は出ないと考えられるため、いずれか一方を任意に選択すればよい。
 D-2) ブレード頂部が表面側の溝に包含される場合
 次に、製造装置の精度等に起因するダイシングブレードの溝幅方向の位置と表面側の溝140の幅との関係に基づく、ダイシングブレードの先端形状の設計方法及び半導体片の製造方法について説明する。最初に、ダイシングブレードの厚みの中心が溝幅方向にばらつく範囲が表面側の溝140の幅に包含される製造条件における実施の形態について説明
する。
 まず、第1の態様として、ダイシングブレードの厚みの中心が表面側の溝140の幅に包含される製造条件では、以下のようにダイシングブレードの先端形状を設計してもよい。例えば、図17のフローに従ってダイシングブレードの先端形状を設計する際に、S200において、先細りの度合が非常に大きい範囲のダイシングブレードを準備する必要はない。図8のシミュレーション結果に基づくと、曲率半径rが25μm以上の範囲においては、最大応力が0.1MPaしか変化していないため、先端角部の曲率半径が25μm以上(先端角部の曲率半径がダイシングブレードの厚み以上)の先細りの度合のダイシングブレードを準備する意味がほとんどない。つまり、準備する複数のダイシングブレードは、先端角部の曲率半径がダイシングブレードの厚み以上のものよりも大きな応力を段差部の根元領域に発生させる先細りの度合のダイシングブレードを少なくとも含んでいればよく、それより小さい応力を段差部の根元領域に発生させる先細りの度合のダイシングブレードは含んでいなくてもよい。
 第2の態様として、ダイシングブレードの厚みの中心が溝幅方向にばらつく範囲が表面側の溝140の幅に包含される製造条件においては、以下のような製造方法で半導体片を製造してもよい。例えば、ダイシングブレードの先端形状の先細りの度合が小さいために段差部が破損する先細りの範囲を、例えば図17に示したフローで確認し、この範囲よりも先細りの度合が大きい先端形状を有するダイシングブレードを使用し、逆に、この範囲よりも先細りの度合が小さいダイシングブレードは使用しないようにする。これは、ダイシングブレードの厚みの中心が溝幅方向にばらつく範囲が表面側の溝140の幅に包含される製造条件においては、先細りの度合が大きくても、図13における、カーフ幅が非常に狭く(Sb=11.2)、位置ずれ量Dsが大きいとき(Ds=7.5μm)のように、段差部にかかる応力が急激変わることはないため、先細りの度合が小さい側の範囲だけを設計上考慮すればよいためである。
 なお、先細りの度合が小さいために段差部が破損する先細りの範囲とは、図15で説明すると、先端角部の曲率半径が8μm以下の範囲である。また、ダイシングブレードの厚みの中心が溝幅方向にばらつく範囲が表面側の溝140の幅に包含される製造条件において、裏面側の溝の形成に伴い段差部が破損する場合は、段差部の根元領域への応力が大きすぎることを意味している。よって、ある1種類の先細りの度合で裏面側の溝を形成した結果、段差部が破損した場合は、その先細りの度合よりも先細りの度合が小さい範囲のダイシングブレードは使用しないようにすればよい。
 第3の態様として、ダイシングブレードの厚みの中心が溝幅方向にばらつく範囲が表面側の溝140の幅に包含される製造条件においては、切削時の初期の先端形状として、図6の(D)のような半円状の先端部を有するダイシングブレードよりも先細りした形状を有するダイシングブレードを使用するようにする。図8からわかるように、半円状の先端部(r=12.5μm)よりも先細りの度合が小さい範囲(r<12.5μm)においては、先細りの度合が変動した場合に、最大応力が大きく変動する。一方、半円状の先端部よりも先細りした範囲(r>12.5μm)においては最大応力が低位で飽和している。よって、半円状の先端部よりも先細りした先端形状を切削時の初期の先端形状とすれば、その後にダイシングブレードが摩耗した場合も含めて、段差部への応力が低位に抑制された状態を量産工程を通じて維持できる。また、低位で飽和している領域を初期の先端形状とすることで、初期の形状を準備する際に先端形状がばらつく場合であっても、段差部への応力の変動が抑制でき、より狭く浅い表面側の溝を採用しやすくなる。結果として、半円状の先端部よりも先細りの度合が小さい先端形状を初期の先端形状とする場合と比較し、段差部の破損が抑制される。
 なお、半円状の先端部を有するダイシングブレードよりも先細りした形状を有するダイシングブレードは、図17のS200で説明したように、矩形形状のダイシングブレードを加工することで準備してもよいし、自らは加工を行わず、他の主体から入手することで準備してもよい。また、例えば、ダイシングブレードの厚みの中心が溝幅方向にばらつく範囲が表面側の溝幅に包含されるか否かを確認し、包含される場合には、例えば、切削の初期の先端形状として、半円状の先端部を有するダイシングブレードよりも先細りした形状を予め有するダイシングブレードを使用するようにするように決定してもよい。
 第4の態様として、ダイシングブレードの厚みの中心が溝幅方向にばらつく範囲が表面側の溝140の幅に包含される製造条件においては、以下の製造方法で半導体片の製造をしてもよい。例えば、段差部が、回転方向から見た断面が矩形の先端形状を有するダイシングブレードを使用した場合に破損する強度である場合において、段差部を破損させる先細りの範囲よりも先細りの度合が大きい先端形状のダイシングブレードで裏面側の溝170を形成するようにする。言い換えると、そのような場合において、段差部の根元領域に対して段差部を破損させる応力以上の応力を与えない先細りした先端形状のダイシングブレードで裏面側の溝170を形成する。この製造方法によれば、一般的に多く使用される矩形形状のダイシングブレードを使用した場合に段差部が破損してしまうような狭く浅い表面側の溝形状であっても、ダイシングブレードからの応力によって半導体片の段差部を破損させずに半導体基板を個片化ができる。
 これは、図8から分かる通り、先端部の先細りの度合によって、段差部が受ける応力が4倍以上も変動するため、矩形の先端形状を有するダイシングブレードを使用した場合に段差部が破損してしまうような狭く浅い表面側の溝形状であっても、段差部を破損させない先細りの度合が存在しうる点と、ダイシングブレードの厚みの中心が溝幅方向にばらつく範囲が表面側の溝140の幅に包含される製造条件においては、先細りの度合を大きくしても段差部にかかる応力が急激変わることはない点との両方の知見に基づく実施の形態である。
 なお、半円状の先端部よりも先細りしているダイシングブレードや、半円状の先端部よりも小さな応力を段差部の根元領域に発生させる先細りの度合のダイシングブレードを使用することにより、段差部にかかる応力が低位に飽和している領域を利用できるため、応力の観点からは好ましい。
 D-3) ブレード頂部が表面側の溝から外れる場合
 以上、ダイシングブレードの厚みの中心が溝幅方向にばらつく範囲が表面側の溝140の幅に包含される製造条件における実施の形態について説明したが、次に、ダイシングブレードの厚みの中心が溝幅方向にばらつく範囲が表面側の溝140の幅からはずれる製造条件における実施の形態について説明する。
 まず、第1の態様として、頂部に頂面を有さない先細りした先端形状のダイシングブレードを使用し、かつ、その頂部が溝幅方向にばらつく範囲が表面側の溝の幅から外れる製造条件においては、以下のような製造方法で半導体片の製造することができる。例えば、その頂部の領域で最大応力を与えて段差部を破損させる先細りの範囲よりも先細りの度合が小さい先端形状を有するダイシングブレードで裏面側の溝を形成するようにする。言い換えると、量産工程を通じて、そのような形状のダイシングブレードを使用するようにする。
 このような製造方法によれば、頂面を有さない先細りした頂部が溝幅方向にばらつく範囲が表面側の溝幅から外れる製造条件であるにもかかわらず、頂部の領域で最大応力を与えて段差部を破損させてしまう先細り度合のダイシングブレードを知らずに使用してしまうことが防止できる。その結果、予期せぬ破損が抑制でき、頂部の領域で最大応力を与えて段差部を破損させる先端形状のダイシングブレードを使用する場合と比較し、段差部の破損が抑制できる。なお、頂部の領域で段差部に最大応力を与える先細りの範囲を確認したい場合は、例えば、図12及び図13で示したような応力シミュレーションや実際に裏面側の溝を形成し、その破損状況を確認することで確認できる。実際に裏面側の溝を形成して破損状況を確認する場合は、例えば、狭く浅い表面側の溝に対して実際に裏面側の溝を形成し、破損した場合に、その破損が頂部の領域から発生しているのか、根元領域から発生しているかを確認すればよい。
 第2の態様として、頂部に頂面を有さない先細りした先端形状のダイシングブレードを使用し、かつ、その頂部が溝幅方向にばらつく範囲が表面側の溝の幅から外れる製造条件においては、ダイシングブレードの摩耗により、頂部の領域で最大応力を与えて段差部を破損させる先細りの範囲になる前にダイシングブレードを交換する。このようにすれば、ダイシングブレードの摩耗に伴い、頂部の領域で最大応力が発生することによって段差部が破損することがなくなる。また、このような製造方法を使用する場合は、図17で説明した設計方法を利用して、先端形状の先細りの度合が異なる複数のダイシングブレードを用いて、それぞれの頂部における溝幅方向の位置が表面側の溝幅を外れる状態で裏面側の溝を形成し、裏面側の溝を形成した結果から、使用してよい先細り度合や使用すべきでない先細り度合を確認し、この確認結果から得られた使用すべきでない先細り度合に達する前にダイシングブレードを交換するようにしてもよい。
