WO2015001951A1 - 裏側保護基材、太陽電池モジュール、及び太陽電池モジュールの製造方法 - Google Patents

裏側保護基材、太陽電池モジュール、及び太陽電池モジュールの製造方法 Download PDF

Info

Publication number
WO2015001951A1
WO2015001951A1 PCT/JP2014/066001 JP2014066001W WO2015001951A1 WO 2015001951 A1 WO2015001951 A1 WO 2015001951A1 JP 2014066001 W JP2014066001 W JP 2014066001W WO 2015001951 A1 WO2015001951 A1 WO 2015001951A1
Authority
WO
WIPO (PCT)
Prior art keywords
side protective
layer
solar cell
back side
cell module
Prior art date
Application number
PCT/JP2014/066001
Other languages
English (en)
French (fr)
Inventor
米多比隆平
岡善之
安藤隆
宮下正範
小林祥之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2015001951A1 publication Critical patent/WO2015001951A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/746Slipping, anti-blocking, low friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a backside protective substrate for solar cell modules, a solar cell module using the same, and a method for manufacturing a solar cell module, and more specifically, a laminate of a sealing material and a member 1 for a backside protective substrate.
  • An integrated product hereinafter, simply referred to as “integrated product” of the sealing material / back side protective base material member 1 that is a body is referred to as a front side protective base material, a sealing material, a cell, the integrated product, and
  • the present invention relates to a method for manufacturing a solar cell module, comprising the step 2 of pressure-bonding the back-side protective base member 2 in the order of the members.
  • this back side protective base material which is a laminated body of the member 1 for back side protective base materials, and the member 2 for back side protective base materials, it contacts the member 2 for back side protective base materials in the member 1 for back side protective base materials.
  • the layer constituting the side surface is a layer mainly composed of an olefin resin (hereinafter referred to as olefin layer 1), and the olefin layer 1 has adhesiveness (hereinafter referred to as adhesive olefin layer 1).
  • adhesive olefin layer 1 has adhesiveness
  • the layer constituting the surface in contact with the back-side protective substrate member 1 in the back-side protective substrate member 2 has adhesiveness (hereinafter, this layer is referred to as an adhesive layer). 2), which is a solar cell module backside protective substrate.
  • the present invention relates to a solar cell module characterized by having these back side protective substrates.
  • a solar cell module has a front side protective substrate, which is generally made of glass, from the surface (light-receiving surface) side, and a sealing material on the front side, which is generally composed mainly of an ethylene-vinyl acetate copolymer.
  • the solar cell, the back-side sealing material, and the back-side protective base material are laminated in order, and the process of laminating and compressing and integrating the respective constituent members, for example, a vacuum laminating process Then, a solar cell module is manufactured.
  • the back side protective base material which is one of the members of the solar cell module, has been devised in various configurations up to now.
  • the back side protective base material is for solar cells provided with a base material and a thermoplastic resin.
  • a back side protective base material has been proposed (see, for example, Patent Document 1).
  • the thermoplastic resin is composed of a modified resin such as ethylene and acrylic acid in order to ensure adhesion with the substrate. Further, in the pressure bonding process in vacuum lamination, the thermoplastic resin acts to ensure adhesion with the sealing material on the back side.
  • thermoplastic resin is made of a polyethylene terephthalate (hereinafter sometimes referred to as “PET”) film. It is integrated by extrusion coating on the resulting substrate, and is used as a back side protective substrate. This extrusion coating is expensive and has a considerable economic disadvantage. In addition, curling may occur on the backside protective substrate after extrusion coating, resulting in poor appearance.
  • PET polyethylene terephthalate
  • the base material has a thermoplastic resin structure composed of a modified resin such as ethylene and acrylic acid, but the adhesive mechanism between the polyethylene terephthalate used as the base material and the modified resin Is a relatively weak bond due to a hydrogen bond or the like, and has a problem of lack of adhesion in a severe environment of high temperature and high humidity.
  • a modified resin such as ethylene and acrylic acid
  • the front side protective base material, the sealing material, the solar battery cell, the sealing material, and the back side protective base material are stacked in this order and carried into the vacuum laminating apparatus. At this time, there is a problem that the back side protective base material curls due to the heat of the vacuum laminating apparatus and the process yield is lowered.
  • the base material and the thermoplastic resin may be dry-laminated through an adhesive.
  • the sheet immediately after lamination is rarely curled, but in the case of extrusion coating in the vacuum laminating step (step 2). May cause the same curl and decrease the yield of the process.
  • this back side protection base material is manufactured through a dry laminating process, there is a problem of high costs.
  • an integrated product of a sealing material and a back-side protective base member 1 that is a laminate of a sealing material and a back-side protective base member 1 is combined with a front-side protective base material, a sealing member. It is economically advantageous and does not cause curling or the like by manufacturing the solar cell module by stacking and pressing in the order of the stopper, the cell, the integrated product, and the member 2 for the back side protective substrate. It aims at providing the manufacturing method of the solar cell module which can improve process-passability.
  • step 1 the sealing material and the back-side protective base material member 1 are laminated to manufacture an integrated product, and then the front side protection is performed in step 2 without going through an extrusion coating or dry laminating step. It is particularly preferable to manufacture the solar cell module by stacking the base material, the sealing material, the cell, the integrated product, and the back-side protective base material member 2 in this order and press-bonding them.
  • the layer which comprises the surface of the side in contact with the member 2 for back side protection base materials in this member 1 for back side protection base materials is the olefin layer 1,
  • This olefin layer 1 is an adhesive layer which has adhesiveness. 1 and the layer constituting the surface in contact with the back-side protective base material member 1 in the back-side protective base material member 2 has adhesiveness, so that even under a severe environment of high temperature and high humidity It aims at providing this back side protection base material which is a layered product which secured adhesiveness of member 1 for back side protection base materials, and member 2 for back side protection base materials.
  • the present invention for solving the above-described problems includes the following (1) to (16). 1) A method for manufacturing a solar cell module, And laminating the sealing material and the back-side protective base member 1 to produce an integrated product of the sealing material and back-side protective base member 1 (hereinafter simply referred to as a single product), Subsequently, the front-side protective base material, the sealing material, the cell, the integrated product, and the back-side protective base material member 2 are stacked in this order, and have a step 2 for pressure bonding. Production method.
  • a method for manufacturing a solar cell module An integrated product of a sealing material / back-side protective base material member 1 that is a laminate of the sealing material and the back-side protective base material member 1,
  • the manufacturing method of a solar cell module characterized by having the process 2 which piles up and press-fits in order of a front side protection base material, a sealing material, a cell, the said integral product, and the member 2 for back side protection base materials.
  • the layer constituting the surface in contact with the back-side protective substrate member 2 in the back-side protective substrate member 1 is a layer mainly composed of an olefin resin (hereinafter referred to as olefin layer 1), The method for producing a solar cell module according to any one of 1) to 5), wherein the olefin layer 1 has adhesiveness (hereinafter, the olefin layer 1 having adhesiveness is referred to as an adhesive layer 1). 7) The layer constituting the surface in contact with the back-side protective substrate member 1 in the back-side protective substrate member 2 has adhesiveness (hereinafter, this layer is referred to as the adhesive layer 2). The method for producing a solar cell module according to any one of 1) to 6).
  • a back side protective substrate for a solar cell module is a laminate of the back side protective base material member 1 and the back side protective base material member 2,
  • the layer constituting the surface in contact with the back-side protective base member 2 in the back-side protective base member 1 is a layer mainly composed of an olefin resin (hereinafter referred to as olefin layer 1),
  • the olefin layer 1 has adhesiveness (hereinafter, the olefin layer 1 having adhesiveness is referred to as an adhesive layer 1)
  • the layer constituting the surface on the side in contact with the back-side protective base member 1 in the back-side protective base member 2 has adhesiveness (hereinafter, this layer is referred to as the adhesive layer 2).
  • Back side protective substrate for solar cell module (10) The back side protective substrate for a solar cell module according to 9), wherein the adhesive layer 2 is obtained from a composition containing a urethane resin (hereinafter referred to as the composition 2).
  • the composition 2 includes at least one selected from the group consisting of a melamine resin, an epoxy resin, and an olefin resin.
  • the adhesive layer 1 contains an adhesive resin, Any of 9) to 11), wherein the adhesive resin is at least one selected from the group consisting of an epoxy-modified olefin resin, an acid-modified olefin resin, an amide-modified olefin resin, and a silane-modified olefin resin.
  • the back-side protective substrate member 2 has a layer mainly composed of polyethylene terephthalate (hereinafter referred to as a polyethylene terephthalate layer).
  • a laminate for a solar cell module characterized in that a sealing material is laminated on the back side protective substrate member 1 side of the back side protective substrate for a solar cell module according to any one of 9) to 14). body.
  • a solar cell module comprising the back side protective substrate for a solar cell module according to any one of 9) to 14).
  • an integrated product of a sealing material and a back-side protective base member 1 that is a laminate of a sealing material and a back-side protective base member 1 is obtained by combining a front-side protective base material, a sealing material,
  • step 1 the sealing material and the back-side protective base material member 1 are laminated to manufacture an integrated product, and then the front side protection is performed in step 2 without going through an extrusion coating or dry laminating step. It is preferable to manufacture a solar cell module by stacking the base material, the sealing material, the cell, the integrated product, and the back-side protective base material member 2 in this order and press-bonding them.
  • the back side protective substrate of the present invention for a solar cell module, it becomes possible to ensure the adhesion of each layer in the back side protective substrate even under a severe environment of high temperature and high humidity.
  • the manufacturing process of the solar cell module is carried out with respect to the step 2 in which the front-side protective base material, the sealing material, the cell, the integrated product, and the back-side protective base material member 2 of the present invention are stacked in this order and crimped.
  • the manufacturing method of the present invention is a manufacturing method of a solar cell module, and is an integrated product of a sealing material and a back-side protective substrate member 1 (hereinafter referred to as a laminate of a sealing material and a back-side protective substrate member 1) (Simply referred to as an integrated product), a front-side protective base material and a sealing material (note that the sealing material is a light-receiving surface side sealing material and is a member different from the sealing material constituting the integrated product).
  • a method for manufacturing a solar cell module comprising the step 2 of pressure-bonding the cells, the integrated product, and the back-side protective base material member 2 in this order (hereinafter referred to as “second invention”). is there).
  • the sealing material and the back-side protective base material member 1 are laminated to manufacture an integrated product (hereinafter simply referred to as an integrated product) of the sealing material and the back-side protective base material member 1. And then, a method for manufacturing a solar cell module, comprising a step 2 of stacking and pressing the front-side protective base material, the sealing material, the cell, the integrated product, and the back-side protective base material member 2 in this order. (Hereinafter, referred to as “first invention” in some cases).
  • FIG. 1 to FIG. 3 schematically show an example of an integrated product obtained by laminating the sealing material of the present invention and the back-side protective base member 1 and a back-side protective base member 2 before manufacturing the solar cell module. It is sectional drawing shown.
  • Step 1 is a step of stacking the sealing material and the back-side protective base member 1 to manufacture an integrated product of the sealing material and the back-side protective base member 1.
  • the method of laminating the sealing material and the back-side protective substrate member 1 is not particularly limited, but the laminating of the sealing material and the back-side protective substrate member 1 in the step 1 is performed by coextrusion.
  • the co-extrusion apparatus (13) with a T die (14) as shown in FIG. 7 co-extrudes the sealing material and the back side protective base member 1 between the nip roll (15) and the cast roll (16), By the method of passing through the peeling roll (17), it is possible to suitably laminate the sealing material and the back-side protective base member 1 in the step 1.
  • the nip roll is preferably a roll coated with rubber.
  • a cast roll (16) in which an embossed pattern such as a lattice pattern or a satin pattern is engraved on the surface. It is preferable because the embossed pattern can be transferred to the surface of the integrated product and blocking during winding can be prevented.
  • each layer (resin which comprises) discharged from T die (14) is shown with the continuous line, the broken line, and the dotted line.
  • a layer indicated by a broken line means a sealing material
  • a layer indicated by a dotted line and a solid line means a member 1 for a back side protective substrate.
  • the layer indicated by the solid line is the olefin layer 2 described later, and the layer indicated by the dotted line is preferably the adhesive layer 1 described later.
  • the adhesive layer 1 is an olefin layer 1 having adhesiveness, and as shown in FIG. 7, the adhesive layer 1 is preferably discharged so as to be in contact with the cast roll (16) (that is, a broken line).
  • the layer indicated by the dotted line is not the adhesive layer 1, and the layer indicated by the dotted line is preferably the adhesive layer 1).
  • the adhesive layer 1 is discharged so as to be in contact with the nip roll (15) (that is, the layer indicated by the broken line is the adhesive layer 1), the mold release between the nip roll (15) and the adhesive layer 1 is performed. Since the property is low, the appearance of the adhesive layer 1 may deteriorate.
  • the arrow in FIG. 7 is also referred to as a traveling direction (“manufacturing direction” or “machine direction”) of the laminated body at the time of producing the laminated body of the sealing material and the member 1 for the back side protective base material. Is).
  • the sealing material and the back side protective base material member 1 in the step 1 there are methods such as extrusion lamination (extrusion lamination) and dry lamination.
  • extrusion lamination extrusion lamination
  • dry lamination The one-piece laminate by is most suitable.
  • Step 1 by extrusion lamination Either one of the sealing material and the back-side protective base material member 1 is manufactured by melt extrusion or calendering, and is used as a base material.
  • the other resin resin that is the raw material of the sealing material or the resin that is the raw material of the member 1 for the back side protective base material
  • heated and melted by the T-die extruder is extruded in a slit shape and poured onto the base material.
  • a method of laminating by pressing with a nip roll and a cast roll Since this method requires a large number of steps, it may be economically disadvantageous.
  • step 1 by dry lamination A method in which the sealing material and the back-side protective base member 1 are separately manufactured by melt extrusion, calendering, etc., and then laminated using an adhesive in a separate step. This method requires a large number of steps and further adds material costs such as adhesives, which can be quite disadvantageous economically.
  • step 1 the sealing material used in step 1 and the member 1 (3) for the back side protective base material will be described.
  • the member 1 (3) for back side protective substrate used in the method for manufacturing a solar cell module of the present invention is a part of the back side protective substrate of the solar cell module.
  • the composition of the member 1 for back side protection base materials is not specifically limited, It is preferable to have the layer which has an olefin resin as a main component.
  • the layer containing olefin resin as a main component means that 50% by mass or more and 100% by mass or less of olefin resin is contained in 100% by mass of all components of the focused layer, and the same applies hereinafter.
  • the member 1 for back side protective base materials has the layer which has an olefin resin as a main component
  • the surface side protective base materials such as glass, a sealing material, a cell, an integrated product, and the member 2 for back side protective base materials are this
  • the protrusion of the back-side protective base member 1 from the glass and the reduction of the thickness can be suppressed by pressure. Further, creep under a severe environment of high temperature and high humidity can be suppressed, and further, adhesion with a sealing material can be ensured.
  • Olefin resins include polypropylene resins such as homopolypropylene and block polypropylene, polyethylene resins such as low density polyethylene (LDPE) and linear low density polyethylene (LLDPE), ethylene-vinyl acetate copolymer (EVA), and copolymer of two or more olefin resins, such as propylene and ethylene copolymer resin (EPC: E thylene- P ropylene- C opolymer) and, like terpolymer resins of ethylene and propylene and butene are preferably used
  • the olefin resin suitably used as a layer containing the olefin resin as the main component in the member 1 for the back side protective substrate is composed of creep resistance and heat resistance to prevent a decrease in thickness after Step 2, and a sealing material.
  • a copolymer resin (EPC) of polyethylene and polypropylene is particularly preferably used.
  • the back side protective substrate member 1 (3) may contain white particles such as titanium dioxide and barium sulfate as appropriate so that the light passing through the cells of the solar cell module is reflected again and returned to the cells.
  • white particles such as titanium dioxide and barium sulfate
  • a crosslinking agent such as titanium dioxide and barium sulfate
  • a crosslinking aid such as titanium dioxide and barium sulfate
  • the thickness of the member 1 (3) for the back side protective base material is preferably 50 ⁇ m or more as the minimum thickness for ensuring insulation, and preferably 300 ⁇ m or less in consideration of economy.
  • the back-side protective base member 1 (3) may be a single layer as shown in FIG. 1 or a two-layer structure as shown in FIG. Two or more layers may be used, but since the die of the co-extrusion apparatus becomes complicated, the initial investment amount is increased, and production management becomes difficult, it is preferably a single layer or two layers.
  • the member 1 for back side protective base material preferably has two layers mainly composed of an olefin resin.
  • the layer containing olefin resin as the main component means that 50% by mass or more and 100% by mass or less of olefin resin is contained in 100% by mass of all components of the layer of interest as described above.
  • the layer which comprises the surface in the side which contacts the member 2 for back side protection base materials in the member 1 for back side protection base materials is a layer which has an olefin resin as a main component (henceforth an olefin layer 1), Comprising: Since the layer 1 has adhesiveness (hereinafter, the olefin layer 1 having adhesiveness is referred to as the adhesive layer 1), in Step 2, the adhesiveness when being pressure-bonded to the back-side protective base member 2 (4) is improved. Since it goes up, it is preferable. In particular, when the back-side protective base member 1 (3) has a structure of two or more layers, it is preferable that the back-side protective base member 1 has the olefin layer 1 and the olefin layer 1 is the adhesive layer 1. .
  • the olefin layer 1 has adhesiveness means that the olefin layer 1 contains an adhesive resin. That is, the olefin layer 1 containing an adhesive resin is referred to as an adhesive layer 1.
  • the adhesive resin means an olefin resin and a resin in which a part of its side chain is modified with various functional groups. Therefore, as the olefin resin that is the main component of the adhesive layer 1, an olefin resin that is not an adhesive resin and an adhesive resin may be used in combination, or only an adhesive resin may be used.
  • the adhesive resin include an epoxy-modified olefin resin, an acid-modified olefin resin (for example, maleic anhydride-modified olefin resin), an amide-modified olefin resin, a silane-modified olefin resin, and the like.
  • the adhesive layer 1 is excellent in adhesiveness with the adhesive layer 2 having a wide composition, and has adhesiveness with the back side protective base member 2 in a severe environment of high temperature and high humidity.
  • Epoxy-modified olefin resins are preferable, and among them, ethylene-glycidyl methacrylate copolymers are most preferably used. Examples of the ethylene-glycidyl methacrylate copolymer include Model No. Bond First E manufactured by Sumitomo Chemical Co., Ltd.
  • the layer which comprises the surface in the side which contacts the member 2 for back side protection base materials in the member 1 for back side protection base materials is the olefin layer 1
  • this olefin layer 1 is the contact bonding layer 1 which has adhesiveness
  • the layer constituting the other surface in the member 1 for back side protective substrate is also a layer containing olefin as a main component (hereinafter referred to as olefin layer 2).
  • the back protective base member 1 (3) has a two-layer structure of an adhesion (olefin) layer 1 and an olefin layer 2, and the olefin layer 2 (5) is made of titanium dioxide, barium sulfate, or the like.
  • the total thickness of the adhesive (olefin) layer 1 and the olefin layer 2 is preferably 50 ⁇ m or more from the viewpoint of insulation, and is preferably 300 ⁇ m or less in consideration of economy.
  • the sealing material (2) used at the process 1 of the manufacturing method of the solar cell module of this invention is demonstrated.
  • step 2 of the present invention the sealing material surface of the integrated product is disposed and pressure-bonded on the back side (non-light-receiving surface side) of the cell (10) that is the power generation element.
  • the composition of the sealing material used in the present invention is not particularly limited, but it is preferable that the olefin resin is a main component.
  • the fact that the encapsulant is mainly composed of an olefin resin means that 50 mass% or more and 100 mass% or less of the olefin resin is contained in 100 mass% of all components of the encapsulant. When the olefin resin is less than 50% by mass in 100% by mass of all components of the sealing material, the characteristics of the olefin resin may not be sufficiently exhibited.
  • the sealing material is mainly composed of an olefin resin
  • the solar cell module when the solar cell module is manufactured, it is possible to ensure adhesion to the back surface of the cell (10) that is a power generation element and cell embedding property. Moreover, adhesiveness with the member 1 for back side protective base materials which has an olefin resin as a main component can also be ensured.