 第3の態様として、頂部に頂面を有さない先細りした先端形状のダイシングブレードを使用し、かつ、その頂部が溝幅方向にばらつく範囲が表面側の溝の幅から外れる製造条件においては、以下のような製造方法で半導体片の製造をしてもよい。例えば、頂面を有さない先細りしたダイシングブレードの頂部が溝幅方向にばらつく範囲が表面側の溝幅を外れる製造条件であって、その頂部の溝幅方向の位置が表面側の溝幅を外れたときにその頂部の領域で段差部に最大応力を与える先細り度合のダイシングブレードを使用する製造条件においては、頂部の溝幅方向の位置が表面側の溝幅を外れたときに、その最大応力によって段差部が破損しないように、表面側の溝の形状(幅や深さ)と前記頂部が達する深さとが設定された条件で製造する。このような製造方法によれば、ダイシングブレードの頂部の溝幅方向の位置が表面側の溝幅を外れる製造条件において、頂部の領域で段差部に最大応力を与える先端形状のダイシングブレードを知らずに使用した場合であっても、段差部の破損が抑制される。仮にそのように設定されていない場合は、ダイシングブレードの頂部の溝幅方向の位置が表面側の溝幅を外れた場合に、予期せぬ破損が発生しうることになる。なお、段差部の形状は、表面側の溝の形状(幅や深さ)と前記頂部が達する深さとによって決まり、この段差部の形状によって段差部の強度が決まるため、表面側の溝の形状(幅や深さ)と前記頂部が達する深さとが設定されば、段差部の強度が設定されたことになる。
 第4の態様として、頂部に頂面を有さない先細りした先端形状のダイシングブレードを使用し、かつ、その頂部が溝幅方向にばらつく範囲が表面側の溝の幅から外れる製造条件においては、以下のような製造方法で半導体片の製造をしてもよい。例えば、ダイシングブレードの使用期間内において、その頂部の領域で段差部に最大応力を与える先細り度合いに摩耗した場合に、その最大応力によって段差部が破損しないように、表面側の溝の形状と頂部が達する深さとが設定された条件で製造する。このような製造方法によれば、ダイシングブレードの頂部の溝幅方向の位置が表面側の溝幅を外れる製造条件において、摩耗に伴い、頂部の領域で段差部に最大応力を与える先端形状のダイシングブレードを知らずに使用した場合であっても、段差部の破損が抑制される。仮にそのように設定されていない場合は、予期せぬ破損が発生しうることになる。
 第5の態様として、ダイシングブレードの厚みの中心が溝幅方向にばらつく範囲が表面側の溝140の幅から外れる製造条件においては、以下のような製造方法で半導体片の製造をしてもよい。例えば、ダイシングブレードの厚みの中心が溝幅方向にばらつく範囲が表面側の溝の幅から外れる製造条件においては、図15の実験結果のように、ダイシングブレードの先端形状の先細りの度合が小さいために段差部が破損する先細りの範囲と、ダイシングブレードの先端形状の先細りの度合が大きいために段差部が破損する先細りの範囲との両方を確認し、この両者の間の先細りの範囲に含まれる先細りの度合の先端形状で裏面側の溝を形成するようにして半導体片の製造するようにすればよい。
 これは、ダイシングブレードの厚みの中心が溝幅方向にばらつく範囲が表面側の溝140の幅から外れる製造条件であるにもかかわらず、ダイシングブレードの先端形状の先細りの度合が大きいために段差部が破損する先細りの範囲を確認しないでダイシングブレードの先端形状を決定した場合は、予期せぬ破損が発生しうるためである。なお、両者の間の範囲内に、段差部の根元領域に最大応力を発生させる先細りの範囲と、頂部の領域に最大応力を発生させる先細りの範囲とが含まれる場合、段差部の根元領域に最大応力を発生させる先細りの範囲に含まれる先端形状に予め加工された切削部材で前記裏面側の溝を形成することが好ましい。これは、頂部の領域に最大応力を発生させる先細りの範囲に含まれる先端形状に予め加工された切削部材を使用する場合と比較し、先細りしてない分だけ、切削部材の寿命が長くなるためである。
 D-4) 表面側の溝の幅の決定方法、製造装置の選択方法
 次に、表面側の溝の幅と、ダイシングブレードの頂部(または、厚み方向の中心)が溝幅方向にばらつく範囲との関係を考慮した表面側の溝の幅の決定方法及び製造装置の選択方法について説明する。
 図18は、本発明の実施例に係る表面側の溝の幅の決定方法を説明する図である。まず、S300において、ダイシングブレードの厚み方向の中心が溝幅方向にばらつく範囲を確認する。ばらつく範囲は、主に使用する製造装置の精度に起因するものであり、例えば、ダイシング装置の加工精度や表面側の微細溝の位置を検知する検知手段(カメラ等)の精度等で決まる。よって、これらの精度を、製品カタログや実測にて確認することで、ダイシングブレードの厚み方向の中心が溝幅方向にばらつく範囲を把握する。次に、S310において、表面側の溝の幅を、S300で確認したばらつく範囲を包含する幅に決定する。このような決定方法によれば、図13における、カーフ幅が非常に狭く(Sb=11.2)、位置ずれ量Dsが大きい場合(Ds=7.5μm)のように、頂部の領域に応力が集中することがなく、段差部の破損が抑制される。
 また、図18のS300において、頂面を有さない先細りした頂部を有するダイシングブレードを使用する場合において、この頂部が溝幅方向にばらつく範囲を確認し、その範囲を包含するように表面側の溝の幅を決定してもよい。また、S310において、ばらつく範囲を包含する幅のうち、できるだけ狭い幅に決定することが好ましい。表面側の溝の幅が広すぎる場合は、一枚の基板から取得できる半導体片の数が少なくなってしまうためである。例えば、ダイシングブレードの厚み方向の中心が溝幅方向にばらつく範囲が±3μmの場合、10μm以上の表面側の溝の幅とするよりも、好ましくは、6~9μm程度、つまり、ダイシングブレードのばらつく範囲の±50%程度の溝の幅になるようにするとよい。
 図19は、本発明の実施例に係る製造装置の選択方法を説明する図である。まず、S400において表面側の溝幅を確認する。より具体的には、ダイシングブレードから直接応力を受ける表面側の溝部分の幅を確認する。次に、S410において、ダイシングブレードの厚み方向の中心が溝幅方向にばらつく範囲が、確認した表面側の幅に包含されるように、使用する製造装置を選択する。具体的には、ダイシングブレードの厚み方向の中心が溝幅方向にばらつく範囲が、確認した表面側の幅に包含される精度を有するダイシング装置やカメラ等の検知手段を選択する。このような決定方法によれば、図13における、カーフ幅が非常に狭く(Sb=11.2)、位置ずれ量Dsが大きい場合(Ds=7.5μm)のように、頂部の領域に応力が集中することがなく、段差部の破損が抑制される。
 また、図19のS410において、頂面を有さない先細りした頂部を有するダイシングブレードを使用する場合において、この頂部が溝幅方向にばらつく範囲が、確認した幅に包含されるように、使用する製造装置を選択してもよい。
 図20は、本発明の実施例に係る表面側の溝の幅の決定方法及び製造装置の選択方法の別の実施例を説明する図である。まず、S500及びS510において、表面側の溝の幅及びダイシングブレードが溝幅方向にばらつく範囲を確認する。詳細については図18及び図19と同様である。次に、S520において、ダイシングブレードの厚み方向の中心(または頂部)が溝幅方向にばらつく範囲が、表面側の溝の幅から外れるか否かを確認する。外れない場合は(S520-NO)、S540に進み、その溝幅と製造装置を使用することを決定する。一方、外れる場合は(S520-YES)、S530に進み、表面側の溝の幅または使用する製造装置の少なくとも一方を変更し、ダイシングブレードの厚み方向の中心(または頂部)が溝幅方向にばらつく範囲が、表面側の溝の幅から外れないように変更する。このようにすれば、図13における、カーフ幅が非常に狭く(Sb=11.2)、位置ずれ量Dsが大きい場合(Ds=7.5μm)のように、頂部の領域に応力が集中することがなく、段差部の破損が抑制される。
 以上、製造装置の精度等に起因するダイシングブレードの溝幅方向の位置と表面側の溝140の幅との関係に基づく、ダイシングブレードの先端形状の設計方法、半導体片の製造方法、表面側の溝の幅の決定方法、及び製造装置の選択方法等について説明したが、これらの実施例において、特に記載がなく、かつ、技術的な矛盾がなければ、「ダイシングブレードの厚みの中心が表面側の溝140の幅に包含される(又は、表面側の溝140の幅から外れる)製造条件」は、「頂面を有さない先細りした頂部が表面側の溝140の幅に包含される(又は、表面側の溝140の幅から外れる)製造条件」と読み替えることができる。また、特に記載がなければ、ダイシングブレードの厚みの中心や頂部が溝幅方向にばらつく範囲が表面側の溝140の幅に包含されるか否かを確認する工程を設けてもよいし設けなくてもよい。また、各実施例のそれぞれの構成や条件は、技術的な矛盾がなければ、相互に組み合わせてよい。