  • the olefin resin constituting the sealing material examples include polyethylene resins such as low density polyethylene (LDPE) and linear low density polyethylene (LLDPE), ethylene-vinyl acetate copolymer (EVA), and two types A copolymer of the above olefin resin, for example, a copolymer resin of polypropylene and polyethylene is preferably used, but it is linear in consideration of adhesion to the back surface of the cell (10) and embedding property of the cell.
  • low density polyethylene (LLDPE) is preferably used.
  • the linear low density polyethylene (LLDPE) examples include model number Sumikasen-L GA401 manufactured by Sumitomo Chemical Co., Ltd.
  • the sealing material appropriately contains white particles such as titanium dioxide and barium sulfate in order to reflect light that has passed through between the cells of the solar cell module again and return to the cell, and light resistance is also included.
  • white particles such as titanium dioxide and barium sulfate
  • a crosslinking agent, a crosslinking assistant, an antioxidant, a light stabilizer, a silane coupling agent, and the like can be appropriately contained.
  • the sealing material used in the present invention is defined as a layer having a melting point of 130 ° C. or lower. If this definition condition is satisfied, the sealing material may be a single layer or a multilayer structure composed of two or more layers. And the sealing material can contain the said additive including white particles, such as titanium dioxide and barium sulfate, in the whole layer or one part layer. In the case where the sealing material has a multilayer structure, it is important that the melting points of all the layers are 130 ° C. or less.
  • fusing point is 130 degrees C or less is contained in a back side protective base material. That is, for example, even if the melting point of the olefin layer 1 (the adhesive layer 1 when the olefin layer 1 has adhesiveness) of the member 1 for the back side protective base material referred to in the present invention is 130 ° C. or less, the sealing material If there is a layer having a melting point exceeding 130 ° C. between the olefin layer 1 and the olefin layer 1, the olefin layer 1 is not a sealing material. Therefore, a layer having a melting point exceeding 130 ° C. is disposed on the layer constituting at least the surface in contact with the sealing material in the member 1 for the back side protective base material.
  • fusing point here means the position (temperature) of the main peak based on melting
  • DSC differential scanning calorimeter
  • the thickness of the sealing material is preferably in the range of 200 to 600 ⁇ m, regardless of whether the sealing material has a single layer structure or a multilayer structure, and the wiring attached to the back surface of the cell
  • wiring thickness is generally about 200 ⁇ m
  • 200 ⁇ m or more is preferable
  • 600 ⁇ m or less is preferable in consideration of economy.
  • the manufacturing method of the integrated product is not limited. However, it is preferable from the viewpoint of efficiency that an integrated product is manufactured by the above-described step 1.
  • FIGS. 4 to 6 are cross-sectional views schematically showing an example of the solar cell module (11, 12, or 30) before pressure bonding in step 2 which is the manufacturing method of the present invention.
  • the front protective substrate (glass or the like) (8), the light receiving surface side sealing material (9), the cell (10), the integrated product (1 or 7), and the back protective substrate member 2 (4) is a configuration arranged in this order, and a solar cell module is manufactured through a step 2 in which these are stacked in this order and are subjected to pressure bonding, for example, a step of laminating in a vacuum state (vacuum laminating step).
  • the process 2 of crimping including a heating process is employ
  • the step 2 including the heating step includes the method of performing the pressure bonding simultaneously with the heating and the method of sufficiently softening the sealing material by the heating, and then separately. Includes methods for crimping.
  • FIG. 8 illustrates a process method using the vacuum laminator (18).
  • a vacuum laminator (18 on a heating plate (19) preheated to 130 to 180 ° C., a front-side protective substrate (glass or the like) (8), a light-receiving surface side sealing material (9), The cell (10), the integrated product (1 or 7), and the back-side protective base member 2 (4) are laminated in this order and left standing (hereinafter referred to as “laminated body before step 2”).
  • laminated body before step 2 hereinafter referred to as “laminated body before step 2”.
  • the solar cell module (11) before pressure bonding is used as an example, but the solar cell module (12) before pressure bonding or the solar cell module (30) before pressure bonding may be used.
  • a solar cell module (30) before crimping that provides other configurations within the scope of the present invention may be used.
  • the upper housing (20) of the vacuum laminating device (18) is closed and sealed, and the space is removed from the exhaust pipe (22) attached to the lower housing (21) using an exhaust device (not shown).
  • the space part (23) formed by the rubber diaphragm (25) and the upper casing (20) from the air supply / exhaust pipe (24) attached to the upper casing (20) at the same time as the air in the section (23) is exhausted. 26) air is exhausted, and the space portion (23) and the space portion (26) are in a reduced pressure state. After maintaining this state for several minutes, air is introduced from the air supply / exhaust pipe (24), and the rubber diaphragm (25) is removed by the pressure difference (atmospheric pressure) between the space (23) and the space (26).
  • a solar cell module can be manufactured by performing the process 2 of heating and crimping
  • the temperature of the heating plate (19) of the vacuum laminator (18) also depends on the recommended laminating temperature of the sealing material (9) on the light-receiving surface side to be used and the sealing material (2) of the integrated product (1 or 7). However, 130 to 180 ° C. is preferable.
  • the member 2 for the back side protective base material in the present invention is not particularly limited, but is a cyclic polyolefin resin, polystyrene resin, acrylonitrile-styrene copolymer resin, acrylonitrile-butadiene-styrene copolymer resin, polyvinyl chloride resin, fluorine-based resin.
  • a layer (film) containing a wide variety of resins such as resins, acrylic resins, polycarbonate resins, and polyamide resins such as nylon can be used.
  • the back-side protective base member 2 preferably has a layer having polyester as a main component, particularly polyethylene terephthalate (hereinafter simply referred to as a polyethylene terephthalate layer) having economic aspects.
  • the layer containing polyethylene terephthalate as a main component means a layer containing 50% by mass or more and 100% by mass or less of polyethylene terephthalate resin in 100% by mass of the total components of the focused layer.
  • the back protective substrate member 2 preferably has a polyethylene phthalate layer, and the polyethylene terephthalate layer preferably contains 1% by mass to 30% by mass of white particles.
  • the white particles are used to whiten the polyethylene phthalate layer, thereby reducing the coloration due to deterioration of the sheet over a long period by utilizing the ultraviolet absorbing ability and light reflectivity of the white particles. The effect that can be demonstrated.
  • white particles include titanium dioxide and barium sulfate.
  • the white particles are less than 1% by mass, the UV resistance may be insufficient, and if it is more than 30% by mass, the adhesion to the adhesive layer 2 may be deteriorated.
  • the content of the white particles in the polyethylene terephthalate layer is more preferably 2% by mass or more, and further preferably 3% by mass or more. Further, the content of white particles in the polyethylene terephthalate layer is more preferably 25% by mass or less, and further preferably 20% by mass or less.
  • examples of the white particles include titanium dioxide and barium sulfate. Among them, it is more preferable to use rutile type titanium oxide in terms of high light reflectivity and light resistance.
  • examples of rutile titanium oxide suitable as white particles include model number R-104 (average particle size 0.22 ⁇ m) manufactured by DuPont, and model number SA-1 (average particle size 0.15 ⁇ m) manufactured by Sakai Chemical Industry Co., Ltd. can give.
  • additives such as an antioxidant and a light stabilizer can be appropriately contained in the polyethylene terephthalate layer of the member 2 for the back side protective base material in order to improve durability such as light resistance.
  • the thickness of the polyethylene terephthalate layer of the back protective substrate member 2 is preferably 50 ⁇ m or more from the viewpoint of insulation, and considering the handling property (handleability) in Step 2, a thickness of 75 ⁇ m to 125 ⁇ m is particularly preferable.
  • the upper limit is preferably 300 ⁇ m or less in view of economy.
  • the surface of the backside protective base member 2 opposite to the side in contact with the backside protective base member 1 is separately provided with a coating containing a light stabilizer, a UV absorber, etc., thereby being durable by ultraviolet rays, etc. Can be suitably improved.
  • the layer which comprises the surface in the side which contacts the member 1 for back side protection base materials in the member 2 for back side protection base materials has adhesiveness (henceforth this layer is called the adhesion layer 2), and is like this. By doing so, it becomes possible to raise adhesiveness with the member 1.
  • the back-side protective base member 2 preferably has a laminated structure of a polyethylene terephthalate layer and an adhesive layer 2.
  • the layer constituting the surface in contact with the back-side protective base member 1 in the back-side protective base member 2 has adhesiveness means that the layer contains a urethane resin. That is, when the layer which comprises the surface in the side in contact with the member 1 for back side protection base materials in the member 2 for back side protection base materials contains a urethane resin, this layer is called the contact bonding layer 2.
  • the member 1 for back side protective base materials and the member 2 for back side protective base materials are laminated
  • a back side protective base material is manufactured first, and a solar cell module is manufactured using it.
  • the back side protective base material member 1 and the back side protective base material member 2 are manufactured first, and finally the solar cell module is manufactured through step 2
  • the back side protective base member 1 and the back side protective base member 1 are formed as a laminate of the back side protective base member 1 and the back side protective base member 2 so that necessary characteristics can be obtained. It is important to design the base member 2.
  • a back side protection base material will also be manufactured simultaneously, In this respect, a production process is reduced. This is preferable because
  • the method for producing the adhesive layer 2 is not particularly limited, but the adhesive layer 2 is preferably obtained from a composition containing a urethane resin (hereinafter referred to as composition 2). That is, the back protective substrate member 2 having the adhesive layer 2 is preferably obtained by coating the composition 2 on a substrate such as a polyethylene terephthalate layer.
  • composition 2 a composition containing a urethane resin
  • the adhesive layer 2 By obtaining the adhesive layer 2 from a composition containing a urethane resin, the adhesiveness between the back-side protective base member 2 (especially a polyethylene terephthalate layer) and the adhesive layer 2 can be sufficiently ensured. Moreover, since urethane resin has moderate softness
  • urethane resin suitable for the composition 2 examples include DIC Corporation model number Hydran AP-201 and DIC Corporation model number DICSEAL HS-W EXP110202. Then, a coating agent obtained by diluting such a urethane resin in water is used as composition 2 to coat a polyethylene terephthalate layer or the like by a known coating method (also referred to as “coating”), and the water is dried to protect the back side.
  • the layer constituting the surface in contact with the back side protective base member 1 in the base member 2 can be used as the adhesive layer 2.
  • the coating method of the composition 2 examples include rod coating, gravure coating, die coating, and spray coating. However, rod coating has a relatively wide degree of freedom in selecting the viscosity, coating speed, and coating amount of the coating agent. Particularly preferably used.
  • the content (content after coating and drying) of the urethane resin in the composition 2 is preferably 0.05 to 5 g / m 2 , economical aspects such as material costs, and coating at the time of coating In consideration of suitability, 0.2 to 1.2 g / m 2 is most preferable.
  • a preferable content of the urethane resin in the composition 2 is 50 to 98% by mass in 100% by mass of all the components of the composition 2 (excluding a solvent (for example, water)).
  • the adhesive layer 1 includes an epoxy-modified olefin resin, preferably an ethylene-glycidyl methacrylate copolymer as an adhesive resin
  • the adhesive layer 2 is a urethane resin
  • the content of the urethane resin in the composition 2 is more preferably 64 to 96% by mass. preferable.
  • the preferred content of the urethane resin in the composition 2 is 50 to 98% by mass as described above, but since the adhesive layer 2 is preferably obtained from the composition 2, the urethane resin in the adhesive layer 2 A suitable content is also 50 to 98% by mass in 100% by mass of all components of the adhesive layer 2.
  • a base material such as a polyethylene terephthalate layer, which is a part of the above-mentioned backside protective base material member 2, with an extruder (film formation) in the step of coating the composition 2 suitable for forming the adhesive layer 2
  • a base material such as a polyethylene terephthalate layer
  • film formation film formation
  • the composition 2 preferably further contains at least one selected from the group consisting of a melamine resin, an epoxy resin, and an olefin resin.
  • the composition 2 further includes at least one selected from the group consisting of a melamine resin, an epoxy resin, and an olefin resin, thereby improving the adhesiveness between the adhesive layer 2 and the adhesive layer 1 that are in contact with each other in the step 2 This is because the adhesiveness between the adhesive layer 1 and the adhesive layer 2 can be ensured even under a severe environment of high temperature and high humidity, and the adhesive layer 2 itself becomes strong.
  • Examples of the melamine resin suitable for the composition 2 include a model number PM-80 manufactured by DIC Corporation.
  • Examples of the epoxy resin suitable for the composition 2 include DIC Corporation, model number ADDITIVE EP-10, model number ADDITIVE EXP110208, and the like.
  • Examples of olefin resins suitable for composition 2 include DIC Corporation's model number DICSEAL HS-W EXP110202 listed as urethane resins, which are particularly preferably used because they contain urethane resins and olefin resins. it can.
  • urethane resin and other resins examples include the following (1) to (3).
  • the adhesive layer 2 is obtained from the composition 2, the relationship between the content of the urethane resin and the other resin (such as melamine resin) in the composition 2 similarly holds for the adhesive layer 2 as well. .
  • AP-201 given as an example above contains water and other resins in addition to urethane resin, and PM-80 also contains water and other resins in addition to melamine resin.
  • EP-10 is almost an epoxy resin.
  • the adhesive layer 1 contains an epoxy-modified olefin resin, preferably an ethylene-glycidyl methacrylate copolymer as an adhesive resin, and the adhesive layer 2 is a urethane resin (AP-201). And a melamine resin (such as PM-80).
  • the melamine resin and the epoxy-modified olefin resin undergo a cross-linking reaction, and the adhesiveness at the interface between the adhesive layer 1 and the adhesive layer 2 is improved.
  • the adhesive layer 1 contains an epoxy-modified olefin resin, preferably an ethylene-glycidyl methacrylate copolymer as the adhesive resin
  • the adhesive layer 2 is a urethane resin or olefin.
  • This is a combination of a resin and an epoxy resin.
  • the epoxy resin and the epoxy-modified olefin resin undergo a cross-linking reaction to improve the adhesiveness, and therefore can be suitably used.
  • DICSEAL HS-W EXP110202 or the like can include both urethane resin and olefin resin
  • ADDITIVE EXP110208 can be suitably used as an epoxy resin.
  • composition 2 as an emulsifier for diluting each resin into water as composition 2 or improving the appearance of adhesive layer 2 obtained by coating composition 2 on a substrate such as a polyethylene terephthalate layer
  • a surfactant for example, model number Surfynol 440 or Olphine EXP4051F manufactured by Nissin Chemical Co., Ltd. can be used.
  • the thickness of the adhesive layer 2 in the backside protective substrate member 2 is preferably 0.1 to 5 ⁇ m, and considering the economical aspect such as material cost and the coating suitability at the time of coating, the thickness is 0.2 to 1 ⁇ m. Further preferred.
  • the surface of the polyethylene phthalate layer or the like that is the base of the adhesive layer 2 is subjected to various surface treatments such as corona treatment, plasma treatment, and flame treatment, thereby improving the adhesion between the polyethylene phthalate layer and the adhesive layer 2. be able to. Furthermore, depending on the processing conditions, it is possible that the various surface treatments serve the function of the adhesive layer 2.
  • the front protective substrate (8) that can be suitably used is used as a protective member on the light receiving surface (front surface) side of the solar cell module.
  • the composition of the front side protective substrate is not particularly limited, but generally glass is used.
  • glass is used as the front-side protective substrate, a glass having a total light transmittance of 80% or more of light having a wavelength of 350 to 1400 nm is preferable, and more preferably 90% or more.
  • glass used as the front side protective substrate it is common to use white plate glass with little absorption in the infrared part, but even if it is blue plate glass, if the thickness is 3 mm or less, the output of the solar cell module There is little effect on the characteristics.
  • tempered glass can be obtained by heat treatment to increase the mechanical strength of the glass, but float plate glass without heat treatment may be used.
  • an antireflection coating may be provided on the light receiving surface side of the glass to suppress reflection.
  • a known encapsulant sheet for solar cells can be used.
  • ethylene-vinyl acetate copolymer (EVA) and olefin resin are preferable.
  • the ethylene-vinyl acetate copolymer (EVA) examples include model number fastcure PV-45FR00S manufactured by Sanvic Co., Ltd.
  • the thickness of the sealing material sheet on the light receiving surface side is preferably 400 ⁇ m or more from the viewpoint of protecting the solar battery cell (10) from the external environment, and more preferably from 450 ⁇ m to 800 ⁇ m from the viewpoint of cost.
  • solar cell (10) As a solar cell (10) in an example of the solar cell module of the present invention, there are various types such as a single crystal silicon type, a polycrystalline silicon type, an amorphous silicon type, and a compound type. A single crystal silicon type and a polycrystalline silicon type which are easy to apply are preferable.
  • the back side protective base material of the present invention is a back side protective base material for a solar cell module, and the back side protective base material is a laminate of a back side protective base material member 1 and a back side protective base material member 2.
  • the layer which comprises the surface in the side which contacts the member 2 for back side protection base materials in this member 1 for back side protection base materials is a layer (henceforth an olefin layer 1) which has an olefin resin as a main component.
  • the olefin layer 1 has adhesiveness (hereinafter, the olefin layer 1 having adhesiveness is referred to as an adhesive layer 1), and the back side protective base member 1 in the back side protective base member 2 A layer constituting the surface on the side in contact has adhesiveness (hereinafter, this layer is referred to as an adhesive layer 2).
  • the back side protective substrate of the present invention having such a configuration can ensure the adhesion between the back side protective substrate member 1 and the back side protective substrate member 2 even under a severe environment of high temperature and high humidity. Suitable for solar cell module applications.
  • the back side protective base material of the present invention that is, the back side protective base member 1, the back side protective base member 2, the olefin layer 1, the adhesive layer 1, and the adhesive layer 2 are described above. This is as described in the section of the invention of the battery module manufacturing method.
  • the method for manufacturing the back side protective substrate of the present invention is not limited to the above-described manufacturing method (solar cell module) of the present invention. That is, the back side protective base material of the present invention is obtained by laminating the back side protective base material member 1 and the back side protective base material member 2, and for the back side protective base material before laminating them. There is no need to laminate the member 1 and the sealing material. That is, the backside protective substrate of the present invention can be obtained by laminating the backside protective substrate member 1 and the backside protective substrate member 2 before laminating the sealing material.
  • the laminate for a solar cell module of the present invention can be obtained by laminating a sealing material on the back side protective substrate member 1 side of the back side protective substrate of the present invention.
  • the description of each element constituting the laminated body of the present invention, that is, the sealing material, is as described in the item of the invention of the manufacturing method of the solar cell module described above.
  • the method of manufacturing the laminated body of this invention is possible by laminating
  • the solar cell module of the present invention is a solar cell module having the back side protective substrate of the present invention.
  • the description of each element constituting the solar cell module of the present invention is as described in the above description of the manufacturing method (for the solar cell module) of the present invention.
  • the layer which comprises the surface in the side which contacts the member 2 for back side protection base materials in the member 1 for back side protection base materials is the olefin layer 1
  • this olefin layer 1 is the contact bonding layer 1
  • a back side protection base material When the manufacturing method of the present invention (for a solar cell module) is applied when the layer constituting the surface in contact with the back-side protective base material member 1 in the member 2 is the adhesive layer 2, A battery module can be obtained.
  • the method for obtaining the solar cell module of the present invention is not limited to the production method of the present invention.
  • the front protective substrate, the sealing material, the cell, the sealing material, and the back protective substrate of the present invention are used.
  • the back side protective base material member 1 in the back side protective base material is stacked in this order so that the member 1 for the back side protective base material faces the side of the sealing material, and the method of pressure bonding, the front side protective base material, the sealing material, the cell, the lamination of the present invention
  • a method in which the bodies are stacked in this order so that the side of the sealing material in the laminated body faces the side of the cell and pressure-bonded can also be mentioned.
  • the size is 353 mm square, and the curled state of the integrated product after Step 1 is set on a horizontal plane so that the curl is concave, and the height of the four corners (this is referred to as “total”) with a straight ruler. It was measured.
  • the curl condition in step 2 is that the sample is left in a vacuum laminating apparatus (heated heating plate) for 1 minute, and then the corresponding sample (in the case of the example, the integrated product and the back side protective base member 2 are comparative examples)
  • the back side protective base member 1 and the back side protective base member 2 were taken out and measured by the same method as in Step 1. Three samples were evaluated, and the average value of their “total” was “3” for 200 mm or more, “2” for 100 mm or more and less than 200 mm, and “1” for less than 100 mm.
  • EVA ethylene-vinyl acetate copolymer
  • a known cell automatic wiring apparatus was used in which three tabs were connected in parallel.
  • the composition 2 of the adhesive layer 2 provided is a blend of AP-201 and PM-80, using urethane resin as a model number AP-201 manufactured by DIC, and melamine resin as a model number PM-80.