 E) 事前の先端形状の加工工程の実施例
 次に、実際の量産工程で使用するダイシングブレードを準備する工程について説明する。なお、この加工工程は、先に説明した各実施例に適用してもよいし適用しなくてもよい。この加工工程では、実際の量産工程で裏面側の溝を形成するのに先立ち、例えば、図17の設計フロー等によって選択された所望の先端形状を準備する必要があるが、その準備は、図17のS200において説明した方法と同様でよい。すなわち、一般的に入手しやすいダイシングブレードは矩形の先端形状を有しているため、これを所望の先端形状に予め加工する加工工程を設ける。そして、この加工工程において、段差部を破損させない先細りの度合に至るまで、入手したダイシングブレードを加工するようにする。なお、加工工程によって到達する所望の先細り形状は、図17のフローによって決定されたものであってもよし、図17のフローとは異なる方法で決定されたものであってもよい。また、この加工工程は、先に説明した各実施例に適用してもよいし適用しなくてもよい。
 次に、所望の先端形状に予め加工する加工工程の、より好ましい形態について説明する。第1の態様として、一般的なダイシングにおいては矩形の先端形状やその他の任意の先端形状が使用されるが、本実施例に係る加工工程においては、例えば矩形形状のように、段差部の根元領域に対して段差部を破損させる応力以上の応力を与えてしまう先端形状のダイシングブレードを先細りさせて、段差部を破損させない先細りの度合に予め加工するようにする。例えば、段差部を破損させない先細りの度合に至るまで、予め先端部を摩耗させる。このようにすることで、段差部の根元領域に対して段差部を破損させる応力以上の応力を与えてしまう先端形状のダイシングブレードであっても、段差部の破損を抑制できるダイシングブレードとして利用できるようになる。なお、表面側の溝の幅が広く深いことで、先端部が矩形形状のダイシングブレードであっても段差部が破損しないような場合は、本実施例のように、予め加工する工程は必要はない。ただし、表面側の溝の幅が狭く浅い場合、つまり、矩形の先端形状やその他の任意の先端形状を利用した際に、段差部の根元領域に対して段差部を破損させる応力以上の応力を与えるような場合は、本実施例のように、先端部を予め加工する工程を設けることが好ましい。
 第2の態様として、先端部を予め加工する工程において、半円状の先端部を有するダイシングブレードよりも先細りさせるようにしてもよい。例えば、先端部を半円状より先細りさえなくても段差部が破損しないような場合であっても、半円状より先細りさせてよい。これは、図8から分かるように、先端部が半円状のダイシングブレードよりも先細りの度合が大きい範囲では最大応力の変化が小さく、十分に応力が抑制された範囲であるため、加工工程において先端形状が所望の形状からばらついた場合であっても、段差部の根元領域に対する応力の変動が抑制されることになるためである。結果として、半円形状の先端部を有するダイシングブレードよりも先細りさせない場合と比較し、加工工程において先端形状がばらついた場合であっても、段差部の根元領域に対する応力の変動を抑制できる。
 第3の態様として、先端部を予め加工する加工工程が、頂部に頂面を有さない先細りした先端形状に加工する工程である場合は、その予め加工した頂部が溝幅方向にばらつく範囲と表面側の溝幅との関係が、その予め加工した頂部が溝幅方向にばらつく範囲が表面側の溝幅に包含される関係であることが好ましい。先端部を予め加工する場合、頂部の位置がダイシングブレードの厚み方向の中心からずれる場合がある。よって、加工工程における先端形状のばらつきを考慮したとしても、頂部が表面側の溝幅に包含されるのであれば、加工工程において先端形状がばらついた場合であっても、頂部の領域に応力が集中することで段差部が破損することが抑制されるためである。
 第4の態様として、先端部を予め加工したダイシングブレードを使用する場合において、ダイシングブレードの厚み方向の中心が溝幅方向にばらつく範囲と表面側の溝幅との関係は、ダイシングブレードの厚み方向の中心が溝幅方向にばらつく範囲が表面側の溝幅に包含される関係であることが好ましい。ダイシングブレードを本実施例の加工工程において先細りさせた場合、先細りした頂部はダイシングブレードの厚み方向の中心に形成されやすい。よって、ダイシングブレードの厚み方向の中心が溝幅方向にばらつく範囲が表面側の溝幅に包含されるのであれば、頂部の領域に応力が集中する先細りの度合に加工工程で加工する場合であっても、包含されない場合と比較し、頂部の領域に応力が集中することで段差部が破損することが抑制されるためである。また、頂部の領域に応力が集中する先細りの度合まで先細りさせない場合であっても、量産工程での摩耗による先細りにより、頂部の領域に応力が集中することで段差部が破損することが抑制されるためである。
 第5の態様として、予め加工する前のダイシングブレードの先端形状としては、回転方向から見た断面が実質的に矩形形状のダイシングブレードを準備することが好ましい。断面が実質的に矩形形状のダイシングブレードはフルダイシングによく使用される形状であるため入手が容易であり、また、加工工程によって任意の先細りの度合に加工しやすいためである。そして、実質的に矩形形状のダイシングブレードを利用する場合は、事前の設計工程において、実質的に矩形形状のダイシングブレードによって段差部が破損するかを確認することが好ましい。仮に、段差部が破損しない場合であって、表面側の溝の形状等を変更する意思がない場合は、実質的に矩形形状のダイシングブレードをそのまま量産工程で使用する形状とすればよい。そして、先端を予め加工する工程は、段差部が破損する先端形状に対してのみ実施するようにすればよい。本実施例によれば、量産工程で利用しようとしている先端形状が段差部を破損させるか否かを確認することで、破損させる場合のみ加工工程を実施することになるため、不要な加工工程をしなくて済むようになる。なお、「実質的に矩形形状」とは、矩形形状を意図して製造された結果、製造ばらつき等により先端角部に多少の曲面が形成されたものを含む。例えば、カタログ等において、矩形形状を意図して製造販売されているものは、先端角部の曲面形状の大小にかかわらず、本実施例の「実質的に矩形形状」に含まれる。
 F) ブレードの交換に関する実施例
 次に、ダイシングブレードの交換のタイミングについて説明する。ダイシングブレードを使用し続けると、徐々に摩耗して、図21の形状のように、先端が先細った形状となる。このように先細った形状に摩耗した場合であっても、図13のシミュレーション結果から理解される通り、ダイシングブレード先端の頂部が半導体基板の表面側の溝140の幅から外れない位置精度の製造条件であれば、その摩耗したダイシングブレードを使用し続けたとしても、段差部の破損は抑制される。しかしながら、ダイシングブレード先端の頂部が半導体基板の表面側の溝の幅から外れてしまうような位置精度の製造条件の場合は、ダイシングを続けていくに従い、段差部に破損が生じる割合が増えることになる。
 図中の破線500は、本実施例における初期のダイシングブレード300の一例としての形状であり、図中の実線510は、ダイシングブレード300が摩耗して先細りした形状を示している。ここで、ダイシングブレード300の形状500の場合は、製造ばらつき等により、ダイシングブレード300の頂部が半導体基板Wの表面側の溝140の幅から外れた場合であっても、先端部の湾曲面により応力が分散されるため、段差部の一点に大きな応力がかからずに、段差部が破損する可能性が低い。一方、摩耗した形状510の場合は、先端部に湾曲面があるものの、先細りしているため、段差部の一点に応力が集中しやくす、その部分を中心として、段差部に破損520が生じやすくなる。
 そこで、本実施例では、ダイシングブレードの摩耗により、ダイシングブレードの先端部が予め定めた先細りの形状に達した場合に、ダイシングブレードを新たなものに交換をする。言い換えると、ダイシングブレードの摩耗により、ダイシング時に段差部にかかる応力が、予め定めた応力に達した場合に、ダイシングブレードの寿命に到達する前であっても、ダイシングブレードを新たなものに交換する。すなわち、ダイシングブレード先端の頂部が半導体基板の表面側の溝の幅から外れてしまうような位置精度の製造条件においては、ダイシングブレードの寿命とは別に、上記のタイミングでダイシングブレードを交換する。通常のフルダイシングでは、摩耗により先端部が先細りした状態において、ダイシング時の振動や半導体基板を貫通した衝撃などにより、ダイシングブレードに欠けなどの破損を生じる。よって、通常のフルダイシングでは、このタイミングを実験的、経験的に把握することで、ダイシングブレードの寿命を決定し、この寿命に基づいて交換が行われる。一方、本実施例では、ダイシングブレードの欠けなどの破損に基づき決まる寿命に至る前であっても、交換を実施する。