  • the ratio was 94 parts by mass / 6 parts by mass.
  • Water was added and adjusted so that the concentration of the composition 2 was an aqueous solution of 10% by mass to obtain a coating composition.
  • This coating agent is hand-coated on a polyethylene terephthalate layer using a # 3 rod and then dried at 150 ° C. for 2 minutes to form an adhesive layer 2, which is a laminate of the polyethylene terephthalate layer and the adhesive layer 2. It was set as the member 2 for protective base materials.
  • the thickness of the adhesive layer 2 at this time is theoretically 0.6 ⁇ m.
  • Example 1 [Configuration of solar cell module] From the light receiving surface side, A surface side protective substrate / B light receiving surface side sealing material / C cell / E integrated product / F back side protective substrate member 2 [Method for manufacturing solar cell module] [Step 1]
  • a sealing material linear low density polyethylene (LLDPE), which is an olefin resin, model number Sumikasen-L GA401 (melting point: 127 ° C.) manufactured by Sumitomo Chemical Co., Ltd. , ethylene and propylene copolymer resins of an olefin resin (EPC: E thylene- P ropylene- C opolymer), was used Sumitomo chemical Co., Ltd. model number Noblen FL6412 (mp 142 ° C.).
  • LLDPE linear low density polyethylene
  • EPC E thylene- P ropylene- C opolymer
  • the production of an integrated product of the sealing material and the back side protective base material member 1 is performed by coextrusion of the sealing material with a thickness of 250 ⁇ m and a back side protective base material member 1 with a thickness of 200 ⁇ m by a coextrusion apparatus using a T die. did.
  • the extrusion width was 400 mm.
  • a front side protective substrate / B light receiving surface side sealing material / C cell / E integrated product (arranged so that the sealing material side faces the cell) / F back side protective base material member 2 (corona treatment surface faces the integrated product) Were placed in this order and pressure-bonded by a method described later using a vacuum laminating apparatus shown in FIG. 8 to manufacture a solar cell module.
  • the A surface side protective substrate glass: thickness 3.2 mm
  • the sealing material, the C cell, the E integrated product, and the F back side protective base material member 2 are laminated in this order and left to stand.
  • the upper casing of the vacuum laminating apparatus is closed and sealed, and the air in the space is exhausted from the exhaust pipe attached to the lower casing by the exhaust apparatus, and at the same time from the supply / exhaust pipe attached to the upper casing. Also, the air in the space formed by the rubber diaphragm and the upper housing is exhausted, and the two spaces are decompressed. After maintaining this state for 4 minutes, air is introduced from the air supply / exhaust pipe, and a rubber diaphragm is pressed against the laminate by a pressure difference (atmospheric pressure) between the two spaces. This pressurized state was maintained for 16 minutes to produce a solar cell module.
  • Example 2 [Configuration of solar cell module] From the light receiving surface side, A surface side protective substrate / B light receiving surface side sealing material / C cell / E integrated product / F back side protective substrate member 2 [Method for manufacturing solar cell module] [Step 1]
  • a sealing material linear low density polyethylene (LLDPE), which is an olefin resin, model number Sumikasen-L GA401 (melting point: 127 ° C.) manufactured by Sumitomo Chemical Co., Ltd.
  • the olefin layer 2 is a copolymer resin (EPC) of ethylene and propylene, which is an olefin resin, model Noblen FL6412 (melting point 142 ° C.) manufactured by Sumitomo Chemical Co., Ltd. Model No. BondFirst E (melting point: 103 ° C.) manufactured by Sumitomo Chemical Co., Ltd., which is a glycidyl methacrylate copolymer, was used alone.
  • EPC copolymer resin
  • model Noblen FL6412 melting point 142 ° C.
  • Model No. BondFirst E melting point: 103 ° C.
  • the melting point of each raw material was measured using a model number DSC-60 manufactured by Shimadzu Corporation in accordance with JIS K 7121 (1987) in the same manner as the method for measuring the melting point of the layer. The same applies hereinafter.
  • the production of an integrated product of the encapsulant and the backside protective substrate member 1 is performed using a coextrusion apparatus using a T-die with a sealant having a thickness of 250 ⁇ m. 1 was coextruded with a thickness of 200 ⁇ m (olefin layer 1 was 50 ⁇ m, olefin layer 2 was 150 ⁇ m). The extrusion width was 400 mm.
  • Step 2 A front side protective base material / B light receiving surface side sealing material / C cell / E integrated product (arranged so that the sealing material side faces the C cell) / F back side protective base material member 2 (corona treatment surface becomes E integrated product)
  • the solar cell module was manufactured by stacking in this order and pressing in the same manner as in Example 1 using a vacuum laminating apparatus.
  • Example 3 For step 1, as a sealing material, linear low density polyethylene (LLDPE), which is an olefin resin, model number Sumikasen-L GA401 (melting point: 127 ° C.) manufactured by Sumitomo Chemical Co., Ltd.
  • the olefin layer 2 is a copolymer resin (EPC) of ethylene and propylene, which is an olefin resin, model Noblen FL6412 (melting point 142 ° C.) manufactured by Sumitomo Chemical Co., Ltd. Model No. BondFirst E (melting point: 103 ° C.) manufactured by Sumitomo Chemical Co., Ltd., which is a glycidyl methacrylate copolymer, was used alone.
  • EPC copolymer resin
  • EPC copolymer resin
  • model Noblen FL6412 melting point 142 ° C.
  • Model No. BondFirst E (melting point: 103 ° C.) manufactured by Sumitomo Chemical Co
  • the integral product of the sealing material and the back side protective base material member 1 (olefin layers 1 and 2) is prepared by co-extrusion equipment using a T-die and the back side protective base material member 1 is 200 ⁇ m in thickness of 250 ⁇ m. Co-extruded with a thickness of 50 ⁇ m for olefin layer 1 and 150 ⁇ m for olefin layer 2. The extrusion width was 400 mm.
  • Step 2 A front side protective base material / B light receiving surface side sealing material / C cell / E integrated product (arranged so that the sealing material side faces the C cell) / F back side protective base material member 2 (adhesive layer 2 becomes an E integrated product)
  • the solar cell module was manufactured by stacking in this order and pressing in the same manner as in Example 1 using a vacuum laminating apparatus.
  • the olefin layer 2 uses an ethylene and propylene copolymer resin (EPC) which is an olefin resin, model number Noblene FL6412 (melting point 142 ° C.) manufactured by Sumitomo Chemical Co., Ltd.
  • EPC ethylene and propylene copolymer resin
  • Model No. BondFirst E melting point: 103 ° C.
  • Sumitomo Chemical Co., Ltd. which is an ethylene-glycidyl methacrylate copolymer
  • the back side protective group is placed on the corona-treated surface of the F back side protective base member 2 so that the olefin layer 1 of the back side protective base member 1 (olefin layers 1 and 2) and the F back side protective base member 2 are in contact with each other.
  • the material member 1 was extrusion coated.
  • the back side protective base member 1 was extrusion coated with a thickness of 200 ⁇ m (the olefin layer 1 was 50 ⁇ m and the olefin layer 2 was 150 ⁇ m).
  • the extrusion coating width was 400 mm.
  • Step 2 A surface side protective base material / B light receiving surface side sealing material / C cell / D sealing material / extrusion coating product manufactured in step 1 (placed so that the olefin layer 2 side faces the D sealing material) is stacked in this order.
  • a solar cell module was manufactured by pressure bonding with a vacuum laminating apparatus in the same manner as in Example 1.
  • the D sealing material used was an ethylene-vinyl acetate copolymer (EVA) (model number fastcure PV-45FR00S, 450 ⁇ m thick, melting point 70 ° C., manufactured by Sunvic Co., Ltd.).
  • EVA ethylene-vinyl acetate copolymer
  • the coextruded film (back side protective substrate member 1) was prepared by coextrusion so that the thickness of the olefin layer 1 was 50 ⁇ m and the thickness of the olefin layer 2 was 150 ⁇ m.
  • the olefin layer 2 uses an ethylene and propylene copolymer resin (EPC) which is an olefin resin, model number Noblene FL6412 (melting point 142 ° C.) manufactured by Sumitomo Chemical Co., Ltd.
  • EPC ethylene and propylene copolymer resin
  • Model No. BondFirst E melting point: 103 ° C.
  • Sumitomo Chemical Co., Ltd. which is an ethylene-glycidyl methacrylate copolymer
  • Step 1 in this comparative example is a co-extruded film prepared in advance by applying an adhesive to the corona-treated surface of the F-back-side protective substrate member 2, and an E-integrated product (back-side protective substrate member 1 ) Is dry laminated so that the olefin layer 1 faces the adhesive surface.
  • the adhesive to be applied to the corona-treated surface of the F backside protective substrate member 2 uses a main component such as polyester polyol and an isocyanate curing agent, and an E-integrated product (backside protective substrate member 1) and F backside The protective substrate member 2 was dry laminated.
  • the dry laminate width was 400 mm.
  • Step 2 A surface side protective substrate / B light receiving surface side sealing material / C cell / D sealing material / dry laminate manufactured in step 1 (placed so that the olefin layer 2 side faces the D sealing material) are stacked in this order.
  • a solar cell module was manufactured by pressure bonding with a vacuum laminating apparatus in the same manner as in Example 1.
  • the D sealing material used was an ethylene-vinyl acetate copolymer (EVA) (model number fastcure, PV-45FR00S, thickness 450 ⁇ m, melting point 70 ° C., manufactured by Sanvic Co., Ltd.).
  • EVA ethylene-vinyl acetate copolymer
  • EVA ethylene-vinyl acetate copolymer
  • Examples 4 to 15 a commercially available PET (release PET) provided with a release coat layer was cut into a size of 53 mm ⁇ 105 mm to provide a place (peeling off) for evaluating the adhesive strength. Then, the release PET was sandwiched between the adhesive layer 1 and the adhesive layer 2. Even if step 2 (pressurization) is performed in this state, the adhesive layers 1 and 2 are not bonded (press-bonded) where the release PET is sandwiched. Therefore, when performing a peel test for measuring the adhesive strength, the portion (a place where the adhesive layers 1 and 2 are not bonded (crimped)) can be used as the “peel off”.
  • mold release PET Toray Film Processing Co., Ltd. therapy (registered trademark) model number MF was used as mold release PET.
  • Example 4 [Configuration of pseudo solar cell module] From the light receiving surface side, A front side protective base material / B light receiving surface side sealing material / E integrated product / F back side protective base material member 2 [Manufacturing method of pseudo module] [Step 1]
  • a sealing material linear low density polyethylene (LLDPE), which is an olefin resin, model number Sumikasen-L GA401 (melting point: 127 ° C.) manufactured by Sumitomo Chemical Co., Ltd.
  • LLDPE linear low density polyethylene
  • the olefin layer 2 is a copolymer resin (EPC) of ethylene and propylene, which is an olefin resin, model Noblen FL6412 (melting point 142 ° C.) manufactured by Sumitomo Chemical Co., Ltd., and the olefin layer 1 (adhesion layer 1) is adhesive.
  • EPC copolymer resin
  • model Noblen FL6412 melting point 142 ° C.
  • the olefin layer 1 (adhesion layer 1) is adhesive.
  • model number Bond First E (melting point: 103 ° C.) manufactured by Sumitomo Chemical Co., Ltd., which is an ethylene-glycidyl methacrylate copolymer, was used alone.
  • the integrated product of the sealing material and the back-side protective base material member 1 is formed from the back-side protective base material member 1 with a thickness of 250 ⁇ m by a co-extrusion apparatus using a T-die. It was prepared by coextrusion with a thickness of 200 ⁇ m (olefin layer 1 is 50 ⁇ m, olefin layer 2 is 150 ⁇ m). The extrusion width was 400 mm.
  • the adhesive layer 2 was provided on the polyethylene terephthalate layer of the member 2 for back side protective substrate.
  • the composition 2 used to form the adhesive layer 2 is composed of DIC Corporation model number AP-201 as a urethane resin, and DIC Corporation model number PM-80 as a melamine resin, and a combination of AP-201 and PM-80. The ratio was 94 parts by mass / 6 parts by mass. Water was added and adjusted so that the concentration of the composition 2 was an aqueous solution of 10% by mass to obtain a coating composition. This coating agent was hand-coated on a polyethylene terephthalate layer using a # 3 rod and then dried at 150 ° C. for 2 minutes to form an adhesive layer 2, which was used as a member 2 for a back side protective substrate.
  • Step 2 A front side protective substrate / B light receiving surface side sealing material / E integrated product (arranged so that the sealing material side faces B) / F back side protective substrate member 2 (arranged so that the adhesive layer 2 faces the E integrated product) ) Were stacked in this order and pressure-bonded by a vacuum laminating apparatus in the same manner as in Example 1 to produce a solar cell module.
  • the A surface side protection base material / B light-receiving surface side sealing material / E integrated product / F back side protection base material member 2 each had a size of 105 mm square.
  • a release PET having a size of 53 mm ⁇ 105 mm was sandwiched between the adhesive layer 1 and the adhesive layer 2 and then pressed (crimped). At this time, as shown in FIG. 9, the release PET is attached to the adhesive layer 1 so that one long side of the release PET is along one side of another member other than the release PET (matches). And the adhesive layer 2.
  • the adhesive strength was evaluated by the following method.
  • the following examples and comparative examples were also evaluated for adhesive strength by the same method.
  • the size was 105 mm square, and a pseudo module for evaluating adhesive strength, which will be described separately below, was used.
  • the pseudo module is a module used for adhesive strength evaluation and does not include a cell.
  • a portion of the pseudo module other than the glass is cut into a strip shape having a width of 5 mm and a length of 105 mm.
  • the number of evaluations is 2, incisions are made at the positions of 10 mm, 15 mm, and 20 mm from the sides of the pseudo module and parallel to the short side direction of the release PET. (See FIG. 10).
  • two rectangular samples having a width of 5 mm and a length of 105 mm are obtained. That is, in FIG. 10, the area between the notches 51 and 52 is the first sample, and the area between the notches 52 and 53 is the second sample.
  • the F-back-side protective base member 2 (If the length of the F-back-side protective base member 2 is not sufficient, it may be added with a not-shown cello tape (registered trademark) or the like and fixed to the other chuck of Tensilon). Then, using the above Tensilon, the F back side protective base member 2 was peeled in a 180 ° direction from the laminate composed of the A front side protective base material / B light receiving surface side sealing material / E integrated product.
  • the above measurement was performed before and after storage in a high temperature and high humidity environment (120 ° C. ⁇ 100% RH ⁇ 48 hours).
  • the storage in a high-temperature and high-humidity environment was performed using a pressure cooker manufactured by ESPEC CORP. (Highly accelerated life test device, model number EHS-221MD).
  • Rate of change (%) [(Adhesive strength before storage ⁇ Adhesive strength after storage) / Adhesive strength before storage] ⁇ 100 (3)
  • Example 5 [Configuration of pseudo solar cell module] From the light receiving surface side, A front side protective base material / B light receiving surface side sealing material / E integrated product / F back side protective base material member 2 [Manufacturing method of pseudo module] [Step 1] The same operation as in Example 4 was performed.
  • the adhesive layer 2 was provided on the polyethylene terephthalate layer of the member 2 for back side protective substrate.
  • the composition 2 used to form the adhesive layer 2 is composed of DIC Corporation model number AP-201 as a urethane resin and DIC Corporation model number EP-10 as an epoxy resin, and a combination of AP-201 and EP-10.
  • the ratio was 94 parts by mass / 6 parts by mass.
  • the coating agent is adjusted so that the concentration of the composition 2 is 10% by mass, and the epoxy resin is not easily mixed with water. 0.25 part by mass was added. Thereafter, the polyethylene terephthalate layer was hand-coated with a # 3 rod and then dried at 150 ° C. for 2 minutes to form an adhesive layer 2, which was used as the back protective substrate member 2.
  • Example 6 [Configuration of pseudo solar cell module] From the light receiving surface side, A front side protective base material / B light receiving surface side sealing material / E integrated product / F back side protective base material member 2 [Manufacturing method of pseudo module] [Step 1] As an adhesive resin for the olefin layer 1 (adhesive layer 1), model number Modic F535 (melting point: 122 ° C.) manufactured by Mitsubishi Chemical Corporation, which is an acid-modified resin obtained by graft polymerization of maleic anhydride onto the olefin resin, was used alone. Except that, the same procedure as in Example 4 was performed.
  • model number Modic F535 melting point: 122 ° C.
  • Example 7 [Configuration of pseudo solar cell module] From the light receiving surface side, A front side protective base material / B light receiving surface side sealing material / E integrated product / F back side protective base material member 2 [Manufacturing method of pseudo module] [Step 1] The same operation as in Example 4 was performed.
  • the adhesive layer 2 was provided on the polyethylene terephthalate layer of the member 2 for back side protective substrate.
  • the composition 2 used to form the adhesive layer 2 is urethane resin with DIC Corporation model number AP-201, melamine resin is DIC Corporation model number PM-80, and epoxy resin is DIC Corporation model number EP-10.
  • the blending ratio of AP-201, PM-80, and EP-10 was 92 parts by mass / 6 parts / 2 parts by mass. Since the composition 2 is adjusted by adding water so that the concentration of the aqueous solution becomes 10% by mass, and the epoxy resin is not easily mixed with water, it is a surfactant separately manufactured by Nissin Chemical Co., Ltd., Model No.
  • Example 8 [Configuration of pseudo solar cell module] From the light receiving surface side, A front side protective base material / B light receiving surface side sealing material / E integrated product / F back side protective base material member 2 [Manufacturing method of pseudo module] [Step 1] The same operation as in Example 6 was performed.
  • Adhesive layer 2 forming step The same operation as in Example 7 was performed.
  • Example 9 [Configuration of pseudo solar cell module] From the light receiving surface side, A front side protective base material / B light receiving surface side sealing material / E integrated product / F back side protective base material member 2 [Manufacturing method of pseudo module] [Step 1] Except for using as a self-adhesive resin for the olefin layer 1 (adhesive layer 1), model number LC3-UV (melting point 130 ° C.) manufactured by Arkema Co., which is an amide-modified resin in which an amide group is graft-polymerized to an olefin resin. This was carried out in the same manner as in Example 4.
  • model number LC3-UV melting point 130 ° C.
  • Adhesive layer 2 forming step The same operation as in Example 7 was performed.
  • Example 10 [Configuration of pseudo solar cell module] From the light receiving surface side, A front side protective base material / B light receiving surface side sealing material / E integrated product / F back side protective base material member 2 [Manufacturing method of pseudo module] [Step 1] The same procedure as in Example 4 was performed except that a silane-modified resin (melting point: 85 ° C.) obtained by graft-polymerizing a silanol group to an olefin resin was used alone as the adhesive resin for the olefin layer 1 (adhesive layer 1).
  • a silane-modified resin melting point: 85 ° C.
  • Adhesive layer 2 forming step The same operation as in Example 7 was performed.
  • Example 11 [Configuration of pseudo solar cell module] From the light receiving surface side, A front side protective base material / B light receiving surface side sealing material / E integrated product / F back side protective base material member 2 [Manufacturing method of pseudo module] [Step 1] The same operation as in Example 4 was performed.
  • the adhesive layer 2 was provided on the polyethylene terephthalate layer of the member 2 for back side protective substrate.
  • the composition 2 used for forming the adhesive layer 2 includes both a urethane resin and an olefin resin. Used, those having a blending ratio of EXP110202 and EXP110208 of 91 parts by mass / 9 parts by mass. Since the composition 2 is adjusted by adding water so that the concentration of the aqueous solution becomes 10% by mass, and the epoxy resin is not easily mixed with water, it is a surfactant separately manufactured by Nissin Chemical Co., Ltd., Model No. Surfynol 440. Was added to obtain a coating agent. Thereafter, this coating agent was hand-coated on a polyethylene terephthalate layer using a # 3 rod and then dried at 150 ° C. for 2 minutes to form an adhesive layer 2, which was used as the back side protective substrate member 2 and did.
  • Example 12 [Configuration of pseudo solar cell module] From the light receiving surface side, A front side protective base material / B light receiving surface side sealing material / E integrated product / F back side protective base material member 2 [Manufacturing method of pseudo module] [Step 1] The same operation as in Example 6 was performed.
  • Adhesive layer 2 forming step The same operation as in Example 11 was performed.
  • Example 13 [Configuration of pseudo solar cell module] From the light receiving surface side, A front side protective base material / B light receiving surface side sealing material / E integrated product / F back side protective base material member 2 [Manufacturing method of pseudo module] [Step 1] The same operation as in Example 9 was performed.
  • Adhesive layer 2 forming step The same operation as in Example 11 was performed.
  • Example 14 [Configuration of pseudo solar cell module] From the light receiving surface side, A front side protective base material / B light receiving surface side sealing material / E integrated product / F back side protective base material member 2 [Manufacturing method of pseudo module] [Step 1] The same operation as in Example 10 was performed.
  • Adhesive layer 2 forming step The same operation as in Example 11 was performed.
  • Example 15 [Configuration of pseudo solar cell module] From the light receiving surface side, A front side protective base material / B light receiving surface side sealing material / E integrated product / F back side protective base material member 2 [Manufacturing method of pseudo module] [Step 1] The same operation as in Example 4 was performed.
  • the adhesive layer 2 was provided on the polyethylene terephthalate layer of the member 2 for back side protective substrate.
  • the composition 2 used to form the adhesive layer 2 was model number AP-201 manufactured by DIC Corporation as a urethane resin. Water was added and adjusted so that the concentration of the composition 2 was an aqueous solution of 10% by mass to obtain a coating composition.
  • This coating agent was hand-coated on a polyethylene terephthalate layer using a # 3 rod, and then dried at 150 ° C. for 2 minutes to form an adhesive layer 2, which was used as a backside protective base member 2.
  • the diagonal line in the table indicates that the corresponding material is not used.
  • the curl after step 1 is the E-coated product (back side protective substrate member 1) and the F back side protective substrate member 2 extrusion coated product is the back side protective substrate member 1 (olefin).
  • the “3” level which curls greatly to the layer 2) side, each material was laminated and allowed to stand still on the vacuum laminating apparatus (heated heating plate) in Step 2, and was at the “3” level. .
  • This situation has a problem in the process passability in manufacturing the solar cell module and can be said to be a level that cannot withstand mass productivity.
  • the curl after Step 1 is at the “2” level that curls toward the back side protective substrate member 1 (olefin layer 2) side, but in the vacuum laminating apparatus (heated heating plate) in Step 2
  • a dry laminate product of the E-integrated product (back side protective base member 1) and the F back side protective base member 2 is back side protective base member 1 (olefin layer 2).
  • the diagonal line in the table indicates that the corresponding material is not used.
  • the embodiment is at a level of “1” or higher, and can be said to have a performance that can be practically sufficiently endured.
  • the adhesive layer 1 is an epoxy resin (ethylene-glycidyl methacrylate copolymer) and the adhesive layer 2 contains a urethane resin
  • the adhesive strength is “0” level, and it has sufficient adhesive performance even in a high temperature and high humidity environment. I can say that.