 また、予め定めた先細りの形状に達したか否かの判断や、予め定めた応力に達したか否かの判断は、事前の実験やシミュレーション等により、量産工程で許容可能な破損度合い(破損率など)と先端部の形状や応力との関係を把握するとともに、そのような先端部の形状や応力に達するのに要する、ダイシングの総時間、ダイシングの総距離、ダイシングした半導体基板の総枚数などの製造条件(累積データ)を予め求めておく。そして、量産工程においては、これらのダイシングブレードの摩耗度合いを表す製造条件が予め定めた条件に達した場合に、予め定めた先細りの形状や予め定めた応力に達したと判断すればよい。
 また、事前の実験やシミュレーション等により、量産工程で許容しうる破損率に対応する具体的な先端部の形状や応力を把握しなくても、ダイシングにおける総時間、総距離、総枚数等などの摩耗度合いを表す製造条件と破損状況との関係を数多くの実験から求め、これらの実験に基づいて、量産工程で予め定めた先細りの形状や予め定めた応力に達したか否かを判断してもよい。また、別の方法として、量産工程の途中で、実際に先端の形状を計測しながら判断してもよい。この場合、ダイシングブレードの頂部から予め定めた距離における厚みや、先端部の角度等を測定し判断すればよい。
 なお、ダイシングブレード先端の頂部が半導体基板の表面側の溝の幅から外れない製造条件を選択した場合や、外れたとしても段差部が破損しないような段差部の厚みを選択した場合は段差部の破損がより抑制されることになり、この場合は、ダイシングブレードの寿命に基づいて、ダイシングブレードを交換すればよい。なお、ダイシングブレードの頂部が表面側の溝の幅から外れないようにするためには、製造装置の加工精度と半導体基板表面側の溝の幅との関係が、そのようになる組み合わせを選択すればよい。すなわち、製造装置の精度が悪い場合は、半導体基板の表面側の溝の幅を広くし、製造装置の精度がよい場合は、それに応じて、溝の幅を狭くすればよい。
 また、実施する製造条件が、溝の幅から外れる製造条件なのかはずれない製造条件なのかが不明な場合は、溝の幅から外れる製造条件と仮定して、ダイシングブレードの寿命とは無関係に交換した方が好ましい。
 以上、本発明の好ましい実施の形態について詳述したが、本発明は、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。例えば、ガラスやポリマー等の半導体を含まない基板から個々の素子を個片化する場合に適用してもよい。例えば、半導体を含まないMEMS用の基板に適用してもよい。また、本発明の実施の形態における各工程は、順序的な矛盾がない限り、少なくとも一部を量産工程前の設計段階で実施してもよいし、全てを量産工程の一環として実施してもよい。また、本発明の実施の形態における各工程は、複数の主体によって実施されてよい。例えば、表面側の溝の形成を第1の主体が実施し、第1の主体によって表面側の溝が形成された基板を第2の主体が納入することによって基板を準備し、準備した基板に第2の主体が裏面側の溝を形成して基板を個片化(分割)してもよい。すなわち、表面側の溝が形成された基板を、第1の主体が準備してもよいし、第2の主体が自ら準備してもよい。
 G) 各実施例と効果のまとめ
 G-1) ブレード先端部の形状の設計方法に関する実施例と効果
 第1の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備える半導体片の製造方法に使用する前記切削部材の先端形状の設計方法であって、先端部の先細りの度合が異なる複数の切削部材を準備する工程と、同一形状の複数の表面側の溝を準備する工程と、前記複数の表面側の溝に対して、前記複数の切削部材で前記裏面側の溝を形成した場合のそれぞれについて、前記段差部の破損の状況を確認する工程と、前記確認の結果、前記複数の切削部材に、前記段差部を破損させる切削部材と前記段差部を破損させない切削部材の両方が含まれる場合、前記段差部を破損させない切削部材の先細りの度合を量産工程で使用する切削部材の先端形状として選択する工程と、を備える、切削部材の先端形状の設計方法である。
 第2の態様は、前記複数の切削部材は、半円状の先端部を有する切削部材よりも先細りした切削部材を含む、上記第1の態様に記載の切削部材の先端形状の設計方法である。
 第3の態様は、前記複数の切削部材は、半円状の先端部を有する切削部材よりも先細りの度合が小さい切削部材を含む、上記第2の態様に記載の切削部材の先端形状の設計方法である。
 第4の態様は、前記複数の切削部材は、半円状の先端部を有する切削部材よりも先細りの度合が小さい切削部材を複数含む、上記第1の態様から上記第3の態様のいずれか1つに記載の切削部材の先端形状の設計方法である。
 第5の態様は、前記複数の切削部材は、半円状の先端部を有する切削部材よりも先細りの度合が小さい切削部材を、少なくとも3種類以上含む、上記第1の態様から上記第4の態様のいずれか1つに記載の切削部材の先端形状の設計方法である。
 第6の態様は、前記複数の切削部材は、頂部に頂面を有さない先細りした先端形状であって、当該頂部の溝幅方向の位置が前記表面側の溝幅から外れた場合に、溝幅を外れた当該頂部の領域に最大応力を生じさせる先細り度合の切削部材を含む、上記第1の態様から上記第5の態様のいずれか1つに記載の切削部材の先端形状の設計方法である。
 第7の態様は、前記頂部の領域に最大応力を生じさせる先細り度合の切削部材を複数含む、上記第6の態様に記載の切削部材の先端形状の設計方法である。
 第8の態様は、前記確認の結果、前記複数の切削部材に、前記段差部を破損させる切削部材と前記段差部を破損させない切削部材の両方が含まれる場合、前記段差部を破損させる切削部材の先細りの度合を量産工程で使用しない切削部材の先端形状として選択対象から除外する、上記第1の態様から上記第7の態様のいずれか1つに記載の切削部材の先端形状の設計方法である。
 第9の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備える半導体片の製造方法に使用する前記切削部材の先端形状の設計方法であって、先端部の先細りの度合が異なる複数の切削部材を準備する工程と、同一形状の複数の表面側の溝を準備する工程と、前記複数の表面側の溝に対して、前記複数の切削部材で前記裏面側の溝を形成した場合のそれぞれについて、前記段差部の破損の状況を確認する工程と、前記複数の切削部材に、前記段差部を破損させる切削部材と前記段差部を破損させない切削部材の両方が含まれる場合、前記確認の結果から、前記段差部を破損させない切削部材の先細りの範囲を推定する工程と、前記推定した範囲に含まれる先細りの度合の切削部材を量産工程で使用する切削部材の先端形状として選択する工程と、を備える、切削部材の先端形状の設計方法である。
 第10の態様は、上記第1の態様から上記第9の態様に記載の設計方法によって設計された先端形状の切削部材を用いて、前記製造方法で基板を半導体片に個片化する半導体片の製造方法である。
 第11の態様は、上記第10の態様に記載の製造方法によって製造された少なくとも1つの半導体片を実装する回路基板である。
 第12の態様は、上記第11の態様に記載の回路基板を実装する電子装置である。
 上記第1、8、9の態様によれば、切削部材の先細り度合と段差部の破損との関係を考慮しないで、切削部材の先端形状を決定する場合と比較し、より浅い表面側の溝を量産工程で採用できる。
 上記第2の態様によれば、段差部の根元領域への最大応力が最も小さくなる条件に近い条件で段差部が破損するか否かを確認できる。
 上記第3の態様によれば、複数の切削部材として、半円状の先端部を有する切削部材よりも先細りの度合が小さい切削部材を含まない場合と比較し、先端形状の選択が容易となる。
 上記第4の態様によれば、半円状の先端部を有する切削部材よりも先細り度合が小さい切削部材が1種類のみ含まれる場合と比較し、どの程度まで先細りの度合が小さくても段差部が破損しないかが確認しやすくなる。
 上記第5の態様によれば、半円状の先端部を有する切削部材よりも先細り度合が小さい切削部材が2種類のみ含まれる場合と比較し、どの程度まで先細りの度合が小さくても段差部が破損しないかが確認しやすくなる。
 上記第6の態様によれば、頂部の溝幅方向の位置が表面側の溝幅から外れる場合において、どの程度まで先細りの度合が大きくても段差部が破損しないかを全く確認できない状態を回避できる。
 上記第7の態様によれば、切削部材の頂部の位置に最大応力を生じさせる先端形状の切削部材が1種類しか含まれない場合と比較し、どの程度まで先細りの度合が大きくても段差部が破損しないかが確認しやすくなる。
 G-2) ブレードの位置ばらつきとブレード先端部の形状との関係に関する実施例と効果
 第1の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備え、前記切削部材の厚みの中心が溝幅方向にばらつく範囲が前記表面側の溝幅に包含される製造条件においては、前記切削部材の先端形状の先細りの度合が小さいために前記段差部が破損する第1の先細りの範囲を確認し、当該範囲よりも先細りの度合が大きい先端形状を有する切削部材で前記裏面側の溝を形成する半導体片の製造方法である。
 第2の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備え、頂部に頂面を有さない先細りした前記切削部 材を使用し、かつ、前記頂部が溝幅方向にばらつく範囲が前記表面側の溝幅に包含される製造条件においては、前記切削部材の先端形状の先細りの度合が小さいために前記段差部が破損する第1の先細りの範囲を確認し、当該範囲よりも先細りの度合が大きい先端形状を有する切削部材で前記裏面側の溝を形成する半導体片の製造方法である。 
 第3の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備え、前記切削部材の厚みの中心が溝幅方向にばらつく範囲が前記表面側の溝幅に包含される製造条件においては、前記切削部材の先端形状の先細りの度合が小さいために前記段差部が破損する第1の先細りの範囲を確認し、当該範囲に含まれる先細りの度合を有する切削部材を前記裏面側の溝を形成する際に使用しない半導体片の製造方法である。
 第4の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備え、頂部に頂面を有さない先細りした前記切削部材を使用し、かつ、前記頂部が溝幅方向にばらつく範囲が前記表面側の溝幅に包含される製造条件においては、前記切削部材の先端形状の先細りの度合が小さいために前記段差部が破損する第1の先細りの範囲を確認し、当該範囲に含まれる先細りの度合を有する切削部材を前記裏面側の溝を形成する際に使用しない半導体片の製造方法である。
 第5の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備え、前記切削部材の厚みの中心が溝幅方向にばらつく範囲が前記表面側の溝幅から外れる製造条件においては、前記切削部材の先端形状の先細りの度合が小さいために前記段差部が破損する第1の先細りの範囲と、前記切削部材の先端形状の先細りの度合が大きいために前記段差部が破損する第2の先細りの範囲とを確認し、前記第1の先細りの範囲と前記第2の先細りの範囲との間の第3の先細りの範囲に含まれる先細りの度合の前記切削部材で前記裏面側の溝を形成する半導体片の製造方法である。
 第6の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備え、頂部に頂面を有さない先細りした前記切削部材を使用し、かつ、前記頂部が溝幅方向にばらつく範囲が前記表面側の溝幅から外れる製造条件においては、前記切削部材の先端形状の先細りの度合が小さいために前記段差部が破損する第1の先細りの範囲と、前記切削部材の先端形状の先細りの度合が大きいために前記段差部が破損する第2の先細りの範囲とを確認し、前記第1の先細りの範囲と前記第2の先細りの範囲との間の第3の先細りの範囲に含まれる先細りの度合の前記切削部材で前記裏面側の溝を形成する半導体片の製造方法である。
 第7の態様は、第3の先細りの範囲に、前記段差部の根元領域に最大応力を発生させる先細りの範囲と、前記頂部の領域に最大応力を発生させる先細りの範囲とが含まれる場合、前記段差部の根元に最大応力を発生させる先細りの範囲に含まれる先端形状に予め加工された切削部材で前記裏面側の溝を形成する、上記第5の態様または第6の態様に記載の半導体片の製造方法である。
 第8の態様は、上記第1の態様から第7の態様いずれか1つに記載の製造方法によって製造された少なくとも1つの半導体片を実装する回路基板である。
 第9の態様は、第8の態様に記載の回路基板を実装する電子装置である。
 上記第1、2、3、4の態様によれば、先端形状の先細りの度合が小さいために段差部が破損する先細りの範囲を確認しないで任意の先端形状の切削部材を使用する場合と比較し、半導体片の破損を抑制できる。
 上記第5、6の態様によれば、第1の先細りの範囲と第2の先細りの範囲とを確認せずに任意の先端形状の切削部材を使用する場合と比較し、半導体片の破損を抑制できる。
 上記第7の態様によれば、頂部の領域に最大応力を発生させる先細りの範囲に含まれる先端形状に予め加工された切削部材を使用する場合と比較し、切削部材の寿命が長くなる。
 G-3) ブレード頂部が表面側の溝に包含される場合の実施例と効果
 第1の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備え、前記段差部が、回転方向から見た断面が矩形の先端形状を有する前記切削部材を使用した場合に破損する強度であり、かつ、前記切削部材の厚みの中心が溝幅方向にばらつく範囲が前記表面側の溝幅に包含される製造条件において、前記段差部を破損させる先細りの範囲よりも先細りの度合が大きい先端形状の前記切削部材で前記裏面側の溝を形成する、半導体片の製造方法である。
 第2の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備え、前記切削部材は、頂部に頂面を有さない先細りした先端形状を有し、前記段差部が、回転方向から見た断面が矩形の先端形状を有する前記切削部材を使用した場合に破損する強度であり、かつ、前記頂部が溝幅方向にばらつく範囲が前記表面側の溝幅に包含される製造条件において、前記段差部を破損させる先細りの範囲よりも先細りの度合が大きい先端形状の前記切削部材で前記裏面側の溝を形成する、半導体片の製造方法である。
 第3の態様は、前記切削部材は、先端部が半円状の切削部材よりも先細りしている切削部材である、上記第1の態様または上記第2の態様に記載の半導体片の製造方法である。
 第4の態様は、前記切削部材は、先端部が半円状の切削部材よりも小さな応力を段差部の根元領域に発生させる先細りの度合の切削部材である、上記第1の態様から上記第3の態様のいずれか1つに記載の半導体片の製造方法である。
 第5の態様は、上記第1の態様から上記第4の態様いずれか1つに記載の製造方法によって製造された少なくとも1つの半導体片を実装する回路基板である。
 第6の態様は、上記第5の態様に記載の回路基板を実装する電子装置である。
 上記第1、第2の態様によれば、矩形の先端形状を有する切削部材を使用した場合に段差部が破損してしまうような狭く浅い表面側の溝形状であっても、切削部材からの応力によって半導体片の段差部を破損させずに基板を個片化ができる。
 上記第3の態様によれば、段差部にかかる応力が低位に飽和している領域を利用して、裏面側の溝を形成できる。
 上記第4の態様によれば、段差部にかかる応力が低位に飽和している領域を利用して、裏面側の溝を形成できる。
 G-4) ブレード頂部が表面側の溝から外れる場合の実施例と効果
 第1の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備え、頂部に頂面を有さない先細りした前記切削部材を使用し、かつ、前記頂部が溝幅方向にばらつく範囲が前記表面側の溝幅から外れる製造条件においては、当該頂部の領域で最大応力を与えて前記段差部を破損させる先細りの範囲よりも先細りの度合が小さい先端形状を有する切削部材で前記裏面側の溝を形成する半導体片の製造方法である。
 第2の態様は、前記切削部材の摩耗により、前記切削部材の先端形状が、頂部の領域で最大応力を与えて前記段差部を破損させる先細りの範囲になる前に前記切削部材を交換する、上記第1の態様に記載の半導体片の製造方法。
 第3の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備え、頂面を有さない先細りした前記切削部材の頂部が溝幅方向にばらつく範囲が前記表面側の溝幅を外れる製造条件であって、前記頂部の溝幅方向の位置が前記表面側の溝幅を外れたときに前記頂部の領域で前記段差部に最大応力を与える先細り度合の切削部材を使用する製造条件においては、前記頂部の溝幅方向の位置が前記表面側の溝幅を外れたときに前記最大応力によって前記段差部が破損しないように、前記表面側の溝の形状と前記頂部が達する深さとが設定されている半導体片の製造方法である。
 第4の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備え、頂部に頂面を有さない先細りした前記切削部材を使用し、かつ、前記頂部が溝幅方向にばらつく範囲が前記表面側の溝幅から外れる製造条件においては、前記切削部材が、前記切削部材の使用期間内において、前記頂部の領域で前記段差部に最大応力を与える先細り度合に至るまで摩耗した場合に、前記最大応力によって前記段差部が破損しないように、前記表面側の溝の形状と前記頂部が達する深さとが設定されている半導体片の製造方法である。
 第5の態様は、上記第1の態様から上記第4の態様いずれか1つに記載の製造方法によって製造された少なくとも1つの半導体片を実装する回路基板。
 第6の態様は、上記第5の態様に記載の回路基板を実装する電子装置。
 上記第1の態様によれば、切削部材の頂部が溝幅方向にばらつく範囲が表面側の溝幅を超える製造条件において、頂部の領域で最大応力を与えて段差部を破損させる先細り度合の切削部材であることを知らずに使用してしまう場合と比較し、段差部の破損が抑制できる。