Abstract

【課題】 工程1にて、封止材と裏側保護基材用部材1とを積層して、一体品を製造し、続いて、押出コーティングやドライラミネート工程を経ず、工程2にて、表側保護基材、封止材、セル、一体品、及び、裏側保護基材用部材2を、この順序に重ねて、圧着することで太陽電池モジュールを製造することにより、経済的に有利で、かつカールなども発生させず、工程通過性を向上させることができる太陽電池モジュールの製造方法を提供することにある。 【解決手段】 太陽電池モジュールの製造方法であって、 封止材と裏側保護基材用部材1とを積層して、封止材・裏側保護基材用部材1の一体品を 製造する工程1を有し、 続いて、表側保護基材、封止材、セル、一体品、及び、裏側保護基材用部材2を、この順序に重ねて、圧着する工程2を有することを特徴とする、太陽電池モジュールの製造方法。

Description

裏側保護基材、太陽電池モジュール、及び太陽電池モジュールの製造方法
 本発明は、太陽電池モジュール用裏側保護基材、それを用いた太陽電池モジュール、及び太陽電池モジュールの製造方法に関するものであり、更に詳しくは、封止材と裏側保護基材用部材1の積層体である封止材・裏側保護基材用部材1の一体品(以下、単に「一体品」と称することがある。)を、表側保護基材、封止材、セル、前記一体品、及び、裏側保護基材用部材2の順序に重ねて、圧着する工程2を有することを特徴とする、太陽電池モジュールの製造方法に関するものである。また、封止材と裏側保護基材用部材1とを積層して、封止材・裏側保護基材用部材1の一体品を製造する工程1を有し、続いて、表側保護基材、封止材、セル、一体品、及び、裏側保護基材用部材2を、この順序に重ねて、圧着する工程2を有することを特徴とする、太陽電池モジュールの製造方法に関する発明も本発明に含まれる。
 また、裏側保護基材用部材1と裏側保護基材用部材2との積層体である該裏側保護基材において、該裏側保護基材用部材1中の、裏側保護基材用部材2と接する側の面を構成する層が、オレフィン樹脂を主成分とする層(以下、オレフィン層1という)であって、該オレフィン層1が、接着性を有し(以下、接着性を有するオレフィン層1を、接着層1という)、該裏側保護基材用部材2中の、裏側保護基材用部材1と接する側の面を構成する層が、接着性を有する(以下、該層を、接着層2という)ことを特徴とする、太陽電池モジュール用裏側保護基材に関するものである。
 さらには、これら裏側保護基材を有することを特徴とする太陽電池モジュールに関するものである。
 太陽電池モジュールは、一般に、表面(受光面)側から、ガラスが一般的である表側保護基材、エチレン-ビニルアセテート共重合体を主成分とするものが一般的である表面側の封止材、太陽電池セル、裏面側の封止材、及び裏側保護基材が順に積層された構成となっており、それぞれの構成部材を積層させて、圧着して一体化する工程、例えば真空ラミネート工程を経て、太陽電池モジュールが製造される。
 一方、太陽電池モジュールの部材の一つである裏側保護基材は、現在までに各種多様な構成のものが考案されているが、その一例として、基材と熱可塑性樹脂を備えた太陽電池用裏側保護基材が提案されている(例えば、特許文献1参照)。特許文献1では、基材との接着性を確保するべく熱可塑性樹脂は、エチレンとアクリル酸などの変性樹脂からなる構成となっている。また、真空ラミネートでの圧着工程において、熱可塑性樹脂は、裏面側の封止材との接着性を確保するべく作用する。
 しかしながら、上述の裏側保護基材を得るために基材と熱可塑性樹脂とを一体化する場合、特許文献1では熱可塑性樹脂をポリエチレンテレフタレート(以下、「PET」と称することがある。)フィルムからなる基材上に押出しコーティングすることで一体化し、裏側保護基材としている。この押出しコーティングは、費用が高く、経済的に相当不利になる。また、押出コーティング後に裏側保護基材にカールが発生し、外観不良となることがある。さらに、前記基材との接着性を確保するべく、エチレンとアクリル酸などの変性樹脂からなる熱可塑性樹脂構成となっているが、基材として使用されているポリエチレンテレフタレートと変性樹脂との接着機構は、水素結合などによる比較的弱い結合であり、高温高湿の過酷な環境下での接着性に欠ける問題がある。
 また、太陽電池モジュールを製造する際の真空ラミネート工程にて、表側保護基材、封止材、太陽電池セル、封止材、及びこの裏側保護基材をこの順に重ねて真空ラミネート装置に搬入する際、真空ラミネート装置の熱により裏側保護基材がカールして工程収率を低下させる課題がある。
 また、裏側保護基材として、基材と熱可塑性樹脂を一体化する場合、公知の技術として、接着剤を介して基材と熱可塑性樹脂をドライラミネートする場合もある。この場合、裏側保護基材では、接着剤を介して基材と熱可塑性樹脂をドライラミネートするため、ラミネート直後のシートがカールすることは少ないが、真空ラミネート工程(工程2)で押出コーティングの場合と同じカールが発生し、該工程の収率低下を引き起こすことがある。また、本裏側保護基材はドライラミネート工程を経て製造されるためコスト高になる課題がある。
特開2012-209462号公報
 上述した問題を解決するために本発明では、封止材と裏側保護基材用部材1の積層体である封止材・裏側保護基材用部材1の一体品を、表側保護基材、封止材、セル、前記一体品、及び、裏側保護基材用部材2の順序に重ねて、圧着することで太陽電池モジュールを製造することにより、経済的に有利で、かつカールなども発生させず、工程通過性を向上させることができる太陽電池モジュールの製造方法を提供することを目的とする。
 特に、工程1にて、封止材と裏側保護基材用部材1とを積層して、一体品を製造し、続いて、押出コーティングやドライラミネート工程を経ず、工程2にて、表側保護基材、封止材、セル、一体品、及び、裏側保護基材用部材2を、この順序に重ねて、圧着することで太陽電池モジュールを製造することが特に好ましい。
 また、該裏側保護基材用部材1中の、裏側保護基材用部材2と接する側の面を構成する層が、オレフィン層1であって、該オレフィン層1が、接着性を有する接着層1を有し、該裏側保護基材用部材2中の、裏側保護基材用部材1と接する側の面を構成する層が、接着性を有することで、高温高湿の過酷な環境下でも裏側保護基材用部材1と裏側保護基材用部材2との接着性を確保した積層体である該裏側保護基材を提供することを目的とする。
 また、これら裏側保護基材を有する太陽電池モジュールを提供することを目的とする。
 上述した課題を解決するための本発明は、以下(1)~(16)である。
1) 太陽電池モジュールの製造方法であって、
 封止材と裏側保護基材用部材1とを積層して、封止材・裏側保護基材用部材1の一体品(以下、単に一体品という)を製造する工程1を有し、
 続いて、表側保護基材、封止材、セル、一体品、及び、裏側保護基材用部材2を、この順序に重ねて、圧着する工程2を有することを特徴とする、太陽電池モジュールの製造方法。
2) 太陽電池モジュールの製造方法であって、
 封止材と裏側保護基材用部材1の積層体である封止材・裏側保護基材用部材1の一体品を、
 表側保護基材、封止材、セル、前記一体品、及び、裏側保護基材用部材2の順序に重ねて、圧着する工程2を有することを特徴とする、太陽電池モジュールの製造方法。
3) 前記工程1における封止材と裏側保護基材用部材1との積層が、共押出により行われることを特徴とする、1)に記載の太陽電池モジュールの製造方法。
4) 裏側保護基材用部材1が、オレフィン樹脂を主成分とする層を有することを特徴とする、1)~3)のいずれかに記載の太陽電池モジュールの製造方法。
5) 裏側保護基材用部材1が、オレフィン樹脂を主成分とする層を2層有することを特徴とする、1)~4)のいずれかに記載の太陽電池モジュールの製造方法。
6) 裏側保護基材用部材1中の、裏側保護基材用部材2と接する側の面を構成する層が、オレフィン樹脂を主成分とする層(以下、オレフィン層1という)であって、
 オレフィン層1が、接着性を有する(以下、接着性を有するオレフィン層1を、接着層1という)ことを特徴とする、1)~5)のいずれかに記載の太陽電池モジュールの製造方法。
7) 裏側保護基材用部材2中の、裏側保護基材用部材1と接する側の面を構成する層が、接着性を有する(以下、該層を、接着層2という)ことを特徴とする、1)~6)のいずれかに記載の太陽電池モジュールの製造方法。
8) 封止材が、オレフィン樹脂を主成分とすることを特徴とする、1)~7)のいずれかに記載の太陽電池モジュールの製造方法。
9) 太陽電池モジュール用の裏側保護基材であって、
 該裏側保護基材は、裏側保護基材用部材1と裏側保護基材用部材2との積層体であって、
 該裏側保護基材用部材1中の、裏側保護基材用部材2と接する側の面を構成する層が、オレフィン樹脂を主成分とする層(以下、オレフィン層1という)であって、
 該オレフィン層1が、接着性を有し(以下、接着性を有するオレフィン層1を、接着層1という)、
 該裏側保護基材用部材2中の、裏側保護基材用部材1と接する側の面を構成する層が、接着性を有する(以下、該層を、接着層2という)ことを特徴とする、太陽電池モジュール用裏側保護基材。
10) 前記接着層2は、ウレタン樹脂を含む組成物(以下、組成物2という)から得られることを特徴とする、9)に記載の太陽電池モジュール用裏側保護基材。
11) 前記組成物2は、メラミン樹脂、エポキシ樹脂、及びオレフィン樹脂からなる群より選ばれる少なくとも1つを含むことを特徴とする、10)に記載の太陽電池モジュール用裏側保護基材。
12) 前記接着層1が接着性樹脂を含み、
 該接着性樹脂が、エポキシ変性オレフィン樹脂、酸変性オレフィン樹脂、アミド変性オレフィン樹脂、及びシラン変性オレフィン樹脂からなる群より選ばれる少なくとも1つであることを特徴とする、9)~11)のいずれかに記載の太陽電池モジュール用裏側保護基材。
13) 前記接着性樹脂が、エチレン-グリシジルメタクリレート共重合体であることを特徴とする、12)に記載の太陽電池モジュール用裏側保護基材。
14) 前記裏側保護基材用部材2は、ポリエチレンテレフタレートを主成分とする層(以下、ポリエチレンテレフタレート層という)を有し、
 該ポリエチレンテレフタレート層が、白色粒子を1質量%以上30質量%以下含むことを特徴とする、9)~13)のいずれかに記載の太陽電池モジュール用裏側保護基材。
15) 9)~14)のいずれかに記載の太陽電池モジュール用裏側保護基材の裏側保護基材用部材1の側に、封止材を積層したことを特徴とする、太陽電池モジュール用積層体。
16) 9)~14)のいずれかに記載の太陽電池モジュール用裏側保護基材を有することを特徴とする、太陽電池モジュール。
 本発明の製造方法によれば、封止材と裏側保護基材用部材1の積層体である封止材・裏側保護基材用部材1の一体品を、表側保護基材、封止材、セル、前記一体品、及び、裏側保護基材用部材2の順序に重ねて、圧着することで太陽電池モジュールを製造することにより、経済的に有利で、かつカールなども発生させず工程通過性を向上させることができる太陽電池モジュールの製造方法の提供が可能となる。
 特に、工程1にて、封止材と裏側保護基材用部材1とを積層して、一体品を製造し、続いて、押出コーティングやドライラミネート工程を経ず、工程2にて、表側保護基材、封止材、セル、一体品、及び、裏側保護基材用部材2を、この順序に重ねて、圧着することで太陽電池モジュールを製造することが好ましい。
 また、本発明の裏側保護基材を太陽電池モジュールに使用することで、高温高湿の過酷な環境下でも、裏側保護基材中の各層の接着性を確保することが可能となる。
太陽電池モジュールの製造前における、本発明の封止材と裏側保護基材用部材1とを積層した一体品と、裏側保護基材用部材2の一例を模式的に示す断面図である。 太陽電池モジュールの製造前における、本発明の封止材と裏側保護基材用部材1とを積層した一体品と、裏側保護基材用部材2の別例を模式的に示す断面図である。 太陽電池モジュールの製造前における、本発明の封止材と裏側保護基材用部材1とを積層した一体品と、裏側保護基材用部材2のさらなる別例を模式的に示す断面図である。 本発明の、太陽電池モジュールの製造方法で得られる太陽電池モジュールの一例(圧着前)を模式的に示す断面図である。 本発明の、太陽電池モジュールの製造方法で得られる太陽電池モジュールの別例(圧着前)を模式的に示す断面図である。 本発明の、太陽電池モジュールの製造方法で得られる太陽電池モジュールのさらなる別例(圧着前)を模式的に示す断面図である。 本発明の封止材と裏側保護基材用部材1とを積層した一体品を製造する工程1について、共押出装置の主要部分を側面からみた概略断面図である。 本発明の表側保護基材、封止材、セル、一体品、及び、裏側保護基材用部材2を、この順序に重ねて、圧着する工程2について、太陽電池モジュールを製造する際に用いる、真空ラミネート装置を側面からみた概略断面図である。 離型PETが挟み込まれる場所を示すための図であって、A表側保護基材/B受光面側封止材/E一体品/離型PET/F裏側保護基材用部材2の重畳体の概略俯瞰図である。 切り込みの場所を示すための図であって、疑似モジュールの概略俯瞰図である。 チャックによる固定位置を示すための図であって、疑似モジュールの概略断面図である。
 〔本発明の太陽電池モジュールの製造方法〕
 本発明の製造方法は、太陽電池モジュールの製造方法であって、封止材と裏側保護基材用部材1の積層体である封止材・裏側保護基材用部材1の一体品(以下、単に一体品という)を、表側保護基材、封止材(なお、当該封止材は受光面側の封止材であり、前記一体品を構成する封止材とは異なる部材である。)、セル、前記一体品、及び、裏側保護基材用部材2の順序に重ねて、圧着する工程2を有する、太陽電池モジュールの製造方法である(以下、「第2の発明」と称することがある)。
 また、特に好ましくは、封止材と裏側保護基材用部材1とを積層して、封止材・裏側保護基材用部材1の一体品(以下、単に一体品という)を製造する工程1を有し、続いて、表側保護基材、封止材、セル、一体品、及び、裏側保護基材用部材2を、この順序に重ねて、圧着する工程2を有する太陽電池モジュールの製造方法である(以下、「第1の発明」と称することがある)。
 以下に本発明の太陽電池モジュールの製造方法を詳細に説明する。なお、以降の括弧( )内に単独で記載される数字は、各図面の符号と対応している。
 [太陽電池モジュール製造方法:工程1]
 図1から図3は、太陽電池モジュールの製造前における、本発明の封止材と裏側保護基材用部材1とを積層した一体品と、裏側保護基材用部材2の一例を模式的に示す断面図である。
 工程1は、封止材と裏側保護基材用部材1とを積層して、封止材・裏側保護基材用部材1の一体品を製造する工程である。この工程1について、封止材と裏側保護基材用部材1との積層方法は、特に限定されないが、工程1における封止材と裏側保護基材用部材1との積層が、共押出により行われることが好ましい。つまり、図7に示すようなTダイ(14)による共押出装置(13)により、封止材と裏側保護基材用部材1とをニップロール(15)とキャストロール(16)間に共押出し、剥離ロール(17)を経る方法によって、工程1において封止材と裏側保護基材用部材1とを好適に積層することが可能である。なお、ニップロールには、ゴムを被覆したロールが用いられることが好ましい。
 工程1における封止材と裏側保護基材用部材1との積層を共押出により行う場合には、表面に格子柄や梨地柄等のエンボス模様が彫刻されたキャストロール(16)を用いることで、一体品の表面にエンボス模様を転写させることができ、巻き上げ時のブロッキングなどを防ぐことも可能となるために好ましい。
 なお、図7では、Tダイ(14)から吐出される各層(を構成する樹脂)が、実線、破線および点線で示されている。破線にて示される層は、封止材を意味し、点線および実線にて示される層は裏側保護基材用部材1を意味する。
 特に、裏側保護基材用部材1が2層を備えるときは、実線にて示される層が後述するオレフィン層2であり、点線にて示される層は後述する接着層1であることが好ましい。ここで、接着層1は、接着性を有するオレフィン層1であることが好ましく、図7に示すように、当該層がキャストロール(16)に接するように吐出されることが好ましい(すなわち、破線にて示される層が接着層1ではなく、点線にて示される層が接着層1であることが好ましい)。その理由は、エンボス模様が彫刻されたキャストロール(16)と接着層1との間の離型性が、ゴムで被覆されたニップロール(15)と接着層1との間の離型性よりも優れるためである。
 一方、接着層1がニップロール(15)に接するように吐出されると(すなわち、破線にて示される層が接着層1であると)、ニップロール(15)と接着層1との間の離型性が低いので、接着層1の外観が低下することがある。
 また、図7中の矢印は、封止材と裏側保護基材用部材1との積層体の製造時における、当該積層体の進行方向(「製造方向」や「機械方向」とも称されることがある)を示す。
 その他、工程1において封止材と裏側保護基材用部材1とを積層する方法としては、エクストリュージョンラミネート(押出ラミネート)、ドライラミネートなどの方法があるが、それぞれ後述する理由で、共押出による一体品積層が最も好適である。
 工程1をエクストリュージョンラミネート(押出ラミネート)により行う方法:封止材と裏側保護基材用部材1のどちらか一方を、溶融押出やカレンダー等により製造し、それを基材とする、そして、Tダイ押出し機により加熱溶融した他方の樹脂(封止材の原料である樹脂、又は、裏側保護基材用部材1の原料である樹脂)をスリット状に押し出し、前記基材の上に流し込み、ニップロールとキャストロールで圧着することで積層する方法を言う。この方法では、多数の工程を必要とするため、経済的に不利なものとなることがある。
 工程1をドライラミネートにより行う方法:封止材と裏側保護基材用部材1をそれぞれ溶融押出やカレンダー等により別々に製造し、その後、別工程にて接着剤を用いて積層する方法である。この方法は、多数の工程を必要とし、さらに接着剤等の材料費が加算されるため、経済的に相当不利なものとなることがある。
 次に、工程1にて用いられる封止材と裏側保護基材用部材1(3)について説明する。
 [裏側保護基材用部材1]
 本発明の太陽電池モジュールの製造方法にて用いられる裏側保護基材用部材1(3)とは、太陽電池モジュールの裏側保護基材の一部である。
 裏側保護基材用部材1の組成は特に限定されないが、オレフィン樹脂を主成分とする層を有することが好ましい。ここでオレフィン樹脂を主成分とする層とは、着目した層の全成分100質量%において、オレフィン樹脂を50質量%以上100質量%以下含むことを意味し、以下同様である。
 裏側保護基材用部材1が、オレフィン樹脂を主成分とする層を有することによって、ガラスなどの表側保護基材、封止材、セル、一体品、及び、裏側保護基材用部材2をこの順序に重ねて、圧着する工程2において、圧力によってガラスからの裏側保護基材用部材1のはみ出しや、厚みの減少を抑制することができる。また、高温高湿の過酷な環境下でのクリープも抑制でき、さらには、封止材との接着性も確保することができる。
 オレフィン樹脂とは、ホモポリプロピレンやブロックポリプロピレンなどのポリプロピレン系樹脂、低密度ポリエチレン(LDPE)や直鎖状低密度ポリエチレン(LLDPE)などのポリエチレン系樹脂、エチレン-ビニルアセテート共重合体(EVA)、ならびに2種以上のオレフィン樹脂の共重合体、例えばプロピレンとエチレンの共重合樹脂(EPC:thylene-ropylene-opolymer)や、エチレンとプロピレンとブテンの3元共重合樹脂などが好適に使用される。裏側保護基材用部材1中のオレフィン樹脂を主成分とする層として好適に用いられるオレフィン樹脂は、耐クリープ性や工程2後の厚みの減少を防ぐための耐熱性、ならびに封止材との接着性を加味して、ポリエチレンとポリプロピレンの共重合樹脂(EPC)が特に好適に使用される。