 上記第2の態様によれば、切削部材の先端形状が、頂部の領域で最大応力を与えて段差部を破損させる先細りの範囲になっても切削部材を交換しない場合と比較し、半導体片の破損を抑制できる。
 上記第3、第4の態様によれば、切削部材の頂部が溝幅方向にばらつく範囲が表面側の溝幅を外れる製造条件において、頂部の領域で前記段差部に最大応力を与える先細り度合の切削部材を知らずに使用した場合であっても、段差部の破損が抑制できる。
 G-5) ブレード先端部の加工工程に関する実施例と効果
 第1の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、前記裏面側の溝を形成するより前に前記切削部材の先端部を予め加工する加工工程であって、前記段差部の根元領域に対して前記段差部を破損させる応力以上の応力を与える先端部を有する切削部材を先細りさせて、前記根元領域への応力によって前記段差部を破損させない先細りの度合に加工する加工工程と、を備える半導体片の製造方法である。
 第2の態様は、前記加工工程は、半円状の先端部を有する切削部材よりも先細りさせる工程である、上記第1の態様に記載の半導体片の製造方法である。
 第3の態様は、前記加工工程は、頂部に頂面を有さない先細りした先端形状に加工する工程であり、前記頂部が溝幅方向にばらつく範囲は前記表面側の溝幅に包含される、上記第1の態様または上記第2の態様に記載の半導体片の製造方法である。
 第4の態様は、前記切削部材の厚み方向の中心が溝幅方向にばらつく範囲は、前記表面側の溝幅に包含される、上記第1の態様または上記第2の態様に記載の半導体片の製造方法。
 第5の態様は、回転方向から見た断面が実質的に矩形形状の切削部材を準備する工程と、前記準備した切削部材を使用して前記裏面側の溝を形成した場合の、前記段差部の破損状況を確認する工程と、を備え、前記準備した切削部材によって前記段差部が破損する場合、前記加工工程を実施する、上記第1の態様から上記第4の態様いずれか1つに記載の半導体片の製造方法である。
 第6の態様は、上記第1の態様から上記第5の態様いずれか1つに記載の製造方法によって製造された少なくとも1つの半導体片を実装する回路基板である。
 第7の態様は、上記6の態様に記載の回路基板を実装する電子装置である。
 上記第1の態様によれば、段差部を破損させる応力以上の応力を段差部の根元領域に対して与える先端形状の切削部材を利用する場合に、段差部の根元領域に対する応力によって段差部を破損させずに基板を個片化ができる。
 上記第2の態様によれば、半円形状の先端部を有する切削部材よりも先細りさせない場合と比較し、加工工程において先端形状がばらついた場合であっても、段差部の根元領域に対する応力の変動を抑制できる。
 上記第3の態様によれば、頂部が溝幅方向にばらつく範囲が表面側の溝幅から外れる場合と比較し、段差部の破損が抑制される。
 上記第4の態様によれば、切削部材の厚み方向の中心が溝幅方向にばらつく範囲が、表面側の溝幅から外れる場合と比較し、段差部の破損が抑制される。
 上記第5の態様によれば、加工工程が必要な場合のみ加工工程を実施することができる。
 G-6) 表面側の溝の幅の決定方法及び製造装置の選択方法に関する実施例と効果
 第1の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備える半導体片の製造方法における製造条件の決定方法であって、前記切削部材の厚み方向の中心が溝幅方向にばらつく範囲を確認する工程と、前記表面側の溝の幅を、前記確認した範囲を包含する幅に決定する工程と、を備える半導体片の製造方法における製造条件の決定方法である。
 第2の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備える半導体片の製造方法における製造条件の決定方法であって、頂面を有さない先細りした頂部を有する切削部材を使用する場合において、前記頂部が溝幅方向にばらつく範囲を確認する工程と、前記表面側の溝の幅を、前記確認した範囲を包含する幅に決定する工程と、を備える半導体片の製造方法における製造条件の決定方法である。
 第3の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備える半導体片の製造方法における製造条件の決定方法であって、前記表面側の溝の幅を確認する工程と、前記切削部材の厚み方向の中心が溝幅方向にばらつく範囲が、確認した前記幅に包含されるように、前記製造方法に使用する製造装置を選択する工程と、を備える半導体片の製造方法における製造条件の決定方法である。
 第4の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備える半導体片の製造方法における製造条件の決定方法であって、前記表面側の溝の幅を確認する工程と、頂面を有さない先細りした頂部を有する切削部材を使用する場合において、前記頂部が溝幅方向にばらつく範囲が、確認した前記幅に包含されるように、前記製造方法に使用する製造装置を選択する工程と、を備える半導体片の製造方法における製造条件の決定方法である。
 第5の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備える半導体片の製造方法における製造条件の決定方法であって、前記切削部材の厚み方向の中心が溝幅方向にばらつく範囲が前記表面側の溝幅から外れるかを確認する工程と、前記範囲が前記表面側の溝幅から外れる場合には、前記範囲が前記表面側の溝幅以下になるように、前記表面側の溝の幅、及び前記範囲に影響を与える製造装置の少なくとも一方を変更する工程と、を備える半導体片の製造方法における製造条件の決定方法である。
 第6の態様は、基板の表面に表面側の溝を形成する工程と、前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備える半導体片の製造方法における製造条件の決定方法であって、頂部に頂面を有さない先細りした先端形状の切削部材を使用する場合に、前記頂部が溝幅方向にばらつく範囲が前記表面側の溝幅を外れるかを確認する工程と、前記範囲が前記表面側の溝幅から外れる場合には、前記範囲が前記表面側の溝幅以下になるように、前記表面側の溝の幅、及び前記範囲に影響を与える製造装置の少なくとも一方を変更する工程と、を備える半導体片の製造方法における製造条件の決定方法である。
 第7の態様は、上記第1の態様から上記第6の態様のいずれか1つに記載の決定方法によって決定された製造条件を用いて、前記製造方法で基板を半導体片に個片化する半導体片の製造方法である。
 第8の態様は、上記第7の態様に記載の製造方法によって製造された少なくとも1つの半導体片を実装する回路基板である。
 第9の態様は、上記第8の態様に記載の回路基板を実装する電子装置である。
 上記第1、3、5の態様によれば、切削部材の厚み方向の中心が溝幅方向にばらつく範囲を確認せずに表面側の溝の幅を決定する場合と比較し、頂部の領域に応力が集中することで段差部が破損することが抑制される。
 上記第2、4、6の態様によれば、頂部の領域に応力が集中することで段差部が破損することがなくなる。
 本発明の半導体片の製造方法は、例えば、複数の半導体素子が形成された半導体ウエハなどの基板状の部材を分割(個片化)して、個々の半導体片(半導体チップ)を製造する方法に適用される。基板上に形成される半導体素子は、特に制限されるものではなく、発光素子、能動素子、受動素子等を含むことができる。好ましい態様では、本発明の製造方法は、発光素子を含む半導体片を基板から取り出す方法に適用され、発光素子は、例えば、面発光型半導体レーザー、発光ダイオード、発光サイリスタであることができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、上述のように本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2013年7月1日出願の日本特許出願(特願2013-137820)、2014年5月27日出願の日本特許出願(特願2014-109182)、2014年5月27日出願の日本特許出願(特願2014-109183)、2014年5月27日出願の日本特許出願(特願2014-109184)、2014年5月27日出願の日本特許出願(特願2014-109185)、2014年5月27日出願の日本特許出願(特願2014-109186)及び2014年5月27日出願の日本特許出願(特願2014-109187)に基づくものであり、その内容はここに参照として取り込まれる。
100:発光素子
120:切断領域(スクライブライン)
130:レジストパターン
140:表面側の溝(微細溝)
160:ダイシング用テープ
170:裏面側の溝
180、200:紫外線
190:エキスパンド用テープ
210:半導体片
300、300A、302:ダイシングブレード
310、320:側面
330、352、362:湾曲面
340:頂面
350、360:面取り
400:段差部
410:根本領域

Claims (12)

  1.  基板の表面に表面側の溝を形成する工程と、
     前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、