 裏側保護基材用部材1(3)には、太陽電池モジュールのセルとセルの間をすり抜けた光を再度反射させてセルに戻すべく、二酸化チタンや硫酸バリウム等の白色粒子を適宜含有させたり、耐光性をはじめとする耐久性、強度、および裏側保護基材用部材2との接着性を向上させるべく、架橋剤、架橋助剤、酸化防止剤、光安定剤、シランカップリング剤などを適宜含有させることができる。
 裏側保護基材用部材1(3)の厚みは、絶縁性を確保するための最低厚みとして、50μm以上が好ましく、経済性を考慮して300μm以下が好ましい。
 また、裏側保護基材用部材1(3)は、図1に示すように単層であっても、図2に示すように2層構成であっても良い。さらに2層以上の多層であっても構わないが、共押出装置の口金が複雑となり、初期投資額がアップし、生産管理も困難になるため、単層または2層であることが好ましい。
 裏側保護基材用部材1(3)が2層以上の構成の場合、裏側保護基材用部材1はオレフィン樹脂を主成分とする層を2層有することが好ましい。ここでオレフィン樹脂を主成分とする層とは、前述の通り、着目した層の全成分100質量%において、オレフィン樹脂を50質量%以上100質量%以下含むことを意味する。
 また、裏側保護基材用部材1中の裏側保護基材用部材2と接する側の面を構成する層が、オレフィン樹脂を主成分とする層(以下、オレフィン層1という)であって、オレフィン層1が接着性を有する(以下、接着性を有するオレフィン層1を、接着層1という)ことで、工程2において、裏側保護基材用部材2(4)と圧着される際の接着性が上がるため、好ましい。特に裏側保護基材用部材1(3)が2層以上の構成の場合には、裏側保護基材用部材1がオレフィン層1を有し、該オレフィン層1が接着層1であることが好ましい。
 ここでオレフィン層1が接着性を有するとは、オレフィン層1が接着性樹脂を含有することを意味する。つまり、接着性樹脂を含有するオレフィン層1を、接着層1という。
 ここで接着性樹脂とは、オレフィン樹脂であって、さらにその側鎖の一部を各種官能基で変性させた樹脂を意味する。そのため接着層1の主成分であるオレフィン樹脂としては、接着性樹脂ではないオレフィン樹脂と接着性樹脂とを併用しても良いし、接着性樹脂のみであっても構わない。ここで接着性樹脂とは、例えば、エポキシ変性オレフィン樹脂、酸変性オレフィン樹脂(例えば、無水マレイン酸変性オレフィン樹脂)、アミド変性オレフィン樹脂、シラン変性オレフィン樹脂などがあげられ、特に接着性樹脂は、エポキシ変性オレフィン樹脂、酸変性オレフィン樹脂、アミド変性オレフィン樹脂、及びシラン変性オレフィン樹脂からなる群より選ばれる少なくとも1つであることが好ましい。幅広い組成の接着層2との接着性に優れ、また、裏側保護基材用部材2との高温高湿の過酷環境下での接着性の点から、接着層1が含有する接着性樹脂としては、エポキシ変性オレフィン樹脂が好ましく、その中でもエチレン-グリシジルメタクリレート共重合体が最も好適に使用される。エチレン-グリシジルメタクリレート共重合体としては、例えば、住友化学株式会社製の型番ボンドファーストEがあげられる。
 一方、裏側保護基材用部材1中の裏側保護基材用部材2と接する側の面を構成する層がオレフィン層1であって、該オレフィン層1が接着性を有する接着層1である場合には、裏側保護基材用部材1中の他方の面を構成する層も、オレフィンを主成分とする層(以下、オレフィン層2という)であることが好ましい。そしてこの場合には、裏側保護基材用部材1(3)が接着(オレフィン)層1とオレフィン層2の2層構成であって、該オレフィン層2(5)が二酸化チタンや硫酸バリウム等の白色粒子を適宜含有していることが好ましい。この場合の接着(オレフィン)層1とオレフィン層2の厚みについては、その厚みの合計が、絶縁性の観点から50μm以上が好ましく、経済性を考慮して300μm以下が好ましい。
 [封止材]
 続いて、本発明の太陽電池モジュールの製造方法の工程1にて用いられる封止材(2)について説明する。本発明の工程2では、一体品における封止材面が、発電素子であるセル(10)の裏側(非受光面側)に配置されて圧着される。本発明で用いられる封止材は、その組成は特に限定されないが、オレフィン樹脂を主成分とすることが好ましい。ここで、封止材がオレフィン樹脂を主成分とするとは、封止材の全成分100質量%において、オレフィン樹脂を50質量%以上100質量%以下含むことを意味する。封止材の全成分100質量%において、オレフィン樹脂が50質量%未満となる場合は、オレフィン樹脂の特性が十分発揮できないことがある。
 封止材が、オレフィン樹脂を主成分とすることによって、太陽電池モジュールを製造する際に、発電素子であるセル(10)の裏面との接着性やセルの包埋性を確保することができ、また、オレフィン樹脂を主成分とする裏側保護基材用部材1との接着性も確保することができる。
 そして封止材を構成するオレフィン樹脂としては、例えば、低密度ポリエチレン(LDPE)や直鎖状低密度ポリエチレン(LLDPE)などのポリエチレン系樹脂、エチレン-ビニルアセテート共重合体(EVA)、ならびに2種以上のオレフィン樹脂の共重合体、例えばポリプロピレンとポリエチレンの共重合樹脂などが好適に使用されるが、セル(10)の裏面との接着性やセルの包埋性などを加味して、直鎖状低密度ポリエチレン(LLDPE)が特に好適に使用される。直鎖状低密度ポリエチレン(LLDPE)としては、例えば、住友化学株式会社製の型番スミカセン-L GA401があげられる。
 なお、封止材は、太陽電池モジュールのセルとセルの間をすり抜けた光を再度反射させてセルに戻すべく二酸化チタンや硫酸バリウム等の白色粒子を適宜含有させたり、耐光性をはじめとする耐久性、強度、およびセルとの接着性を向上させるべく、架橋剤、架橋助剤、酸化防止剤、光安定剤、シランカップリング剤などを適宜含有させることができる。
 ここで本発明において用いられる封止材とは、融点が130℃以下の層であるものと定義する。この定義条件を満たせば、封止材は単層であっても、2層以上からなる多層構成であってもよい。そして、封止材は、二酸化チタンや硫酸バリウム等の白色粒子を始めとする前記添加剤を全層または一部の層に含有させることができる。なお、封止材が多層構成の場合には、全ての層の融点が130℃以下であることが重要である。
 なお、本発明では、融点が130℃以下の層が裏側保護基材中に含まれることを排除しているわけではない。つまり、例えば、本発明で言う、裏側保護基材用部材1のオレフィン層1(オレフィン層1が接着性を有する場合は、接着層1)の融点が130℃以下であっても、封止材と該オレフィン層1の間に融点が130℃を超える層が存在すれば、該オレフィン層1は封止材とは言わない。そのため、裏側保護基材用部材1中の少なくとも封止材と接する面を構成する層には、融点が130℃を超える層が配置されることとなる。
 なお、ここでいう融点とは、JIS K 7121(1987年)に準拠して、示差走査熱量計(DSC)で測定して得られる結晶の融解に基づく主ピークの位置(温度)を意味し、着目した層において複数の融点が観測される場合には、含有量の最も多い樹脂に相当するピークを融点とする。
 また、封止材の厚みは、封止材が単層構成の場合であっても、多層構成の場合であっても、200~600μmの範囲内が好ましく、セルの裏面に付設されている配線(配線厚みは200μm程度が一般的)を覆うための必要な最小厚みとして、200μm以上が好ましく、経済性を考慮して600μm以下が好ましい。
 [一体品]
 第1の発明では、封止材と裏側保護基材用部材1の積層体である封止材・裏側保護基材用部材1の一体品は、上述の工程1によって製造されることが重要である。
 一方、第2の発明では、当該一体品の製造方法は限定されるものではない。しかし、上述の工程1によって、一体品が製造されることが、効率の点から好ましい。
 [太陽電池モジュール製造方法:工程2]
 本発明の太陽電池モジュールの製造方法であって、表側保護基材、封止材、セル、一体品、及び、裏側保護基材用部材2を、この順序に重ねて、圧着する工程2について説明する。
 図4~図6は、本発明の製造方法である工程2における、圧着前の太陽電池モジュール(11、12、もしくは30)の一例を模式的に示す断面図であり、構成は、受光面(表面)側から、表側保護基材(ガラスなど)(8)、受光面側の封止材(9)、セル(10)、一体品(1または7)、及び、裏側保護基材用部材2(4)がこの順で配置された構成であって、これらをこの順序に重ねて、圧着する工程2、例えば、真空状態でラミネートする工程(真空ラミネート工程)を経て、太陽電池モジュールが製造される。なお、圧着する工程2として真空ラミネート工程を採用する場合には、加熱工程を含んで圧着する工程2が好適に採用される。以下加熱工程を含んで圧着する工程2について説明するが、この加熱工程を含んで圧着する工程とは、加熱と同時に圧着する方法や、加熱によって封止材などを十分に軟質化してから、別途圧着する方法などを含む。
 図8に、真空ラミネート装置(18)を用いた工程の方法を例示する。真空ラミネート装置(18)を用い、予め130~180℃に加熱された加熱板(19)の上に、表側保護基材(ガラスなど)(8)、受光面側の封止材(9)、セル(10)、一体品(1または7)、及び、裏側保護基材用部材2(4)をこの順に積層して、静置する(以下、「工程2を終える前の積層体」という)。したがって、加熱板(19)の上には、例えば、図4~図6で示される、圧着前の太陽電池モジュール(11、12または30)が静置される。図8では、その一例として、圧着前の太陽電池モジュール(11)が用いられているが、圧着前の太陽電池モジュール(12)や圧着前の太陽電池モジュール(30)が用いられても良いし、本発明の範囲内である他の構成を供える、圧着前の太陽電池モジュール(30)が用いられても良い。
 しかる後、真空ラミネート装置(18)の上筐体(20)を閉じて密閉し、下筐体(21)に取り付けられた排気管(22)から排気装置(図示せず)を用いて、空間部(23)の空気を排気するとともに、同時に上筐体(20)に取り付けられた給排気管(24)からもゴム製ダイアフラム(25)と上筐体(20)とで形成する空間部(26)の空気を排気し、空間部(23)および空間部(26)を減圧状態とする。この状態を数分間保持した後、給排気管(24)から空気を導入して、空間部(23)と空間部(26)の圧力差(大気圧)によりゴム製ダイアフラム(25)を、「工程2を終える前の積層体」に押し当て加圧する。かかる加圧状態は、使用する受光面側の封止材(9)や一体品(1または7)の封止材(2)のラミネート推奨時間にも依存するが、10~40分間保持することが好ましい。以上のように加熱するとともに真空で圧着する工程2を行うことにより、太陽電池モジュールを製造することができる。真空ラミネート装置(18)の加熱板(19)の温度は使用する受光面側の封止材(9)や一体品(1または7)の封止材(2)のラミネート推奨温度にも依存するが、130~180℃が好ましい。
 [裏側保護基材用部材2]
 次に、前記工程2にて使用される裏側保護基材用部材2(4)について説明する。
 本発明における裏側保護基材用部材2は、特に限定されないが、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル-スチレン共重合樹脂、アクリロニトリル-ブタジエン-スチレン共重合樹脂、ポリ塩化ビニル系樹脂、フッ素系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ナイロン等のポリアミド系樹脂など多岐に渡る樹脂を含む層(フィルム)を使用することができる。
 その中でも裏側保護基材用部材2としては、経済面を兼ね備えたポリエステル、特にはポリエチレンテレフタレートを主成分とする層(以下、単にポリエチレンテレフタレート層という)を有することが好ましい。ここで、ポリエチレンテレフタレートを主成分とする層とは、着目した層の全成分100質量%において、ポリエチレンテレフタレート樹脂を50質量%以上100質量%以下含む層を意味する。
 さらに裏側保護基材用部材2としては、ポリエチレンフタレート層を有し、該ポリエチレンテレフタレート層が、白色粒子を1質量%以上30質量%以下含むことが好ましい。ここで白色粒子は、これを含むことでポリエチレンフタレート層を白色化せしめるものであり、これによって白色粒子による紫外線吸収能と光反射性を活かして、長期に亘ってシートの劣化による着色を低減するという効果を発揮できる。このような白色粒子としては、二酸化チタン、硫酸バリウムをあげることができる。
 ポリエチレンテレフタレート層の全成分100質量%において、白色粒子が1質量%未満では耐紫外線性が不足する場合があり、30質量%より多いと接着層2との接着性が低下する場合がある。ポリエチレンテレフタレート層中の白色粒子の含有量について、より好ましくは2質量%以上であり、さらに好ましくは3質量%以上である。さらにポリエチレンテレフタレート層中の白色粒子の含有量について、より好ましくは25質量%以下であり、さらに好ましくは20質量%以下である。
 前述の通り白色粒子としては、二酸化チタン、硫酸バリウムをあげることができるが、その中でも高い光反射性と耐光性という点で、ルチル型の酸化チタンを用いるのがより好ましい。白色粒子として好適なルチル型の酸化チタンとしては、例えばデュポン株式会社製 型番R-104(平均粒子径0.22μm)や堺化学工業株式会社製 型番SA-1(平均粒子径0.15μm)があげられる。
 さらに裏側保護基材用部材2のポリエチレンテレフタレート層に、耐光性をはじめとする耐久性を向上させるべく、酸化防止剤、光安定剤などの添加剤も適宜含有させることができる。
 本発明における裏側保護基材用部材2のポリエチレンテレフタレート層の厚みは、絶縁性の観点から50μm以上が好ましく、工程2におけるハンドリング性(取り扱い性)を考慮すると、75μmから125μmの厚みが特に好ましい。上限は、経済性から300μm以下が好ましい。
 裏側保護基材用部材2中の裏側保護基材用部材1と接する側とは反対側の面には、光安定剤や紫外線吸収剤などを含むコーティングを別途施すことで、紫外線による耐久性などを好適に向上させることができる。
 また、裏側保護基材用部材2中の裏側保護基材用部材1と接する側の面を構成する層が接着性を有する(以下、該層を接着層2という)ことが好ましく、このようにすることで、同部材1との接着性をあげることが可能となる。つまり裏側保護基材用部材2は、ポリエチレンテレフタレート層と接着層2との積層構成であることが好ましい。ここで、裏側保護基材用部材2中の裏側保護基材用部材1と接する側の面を構成する層が接着性を有するとは、該層が、ウレタン樹脂を含むことを意味する。つまり、裏側保護基材用部材2中の裏側保護基材用部材1と接する側の面を構成する層がウレタン樹脂を含む場合、該層を接着層2という。
 なお、裏側保護基材用部材1と裏側保護基材用部材2とは、本発明の製造方法によって太陽電池モジュール中で積層されて一体となることで、太陽電池モジュールにおいて一般的に用いられる裏側保護基材に必要な特性、つまり、絶縁性、長期信頼性、機械特性(破断強度等)などを有することが大切である。一般的な太陽電池モジュールの製造方法では、先に裏側保護基材を製造して、それを用いて太陽電池モジュールを製造する。しかし本発明では、裏側保護基材用部材1と裏側保護基材用部材2という、裏側保護基材の構成部品を先に製造し、最終的に工程2を経て太陽電池モジュールを製造した際に、裏側保護基材が裏側保護基材用部材1と裏側保護基材用部材2との積層体として形成され、必要な特性を得ることができるように、裏側保護基材用部材1と裏側保護基材用部材2とを設計することが大切である。また本発明では、裏側保護基材を先に製造することなく、最終的に太陽電池モジュールを製造する工程2で、同時に裏側保護基材も製造することとなり、この点で、生産工程を減らすことができるために好適である。
 前記接着層2の製造方法は特に限定されないが、接着層2はウレタン樹脂を含む組成物(以下、組成物2という)から得られることが好ましい。つまり接着層2を有する裏側保護基材用部材2は、ポリエチレンテレフタレート層などの基材に対して、組成物2をコーティングなどすることで得られる態様が好ましい。
 前記接着層2を、ウレタン樹脂を含む組成物から得ることによって、裏側保護基材用部材2(とりわけポリエチレンテレフタレート層)と接着層2との間の接着性を十分に確保できる。また、ウレタン樹脂が適度な柔らかさをもつことから、後述する裏側保護基材用部材2への組成物2の塗工時に、接着層2におけるクラックの発生などを抑制することができる。さらに、組成物2を用いることによって、塗工時の塗工適性が向上し、塗工及び乾燥後の接着層2の重量を目的の値に容易に制御することができる。
 組成物2に好適なウレタン樹脂としては、例えば、DIC株式会社製、型番ハイドランAP-201や、DIC株式会社製、型番DICSEAL HS-W EXP110202をあげることができる。そしてこのようなウレタン樹脂を水に希釈した塗剤を組成物2として、公知の塗工方式でポリエチレンテレフタレート層等にコーティング(「塗工」とも言う)し、水を乾燥することで、裏側保護基材用部材2中の、裏側保護基材用部材1と接する側の面を構成する層を、接着層2とすることができる。組成物2の塗工方式としては、例えばロッドコーティング、グラビアコーティング、ダイコーティング、スプレーコーティング等があるが、塗剤の粘度、塗工速度、塗工量の選択自由度が比較的広いロッドコーティングが特に好適に使用される。
 組成物2中のウレタン樹脂の含有量(塗工及び乾燥後の含有量)としては、0.05~5g/mが好ましく、材料費などの経済的な面、ならびに塗工時の塗工適性を考慮し、0.2~1.2g/mが最も好ましい。
 また、組成物2中のウレタン樹脂の好適な含有量は、組成物2の全成分(ただし、溶媒(例えば、水)を除く)100質量%において50~98質量%である。後述する接着層1と接着層2の最も好適な組合せの一例として、接着層1が接着性樹脂としてエポキシ変性オレフィン樹脂、好ましくはエチレン-グリシジルメタクリレート共重合体を含み、接着層2がウレタン樹脂(AP-201など)とメラミン樹脂(後述するPM-80など)とを含む組成物2の態様の場合には、組成物2中のウレタン樹脂の含有量は64~96質量%であることがより好ましい。なお、組成物2中のウレタン樹脂の好適な含有量は前述の通り50~98質量%であるが、接着層2は組成物2から得られることが好ましいため、接着層2中のウレタン樹脂の好適な含有量も、接着層2の全成分100質量%中に50~98質量%である。
 接着層2を形成するために好適な組成物2をコーティングする工程を、前述の裏側保護基材用部材2の一部であるポリエチレンテレフタレート層などの基材を押し出し機にて形成(製膜)する工程と同時に実施しても問題はない。また、製膜したポリエチレンテレフタレート層などの基材に該組成物2をコーティングするためだけの工程を別途実施してもよい。ただし、ポリエチレンテレフタレート層などの基材を製膜する工程において、組成物2をコーティングする工程と同時に実施するほうが経済的な面より好ましい。
 また組成物2は、メラミン樹脂、エポキシ樹脂、及びオレフィン樹脂からなる群より選ばれる少なくとも1つをさらに含むことが好ましい。組成物2が、メラミン樹脂、エポキシ樹脂、及びオレフィン樹脂からなる群より選ばれる少なくとも1つをさらに含むことで、前記工程2によって接することとなる接着層2と接着層1との接着性を向上させることができ、高温高湿の過酷な環境下でも、接着層1と接着層2の接着性を確保することが可能となり、接着層2自身も強固となるからである。
 組成物2に好適なメラミン樹脂は、例えばDIC株式会社製、型番PM-80などがあげられる。組成物2に好適なエポキシ樹脂は、例えばDIC株式会社製、型番ADDITIVE EP-10、や型番ADDITIVE EXP110208などがあげられる。組成物2に好適なオレフィン樹脂としては、ウレタン樹脂としてあげたDIC株式会社製、型番DICSEAL HS-W EXP110202などがあげられるが、これはウレタン樹脂とオレフィン樹脂とを含むことから、特に好適に使用できる。
 組成物2中のウレタン樹脂と他の樹脂(メラミン樹脂など)の好適な含有量については、例えば、下記(1)~(3)があげられる。
 (1)ウレタン樹脂/メラミン樹脂=15~30質量部/1.5~8.5質量部
(上記を達成するためのAP-201とPM-80の配合比の例=94質量部/6質量部)
 (2)ウレタン樹脂/エポキシ樹脂=15~30質量部/1~10質量部
(上記を達成するためのAP-201とEP-10の配合比の例=94質量部/6質量部)
 (3)ウレタン樹脂/メラミン樹脂/エポキシ樹脂=15~30質量部/3~7質量部/1~6質量部
(上記を達成するためのAP-201とPM-80とEP-10の配合比の例=92質量部/6質量部/2質量部)。
 なお、接着層2は組成物2から得られることが好ましいため、上記組成物2中のウレタン樹脂と他の樹脂(メラミン樹脂など)との含有量の関係は、接着層2についても同様に成り立つ。
 なお、上で一例にあげたAP-201はウレタン樹脂以外に水やその他樹脂を若干含み、またPM-80もメラミン樹脂以外に水やその他樹脂を含む。一方、EP-10は、ほぼエポキシ樹脂である。
 接着層1と接着層2の好適な組合せの一例は、接着層1が接着性樹脂としてエポキシ変性オレフィン樹脂、好ましくはエチレン-グリシジルメタクリレート共重合体を含み、接着層2がウレタン樹脂(AP-201など)とメラミン樹脂(PM-80など)とを含む組成物2から得られる組み合わせの場合である。この組み合わせでは、メラミン樹脂とエポキシ変性オレフィン樹脂とが架橋反応し、接着層1と接着層2との界面の接着性が向上することから、好適に使用することができる。
 また接着層1と接着層2の好適な組合せの別例は、接着層1が接着性樹脂としてエポキシ変性オレフィン樹脂、好ましくはエチレン-グリシジルメタクリレート共重合体を含み、接着層2がウレタン樹脂、オレフィン樹脂、及びエポキシ樹脂を含む組み合わせの場合である。この組み合わせでは、前記エポキシ樹脂と前記エポキシ変性オレフィン樹脂とが架橋反応し、接着性が向上することから、好適に使用することができる。なお、例えばDICSEAL HS-W EXP110202などがウレタン樹脂とオレフィン樹脂の両方を含んだもので、前記ADDITIVE EXP110208が、エポキシ樹脂を含んだものとして、好適に使用できる。
 また、ポリエチレンテレフタレート層などの基材へ組成物2をコーティングすることで得られた後の接着層2の外観向上や、組成物2として各樹脂を水に希釈する際の乳化剤として、組成物2中には界面活性剤を含むことも可能である。界面活性剤としては、例えば日信化学株式会社製、型番サーフィノール440やオルフィンEXP4051Fを使用することができる。
 裏側保護基材用部材2中の接着層2の厚みは、0.1~5μmが好ましく、材料費などの経済的な面、ならびにコーティング時の塗工適性を考慮し、0.2~1μmがさらに好ましい。
 また、接着層2の下地であるポリエチレンフタレート層などの表面には、コロナ処理やプラズマ処理、火炎処理などの各種表面処理を施すことで、ポリエチレンフタレート層と接着層2との接着性を向上することができる。さらには、接着層2の機能を前記各種表面処理が担うことも処理条件によっては可能となる。
 以下、前記工程2で使用される、その他部材について説明する。
 [表側保護基材(8)]
 本発明の太陽電池モジュールにおいて、好適に用いることができる表側保護基材(8)は、太陽電池モジュールの受光面(表面)側の保護部材として用いられる。表側保護基材の組成は特に限定されないが、一般的にガラスが用いられる。表側保護基材としてガラスを用いる場合には、波長350~1400nmの光の全光線透過率が80%以上であるガラスが好ましく、より好ましくは90%以上である。表側保護基材として用いられるガラスとしては、赤外部の吸収の少ない白板ガラスを使用するのが一般的であるが、青板ガラスであっても厚さが3mm以下であれば、太陽電池モジュールの出力特性への影響は少ない。また、ガラスの機械的強度を高めるために熱処理により強化ガラスを得ることができるが、熱処理無しのフロート板ガラスを用いてもよい。また、ガラスの受光面側に反射を抑えるために反射防止のコーティングをしても良い。
 [受光面(表面)側の封止材(9)]
 本発明の太陽電池モジュールの製造方法に用いられる受光面側の封止材(9)としては、公知の太陽電池用の封止材シートを使用でき、例えば、エチレン-ビニルアセテート共重合体(EVA)、オレフィン系樹脂、ポリビニルブチラール樹脂(PVB)、アイオノマー樹脂、シリコーン樹脂などがあげられるが、本発明における封止材・裏側保護基材用部材1の一体品における封止材(2)との接着性から、エチレン-ビニルアセテート共重合体(EVA)やオレフィン系樹脂が好ましい。エチレン-ビニルアセテート共重合体(EVA)としては、例えばサンビック株式会社製の型番fastcure PV-45FR00Sがあげられる。また、受光面側の封止材シートの厚みに関しては、太陽電池セル(10)を外部環境から保護する役目からも400μm以上が好ましく、費用面から450μm~800μmがさらに好ましい。
 [太陽電池セル(10)]
 本発明の太陽電池モジュールの一例における太陽電池セル(10)としては、単結晶シリコン型、多結晶シリコン型、アモルファスシリコン型、化合物型など多岐に渡るが、本発明の太陽電池モジュールの製造方法が適用しやすい単結晶シリコン型、多結晶シリコン型が好ましい。
 〔本発明の太陽電池モジュール用裏側保護基材、本発明の太陽電池モジュール用積層体、本発明の太陽電池モジュール〕
 続いて、本発明の太陽電池モジュール用裏側保護基材、本発明の太陽電池モジュール用積層体、本発明の太陽電池モジュールについて、以下説明する。
 本発明の裏側保護基材とは、太陽電池モジュール用の裏側保護基材であって、該裏側保護基材は、裏側保護基材用部材1と裏側保護基材用部材2との積層体であって、該裏側保護基材用部材1中の、裏側保護基材用部材2と接する側の面を構成する層が、オレフィン樹脂を主成分とする層(以下、オレフィン層1という)であって、該オレフィン層1が、接着性を有し(以下、接着性を有するオレフィン層1を、接着層1という)、該裏側保護基材用部材2中の、裏側保護基材用部材1と接する側の面を構成する層が、接着性を有する(以下、該層を、接着層2という)。このような構成の本発明の裏側保護基材は、高温高湿の過酷な環境下でも裏側保護基材用部材1と裏側保護基材用部材2との接着性を確保することが可能となり、太陽電池モジュール用途に好適である。
 本発明の裏側保護基材を構成する各要素、つまり、裏側保護基材用部材1、裏側保護基材用部材2、オレフィン層1、接着層1、及び接着層2の説明は、前述の太陽電池モジュールの製造方法の発明の項で記した通りである。
 そして前述の本発明の(太陽電池モジュールの)製造方法の中で、好適な態様の製造方法によれば、本発明の裏側保護基材を得ることができる。つまり、本発明の製造方法において、裏側保護基材用部材1中の、裏側保護基材用部材2と接する側の面を構成する層がオレフィン層1であり、該オレフィン層1が接着層1であり、裏側保護基材用部材2中の、裏側保護基材用部材1と接する側の面を構成する層が接着層2である場合には、本発明の製造方法によって得られる太陽電池モジュールは、本発明の裏側保護基材を有することになる。
 なお、当然だが、本発明の裏側保護基材を製造するための方法は、前述の本発明の(太陽電池モジュールの)製造方法に限られるものではない。つまり本発明の裏側保護基材は、裏側保護基材用部材1と裏側保護基材用部材2とを積層することで得られるものであり、これらを積層するよりも先に裏側保護基材用部材1と封止材とを積層する必要はない。つまり、封止材を積層する前に、裏側保護基材用部材1と裏側保護基材用部材2とを積層すれば、本発明の裏側保護基材を得ることもできる。
 本発明の太陽電池モジュール用積層体は、本発明の裏側保護基材の裏側保護基材用部材1の側に、封止材を積層することで得ることができる。本発明の積層体を構成する各要素、つまり封止材などの説明は、前述の太陽電池モジュールの製造方法の発明の項などで記した通りである。
 そして本発明の積層体を製造する方法は、上述の通り得られた裏側保護基材の裏側保護基材用部材1の側に封止材を積層することで可能である。
 本発明の太陽電池モジュールは、本発明の裏側保護基材を有する太陽電池モジュールである。本発明の太陽電池モジュールを構成する各要素の説明は、前述の本発明の(太陽電池モジュールの)製造方法の説明箇所などで記した通りである。
 そして本発明の太陽電池モジュールを製造する際には、本発明の(太陽電池モジュールの)製造方法により可能である。つまり、裏側保護基材用部材1中の、裏側保護基材用部材2と接する側の面を構成する層がオレフィン層1であり、該オレフィン層1が接着層1であり、裏側保護基材用部材2中の、裏側保護基材用部材1と接する側の面を構成する層が接着層2である場合に、本発明の(太陽電池モジュールの)製造方法を適用すると、本発明の太陽電池モジュールを得ることができる。
 さらに本発明の太陽電池モジュールを得るための方法は、本発明の製造方法に限定されず、例えば、表側保護基材、封止材、セル、封止材、及び本発明の裏側保護基材を、裏側保護基材中の裏側保護基材用部材1が封止材の側へ向くようにこの順序に重ねて、圧着する方法や、表側保護基材、封止材、セル、本発明の積層体を、積層体中の封止材の側がセルの側へ向くようにこの順序に重ねて、圧着する方法などもあげることができる。
 以下、本発明を実施例にて具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
 [特性の評価方法]
 (1)カール評価
 実施例および比較例の太陽電池モジュール製造において、工程1後の一体品のカール状況、ならびに工程2の真空ラミネート装置(加熱された加熱板)に、各材料が積層、静置されたときのカール状況を確認した。
 サイズは353mm角とし、工程1後の一体品のカール状況は、カールが凹状になるように水平面に静置し、4角の高さ(これを「合計」と称する。)を直定規にて測定した。一方、工程2のカール状況は、真空ラミネート装置(加熱された加熱板)に1分間放置した後に、該当サンプル(実施例の場合は、一体品、裏側保護基材用部材2のそれぞれ、比較例の場合は、裏側保護基材用部材1と裏側保護基材用部材2の一体品)を取り出し、工程1の場合と同じ方法で測定した。3枚のサンプルを評価し、それらの「合計」の平均値が、200mm以上を「3」、100mm以上200mm未満を「2」、100mm未満を「1」とした。
 (2)融点測定
 実施例及び比較例に使用される非受光面側の封止材の各層、裏側保護基材用部材1(オレフィン層1と2)の各層について、JIS K 7121(1987年)に準拠し、株式会社島津製作所製 型番DSC-60を用いて測定した。
 [共通使用材料(対象:実施例1~3、比較例1~2)]
(下記各種材料の頭に付したアルファベットは、表1のアルファベットと対応する)。
 A.表側保護基材
厚み3.2mm、波長350~1400nmの全光線透過率が90%以上である白板熱処理ガラスを使用した。
 B.受光面側封止材
受光面側の封止材シートとして、エチレン-ビニルアセテート共重合体(EVA)(サンビック株式会社製の型番fastcure PV-45FR00S 厚み450μm)を使用した。
 C.セル
太陽電池セルとして、6インチ-180μm厚みのシリコン多結晶セル SOLARTECH ENERGY CORPORATION製 型番M-156-3を、ストリングス方向2枚×2列(計4枚)を用いた。配線は、公知のセル自動配線装置にて、タブを3本並列にして接続した。
 F.裏側保護基材用部材2
 裏側保護基材用部材2のポリエチレンテレフタレート層として、厚み125μmのポリエチレンテレフタレートフィルム 東レ株式会社製 型番X10Sを用い、E一体品と接する側の面に、下記計算式で定めたコロナ処理定数が20となるようにコロナ処理を施した。
コロナ処理定数=出力(W)/加工速度(m/分)×コロナ電極幅(m)
 実施例1~2、比較例1~2は、裏側保護基材用部材2をポリエチレンテレフタレート層のみとした。一方で実施例3のみ、裏側保護基材用部材2に接着層2を設けた(実施例3のみ、裏側保護基材用部材2をポリエチレンテレフタレート層と接着層2の積層構成とした)。
 設けた接着層2の組成物2は、ウレタン樹脂としては、DIC株式会社製 型番AP-201、メラミン樹脂としては、DIC株式会社製 型番PM-80を用い、AP-201とPM-80の配合比が94質量部/6質量部のものを用いた。この組成物2の濃度が10質量%の水溶液になるように水を加えて調整し、塗剤を得た。この塗剤を#3のロッドを用いてポリエチレンテレフタレート層にハンドコーティングし、その後150℃×2分乾燥させたものを接着層2とし、これ(ポリエチレンテレフタレート層と接着層2の積層体)を裏側保護基材用部材2とした。なお、このときの接着層2の厚みは理論上、0.6μmとなる。
 (実施例1)
 [太陽電池モジュールの構成]
受光面側から、A表側保護基材/B受光面側封止材/Cセル/E一体品/F裏側保護基材用部材2
 [太陽電池モジュールの製造方法]
 [工程1]
工程1について、封止材として、オレフィン樹脂である直鎖状低密度ポリエチレン(LLDPE)、住友化学株式会社製の型番スミカセン-L GA401(融点127℃)を用い、裏側保護基材用部材1として、オレフィン樹脂であるエチレンとプロピレンの共重合樹脂(EPC:thylene-ropylene-opolymer)、住友化学株式会社製の型番ノーブレンFL6412(融点142℃)を用いた。
 前記、封止材と裏側保護基材用部材1との一体品作成は、Tダイによる共押出装置により、封止材を250μmの厚みで裏側保護基材用部材1を200μmの厚みで共押出した。押出幅は、400mmで実施した。
[工程2]
 A表側保護基材/B受光面側封止材/Cセル/E一体品(封止材側がセルに向くよう配置)/F裏側保護基材用部材2(コロナ処理面が一体品に向くように配置)を、この順序に重ねて、図8に示す真空ラミネート装置を用いて、後述する方法にて、圧着し、太陽電池モジュールを製造した。
 具体的な製造方法としては、図8に示す真空ラミネート装置を用い、予め160℃に加熱された加熱板の上に、A表側保護基材(ガラス:厚み3.2mm)、B受光面側の封止材、Cセル、E一体品、及び、F裏側保護基材用部材2をこの順に積層して、静置する。
 しかる後、真空ラミネート装置の上筐体を閉じて密閉し、下筐体に取り付けられた排気管から排気装置で空間部の空気を排気するとともに、同時に上筐体に取り付けられた給排気管からもゴム製ダイアフラムと上筐体とで形成する空間部の空気を排気し、2カ所の空間部を減圧状態とする。この状態を4分間保持した後、給排気管から空気を導入して、2カ所の空間部の圧力差(大気圧)によりゴム製ダイアフラムを積層体に押し当て加圧する。かかる加圧状態は、16分間保持し、太陽電池モジュールを製造した。
 (実施例2)
 [太陽電池モジュールの構成]
受光面側から、A表側保護基材/B受光面側封止材/Cセル/E一体品/F裏側保護基材用部材2
 [太陽電池モジュールの製造方法]
 [工程1]
工程1について、封止材として、オレフィン樹脂である直鎖状低密度ポリエチレン(LLDPE)、住友化学株式会社製の型番スミカセン-L GA401(融点127℃)を用い、裏側保護基材用部材1として、オレフィン層2は、オレフィン樹脂であるエチレンとプロピレンの共重合樹脂(EPC)、住友化学株式会社製の型番ノーブレンFL6412(融点142℃)を用い、オレフィン層1は、接着性樹脂として、エチレン-グリシジルメタクリレート共重合体である住友化学株式会社製の型番ボンドファーストE(融点103℃)を単独で用いた。
 なお、上記各原料の融点は、層の融点の測定方法と同様に、JIS K 7121(1987年)に準拠し、株式会社島津製作所製 型番DSC-60を用いて測定した。以下同様である。
 前記、封止材と裏側保護基材用部材1(オレフィン層1および2)との一体品作成は、Tダイによる共押出装置により、封止材を250μmの厚みで、裏側保護基材用部材1を200μm(オレフィン層1が50μm、オレフィン層2が150μm)の厚みで、共押出した。押出幅は、400mmで実施した。
 [工程2]
A表側保護基材/B受光面側封止材/Cセル/E一体品(封止材側がCセルに向くよう配置)/F裏側保護基材用部材2(コロナ処理面がE一体品に向くように配置)を、この順序に重ねて、真空ラミネート装置により、実施例1と同様の方法にて、圧着し、太陽電池モジュールを製造した。
 (実施例3)
 [工程1]
工程1について、封止材として、オレフィン樹脂である直鎖状低密度ポリエチレン(LLDPE)、住友化学株式会社製の型番スミカセン-L GA401(融点127℃)を用い、裏側保護基材用部材1として、オレフィン層2は、オレフィン樹脂であるエチレンとプロピレンの共重合樹脂(EPC)、住友化学株式会社製の型番ノーブレンFL6412(融点142℃)を用い、オレフィン層1は、接着性樹脂として、エチレン-グリシジルメタクリレート共重合体である住友化学株式会社製の型番ボンドファーストE(融点103℃)を単独で用いた。
 封止材と裏側保護基材用部材1(オレフィン層1および2)との一体品作成は、Tダイによる共押出装置により、封止材を250μmの厚みで裏側保護基材用部材1を200μm(オレフィン層1が50μm、オレフィン層2が150μm)の厚みで共押出した。押出幅は、400mmで実施した。
 [工程2]
A表側保護基材/B受光面側封止材/Cセル/E一体品(封止材側がCセルに向くよう配置)/F裏側保護基材用部材2(接着層2がE一体品に向くように配置)を、この順序に重ねて、真空ラミネート装置により、実施例1と同様の方法にて、圧着し、太陽電池モジュールを製造した。
 (比較例1)
 [太陽電池モジュールの構成]
受光面側から、A表側保護基材/B受光面側封止材/Cセル/D封止材/E一体品(オレフィン層2側がD封止材に向くよう配置)/F裏側保護基材用部材2(コロナ処理面がE一体品に向くように配置)
 [太陽電池モジュールの製造方法]
 [工程1]
本比較例におけるE一体品は、封止材を含まない系であり、本比較例における工程1は、F裏側保護基材用部材2のコロナ処理面に、E一体品(裏側保護基材用部材1)を押出コーティングする工程である。
 裏側保護基材用部材1として、オレフィン層2は、オレフィン樹脂であるエチレンとプロピレンの共重合樹脂(EPC)、住友化学株式会社製の型番ノーブレンFL6412(融点142℃)を用い、オレフィン層1は、接着性樹脂として、エチレン-グリシジルメタクリレート共重合体である住友化学株式会社製の型番ボンドファーストE(融点103℃)を単独で用いた。
 前記、裏側保護基材用部材1(オレフィン層1および2)のオレフィン層1とF裏側保護基材用部材2が接するように、F裏側保護基材用部材2のコロナ処理面に裏側保護基材用部材1を押出コーティングした。
 なお、押出コーティング樹脂として、裏側保護基材用部材1を200μm(オレフィン層1が50μm、オレフィン層2が150μm)の厚みで押出コーティングした。押出コーティング幅は、400mmで実施した。
 [工程2]
A表側保護基材/B受光面側封止材/Cセル/D封止材/工程1で製造した押出コーティング品(オレフィン層2側がD封止材に向くよう配置)を、この順序に重ねて、真空ラミネート装置により、実施例1と同様の方法にて、圧着し、太陽電池モジュールを製造した。なお、D封止材は、エチレン-ビニルアセテート共重合体(EVA)(サンビック株式会社製の型番fastcure PV-45FR00S 厚み450μm、融点70℃)を使用した。