     を備える半導体片の製造方法に使用する前記切削部材の先端形状の設計方法であって、
     先端部の先細りの度合が異なる複数の切削部材を準備する工程と、
     同一形状の複数の表面側の溝を準備する工程と、
     前記複数の表面側の溝に対して、前記複数の切削部材で前記裏面側の溝を形成した場合のそれぞれについて、前記段差部の破損の状況を確認する工程と、
     前記確認の結果、前記複数の切削部材に、前記段差部を破損させる切削部材と前記段差部を破損させない切削部材の両方が含まれる場合、前記段差部を破損させない切削部材の先細りの度合を量産工程で使用する切削部材の先端形状として選択する工程と、
     を備える、切削部材の先端形状の設計方法。
  2.  前記複数の切削部材は、半円状の先端部を有する切削部材よりも先細りした切削部材を含む、請求項1に記載の切削部材の先端形状の設計方法。
  3.  前記複数の切削部材は、半円状の先端部を有する切削部材よりも先細りの度合が小さい切削部材を含む、請求項2に記載の切削部材の先端形状の設計方法。
  4.  前記複数の切削部材は、半円状の先端部を有する切削部材よりも先細りの度合が小さい切削部材を複数含む、請求項1から3のいずれか一項に記載の切削部材の先端形状の設計方法。
  5.  前記複数の切削部材は、半円状の先端部を有する切削部材よりも先細りの度合が小さい切削部材を、少なくとも3種類以上含む、請求項1から4のいずれか一項に記載の切削部材の先端形状の設計方法。
  6.  前記複数の切削部材は、頂部に頂面を有さない先細りした先端形状であって、当該頂部の溝幅方向の位置が前記表面側の溝幅から外れた場合に、溝幅を外れた当該頂部の領域に最大応力を生じさせる先細り度合の切削部材を含む、請求項1から5のいずれか一項に記載の切削部材の先端形状の設計方法。
  7.  前記頂部の領域に最大応力を生じさせる先細り度合の切削部材を複数含む、請求項6に記載の切削部材の先端形状の設計方法。
  8.  前記確認の結果、前記複数の切削部材に、前記段差部を破損させる切削部材と前記段差部を破損させない切削部材の両方が含まれる場合、前記段差部を破損させる切削部材の先細りの度合を量産工程で使用しない切削部材の先端形状として選択対象から除外する、請求項1から7のいずれか一項に記載の切削部材の先端形状の設計方法。
  9.  基板の表面に表面側の溝を形成する工程と、
     前記基板の裏面から、前記表面側の溝の幅よりも厚みが厚い回転する切削部材で、前記表面側の溝に通じる裏面側の溝を形成し、前記表面側の溝の幅と前記裏面側の溝の幅との差により形成される段差部を有する半導体片に個片化する工程と、を備える半導体片の製造方法に使用する前記切削部材の先端形状の設計方法であって、
     先端部の先細りの度合が異なる複数の切削部材を準備する工程と、
     同一形状の複数の表面側の溝を準備する工程と、
     前記複数の表面側の溝に対して、前記複数の切削部材で前記裏面側の溝を形成した場合のそれぞれについて、前記段差部の破損の状況を確認する工程と、
     前記複数の切削部材に、前記段差部を破損させる切削部材と前記段差部を破損させない切削部材の両方が含まれる場合、前記確認の結果から、前記段差部を破損させない切削部材の先細りの範囲を推定する工程と、
     前記推定した範囲に含まれる先細りの度合の切削部材を量産工程で使用する切削部材の先端形状として選択する工程と、
     を備える、切削部材の先端形状の設計方法。
  10.  請求項1から9のいずれか一項に記載の設計方法によって設計された先端形状の切削部材を用いて、前記製造方法で基板を半導体片に個片化する半導体片の製造方法。
  11.  請求項10に記載の製造方法によって製造された少なくとも1つの半導体片を実装する回路基板。
  12.  請求項11に記載の回路基板を実装する電子装置。
PCT/JP2014/066897 2013-07-01 2014-06-25 切削部材の先端形状の設計方法、半導体片の製造方法、回路基板および電子装置 WO2015002052A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480035012.6A CN105308724B (zh) 2013-07-01 2014-06-25 切割部件的末端形状的设计方法、半导体芯片制造方法、电路板及电子装置
EP14819812.0A EP3018700B1 (en) 2013-07-01 2014-06-25 Method for designing tip shape for cutting member
KR1020157035482A KR20160026878A (ko) 2013-07-01 2014-06-25 절삭 부재의 선단 형상의 설계 방법, 반도체편의 제조 방법, 회로 기판 및 전자 장치
US14/927,845 US9508595B2 (en) 2013-07-01 2015-10-30 Method of tip shape of cutting member, semiconductor chip manufacturing method, circuit board, and electronic apparatus

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2013-137820 2013-07-01
JP2013137820 2013-07-01
JP2014109186A JP5686220B2 (ja) 2013-07-01 2014-05-27 半導体片の製造方法
JP2014-109185 2014-05-27
JP2014-109186 2014-05-27
JP2014-109184 2014-05-27
JP2014-109182 2014-05-27
JP2014109185A JP6269319B2 (ja) 2013-07-01 2014-05-27 半導体片の製造方法
JP2014-109183 2014-05-27
JP2014109183A JP6217529B2 (ja) 2013-07-01 2014-05-27 半導体片の製造方法
JP2014109182A JP5686219B2 (ja) 2013-07-01 2014-05-27 切削部材の先端形状の設計方法および半導体片の製造方法
JP2014109184A JP5790836B2 (ja) 2013-07-01 2014-05-27 半導体片の製造方法
JP2014109187A JP5725238B2 (ja) 2013-07-01 2014-05-27 半導体片の製造方法および製造条件の決定方法
JP2014-109187 2014-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/927,845 Continuation US9508595B2 (en) 2013-07-01 2015-10-30 Method of tip shape of cutting member, semiconductor chip manufacturing method, circuit board, and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2015002052A1 true WO2015002052A1 (ja) 2015-01-08

Family

ID=52492581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066897 WO2015002052A1 (ja) 2013-07-01 2014-06-25 切削部材の先端形状の設計方法、半導体片の製造方法、回路基板および電子装置

Country Status (6)

Country Link
US (1) US9508595B2 (ja)
EP (1) EP3018700B1 (ja)
JP (7) JP5686220B2 (ja)
KR (1) KR20160026878A (ja)
CN (1) CN105308724B (ja)
WO (1) WO2015002052A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9385268B2 (en) * 2014-11-10 2016-07-05 Fuji Xerox Co., Ltd. Method of manufacturing semiconductor chips
KR20180044744A (ko) 2016-10-24 2018-05-03 삼성전자주식회사 패턴 구조체 및 그 제조방법
CN109216269A (zh) * 2017-06-30 2019-01-15 西安中车永电电气有限公司 一种用于高压igbt芯片的厚片双面划片方法