 (比較例2)
 [太陽電池モジュールの構成]
受光面側から、A表側保護基材/B受光面側封止材/Cセル/D封止材/E一体品(オレフィン層2側がD封止材に向くよう配置)/F裏側保護基材用部材2(コロナ処理面がE一体品に向くように配置)
 [太陽電池モジュールの製造方法]
本比較例におけるE一体品は、封止材を含まない系で、且つ裏側保護基材用部材1として、オレフィン層1と2を事前に共押出したフィルムである。
 前記の共押出フィルム(裏側保護基材用部材1)は、オレフィン層1の厚みが50μm、オレフィン層2の厚みが150μmになるように共押出し作成した。
 裏側保護基材用部材1として、オレフィン層2は、オレフィン樹脂であるエチレンとプロピレンの共重合樹脂(EPC)、住友化学株式会社製の型番ノーブレンFL6412(融点142℃)を用い、オレフィン層1は、接着性樹脂として、エチレン-グリシジルメタクリレート共重合体である住友化学株式会社製の型番ボンドファーストE(融点103℃)を単独で用いた。
 [工程1]
本比較例における工程1は、F裏側保護基材用部材2のコロナ処理面に、接着剤を塗工し、事前に作成した共押出フィルムである、E一体品(裏側保護基材用部材1)をオレフィン層1が接着剤面に向くようにドライラミネートする工程である。
 F裏側保護基材用部材2のコロナ処理面に塗工する接着剤は、ポリエステルポリオールなどの主剤とイソシアネート系の硬化剤を使用し、E一体品(裏側保護基材用部材1)とF裏側保護基材用部材2をドライラミネートした。ドライラミネート幅は、400mmで実施した。
 [工程2]
A表側保護基材/B受光面側封止材/Cセル/D封止材/工程1で製造したドライラミネート品(オレフィン層2側がD封止材に向くよう配置)を、この順序に重ねて、真空ラミネート装置により、実施例1と同様の方法にて、圧着し、太陽電池モジュールを製造した。
 なお、D封止材は、エチレン-ビニルアセテート共重合体(EVA)(サンビック株式会社製の型番fastcure PV-45FR00S 厚み450μm、融点70℃)を使用した。
 [共通使用材料(対象:実施例4~15)]
(下記各種材料の頭に付したアルファベットは、別紙の表2のアルファベットと対応する。)
 A.表側保護基材
厚み3.2mm、波長350~1400nmの全光線透過率が90%以上である白板熱処理ガラスを使用した。
 B.受光面側封止材
受光面側の封止材シートとして、エチレン-ビニルアセテート共重合体(EVA)(サンビック株式会社製の型番fastcure PV-45FR00S 厚み450μm)を使用した。
 その他.
実施例4~15において、接着強度を評価する際のきっかけとなるところ(剥離しろ)を設けるべく、離型コート層が設けられた市販のPET(離型PET)を53mm×105mmのサイズにカットして、接着層1と接着層2の間に当該離型PETを挟み込んだ。この状態で工程2(加圧)を行っても、離型PETが挟み込まれているところは、接着層1と2とが接着(圧着)されることはない。そのため、接着強度を測定するための剥離試験を行う際に、当該箇所(接着層1と2とが接着(圧着)されていないところ)を「剥離しろ」として用いることができる。なお、離型PETとしては、東レフィルム加工株式会社製 セラピール(登録商標) 型番MFを用いた。
 (実施例4)
 [疑似太陽電池モジュールの構成]
受光面側から、A表側保護基材/B受光面側封止材/E一体品/F裏側保護基材用部材2
 [疑似モジュールの製造方法]
 [工程1]
工程1について、封止材として、オレフィン樹脂である直鎖状低密度ポリエチレン(LLDPE)、住友化学株式会社製の型番スミカセン-L GA401(融点127℃)を用い、裏側保護基材用部材1として、オレフィン層2は、オレフィン樹脂であるエチレンとプロピレンの共重合樹脂(EPC)、住友化学株式会社製の型番ノーブレンFL6412(融点142℃)を用い、オレフィン層1(接着層1)は、接着性樹脂として、エチレン-グリシジルメタクリレート共重合体である住友化学株式会社製の型番ボンドファーストE(融点103℃)を単独で用いた。
 前記、封止材と裏側保護基材用部材1(オレフィン層1および2)との一体品は、Tダイによる共押出装置により、封止材を250μmの厚みで裏側保護基材用部材1を200μm(オレフィン層1が50μm、オレフィン層2が150μm)の厚みで共押出することにより作成した。押出幅は、400mmで実施した。
 [接着層2形成工程]
裏側保護基材用部材2のポリエチレンテレフタレート層に接着層2を設けた。接着層2を形成するために用いた組成物2は、ウレタン樹脂としてDIC株式会社製 型番AP-201、メラミン樹脂としてDIC株式会社製 型番PM-80を用い、AP-201とPM-80の配合比が94質量部/6質量部のものを用いた。この組成物2の濃度が10質量%の水溶液になるように水を加えて調整し、塗剤を得た。この塗剤を#3のロッドを用いてポリエチレンテレフタレート層にハンドコーティングし、その後150℃×2分乾燥させたものを接着層2とし、これを裏側保護基材用部材2とした。
 [工程2]
A表側保護基材/B受光面側封止材/E一体品(封止材側がBに向くよう配置)/F裏側保護基材用部材2(接着層2がE一体品に向くように配置)を、この順序に重ねて、真空ラミネート装置により、実施例1と同様の方法にて、圧着し、太陽電池モジュールを製造した。
 なお、このとき、A表側保護基材/B受光面側封止材/E一体品/F裏側保護基材用部材2は、それぞれ105mm角のサイズのものを用いた。
 また、53mm×105mmのサイズの離型PETを、接着層1と接着層2の間に挟み込んだ後に、加圧(圧着)した。このとき、図9に示すように、離型PETの一方の長辺が、離型PET以外の他部材の一つの辺に沿うように(一致するように)、離型PETを、接着層1と接着層2の間に挟み込んだ。
 得られた太陽電池モジュール(疑似モジュール)を用いて、以下の方法で接着強度を評価した、なお、以下の実施例および比較例についても、同様の方法で接着強度を評価した。
 [接着強度評価]
 実施例の疑似モジュールにおいて、裏側保護基材用部材1の接着層1と裏側保護基材用部材2の接着層2の接着強度を確認した。
 サイズは105mm角とし、以下で別途説明する接着強度評価用の疑似モジュールを使用した。なお、疑似モジュールとは、接着強度評価用として使用するモジュールであり、セルを含まないものである。
 接着強度の測定方法を下記する。
 はじめに、疑似モジュールのガラス(A表側保護基材)以外の部分を、幅5mm、長さ105mmの短冊状にカットする。後述するように、評価回数が2回であることを考慮して、疑似モジュールの辺であって、離型PETの短辺方向と平行な辺から、10mm、15mmおよび20mmの位置にそれぞれ切り込みを入れる(図10を参照)。これにより、幅5mm、長さ105mmの長方形状のサンプルが2つ得られる。つまり、図10において、切り込み51と52の間の領域が一つ目のサンプルになり、切り込み52と53の間の領域が二つ目のサンプルになる。
 次に、疑似モジュールから、離型PETを取り除いた。
 続いて、株式会社エーアンド・デイ製テンシロン万能材料試験機RTG-1210を用い、180°剥離法、引張速度200mm/分にて測定した。つまり、図11に示すように、幅5mm、長さ105mmのサイズのサンプルの「剥離しろ」にある、A表側保護基材/B受光面側封止材/E一体品からなる積層体のサンプルの長さ方向の端部を、テンシロンの一方のチャックに固定した。また、当該端部にある、F裏側保護基材用部材2を、テンシロンのもう一方のチャックに固定した。(なお、F裏側保護基材用部材2の長さが足りない場合は、図示しないセロテープ(登録商標)などで継ぎ足しを行い、テンシロンのもう一方のチャックに固定すればよい)。そして、上記のテンシロンを用いて、F裏側保護基材用部材2を、A表側保護基材/B受光面側封止材/E一体品からなる積層体から180°方向に剥離せしめた。
 評価は、計2回行い、その平均値の2倍の値を接着強度とした。
 また、上記測定は、高温高湿の環境下(120℃×100%RH×48時間)での保管前後で実施した。なお、高温高湿の環境下での保管は、エスペック株式会社製プレッシャークッカー(高度加速寿命試験装置 型番EHS-221MD)を用いて実施した。
 以下の基準に基づいて、接着強度を評価した。
(1) 保管前後の接着強度が共に40N/10mm以上のものは「0」
(2) (1)及び(3)に該当しない場合は、以下に示す保管前後の接着強度の変化率が、50%以下のものを「1」とし、50%を超えるものを「2」とした。
変化率(%)=〔(保管前の接着強度-保管後の接着強度)/保管前の接着強度〕×100
(3) 保管前後の接着強度の少なくともいずれかが10N/10mm未満のものは「3」とした。
なお、(1)と(3)の時は、変化率は測定せず、変化率の測定結果としては、「不問」と記載した。
 (実施例5)
 [疑似太陽電池モジュールの構成]
受光面側から、A表側保護基材/B受光面側封止材/E一体品/F裏側保護基材用部材2
 [疑似モジュールの製造方法]
 [工程1]
実施例4と同様に実施した。
 [接着層2形成工程]
裏側保護基材用部材2のポリエチレンテレフタレート層に接着層2を設けた。接着層2を形成するために用いた組成物2は、ウレタン樹脂としてDIC株式会社製 型番AP-201、エポキシ樹脂としてDIC株式会社製 型番EP-10を用い、AP-201とEP-10の配合比が94質量部/6質量部のものを用いた。この組成物2の濃度が10質量%の水溶液になるように塗剤を調整し、さらにエポキシ樹脂が水に混ざりにくいため、別途界面活性剤である日信化学株式会社製、型番サーフィノール440を0.25質量部添加した。その後、#3のロッドを用いてポリエチレンテレフタレート層に塗剤をハンドコーティングし、その後150℃×2分乾燥させたものを接着層2とし、これを裏側保護基材用部材2とした。
 [工程2]
実施例4と同様に実施した。
 (実施例6)
 [疑似太陽電池モジュールの構成]
受光面側から、A表側保護基材/B受光面側封止材/E一体品/F裏側保護基材用部材2
 [疑似モジュールの製造方法]
 [工程1]
オレフィン層1(接着層1)の接着性樹脂として、無水マレイン酸をオレフィン樹脂にグラフト重合せしめた酸変性樹脂である三菱化学株式会社製の型番モディックF535(融点122℃)を単独で用いたこと以外、実施例4と同様に実施した。
 [接着層2形成工程]
実施例5と同様に実施した。
[工程2]
実施例4と同様に実施した。
 (実施例7)
 [疑似太陽電池モジュールの構成]
受光面側から、A表側保護基材/B受光面側封止材/E一体品/F裏側保護基材用部材2
[疑似モジュールの製造方法]
 [工程1]
実施例4と同様に実施した。
 [接着層2形成工程]
裏側保護基材用部材2のポリエチレンテレフタレート層に接着層2を設けた。接着層2を形成するために用いた組成物2は、ウレタン樹脂としてDIC株式会社製 型番AP-201、メラミン樹脂としてDIC株式会社製 型番PM-80、エポキシ樹脂としてDIC株式会社製 型番EP-10を用い、AP-201とPM-80とEP-10の配合比が92質量部/6質量部/2質量部のものを用いた。この組成物2の濃度が10質量%の水溶液になるように水を加えて調整し、さらにエポキシ樹脂が水に混ざりにくいため、別途界面活性剤である日信化学株式会社製、型番サーフィノール440を0.25質量部添加して、塗剤を得た。その後、この塗剤を#3のロッドを用いてポリエチレンテレフタレート層に塗剤をハンドコーティングし、その後150℃×2分乾燥させたものを接着層2とし、これを裏側保護基材用部材2とした。
 [工程2]
実施例4と同様に実施した。
 (実施例8)
[疑似太陽電池モジュールの構成]
受光面側から、A表側保護基材/B受光面側封止材/E一体品/F裏側保護基材用部材2
[疑似モジュールの製造方法]
 [工程1]
実施例6と同様に実施した。
 [接着層2形成工程]
実施例7と同様に実施した。
 [工程2]
実施例4と同様に実施した。
 (実施例9)
[疑似太陽電池モジュールの構成]
受光面側から、A表側保護基材/B受光面側封止材/E一体品/F裏側保護基材用部材2
[疑似モジュールの製造方法]
 [工程1]
オレフィン層1(接着層1)の接着性樹脂として、アミド基をオレフィン樹脂にグラフト重合せしめたアミド変性樹脂であるアルケマ株式会社製の型番LC3-UV(融点130℃)を単独で用いたこと以外、実施例4と同様に実施した。
 [接着層2形成工程]
実施例7と同様に実施した。
 [工程2]
実施例4と同様に実施した。
 (実施例10)
 [疑似太陽電池モジュールの構成]
受光面側から、A表側保護基材/B受光面側封止材/E一体品/F裏側保護基材用部材2
 [疑似モジュールの製造方法]
 [工程1]
オレフィン層1(接着層1)の接着性樹脂として、シラノール基をオレフィン樹脂にグラフト重合せしめたシラン変性樹脂(融点85℃)を単独で用いたこと以外、実施例4と同様に実施した。
 [接着層2形成工程]
実施例7と同様に実施した。
 [工程2]
実施例4と同様に実施した。
 (実施例11)
 [疑似太陽電池モジュールの構成]
受光面側から、A表側保護基材/B受光面側封止材/E一体品/F裏側保護基材用部材2
 [疑似モジュールの製造方法]
 [工程1]
実施例4と同様に実施した。
 [接着層2形成工程]
裏側保護基材用部材2のポリエチレンテレフタレート層に接着層2を設けた。接着層2を形成するために用いた組成物2は、ウレタン樹脂とオレフィン樹脂の両方を含んだものであるDIC株式会社製 型番DICSEAL HS-W EXP110202、エポキシ樹脂としてDIC株式会社製 型番ADDITIVE EXP110208を用い、EXP110202とEXP110208の配合比が91質量部/9質量部のものを用いた。この組成物2の濃度が10質量%の水溶液になるように水を加えて調整し、さらにエポキシ樹脂が水に混ざりにくいため、別途界面活性剤である日信化学株式会社製、型番サーフィノール440を0.25質量部添加して、塗剤を得た。その後、この塗剤を#3のロッドを用いてポリエチレンテレフタレート層に塗剤をハンドコーティングし、その後150℃×2分乾燥させたものを接着層2とし、これを裏側保護基材用部材2とした。
 [工程2]
実施例4と同様に実施した。
 (実施例12)
 [疑似太陽電池モジュールの構成]
受光面側から、A表側保護基材/B受光面側封止材/E一体品/F裏側保護基材用部材2
 [疑似モジュールの製造方法]
 [工程1]
実施例6と同様に実施した。
 [接着層2形成工程]
実施例11と同様に実施した。
 [工程2]
実施例4と同様に実施した。
 (実施例13)
 [疑似太陽電池モジュールの構成]
受光面側から、A表側保護基材/B受光面側封止材/E一体品/F裏側保護基材用部材2
 [疑似モジュールの製造方法]
 [工程1]
実施例9と同様に実施した。
 [接着層2形成工程]
実施例11と同様に実施した。
 [工程2]
実施例4と同様に実施した。
 (実施例14)
 [疑似太陽電池モジュールの構成]
受光面側から、A表側保護基材/B受光面側封止材/E一体品/F裏側保護基材用部材2
 [疑似モジュールの製造方法]
 [工程1]
実施例10と同様に実施した。
 [接着層2形成工程]
実施例11と同様に実施した。
 [工程2]
実施例4と同様に実施した。
 (実施例15)
 [疑似太陽電池モジュールの構成]
受光面側から、A表側保護基材/B受光面側封止材/E一体品/F裏側保護基材用部材2
 [疑似モジュールの製造方法]
 [工程1]
実施例4と同様に実施した。
 [接着層2形成工程]
裏側保護基材用部材2のポリエチレンテレフタレート層に接着層2を設けた。接着層2を形成するために用いた組成物2は、ウレタン樹脂としてDIC株式会社製 型番AP-201を用いた。この組成物2の濃度が10質量%の水溶液になるように水を加えて調整し、塗剤を得た。この塗剤を#3のロッドを用いてポリエチレンテレフタレート層に塗剤をハンドコーティングし、その後150℃×2分乾燥させたものを接着層2とし、これを裏側保護基材用部材2とした。
 [工程2]
実施例4と同様に実施した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
表中の斜線は、該当の材料を使用していないことを表す。
 (実施例1~3と、比較例1~2の比較)
 実施例と比較例との比較より、実施例は、工程1後のカール状況、ならびに工程2の真空ラミネート装置(加熱された加熱板)に、各材料が積層して、静置されたときのカール状況を確認したが、「1」レベルであり、太陽電池モジュール製造における工程通過性に問題のないレベルといえる。
 一方、比較例1は、工程1後のカールは、E一体品(裏側保護基材用部材1)とF裏側保護基材用部材2の押出コーティング品が、裏側保護基材用部材1(オレフィン層2)側に大きくカールする「3」レベルで、工程2の真空ラミネート装置(加熱された加熱板)に、各材料が積層、静置されたときも大きくカールし「3」レベルであった。本状況は、太陽電池モジュール製造における工程通過性に問題があり、量産性に耐えないレベルといえる。
 比較例2は、工程1後のカールは、裏側保護基材用部材1(オレフィン層2)側にカールする「2」レベルであるが、工程2の真空ラミネート装置(加熱された加熱板)に、各材料が積層、静置されたとき、E一体品(裏側保護基材用部材1)とF裏側保護基材用部材2のドライラミネート品が、裏側保護基材用部材1(オレフィン層2)側に大きくカールする「3」レベルであった。本状況は、太陽電池モジュール製造における工程通過性に問題があり、量産性に耐えないレベルといえる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
表中の斜線は、該当の材料を使用していないことを表す。
 (実施例4~15の結果)
実施例は、「1」以上のレベルであり、実用上十分耐えうる性能といえる。特に接着層1がエポキシ樹脂(エチレン-グリシジルメタクリレート共重合体)であり接着層2がウレタン樹脂を含む場合、接着強度は「0」レベルとなり、高温高湿の環境下でも十分接着性能を有するといえる。
1  一体品
2  封止材
3  裏側保護基材用部材1
4  裏側保護基材用部材2
5  オレフィン層2
6  オレフィン層1(接着層1:オレフィン層1が接着性を有する場合)
7  一体品
8  表側保護基材
9  受光面側の封止材
10 セル
11 圧着前の太陽電池モジュール
12 圧着前の太陽電池モジュール
13 共押出装置
14 Tダイ
15 ニップロール
16 キャストロール
17 剥離ロール
18 真空ラミネート装置
19 加熱板
20 上筐体
21 下筐体
22 排気管
23 空間部
24 給排気管
25 ゴム製ダイアフラム
26 空間部
27 内壁面
28 裏側保護基材
29 接着層2
30 圧着前の太陽電池モジュール
41 表側保護基材/受光面側封止材/一体品/離型PET/裏側保護基材用部材2の重畳体
42 離型PETが挟み込まれていない部分
43 離型PETが挟み込まれている部分(圧着後に「剥離しろ」になる部分)
44 疑似モジュール
46 表側保護基材/受光面側封止材/一体品からなる積層体
47 裏側保護基材用部材2
48 サンプルの「剥離しろ」にある、表側保護基材/受光面側封止材/一体品からなる積層体のサンプルの長さ方向の端部(テンシロンの一方のチャックによって固定される箇所)
49 サンプルの「剥離しろ」にある、裏側保護基材用部材2のサンプルの長さ方向の端部(テンシロンのもう一方のチャックによって固定される箇所)
50 剥離しろ(工程2における圧着時に、離型PETが接着層1と接着層2との間に挟みこまれていた部分)
51、52、53 切り込み

Claims (14)

  1.  太陽電池モジュールの製造方法であって、
     封止材と裏側保護基材用部材1とを積層して、封止材・裏側保護基材用部材1の一体品(以下、単に一体品という)を製造する工程1を有し、
     続いて、表側保護基材、封止材、セル、一体品、及び、裏側保護基材用部材2を、この順序に重ねて、圧着する工程2を有することを特徴とする、太陽電池モジュールの製造方法。
  2.  太陽電池モジュールの製造方法であって、
     封止材と裏側保護基材用部材1の積層体である封止材・裏側保護基材用部材1の一体品(以下、単に一体品という)を、
     表側保護基材、封止材、セル、前記一体品、及び、裏側保護基材用部材2の順序に重ねて、圧着する工程2を有することを特徴とする、太陽電池モジュールの製造方法。
  3.  前記工程1における封止材と裏側保護基材用部材1との積層が、共押出により行われることを特徴とする、請求項1に記載の太陽電池モジュールの製造方法。
  4.  裏側保護基材用部材1が、オレフィン樹脂を主成分とする層を有することを特徴とする、請求項1~3のいずれかに記載の太陽電池モジュールの製造方法。
  5.  裏側保護基材用部材1が、オレフィン樹脂を主成分とする層を2層有することを特徴とする、請求項1~4のいずれかに記載の太陽電池モジュールの製造方法。
  6.  裏側保護基材用部材1中の、裏側保護基材用部材2と接する側の面を構成する層が、オレフィン樹脂を主成分とする層(以下、オレフィン層1という)であって、
     オレフィン層1が、接着性を有する(以下、接着性を有するオレフィン層1を、接着層1という)ことを特徴とする、請求項1~5のいずれかに記載の太陽電池モジュールの製造方法。
  7.  裏側保護基材用部材2中の、裏側保護基材用部材1と接する側の面を構成する層が、接着性を有する(以下、該層を、接着層2という)ことを特徴とする、請求項1~6のいずれかに記載の太陽電池モジュールの製造方法。
  8.  封止材が、オレフィン樹脂を主成分とすることを特徴とする、請求項1~7のいずれかに記載の太陽電池モジュールの製造方法。
  9.  太陽電池モジュール用の裏側保護基材であって、
     該裏側保護基材は、裏側保護基材用部材1と裏側保護基材用部材2との積層体であって、
     該裏側保護基材用部材1中の、裏側保護基材用部材2と接する側の面を構成する層が、オレフィン樹脂を主成分とする層(以下、オレフィン層1という)であって、
     該オレフィン層1が、接着性を有し(以下、接着性を有するオレフィン層1を、接着層1という)、
     該裏側保護基材用部材2中の、裏側保護基材用部材1と接する側の面を構成する層が、接着性を有する(以下、該層を、接着層2という)ことを特徴とする、太陽電池モジュール用裏側保護基材。
  10.  前記接着層2は、ウレタン樹脂を含む組成物(以下、組成物2という)から得られることを特徴とする、請求項9に記載の太陽電池モジュール用裏側保護基材。
  11.  前記組成物2は、メラミン樹脂、エポキシ樹脂、及びオレフィン樹脂からなる群より選ばれる少なくとも1つを含むことを特徴とする、請求項10に記載の太陽電池モジュール用裏側保護基材。
  12.  前記接着層1が接着性樹脂を含み、
     該接着性樹脂が、エポキシ変性オレフィン樹脂、酸変性オレフィン樹脂、アミド変性オレフィン樹脂、及びシラン変性オレフィン樹脂からなる群より選ばれる少なくとも1つであることを特徴とする、請求項9~11のいずれかに記載の太陽電池モジュール用裏側保護基材。
  13.  前記接着性樹脂が、エチレン-グリシジルメタクリレート共重合体であることを特徴とする、請求項12に記載の太陽電池モジュール用裏側保護基材。
  14.  前記裏側保護基材用部材2は、ポリエチレンテレフタレートを主成分とする層(以下、ポリエチレンテレフタレート層という)を有し、
     該ポリエチレンテレフタレート層が、白色粒子を1質量%以上30質量%以下含むことを特徴とする、請求項9~13のいずれかに記載の太陽電池モジュール用裏側保護基材。
PCT/JP2014/066001 2013-07-05 2014-06-17 裏側保護基材、太陽電池モジュール、及び太陽電池モジュールの製造方法 WO2015001951A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013141422 2013-07-05
JP2013-141422 2013-07-05
JP2013196579 2013-09-24
JP2013-196579 2013-09-24

Publications (1)

Publication Number Publication Date
WO2015001951A1 true WO2015001951A1 (ja) 2015-01-08

Family

ID=52143530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066001 WO2015001951A1 (ja) 2013-07-05 2014-06-17 裏側保護基材、太陽電池モジュール、及び太陽電池モジュールの製造方法

Country Status (3)

Country Link
JP (1) JP2015088728A (ja)
TW (1) TW201511320A (ja)
WO (1) WO2015001951A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098520A1 (ja) * 2013-12-27 2015-07-02 東レ株式会社 太陽電池裏面保護用シート
CN109943040A (zh) * 2019-03-04 2019-06-28 常州回天新材料有限公司 双层结构透明pet背板及其加工方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017261A (ja) * 2015-07-03 2017-01-19 大日本印刷株式会社 太陽電池モジュール用の封止材一体型裏面保護シート及びそれを用いてなる太陽電池モジュール

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094135A (ja) * 1999-09-21 2001-04-06 Canon Inc 太陽電池モジュール
JP2006278740A (ja) * 2005-03-29 2006-10-12 Kyocera Corp 太陽電池モジュール
JP2008235603A (ja) * 2007-03-20 2008-10-02 Sanyo Electric Co Ltd 太陽電池モジュール
JP2009290201A (ja) * 2008-04-28 2009-12-10 Asahi Kasei Chemicals Corp 太陽電池バックシート用積層体およびそれを有するバックシート
JP2011181732A (ja) * 2010-03-02 2011-09-15 Lintec Corp 太陽電池モジュール用保護シート
WO2011118727A1 (ja) * 2010-03-26 2011-09-29 リンテック株式会社 太陽電池モジュール用保護シートおよび太陽電池モジュール
WO2012046565A1 (ja) * 2010-10-06 2012-04-12 積水化学工業株式会社 フレキシブル太陽電池モジュールの製造方法
JP2012091504A (ja) * 2010-10-01 2012-05-17 Techno Polymer Co Ltd 積層シート及びそれを備える太陽電池モジュール
JP2013089749A (ja) * 2011-10-18 2013-05-13 Fujifilm Corp フレームレス太陽電池モジュール

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094135A (ja) * 1999-09-21 2001-04-06 Canon Inc 太陽電池モジュール
JP2006278740A (ja) * 2005-03-29 2006-10-12 Kyocera Corp 太陽電池モジュール
JP2008235603A (ja) * 2007-03-20 2008-10-02 Sanyo Electric Co Ltd 太陽電池モジュール
JP2009290201A (ja) * 2008-04-28 2009-12-10 Asahi Kasei Chemicals Corp 太陽電池バックシート用積層体およびそれを有するバックシート
JP2011181732A (ja) * 2010-03-02 2011-09-15 Lintec Corp 太陽電池モジュール用保護シート
WO2011118727A1 (ja) * 2010-03-26 2011-09-29 リンテック株式会社 太陽電池モジュール用保護シートおよび太陽電池モジュール
JP2012091504A (ja) * 2010-10-01 2012-05-17 Techno Polymer Co Ltd 積層シート及びそれを備える太陽電池モジュール
WO2012046565A1 (ja) * 2010-10-06 2012-04-12 積水化学工業株式会社 フレキシブル太陽電池モジュールの製造方法
JP2013089749A (ja) * 2011-10-18 2013-05-13 Fujifilm Corp フレームレス太陽電池モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098520A1 (ja) * 2013-12-27 2015-07-02 東レ株式会社 太陽電池裏面保護用シート
CN109943040A (zh) * 2019-03-04 2019-06-28 常州回天新材料有限公司 双层结构透明pet背板及其加工方法

Also Published As

Publication number Publication date
JP2015088728A (ja) 2015-05-07
TW201511320A (zh) 2015-03-16

Similar Documents

Publication Publication Date Title
CN101823355B (zh) 聚合物叠层膜和使用该叠层膜的太阳能电池板
KR101314698B1 (ko) 태양전지용 이면 보호시트 및 이를 포함하는 태양전지 모듈
JP5301107B2 (ja) 太陽電池モジュール用バックシート及びこれを用いた太陽電池モジュール
WO2012121276A1 (ja) 易接着シート及び太陽電池用保護シート
JP2009267294A (ja) 太陽電池用バックシート
JP2012216805A (ja) 太陽電池モジュール用充填材シート
JP2012209461A (ja) 太陽電池用保護シートおよびその製造方法、ならびに太陽電池モジュール
JP2012119677A (ja) 太陽電池用バックシート及び太陽電池モジュール
JP5156172B2 (ja) 太陽電池モジュール用バックシート及びこれを用いた太陽電池モジュール
WO2015001951A1 (ja) 裏側保護基材、太陽電池モジュール、及び太陽電池モジュールの製造方法
WO2013121838A1 (ja) 太陽電池用保護シートおよびその製造方法、ならびに太陽電池モジュール
JP2012106488A (ja) 積層シート及びそれを備える太陽電池モジュール
JP2015130387A (ja) 太陽電池モジュールの製造方法
WO2016027759A1 (ja) インターコネクタ用光拡散部材及びこれを備える太陽電池用インターコネクタ、並びに太陽電池モジュール
CN103430320A (zh) 光伏背板层压板、包括光伏背板层压板的光伏模块以及制造光伏背板层压板的方法
JP2017139285A (ja) 太陽電池モジュール用裏面保護シート及びその製造方法並びに太陽電池モジュールの製造方法
WO2016129494A1 (ja) 太陽電池モジュール用接着フィルム及び太陽電池モジュール
JP2015191944A (ja) 裏面保護シート及びそれを用いた太陽電池モジュール
JP6547463B2 (ja) 太陽電池モジュール用封止材シート及びそれを用いてなる封止材一体型裏面保護シート
WO2023238844A1 (ja) 集電シート用樹脂フィルム、集電シート用フィルム、集電シート、集電シート付き太陽電池素子、および太陽電池
JP5696172B2 (ja) 太陽電池用保護シートおよびその製造方法、ならびに太陽電池モジュール
JP2016127200A (ja) 太陽電池用反射シート及び太陽電池モジュール
JP6880631B2 (ja) 太陽電池モジュール用の封止材一体型裏面保護シート、及び、それを用いてなる太陽電池モジュール
JP6915275B2 (ja) 太陽電池モジュール用の封止材一体型裏面保護シート、及び、それを用いてなる太陽電池モジュール
JP2018004842A (ja) インターコネクタ用光拡散部材、太陽電池用インターコネクタ及び太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14819356

Country of ref document: EP

Kind code of ref document: A1