JP6821036B2 (ja) 2017-08-28 2021-01-27 富士フイルム株式会社 医用画像処理装置、方法およびプログラム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267343A (ja) 1985-05-22 1986-11-26 Mitsubishi Electric Corp 半導体装置の製造方法
JPH0410554A (ja) 1990-04-27 1992-01-14 Mitsubishi Electric Corp 半導体装置の製造方法
JPH07183255A (ja) * 1993-12-24 1995-07-21 Nippondenso Co Ltd 接合基板の切断方法
JPH09172029A (ja) * 1995-12-19 1997-06-30 Hitachi Ltd 半導体チップ及びその製造方法並びに半導体装置
JP2001284293A (ja) * 2000-03-31 2001-10-12 Toyoda Gosei Co Ltd 半導体ウエハーのチップ分割方法
JP2003124151A (ja) * 2001-10-17 2003-04-25 Disco Abrasive Syst Ltd サファイア基板のダイシング方法
JP2009088252A (ja) * 2007-09-28 2009-04-23 Sharp Corp ウエハのダイシング方法および半導体チップ
JP2010016361A (ja) * 2008-06-02 2010-01-21 Nec Electronics Corp 半導体チップの製造方法および半導体装置
US7897485B2 (en) 2008-02-04 2011-03-01 Micron Technology, Inc. Wafer processing including forming trench rows and columns at least one of which has a different width

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3194594B2 (ja) 1990-09-26 2001-07-30 株式会社日立製作所 構造体の製造方法
JPH07201780A (ja) * 1993-12-28 1995-08-04 Hitachi Ltd ダイシング装置
JP3395620B2 (ja) * 1997-12-16 2003-04-14 日亜化学工業株式会社 半導体発光素子及びその製造方法
US6271102B1 (en) * 1998-02-27 2001-08-07 International Business Machines Corporation Method and system for dicing wafers, and semiconductor structures incorporating the products thereof
WO2001075954A1 (fr) * 2000-03-31 2001-10-11 Toyoda Gosei Co., Ltd. Procede de decoupage d'une plaquette de semi-conducteur en puces
JP2004001147A (ja) * 2002-05-31 2004-01-08 Rikogaku Shinkokai 微結晶薄膜構造体の製造方法
JP4342832B2 (ja) * 2003-05-16 2009-10-14 株式会社東芝 半導体装置およびその製造方法
JP4916215B2 (ja) * 2006-04-28 2012-04-11 株式会社ディスコ ウエーハ切削装置
KR100983175B1 (ko) * 2008-07-03 2010-09-20 광주과학기술원 산화물막과 고체 전해질막을 구비하는 저항 변화 메모리소자, 및 이의 동작방법
JP2011171644A (ja) * 2010-02-22 2011-09-01 On Semiconductor Trading Ltd 半導体装置及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267343A (ja) 1985-05-22 1986-11-26 Mitsubishi Electric Corp 半導体装置の製造方法
JPH0410554A (ja) 1990-04-27 1992-01-14 Mitsubishi Electric Corp 半導体装置の製造方法
JPH07183255A (ja) * 1993-12-24 1995-07-21 Nippondenso Co Ltd 接合基板の切断方法
JPH09172029A (ja) * 1995-12-19 1997-06-30 Hitachi Ltd 半導体チップ及びその製造方法並びに半導体装置
JP2001284293A (ja) * 2000-03-31 2001-10-12 Toyoda Gosei Co Ltd 半導体ウエハーのチップ分割方法
JP2003124151A (ja) * 2001-10-17 2003-04-25 Disco Abrasive Syst Ltd サファイア基板のダイシング方法
JP2009088252A (ja) * 2007-09-28 2009-04-23 Sharp Corp ウエハのダイシング方法および半導体チップ
US7897485B2 (en) 2008-02-04 2011-03-01 Micron Technology, Inc. Wafer processing including forming trench rows and columns at least one of which has a different width
JP2010016361A (ja) * 2008-06-02 2010-01-21 Nec Electronics Corp 半導体チップの製造方法および半導体装置

Also Published As

Publication number Publication date
CN105308724A (zh) 2016-02-03
CN105308724B (zh) 2018-01-12
KR20160026878A (ko) 2016-03-09
JP5686220B2 (ja) 2015-03-18
EP3018700A1 (en) 2016-05-11
JP2015029065A (ja) 2015-02-12
JP6269319B2 (ja) 2018-01-31
JP2015029064A (ja) 2015-02-12
JP6217529B2 (ja) 2017-10-25
JP2015029067A (ja) 2015-02-12
JP2015029066A (ja) 2015-02-12
JP5790836B2 (ja) 2015-10-07
EP3018700B1 (en) 2020-10-21
JP2015029135A (ja) 2015-02-12
JP5994832B2 (ja) 2016-09-21
JP2015029068A (ja) 2015-02-12
JP5725238B2 (ja) 2015-05-27
JP2015038965A (ja) 2015-02-26
US20160049333A1 (en) 2016-02-18
US9508595B2 (en) 2016-11-29
EP3018700A4 (en) 2017-03-15
JP5686219B2 (ja) 2015-03-18

Similar Documents

Publication Publication Date Title
US9673351B2 (en) Method of manufacturing semiconductor chips
US9735056B2 (en) Semiconductor piece manufacturing method and substrate dicing method for suppressing breakage
US9455173B2 (en) Semiconductor piece manufacturing method
JP5994832B2 (ja) 半導体片の製造方法
JP5773049B1 (ja) 半導体片の製造方法
JP5773050B1 (ja) 半導体片の製造方法
JP2016096321A (ja) 半導体片の製造条件の設定方法、半導体片の製造方法および製造システム
KR20160055711A (ko) 반도체 칩의 제조 방법
JP2016096167A (ja) 半導体片の製造方法、回路基板および電子装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480035012.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157035482

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014819812

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE